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HaDes : The Greek underworld, in mythology, is an otherworld where souls go after death, and is the original
Greek idea of afterlife. At the moment of death the soul is separated from the corpse, taking on the shape of
the former person, and is transported to the entrance of the Underworld [by Charon across the river Styx, see
Figure 1]. The Underworld itself is described as being either at the outer bounds of the ocean or beneath the
depths or ends of the earth. It is considered the dark counterpart to the brightness of Mount Olympus, and is
the kingdom of the dead that corresponds to the kingdom of the gods. HaDes is a realm invisible to the living,
made solely for the dead.

– Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. Web. 09 Feb 2017.

Figure 1: Crossing the River Styx by
Joachim Patinir (1480-1524),
Prado Museum, Madrid.

In this course, HaDes is simply for “Hardware Design” and HaDes-V refers to a RISC-V processor to be designed
throughout the course.

This course builds on the rich legacy of the HaDes course, which has been a cornerstone of processor design
education for over two decades. Originally developed at the University of Würzburg under Prof. Reiner Kolla’s
and Marcel Baunach’s guidance, HaDes became widely recognized for its innovative teaching approach and the
Best Processor Award, an initiative celebrating outstanding student-designed processors. Many of these projects set
benchmarks in creativity and technical achievement, leaving a lasting impact on generations of students.

Following Prof. Baunach’s appointment at Graz University of Technology, the course continued to evolve,
carrying forward its tradition of excellence in processor design education. For this Open Educational Resource,
HaDes-V has been fully reimagined and redesigned to feature a modular, pipelined RISC-V processor while sticking
to its roots. This transformation embraces the principles of open hardware and modern processor architectures,
making the course accessible to a global audience while preserving its strong educational foundation.

Version: 2024-12-17
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1 Prologue

The Microcontroller Design, Lab is about deeply understanding the internal concepts, structure, and
operation ofMicrocontroller Units (MCUs). Throughout this course, youmust implement a specific RISC-V-based [1, 2]
MCU in a Hardware Description Language (HDL) and write software for it in assembly and C. You will have honed
your skills in describing digital logic, implementing low-level code, and debugging software and hardware using
various tools. The exercises will be done in SystemVerilog on an AMD Field-Programmable Gate Array (FPGA),
provided on the Basys3 [3] board from Digilent, as depicted in Figure 1.1.

Figure 1.1: The Basys3 board
featuring an FPGA.

We want you to be successful! The Microcontroller Design, Lab takes place as a standalone laboratory.
Nevertheless, it requires a sound understanding of a broad spectrum of topics and the ability to link this knowledge
well-structured and creatively. Even though there are no formal requirements on previously passed courses, it is
highly advisable to have some knowledge about “processor architectures” and “hardware description languages”.

How does the lab work? A lab session (starting at 9am) consists of two parts: At first, a presentation session
with compulsory attendance is scheduled, where some participants present their implementation to the others.
This allows you to look at other implementations and discuss the implementation decisions. The presentation is
part of your grade! Presentation sessions are named after an exercise and will only take place if an exercise is due
this week (check lab schedule!). The second part (attendance voluntary) is a supervised lab, allowing asking the
supervisors about your implementation troubles.

In any case, each participant must complete the exercises described in Chapter 4 individually within the given
deadlines. The exercises can be completed at home or in the lab, while the time in the lab offers the opportunity for
questions and discussions. For remote (unsupervised) communication, please refer to

https://matrix.to/#/#mdlab:chat.tugraz.at.

https://matrix.to/#/#mdlab:chat.tugraz.at
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You will be evaluated! Each participant is evaluated individually. Therefore, we will review your source code
regarding completeness, functionality, structure, and documentation/comments. To do so, we use an automatic test
system that evaluates your submission. Also, readability and code quality influence your evaluation. You need at
least 1 point for per submission for a positive grade. The points you get on your submissions make 75% of your final
grade.

Furthermore, we will evaluate the presentation of your implementation to other students, which takes place
during the presentation sessions. You must also be able to answer questions (from the supervisor and from your
colleagues) related to the current exercise and your implementation. The quality of the answers and the participation
will influence your final grade. The average points you get on all your presentations make up 25% of your final grade.

A final word! Passing the Microcontroller Design, Lab will require a significant amount of time. Nevertheless,
the content will give you a good understanding of the functionality of a microcontroller.

Have Fun and Success!
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2 Toolchain Preparation

In this chapter, we will guide you through the toolchain installation
process for a Linux system and shortly present the used tools1. Please only

1

Note that a virtual machine
will also be provided with
all the necessary tools
pre-installed. You can use
this virtual machine on the
lab PCs or download it for
personal use.

try to install something after reading the rest of this chapter! Some details
here are essential for the correct installation. Before you start with the
implementation, please restart your computer2.

2

Also, you will find margin
notes like this along the way.
This way, your eye catches es-
sential information more eas-
ily.

2.1 SystemVerilog

SystemVerilog [4] is an advanced Hardware Description Language (HDL)
for designing, verifying, and modeling digital systems. It has evolved
from Verilog and improves design capabilities by providing features
for modeling and verifying complex systems. This language combines
hardware description, constraints, and test mechanisms, streamlining the
creation and verification of complex designs. With its object-oriented
programming capabilities, SystemVerilog enables scalable and reusable
designs to build complex hardware systems efficiently.

In this course, we presume knowledge of SystemVerilog3 and ask you 3

If you are unfamiliar with
SystemVerilog, the book by
Donald Thomas [5] provides a
good introduction.

to structure your code and it is recommended to follow the coding style
presented in Appendix B, as your coding style is also part of the evaluation.

2.2 Verilator

Verilator4 is an open-source software tool for converting SystemVerilog 4

The official website of
Verilator is:https://verilator.org

and Verilog HDL code into a cycle-accurate C++ or SystemC behavioral
model. This model offers higher performance than event-driven simulators,
which model behavior within the clock cycle. It acts as a fast simulator that
transforms HDL code into an executable form for simulation and testing.

To obtain the correct version of Verilator, it has to be built from source
by running the following commands5: 5

Depending on your hardware
and internet connection, this
step may take some time
(∼ 30 minutes).

sudo apt install git autoconf g++ libfl-dev help2man
git clone --branch v5.006 https://github.com/verilator/verilator
cd verilator
autoconf
./configure
make
sudo make install

https://verilator.org
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2.3 RISC-V Toolchain

A version of gcc targeting rv32i without extensions needs to be compiled
from source code. This is done by executing the following commands6:

6

Depending on your hardware
and internet connection, this
step may take very long (∼ 4
hours). Also, be aware that
there may be no indication of
progress for long periods.

sudo apt install texinfo zlib1g-dev libexpat-dev libgmp-dev
git clone --branch 2023.01.31 https://github.com/riscv-collab/riscv-gnu-toolchain.git
cd riscv-gnu-toolchain
./configure --with-arch=rv32i --prefix=/opt/riscv32i
sudo make

2.4 AMD Vivado

Vivado™ is a synthesis tool that generates a netlist for the FPGA. It is offered
by AMD in different editions. The WebPACK edition is free and sufficient
for our purposes. You can find the download at http://www.xilinx.com/support/download.html. To get the installer7, youmust register for 7

The minimum Vivado™ ver-
sion is 2019.2, but newer ver-
sions work as well.

free at the AMD homepage. Vivado™ can also be used for developing and
simulating your HDL codes. During installation, choose WebPACK. Get the
Free SDK, Vivado™ WebPACK, and press “Connect Now”. A browser opens
and lets you select and activate the free available licenses.
For newer Vivado™, generating additional locales may be necessary:

locale-gen "en_US.UTF-8"
Without ncurses, the installer will get stuck when generating some files.
Therefore, it needs to be installed first:

sudo apt install libncurses5
Now extract the .tar.gz file using the archive manager. Then, launch
the xsetup file in the extracted directory as root (sudo) and follow the
installation instructions. Make sure to select Vivado HL WebPACK. Disable
all optional features except for Artix-7 support.

Finally, install the cable drivers:
cd /opt/Xilinx/Vivado/<VERSION>/data/xicom/cable_drivers/lin64/install_script/install_drivers
sudo ./install_drivers

2.5 GTKWave

Verilator compiles and executes code on your host system and outputs the
result textually. The textual form is helpful for information, warnings,
errors, and assertion messages. However, analyzing concurrent signals in
a so-called “wave viewer” is often beneficial. A widely used open-source
wave viewer is GTKWave8.

8

You can download the
viewer from http://gtkwave.sourceforge.net/ (or by executingsudo apt install gtkwave).

2.6 GIT

GIT is an open-source version control system. We will use it to provide the
development environment, and you will use it to upload your code. You can
use any GIT client you prefer (e.g., https://git-scm.com/).

http://www.xilinx.com/support/download.html
http://www.xilinx.com/support/download.html
http://gtkwave.sourceforge.net/
http://gtkwave.sourceforge.net/
http://gtkwave.sourceforge.net/
https://git-scm.com/
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3 Getting Ready

After a successful toolchain installation or virtual machine image
import, you can download our prepared development environment from
our GIT server. We have already created a template to use for your own
GIT repository. This chapter presents step-by-step instructions on how to
download the environment.

3.1 How to Create a GIT Repository?

Open the URL

https://gitlab.tugraz.at/
and sign in using your TUGRAZOnline username and password. Create a
new empty1 GIT repository according to the following naming rules2: 1

Do not initialize the reposi-
tory with a README.

2

<REGNUMBER> is your 8-digit
student registration number.

MDLab_<SURNAME>_<REGNUMBER>
In your repo’s settings, navigate to “Members” and make sure to add your
course supervisors as “Maintainer”. Have a look at the TeachCenter or
TUGRAZOnline if you do not know their mail addresses.

3.2 How to Checkout the Environment?

First, create and navigate to the folder to which the repository shall be
downloaded. Executing the command

git clone <LINK_TO_YOUR_REPO>
will clone3 the repository without downloading the files. This is necessary

3

Set up your SSH keys be-
forehand, as explained here:https://docs.gitlab.com/ee/user/ssh.html.

as we first must set a configuration for this repository. To do so, enter the
folder by executing:

cd <YOUR_REPO>
Now, disable the automatic conversion of the line ending4 with:

4

Please do not change the line
endings in the files!git config core.autocrlf false

Finally, add the public GIT repository5 containing the template as upstream 5

The template is avail-
able as open source here:https://github.com/tscheipel/HaDes-V.

and pull from it:
git remote add upstream git@github.com:tscheipel/HaDes-V.git
git pull upstream main
git push

https://gitlab.tugraz.at/
https://docs.gitlab.com/ee/user/ssh.html
https://docs.gitlab.com/ee/user/ssh.html
https://github.com/tscheipel/HaDes-V
https://github.com/tscheipel/HaDes-V
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3.3 How is the Project Structure defined? *<PATH_TO_YOUR_REPO>*

build
*build directory*

defines
*type and constant definitions*

lib
*common hardware modules*

ref
*precompiled reference*

rtl
*your implementation*

saves
*gtk save files*

sim
*simulation top directory*

std
*C helper libraries*

synth
*synthesis top directory*

test
asm

*assembler tests*
c

*C tests*
sv

*SystemVerilog tests*
Makefile

Figure 3.1: Project folder structure.
Do NOT change this

structure!

For convenient organization, configuration, and maintenance, the project
files are structured in a defined way in dedicated directories. Set up your
repository according to the structure shown in Figure 3.1.

Your main working directories are rtl and test. The rtl directory
contains the HDL code of your MCU implementation, and the test
directory includes some tests to check your implementation. Since the
precompiled reference implementation is available, you can always execute
the available tests when looking for errors. Note that not all edge and
corner cases are tested by these tests. Hence, you must write your own
tests to verify your implementation since passing the available tests does
not guarantee a correct implementation.

3.4 How to Upload Files to GIT?

To let us review and evaluate your progress, you must add, commit, and
push your code via GIT. If your GIT is not configured yet, make sure to do
so by using the commands:

git config --global user.email "you@student.tugraz.at"
git config --global user.name "Firstname Lastname"

To reduce the storage consumption and potential problems after a
compilation or synthesis on a different workstation, please refrain from
adding generated output files to your repository. To add files to the version
control system, use the command:

git add <files to add>
The simplest way to add all files, except the generated files, is to add all files
right at the beginning, i.e., when preparing your folder. To mark the current
progress of your repository with a meaningful text, use the command:

git commit -a -m '<text>'
All your commits are stored locally unless you push your changes to the
GIT server using:

git push

3.5 How does the Makefile work?

Within your workspace is one Makefile for handling the building,
execution, simulation, visualization, and synthesis of your implementation.
Running make help displays the available commands. To test your
implementation, create testbenches in SystemVerilog, assembly, or C and
place them in their respective folders within the test/ directory. Run the
test using make test/<asm|c|sv>/<test_name> and view the results via
make show6 to visualize the outcome using gtkwave.

6

The command make show
utilizes the same saved wave-
form file for C and assembly
tests, while SystemVerilog
testbenches generate their
own individual save file for
each testbench.
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3.6 How to Synthesise the MCU?

syncButtons

syncSwitches

sync
UART

wishbone_ram

wishbone_leds

wishbone_buttons

wishbone_switches

wishbone_segments

wishbone_uart

wishbone_timer

wishbone_vga

wishbone_test

LEDs

7-Segment

VGA

HADes-V CPU      
fetch_port  

m
e
m
o
r
y
_
p
o
r
t

 
i
n
t
e
r
r
u
p
t
s

Figure 3.2: The block diagram of the
HaDes-V MCU, featuring
the Central Processing
Unit (CPU) and its
peripherals.

After successfully implementing and simulating all CPUmodules7, youmay

7

Synthesis does not work
with pre-compiled reference
implementation modules
instantiated in your code.

want to test the MCU (cf. Figure 3.2) on real hardware. To generate a netlist
for the FPGA, you must use a synthesis tool, like Vivado™ (see Section 2.4).
Running the command

make synthesis
executes the required implementation and synthesis steps using Vivado™.
A bitstream is generated upon success, which can then be programmed8

8

Ensure the synthesis raises no
errors or warnings (check thebuild/synth/vivado.log
file).

onto the FPGA board.

3.6.1 How to Write the Bitstream to the FPGA Board?

After generating the bitstream, you can program it onto the FPGA board
using Vivado™. Therefore, open the hardware manager in Vivado™,
connect the FPGA board to the PC (forward USB to the virtual machine
if needed), and ensure that the cable drivers are installed (see Section 2.4).
When the hardware manager is opened, click “Open target” → “Autoconnect”. When clicking “Program device”, a window opens where
the bitstream file (build/synth/hades-v.bit) can be selected, and
when pressing “Program”, the bitstream is written to the FPGA. Since
the memory is initialized with the bootloader it starts automatically and
waits for a program.

The bitstream can also be stored on the quad Serial Peripheral Interface
(SPI) flash available on the board. This allows the board to disconnect
from the power supply and restore the bitstream on the next startup.
This can be achieved by opening the hardware manager and connecting
the board as described above. Instead of programming the device, you
can right-click on the device and click ”Add Configuration MemoryDevice...” opening a window where you can select the configuration
memory part: S25FL032. Then, you are asked to select the configuration
file (build/synth/hades-v.bin) to be stored in the flash.

3.7 How to Upload a Software Program?

After the bitstream is programmed onto the FPGA, the bootloader
automatically starts. This is because the MCU’s memory is already
initialized with the bootloader code. After initializing the system, the
bootloader expects an incoming binary to execute on the Universal
Asynchronous Receiver Transmitter (UART) serial interface.

Executable binary .hex files can be created by using the following
command:

make test/<PATH_TO_YOUR_TEST_PROGRAM>
When the command executes without errors, you find the compiled code
in the build/test/<...> directory. There is the .hex file that can be
transmitted to the bootloader using some serial communication program
like cutecom9.

9

You can simply in-
stall it by executingapt install cutecom and
start it with root permissions:sudo cutecom
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If the board is connected and the bootloader runs, you can send the .hex
file by clicking “send file”. When the program is flashed successfully,
you see it on the output window, and the bootloader will jump directly to
the start point of the program.

3.7.1 Bootloader

The bootloader is a special piece of software that gets loaded into
Random-Access Memory (RAM) automatically whenever the CPU boots
up. In our case, the bootloader is pre-programmed into the FPGA
configuration file. You can find the source code for the HaDes-V bootloader
in test/c/bootloader.c10.

10

This is just a normal C
program that calls therun_bootloader library
function, so you can also call
this from within your own
program!

Upon launch, the bootloader first copies itself to the end of RAM and
sets up its own small stack (see std/src/boot.c). Then, it expects to
receive an Intel HEX [6] file via the UART and saves it to the RAM
(see std/src/boot_internal.c). Once the file has been downloaded
successfully11 and the checksum is verified, the bootloader jumps to the

11

Since the bootloader itself
also runs from RAM, the last
4kB of memory can’t be used
by the payload program (ex-
cept for the runtime stack).

entry point of the payload program.
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4 Introduction to the Exercises

Before we start with the exercises, this chapter will provide you with
general information about the HaDes-V CPU and some other important
general notes about the exercises and the processwithin theMicrocontroller
Design, Lab.

4.1 HaDes-V Overview

The HaDes-V processor to be developed in this course is a 32-bit pipelined
RISC-V1 processor featuring five distinct pipeline stages: Instruction Fetch,

1

RISC-V is an open and free
Instruction Set Architecture
(ISA) defined in 2010 by
the University of California,
Berkeley, by Waterman et al.
in [1] and [2] and is inspired
by established Reduced
Instruction Set Computing
(RISC) architectures as
mentioned above. However,
unlike many proprietary
instruction sets, RISC-V is
freely available in terms of
use and modification. The
ISA is designed to be easily
extensible, and its standard
can be implemented in dif-
ferent variants with different
extensions. A CPU or MCU
implementing the RISC-V
ISA must at least contain
32 basic registers alongside
some standard instructions
to fulfill the minimum
specification. Many different
implementations exist, both
hardcore and softcore CPUs
and MCUs. Amongst the
variants, proprietary cores
can be found alongside
open-source RISC-V designs
in industry and academia.
(cited from [7])

Instruction Decode, Execute, Memory, and Writeback (cf. Figure 5.1). This
processor is designed to execute data-dependent instructions, handle errors,
and respond to interrupts.

Your implementation must support the fundamental RV32I instruction
set as defined in the standard [1], which deals with basic integer operations
and also all Control and Status Register (CSR) instructions [2] (referred
to “Zicsr”). All the essential CSRs and also the machine timer registers
are implemented. The implemented CPU supports machine mode only,
focusing on efficient machine-level execution.

More information about processor architecture in conjunction with
RISC-V can be found in Hennessy and Patterson [8].

4.2 List of Exercises

Implement and hand in all the following exercises according to the lab
schedule. Each Exercise has its own amount of maximal achievable points.
When grading, functionality, automatic test case assessment, and code
quality is taken into account.

Getting Ready (0 pts): Prepare your GIT repository and ensure you can run
all the tools as explained in Chapter 3.

Exercise 1 (3 pts): Implement the CPU top module in cpu.sv according to
Figure 5.1 in Chapter 5. Further general information to kickstart your
course experience is given in Section 4.3.

Exercise 2 (8 pts): Implement the Instruction Fetch Stage in fetch_stage.sv
according to the description in Section 5.1.
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Exercise 3 (6 pts): Implement the Decode Stage in decode_stage.sv and
the Register File in register_file.sv according to the descriptions in
Section 5.2 and Section 5.2.2.

Exercise 4 (6 pts): Implement the InstructionDecoder in instruction_decoder.sv
according to the description in Section 5.2.1.

Exercise 5 (10 pts): Implement the Execute Stage in execute_stage.sv
according to the description in Section 5.3.

Exercise 6 (10 pts): Implement the Memory Stage in memory_stage.sv
according to the description in Section 5.4.

Exercise 7 (16 pts): Implement the Writeback Stage in writeback_stage.sv
according to the description in Section 5.5.

Exercise 8 (6 pts): Synthesize and test the complete MCU according to the
description in Section 3.6.

Final Exercise (10 pts): Extend HaDes-V in hardware or software with your
own or some pre-defined ideas (see Section 4.4).

4.3 The Start of your HaDes-V Journey

When starting off implementing the CPU top module in cpu.sv, have a look
into the project structure first (cf. Section 3.1). Go to the rtl folder, where
all the code templates are provided. You will find a code snippet that looks
similar to Listing 4.1.

1 module cpu (
2 input logic clk,
3 input logic rst,
4
5 wishbone_interface.master memory_fetch_port,
6 wishbone_interface.master memory_mem_port,
7
8 input logic external_interrupt_in,
9 input logic timer_interrupt_in
10 );
11
12 // TODO: Delete the following line and
13 // implement this module.
14 ref_cpu golden(.*);
15
16 endmodule

Listing 4.1: The template for cpu.sv.
This structure is similar in every template file provided in rtl. The

first lines (Lines 1 to 10 in this case) always represent the module pin-out
definitions.

Line 14 shows how the pre-compiled reference implementation of a
module is instantiated. Please remove2 this line and insert your code here,

2

Make sure never to push
code that features any instan-
tiation of the pre-compiled
reference implementation
rather than your already im-
plemented modules for your
submission, even if they do
not work correctly. It is your
task to fix incorrect modules
after the submission deadline,
as explained in Section 4.4.
Non-compliance leads to
points being deducted.
Of course, not-yet-finished
modules can stay as they are.as the comment suggests. For the first exercise, create the top module for

the CPU, as depicted in Figure 5.1.
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4.4 The Final Exercise

The last exercise is a free project in which the self-developed HaDes-V MCU
has to be extended. Hardware, software, or co-design projects are possible.

Some ideas include creating solutions for USB and PS/2, VGA text mode,
Bash-like shell, or SPI, I2C, I2S, CAN, and PWM drivers. Several PMOD
modules are provided that can be used to generate ideas for hardware
projects, as seen in Figure 4.1.

Figure 4.1: A bunch of PMOD
modules to extend the
HaDes-V MCU.

As soon as the idea for a project is ready, the lab staff must review and
confirm the plausibility and contents. The best project is evaluated during
the final presentation and awarded the HaDes-V Award3.

3

The history of awardees can
be viewed here: https://iti.tugraz.at/teaching/awards/hades-award

4.5 A Final Word on the Exercise Mode

The total achievable points sum up to a maximum of 75 pts. All exercises
must be pushed onto your remote GIT repository before the announced
exercise deadline4. If your submitted implementation does not work

4

Deadline for an exercise
is on the Sunday before
the corresponding exercise
presentation session at
23:59:59.

correctly, you must fix it after the deadline (ask your supervisors!). This is
because the following exercises depend on your previous implementations.
Follow-up errors also lead to points being deducted in the following tasks.

https://iti.tugraz.at/teaching/awards/hades-award
https://iti.tugraz.at/teaching/awards/hades-award
https://iti.tugraz.at/teaching/awards/hades-award
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5 HaDes-V Architecture
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Figure 5.1: A top-level architectural
overview and block
diagram of the HaDes-V

CPU.

Throughout the lab, you design, implement, and test all parts of the
HaDes-V CPU and assemble it with all peripherals to form the HaDes-V

MCU. The individual parts of the CPU are explained in the present chapter.

The HaDes-V CPU has a total of 5 pipeline stages (cf. Figure 5.1): An
Instruction Fetch Stage, a Decode Stage, an Execute Stage, a Memory Stage,
and a Writeback Stage. While each stage has its own set of features and
responsibilities, some behavior1 is shared between them (also refer to the 1

To be consistent throughout
the pipeline stages, please re-
fer to the definitions in Sec-
tions 6.1 and 6.2.

lower three signals in the block diagram):
• Every stage must pass status_backwards and jump_address through
without delay if it is a jump or a stall.

• Every stage must maintain its outputs if the following stage signals a
stall (via status_backwards).

• Every stage must flush its own state if the following stage signals a jump
(via status_backwards).

• Every stage must signal a stall (via status_backwards) if it cannot
consume any inputs in the current clock cycle.

• Every stage must signal a bubble (via status_forwards) if it cannot
provide any outputs in the current clock cycle.
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5.1 Instruction Fetch Stage instruction_out
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status_forwards_out
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wishbone

Figure 5.2: The pin-out of the
Instruction Fetch Stage.

The Instruction Fetch Stage is responsible for fetching instructions from
memory. Every clock cycle, one data word is fetched from the RAM
(connected via the wishbone interface) at the current Program Counter
(PC)2 address. The PC value must be maintained in this stage as well. This

2

Hint: Using sequential logic
for storing the current values
of the stage might be helpful.

stage has the following inputs and outputs:

instruction_out provides a sequential stream of instructions fetched
from RAM. The first instruction after reset must be fetched from
constants::RESET_ADDRESS. If status_backwards_in indicates a jump,
the next instruction is fetched from jump_address_in.

program_counter_out provides the address in memory that corresponds
to instruction_out. If status_forwards_out indicates an error, this
output provides the memory address corresponding to the instruction
that couldn’t be fetched.

wishbone is the interface3 that connects to the instruction fetch port (see 3

For a detailed description of
the wishbone signals, refer to
Section 6.3.

Figure 3.2) of the CPU. This port is exclusively connected to the RAM;
hence, reads over this port are guaranteed to have no side effects.

Additionally, the Instruction Fetch Stage must respect and generate the
pipeline control signals as described in Section 6.1. The only allowed error
to be emitted by this stage is FETCH_FAULT, in case the wishbone bus signals
an error.
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5.2 Decode Stage
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Figure 5.3: The pin-out of the Decode
Stage.

The Decode Stage decodes the instruction word from the Instruction Fetch
State. It generates the necessary information to execute the instruction (e.g.,
set control signals and provide immediate and source register values) in the
subsequent stages. Therefore, this stage contains:
• an Instruction Decoder (see Section 5.2.1) that extracts the individual
information within the instruction word (e.g., operation, destination
register address, source register addresses, immediate values),

• the Register File (see Section 5.2.2) that is responsible for the handling of
the CPU registers (x0 – x31) 4,

4

The registers are logically
written in the Writeback
Stage, so you need to forward
its signals to the Register File
in the Decode Stage.

• and a Forwarding Unit (see Section 6.2) that forwards results from other
stages that are not stored in the Register File yet.

To make the code easier to read, the Instruction Decoder and the Register
File are implemented in two separate sub-modules.

This stage has the following inputs and outputs:

instruction_in holds the instruction word fetched from the RAM.

program_counter_in holds the address corresponding to instruction_in.
<x>_forwarding_in hold the results of the other stages (execute, memory,

writeback) using data_valid, data, and address (see Section 6.2).

instruction_out provides the decoded instruction (see Section 5.2.1).

program_counter_out provides the address corresponding to instruction_out.
If status_forwards_out indicates an error, this output provides the
memory address corresponding to the error.

rs<n>_data_out provides provides register <n>’s source data (forward
data if necessary).

Additionally, the Decode Stage must respect and generate the pipeline
control signals as described in Section 6.1. This stage inserts a BUBBLE
if the forwarded data is invalid and needs to stall the previous stage.
The errors allowed to be emitted by this stage are ECALL, EBREAK5, and

5

ECALL and EBREAK are valid,
but handled like errors.
Therefore, the status needs to
be set accordingly.ILLEGAL_INSTRUCTION.

5.2.1 Instruction Decoder

The task of the Instruction Decoder is to interpret the instruction word
retrieved frommemory and provide control signals applicable to subsequent
stages. All supported instructions are listed in Appendix A. Essential tasks
include
• determining the operation to be executed,
• decoding the source register(s),
• identifying the destination register and
• parsing the immediate value6.

6

The RISC-V ISA[1] specifies
all instructions and how they
are encoded.
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The struct for a decoded instruction is depicted in Listing 5.1.

1 typedef struct packed {
2 op::t op;
3 logic [4:0] rd_address;
4 logic [4:0] rs1_address;
5 logic [4:0] rs2_address;
6 csr::t csr;
7 logic [31:0] immediate;
8 } t;

Listing 5.1: Instruction stuct.

The individual fields contain the following information:

op is the operation7 to be performed. 7

For the implementation, it is
very helpful to use the casez
statement (see Listing B.6).

rd_address holds the destination register address8.

8

If the source or destination
register address is not speci-
fied in the instruction word,
the address must be set to 0
to simplify forwarding.

rs1_address holds the address of the first source register.

rs2_address holds the address of the second source register.

csr contains the CSR address.

immediate is the immediate data.

Any unsupported instruction must output an op::ILLEGAL. This includes
accessing unimplemented CSRs or writing to read-only CSRs (see RISC-V
privileged spec [2] – Chapter 2.1). All implemented CSRs are listed indefines/csr.sv.

5.2.2 Register File

The Register File contains the CPU’s 32 machine registers x0 – x31 (each 32
bit wide). It has one synchronouswrite port and two asynchronous read
ports. The register at address zero always reads zero. The read and write
ports are defined as follows:

read_address1 holds the register address for the first read port.

read_data1 contains the data from the register specified by read_address1.
read_address2 holds the register address for the second read port.

read_data2 contains the data from the register specified by read_address2.
write_address holds the register address for the write port.

write_data contains the data that must be stored in the register specified
by write_address.

write_enable is the enable/disable signal for writing to registers.
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5.3 Execute Stage
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Figure 5.4: The pin-out of the Execute
Stage.

The Execute Stage performs all arithmetic operations. This includes general
arithmetic op-codes but also comparisons and address calculations for
branches, jumps, and memory access. This stage has the following inputs:

instruction_in is the decoded instruction from the Decode Stage.

program_counter_in is the memory address that corresponds to the
current instruction.

rs1_data_in holds the data of the first operand to the instruction, if
applicable.

rs2_data_in holds the data of the second operand of the instruction, if
applicable.

Taking these input values, the stage generates the following outputs (all
registered):

instruction_out provides the unmodified instruction_in.
program_counter_out provides the unmodified program_counter_in.
next_pc_out is the PC after the current instruction. This is the same

as jump_address_out for unconditional jumps and taken branches, and
program_counter_in + 4 otherwise.

rd_data_out contains the data to write back to the rd register if it is
already known after this stage. For load and store operations, this signal
holds the memory address.

source_data_out holds the source data for store and CSR operations, if
applicable.

Additionally, the Execute Stage must respect and generate the pipeline
control signals as described in Section 6.1. The only allowed error to
be emitted by this stage is FETCH_MISALIGNED9. It must also perform

9

The RISC-V ISA [1] specifies
that instruction address mis-
aligned exceptions occur on
jumps, rather than on an in-
struction fetch.

forwarding according to Section 6.2 for all already completed instructions.
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5.4 Memory Stage
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Figure 5.5: The pin-out of the
Memory Stage.

The Memory Stage performs all load and store operations. It mostly deals
with controlling the wishbone interface, sign extension, and byte selection.
This stage has the following inputs:

instruction_in is the decoded instruction.

program_counter_in is the memory address corresponding to the
current instruction.

next_pc_in is the address of the next instruction.

rd_data_in holds the data to write back to the rd register, if already
known before this stage. For load and store operations, this signal holds
the memory address.

source_data_in holds the data for store andCSR operations, if applicable.

Taking these input values, the stage generates the following outputs (all
registered):

instruction_out provides the unmodified instruction_in.
program_counter_out provides the unmodified program_counter_in.
next_pc_out provides the unmodified next_pc_in.
rd_data_out contains the data to write back to the rd register, if it is

already known after this stage.

source_data_out holds the source data for CSR operations, if applicable.

This stage can interact with the memory bus via that wishbone10 interface. 10

For a detailed description of
the wishbone signals, refer to
Section 6.3.

Both reads and writes may have side effects, so they cannot be aborted
safely.

Additionally, the Memory Stage must respect and generate the pipeline
control signals as described in Section 6.1. This stage will stall until the
wishbone transaction is complete. The only allowed errors to be emitted
by this stage are LOAD_MISALIGNED, STORE_MISALIGNED, LOAD_FAULT, and
STORE_FAULT. It must also perform forwarding according to Section 6.2 for
all already completed instructions.
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5.5 Writeback Stage
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Figure 5.6: The pin-out of the
Writeback Stage.

The Writeback Stage performs all remaining operations not handled in
earlier stages11. Additionally, it maintains the values of the Control and

11

WFI and FENCE are imple-
mented as NOPs; ECALL andEBREAK are implemented as
exceptions; FENCE.I is im-
plemented in the Writeback
Stage as a jump to the next in-
struction.

Status Registers (CSRs) and handles exceptions and interrupts. This stage
has the following inputs:

instruction_in is the decoded instruction.

program_counter_in is the memory address corresponding to the
current instruction.

next_pc_in is the address of the next instruction.

rd_data_in holds the data to write back to the rd register if it is already
known before this stage.

source_data_in holds the data for CSR operations, if applicable.

interrupts contain the signals for external and timer interrupts, to be
passed directly to the CSRs (see Section 5.5.1). The signals must remain
high until the interrupts are handled in software.

This module does not generate any outputs besides what is needed to
respect and generate the pipeline control signals as described in Section 6.1.
This stage must never stall to ensure no ongoing memory operations are
interrupted. The Writeback Stage will generate a jump in any of the
following conditions:
• When a trap is taken due to an interrupt or exception, jump to mtvec (cf.
Section 5.5.2).

• When instruction_in is an MRET instruction, jump to mepc.
• When instruction_in is a FENCE.I instruction, jump to next_pc_in.
It must also perform forwarding according to Section 6.2 for all instructions.

5.5.1 Control and Status Registers

The CSRs are used to control and observe the machine state. The following
registers12 must be implemented: 12

This is the minimal set
of registers required for a
machine-mode-only proces-
sor [2].

MSTATUS represents the core operating state. The MPIE and MIE bits must
be readable and writable; all other bits must read 0. MIE must be cleared
on reset.

MTVEC holds the jump address for interrupts and exceptions (traps). It can
be read or written with arbitrary values, but the lowest two bits must be
0 (to keep the address aligned).

MIP signals pending interrupts. Only MEIP and MTIP are implemented and
are read-only.

MIE enables and disables specific interrupts. Only MEIE and MTIE are
implemented and readable and writable.
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MCYCLE/MCYCLEH represents a 64-bit counter, with the 32 most significant
bits in MCYCLEH and the others in MCYCLE. Both registers are readable
and writable and support arbitrary values. If not currently written, the
counter increments by one every clock cycle.

MINSTRET/MINSTRETH represents a 64-bit counter, with the 32 most
significant bits in MINSTRETH and the others in MINSTRET. Both registers
are readable and writable and support arbitrary values. If not currently
written, the counter increments by one whenever a valid instruction
completes.

MSCRATCH is a scratch register with no special behavior. It is readable and
writable, and supports any value.

MEPC stores the address of the instruction that caused an exception. It can
be read or written with arbitrary values, but the lowest two bits must be
0 (to keep the address aligned).

MCAUSE stores the reason a trap was taken. It is readable and writable, and
supports any value. On reset, this register is to be cleared.

All other CSRs 13 are read-only zero.

13

Hint: Creating a dedicated
submodule for handling all
the CSRs might be helpful.

5.5.2 Interrupt Handling

MEIP is set while external_interrupt is asserted. MTIP is set while
timer_interrupt is asserted. Every exception causes an immediate trap
once it reaches the Writeback Stage. An interrupt causes a trap if one of
the following14 is true: 14

If any of the flags are changed
by the current instruction, the
updated values must be used.

• MEIP, MEIE, and MIE are set when an instruction completes15.

15

“Completes” means with aVALID or ERROR status
(no BUBBLE).

• MTIP, MTIE and MIE are set when an instruction completes.

If a trap occurs, a couple of things must happen at once:
• The Writeback Stage triggers a jump to the address stored in MTVEC.
• MCAUSE is updated according to Section 3.1.15 in [2].
• MEPC is updated with the current PC (for exceptions) or the next PC (for
interrupts).

• MPIE is set to MIE.
• MIE is cleared.
Once the trap handler completes, it usually returns to normal instruction
flow by executing an MRET instruction. When an MRET instruction occurs,
the following changes16 happen:

16

Beware that if an interrupt is
pending, it may trigger imme-
diately after an MRET but still
in the same clock cycle!

• The Writeback Stage triggers a jump to the address stored in MEPC.
• MIE is set to MPIE.
• MPIE is set.



microcontroller design, laboratory instruction guide 20

6 Additional Information

6.1 Pipeline Status

In the HaDes-V pipeline control system, we utilize two types of status
indicators to monitor the progress of instructions through the pipeline1:

1

The passing of the status sig-
nals (and the jump address)
can be seen in the lower 3
signals of every stage in Fig-
ure 5.1.

a Forwards Status that indicates a stage’s progress to the next stage, and a
Backwards Status that indicates the current stage’s readiness for input from
the stage before2.

2

Hint: Consider sequential
logic for the Forwards Status
unlike the Backwards Status.

6.1.1 Forwards Status

This status signal is passed from an earlier to a later pipeline stage, e.g.,
from the Decode Stage to the Execute Stage. There are 3 different types of
Forwards Status:

VALID means all output signals of the current stage are valid. The
following stage can process the signals of the current stage normally.

BUBBLE means the output signals are invalid. The following stage must
ignore all other signals it gets from the current stage.

All other values in this status mean the output signals (other than the PC)
are invalid, and an exception occurred. The following stage passes this
state and the PC to the next stage and ignores all other signals.

The possible values for the Forwards Status are defined in Listing 6.1.

1 typedef enum [3:0] {
2 VALID,
3 BUBBLE,
4 FETCH_MISALIGNED,
5 FETCH_FAULT,
6 ILLEGAL_INSTRUCTION,
7 LOAD_MISALIGNED,
8 LOAD_FAULT,
9 STORE_MISALIGNED,
10 STORE_FAULT,
11 ECALL,
12 EBREAK
13 } forwards_t;

Listing 6.1: Forwards Status enum.

Each stage only processes an input when the forwards status is VALID3,

3

Pay close attention to for-
warding signals, such asaddress and data_valid,
since they make only sense if
the input state is VALID.except the Writeback Stage, which needs to handle the ERROR state.
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6.1.2 Backwards Status

Contrary to the status signal explained before, the Backwards Status signal
is passed from a later pipeline stage back to an earlier one, e.g., from
the Execute Stage to the Decode Stage. There exist 3 different types of
Backwards Status:

READY means the current stage has finished processing its inputs and is
ready to accept new ones. Hence, the stage before may provide new
output signals.

STALL means the current stage is still busy processing its inputs and cannot
accept new ones. Hence, the stage before must maintain its current
output values, unless it indicates a BUBBLE.

JUMP means the current stage (or a later stage) indicates a jump to
jump_address_backwards. Hence, the stage before must abort its current
instruction and indicate a BUBBLE. The Instruction Fetch Stage must
continue to fetch instructions from jump_address_backwards after the
BUBBLE.

The possible values for the Backwards Status are defined in Listing 6.2.

1 typedef enum [1:0] {
2 READY,
3 STALL,
4 JUMP
5 } backwards_t;

Listing 6.2: Backwards Status Enum.

This status signal must be handled before changing any registers;
therefore, it must be passed through all stages4 without any delay. Thus,

4

The Backwards Status from
a later pipeline stage takes
precedence over a status from
an earlier one; e.g., if Mem-
ory Stage stalls and the Exe-
cute Stage wants to jump, the
Execute Stage must forward
the STALL rather than its ownJUMP.

it exclusively consists of combinatorial logic. This rule also applies to
jump_address_backwards. This is crucial since the Instruction Fetch Stage
is responsible for setting the PC to this address on the subsequent positive
clock edge if a JUMP is requested.

6.2 Forwarding

Tomitigate penalties arising from data dependencies in the pipeline, we use
Forwarding. Within this method, the outcomes of each stage are directed
to a Forwarding Unit positioned within the Decode Stage (see Section 5.2).
The forwarding of data involves a signal5 specific to each stage (Execute, 5

Rather than directly retriev-
ing results from the output
register of each stage, this ap-
proach aims to reduce penal-
ties incurred due to invalid
data while simplifying the
functioning of the Forward-
ing Unit.

Memory, and Writeback), which is also the input for the output register of
that particular stage.

Since results might not be immediately available, the forwarding signal
is a struct containing the following signals:

address denotes the destination register address where the data is to be
stored. If address is zero, the other signals should be ignored.

data holds the result, i.e., the data to be stored in the corresponding
register.
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data_valid indicates the validity of data.
The struct of the forwarding signal is shown in Listing 6.3.

1 typedef struct packed {
2 logic data_valid;
3 logic [31:0] data;
4 logic [4:0] address;
5 } t;

Listing 6.3: Forwarding struct.

The Forwarding Unit must check if the current instruction relies on data
from instructions in the Execute, Memory, or Writeback Stage6. If this

6

If the source register of this
instruction equals the desti-
nation register of instructions
in the pipeline.

is the case, instead of taking the data from the Register File, it must use
the forwarded result that is still in the pipeline. The Forwarding Unit is
also responsible for checking the data_valid signal when forwarding the
result7.

7

The register at address zero
(x0) can always be forwarded,
as it is always zero.

6.3 Wishbone

Wishbone is an open interconnect standard by OpenCores [9]. It is used
to connect the CPU core to its peripherals, and in the HaDes-V architecture
also the RAM. This section briefly explains the operation of this bus.

The HaDes-V architecture uses classic wishbone bus cycles with support
for synchronous and asynchronous slaves.
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wb.adr 0x40 0x40 0x40 0x40

wb.sel 0b0011 0b0001 0b0011 0b0010
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Figure 6.1: A wishbone cycle
consisting of 4 separate
transfers with a
synchronous slave.

Figure 6.1 shows an examplewishbone bus cycle consisting of 4 transfers.
All signals are read at the rising clock edge. The bus master must hold the
cyc signal high until the last transfer in the cycle is complete.

The bus master starts a transfer by setting stb (possibly in the same
cycle as cyc. Simultaneously, all other signals driven by the master must
be valid. The adr signal indicates the word address (not the byte address)
that is accessed. The bits in the sel signal indicate which bytes of the word
are accessed. The we signal indicates a write transfer if set, or a read transfer
otherwise. Finally, the dat_mosi signal carries the data for write transfers.

The slave corresponding to the specified address must then respond to
this transfer. The ack and err signals must be low until the transfer is
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complete. Then either of them must be asserted by the slave for one clock
cycle to indicate a success (ack) or an error (err). On a successful read
transfer, dat_miso carries the data while ack is high.
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Figure 6.2: The same wishbone cycle
with a fast, asynchronous
slave.

To increase performance, slaves may generate their acknowledge signal
asynchronously. Figure 6.2 shows the samewishbone cycle as before, except
that the slave responds asynchronously. This allows to complete a memory
transfer in a single cycle and is used for them main memory in the HaDes-V

architecture.

6.4 Development Board
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Figure 6.3: The Basys3 board.The Basys3 board [3] is a complete, ready-to-use digital circuit development
platform based on an Artix®-7 FPGA from AMD. The board offers the
following ports and peripherals:
• 16 user switches
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• 16 user LED
• 5 user push buttons
• 4-digit 7-segment display
• 3 Pmod connectors
• Pmod for ADC signals
• 12-bit VGA output
• USB-UART bridge
• serial flash
• Digilent USB-JTAG port
• USB HID (USB to PS/2)

Power Supplies The board is powered by the Digilent USB-JTAG port
(J4) or an external 5 V power supply. Jumper JP3 determines, which source
is used. A power LED (LD20), driven by the “power good” output of the
LTC3633 supply, indicates that the supplies are turned on and operating
normally.
The USB port delivers enough power for the vast majority of designs. A
few demanding applications, including any that drive multiple peripheral
boards, might require more power than the USB port can provide. An
external power supply can be used by using the external power header (J6)
and setting jumper JP2 to “EXT”. Power supplies must offer voltage ranging
from 4.5 VDC to 5.5 VDC and at least 1 A of current (i.e., at least 5 W of
power).

FPGA Configuration After power-on, the Artix®-7 FPGA must be
configured before it can perform any functions. The on-board jumper (JP1)
selects between three different configurations modes:

1. a computer can use the Digilent USB-JTAG port (J4, labeled “PROG”) to
configure the FPGA any time the power is on

2. a file stored in the non-volatile serial flash device can be transferred to
the FPGA by using the SPI port

3. a configuration file can be transferred from a USBmemory stick attached
to the USB HID port

Figure 6.4: Basic I/O devices
(from [3]).

Oscillators / Clocks Basys3 has a single 100 MHz oscillator
connected to pin W5 (W5 is a MRCC input on bank 34). The input clock
can drive MMCM or PLL to generate clocks of various frequencies and with
known phase relationships that may be needed throughout a design.

Basic I/O (LED, Switches, Buttons) Figure 6.4 shows the basic I/O
devices of the Basys3 board. It includes sixteen individual LED, which are
anode-connected to the FPGA via 330 Ω resistors and can be switched on
with high signals.
The sixteen switches are located at the bottom of the board. They (and the
five buttons above) are connected to the FPGA via serial resistors to prevent
damage if accidentally defined as output.
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Seven-Segment Display The Basys3 board provides a four-digit
common anode seven-segment LED display. Every digit uses one common
anode for every digit. In total, the circuit has four anodes and 7 cathodes for
the whole display. The cathodes are shared between all four digits, which
results in a multiplexed display design. The update rate between the single
digits must be higher than 45 Hz to prevent a flickering display. All four
digits should be driven once every 1 to 16 ms (1 kHz to 60 Hz)

USB HID Host The auxiliary function microcontroller (Microchip
PIC24FJ128) provides the Basys3 board with USB HID host capability. After
power-up, themicrocontroller is in configurationmode, either downloading
a bitstream to the FPGA or waiting for it to be configured from other
sources. Once the FPGA is configured, the microcontroller switches to
application mode, which in this case is the USB HID host mode. The
firmware in the microcontroller can drive a mouse or a keyboard attached
to the type A USB connector at J2 labeled “USB”.

Figure 6.5: Pin configuration for the
VGA port (from [3]).

VGA Beside the LED and the seven-segment display, another visual
output is available. The VGA port with 4 bits per color supports up to
4096 different colors. The provided VGA peripheral for the Wishbone bus
uses only one bit per color and one intensity bit (necessary reduction to
save valuable memory). Additional to the color information are two more
signals required. One signal for vertical synchronization and one for the
horizontal synchronization. The Basys3 board board uses 14 FPGA pins to
create the VGA port as shown in Figure 6.5.

Table 6.1 shows the connected FPGA pins with the SystemVerilog top
level ports.
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Name FPGA pin Type Connected with Description

clk W5 in clk_100mhz onboard clock (100 MHz)
btn_in<0> U18 in buttons_async(0) button center
btn_in<1> T18 in buttons_async(1) button north
btn_in<2> W19 in buttons_async(2) button west
btn_in<3> T17 in buttons_async(3) button east
btn_in<3> U17 in buttons_async(3) button south
led_out<0> U16 out leds(0) LED output 0
led_out<1> E19 out leds(1) LED output 1
led_out<2> U19 out leds(2) LED output 2
led_out<3> V19 out leds(3) LED output 3
led_out<4> W18 out leds(4) LED output 4
led_out<5> U15 out leds(5) LED output 5
led_out<6> U14 out leds(6) LED output 6
led_out<7> V14 out leds(7) LED output 7
led_out<8> V13 out leds(8) LED output 8
led_out<9> V3 out leds(9) LED output 9
led_out<10> W3 out leds(10) LED output 10
led_out<11> U3 out leds(11) LED output 11
led_out<12> P3 out leds(12) LED output 12
led_out<13> N3 out leds(13) LED output 13
led_out<14> P1 out leds(14) LED output 14
led_out<15> L1 out leds(15) LED output 15
swt_in<0> V17 in switches_async(0) switch 0
swt_in<1> V16 in switches_async(1) switch 1
swt_in<2> W16 in switches_async(2) switch 2
swt_in<3> W17 in switches_async(3) switch 3
swt_in<4> W15 in switches_async(4) switch 4
swt_in<5> V15 in switches_async(5) switch 5
swt_in<6> W14 in switches_async(6) switch 6
swt_in<7> W13 in switches_async(7) switch 7
swt_in<8> V2 in switches_async(8) switch 8
swt_in<9> T3 in switches_async(9) switch 9
swt_in<10> T2 in switches_async(10) switch 10
swt_in<11> R3 in switches_async(11) switch 11
swt_in<12> W2 in switches_async(12) switch 12
swt_in<13> U1 in switches_async(13) switch 13
swt_in<14> T1 in switches_async(14) switch 14
swt_in<15> R2 in switches_async(15) switch 15
uart_rx B18 in uart_rx_async RS232 RXD
uart_tx A18 out uart_tx RS232 TXD
vga_r<0> G19 out vga_red(0) VGA red bit 0
vga_r<1> H19 out vga_red(1) VGA red bit 1
vga_r<2> J19 out vga_red(2) VGA red bit 2
vga_r<3> N19 out vga_red(3) VGA red bit 3
vga_b<0> N18 out vga_blue(0) VGA blue bit 0
vga_b<1> L18 out vga_blue(1) VGA blue bit 1
vga_b<2> K18 out vga_blue(2) VGA blue bit 2
vga_b<3> J18 out vga_blue(3) VGA blue bit 3
vga_g<0> J17 out vga_green(0) VGA green bit 0
vga_g<1> H17 out vga_green(1) VGA green bit 1
vga_g<2> G17 out vga_green(2) VGA green bit 2
vga_g<3> D17 out vga_green(3) VGA green bit 3
vga_hsync P19 out vga_hsync VGA horizontal sync
vga_vsync R19 out vga_vsync VGA vertical sync
seg<0> W7 out segments(0) 7 Segment bit a
seg<1> W6 out segments(1) 7 Segment bit b
seg<2> U8 out segments(2) 7 Segment bit c
seg<3> V8 out segments(3) 7 Segment bit d
seg<4> U5 out segments(4) 7 Segment bit e
seg<5> V5 out segments(5) 7 Segment bit f
seg<6> U7 out segments(6) 7 Segment bit g
dp V7 out segments(7) 7 Segment decimal point
an<0> U2 out segments_select(0) 7 Segment anode 1
an<1> U4 out segments_select(1) 7 Segment anode 2
an<2> V4 out segments_select(2) 7 Segment anode 3
an<3> W4 out segments_select(3) 7 Segment anode 4

Table 6.1: All the pins of the FPGA
and their connections.
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6.5 Peripherals

The wishbone (see Section 6.3) is connected with the data memory and
many peripherals. This section introduces all offered HaDes-V peripherals.
In Table 6.2, all peripherals and the corresponding address spaces are listed.

Module Byte address Bit Description

Memory (RAM) 0x10000...0x12000 Read/Write to RAM
LEDs 0x80000 16...0 Set individual bit to turn on/off the corresponding LED
Buttons 0x81000 4 Status of center button (pressed = ’1’)

0x81000 3 Status of north button (pressed = ’1’)
0x81000 2 Status of west button (pressed = ’1’)
0x81000 1 Status of east button (pressed = ’1’)
0x81000 0 Status of south button (pressed = ’1’)

Switches 0x82000 16...0 Status of the corresponding switch (switch enabled = ’1’)
Segments 0x83000 31...24 7-Segments of 1000
(see Section 6.5.1) 0x83000 23...16 7-Segments of 100

0x83000 15...8 7-Segments of 10
0x83000 7...0 7-Segments of 1

UART 0x84000 31...24 Transmitt Status
(see Section 6.5.2) 0x84000 23...16 Receive Status

0x84000 15...8 unused
0x84000 7...0 RX/TX - Buffer

Timer 0x85000 MTIME Status
(see Section 6.5.3) 0x85001 MTIME

0x85002 MTIMEH
0x85003 MTIMECMP
0x85004 MTIMECMPH

VGA 0x90000...0x99600 VGA-Buffer (640 ·480 ·4 bit)
(see Section 6.5.4)
Test 0x120000 Test register (write to send a message to testbench)
(see Section 6.5.5) 0x120001 Interrupt register (down counter)

0x120002 Counter register (reads return an incrementing number)
0x120003 Stall Acknowledge register (delayed acknowledge)
0x120004 Stall Error register (delayed error)

Table 6.2: All the peripherals and
their corresponding
addresses.6.5.1 Segments

To control the individual segments and dots8 on the four seven-segment 8

The colon between the first
two and the second two dig-
its is not connected in hard-
ware. Therefore, it cannot be
controlled by software.

displays, the designated 32-bit memory location is used. Each display is
managed by a specific set of 8 bits within this address: the rightmost display
uses the lowest 8 bits, the next 8 bits control the tens place, the following
8 bits handle the hundreds place, and the top 8 bits manage the thousands
place. Each bit corresponds to a segment:

Bit index 7 6 5 4 3 2 1 0
Segment Dot G F E D C B A

Figure 6.6: 7 Segment display.

6.5.2 UART

The UART peripheral is a serial communication interface (RS232) for
communicating with a working station. The baud rate is fixed set to
115200 kbit/s.

The transmit and receive buffer is 1 Byte large and is represented in
big-endian format: the most significant byte will be sent first. Upon reading
from the buffer, it retrieves the most recent received byte, while writing to
the buffer stores the subsequent byte for transmission. Transmission occurs
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automatically when the transmission unit is idle and a new byte is available
for sending.

Alongside the UART buffer, there exist control and status bits9 that 9

Since RISC-V supports byte
(8-bit), halfword (16-bit), and
word (32-bit) memory oper-
ations, it allows reading or
writing only particular parts
of a memory address.

manage the sending and receiving processes:
• TX buffer empty: This bit is set if the buffer is empty and cleared upon
writing to the buffer.

• TX interrupt enable: Set this bit to trigger an interrupt when the TX
buffer is empty.

• TX error: This bit is set when a buffer overflow occurs (overwriting the
full TX buffer) and cleared upon read.

• RX buffer full: This bit is set if the buffer is full and cleared upon reading
from the buffer.

• RX interrupt enable: Set this bit to trigger an interrupt when the RX
buffer is full.

• RX error: This bit is set if a buffer overflow occurs (full RX buffer gets
overwritten due to new received byte) and cleared upon read.

TX Status RX Status - Buffer

Bit Index 31:27 26 25 24 23:19 18 17 16 15:8 7:0
Functionality xxxxx EMPTY IE ERR xxxxx FULL IE ERR xxxxxxxx BUFFER

6.5.3 Timer

The timermodule is responsible for the twomemorymapped timer registersmtime and mtimecmp defined in the privileged RISC-V ISA [2] (3.2.1
Machine Timer Registers). In order to provide amechanism for determining
the period of one tick, an additional read-only ”MTIME Status” register
has been implemented, wherein the lowest 8 bits denote the nanoseconds
per system clock cycle.

6.5.4 VGA

The VGA peripheral controls the graphical output on the VGA output.
The output resolution is predefined to 640x480 pixel with 16 colors. The
used color system is the Color Graphics Adapter or iRGB system (https://en.wikipedia.org/wiki/Color_Graphics_Adapter). It is a 4-bit
color system. Beside the 3 primary colors, red, green and blue, an intensity
bit exists describing the intensity of the RGB color. The next table shows
the assignment of the individual bits:

Bit Descpription

0 blue
1 green
2 red
3 intensity

With 4 bits it is possible to generate 16 different colors. In the next
table, all possible colors are shown. The table shows that the intensity bit
distinguishes the intensity of the RGB color. The only exceptions are the
brown and yellow color. The standard defines to generate a brown color
instead of a dark yellow, for a better distinction of the two colors.

https://en.wikipedia.org/wiki/Color_Graphics_Adapter
https://en.wikipedia.org/wiki/Color_Graphics_Adapter
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Color Bits Color Bits Color Bits Color Bits

black 0000 red 0100 gray 1000 light red 1100
blue 0001 magenta 0101 light blue 1001 light magenta 1101
green 0010 brown 0110 light green 1010 yellow 1110
cyan 0011 light gray 0111 light cyan 1011 white 1111

Since the screen has 640 pixel ·480 pixel = 307200 pixel and each pixel
needs 4 bit, the graphics memory has a size of 153600 B. The first graphics
memory address is the pixel on the top left (x = 0, y = 0) of the screen. The
rising address goes from the left to the right til the end of the row. Then
it jumps to the next row and starts on the left. Therefore, the next pixel of
address n ·(640−1),n ∈ {0, . . . ,478} (x = 639, y = n) is on the next row on
the left (x= 0, y= n+1). In a singlememory location, the LSBs correspond
to the lowest pixel index, while the MSBs correspond to the highest pixel
index within that specific memory location10:

10

Since RISC-V supports byte
(8-bit), halfword (16-bit), and
word (32-bit) memory oper-
ations, it allows reading or
writing only particular parts
of a memory address.

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
Address + 0 px 7 px 6 px 5 px 4 px 3 px 2 px 1 px 0
Address + 1 px 15 px 14 px 13 px 12 px 11 px 10 px 9 px 8
... ...

6.5.5 Test

The test peripheral is designed for CPU testing and comprises the following
registers:
• Test Register: Writing to this register sends a message to the testbench.

– 0x0000: Indicates a passed test case.
– 0x0001: Indicates a failed test case.
– 0x0002: Halts the simulation.

• Interrupt Register: Contains a down counter that triggers an interrupt
when it reaches 0.

• Counter Register: Reading from this register returns an incrementing
number, starting from 0.

• Stall AcknowledgeRegister: Read andwrite operations to this register
waits for 3 clock cycles before acknowledging.

• Stall Error Register: Read and write operations to this register waits
for 3 clock cycles before raising a wishbone error.
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A Instruction Set Listing

The following table lists all instructions that are implemented by the HaDes-V CPU. This is a subset of the RISC-V
ISA [1]. All instructions not in this table raise an “Illegal Instruction” exception.

31 25 24 20 19 15 14 12 11 7 6 0
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt[4:0] rs1 001 rd 0010011 SLLI
0000000 shamt[4:0] rs1 101 rd 0010011 SRLI
0100000 shamt[4:0] rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

imm[11:0] rs1 000 rd 0001111 FENCE
imm[11:0] rs1 001 rd 0001111 FENCE.I

000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK
001100000010 00000 000 00000 1110011 MRET
000100000101 00000 000 00000 1110011 WFI

csr rs1 001 rd 1110011 CSRRW
csr rs1 010 rd 1110011 CSRRS
csr rs1 011 rd 1110011 CSRRC
csr uimm[4:0] 101 rd 1110011 CSRRWI
csr uimm[4:0] 110 rd 1110011 CSRRSI
csr uimm[4:0] 111 rd 1110011 CSRRCI
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B Coding Style

Important Note

For coding, use combina-
torial logic, always_comb
and always_ff blocks ex-
clusively, while ensuring
all time-dependent signals
are only sensitive to the
positive clock edge. In Sys-
temVerilog, we exclusively
utilize the logic datatype
(never reg or wire).

In the following sections we provide some short and basic examples on how
to implement certain structures, and it is highly recommended to follow this
coding style, as code quality is part of your assessment.

B.1 Signal Declaration and Assignment

When assigning a value to a signal, it is crucial to employ the assign
statement to ensure the value is assigned combinatorially rather than set
only at startup, as illustrated in Listing B.1.

1 // This line assigns the value only once during startup
2 logic my_signal_wrong = SOMETHING;
3 // This line assigns the value combinatorially
4 logic my_signal;
5 assign my_signal = SOMETHING;

Listing B.1: Signal decleration and assignment.

B.2 Module Instantiation

It is highly recommended to connect all ports when instantiating a module,
even if the ports have the same name. The following code snippets show
a subcomponent (cf. Listing B.2) that is instantiated in a top module in
Listing B.3.

1 module subcomponent (
2 input logic clk,
3 input logic rst,
4 input logic [31:0] data_in,
5 output logic [31:0] data_out
6 );
7 [...]
8 endmodule

Listing B.2: Subcomponent module.
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1 module top (
2 );
3
4 logic clk, rst;
5 logic [31:0] data_in;
6 logic [31:0] processed_data;
7
8 // Instantiate subcomponent module
9 subcomponent module_name (
10 .clk(clk),
11 .rst(rst),
12 .data_in(data_in),
13 .data_out(processed_data)
14 );
15
16 endmodule

Listing B.3: Instantiate a submodule.

B.3 Registers

Whenever implementing CPU registers, the recommended way doing so is
shown in Listing B.4.

1 logic [31:0] test_reg;
2 always_ff @(posedge clk) begin
3 if (rst) begin
4 // Reset register
5 test_reg <= RESET_VALUE;
6 end
7 else begin
8 // Assign value to register
9 if (condition)
10 test_reg <= SOME_VALUE;
11 else
12 test_reg <= DEFAULT_VALUE;
13 end
14 end

Listing B.4: A simple Register.

This design showcases registers with a synchronized reset (if needed) and
updates values on the rising clock edge.Splitting the reset and value-setting
actions into separate blocks (possibly using an “if-else” structure) is
recommended. This separation enhances code clarity and simplifies
understanding by clearly distinguishing between reset operations and value
assignments, making the code easier to manage and maintain.
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B.4 Multiplexers

When selecting among different input signals, a Multiplexer (MUX) is the
hardware element of choice. To simplify the MUX implementation and
improve clarity over multiple if-else conditions, it is recommended to use
a case statement. The code snippet in Listing B.5 demonstrates a 4-to-1
MUX.

1 logic [31:0] mux_data_out;
2 logic [2:0] mux_select;
3 always_comb begin
4 case(mux_select)
5 2'b00: mux_data_out = input_data_0;
6 2'b01: mux_data_out = input_data_1;
7 2'b10: mux_data_out = input_data_2;
8 2'b11: mux_data_out = input_data_3;
9 default: mux_data_out = 0; // Default case
10 endcase
11 end

Listing B.5: A simple 4-1 MUX.

When the select signals need to deal with don’t-care conditions the casez1 1

We do not recommend usingcasex since it is error prone
(x-propagation).

statement (cf. Listing B.6) is helpful. Here, ’z’ and ’?’ are considered
don’t-care values, and the expression always matches if the defined
part matches. This is particularly useful for scenarios where certain
bits are irrelevant or unspecified (e.g., within the Instruction Decoder in
Section 5.2).

1 logic [31:0] mux_data_out;
2 logic [31:0] mux_select;
3 always_comb begin
4 casez(mux_select)
5 {22'b?, 5'b00000, 5'b00000}: mux_data = data_0;
6 {24'b?, 3'b101, 5'b00000}: mux_data = data_1;
7 {27'b?, 5'b01010}: mux_data = data_2;
8 {27'b?, 5'b11111}: mux_data = data_3;
9 default: mux_data = 0;
10 endcase
11 end

Listing B.6: A MUX with don’t-care values.
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List of Abbreviations

CPU Central Processing Unit
CSR Control and Status Register

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

ISA Instruction Set Architecture

MCU Microcontroller Unit
MUX Multiplexer

PC Program Counter

RAM Random-Access Memory
RISC Reduced Instruction Set Computing

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter



microcontroller design, laboratory instruction guide 36

Bibliography

[1] RISC-V Foundation, The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version
20191213, December 2019. [online] https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC.

[2] RISC-V International, The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version
20211203, December 2021. [online] https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12.

[3] Digilent, Inc., Basys 3 Reference Manual. [online] https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual.
[4] IEEE, “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Language,”

IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), 2018. [online] https://doi.org/10.1109/IEEESTD.2018.8299595.
[5] D. Thomas, Logic Design and Verification Using SystemVerilog (Revised). CreateSpace Independent Publishing

Platform, 2016. ISBN: 978-1523364022.

[6] Intel Cooperation, Hexadecimal Object File Format Specification, 1998. [online] https://archive.org/details/IntelHEXStandard.
[7] T. Scheipel, Advances in Dynamic and Reconfigurable Embedded Systems Design. PhD thesis, Graz University of

Technology, Dec. 2022. [online] https://www.scheipel.com/diss.
[8] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. Morgan Kaufman, 6 ed.,

2019. ISBN: 978-0-12-811905-1.

[9] OpenCores, WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores, 2010. [online]https://cdn.opencores.org/downloads/wbspec_b4.pdf.

https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://archive.org/details/IntelHEXStandard
https://archive.org/details/IntelHEXStandard
https://www.scheipel.com/diss
https://cdn.opencores.org/downloads/wbspec_b4.pdf


microcontroller design, laboratory instruction guide 37

License

The HaDes-V instruction guide is an open educational resource licensed
under Creative Commons Attribution (CC BY 4.0 International).

https://creativecommons.org/licenses/by/4.0/
Tobias Scheipel, David Beikircher, Florian Riedl
TU Graz 2024https://www.scheipel.com/oer

Notes on Licensing:

• This license applies to all content created by the authors and not
explicitly labeled as external material.

• External materials in this document, such as images or data from
third-party sources, retain their respective licenses.

• This document is created using LATEX and tufte-book.

https://creativecommons.org/licenses/by/4.0/
https://www.scheipel.com/oer

	Prologue
	Toolchain Preparation
	SystemVerilog
	Verilator
	RISC-V Toolchain
	AMD Vivado
	GTKWave
	GIT

	Getting Ready
	How to Create a GIT Repository?
	How to Checkout the Environment?
	How is the Project Structure defined?
	How to Upload Files to GIT?
	How does the Makefile work?
	How to Synthesise the MCU?
	How to Upload a Software Program?

	Introduction to the Exercises
	 HaDes-V Overview
	List of Exercises
	The Start of your  HaDes-V Journey
	The Final Exercise
	A Final Word on the Exercise Mode

	 HaDes-V Architecture
	Instruction Fetch Stage
	Decode Stage
	Execute Stage
	Memory Stage
	Writeback Stage

	Additional Information
	Pipeline Status
	Forwarding
	Wishbone
	Development Board
	Peripherals

	Instruction Set Listing
	Coding Style
	Signal Declaration and Assignment
	Module Instantiation
	Registers
	Multiplexers

	List of Abbreviations
	Bibliography

