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Abstract

This thesis addresses the challenges of accurate and robust indoor localization in
dense multipath (DM) environments, where bandwidth limitations hinder accurate
time-of-flight-based position estimation. Focusing on the exploitation of the often-
discarded information contained in the DM and of mutual information between
nodes, the research develops novel, improved algorithms, that exploit the informa-
tion contained in the DM. This is shown to be possible through different methods,
including extraction of information by a generalized cross-correlation (GCC) and
direct estimation of DM parameters. The primary motivation stems from the in-
creasing demand for precise indoor positioning in various applications, coupled with
the constraints imposed by low-power, low-cost wireless technologies operating in
unlicensed bands like the industrial, scientific, and medical (ISM) band.

The thesis investigates three core hypotheses. The first hypothesis posits that
the additional information embedded within the DM can be effectively exploited
for ranging and localization, even with limited bandwidth. This is addressed by de-
veloping a novel model-based delay estimation method that explicitly incorporates
a parametric model of the DM. By directly modeling the DM rather than treating
it as interference, this approach achieves significant improvements in both accuracy
and robustness, especially in non-line-of-sight (NLOS) scenarios where traditional
methods often fail.

The second hypothesis explores the potential for enhancing time-difference-
of-arrival (TDoA)-based wideband localization by leveraging mutual information
between closely-spaced transmitters. This hypothesis is tackled by introducing
a cooperative localization algorithm that utilizes a GCC framework. The GCC
captures the similarity of wideband measurements between nodes in close prox-
imity, effectively exploiting the shared information embedded in their multipath
profiles. To address the computational complexity of GCC in large-scale scenarios,
a computationally efficient approximation based on perceptual hashing is proposed.
This method compresses wideband signals into compact hashes and introduces a
distance metric based on the similarity of these hashes, providing a practical al-
ternative for information coupling, which is a term describing correlations between
transmitters. Furthermore, the algorithm incorporates a geometric prior within
a message-passing framework to constrain the search space to plausible locations,
enhancing the accuracy and efficiency of position estimation. The performance is
compared to a cooperative localization method that utilizes additional received sig-
nal strength (RSS) measurements, demonstrating that comparable or even superior
accuracy can be achieved without requiring these extra measurements.

The third hypothesis investigates the feasibility of implementing these com-
putationally demanding algorithms efficiently, enabling their application to large
datasets. This is addressed through algorithm optimization and the use of particle-
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based estimators, demonstrating practical implementation strategies for both the
model-based dense multipath component (DMC) estimation and the cooperative
localization algorithm. A clustering approach based on RSS measurements is also
introduced as a means of further reducing the computational burden in large-scale
deployments. By grouping nodes based on RSS, this approach enables efficient
joint processing of wideband measurements within clusters, significantly reducing
the computational complexity while maintaining acceptable accuracy.

To validate the proposed methods and quantify their performance limits, the
thesis derives theoretical performance bounds, including the Cramér-Rao lower
bound (CRLB) for various scenarios. The impact of clustering on the CRLB is
analyzed, introducing a correction factor to account for the information loss as-
sociated with approximating node positions by a cluster center. A biased lower
bound is also analyzed to account for the discrepancy between the estimated clus-
ter position and the true node position.

Extensive simulations and real-world experiments using wideband measure-
ments validate the theoretical analysis and demonstrate significant performance
gains compared to conventional methods for all methods described in this thesis.
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Notation

x Scalar values are denoted by non-bold characters.
x Vectors are denoted by boldface lower-case characters.
X Matrices are denoted by boldface upper-case characters.
L Sets are denoted by calligraphic notation.
xT The transpose of a vector is denoted by superscript T .
xH The hermitian transpose of a vector is denoted by superscript H.
x∗ The complex conjugate of a value is denoted by a superscript ∗.

This also applies to vectors, but element-wise.
∠x The argument of a scalar is denoted by the symbol ∠. This also

applies to vectors, but element-wise.
[X]N×N This denotes the upper left N ×N sub-block of a matrix.
[X]n,m This denotes the n,m-th element of a matrix.
[x]n This denotes the n-th element of a vector.
|x| The vector of absolute values is denoted by the symbols | encasing

the vector.
‖x‖ The Euclidean norm of a vector is denoted by the symbols ‖

encasing the vector.
E[x] The expectation operator is denoted by E.
tr{X} The trace of a matrix is denoted by the operator tr.
det(X) The determinant of a matrix is denoted by the operator det.
F (x) The Fourier-transform of a vector is denoted by the operator F .
F−1(x) The inverse Fourier-transform of a vector is denoted by the oper-

ator F−1.
W A Fourier-transformation matrix of corresponding size.
f(x | y) The probability density function of a vector x depending on a

parameter set y is denoted by the operator f .
O(x) The operator O denotes big-O notation for computational com-

plexity.
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1
Introduction to Research Topics

1.1 Introduction
Indoor localization has emerged as a critical enabling technology for a plethora
of applications across various sectors. From enhancing navigation and logistics
within complex environments like hospitals, hotels, and shopping malls to enabling
precise asset tracking in industrial settings, and facilitating location-aware services
in smart homes utilizing internet of things (IoT) devices [1–9], the demand for
accurate and reliable indoor positioning systems continues to grow. However, the
very nature of indoor environments poses significant challenges to achieving the
desired levels of accuracy and reliability. These challenges primarily stem from the
complex propagation characteristics of radio signals, which are the most commonly
used medium for indoor localization [7, 10–16].

Unlike outdoor environments where line-of-sight (LoS) propagation often dom-
inates, indoor scenarios are characterized by the presence of numerous obstacles,
such as walls, furniture, and people, that cause reflection, diffraction, and scat-
tering of radio waves. This leads to multipath propagation, where multiple copies
of the transmitted signal arrive at the receiver with varying delays, amplitudes,
and phases [1, 13, 17–21]. The resulting channel impulse response (CIR) exhibits
a complex structure, especially in dense multipath (DM) environments, where the
number of multi-path components (MPCs) is high and their propagation delays
are closely spaced. This complexity makes it difficult to accurately extract the
LoS component, which is the primary source of information for many localization
techniques, especially time-based methods. The detrimental effects of multipath
become even more pronounced when the signal bandwidth is limited, as is often the
case with low-power wireless technologies operating in unlicensed frequency bands,
such as the industrial, scientific, and medical (ISM) band [3,5, 22–24].

Several techniques have been proposed to address the challenges of indoor lo-
calization. They can broadly be categorized based on the type of measurements
they employ:

• Time-based techniques: These techniques utilize the time-of-flight (ToF) or
time-difference-of-arrival (TDoA) of radio signals to estimate distances be-
tween nodes. Time-based techniques are heavily affected by DM. Accurate
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4 CHAPTER 1. INTRODUCTION TO RESEARCH TOPICS

extraction of the LoS signal is of vital importance to achieve precise distance
measurements. Ultra-wideband (UWB) signals are beneficial due to their re-
solvability of multipath because of their large bandwidth [14,15,25,26]. How-
ever, the wide bandwidth comes with an increase of cost and complexity of
the transceiver chips, making them economically unviable for many applica-
tions. Therefore, there is still an urge to develop new and efficient time-based
techniques for other signals with smaller bandwidths, where an accurate res-
olution of discrete multipath components is often not possible [27,28].

• Received signal strength (RSS)-based techniques: These techniques lever-
age the attenuation of radio signals with distance to estimate the proximity
between nodes [10, 29, 30]. While often relatively simple to implement, RSS-
based methods are very susceptible to multipath fading and shadowing, which
affects signal attenuation and degrades localization accuracy, due to small
bandwidths. These methods mostly suffer from smaller information content,
requiring more measurements for the same localization performance.

• Angle-based techniques: These techniques estimate the angle of arrival (AoA)
of radio signals at the receiver, often employing antenna arrays [9, 31]. AoA
estimation can be used in conjunction with other techniques, like TDoA,
to improve localization accuracy, sometimes called direct positioning algo-
rithms [28]. However, accurate AoA estimation can be challenging in DM
environments, where the presence of multiple signal paths can lead to am-
biguities in the estimated angle. In practice, these techniques also require
delicate calibration of array antennas, making these techniques expensive to
implement.

• Hybrid techniques: These techniques combine different types of measure-
ments, such as time-of-arrival (ToA), RSS, and AoA, to leverage their com-
plementary strengths and improve localization performance [5, 32–35]. Hy-
brid methods often exhibit higher computational complexity than single-
measurement methods, as they require fusion of information from multiple
sources, but can benefit from the strengths, while mitigating their respective
errors.

• Cooperative localization techniques: These techniques are able to exploit
(relative) information between multiple nodes to be positioned. They may
incorporate a large number of so-called “cooperative measurements”, but
solutions can often be time-intensive to compute. A special field of algorithms
is utilized, namely cooperative localization algorithms [36–45], which are able
to estimate a joint solution to a sufficient degree, in a time-efficient manner.

• Fingerprinting and machine learning-based techniques: These techniques cre-
ate a database of RSS or CIR measurements at known locations, which is
then used to match online measurements and estimate the location of a de-
vice [30, 46–48]. Fingerprinting-based methods can achieve high accuracy
in static environments but often require extensive training efforts and are
sensitive to changes in the environment and scenario.

This dissertation focuses mainly on two measurement methods, namely wide-
band and RSS. The wideband measurements are acquired from radio nodes at
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unknown positions, briefly notated as “nodes”, which are able to transmit wide-
band radio signals to so-called “access points (APs)” at known positions. The
APs typically consist of multiple receiving antennas, connected to general-purpose
software-defined radios (SDRs). Additionally, the nodes can transmit and receive
signals from which one can extract cooperative RSS measurements, although with
smaller bandwidths. Using these two measurements methods, we can acquire wide-
band measurements with relatively high information content from nodes to infras-
tructure, with bandwidths covering the whole industrial, scientific, and medical
(ISM) band, extending over 80MHz at 2.4GHz, and so-called cooperative RSS
measurements between every node, with smaller information content.

Figure 1.1: Red ellipse marking one node.

Figure 1.2: A typical node shown in detail, containing a display, a radio transceiver
and several other electronic components.

RSS-measurements are acquired by every node within the measurement sce-
nario. Every node is able to communicate and store RSS-measurements from every
other node within range. This quickly leads to a very large number of measure-
ments, but as their bandwidth is low and as these measurements can be strongly
affected by fading, the information content of each individual measurement is very
small [44]. A few of the nodes that were used for this work are shown in Figure
1.1 within a typical measurement scenario, and one node can be seen in detail in
Figure 1.2.

Figures 1.3 and 1.4 illustrate the same typical scenario, showing APs (in blue)
and 1073 node positions (in black) from an isometric and top-down perspective,
respectively.
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Figure 1.5: Red ellipse marking one AP, consisting of one linear 2-antenna array.

Figure 1.6: The measurement PC is marked in red, which is connected to the SDRs,
orchestrating all wideband measurements.

Wideband measurements are in our case acquired from wideband chirps. Here,
we have to mitigate a limitation of our measurement system, being a small max-
imum coherent transmit bandwidth. Thus, the nodes transmit multiple so-called
subchirps, which span only a fraction of the whole measurement bandwidth. These
subchirps are shifted in starting frequency in such manner that the subchirps over-
lap in their respective sub-bands. From these subchirps, a full chirp spanning the
whole measurement bandwidth can be reconstructed [3, 49]. The reconstructed
chirp is then compressed into a pulse, containing most of the ToF and AoA infor-
mation from the chirps. These preprocessing steps are executed for each receive
antenna of each access point. Typically the APs are equipped with two to four
antennas each. All measurements are sample-coherent between APs and phase-
coherent within the antennas of every AP [5,50]. This leads to wideband measure-
ments, which contain information for each single node. A picture of this wideband
measurement system can be seen in Figure 1.5, where a single AP consisting of two
antennas is marked in red. The measurement PC, orchestrating all measurements
in conjunction with the SDRs, can be seen in Figure 1.6, where it is marked in
red. These pictures additionally show a typical measurement scenario, for which
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Figure 1.7: The outcome from replacing the batteries of about 1000 nodes, signi-
fying the need for low battery consumption.

the algorithms in this work are validated.
The wideband measurement method has some limitations, which are to be mit-

igated by algorithms. First of all, the absolute transmit time of a node is not
known at the receiving APs, which has to be considered as an additional degree
of freedom for localization. This can be mitigated by a large enough number of
receiving APs, using either a TDoA or a direct positioning approach for localiza-
tion. Furthermore, these measurements, while being much larger in bandwidth
than RSS measurements, still suffer from fading, shadowing and DM. This leads to
some combinations of measurement nodes and receiving antennas being relatively
uninformative, i.e. the LoS is not dominating the measurement, but other (dense)
multipath components are larger in measured amplitude and energy.

To improve the positioning performance of nodes affected by these impairments,
new algorithms are developed in this work, where not only the information of
the DM is exploited, but also mutual information in-between nodes. The latter
is obtained either by additional measurements, or by exploiting the similarity of
statistics between close-by transmitting nodes. This has been shown in theoretical
work to be possible for very small numbers of nodes. For example, theoretical
work regarding only three cooperating agents [51] exists, which derives the achiev-
able accuracy from the Fisher information (FI). Slightly larger scenarios, up to
40 nodes, are exploited in simulations for mutual information [52, 53] and hybrid
localization using ToA and AoA [54]. But these works only show theoretical and
some simulation results, and do not incorporate prior information for single nodes.

1.2 Research Hypotheses
This dissertation answers three main hypotheses, all of which are solved by new
algorithmic concepts presented in the appended papers (in the following notated
as Papers [A]-[D]) .

Current approaches for delay and position estimation in radio channels often
disregard additional information from DM, trying to mitigate the interference from
it [17]. This leaves information unused, weakening performance of the estimator.
Some existing work incorporates the additional information for higher bandwidths,
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e.g. in UWB based positioning systems [55], but existing estimators for wideband
applications neglect this. This work anticipates that the additional information
from the DM can be used in various different ways, leading to our first hypothesis.

Hypothesis 1

It is possible to exploit additional information from DM for ranging
and localization, in spite of a small (sub-UWB) measurement bandwidth.

Existing work shows that it is possible to improve the localization performance
of single nodes by incorporating additional (prior) information on their relative
position to other nodes [38–41], but this was not yet tried for localization utilizing
wideband measurements. This work argues that we can improve the localization
performance for single nodes either by incorporating additional measurements be-
tween nodes (i.e. RSS measurements), or by extracting relative position informa-
tion between nodes from the measured wideband signals themselves. This leads us
to our second hypothesis.

Hypothesis 2

The performance of TDOA-based wideband localization can be improved by
utilizing (mutual) relative position information from closely-spaced
transmitters

It has been shown in literature that maximum likelihood (ML) and maximum
a-posteriori (MAP) estimation can be computationally demanding, especially when
models are becoming increasingly complex. These estimation algorithms tend
to be impractical for use-cases where results are needed within relatively short
time frames. Thus, this work shows that many of these algorithms can either be
made computationally viable by simplification, approximation, or by exploitation
of mathematical properties of the estimator. The takeaway from this is the follow-
ing hypothesis:

Hypothesis 3

Algorithms for (cooperative) localization and ranging can be implemented
or approximated in an efficient manner, allowing to work on large-scale
scenarios.

1.3 Contribution and Outline
The thesis is split into two parts:

Part I, gives an introduction and overview to the topics of appended Papers
[A]-[D] and shows main results.

Chapter 2 describes the underlying signal models that are used in this work.
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Chapter 3 then describes the system model and likelihoods, being the foundation
of all algorithms of this thesis. Additionally, it gives an overview of MAP-based
estimation. Afterwards, in Chapter 4, selected results of the appended Papers [A]-
[D] are shown, aiming to give an impression on how well the algorithms perform
compared to their theoretical bounds. Lastly, Chapter 5 gives a conclusion for the
first part of this thesis.

In Part II, the Papers [A]-[D] in are given in their full form, where [A] investi-
gates an algorithm for delay and parameter estimation in dense multipath channels,
[B] shows an algorithm for the fusion of multiple wideband measurements by a clus-
tering algorithm, [C] extends this concept to a joint posterior estimation of many
nodes, exploiting mutual information of nodes within a vicinity, and [D] describes
and validates the theoretical performance bounds for chirp synthesis, which is a
necessary pre-processing step for our physical measurements to be used in the pre-
vious publications.

List of Included Publications
[A] A. Fuchs and K. Witrisal, “Time-of-Arrival Estimation for Positioning in

Bandwidth-Limited Dense Multipath Channels,” in 2022 IEEE 23rd Interna-
tional Workshop on Signal Processing Advances in Wireless Communication
(SPAWC), 2022, doi: 10.1109/SPAWC51304.2022.9833995.

[B] A. Fuchs, L. Wielandner, D. Neunteufel, H. Arthaber and K. Witrisal, “Wide-
band TDoA Positioning Exploiting RSS-Based Clustering,” in Sensors 2023,
23, 5772, 2023, doi:10.3390/s23125772

[C] A. Fuchs, L. Wielandner and K. Witrisal, “Wideband Cooperative Lo-
calization through Generalized Cross-Correlation,” in IEEE Access, 2024,
doi:10.1109/ACCESS.2024.3518073

[D] A. Fuchs, A. Feiersinger and K. Witrisal, “Performance Bounds for Coherent
Chirp Synthesis in Multiband Signals,” in 2025 19th European Conference on
Antennas and Propagation (EuCAP) (EuCAP 2025), 2025, submitted and
accepted.

https://doi.org/10.1109/SPAWC51304.2022.9833995
https://doi.org/10.3390/s23125772
https://doi.org/10.1109/ACCESS.2024.3518073


2
System and Signal Models

For a better understanding of the included Papers [A]-[D], this Chapter gives gen-
eralized signal models. Formulated are two main signal models for ToF and RSS.
For the wideband signal model, two signal atoms are formulated, as to represent
all signal models used within the papers.

Figure 2.1 illustrates an overview of the signal models used in this work. Here,
the transmitted ToF signals between agents l and anchors m are shown as rl,m,
m = 1, 2. Between agents l and i, a cooperative signal is shown as zl,i. The
cooperative signal will be interchanged in this work with either RSS signals (which
are measured by the agents themselves), or a (correlation) metric between ToF
signals of the corresponding agents.

2.1 Wideband Signal Model

For ToF, a wideband signal model is used for all incorporated papers, however
Paper [D] uses a different signal atom, namely a chirp signal instead of a pulse
signal.

The wideband signal model is similar to [18, 22, 56]. The system model com-
prises L transmitting nodes at coordinates pl = [pl,x, pl,y, pl,z]

T ∈ R3 for l ∈
{1, . . . , L}, and receiving antennas at positions qm,k ∈ R3 for m ∈ {1, . . . ,M}
and k ∈ {1, . . . ,K}. The indices k and m denote the antennas within each anchor
and the anchors, respectively.

The radio channel between the transmitting node l and the receiving antenna
k of anchor m is given by

hl,m,k(t;pl) = αl,mδ (t− τ(pl, qm,k)) + νl,m,k(t), (2.1)

with propagation delay τ(pl, qm,k) = 1
c ‖pl − qm,k‖, the speed of light c, and the

complex amplitude αl,m of the received LoS signal from node l to anchor m, assum-
ing one complex amplitude per anchor, consisting of multiple antennas. Position-
dependent phase shifts between antennas are described later. The dense multipath
component (DMC) νl,m,k(t) is described by a zero-mean complex Gaussian random
process. Assuming uncorrelated scattering, this is modeled by the auto-correlation

11
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rl,1

ri,1

ri,2

rl,2 zl,i

Anchor 1

Anchor 2 Agent i

Agent l

Signals to Anchor 1 Signals to Anchor 2 Correlation

Figure 2.1: Conceptual overview of cooperation between two agent nodes and two
anchors as well as directly transmitted signals.

function
E
[
νl,m,k(t)ν

∗
l′,m′,k′ (t

′)
]
= Sν (t− τ(pl, qm), η̃l,m) δ (t− t′)

δ [l − l′] δ [m−m′] δ [k − k′] ,
(2.2)

where τ(pl, qm) = 1
c (‖pl − qm‖) is a mean delay per anchor m, with qm being

the mean antenna position per anchor m. We introduce the delay power spectrum
(DPS) Sν(t; η̃) similar to [17,25] as

Sν(t; η̃) = Ω1
γf + γr
γf 2

e−t/γf (1− e−t/γr )u(t), (2.3)

where η̃ = [Ω1, γf , γr]
T corresponds to the normalized power of the DMC Ω1, the

fall time γf , and the rise time γr. The step function u(t) is defined as 1 for t ≥ 0,
and 0 otherwise.

2.1.1 Signal Model for Pulse Signal
This subsection describes the signal model for a pulse signal atom. A conceptual
visualization of this can be seen in Figure 2.2, where a pulse with a bandwidth of
80MHz is illustrated. Assuming each node l transmits a baseband signal s(t) at
frequency fc, the received signal at anchor m and antenna k is

rl,m,k(t) =α̃l,m,ks(t− τ(pl, qm,k)− εl)

+

∫
s(t− λ)νl,m,k(λ+ εl)dλ+ wl,m,k(t),

(2.4)

with a complex amplitude α̃l,m,k = αl,me−j2πfc(τ(pl,qm,k)+εl) that accounts for the
phase shift at antenna k with respect to the joint amplitude αl,m at array antenna
m, εl is the transmit time of node l, and wl,m,k(t) is additive white Gaussian noise
(AWGN) with double-sided power spectral density (PSD) N0/2. The sampled and
stacked received signals are described as

rl,m = s(pl, qm, εl)αl,m + wl,m ∈ CNsK×1, (2.5)
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Figure 2.2: Conceptual illustration of a pulse signal atom with a bandwidth of
80MHz.

where rl,m =
[
rTl,m,1, . . . , rTl,m,K

]T
stacks the received signals of K antennas at

anchor m. The noise vector wl,m describes the DMC and AWGN. The baseband
signal vector in (2.5) accounts for the phase shifts at the array antennas,

s(pl, qm, εl) = [e−j2πfc(τ(pl,qm,1)+εl)s̃(τ(pl, qm) + εl)
T , . . . ,

e−j2πfc(τ(pl,qm,K)+εl)s̃(τ(pl, qm) + εl)
T ]T

(2.6)

where

s̃(t) ∈ CNs×1 = [s(−t), s(−t+ Ts), . . . ,

s(−t+ (Ns − 1)Ts)]
T

(2.7)

is a sampled version of s(t) with Ts being the sampling time interval. This rep-
resents a wideband phased-array signal model with identical envelopes, and phase
shifts which allow us to exploit AoA information.

The covariance matrix Cl,m characterizes the noise vector wl,m, representing
AWGN and DMC. We define Cl,m as a block-diagonal matrix composed of the
matrices [Cl,m]k for each antenna k of anchor m. This k-th matrix is defined as
[Cl,m]k = [C(ν)

l,m]k+[C(w)
l,m]k ∈ CNs×Ns , with the AWGN component [C(w)

l,m]k = σ2
l,mI,

where I is the identity matrix of according dimensions, and noise variance σ2
l,m =

N0/Ts. The covariance for the DMC is[
C(ν)
l,m

]
k
=

∫
Sν (λ− τ(pl, qm)− εl; η̃l,m) s̃(λ)s̃(λ)Hdλ. (2.8)

This signal model applies directly to Papers [B] and [C], where there are multiple
transmitting nodes and receive antennas. In the case described in Paper [A], this
signal model simplifies, as there is only one transmitting node and receiving antenna
taken into consideration. For this case, we must assume that the positions of
antennas are known, and only an unknown relative delay remains within the signal
model. Therefore, we obtain the following simplified received signal for Paper [A]
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given as

r(t) =α̃s(t− τ)

+

∫
s(t− λ)ν(λ)dλ+ w(t),

(2.9)

where the delay τ is an unknown delay. Please note that for simplicity, the indices
l,m, k are neglected, as this signal model is only used for single transmitted signals.
Further derivation steps remain the same.

2.1.2 Signal Model for Chirp Signal
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Figure 2.3: Concept for overlapping multiband subchirps which illustrate the signal
atoms.

The signal model given in Section 2.1.1 assumes pulse signals. Paper [D] of
this work focuses on an efficient method to combine incoherent (phase-shifted)
chirps over different frequency bands into one coherent chirp signal. These coherent
chirp signals can be compressed into pulse signals, but for further considerations
regarding Paper [D], we introduce a chirp signal model. A conceptual visualization
of multiple so-called subchirps can be seen in Figure 2.3, with an overall bandwidth
of 80MHz over a duration of 11ms. Additionally, a frequency overlap between the
subchirps is illustrated. Please note again, that the indices l,m, k are neglected, as
this signal model is only used for single transmitted signals.

The instantaneous frequency of the p-th subchirp with the starting frequency
fp and the chirp rate cr is expressed as

fp(t) = crt+ fp (2.10)

with index p = [1, . . . , Np] and Np representing the number of subchirps. A time
variable t is bounded by 0 ≤ t ≤ Tc. The instantaneous phase of the p-th subchirp
is derived by integrating the instantaneous frequency with an initial phase φp:

φp(t) = φp + 2π

(
crt

2

2
+ fpt

)
. (2.11)



2.2. RSS SIGNAL MODEL 15

Substituting with a sampling frequency normalized chirp rate mr = crTs, with
Ts being the sampling periods, leads to

sp[n] = xp[n]Φp, (2.12)

where
xp[n] = exp

(
j2πTs

(
mrn

2

2
+ fpn

))
, (2.13)

is the p-th subchirp signal without initial phase shift and Φp = exp(jφp) is the p-th
initial phase shift term. The sample index is n = [0, . . . , Nc], with Nc being the
length of each subchirp. The concatenation of all subchirps xp[n] can be written
as x =

∑Np

p=1 xp, with subchirps in sequential order. For a definition of xp, refer
to (D.7).

A vector form which contains all phase-shifted subchirps is given by s = XΦ,
whereX =

[
x1, . . . ,xNp

]
is a stacked representation of all Np subchirp signals. and

Φ =
[
Φ1, . . . ,ΦNp

]T is a vector which contains all starting phase terms in the form
of multiplicative complex-valued factors. Furthermore, the matrix representation of
the chirp train vector s where the p-th column contains the phase shifted subchirp
xpΦp is defined as S = X diag(Φ) where the diagonal matrix diag(Φ) has the
entries [diag(Φ)]p,p = Φp.

With this, we can derive a vector notation for the received signal as

rpre = αWHP (τ)Ws+w ∈ CM , (2.14)

wherew is the sum of the DM and AWGN processes, and P (τ) is a time-shifting
operation, as described in Section D.2.

In the case that the starting phase vector is unknown, the LoS channel coeffi-
cient α simplifies to |α|, leading to

r = |α|WHP (τ)Ws+w, (2.15)

which describes the signal model for the chirp train signal.

2.2 RSS Signal Model
This section describes the RSS signal model, used for Papers [B] and [C].

The distance between two nodes l and i is denoted as dl,i = ‖pl−pi‖. Assuming
the measurements adhere to a log-distance dependent pathloss model [11] [57, Sec.
9.2], the path loss L(pl,pi, P, ρ) between nodes l and i is expressed as

L(pl,pi, P, ρ) = P − ρ 10 log (||pl − pi||/d0) , (2.16)

where P is the reference pathloss at a distance d0, and ρ is the path-loss exponent
[37]. The received RSS value zRSS

l,i between nodes l and i is then given by

zRSS
l,i = L(pl,pi, P, ρ) + wl,i, (2.17)

with wl,i being the noise term, assumed to follow a Gaussian distribution N ∼
(0, σ2).
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3
Likelihood Models and Estimators

This chapter focuses on the explanation of the likelihoods incorporated in Papers
[A]-[D]. It should be noted that the full derivations of these likelihoods can be
seen in the appended Papers [A]-[D] at their respective referenced positions. But,
beforehand, a short discourse on maximum a-posteriori (MAP)-based estimation
will be given, to motivate the importance of the likelihood functions for localization.

3.1 MAP-based Estimation and its Application in
Localization

MAP-based estimation provides a powerful framework for parameter estimation
by allowing to incorporate prior knowledge about the parameters of interest in
addition to the information contained in the observed data. This Bayesian approach
contrasts with maximum likelihood (ML) estimation without prior information,
which relies solely on the likelihood function. In scenarios with limited or noisy
data, the inclusion of prior information can significantly improve the accuracy and
robustness of the estimates [58–60].

Given a parameter vector θ and a vector of observations r, Bayes’ theorem
expresses the posterior probability density function (PDF) as

f(θ|r) = f(r|θ)f(θ)
f(r) , (3.1)

where f(r|θ) is the likelihood function, f(θ) is the prior PDF, and f(r) is the
marginal likelihood. Given some observation r, the MAP estimate θ̂MAP maximizes
the posterior PDF

θ̂MAP = argmax
θ

f(θ|r) = argmax
θ

f(r|θ)f(θ). (3.2)

As f(r) does not depend on θ, it is omitted from the maximization. Hence, MAP
estimation aims to find the θ that maximizes the product of the likelihood and the
prior. A uniform (uninformative) prior reduces MAP estimation to ML estimation.

17
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In radio-based localization, MAP-based estimation is a tool that is used very
commonly, as it is often easy to implement, fast to compute, and it leads to very
reliable results.

The choice of prior plays a crucial role in MAP estimation. Informative pri-
ors, reflecting strong prior beliefs, can significantly influence the estimates, pulling
them towards the prior distribution. Weak priors, on the other hand, have a
less pronounced impact, allowing the data to dominate the estimation. Selecting
an appropriate prior requires careful consideration of the specific application and
the available prior knowledge. The appended Papers [A]-[D] implicitly or explicitly
make assumptions on these priors which can impact accuracy for various real-world
scenarios and thus have to be carefully considered.

From a computational perspective, MAP estimation can be more challenging
than ML estimation, especially when the posterior PDF doesn’t have a closed-form
solution. Numerical optimization methods or sampling techniques, such as particle
filters or Monte-Carlo simulation (MCS) methods, are often required to find the
MAP estimate. The appended Papers [B]-[D] utilize particle filters and message-
passing algorithms, offering computationally tractable solutions for approximating
the posterior and performing MAP estimation in complex, high-dimensional pa-
rameter spaces. These methods offer a viable approach to performing localization
in real-world scenarios without having excessive computational demand, but need
to be carefully evaluated for each application.

3.2 Time-of-Arrival Estimation in DMC under
Bandwidth Limitation

The work in Paper [A] focuses on the estimation of time-of-arrival in DMC, but aims
to exploit the additional signal energy within the DM to improve the estimation of
the transmit delay. We neglect indices for the receive array m and antenna k and
node l for this section, as we assume only one receive antenna. As this only focuses
on delay estimation, dependencies on the positions of nodes and anchors are also
neglected. The parameter vector for estimation within this algorithm is defined as
θ = [τ,η, α]T , as described in Subsection 2.1.1.

This leads to the likelihood function

f(r | τ,η, α) = e−(r−s(τ)α)HC−1(r−s(τ)α)

πN detC
, (3.3)

where it should be noted that C is dependent on the parameters η for the power
delay profile (PDP) and the transmit delay.

This likelihood can be simplified for easier calculation, which leads to a log-
likelihood denoted as

ln (f(r | τ,η, α)) = −Ns ln(π)−
∑
n

ln(Aλn + σ2)

−
∑
n

(Aλn + σ2)−1
∣∣un [PH(τ)r̃ − s̃(0)α

]∣∣2 , (3.4)

where Ns is the number of samples, A = Ω1(γf + γr) is an energy scaling factor
for the DM, λn corresponds to the n-th eigenvalue of the covariance matrix C,
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un corresponds to the n-th orthogonal eigenvector of C, PH(τ) is a delay shift
operator, and r̃ and s̃(0) are Fourier transformed versions of r and s(0) respectively.
The exact derivation for this is shown in Section A.2.

The simplified notation has two key advantages: First, the Fourier-transformed
signal atom s̃(0) stays constant for estimation. Furthermore, it is possible to pre-
compute the eigenvector decomposition for different parameters η. This allows for
a fast and efficient computation of the likelihood, paving the way for fast parameter
estimation.

Paper [A] employs MAP estimation implicitly. While Equation (3.4) represents
the log-likelihood function, the subsequent maximization to obtain point estimates
assumes a uniform prior over a large region of the parameters, which does not
influence the result. A more informative prior on the delay τ , reflecting knowledge
about the possible node locations (e.g., constrained to a room), could be introduced.
This would transform the estimation into a more explicit form of MAP estimation
and could further improve robustness.

3.3 Coherent Chirp Synthesis of Multiband Sig-
nals

This section focuses on the likelihood described in Paper [D], which aims to im-
prove the estimation of the transmit delay of multiple subchirps with overlapping
frequency bands. This is done in a two-step approach. In a first step, the phase
offsets are estimated using a cross-correlation approach of the overlapping fre-
quency bands, which can be seen as a likelihood [61, 62]. This leads to a prior
distribution for the phases, which is then incorporated into a joint MAP estima-
tor for delay and phases. The parameter vector for this algorithm is defined as
θ = [τ, |α|, φ1, . . . , φNp

]T = [τ, |α|,Φ]T , as described in Subsection 2.1.2.
We use the signal model described in Equation (2.15), from which we can for-

mulate a traditional estimator neglecting the overlap as

τ̂ , |α̂|, Φ̂ = arg max
τ,|α|,Φ

(f1(r | τ, |α|,Φ))

= arg max
τ,|α|,Φ

(−‖r − |α|WHP (τ)WXΦ‖),
(3.5)

which neglects the additional information in the overlapping frequency bands. To
incorporate the additional information from the DM in the overlapping bands, a
likelihood, based on a generalized cross-correlation, for the phases is derived as

f(r | φp, φp+1) =|(r[t(l)p , . . . , t(u)p ] exp(−jφp))×

(r[t
(l)
p+1, . . . , t

(u)
p+1] exp(−jφp+1))

H |,
(3.6)

where t
(l)
p and t

(u)
p and t

(l)
p+1 and t

(u)
p+1 describe the lower and upper frequency

overlap samples between two subsequent subchirps p and p + 1. This assumes no
dependency between phases of subchirps and delay in this estimation step. This
condition applies when both subchirps are shifted by the same transmit delay.
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Assuming there is no prior information for the first phase φ1, we can denote a
joint likelihood as

f(r | τ, |α|,Φ) ∝ f1(r | τ, |α|,Φ)

Np−1∏
p=1

f(r | φp, φp+1), (3.7)

which similarly can now be maximized to find the delay. This can be seen as a
two-step estimation approach, where f(r | φp, φp+1) is estimated beforehand, and
f1(r | τ, |α|,Φ) is estimated in a second step. This is possible because there is no
dependency of f(r | φp, φp+1) on transmit delay τ and amplitude |α|. In effect,
this can also be seen as a Bayesian likelihood, where f1 acts as a prior likelihood
for phase differences. This joint likelihood benefits from the additional energy
incorporated into the cross-correlation when estimating the phases between two
subchirps. For parameter estimation, the phases φp are estimated in a first step by

φ̂p = arg max
φp

f(r | φp, φp+1)f(φp), (3.8)

using f(φp) = δ(φp − φ̂p). This leads to

Φ̂ = arg max
Φ

Np−1∏
p=1

f(r | φp, φp+1)δ(φp). (3.9)

In a second step, the joint-likelihood can then be maximized to find estimates for
unknown parameters by

τ̂ , |α̂| = arg max
τ,|α|

f(r | τ, |α|, Φ̂). (3.10)

This uses MAP estimation for the estimation of phases, as shown in Equation
(3.7). It combines the likelihood function with a prior term (3.6) and performs MAP
estimation by maximizing the joint-likelihood function for obtaining the most prob-
able solution based on prior knowledge and observations. A similar concept could
be applied for the delay estimation as well, leveraging available prior information.

3.4 Cooperative Localization and Clustering
This section focuses on the cooperative localization and clustering likelihoods de-
scribed in Papers [B] and [C]. The clustering approach described in Paper [B] can
be seen as a special case of the posterior PDF for cooperative localization described
in Paper [C]. Thus this section first describes the posterior PDF, and then shows
the two different solutions in detail.

3.4.1 Posterior PDF for Cooperative Localization
We factorize the joint posterior PDF of all nodes l as:

f(θ | r, z) ∝ f(q)
∏
l∈L

f(pl)f(rl | pl, q)
∏
i∈Cl

f(zl,i | pl,pi). (3.11)
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Here, the stacked measurement vector is given by r = [rT1 , . . . , rTL]T , with rl =[
rTl,1, . . . , rTl,M

]T
. The stacked vector z represents all cooperative measurements

zl,i∀l, i. Finally, θ = [pT1 , . . . , pTL]T is a stacked vector of all position parameters of
according length, and q = [qT1 , . . . qTM ]T represents a stacked vector of all anchor
positions. We define a set of all nodes as L = {1, . . . , L} and subsets Cl ⊆ L, which
define the nodes for which cooperative measurements are incorporated with regard
to node l.

The term cooperative measurements refers to the interchangeable data zl,i,
which may also encompass measures such as generalized cross-correlation (GCC)
and perceptual hashing. These are not directly measured but are computed from
the measurements rl and ri, as described below.

The geometric prior f(pl) restricts the evaluation of nodes to plausible positions
within a room, f(q) defines the anchor positions. The third term in the Equation
(3.11) corresponds to the single-node likelihood described in Section 3.4.2. The
fourth term represents a cooperative likelihood. It is interchangeable, and three
different variants will be presented in Section 3.4.3.

It is important to note that we assume independence between the single-node
likelihood and the cooperative likelihoods. This assumption is not entirely accurate
since the same sets of measurements are used for both the single-node likelihood
and the cooperative measures in some of the proposed methods (e.g., GCC and
perceptual hashing). For practical reasons, we neglect these dependencies.

It should be noted that the posterior PDF is computed by two different means
in this work: One is a message-passing (MP) algorithm, based on the sum-product-
algorithm (SPA), similar to [36–44]. In general this is a method to reliably approxi-
mate the posterior PDF described in (3.11), which for example is similar to [36, Eq.
7]. For details, refer to the previous work mentioned. This explicitly uses a geomet-
ric prior f(pl) in the joint posterior PDF to restrict the node positions to plausible
locations within a room. This prior incorporates knowledge about the environment
and prevents the algorithm from exploring impossible or unlikely positions. The
message-passing algorithm employed to approximate the posterior does not carry
out MAP estimation, instead iteratively refining the node location estimates by
combining the likelihood derived from wideband measurements and the informa-
tion coupling with the geometric prior. But, this process can lead to the MAP
estimate, by using the maxima of the single-node distributions as point estimates
for the positions [63].

Alternatively, a clustering algorithm assumes a simplification described in Sub-
section 3.4.4. This assumes that the fourth term in the inter-node likelihood are
multiplicative δ distributions depending on the positions of nodes. A set of in-
corporated wideband measurements is then defined by RSS measurements, and
reciprocity is neglected. This leads to a simplified likelihood which can then be
directly estimated by a particle-based estimator. This algorithm establishes an im-
plicit prior on the node positions. The clustered nodes are assumed to be in prox-
imity to each other, which constrains their possible locations. This performs MAP
estimation, finding the most probable cluster position given the measurements and
the implicit prior derived from clustering. Node positions can be restricted to areas
where they are possible, resulting in an additional geometric prior.
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3.4.2 Single-Node Likelihood for WB
Assuming the wideband signal model presented in Section 2.1.1, the likelihood
function for a single node measuring to M anchors can be expressed as

f(rl | pl, q, εl,ηl,αl) =
M∏
m=1

f(rl,m | pl, qm, εl,ηl,m, αl,m), (3.12)

where εl is the unknown transmit time per node l and independence of the DMC
and AWGN between anchors is assumed. The single-node, multi-antenna likelihood
function is given by

f(rl,m | pl, qm, εl,ηl,m, αl,m) =

e−(rl,m−s(pl,qm,εl)αl,m)H(Cl,m)−1(rl,m−s(pl,qm,εl)αl,m)

πNsK det(Cl,m)
,

(3.13)

with noise parameter vector ηl,m =
[
σ2
l,m, η̃Tl,m

]T
.

Assuming that the transmit time εl is independent, the joint likelihood can be
factorized as

f(rl, εl | pl, q,ηl,αl) = f(εl)f(rl | pl, q, εl,ηl,αl), (3.14)

where f(εl) denotes the prior for the parameter εl. To marginalize out the nuisance
parameter εl, we define

f(rl | pl, q,ηl,αl) =
∫

f(rl, εl | pl, q,ηl,αl) dεl, (3.15)

yielding the single-node likelihood function that leverages TDoA information be-
tween anchors. For two anchors in a 2D setting, this describes the classic hyperbola
of possible node locations derived from TDoA. Here, αl = [αl,1, . . . , αl,M ]

T , and

ηl =
[
ηTl,1, . . . ,η

T
l,M

]T
represent the LoS amplitudes and noise parameters, respec-

tively.
For computational efficiency, we neglect the effect of DMC within the parameter

estimation (while retaining it for simulations and channel modeling), assuming
that the covariance matrix Cl,m is diagonal. This approximation corresponds to
estimating only the strongest signal component, leading to a simplified likelihood:

f(rl | pl, q,σ2
l ,αl) =

∫
f(rl, εl | pl, q,σ2

l ,αl) dεl, (3.16)

where σ2
l =

[
σ2
l,1, . . . , σ

2
l,M

]T
contains the stacked noise variances.

Further simplification can be achieved by using least-squares estimates for σ2
l

and αl, as detailed in [28], resulting in the likelihood for the measurement vector
rl conditioned on the node position pl and anchor positions q being

f(rl | pl, q) =
∫

f(rl, εl | pl, q) dεl. (3.17)
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3.4.3 Likelihoods for Inter-Node Coupling
This subsection focuses on the cooperative likelihood∏

i∈Cl

f(zl,i | pl,pi), (3.18)

being the last term of the posterior PDF given in (3.11).
This term describes a generalized distribution for a subset of nodes Cl, meaning

that for any given node l there is a subset of nodes with measurements that allow
us to construct a likelihood, constraining the positions pl for l ∈ Cl. Generally,
it would be assumed that these distributions are constructed from measurement
data between two nodes in the set Cl. This is the case for RSS data in this work,
where a log-distance dependent model is used for the construction of a likelihood
depending on cooperative RSS measurements.

But these measurements can also be substituted by other metrics, for exam-
ple by extracting so-called mutual information from the wideband measurements
directly. This assumes that there is some degree of correlation or similarity be-
tween wideband measurements of nodes in a geometric vicinity. The term mutual
information refers to the information within these measurements that is shared(or
similar) between nodes.

As this cooperative term of the posterior PDF is interchangeable, three different
possible likelihoods are given in the following, two of which are dependent on wide-
band measurements only, and the third is a benchmark method using additional
cooperative RSS measurements. Other likelihoods can be incorporated into this,
either by another measurement method, or by other means of extracting mutual
information. Also, it should be noted that multiple likelihoods could be utilized
jointly, for example RSS measurements in combination with perceptual hashing.
This could lead to better localization performance and robustness, but is neglected
in this work, as it does not lead to any new insights.

GCC-Phat

The first inter-node likelihood is determined using GCC between two signals rl and
ri with the phase transform (PHAT) assumption [61]. This likelihood does not rely
on separate measurements but instead leverages information coupling or mutual
information. We introduce a Fourier-transformed version of rl,m,k as r̆l,m,k =
F (rl,m,k) which is the frequency response of the signal. Based on this, we define a
time-shifted version as

[r̃l,m,k]n = e−jωnτl [r̆l,m,k]n (3.19)

where the baseband frequencies are given by ωn = (2π n
N−π)B, with B denoting the

baseband bandwidth of the signal, a delay τl = τ(pl, qm)+ εl and n = [0, . . . , Ns−
1]T being a sample index. Using this time-shifted representation, we define a cross
power spectral density for the PHAT between nodes l and i as

[Ψl,i,m,k]n =
[r̃i,m,k]n[r̃l,m,k]∗n
|[r̃l,m,k]n[r̃i,m,k]∗n|

, (3.20)

which relates to the differences of the arguments of the frequency responses [r̃l,m,k]n
and [r̃i,m,k]n. The log-likelihood for GCC with the PHAT assumption can be
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expressed as

log f(zGCC
l,i | pl,pi, εl, εi) ∝ − 1

Ns

K∑
k=1

M∑
m=1

Ns−1∑
n=0

[Ψl,i,m,k]n, (3.21)

based on the assumption that the noise is uncorrelated across antennas. This has
been shown to be a log-likelihood function in [61,62]. The measurement vector for
the GCC is defined as zGCC

l,i = [rTl , rTi ]T . We assume that the transmit times εl and
εi are independent. We marginalize over the parameters εl and εi, and define the
marginal for GCC as

f(zGCC
l,i | pl,pi) =

∫ ∫
f(εl)f(εi)f(zGCC

l,i | pl,pi, εl, εi)dεidεl, (3.22)

where f(εl) and f(εi) are the priors for the parameters εl and εi respectively.
The PHAT assumption, while not strictly necessary, improves the estimation for
practical cases. This is similar to acoustic applications, as seen in [61, 64, 65] and
can be explained by the similarity of reverb in acoustics to DMC in radio-based
channels. Both are dependent on the room geometry, but the channel statistics are
similar for close-by nodes. I.e. we can assume that C(ν)

l,m ≈ C(ν)
i,m.

Further information on this approach can be examined in Paper [C], where
several illustrations (Figures C.3a.i to C.4) show how this behaves in a typical
scenario.

Perceptual Hashing Likelihood

Perceptual hashing yields an efficient approximation of GCC. We define a measure-
ment matrix for each node l as Xl = [rl,1, . . . rl,M ]T . We then compute XDCT =
DCTII(Xl), where DCTII denotes the Type-II discrete cosine transform. To focus
on lower frequencies of the DCT, filtering high-frequency features consisting mostly
of noise, we define a reduced version Xred

DCT = [XDCT]ND×ND , where ND defines a
cutoff for the used frequency bins of the DCT. We also define the average value of
the reduced DCT as κDCT being the mean of all elements of Xred

DCT. We apply an
element-wise threshold function as follows:

[Xthr]n,m =

{
0 [Xred

DCT]n,m ≤ κDCT

1 [Xred
DCT]n,m > κDCT

. (3.23)

The vectorized binary representation of the matrix Xthr is denoted by zPH(rl). We
then define a similarity measure between nodes l and i as

zPH
l,i = N2

D −H(zPH(rl), zPH(ri))/N2
D, (3.24)

where H(zPH(rl), zPH(ri)) is the Hamming distance between two hashes. This
measure is bounded by zPH

l,i ∈ [0, 1], with larger values indicating greater similarity
between signals. It equates to a normalized Hamming distance between two percep-
tual hashes and behaves according to a distance-dependent model in a Euclidean
sense. The normalization is not strictly necessary, but allows the similarity measure
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to behave like a statistical distance (i.e. Hellinger distance, Jensen-Shannon diver-
gence). Assuming this follows a saturated log-distance-dependent linear model, we
express the likelihood for perceptual hashing as

f(zPH
l,i | pl,pi) =

1√
2πσ2

exp
−(zPH

l,i − z̃PH
l,i )

2

2σ2
, (3.25)

with
z̃PH
l,i = P − ρ10 log ((dl,i/d0) + χ) , (3.26)

where P and ρ are used similarly to (2.16), and χ is a parameter describing a satu-
ration effect for small values. This is due to a characteristic of perceptual hashing:
similar measurement matrices can lead to similarity measures being 1. For further
dissimilarity, the behavior is similar to a log-normal pathloss model, as the differ-
ences in the measurement matrices are also log-distance-dependent on the mean
signal energy. This model is a modification of a log-normal pathloss model, very
similar to [57, Ch. 3], where for small distances a minimum pathloss is assumed.
This gives the aforementioned saturation effect by an additional parameter χ. This
stems from the filtering of high-frequency components by the cutoff ND, resulting
in a compression of signal components into a smaller number of features. For very
similar signals (i.e. signals from nodes with similar statistics and amplitudes), this
results in an exactly same perceptual hash, giving perfect similarity. For larger
distances, this model behaves similar to a log-normal pathloss model, as statistics
and amplitudes of signals tend to become increasingly different for larger distances
between nodes.

RSS-dependent Likelihood

The inter-node likelihood for RSS relies on separate RSS measurements and serves
as a benchmark for comparing the other methods. This is a cooperative likelihood,
requiring direct cooperation between nodes. For the RSS case, the cooperative
likelihood is given by

f(zRSS
l,i | pl,pi) =

1√
2πσ2

exp
−(zRSS

l,i − z̃RSS
l,i )2

2σ2
, (3.27)

where z̃RSS
l,i is defined as:

z̃RSS
l,i = L(pl,pi, P, ρ). (3.28)

Here, z̃RSS
l,i represents the log-distance-dependent model discussed in Section 2.2.

3.4.4 Likelihood for Clustering
Paper [B] describes a clustering approach, where measurements of multiple nodes
are combined by another metric, for example RSS measurements. This can be seen
as a computational simplification of the posterior PDF in (3.11). For this simplifi-
cation, we assume that wideband measurements of nodes have no co-dependency.
Furthermore, we assume that the underlying wideband likelihood of nodes within
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a vicinity of a node l reasonably approximate the cooperative likelihood term in
the posterior. This simplifies the last term of the posterior to∏

i∈Cl

f(zl,i | pl,pi) ≈
∏
i∈Cl

f(ri | pi, q)δ(pl − pi) (3.29)

where Cl is defined by a sorting metric, like RSS measurements. For example,
one could define this as a fixed number of nodes with the largest measured RSS
values to the node l. The node l itself is excluded from this set. It should be
noted that this assumes the cooperative measurements zl,i to be replaced by the
single wideband measurements ri. This is due to the cooperative information being
implicitly contained within Cl. Assuming no co-dependencies between nodes in the
estimation, we can neglect the term δ(pl − pi). This is equivalent to assuming
no distance between node positions pi of the set Cl and the position pl of node
l, meaning δ(pl − pi)

!
= 1 and pi = pl. We can evaluate this for every node l

separately, leading to

fl(pl, q | r) ∝ f(q)f(pl)f(rl | pl, q)
∏
i∈Cl

f(ri | pl, q), (3.30)

where fl(θ | r) is the likelihood of a single node depending on measurements of the
node l and nodes within a vicinity Cl.

This can be further simplified by just including the measurement of our node l
in a set Dl = Cl ∪ {l}, leading us to

f(plq | r) ∝ f(q)f(pl)
∏
l∈Dl

f(rl | pl, q). (3.31)

It should be noted that this is just an alternative way to arrive at a very similar
solution as in (B.12) described in Paper [B], with the only difference being the
marginalization of transmit delay εl. This likelihood has a great advantage compu-
tationally, as no cooperations between nodes remain, thus allowing us to estimate
the position pl completely separately. In practice, this is done by a relatively simple
particle based estimator. The disadvantage of this method is that this leads to a
biased estimate. Essentially, this estimates the geometric mean of node positions
within the set Dl, and assumes this to be a reasonable estimate of the node position
pl.



4
Selected Results

This section shows selected results from the appended Papers [A]-[D] and gives
an overview of the derived Cramér-Rao lower bounds (CRLBs) in three of the ap-
pended Papers [A], [B] and [D]. The CRLB is a theoretical limit that quantifies the
lowest possible variance of an unbiased estimator, given the information contained
in the data as measured by the Fisher information (FI). The FI is a measure of
the amount of information a random variable carries about an unknown param-
eter, defined as the expected value of the second derivative of the log-likelihood
function with respect to that parameter. This implies that the derived bounds in
this chapter depend on the properties of signal models and measured parameters.
The derivations mostly focus on the equivalent Fisher information (EFI) for either
delays or positions. For more information and detailed results, it is advised to take
a look into the respective papers themselves.

4.1 Time-of-Arrival Estimation in Bandwidth-
Limited DMC

The derivations presented this Section rely on the wideband pulse signal model
described in Subsection 2.1.1. The EFI for the parameter τ , as described in Sub-
section 2.1.1, can be approximated as

Iτ ≈ 8π2β2γτSINR sin2(ξ) + IDMC
τ . (4.1)

The first part of the equation (≈ 8π2β2γτSINR sin2(ξ)) corresponds to the informa-
tion from direct estimation of the LoS component, neglecting additional informa-
tion from the DMC. The second part IDMC

τ introduces the additional information
for exploiting the estimation of DMC parameters. Here, β2 = ‖ṡ‖2 /

(
4π2 ‖s‖2

)
represents the mean-squared bandwidth [66] of the transmitted signal, defined with
a normalized pulse ‖s‖2 Ts = 1, and ṡ is the sampled derivative of s w.r.t τ . The
whitening gain γτ =

β2
w

β is described in [34] as the increased ranging information
due to the equalization of the DMC by means of the inverse covariance matrix. The
extended bandwidth after whitening β2

w = ‖ṡ‖2H /
(
4π2 ‖s‖2H

)
is a corresponding

27
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bandwidth after the equalization, where ‖s‖2H is the weighted norm of s in a corre-
sponding Hilbert space H, see Appendix A.6.2 of Paper [A]. Furthermore, sin2(ξ)
is a factor stemming from the loss from estimation of the parameter α̃, shown in
(2.9). This is also further described in Appendix A.6.2 of Paper [A]. The signal-to-
interference-plus-noise-ratio (SINR) is a factor describing the influence of the DMC
on the estimation of the LoS signal. It is calculated as SINR = |α̃|2‖s‖2HTs/N0.
The term IDMC

τ can be evaluated numerically by computing the partial derivatives
Ċ(η) of C(η) and evaluating the trace. With the EFI Iτ the ranging error bound
(REB) can be written as R(τ) =

√
I−1
τ .
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Figure 4.1: Comparison of REBs and ML estimator with and without exploitation
of DMC.

The main result of Paper [A] is shown in Figure 4.1. Here a comparison of
the REB, and root-mean-square error (RMSE) of the ML estimators, with and
without incorporation of the DMC, is shown, as described in Section 3.2. This
evaluation was done in a simulation environment, over the parameter KLOS. For
this evaluation, we chose a bandwidth of 80MHz, a fall time of γf = 20 ns and a
rise time of γr = 5 ns.

The performance for both estimators improves for larger values of KLOS. A large
performance gap exists at low values of KLOS, where a conventional ToA estimator,
which does not exploit the DMC, fails. For the estimator with DMC exploitation,
the performance is consistently improved over the full range of KLOS. This is also
represented by the bounds for both estimators. The ML estimator without DMC
exploitation diverges from the bound below a threshold of about KLOS ≤ 2, which
can be attributed to the estimation of (dominant) multipath components instead of
the LoS. For larger values of KLOS, this estimator attains the REB. The estimator
exploiting DMC mitigates the drop-off in performance below KLOS ≤ 2, and also
attains the corresponding bound for large values of KLOS. For smaller values of
KLOS, the estimator is not able to attain the bound, but still improves performance
significantly. The remaining divergence between this estimator and the REB can
be attributed to the additional estimation of nuisance parameters, which in turn
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reduce the achievable accuracy.
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Figure 4.2: Floorplan of the measurement scenario.

To further validate the algorithms described in Paper [A], UWB measurement
data was acquired in a small laboratory room at our institute, using a bandwidth
of 1GHz. This dataset was subsequently downsampled to 80MHz to align with
the simulated data. The dataset includes 3654 measured CIRs, of which 2310 were
recorded under LoS conditions and 1254 under non-LoS conditions.

Measurements were performed at multiple positions on a 2 cm grid over an area
of 64 cm×70 cm, with the receiver antenna fixed, as illustrated in Figure 4.2. For an
evaluation of the estimation performance of the algorithm, real values of the param-
eters are necessary. As the parameters depend heavily on individual measurement
realisations and have to be extracted from measurement data, the high-resolution
measurements at the full bandwidth of 1GHz are used for comparison. Specifically,
the parameter K̂LOS, which describes the ratio of energy within the LoS and the
DMC, was derived using an ML estimator to estimate the amplitude and delay of
the LoS component τ̂ , without explicitly modeling the DMC, in proximity to the
actual distance [27]. The estimator is defined as

K̂LOS =
|〈r, s(τ̂)〉|2

‖r − 〈r, s(τ̂)〉s(τ̂)‖2 −Nσ̂2
, (4.2)

where the numerator is the LoS energy, computed from the projection of the re-
ceived signal r onto the signal template s(τ̂) at the estimated delay τ̂ , and the
denominator is the energy of the residual signal minus the estimated energy of the
noise component. The noise variance σ̂2 was estimated by using samples where the
DM is assumed to be well-attenuated, e.g. at very late delays [19].

The datasets were analyzed using a grid search for the ML algorithm without
DMC modeling and an interior-point optimization algorithm incorporating DMC
modeling, as described in Equation (3.4). The parameter γr was fixed at 5ns,
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Figure 4.3: Comparison of ML with and without model for DMC, with γr =
5ns, Tp = 12.5ns.

as joint estimation of γr and τ̂ was found to be challenging. This assumption is
supported by the rise time’s dependence on room geometry [25]. Other parameters
were initialized corresponding to KLOS = 1, c.f. Paper [A].

Figure 4.3 shows the results grouped by K̂LOS, with each point representing
an equal subset of measurements. For small K̂LOS values, our algorithm signifi-
cantly outperforms the conventional ML algorithm, aligning with simulated data
performance. However, for large K̂LOS values, the conventional algorithm performs
better. This discrepancy arises from the estimation of nuisance parameters γf and
A, which negatively affect the accuracy of τ̂ estimation.
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Figure 4.4: CDFs of the RMSE of the whole dataset.

Evaluation of the data reveals a bias in our algorithm at the highest K̂LOS value,
corresponding to an error of approximately 33 cm (or 1ns). Figure 4.4 illustrates
this bias, likely due to an overestimation of the rise time parameter γr, which limits
performance. While the conventional ML algorithm is unbiased, it exhibits signifi-
cant outliers for non-line-of-sight (NLOS) data with delayed estimates. Overall, for
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the full dataset, the conventional algorithm achieved an RMSE of 1.89m, compared
to 33.4 cm for our algorithm incorporating DMC modeling. This suggests that the
proposed algorithm can improve performance in most indoor scenarios, but can
still be improved. Especially for larger values of K̂LOS , it is advisable to use the
ML estimator without DMC exploitation. This can be achieved by incorporating
a metric for the model match, and choosing the applicable estimator, for example
by using the Bayesian information criterion, as described in [67].
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Figure 4.5: Median ratio between estimated K̂LOS .

Figure 4.5 illustrates the ratio of K̂DMC
LOS = |α̂|2/Ω̂1, derived from nuisance

parameters in the DMC-based algorithm, to K̂LOS computed from UWB-data using
Eq. 4.2. For high K̂LOS values, the estimation is relatively accurate. However, at
low K̂LOS, the estimation becomes unreliable, as more DMC energy is incorrectly
attributed to the LoS component due to the reduced bandwidth. For high values
of K̂LOS, the wideband estimation of K̂DMC

LOS is too small, which can be attributed
to the smaller signal bandwidth. This leads to an overestimation of energy in the
DM, as the LoS is less distinguishable from DMC. On the other hand, for small
values of K̂LOS, the energy in the DM is underestimated. Similarly, this can be
attributed to a worse separability of DM and the LoS component. Overall, this
shows a tendency of the algorithm to converge to a K̂DMC

LOS of about 2, meaning
energy within DM and LoS is estimated to be in the same magnitude order.

4.2 Coherent Chirp Synthesis of Multiband Sig-
nals

The derivations presented in this section rely on the wideband chirp signal model
described in Subsection 2.1.2. The derivation of the CRLB is split into two parts,
one where the overlapping frequency bands of the chirps are neglected, and another
where the additional information from overlap is derived. This section aims to
give an overview of the results, focusing on only the Fisher information matrix
(FIM) terms for delay τ and unknown phases φp, but a full derivation can be
found in Paper [D], Section D.3. The parameter vector for this is defined as θ =
[τ, |α|, φ1, . . . , φNp

]T = [τ, |α|,Φ]T , as described in Subsection 2.1.2.
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The inverse of the first entry of the FIM, corresponding to the delay estimation
bound, can be expressed as

[I−1(θ)]1,1 =

(
2
|α|2

σ2
w

(
‖ṡ‖2H −GH−1GT

)
+ tr[•]

)−1

. (4.3)

The matrices G and H (as described in Section D.3) correspond to the dimin-
ished information from estimating the nuisance parameters for amplitude |α| and
phases φp, and are calculated using the Schur complement. The trace term tr[•]
describes additional information from the DMC, which can be assumed to be neg-
ligibly small for practical use-cases, if the signal-to-noise ratio (SNR) is sufficiently
large. Additionally, estimation of additional information in the trace term tr[•] is
computationally complex, and thus is not deemed useful in this evaluation.

The FI for the p-th phase, neglecting overlap, can be expressed as

[I(θ)](p+2),(p+2) =
2|α|2

σ2
w

Re 〈S,S〉H, (4.4)

where S is the matrix representation of phase-shifted subchirps, as described in
Subsection 2.1.2.

We can exploit the assumption that a realisation of the dense multipath does not
change within a single-shot measurement. Therefore, we can exploit overlapping
parts of chirps in the frequency domain. Using the estimator in (3.7), we can define
a prior information term for φp as

[B(θ)](p+2),(p+2) = S̃NR 2Ñ (4.5)

for all p ≥ 2, meaning additional information is available for all φp∀p 6= 1. The
number of overlapping samples in the frequency domain for two chirps is expressed
as Ñ . This is similar to [58, p. 33, Ex 3.4], which describes the estimation of a
phase term in AWGN. The additional SNR is defined as

S̃NR =
σ2
ν

σ2
w

=
Ω1Ts
N0

, (4.6)

which is the ratio between the variance of the dense multipath and the variance
of the AWGN. Note that this neglects the energy in the signal s, as no additional
information can be gained from the signal energy when it is already used in the
estimator. Combining the prior information term [B(θ)](p+2),(p+2) with the phase
information from the signal energy as described in (3.5), we derive a modified phase
information term

[Ĩ(θ)](p+2),(p+2) = [B(θ)](p+2),(p+2) + [I(θ)](p+2),(p+2) (4.7)

From this, a solution for the FIM entry for the delay can be found similarly as for
(4.3).

The FI [I(θ)](p+2),(p+2) expressed here neglects the additional assumption of
an unchanged realisation of the DM within the time-frame of all transmitted sub-
chirps. This additional information is accounted for within [B(θ)](p+2),(p+2). An
intuitive explanation for this can be found easily: One can assume that the geome-
try of the room and other conditions influencing multipath propagation in general
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(both DM and resolvable multipath reflections) stay constant over the transmission
time-frame of one node, when this time-frame is reasonably short, i.e. in the order
of magnitude of a few ms. Within this time-frame, two signals that are identical
with the exception of a phase shift, generate identical multipath with the same
phase difference between each other. This is exploited in the phase estimation
within the same frequencies of consecutive subchirps, as these parts of subchirps
are mathematically the same, with the exception of a phase shift. For the addi-
tional FI, the already used information for the phase estimation within the LoS in
the two-step estimation has to be accounted for. This is done by neglecting the
energy within the LoS for the term [B(θ)](p+2),(p+2), which is already accounted
for in [I(θ)](p+2),(p+2).

For the numerical evaluation of chirp synthesis in multiband signals, a simula-
tion environment was used. The simulation was done according to the signal model
described in Subsection 2.1.2, with random transmit delays and phase offsets.
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Figure 4.6: CRLB and RMSE for 2 subchirps. Comparison with CRLB of one
subchirp. 200 realizations for evaluation, SNR = 40dB, γr = 5ns, γf = 20ns.

We simulated 200 realizations of the DMC under varying transmission times
while maintaining a constant overall SNR across different values of KLOS. The
SNR is defined as SNR = |α|2+Ω1

N0
, representing the ratio of signal energy, including

the DM, to noise.
A particle-based estimator with 5000 particles was used to jointly estimate

delays and phases. For scenarios with Np = 2 or Np = 4 subchirps, the subchirps
were evenly distributed across the frequency band with a 20% overlap, ensuring
consistent total signal energy. As a comparison, a continuous chirp (Np = 1) over
the full bandwidth 80MHz is illustrated, with N = 300 samples per chirp.

Figure 4.6 illustrates the results for Np = 2 subchirps. Overall, a clear trend
can be seen for all estimators, where for larger values of KLOS the RMSE improves.
For large KLOS values, all evaluations for Np = 2 converge to the same performance
level, indicating that when DM energy is negligible, phase estimation within over-
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Figure 4.7: CRLB and RMSE for 4 subchirps. Comparison with CRLB of one
subchirp. 200 realizations for evaluation, SNR = 40dB, γr = 5ns, γf = 20ns.

lapping frequency bands does not improve delay estimation. For small KLOS, the
estimators deviate from the CRLB, limited primarily by the delay estimation prior.
In the intermediate range, the CRLB without overlap exploitation exhibits a no-
ticeable offset compared to the CRLB for a continuous chirp (Np = 1). This is
attributed to the partial coherence between the two subchirps, where phase esti-
mation reduces the available information. However, exploiting overlap significantly
improves performance, bringing the CRLB closer to that of a continuous chirp for
smaller KLOS values. Although the evaluations do not achieve the CRLB in this
range, the improvement from overlap exploitation is evident and comparable to the
gains predicted by the CRLB.

Figure 4.7 presents similar results for Np = 4 subchirps. The behavior for ex-
treme KLOS values remains consistent with or without overlap exploitation. In
the threshold region, overlap exploitation yields slightly greater performance gains
than for Np = 2. This can be attributed to the increased loss from phase estima-
tion, which is partially mitigated by additional energy contributions from overlap-
ping signal segments. Nevertheless, performance for multiple phase-offset chirps
decreases under LoS conditions as the number of subchirps increases due to addi-
tional nuisance parameters introduced by the phase offsets.

4.3 TDoA Localization
This section examines the works presented in [B] and [C], which share a common
large-scale scenario for TDoA-based localization. As detailed in Subsection 3.4.4,
the algorithm described in [B] serves as a computational simplification of the pos-
terior likelihood estimation approach introduced in [C].

It is important to note that this section does not provide a comprehensive
overview of all evaluations and simulations conducted in these studies. Only the
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most relevant results are presented. For principal evaluations of how these algo-
rithms work (especially in smaller scenarios and well-controlled simulations) the
reader is referred to the original papers.

4.3.1 Scenario for TDoA Localization

The scenario considered in these evaluations is identical to the one described in
Section 1.1, which corresponds to a specialized hall for testing and measurements
located in Graz. Figures 1.3 and 1.4 illustrate this scenario, showing APs (in blue)
and 1073 node positions (in black) from an isometric and top-down perspective,
respectively. Additional views of the same scenario can be found in Figures 1.1–1.6,
also in Chapter 1.

The test setup consisted of six APs, each equipped with two antennas spaced
6 cm apart, corresponding approximately to half the wavelength of the transmitted
signals. The signals were recorded using SDRs from National Instruments. The
hardware limitations of these SDRs were deemed negligible for the purpose of these
evaluations.

The nodes in this setup were electronic shelf labels, as shown in Figure 1.2.
These devices operate within the ISM band at 2.4GHz, transmitting chirps that
span sub-bands within the ISM band but do not cover the entire band. For the
TDoA evaluations, an idealized pre-processing step is assumed, yielding measure-
ments across the entire ISM band that resemble ideal pulses, as described in [49].

Additionally, these nodes supported cooperative measurements, allowing each
node to obtain data from every other node. However, these cooperative measure-
ments were limited to narrower bandwidths giving RSS values, thereby providing
lower information content per measurement. These data were utilized in the clus-
tering algorithm to define the nearest neighboring nodes, represented by the set Dl
for node l ∈ L. These measurements were also incorporated into one variant of the
cooperative localization algorithm.

It should be emphasized that this section is focused exclusively on measurement-
based evaluations. Additional simulation results for the same scenario can be found
in Subsections B.6.3 and B.6.4 of the appended papers.

4.3.2 CRLB for Clustering

This section will focus only on the main results of the CRLB for the clustering
algorithm. For a full derivation and more insights, please refer to Paper [B], sec-
tion B.5. Note that this subsection does not focus on results for the cooperative
localization algorithm, as the CRLB for this algorithm is out of scope for this the-
sis. This subsection uses the wideband pulse signal model, described in Subsection
2.1.1.

We define a so-called ranging direction matrix (RDM) [68] as

Rr(φm, ϑm) = e(φm, ϑm)eT (φm, ϑm) (4.8)

where e(φm, ϑm) is a unit vector pointing from array m in the direction of the
node l. The main result from Paper [B] is the equivalent Fisher information matrix
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(EFIM) for the position pl which is decomposed into three components correspond-
ing to the delay and angle terms as

I l ≈
M∑
m=1

[
8π2

d2m
D2
λ(φm) KDl SINRmRr(φm +

π

2
, ϑm) (4.9)

+
8π2

d2m
D2
λ(ϑm) KDl SINRmRr(φm, ϑm +

π

2
) (4.10)

+Λ
8π2

c2
β2 KDl [S̃INRτ ]mRr(φm, ϑm)

]
, (4.11)

using the results from Appendices B.9 and B.10. The sum
∑M
m=1 represents a

sum over the information of all anchors m, D2
λ(φm) and D2

λ(ϑm) are the array
apertures in azimuth and elevation, stemming from the array geometry. SINRm

and [S̃INRτ ]m account for the interference by the DM, β2 is the mean-squared
signal bandwidth, and dm, φm, and ϑm are the distances between the array centers
and the cluster center and the corresponding angle parameters. Additionally, this
equation scales with K and Dl, where K is the number of anchors per AP and Dl

is the size of the cluster, meaning the number of nodes in the set Dl. This shows
that for an increasing number of nodes in the cluster, the FI increases linearly.

As this would only be true in an ideal scenario, where all nodes within a cluster
are at the same position. An additional correction factor Λ is introduced, which
accounts for diminished information from non-ideal clusters, i.e. cluster nodes
spaced over a room. This can also be interpreted as an effective reduction of
bandwidth. The derivation of the correction factor Λ can be found in Section B.9.
This FI is also strongly dependent on anchor placement and geometry of the nodes.

With this, we can define the position error bound (PEB) for multiple anchors
m and multiple nodes l ∈ Dl as

var(p̂(c)l ) ≥ Pc =
√

tr{I−1
l }, (4.12)

where the operator var denotes the sum over the variances of the three cartesian
coordinates respectively. It should be noted that this bound only holds true for an
estimated cluster position p̂(c)l .

For real-world applications, the cluster position would be mostly of no impor-
tance, but it can be assumed that the cluster position is within a vicinity of the
position of the node l which has been used to define the cluster. Equality holds
true for scenarios where all nodes Dl are distributed in such way that the cluster
position p(c)l = pl. In real-world scenarios this assumption often does not hold,
thus we propose a biased lower bound for the node l

var(p̂l) ≥ Pl =
√
P2
c + ‖p(c)l − pl‖2. (4.13)

This biased lower bound has the advantage of easier representation of relevant er-
rors, and comparability with the RMSE of the node position pl. It should be noted
that this biased bound can only be evaluated if the ground-truth of positions is
known. This is the case for comparisons with the CRLB in controlled environ-
ments, but may not be true for real-world applications. Thus, this bound has only
informative character for scientific evaluations.
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For the evaluation of the clustering algorithm, the likelihood (3.31) was esti-
mated using a particle-based approach. This enabled efficient computation of the
position p̂l for each node l by identifying the likelihood’s maximum, serving as the
estimate for pl. The set Dl was defined based on strongest RSS measurements,
with the cluster size (number of nearest nodes) varied. Detailed explanations of
this algorithm are provided in Section B.6.
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Figure 4.8: Results for large-scale synthetic scenario with RSS-based clusters

Figure 4.8 shows results for a synthetic scenario using RSS-based clusters com-
pared to the CRLB for clustering. The simulated scenario is equal to the scenario
described in 4.3.1, but a simulation environment for wideband signals was used,
as described in B.6. This figure shows that for small cluster sizes (up to Dl of
11), the RMSE improves almost with the square-root of Dl. This is in accordance
with the mean positional CRLB for this scenario, which is also improving approx-
imately with the square-root of Dl, which can be attributed to the information for
a cluster increasing linearly with Dl. For larger cluster sizes (Dl ≥ 11), the RMSE
is increasing. This effect can be attributed to the bias term (‖p(c)l − pl‖2), which
shows that there can be a significant offset between the estimated cluster position
and the position of the node of interest. This bias term is almost negligible for
smaller cluster sizes, but dominates for larger cluster sizes. This can be seen well
when directly comparing the mean positional CRLB with the bias term, where for
cluster sizes of Dl = 17, these two effects are approximately equal. Additionally,
this figure shows the biased lower bound, with and without the correction factor Λ.
This biased lower bound incorporates the effects of the CRLB and the bias term,
and corresponds very well to the achieved RMSE. The corrections factor Λ has
negligible effects on the bound for small cluster sizes, but for very large clusters
(Dl = 40), a significant offset can be seen. The RMSE also shows the same increase
for very large clusters, showing that the biased lower bound with correction factor
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Λ being a good approximation of actual performance.

4.3.3 Results for TDoA Localization
The results in this subsection were obtained using two approaches. First, for the
clustering algorithm, the likelihood (3.31) was estimated using a particle-based
approach, as describe in the previous subsection.

The other method incorporates a particle-based belief-propagation (BP) algo-
rithm, estimating the posterior distribution of the cooperative localization method
described in (3.11). This algorithm gave us estimates for pl∀l ∈ L, by using the
mean of the marginal distributions for the node positions. Evaluations for this algo-
rithm were done for two different inter-node likelihoods or measurement methods:
Perceptual hashing and RSS. While GCC likely outperforms these in accuracy, it
was computationally prohibitive for the large scenario considered here. For smaller
scenarios, evaluations are shown with all three methods in Paper [C], see Section
C.5.

For the following results, a uniform prior over the all possible node positions
was used. This means that no restrictions regarding for example nodes being solely
in aisles were used. For evaluations on how these restrictions can improve results,
refer to Section B.6.
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Figure 4.9: RMSE of the results for the two TDoA based algorithms shown in
Papers [B] and [C]. The number N refers to the cluster size, defining the number
of nearest nodes incorporated into the estimation.

Figure 4.9 shows selected results for the RMSE for the aforementioned algo-
rithms. Overall, one can see that both the cooperative localization exploiting
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mutual information and the clustering approach improved the performance over
single-node TDoA based localization. The single node-estimation maximizes the
likelihood given in (3.15) ∀l ∈ L.

As one can see, this reference method performs worst, with an RMSE greater
than 2m. The performance improves quickly just by using a cluster size of N = 5
defined by the strongest RSS measurements, and improves further by using a cluster
size of N = 11. This alone almost doubles the overall precision of the estimation.
More nodes within the set may lead to diminishing returns, as one can see in the
RMSE for a cluster size of N = 40. This can be explained by the estimation of
the cluster position pc not being a reasonable estimate for the node position pl
anymore, as the cluster position can get biased over the node position in realistic
scenarios.

The cooperative localization algorithm improves performance further. The
RSS-based method achieves the best results overall, while perceptual hashing per-
forms slightly worse but offers the advantage of using mutual information from
wideband measurements without additional RSS data.

Further evaluations and descriptions for both GCC and perceptual hashing can
be found in Section C.3.3, where it is also shown in detail how these methods can
exploit mutual information between wideband measurements.

Evaluations for clustering and cooperative algorithms are done using 500 parti-
cles. Evaluations with more particles do lead to better results, suggesting that the
underlying distributions are approximated sufficiently well.
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Figure 4.10 shows the computation times for the different algorithms and varia-
tions in seconds for all 1078 nodes. All of these were approximated by a single-shot
estimation using the algorithms on a typical workstation (AMD Ryzen 9 3900X,
64 GB RAM, other components not relevant for the evaluation). The computation
time of these algorithms relies mostly on CPU performance.

It can be seen that Clustering increases the computational complexity approx-
imately linearly with the number of nodes in a cluster. As the sweet spot for this
algorithm is mostly within smaller number of nodes in a cluster (i.e. N = 11), re-
sults can be expected within about a minute of time. Additionally, this algorithm
is able to evaluate results only for single nodes of interest, which is not possible for
the algorithm incorporating cooperative localization.

For the cooperative localization algorithm, RSS and perceptual hashing perform
similarly well, as the computational complexity of both algorithms is comparable
when the hashes for perceptual hashing are already computed. The time discrep-
ancy between these two algorithms stems solely from the additional calculation
of hashes, which takes about 10s for this scenario. Additionally, an estimation of
computation time is given for GCC, which is several orders of magnitude larger.
This stems from the large computational load from even a single cross correlation
between wideband measurements.

It should also be noted that the clustering algorithm scales linearly in computa-
tion time for the overall number of nodes. The cooperative localization algorithm
on the other hand scales quadratically in computation time, and additionally will
run into memory limitations for larger scenarios, as marginal likelihoods have to
be stored.

Considering this, it would be advisable for very large scenarios (i.e. 10000 nodes
and more) to weigh between the benefits and disadvantages of these two algorithms.
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Conclusion

This thesis addresses the three hypotheses stated in the introduction. Let’s take a
final look at the hypotheses, and see if they hold true:

Hypothesis 1

It is possible to exploit additional information from DM for ranging
and localization, in spite of a small (sub-UWB) measurement bandwidth.

The research within this thesis shows that DM is not merely an obstacle, but
a resource packed with valuable information when approached correctly. Taking a
look at this hypothesis, one can see that DM is exploited in multiple ways: The
additional information from the DM improves the ranging performance in Papers
[A] and [D], and gives a possibility to improve the overall positioning performance
in a large scenario by exploiting statistical similarities within the DM for multiple
nodes, as seen in Paper [C].

Paper [A] demonstrates that the structure of the DM itself can be explicitly
incorporated into a ranging estimator rather than treated solely as interference.
This is achieved by parameterizing the DM through a statistical model and using a
model-based ML approach. By explicitly modeling the DMC, rather than discard-
ing it as interference, the estimator can more accurately estimate the LoS delay
even in situations where the LoS component is not the strongest component of the
received signal. This method improves performance especially under NLOS condi-
tions where traditional methods fail, thus extending the performance boundaries
of ranging in DM conditions. Paper [D] similarly shows how the coherent syn-
thesis of multi-band chirps allows to exploit the DM inbetween chirps, increasing
performance and increasing effective bandwidth for delay estimation.

This improvement is particularly relevant in practice, because many low-power,
low-cost wireless systems operate in bandwidth-limited environments, where DM is
often a significant problem and conventional methods tend to be less robust. The
ability to exploit the DM, rather than just trying to suppress it, makes accurate
ranging and localization feasible even in challenging, bandwidth-constrained sce-
narios, especially when robust positioning of many transmitting nodes is relevant.

41
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This in turn, leads directly to our second Hypothesis.

Hypothesis 2

The performance of TDOA-based wideband localization can be improved by
utilizing (mutual) relative position information from closely-spaced
transmitters

The results from Papers [B] and [C] provide substantial evidence for the valid-
ity of this hypothesis. The thesis successfully shows that by leveraging the similar
statistical characteristics observed for closely-spaced nodes, cooperative localiza-
tion performance can be substantially improved without any additional required
measurements. Paper [B] presents a clustering algorithm, exploiting additional
relative position information using RSS measurements. This improves localization
performance significantly, but necessitates additional energy-consumption for RSS
measurements.

Paper [C] elaborates this concept further, exploring how mutual information
can be extracted from wideband measurements using perceptual hashing and GCC.
This mutual information encodes relative position information between nodes, lead-
ing to more accurate location estimates. The implementation of a message-passing
framework allows this relative information to be incorporated within a joint es-
timation approach, further enhancing performance. These methods demonstrate
that by leveraging mutual information, accurate localization can be achieved even
with limited information from individual nodes.

A small disadvantage of the cooperative localization algorithm is the additional
computational load, as such algorithms tend to increase computation times quickly
with increasingly large scenarios. This leads to our third Hypothesis.

Hypothesis 3

Algorithms for (cooperative) localization and ranging can be implemented
or approximated in an efficient manner, allowing to work on large-scale
scenarios.

The third Hypothesis also holds true, as seen in Papers [A]-[C]. Paper [A] shows
that an efficient estimator for ranging and DM parameter estimation can be derived,
Paper [B] shows an efficient implementation of a cluster-based joint positioning
algorithm, which can be seen as a simplification of the cooperative algorithm in
Paper [C], and Paper [C] shows perceptual hashing to be a computationally viable
option to exploit mutual information between wideband measurements of a large
number of nodes.

Overall, this thesis shows that the mutual information inbetween measurements
and information from the DM can be exploited to improve the localization perfor-
mance significantly. But, it should be noted that there is still room for improve-
ment, especially for the cooperative localization algorithm described in [C].

As these algorithms are all “classic” model-based algorithms, not based on
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machine learning, an interesting approach is to extract the mutual information
by some form of neural network or similar. This is a logical step, as perceptual
hashing, used for extracting mutual information, has its roots in image processing,
where it has been superseded by specialized neural networks.

Furthermore, the algorithms for estimating DM parameters described in [A] are
still computationally slow, even when using the efficient implementation presented
in this work. This could be further improved, for example, by finding a reasonable
prior distribution for the parameters of the DM with an even more efficient algo-
rithm. Also, the issue of biased estimation of DM parameters could be mitigated
by intelligent selection between the proposed algorithm and an LoS estimator.

The algorithms described in Paper [D] allow for more classical algorithmic re-
search, as this paper focuses solely on chirp signals. A generalization to other
signal atoms should be straightforward, but further research could investigate if
the information gain from overlapping bands could also be exploited from commu-
nication signals, where the so-called aggregate bandwidth [69] is large, but often
only smaller bands can be used at a single moment in time.

In conclusion, this thesis has successfully addressed all three core hypotheses,
demonstrating that dense multipath channels can be exploited for improved local-
ization performance in resource-constrained large-scale scenarios. The thesis not
only advances the state-of-the-art in DM exploitation for ranging and localization,
but also provides practical tools and algorithms that can be readily implemented,
thus opening up avenues for deployment in real-world applications.
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Abstract— For time-of-flight-based wireless positioning systems operating in
(dense) multipath propagation channels, the accuracy is severely influenced by the
signal bandwidth, because the dense multipath component (DMC) interferes with
the desired, information-bearing line-of-sight (LoS) signal. Several such systems
make use of bandwidth-limited frequency resources, e.g. the industrial, scientific,
and medical (ISM) bands, therefore the achievable position estimation accuracy
is limited. In this paper, we propose a model-based delay-estimation method
which takes into account a parametric model of the DMC and thus exploits the
signal energy carried in the DMC. The resulting algorithm exhibits an enhanced
delay estimation accuracy and remarkable robustness in non-LoS situations. The
algorithm is benchmarked against a maximum likelihood (ML) estimator not
incorporating a model for the DMC and against the estimated Cramér-Rao lower
bound (CRLB) in presence of DMC. Results show a significant performance gain
for scenarios where the conventional ML estimator performs poorly. An evaluation
of measurement data validates the simulation, showing a root-mean-square error
(RMSE) of 33.4 cm compared to 1.89 m for the conventional ML estimator, at a
signal bandwidth of 80 MHz.
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A.1 Introduction
Reliable and accurate indoor positioning is hindered by multipath propagation and
other environmental influences [1]. Existing mitigation methods use machine learn-
ing for bias-removal in non-line-of-sight (LoS) measurements [2] or exploit a known
room geometry [3]. Both methods exploit ultra-wideband (UWB) measurement
signals. The latter involve modeling of specular components, which assumes that
the components are separable in the time-domain and therefore a geometric envi-
ronment model can be used. As existing consumer hardware is often not capable of
operating with the needed bandwidth, some reduction of accuracy [4] and measure-
ment bias is often unavoidable. This problem holds for many low-power internet
of things (IoT) nodes [5,6], for 5G radios using the sub-6 GHz frequency band [7],
and for Bluetooth [8, 9] or WiFi devices [10].

The most useful measurement parameter for robust positioning is the time-of-
flight (ToF) of the LoS signal component. However, in environments with strong
dense multipath (DM) and limited bandwidth, separation of multipath components
is not viable, as there is significant overlap in time, c.f. Fig. A.1. In [4, 11],
a statistical model of the dense multipath component (DMC) has been used to
quantify the performance of time-of-arrival (ToA) estimators in DMC. As expected,
the performance deteriorates severely at small bandwidth, but, interestingly, a
simple matched-filter estimator outperforms in such situations the more advanced
maximum likelihood (ML) estimator which makes use of model knowledge.

To address this observation, we re-visit the problem of estimating the ToF in
dense multipath channels. In contrast to [4,11], we also estimate parameters of the
DMC model, in particular its ToA, and thereby we exploit the signal energy in this
component. We also introduce an efficient implementation of the ML estimator
and we analyze the ranging error bound (REB) for this model. An evaluation is
done with a simulation model, to verify the performance of the algorithm under
ideal conditions, and with indoor measurement data, to validate if this algorithm
can be applied to real-world situations.

The paper is organized as follows. A.2 focuses on the derivation of the signal
model and likelihood, and further shows an analytical solution for the covariance-
matrix describing the DMC. A.3 derives the REB for our signal model. In A.4,
an evaluation of the REB (A.4.1), simulation results (A.4.2) and an experimental
validation using measurement data (A.4.3) are shown.
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Figure A.1: Illustration of signal model and parameters

A.2 Signal Model
We define a channel model for an LoS component and a DMC

h(t) = αδ (t− τ) + ν(t) (A.1)

with complex amplitude α ∈ C and relative delay τ ∈ R. The DMC is modeled as a
zero-mean complex Gaussian random process. With the assumption of uncorrelated
scattering, the autocorrelation is defined as

E [ν (t′) ν∗(t)] = Sν(t− τ ;θ)δ (t′ − t) , (A.2)

with the power delay spectrum Sν(t;θ), defined by a parameter vector θ. For our
purposes, we have to assume that neither τ , nor the parameters θ of the DMC are
known. The sampled received signal vector r with length N is described as

r = αs (τ) + n, (A.3)

where s (τ) is the sampled transmitted signal s(t− τ) with delay τ , i.e. [s (τ)]i =
s(iTs−τ), i = 0, 1, . . . , N−1, and sampling period Ts. The noise vector n is defined
by covariance matrix C(τ ;η) with parameter vector η. The covariance matrix is
further defined as

C(τ ;η) = Cν(τ ;θ) + σ2I, (A.4)

with the covariance of the DMC Cν(τ ;θ), the variance σ2 of an additive white
Gaussian noise component and the identity matrix of according size I.

From this signal model, the Gaussian likelihood-function can be formulated as

f(r | τ,η, α) = e−(r−s(τ)α)HC(τ ;η)−1(r−s(τ)α)

πN detC(τ ;η)
, (A.5)

which will be the basis for evaluating the Cramér-Rao lower bound (CRLB) and
parameter estimation algorithms, which yield point estimates by implementing the
function argminτ,η,α f(r | τ,η, α). Two variants for this were implemented, one for
a full estimation of the covariance matrix and one for a additive white Gaussian
noise (AWGN)-only estimation neglecting DMC.
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To achieve an efficient implementation of such algorithms, we will make use of
a time-shifting operator that is defined in frequency domain as Φ(τ) = diag(w(τ)),
where element i of vector w(τ) is [w(τ)]i = ejπτfi , corresponding to frequency
sample fi. A time-domain shift operator is then written as a convolution matrix
∆(τ) = F−1Φ(τ)F using the DFT matrix F . With this, the received signal can be
re-written as

r = ∆(τ)s (0) + n (A.6)

and

Cν(τ ;θ) =

∫
Sν(λ− τ ;θ)s(λ)sH(λ) dλ

=

∫
Sν(λ;θ)s(λ+ τ)sH(λ+ τ) dλ

= ∆(τ)

∫
Sν(λ;θ)s(λ)s

H(λ) dλ ∆H(τ)

= ∆(τ)Cν(θ)∆
H(τ)

, (A.7)

where H denotes the Hermitian transpose. The latter has the advantage that the
delay parameter has been separated from the covariance matrix. For the compu-
tation of the inverse and determinant of Cν(θ), we introduce a frequency-domain
representation of the covariance matrix Cν(θ) = FHC̃ν(θ)F and the singular value
decomposition (SVD) of this matrix C̃ν(θ) = AUΛUH, where A represents the
power of the DMC. This yields the noise covariance matrix

C(η) = FH(C̃ν(θ) + σ2I)F
= FHU(AΛ+ σ2I)UHF,

(A.8)

with inverse
C(η)−1 = FHU(AΛ+ σ2I)−1UHF (A.9)

and determinant
det(C(η)) =

∏
i

(Aλi + σ2), (A.10)

where λi is the i-th diagonal element of Λ.
We can now re-write the likelihood function as

f(r | τ,η, α) = e−(∆(−τ)r−s(0)α)HC(η)−1(∆(−τ)r−s(0)α)

πN detC(η)

=
e−(ΦH(τ)r̃−s̃(0)α)HU(AΛ+σ2I)−1UH(ΦH(τ)r̃−s̃(0)α)

πN
∏
i(Aλi + σ2)

,

(A.11)

with frequency-domain versions r̃ = Fr and s̃(0) = Fs(0) of received signal and
transmitted signal, respectively. This equates to a log-likelihood of

ln(f(r | τ,η, α)) = −N ln(π)−
∑
i

ln(Aλi + σ2)

−
∑
i

(Aλi + σ2)−1
∣∣∣ui [ΦH(τ)r̃ − s̃(0)α

]∣∣∣2 . (A.12)
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This form has the advantage that parameters τ , α, and A are separated and the
expensive matrix operations are avoided, reducing computations for an ML-based
parameter estimator. The actual shape of the PDP is expressed by the eigenvectors
ui and eigenvalues λi of C̃ν(θ), which can be pre-calculated for different parameters
θ.

In fact, an analytical solution can be found for C̃ν(θ) for the double-exponential
power delay profile (PDP)

Sν(t;θ) = A(1− e
−t
γr )e

−t
γ1 (A.13)

illustrated in A.1 with θ = [A, γ1, γr]. This model corresponds to a normalized
power of the DMC of Ω1, where A = Ω1(γ1 + γr). Appendix A.6.1 shows the
derivation of C̃ν(θ) for this PDP.

A.3 Ranging Error Bound
As the parameters for the Covariance matrix are not known, additional estimation
is necessary. From previous work [4, 11, 12] we can see that a derivation of the
equivalent Fisher information (EFI) is necessary. A generalized form of the Fisher
information (FI) matrix for a complex Gaussian data model is shown as [13, Sec.
15.7]

[I(η)]ij =2Re

{(
∂r
∂ηi

)H

C(η)−1

(
∂r
∂ηj

)}

+ tr
[
C(η)−1 ∂C(η)

∂ηi
C(η)−1 ∂C(η)

∂ηj

], (A.14)

where i and j are the i-th and j-th corresponding element of η. The first term of
this equation has already been derived [11] and described in detail. The second
term of the equation describes the information gain from estimating the parameters
of the covariance matrix and thus the gain introduced by the PDP model. The
EFI for the parameter τ can be approximated as

Iτ ≈ 8π2β2γτSINR sin2(ξ) + IDMC
τ (A.15)

where β2 = ‖ṡ‖2 /
(
4π2 ‖s‖2

)
is the mean-squared bandwidth [14] of the trans-

mitted signal, defined with a normalized pulse ‖s‖2 Ts = 1, and ṡ is the sam-
pled derivative of s w.r.t τ . The whitening gain γτ =

β2
w

β is described in litera-
ture [11] as the increased ranging information due to the equalization of the DMC
by means of the inverse covariance matrix, c.f. (A.11). The extended bandwidth
after whitening β2

w = ‖ṡ‖2H /
(
4π2 ‖s‖2H

)
is a corresponding bandwidth after the

equalization, where ‖s‖2H is the weighted norm of s in a corresponding Hilbert
space H, see Appendix A.6.2. Furthermore, sin2(ξ) is a factor stemming from
the loss from estimation of the parameter α, which is also further described in
Appendix A.6.2. The signal-to-interference-plus-noise-ratio (SINR) is a factor de-
scribing the influence of the DMC on the estimation of the LoS signal, it is calcu-
lated as SINR = |α|2‖s‖2HTs/N0. The term IDMC

τ can be evaluated numerically
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by computing the partial derivatives Ċ(η) of C(η) and evaluating the trace. With
the EFI Iτ the REB can be written as R(τ) =

√
I−1
τ .

A.4 Numeric evaluation

A.4.1 Ranging Error Bound
In order to verify the potential performance gain from exploiting the DMC, we
evaluated the REB as a function of the energy ratio KLOS = ELOS

EDMC
between the

LoS-component and the DMC. The bandwidth was set to 80 MHz, represented by
the pulse duration Tp = 12.5ns, which corresponds to a typical bandwidth of a
non-UWB radiopositioning system. The channel parameters γ1, γr and the signal-
to-noise ratio (SNR) ELOS

N0
were chosen to represent a typical indoor measurement

scenario. The energy ratio KLOS was varied, as this parameter expresses how well
the information-bearing LoS is visible at some position and geometry within a
room. High values for KLOS represent a scenario where the LoS dominates over
the DM, meaning an undisturbed path in a large room without reflections. Low
values represent the opposite case, where the DM dominates over the LoS. Note
that a fixed SNR is defined for the ELOS , which implies that EDMC increases for
decreasing KLOS.

In A.2 we evaluate the REB for the LoS component only ( , first term of
(A.14) only), where the DMC represents limiting interference, and for the total
REB, which also accounts for delay information contained in the DMC ( , both
terms of (A.14)). The REBs diverge significantly for small KLOS, meaning that,
in a case where there is a significant amount of energy in the DMC, a much better
estimation performance can be achieved. This can be attributed to the additional
information expressed by the second term in (A.14). The conventional estimator
exploits only the energy in the LoS, and thus the additional information in the
multipath is lost. For large KLOS, the estimation accuracy gain of the model with
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Figure A.3: Floorplan of the measurement scenario

DMC is negligible over the model without DMC, which can be simply attributed to
the fact that EDMC for this region is very small. This means that the information
gain from the DMC in this region is also negligible.

A.4.2 Simulation Results
A Monte-Carlo simulation (MCS) with independent realisations of the DMC was
done in order to compare the ML estimator using the DMC model to one that
assumes an LoS in AWGN only. We chose to draw 10000 samples per evaluation
point using the same PDP model as for the estimator. Estimation of the parameters
was done via Nelder-Mead method with random starting points in the vicinity of
the real values. As can be seen in A.2, the ML estimator without incorporating a
model for the DMC performs near the REB neglecting the DMC for high KLOS,
but for low values the estimator diverges. This can be attributed to the strong
DMC causing estimation outliers, i.e. finding a random peak of the DMC. The
estimator incorporating the model for the DMC shows a significant performance
gain, especially for low values of KLOS. Still, an offset between the total REB
and the ML with DMC can be seen. This can be attributed to the estimation of
nuisance parameters [15].

A.4.3 Experimental validation
For the validation of the algorithms, UWB-measurement data, acquired at a band-
width of 1GHz in a small lab room at our institute, was downsampled to 80MHz,
corresponding to the simulated data. The data set consists of 3654 measured chan-
nel impulse responses (CIRs), of which 2310 were in LoS and 1254 were measured
under non-LoS conditions. The data sets were acquired by measuring multiple po-
sitions on a 2 cm grid of 64 cm by 70 cm placed at positions TX1 to TX3; the RX
antenna was kept at a fixed position, as illustrated in A.3. The parameter K̂LOS
was computed from the high-resolution data at 1GHz, estimating amplitude and
delay of the LoS component τ̂ with an ML estimator (without modeling for DMC)
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Figure A.4: Comparison of ML with and without model for DMC, with γr =
5ns, Tp = 12.5ns

in the vicinity of the real distance [16]. We get

K̂LOS =
|〈r, s(τ̂)〉|2

‖r − 〈r, s(τ̂)〉s(τ̂)‖2 −Nσ̂2
, (A.16)

where σ̂2 was estimated by using samples where the DM is assumed to be well-
attenuated, i.e. at very late delays [17].

These datasets were evaluated via grid search for the ML without DMC model-
ing and respectively with an interior-point algorithm with DMC modeling. Param-
eter γr was assumed to be known and fixed at 5ns, as joint estimation of γr and
τ̂ proved difficult and the rise time can be assumed to be constant. This can be
attributed to the rise time being mostly dependent on overall room geometry [18].
Other parameters were initialized as

[
τ = 0, A = 107.7, σ2 = 0.1, γ1 = 20 ns

]
. These

values correspond to KLOS = 1. In A.4, evaluated data was grouped by K̂LOS, each
point representing an equally sized subset of measurements. At low values of K̂LOS,
our algorithm outperforms the ML without DMC by a significant margin, corre-
sponding to the performance for simulated data. For high K̂LOS the performance
of the conventional algorithm seems to be better than the performance of our al-
gorithm. This can be attributed to the nuisance parameters γ1, and A, which have
to be estimated, lowering estimation performance for τ̂ . Evaluations of our data
showed that with our algorithm, there was a bias for the estimation at the highest
value of K̂LOS of 33 cm, or about 1ns.

The CDF for our algorithm is shown in A.5 and compared to the conventional
algorithm. It illustrates this bias towards earlier delays, which could mean that our
assumed γr was chosen slightly too large, thus limiting the performance. Evaluation
with the conventional ML was unbiased, but as expected, for data sets with non-
line-of-sight (NLOS) data, it shows many outliers with late delays. Overall, for the
whole data set, the AWGN-based ML achieves an root-mean-square error (RMSE)
of 1.89m, compared to 33.4 cm achieved by our algorithm incorporating the model
for the DMC.

Note that the estimate K̂DMC
LOS from the UWB data differs from KLOS esti-

mated from the interior point algorithm. A.6 illustrates the ratio between K̂DMC
LOS =

|α|2/Ω1 computed from the nuisance parameters estimated within our DMC-based
algorithm and K̂LOS as described by A.16. The graph shows that the parameter
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Figure A.5: cumulative distribution functions (CDFs) for whole dataset of ML with
DMC model (left) and without (right)

estimation performs relatively accurate for high K̂LOS, but for small values of K̂LOS
the estimation becomes unreliable. This behaviour is expected, as with a smaller
bandwidth there is increasingly more energy from the DMC being attributed to
the LoS component.
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Figure A.6: Median ratio between estimated K̂LOS

A.5 Conclusion

An ML-based estimator is formulated for the ToA of radio signals in dense multi-
path channels, which exploits the energy of the dense multipath component rather
than mitigating it. The observed performance is significantly improved over a
conventional ML estimator in particular in situation with an obstructed-LoS. Our
algorithm showed an RMSE of 33.4 cm compared to 1.89 m for the conventional
ML estimator for the evaluated bandwidth. The performance is not significantly
inhibited by estimation of additional nuisance parameters, as illustrated by analysis
of the CRLB for this case. Computationally one estimation step of the classic ML
algorithm can be computed in O(n3), and efficient implementations of the SVD can
be also computed in O(n3) as the most demanding operation for both is a matrix
multiplication and inversion, leading to only a linear increase in computation time.
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A.6 Appendix

A.6.1 Covariance Matrix for the Double-Exponential PDP

Expressing the time-shifted signal vectors s(λ) in (A.7) by a frequency-domain
representation s̃(λ) = Fs(λ), we get

Cν(θ) =

∫
Sν(λ;θ)s(λ)s

H(λ) dλ

= FH
∫

Sν(λ;θ)s̃(λ)s̃
H(λ) dλ F

= FHC̃ν(θ)F

(A.17)

with FH = F−1. Next we evoke our time-shift operator to get s̃(λ) = Φ(λ)s̃(0) and
s̃(λ) = S̃w(λ), where S̃ = diag(s̃(0)) (and, remember, Φ(λ) = diag(w̃(λ))). With
this, we can deduct

C̃ν(θ) = S̃

∫
Sν(λ;θ)w(λ)wH(λ) dλ S̃H, (A.18)

which can be solved analytically for the double-exponential PDP in (A.13). We
obtain

C̃ν(θ) = AS̃CFD(θ)S̃
H, (A.19)

where CFD(θ) is a symmetric Toeplitz matrix with elements

ci =
1

1/γ1 − j2π∆f i
− 1

1/γ0 − j2π∆f i
(A.20)

on the i-th diagonal, γ0 = γ1γr
γ1+γr

, and ∆f is the frequency spacing between the
elements of s̃(λ).

A.6.2 Fourier-Weighted Inner Product

The weighted inner product in the Hilbert Space H is defined as

〈x,y〉H = σ2yHC(η)−1x

=

N∑
i=1

yHuiu
H
i x

λi/σ2 + 1

(A.21)

where ui is the i-th eigenvector of U . Furthermore, the induced norm in H is
defined as ‖x‖2H = 〈x,x〉H for a covariance matrix C(η). There is a loss factor
associated with estimating α, which equates to [11]

sin2(ξ) = 1− |〈s, ṡ〉H|2

‖s‖2H‖ṡ‖2H
(A.22)



BIBLIOGRAPHY 63

Bibliography
[1] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, “Ranging with

ultrawide bandwidth signals in multipath environments,” Proceedings of the
IEEE, Feb 2009, doi: 10.1109/JPROC.2008.2008846.

[2] H. Wymeersch, S. Marano, W. Gifford, and M. Win, “A machine learning
approach to ranging error mitigation for uwb localization,” Communications,
IEEE Transactions on, 2012, doi: 10.1109/TCOMM.2012.042712.110035.

[3] J. Kulmer, S. Hinteregger, B. Großwindhager, M. Rath, M. S. Bakr,
E. Leitinger, and K. Witrisal, “Using DecaWave UWB transceivers for high-
accuracy multipath-assisted indoor positioning,” in 2017 IEEE International
Conference on Communications Workshops (ICC Workshops), May 2017, doi:
10.1109/ICCW.2017.7962828.

[4] K. Witrisal, E. Leitinger, S. Hinteregger, and P. Meissner, “Bandwidth scaling
and diversity gain for ranging and positioning in dense multipath channels,”
IEEE Wireless Communications Letters, vol. 5, no. 4, pp. 396–399, 2016.

[5] D. Neunteufel, A. Fuchs, and H. Arthaber, “ToF-based indoor positioning for
low-power IoT nodes,” in 2020 54th Asilomar Conference on Signals, Systems,
and Computers, Nov 2020, doi: 10.1109/IEEECONF51394.2020.9443431.

[6] D. Neunteufel, S. Grebien, and H. Arthaber, “Indoor positioning of low-cost
narrowband IoT nodes: Evaluation of a TDoA approach in a retail environ-
ment,” submitted to MDPI Sensors.

[7] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-
Granados, “Survey of cellular mobile radio localization methods: From 1G
to 5G,” IEEE Communications Surveys Tutorials, Secondquarter 2018, doi:
10.1109/COMST.2017.2785181.

[8] P. Zand, J. Romme, J. Govers, F. Pasveer, and G. Dolmans, “A high-accuracy
phase-based ranging solution with bluetooth low energy (ble),” in 2019 IEEE
Wireless Communications and Networking Conference (WCNC), 2019, doi:
10.1109/WCNC.2019.8885791.

[9] A. Comuniello, A. Angelis, A. Moschitta, and P. Carbone, “Using bluetooth
low energy technology to perform ToF-based positioning,” Electronics, 12
2021, doi: 10.3390/electronics11010111.

[10] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level
localization using wifi,” SIGCOMM Comput. Commun. Rev., aug 2015, doi:
10.1145/2829988.2787487.

[11] T. Wilding, S. Grebien, U. Mühlmann, and K. Witrisal, “Accuracy bounds
for array-based positioning in dense multipath channels,” Sensors, 2018, doi:
10.3390/s18124249.

[12] E. Leitinger, P. Meissner, C. Rüdisser, G. Dumphart, and K. Witrisal, “Eval-
uation of position-related information in multipath components for indoor

https://doi.org/10.1109/JPROC.2008.2008846
https://doi.org/10.1109/TCOMM.2012.042712.110035
https://doi.org/10.1109/ICCW.2017.7962828
https://doi.org/10.1109/ICCW.2017.7962828
https://doi.org/10.1109/IEEECONF51394.2020.9443431
https://doi.org/10.1109/COMST.2017.2785181
https://doi.org/10.1109/COMST.2017.2785181
https://doi.org/10.1109/WCNC.2019.8885791
https://doi.org/10.1109/WCNC.2019.8885791
https://doi.org/10.3390/electronics11010111
https://doi.org/10.1145/2829988.2787487
https://doi.org/10.1145/2829988.2787487
https://doi.org/10.3390/s18124249
https://doi.org/10.3390/s18124249


64 BIBLIOGRAPHY

positioning,” IEEE Journal on Selected Areas in Communications, Nov 2015,
doi: 10.1109/JSAC.2015.2430520.

[13] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
USA: Prentice-Hall, Inc., 1993.

[14] R. A. Scholtz, “How do you define bandwidth?” 1972. [Online]. Available:
http://hdl.handle.net/10150/605545

[15] A. Abdi, C. Tepedelenlioglu, M. Kaveh, and G. Giannakis, “On the estimation
of the K parameter for the Rice fading distribution,” IEEE Communications
Letters, March 2001, doi: 10.1109/4234.913150.

[16] S. Hinteregger, J. Kulmer, M. Goller, F. Galler, H. Arthaber, and K. Witrisal,
“UHF-RFID backscatter channel analysis for accurate wideband ranging,”
in 2017 IEEE International Conference on RFID (RFID), May 2017, doi:
10.1109/RFID.2017.7945596.

[17] J. Kulmer, S. Grebien, E. Leitinger, and K. Witrisal, “Delay estimation in
presence of dense multipath,” IEEE Wireless Communications Letters, Oct
2019, doi: 10.1109/LWC.2019.2923409.

[18] J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A. F. Molisch, “A
measurement-based statistical model for industrial ultra-wideband channels,”
IEEE Transactions on Wireless Communications, vol. 6, no. 8, pp. 3028–3037,
2007.

https://doi.org/10.1109/JSAC.2015.2430520
http://hdl.handle.net/10150/605545
https://doi.org/10.1109/4234.913150
https://doi.org/10.1109/RFID.2017.7945596
https://doi.org/10.1109/RFID.2017.7945596
https://doi.org/10.1109/LWC.2019.2923409


B
Wideband TDoA Positioning Exploiting

RSS-Based Clustering
Andreas Fuchs, Lukas Wielandner, Daniel Neunteufel, Holger Arthaber, Klaus
Witrisal

Sensors 2023, 23, 5772 doi: 10.3390/s23125772

Abstract—The accuracy of radio-based positioning is heavily influenced by a dense
multipath (DM) channel, leading to a poor position accuracy. The DM affects
both, time-of-flight (ToF)-measurements extracted from wideband (WB) signals—
specifically, if the bandwidth is below 100 MHz—as well as received signal strength
(RSS) measurements, due to the interference of multipath signal components onto
the information-bearing line-of-sight (LoS) component. This work proposes an
approach for combining these two different measurement technologies, leading to a
robust position estimation in presence of DM. We assume that a large ensemble of
densely-spaced devices is to be positioned. We use RSS measurements to determine
“clusters” of devices in the vicinity of each other. Joint processing of the WB-
measurements from all devices in a cluster efficiently suppresses the influence of
the DM. We formulate an algorithmic approach for the information fusion of those
two technologies and derive the corresponding Cramér-Rao lower bound (CRLB)
to gain insight in the performance trade-offs at hand. We evaluate our results
by simulations and validate the approach with real-world measurement data. The
results show that the clustering approach can halve the root-mean-square error
(RMSE) from about 2 m to below 1 m, using WB signal transmissions in the
2.4 GHz ISM band at a bandwidth of about 80 MHz.

B.1 Introduction

B.1.1 State of the Art
Radio based indoor localization is an increasingly important research topic, as
many modern electronic devices are dependent on robust and accurate position
information to provide location-dependent services and applications. Exemplary
applications include positioning in retail scenarios guiding costumers to products
they are looking for, tracking medical devices in healthcare environments, providing
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guests of museums with accurate position dependent interactive tours, tracking
articles in warehouses and logistic centers and many more [1–8].

Current state-of-the-art algorithms focus mostly on one measurement method,
which can, for example, include received signal strength (RSS) measurements from
multiple devices to each other, wideband (WB) measurements to infrastructure like
wireless modems and other equipment or measurements with higher bandwidths
like ultra-wideband (UWB).

These multiple measurement methods have their own advantages and disad-
vantages, as the used technology imposes direct limitations. Measurements of RSS
values are, for example, relatively easy to acquire, but the information content of a
single measurement is low, and thus a single measurement provides only marginal
positional information. Therefore, a need arises for a large number of (indepen-
dent) measurements to increase the positional information to an acceptable level,
and additionally a significant number of fixed “anchor nodes” are necessary for ref-
erence [9]. Other technologies, for example time-difference-of-arrival (TDoA) based
localization utilizing WB measurements in the industrial, scientific, and medical
(ISM) bands (i.e. 80MHz at 2.4GHz), provide much more information with a sin-
gle measurement, but additional WB anchor infrastructure is necessary, so called
access points (APs), similar to [10, Ch. 6]. In this case, the devices and APs need
more complicated radio chips to send and receive higher bandwidth signals. Chips
providing even higher bandwidths are increasingly cost-intensive and power-hungry,
and thus not economical for many applications.

All of the previously mentioned radio-based localization technologies have in
common that multipath-propagation influences the measurements [11], which can
affect the results negatively. For bandwidths smaller than 100 MHz, at which in
typical indoor scenarios multipath components can not be discerned anymore, the
interfering dense multipath component (DMC) leads to diminished performance
[12].

Algorithms which were developed in recent years focus on many different ap-
proaches, including machine learning [13] or classical signal processing [14,15], but
focus mostly on single measurement methods. For many of these approaches, es-
sential performance bounds like the Cramér-Rao lower bound (CRLB) are also
derived [16–20].

Combining multiple measurement methods allows to use complimentary gains
from each method, but will increase the complexity of the system architecture
and of the algorithms [21], thus this has to be regarded when developing new ap-
proaches. Some research was done to fuse multiple localization and measurement
methods [1, 22]. These algorithms combine position estimates, but do not fuse
measurement data directly. Other existing methods incorporate maximum like-
lihood estimates for time-of-arrival (ToA), angle of arrival (AoA) and RSS, but
those methods rely on fusing multiple measurements from a single node [23, 24],
they do not fuse the information of multiple nodes. Also, there is no research yet
done which focuses on the derivation of a CRLB for such fused algorithms. Other
methods for data fusion of multiple measurements incorporate machine learning,
for example methods based on channel state information [25,26], or support vector
regression [27,28]. Machine learning algorithms need training data to work, which
is not necessary for our proposed algorithm.
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B.1.2 Concept
This work proposes a method which combines WB time-of-flight (ToF) and AoA
measurements of multiple nodes in an indoor scenario. To overcome the limitations
of single WB measurements, RSS measurements are collected inbetween the nodes,
to determine those which are in the vicinity of each other. By selecting the WB
measurements of those nodes, we get access to multiple realisations of the interfer-
ing dense multipath component (DMC) and thus an additional information gain
for every measurement.

This is achieved by an approach we further call clustering, where RSS-
measurements are used to find the nearest nodes, for which WB measurements are
then processed jointly. In the following, we will describe likelihoods for node and

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

x in m

y
in

m

Cluster

Nodes in Cluster First node in Cluster Node not within cluster Anchors

Figure B.1: Visualization of the RSS-based Clustering, excerpts show single likeli-
hoods over a floorplan, overall graphic shows a combined likelihood from a set of
15 nodes

cluster positions, which describe regions with likelihoods of a node being at one
position. In Figure B.1, this concept is visualized in a typical warehouse scenario,
incorporating multiple shelves defining aisles, nodes placed on these shelves, and
multiple anchors over the room.

Here, the likelihood over a room with measurements to six antenna-arrays, each
incorporating two antennas, can be seen, where red regions show a large likelihood
for a node to be in a position.

The antenna arrays allow for coherent processing, yielding information on the
AoA. Different anchor positions allow for a TDoA positioning approach. In the
upper-left subplot, a single likelihood for WB measurements is shown. One can
see that the resulting likelihood is multi-modal, and the position with the largest
likelihood (shown as a white circle) is at one of the false modes. This multi-modality



68 PAPER B.

stems from the estimation of false peaks in the time-domain, which are caused by
multipath components dominating over the line-of-sight (LoS). The real position
is shown as a blue triangle. The same can be seen in the lower-left subplot, for a
node in the vicinity, showing similar effects. In addition, this measurement suffered
from a poor signal-to-noise ratio (SNR), which broadens the likelihood in all spatial
directions. The lower-right subplot shows a single node far away from the other
two examples, for which the estimation is working rather bad. These cases can be
mitigated by the clustering approach.

To improve the positioning accuracy and reliability of a single node, multiple
nodes can be clustered, and thus a joint likelihood can be computed, which miti-
gates the uncertainties. But the strategy for clustering is not clear, as there is no
previous information from WB measurements alone. Here, RSS measurements can
be used, giving us a list of nodes which are likely near a node in a cluster (which
is seen as a defining “first” node for the cluster), seen again as a blue triangle. All
other nodes within this cluster are shown as black crosses. Now, the joint likelihood
seen in Figure B.1 for the whole room is for a combination of all WB measurements
within this cluster, applying our proposed algorithm. This shows a single defined
mode, where the maximum is the estimated position for the defining node. Note
that these nodes can be positioned at different heights, which the algorithm takes
into account by a three-dimensional formulation. This approach would also be ap-
plicable to multiple measurements of a single node at different positions near each
other, but this work focuses on static scenarios.

In order to assess the achievable performance, the CRLB for the cluster center
incorporating the DMC was evaluated. The algorithm treats measurements from
multiple nodes as different realisations of a single node, thus a correction factor
is introduced. This factor regards the information loss from cluster nodes being
in different positions. Therefore, we have to introduce a bias term on top of the
CRLB since the algorithm leads to the estimation of the cluster center which differs
from the true position of the node. This is verified by simulations of increasing
complexity and by a real-world measurement campaign.

B.1.3 Contribution
The contributions of this work are the following:

• A concept for the information fusion of WB TDoA and AoA measurements
exploiting RSS-based clustering of multiple agent nodes to jointly process
their position information.

• A maximum likelihood estimation based algorithm for the mentioned concept.

• An efficient implementation of the proposed algorithm using a particle based
estimator.

• A derivation of estimation performance bounds for this concept incorporating:

– Results for a correction factor describing the loss of information from
large clusters.

– Derivation of the CRLB incorporating this correction factor and infor-
mation gain from multiple measurements.
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– Introduction of a biased lower bound attributing for performance losses
when estimating a single node within a cluster.

• Numeric evaluations of these bounds, showing the influence of parameters
like number of nodes in the cluster, size of the cluster, and positions of nodes
within a cluster. Specifically, we analyze the performance bounds for:

– Single node positions, validating the information gain.
– Increasing node distances for two nodes, validating the biased lower

bound.
– A fully synthetic measurement scenario with nodes over a simulated

room with shelves, validating the data fusion concept.
– The same scenario, incorporating real RSS measurements for clustering

of adjacent nodes, but keeping synthetic WB measurements for posi-
tioning, validating the impact of realistic clustering with RSS data.

• A verification of the theoretical results with real-world measurement data for
both WB and RSS, showing that the algorithm is applicable to real scenarios.

B.1.4 Paper Outline
The paper is structured as follows: Section B.2 defines the overall notation. The
signal model for the WB-measurements and the resulting likelihood for single mea-
surements to one agent node are presented in Section B.3. In Section B.4, we
describe the clustering approach in detail and the conditions that have to be met
to allow this approach. In Section B.5 we derive the CRLB for our system model,
additionally focusing on the information loss dependent on the cluster geometry.
Section B.6 focuses on evaluations of both synthetic scenarios and real-world mea-
surements, verifying performance. Lastly, a conclusion can be found in Section B.7.
Additional insights and detailed derivations are shown in Appendices B.8-B.10.

B.2 Notation
Column vectors are denoted by boldface lower-case letters, and matrices are de-
noted by boldface upper-case letters. The probability density function (PDF) of a
random variable is denoted as f(x). For any vector x, we denote the transpose as
xT , the Hermitian transpose as xH , the Euclidian norm as ‖x‖, the mean over all
elements in the vector as x, the expectation operator as Ei[x] in dimension i (where
dimension i denotes the dimension along the expectation operator is calculated),
and the complex conjugate as x∗. The calligraphic notation L denotes a set, other
usages of calligraphic fonts are described at their first occurrence. {xl}L denotes
the mean operator over all vectors xl for l in the set L. Furthermore, we introduce
a trace operator as tr{X} for a matrix X and det(X) as it’s determinant. Sub-
matrices of a matrix X are written with their corresponding superscripts without
parentheses, i.e., Xi,i. A superscript with brackets X(i) is used to denote a matrix
designated by index i (notably used for matrices corresponding to a single anchor
m) and [X]3×3 is the upper-left 3 × 3 sub-block of a matrix. Real and imaginary
parts of x are denoted as Rx and Ix respectively.
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B.3 Signal Model
The system setup consists of L transmitting nodes that are located at positions
pl = [xl, yl, zl]

T ∈ R3,∀l ∈ {1, . . . , L} and receiving antennas at positions pm,k ∈
R3,∀m ∈ {1, . . . ,M},∀k ∈ {1, . . . ,K}, where index k describes the antennas within
each anchor, and index m describes the anchor. The number of anchors and an-
tennas per anchor are described by M and K respectively. The radio channel from
the l-th transmitting node to the k-th receiving antenna of anchor m is given as

hl,m,k(τ ;pl) = αl,mδ (τ − τm,k(pl)) + νl,m,k(τ) (B.1)

with propagation delay τm,k(pl) =
1
c ‖pl − pm,k‖ and the complex amplitude αl,m

of the received LoS signal from node l to anchor m. The DMC is described by a
zero-mean complex Gaussian random process. With the assumption of uncorrelated
scattering, the auto-correlation of the random process νl,m,k(τ) is defined as

E
[
νl,m,k(τ)ν

∗
l′,m′,k′ (τ

′)
]
=

Sν (τ − τm(pl), ν̃l,m) δ (τ − τ ′) δ [l − l′] δ [m−m′] δ [k − k′] ,
(B.2)

where τm(pl) = 1
c (‖pl − pm‖) is a mean delay per array m, with pm =

{pm,1, . . . ,pm,K} being the mean antenna position. The delay power spectrum
(DPS) Sν (τ − τm(pl), ν̃l,m) is defined later in this section. With the assumption
that every node l is transmitting a baseband signal s(t) at frequency fc, the
received signal at anchor m is described by

rl,m,k(t) = α̃l,m,ks(t− τm,k(pl)− εl)+

∫
s(t− τ)νl,m,k(τ + εl)dτ +wl,m,k(t), (B.3)

with a complex amplitude α̃l,m,k = αl,me−j2πfc(τm,k(pl)+εl) that accounts for the
phase shift at antenna k, εl is the transmit time of node l and wl,m,k(t) is noise
modeled as additive white Gaussian noise (AWGN) with double-sided power spec-
tral density (PSD) N0/2. With this, we can describe the sampled and stacked
received signals as

rl,m = sl,m(pl, εl)αl,m +wl,m ∈ CNsK×1, (B.4)

where rl,m =
[
rTl,m,1, . . . , r

T
l,m,K

]T
. Additive noise resulting from the DMC and

AWGN is described within the noise vector wl,m. The baseband-signal vector is
described as

sl,m(pl, εl) = [e−j2πfc(τm,1(pl)+εl)s(τm(pl) + εl)
T , . . . ,

e−j2πfc(τm,K(pl)+εl)s(τm(pl) + εl)
T ]T

(B.5)

where s(τ) ∈ CNs×1 = [s(−τ), s(τ + Ts), . . . , s(−τ + (Ns − 1)Ts)]
T is a sampled

version of s(t−τ). Note that Ts is the sampling time interval. This is a conventional
“wideband” phased-array signal model with identical envelopes and phase shifts for
the AoA.

The covariance matrix [Cl,m]k describes the noise vector wl,m, and is the
sampled noise covariance of the AWGN and DMC. We introduce a covariance-
matrix for every array element k as [Cl,m]k = [Cl,m

ν ]k + [Cl,m
w ]k ∈ CNs×Ns , where
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[Cl,m
w ]k = σ2

l,mI, with I being the identity matrix of according dimensions and
noise variance σ2

l,m = N0/Ts. The covariance for the DMC is described as

[
Cl,m
ν

]
k
=

∫
Sν (τ − τm(pl)− εl; η̃l,m) s(τ)s(τ)Hdτ, (B.6)

where η̃l,m are parameters describing the shape of the DPS. Now, assuming that
the DMC is a Gaussian process [16, 29], the likelihood-function of the model for a
single node and antenna array equates to

fl,m(rl,m | pl, εl,ηl,m, αl,m) =
e−(rl,m−sl,m(pl,εl)αl,m)H(Cl,m)−1(rl,m−sl,m(pl,εl)αl,m)

πNsK det(Cl,m)
,

(B.7)

with parameter vector ηl,m =
[
σ2
l,m, η̃Tl,m

]T
and Cl,m being a block diagonal

matrix described by the k-th matrices [Cl,m]k for every array element. To get a
joint likelihood for a single node, the factorization of these likelihoods equates to

fl(rl | pl, εl,ηl,αl) =
M∏
m=1

fl,m(rl,m | pl, εl,ηl,m, αl,m), (B.8)

which assumes independence of the DMC and AWGN inbetween anchors. Here,
rl =

[
rTl,1, . . . , r

T
l,M

]T
is a stacked receive vector, αl = [αl,1, . . . , αl,M ]

T are the

stacked LoS amplitudes and ηl =
[
ηl,1

T , . . . ,ηl,M
T
]T is a stacked parameter vector.

Lastly, we introduce the DPS Sν(τ ; η̃) similar to [12,29] as

Sν(τ ; η̃) = Ω1
γf + γr
γf 2

e−τ/γf (1− e−τ/γr )Σ(τ), (B.9)

with η̃ = [Ω1, γf , γr]
T which corresponds to a normalized power of the DMC of

Ω1, a fall time for the process γf , and a rise time γr. Furthermore, a step-function
Σ(τ) is defined as 1 for all t ≥ τ , and 0 else.

B.4 Clustering Approach
Incorporating a second measurement method, namely RSS measurements, multiple
adjacent nodes can be processed jointly to improve the positioning accuracy and
mitigate outliers due to the DMC. We focus on a node of interest l′ at position
pl′ . We define a set of nodes L of size N , which incorporates all nodes l which we
want to include in our evaluation. This set L can be defined in various ways, but
notably we use RSS measurements and genie-aided methods to define the nodes
within the set. The genie-aided method incorporates the N − 1 nearest nodes (in
geometrical sense) to l′ and the node l′ itself, where we use the ground-truth of all
node positions pl. The RSS-based method uses RSS measurements from the node
l′ to all other nodes l, and incorporates the N − 1 nodes l with the largest RSSs
and the node l′ itself. For our purposes, it is assumed that the node positions pl
are distributed around a mean cluster position pc ≈ {pl}L. The index l′ is omitted
from here on to improve readability.



72 PAPER B.

Assuming that measurements between different positions pl are independent,
the joint likelihood for the set L equates to

f(r | pc, ε,η,α) =
∏
l∈L

∫
pl∈L

fl(rl | pl, εl,ηl,αl)f(pl | pc)dpl, (B.10)

where α = [αTl ]
T , ε = [εTl ]

T , and η = [ηTl ]
T ∀l ∈ L are stacked versions of their

respective counterparts and r is a stacked vector of [rT ]T with l ∈ L. The term

f(pl | pc) = δ(pl − pc −∆l) ≈ δ(pl − pc), (B.11)

models the displacement between pl and pc by ∆l. The approximation assumes
that the term f(pl | pc) is negligible because all likelihoods fl(rl | pl, εl,ηl,αl) have
wide main lobes in comparison to the offset distance ∆l from the cluster position
pc. Thus a simplified log-likelihood for estimation and analysis is proposed as

ln f(r | pc, ε,η,α) =
∑
l∈L

ln fl(rl | pc, εl,ηl,αl). (B.12)

For this factorized likelihood function f(r | pc, ε,η,α) it can be shown that there
exists an unbiased estimator for the mean cluster position, if the regularity condi-
tion

E
[
∂ ln f(r | pc, ε,η,α)

∂pc

]
= 0 (B.13)

holds true [30], because the distribution of pl∀l ∈ L around pc is assumed to be
zero-mean. Note that (B.13) defines implicitly the exact cluster position pc. This
is similar to [31], where this assumption is used for spatial antenna-arrays. For all
other parameters, this has already been shown in literature [12,16].

B.5 Cramér-Rao Lower Bound
In order to evaluate the accuracy of results, the CRLB is derived, which is a
general bound for the achievable accuracy. The CRLB is the inverse of the Fisher
information (FI), for which derivations are shown in the following Subsections.

B.5.1 Introduction
The general form of the Fisher information matrix (FIM) for a PDF of the form
f(r | ψ) is [30, 32]

Jψ = Er|ψ

[(
∂

∂ψ
ln f(r | ψ)

)(
∂

∂ψ
ln f(r | ψ)

)T]
, (B.14)

for which the CRLB of an unbiased estimator ψ̂ of the parameter vector ψ is
defined as

Eψ
[
(ψ̂ −ψ)(ψ̂ −ψ)H

]
� J−1

ψ , (B.15)

where it should be noted thatA � B indicates thatA−B is a positive semi-definite
matrix.
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B.5.2 Derivation of the Position Error Bound
To derive lower bounds on the error variance of position estimates, we first de-
fine a parameter vector ψl,m = [φl,m, ϑl,m, τl,m,Rαl,m, Iαl,m]T with an azimuth
angle from anchor m to node l of φl,m = atan2(yl − ym, xl − xm), elevation angle
ϑl,m = atan2(zl − zm,

√
(xl − xm)2 + (yl − ym)2), and delay τl,m = τm(pl) + εl.

The equivalent Fisher information matrix (EFIM) [33] on the delay τl,m and
angle measurements φl,m and ϑl,m acquired by anchor m on each node l is then
given as

Jψl,m
=

Jφl,m
0 0

0 Jϑl,m
0

0 0 Jτl,m

 , (B.16)

where the diagonal elements Jφl,m
, Jϑl,m

, and Jτl,m account for the information
w.r.t. the different parameters. A derivation of this EFIM is given in Appendix
B.8. Furthermore, we introduce the Jacobian matrix Pm(pl) for transforming
spherical to Cartesian coordinates, which is defined as

Pm(pl) =


∂xl

∂φl,m

∂xl

∂ϑl,m

∂xl

∂τl,m
∂yl
∂φl,m

∂yl
∂ϑl,m

∂yl
∂τl,m

∂zl
∂φl,m

∂zl
∂ϑl,m

∂zl
∂τl,m



=

−
sinφl,m sinϑl,m

τl,mc
cosφl,m cosϑl,m

τl,mc
sinφl,m cosϑl,m

c
sinφl,m cosϑl,m

τl,mc
cosφl,m sinϑl,m

τl,mc
sinφl,m sinϑl,m

c

0 − sinφl,m

τl,mc
cosφl,m

c

 ∈ R3×3,

(B.17)

for node l ∈ L at position pl = [xl, yl, zl]
T . Note that c is the speed of light.

Assuming independent noise for all nodes l ∈ L and knowledge of the displace-
ment ∆l = pl − pc between the node positions pl and the cluster position pc, the
Cartesian EFIM for the cluster is expressed by the sum of the node EFIMs,

J (m)
pc

=
∑
l∈L

Pm(pl)Jψl,m
Pm(pl)

T
= Pm(pc)Jψ(c)

m
Pm(pc)

T . (B.18)

The right-hand side of this expression transforms the sum-information in Cartesian
coordinates back to range and angle measurements. This yields a (non-diagonal)
EFIM J

ψ
(c)
m

for the cluster center as

J
ψ

(c)
m

=
∑
l∈L

Pm(pc)
−1Pm(pl)Jψl,m

(Pm(pc)
−1Pm(pl))

T , (B.19)

where the off-diagonal elements describe some transformation of angle information
to delay-information and vice versa. We thus argue that a diagonal EFIM, written
as a sum of all delay and angle terms, serves as an upper bound on the delay and
angle information for the cluster at pc, if the position offsets ∆l are unknown. I.e.
we have

J̃
ψ

(c)
m

=
∑
l∈L

Jψl,m
(B.20)

as an upper bound on the sum-information from all the delay and angle measure-
ments for all nodes of the cluster and the corresponding bound on the position
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information,
J̃ (m)
pc

= Pm(pc)J̃ψ(c)
m
Pm(pc)

T . (B.21)

From this, we define a multi-anchor EFIM for the cluster position pc which is
decomposed into three components corresponding to the delay and angle terms as

Jpc
=

M∑
m=1

J̃ (m)
pc

(B.22)

≈
M∑
m=1

[
8π2

d2m
D2
λ(φm) KL SINRmRr(φm +

π

2
, ϑm) (B.23)

+
8π2

d2m
D2
λ(ϑm) KL SINRmRr(φm, ϑm +

π

2
) (B.24)

+Λ
8π2

c2
β2 KL [S̃INRτ ]mRr(φm, ϑm)

]
, (B.25)

using the results from Appendices B.9 and B.10. Here, dm, φm, and ϑm are the
distances between the array centers and the cluster center and the corresponding
angle parameters, D2

λ(φm) and D2
λ(ϑm) are the array apertures in azimuth and

elevation, β2 is the mean-squared signal bandwidth, and SINRm and [S̃INRτ ]m ac-
counts for the interference by the dense multipath (DM). The factor KL quantifies
the number of antennas per anchor as well as the number of nodes in the cluster,
which are interpreted as a boost in SINR, i.e. a suppression of the influence of
the DM. Finally, the matrices Rr(φm, ϑm) are so-called ranging direction matrixs
(RDMs) [33] defined as

Rr(φm, ϑm) = e(φm, ϑm)eT (φm, ϑm) (B.26)

where e(φm, ϑm) is a unit vector pointing from array m in the direction of the node
l.

This position error bound (PEB) (see B.22) also takes the correction factor Λ in
account for the clustering, dissimilar to other related work only showing results for
single nodes. It accounts for the spread of delays τm(pl) for l ∈ L around τm(pc)
which leads to an apparent loss of bandwidth as derived in Appendix B.9.

With this, we can define the PEB for multiple anchors m and multiple nodes
l ∈ L as

Pc =
√

tr{J−1
pc }. (B.27)

B.5.3 Biased Lower Bound
In the previous subsection, we derived the PEB for the cluster position pc. For
real-world applications, the cluster position would be mostly of no importance, but
it can be assumed that the cluster position is within a vicinity of the position of the
node l′ which has been used to define the cluster. Equality holds true for scenarios
where all nodes l ∈ L \ {l′} are distributed in such way that the cluster position
pc = pl′ . In real world scenarios this assumption often does not hold, thus we
propose a biased lower bound for the node l′

Pl′ = Pc + ‖pc − pl′‖. (B.28)
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This biased lower bound has the advantage of easier representation of relevant
errors, and comparability with the root-mean-square error (RMSE) of the first
node position p̂l′ .

B.6 Numeric Evaluation
Note that in this section, if there is a discussion about the cluster position pc or
the position of the first node in a cluster pl′ , it is always assumed to be for every
possible set L for every node l ∈ L, meaning that this evaluation is done for every
possible cluster in a scenario. To validate the CRLB and biased bound for pl′ ,
we evaluated four simulation scenarios, two of which represent a realistic indoor
scenario. Lastly an evaluation on measurement data was done, where the scenario
corresponded to our simulations. For the evaluation, only the AWGN case was
considered and all estimations were done in practice via a particle evaluation of
the joint-likelihood f(r | pc,η,α) [34], described in (B.12), by

p̂c = arg max
pc,εl∀l∈L

f(r | pc, ε,η,α). (B.29)

For the parameter α, a least-squares solution can be found as

α̂l,m(pc) = [sl,m(pc, εl)
Hsl,m(pc, εl)]

−1sl,m(pc, εl)
Hrl,m, (B.30)

calculated for every element αl,m. The parameters ε had to be estimated also
by the particle-filter. This particle-filter allowed us to estimate the position of a
cluster with size N = 40 on a typical workstation in under 30 s of time, and for
small cluster sizes the computation time decreases linearly.

As the estimations of DMC parameters are omitted, the state of this joint-
likelihood can be represented by a parameter vector ν = [xc, yc, zc, ε1, . . . , εNl

]T ,
where εl represents the transmit time of each node in the set L, and Nl represents
the number of elements in the set L. For the initialisation of the parameters
[xc, yc]

T , a support over the simulated room was chosen, for the height zc the
support was chosen to be in the range between [−6m, 6m] for scenarios with no shelf
simulation, and [0m, 2m] for scenarios with shelf simulation. For the measurement
scenario, the particles were initialized within the aisles only. Transmit times εl
were initialized on an interval of [ 0 m

c , 150 m
c ], which represent all transmit times

in simulated and measurement scenarios within a reasonable margin. Note that c
again represents the speed of light.

Each particle νp is initialized as one realisation of the parameter vector ν,
meaning that each particle represents a cluster position and unknown transmit
times of all nodes within the cluster. The likelihood is then evaluated for each and
every particle.

All evaluations are done with 1000 particles, each of which represents one state
νp. This was a reasonable trade-off between estimation time and accuracy. A
three-step approach was chosen: After an initalization step, particles were resam-
pled twice from the computed likelihoods. The first resampling step was done
by resampling from the computed normalized log-likelihood and adding additional
i.i.d. Gaussian noise to every resampled parameter. This noise was chosen as an
i.i.d. Gaussian process described by a mean of 0m and a standard deviation of
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0.5m for parameters [xc, yc, zc]
T and 0.5m 1

c for parameters εl. The additional
noise helps mitigating particle deprivation, where all particles are resampled from
a single previous particle with an exceptionally large likelihood compared to all
other particles. This first resampling step was chosen to better ensure resampling
from modes which were underrepresented in the initialisation step, but avoiding
to use a much larger number of particles beforehand. This strategy leads to a
very coarse maximum for the particles, and thus a second resampling step is nec-
essary. There we used a classical strategy where the resampling was done directly
from the estimated normalized likelihood, once again adding the same i.i.d. noise.
This resampling focused more on the dominant mode of the resulting distribution,
and thus can be seen as a refinement in the vicinity of the dominant mode. This
two-step resampling strategy allows us to use significantly fewer particles for our
estimation problem. Only using the second resampling step, we needed a factor
of at least 20 times the number of particles for comparable accuracy, which leads
to a proportional increase of calculation time by the same factor. It should be
noted that this implementation is capable to calculate positions in real-time, as
the number of operations to be processed is fixed by the number of particles.

Note that the simulations and measurements used 6 antenna arrays with 2
antennas each. This is not a limitation of the algorithm. Arbitrary antenna con-
figurations can be used, but the configuration in the simulations was chosen for
easier comparison to the measurement scenario.

B.6.1 Cluster in Single Position
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Figure B.2: Scenario 6.1 and 6.2: Results for synthetic scenario in single position
with random clusters and schematic plot for clusters of size 1 and size 2 with
variable distance.

For a first evaluation, we show that the PEB for the cluster position pc holds
true. To achieve this, we simulated a scenario with following parameters:

For placement of the antenna-arrays see Figure B.2. All antenna-arrays are
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Table B.1: Settings for simulation

fc β M K Antenna spacing
2.44GHz 75.3MHz 6 2 6 cm

shown as squares, and the positions of all nodes l are shown as a black cross. The
arrays are all oriented such that they are spaced in the direction of the y-axis,
therefore the positioning performance improves with the aperture of the arrays.
The nodes are placed at pc = [14m, 12m, 1m]T . For this scenario 1100 realisations
of a channel incorporating DMC was chosen, with an SNR at 1m of α2

1 m
σ2
l,m,k

= 25 dB,
where α1 m is the equivalent amplitude of the normalized signal at 1m. The cluster-
size N was varied, where the first node was always one unique node from all 1110
simulated nodes, and every other node in the set was chosen randomly from all
other remaining nodes.

The signal amplitude was then scaled according to Friis equation, leading to

αl,m = α1 m

(
λc

4πdl,m

)
, (B.31)

where λc =
1
fc

and dl,m is the distance between node l and anchor m. The param-
eter Ω1 of the DMC at 1m was drawn from an i.i.d. Gaussian random process,
and scaled according to the Friis equation [35] resulting in

[Ω1]l,m ∼ N

(
µ = 0 dB, σ2 = 2.16dB ×

(
λc

4πdl,m

)2
)
, (B.32)

where N (µ, σ2) is a random i.i.d Gaussian process. This describes one realisation
of random variable for the parameter Ω1. The parameters for the fall and rise time
of the DMC were chosen as fixed values being γr = 5 ns and γf = 20 ns, which are
typical values for an indoor scenario [29,36].

Figure B.2 shows that the CRLB can be attained for this scenario as the curve
showing the RMSE for p̂c is almost identical to the theoretical bound. A small
offset can be seen for small cluster-sizes (i.e., N in the range of 2 to 4), which can
be attributed to the particle-based estimation not being perfect. This could be
mitigated by using more particles. Note that the bias ‖pc−pl′‖ and the correction
factor Λ were both zero for all different cluster sizes in this scenario, and therefore
the equivalent Fisher information (EFI) could be directly summed up, meaning the
CRLB is scaling with 1√

N
, which can be interpreted as using different realisations

from the same node.

B.6.2 Double-Node Clusters with Variable Distance
For this scenario, the same settings as in the previous section were used regarding
antenna placement and signal parameters, see Table B.1. All other parameters
of the signal are also defined the same as in Subsection B.6.1. In this scenario,
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Figure B.3: Scenario 6.2: Results for synthetic scenario for clusters of size N=2
with fixed distance in a circle around node l′

1110 pairs of nodes were simulated, where for every node l′ a new realisation
of the channel was drawn at the position pl′ being the same as in the previous
scenario, and for the corresponding node l = 2 another realisation of the channel
was drawn at a position p2 = pl′ + [dr cosφr, dr sinφr, 0]

T , where the distance dr
was evaluated at 4 distances from 0.1m to 2m, and the angle φr was drawn from
a uniform random distribution with φr ∼ [0, 2π). This is visualized as concentric
circles in Figure B.2.

As can be seen in Figure B.3, the PEB Pc omitting the correction factor Λ is
constant over distance, which is not representative for the RMSE for the estimated
position p̂l′ of the first node l′. Correcting for the mean distance ‖pc − pl′‖, one
can see that the performance of the estimator is attaining the biased lower bound
Pl′ . Note that this biased lower bound is not only a linear offset due to geometric
distance, but also incorporates a small information loss by the introduction of the
evaluated correction factor Λ. This simulation shows that the introduction of a
lower bound incorporating a bias between cluster center pc and the position of the
first node pl′ can be replicated in an evaluation of the according RMSE.

B.6.3 Simulated Scenario with Genie Aided Clusters
To further test our algorithm in a more realistic scenario, we simulated a room,
where 1110 nodes are placed on shelves at different heights and positions in a room,
for reference see Figure B.1. The signal parameters were again chosen according to
Table B.1, and parameters Ω1 and αl,m were again scaled according to Equations
(B.31),(B.32), but additionally for each intersection with a shelf of a ray casted
from antenna array position pm to a node position pl distributions of parameters
Ω1 and αl,m are changed according to Table B.2. These values were chosen to
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Figure B.4: Scenario 6.3: Results for synthetic scenario with genie-aided clusters
(minimum distance to node 1)

Table B.2: Change of parameters

Intersections: 0 1 2 3
µ of Ω1 −20dB −10dB 0dB 10dB
σ2 of Ω1 2.16dB 5.30dB 7.15dB 6.40dB
α2

l,m

σ2
l,m,k

at 1m 25dB 21.42dB 19.46dB 19.56dB

represent empirical measurements for this type of shelf done in previous work [37].
Sets L for clusters were chosen in a way to minimize geometric cluster sizes, where
nearest nodes from l′ were selected, assuming side information provided by a genie.
This was done to show a perfect scenario, minimizing other possible unknown
effects to the estimation, and incorporates no model for the RSS, only geometric
distances. As can be seen in Figure B.4, the RMSE almost attains the biased lower
bound in this scenario. This shows that for a perfect selection of nearest nodes, the
estimation of the position pc can be also seen as a good estimate for the position pl′
of the first node in a cluster, improving accuracy significantly with bigger cluster
sizes. As sizes of the clusters are relatively small, the correction factor Λ is almost
negligible for all cluster sizes in this scenario. This can be seen in the lines for the
biased lower bound with Λ = 1 and the biased lower bound with Λ correct being
almost identical.

In Figures B.5a-B.5c the floorplans of the scenario can be seen, where red trian-
gles show the estimated position and cyan crosses show the true position for every
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10-th simulated node, omitting many measurements for better visibility. The true
and estimated positions are connected by a dotted gray line. Similarly to Figure
B.1, anchors are again shown as black squares. In Figure B.5a, many estimated
node positions are outliers. This is due to the multi-modality of the likelihood
for single nodes leading to false positions in the likelihood being dominant. This
can be mitigated mostly by larger cluster sizes N, which can be seen in Figures
B.5b-B.5c, where the position errors improve with larger cluster size N.

B.6.4 Simulated Scenario with RSS-based Clusters
To further show that the clustering approach works for realistic scenarios, the same
simulation as in Subsection B.6.3 was done, but clusters were defined according to
real RSS measurements done in a corresponding measurement scenario. All RSS
measurements between every pair of nodes were known. Clusters were then defined
by sorting the RSS values from the l′-th node to every other node in descending
order, achieving the now measured sets L for every node l′. As these measurements
are noisy and incorporate channel parameters, geometric cluster sizes are bigger
and often biased for example in the direction of an aisle, compared to the genie-
aided clusters in the previous subsection.

Figure B.6 shows the same results as in Figure B.4, but with clusters based
on RSS measurements. The mean bias for pl′ is now significantly larger, leading
to a diminished performance for bigger cluster sizes N . Still, the RMSE mostly
attains the biased lower bound. It should be noted that the correction factor Λ is
now showing a significant offset for larger clusters with the RMSE following the
resulting offset. It can be seen that the effects of the bias for pl′ and the correction
factor Λ dominate over the classical CRLB for large cluster sizes N , meaning that
there is an optimum for the cluster size depending on the scenario.

Figure B.7 again shows a map of the environment as previously seen in Figure
B.5a. Note that the results for single nodes differ, as these evaluations were done
with different realisations for the channel. Now, for larger cluster sizes as seen in
Figures B.7b-B.7c it can be seen that the estimated positions p̂l′ are increasingly
shifted into the aisles. This effect is attributed to the RSS measurements showing
smaller values when the propagation path is through a shelf, which is an expected
behaviour of the channel, biasing our clusters towards the centers of the aisles. As
seen in Figure B.6, the RMSE is lower for clusters of size N = 11 than for clusters
of size N = 25. This can be seen as smaller absolute errors in Figure B.7b than
in Figure B.7c, but for some scenarios it may be preferable to achieve a slightly
larger absolute positioning error in exchange for a more accurate classification of
positions to the right aisle and/or shelf.

B.6.5 Experimental Validation
Figure B.8 shows parts of the measurement setup and room. Here, one can see
the placement of nodes (in this case electronic shelf labels) mounted on industrial
shelves, similar to those found in retail stores. The antennas seen in the picture
correspond to the two upper-left positions for anchors seen in Figure B.1. The
nodes allowed for cooperative RSS measurements inbetween each pair of nodes by
using a proprietary protocol and transmission in the ISM-band at 2.4GHz. The
WB measurements were done according to a protocol described in detail in [4,38].
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To further validate results, we used WB measurement data from a scenario cor-
responding to our simulations. The geometry and number of anchors were the same
as in the simulation scenarios in the previous two subsections, parameters from Ta-
ble B.1 still apply. Corresponding RSS measurement data were also retrieved.
These measurements were done for all 1100 nodes in a timeframe of approximately
24 hours, where most time was used for transmission of the RSS measurement data
to infrastructure. In comparison, a single WB measurement took less than a minute
with additional post-processing. Both genie-aided and RSS data based clustering
approaches were evaluated. As we wanted these evaluations to show the optimal
performance we could achieve in such a scenario, we further incorporated prior
knowledge of the agent positions, restricting all particles to areas within aisles (see
Figure B.1 for reference). This allows us to improve performance by incorporating
knowledge about the room.

In Figure B.9 the results can be seen for the measurement scenario. Note that
the CRLB and biased lower bound are not shown here, as an accurate estima-
tion of these bounds requires appropriate channel parameters, which cannot be
extracted from our measurements well enough. Therefore, one can see that the
performance the clustering approaches corresponds to the two simulation scenarios
seen in Subsections B.6.3 and B.6.4. It can also be seen that for the genie-aided
clustering, the performance is getting better for all cluster sizes in this evaluation,
though we expect the performance to worsen for even larger cluster sizes, as the
bias term will dominate for large clusters. The evaluation using RSS measurement
data again shows an ideal cluster size for the RMSE of N = 11, meaning that for
real-world scenarios using the RSS-based clustering approach there is no need for
more computationally intensive, larger cluster sizes. For reference, the RMSE is
also plotted for an evaluation using RSS measurements, which does not incorporate
a prior in the aisles. This evaluation was done with the same number of particles,
as these proved to be still sufficient. Here we see that the estimation performance
is worse over all cluster sizes, justifying the initialisation within aisles. As a side
note, an evaluation with non-fixed cluster sizes, where clusters were determined
by RSS-thresholds was also done. Over a wide range of thresholds, this did not
improve results.

As seen in Figure B.10a, comparable to the synthetic scenarios, the estimation
errors for non-clustered processing are rather large. Some effects of the geometry
are more pronounced, which can be seen for example in the left-most nodes at
x ≈ 6m, y ≈ 9m, being estimated very accurately in comparison to most other
nodes. As these nodes are in the direct vicinity of an antenna-array, there is a
pronounced LoS-component and a good SNR for WB-measurements. Also, the
effects of the initialisation within possible aisles already leads to better results for
the non-clustered case.

Looking at Figure B.10b, we again can see a significant performance improve-
ment for the clustering algorithm using RSS-based clusters. It is worth noting that,
again, the estimated positions p̂l′ are increasingly shifted to within centers of aisles,
which again can be contributed to RSS-measurements giving stronger indications
for links with LoS conditions, which often happen to be on the opposite side of
aisles for our scenario.

Figure B.11 shows a plot for the cumulative frequency (CF) of the error ‖p̂c −
pl′‖ for both genie-aided and RSS-based clustering approaches. It can be seen that
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especially outliers can be minimized by the clustering approaches compared to the
non-clustered (N = 1) case. It should be noted that the genie-aided approach
clearly outperforms the RSS-based method, but for the minimization of outliers (>
2m) both methods are almost equal when using cluster sizes N ≥ 11. Furthermore,
one can see that the performance of the RSS-based clusters is worse for very small
errors (< 0.2m) than for a non-clustered approach. This can be attributed to the
bias-term being dominant, as RSS-measurements to nodes on the other side of an
aisle were often dominating, even in small cluster sizes.
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Figure B.5: Scenario 6.3: Floorplans with results for synthetic scenario with genie-
aided clusters (showing only every 10-th processed node for better visibility)
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Figure B.7: Scenario 6.4: Floorplans with results for synthetic scenario with RSS-
based clusters (showing only every 10-th processed node for better visibility)
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(a) Red ellipse marking one agent node (b) Red ellipse marking the access point
antenna for controlling the agent nodes

(c) Red ellipse marking one linear
2-antenna array

(d) Red ellipse marking the PC for
measurement processing

Figure B.8: Scenario 6.4 and 6.5: Pictures of the measurement setup and room
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Figure B.10: Scenario 6.5: Floorplans with results from measurements with RSS-
based clusters (showing only every 10-th processed node for better visibility)
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B.7 Conclusion
This paper investigates an indoor position system that is capable of fusing WB
ToF measurements and cooperative RSS measurements from a cluster of nodes
located in close proximity of one another. We derive a lower bound on the position
error for this setup to understand the scaling behavior and performance limits. We
also formulate an approximated maximum likelihood algorithm for the setup and
analyze the performance with synthetic data and real-world measurement data.

Our proposed approach demonstrates a performance gain of one node for a
non-clustered approach being around 2m to the performance of an RSS-clustered
approach being around 1m in our measurement scenario. Synthetic scenarios show
that our RMSE can approach the derived biased lower bound, incorporating a
correction factor that accounts for the precise scaling of delay information in case
of clustering.

Also, an efficient implementation has been developed for our algorithm, based
on an iterative implementation of a maximum likelihood estimator. Overall, we
were able to show that the introduced approach mitigates mutual problems of
both measurement methods, improving localization performance by incorporating
information which can be processed jointly.

Results for the fusion of multiple measurement methods like the ones evaluated
show that this is a promising field for future research, and further work should
be done to incorporate other measurement methods and additional information to
improve upon the principle findings of this paper. Future work for the presented
method will focus on a fully Bayesian implementation supporting joint cooperative
positioning based on both measurement types, directly incorporating the informa-
tion content of RSS measurements into a joint algorithm.

B.8 Appendix: Derivation of EFIM
For ease of notation, indices l and m are omitted here without loss of general-
ity, but these derivations apply for a single anchor m and node l. To derive
position error bounds, we first derive a FIM for a spherical parameter vector
ψ = [φ, ϑ, τ,Rα, Iα]T with nuissance parameter α ∈ C, as

Jψ =

[
A B
BT D

]
∈ R5×5. (B.33)

The block matrices are defined similar to [16] as

A =

Jφφ 0 0
0 Jϑϑ 0
0 0 Jττ


B =

 0 0
0 0

JτRα JτIα


D =

[
JRαRα 0

0 JIαIα

]
.

(B.34)
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The FIs between the parameters in the according subscript are denoted as Jφφ,
Jϑϑ,Jττ , JτRα, JτIα, JRαRα, JIαIα. Note that the transmit time εl is also omitted,
as for TDoA-positioning an unknown transmit time has negligible influence [39],
given an appropriate geometry of anchor nodes. To gain further insight, we use
the EFIM [Jψ′ ]−1

3x3 for the parameter vector ψ′ = [φ, ϑ, τ ]T by using the Schur
complement on (B.33)

[Jψ′
−1]3×3 = (A−BD−1BT )−1 =

Jφ 0 0
0 Jϑ 0
0 0 Jτ

−1

, (B.35)

where Jφ, Jϑ, and Jτ are the respective FI terms for the parameters. Due to the
structure of the block matrices A, B and D, the EFIM [J−1

ψ′ ]3×3 is a diagonal
matrix, illustrating that range and angle information components are independent.
To derive a CRLB for positioning, a transformation of the EFIM from the spherical
parameter vector to a cartesian parameter vector p = [x, y, z]T is necessary. For
this, the corresponding FIM for the parameter vector p can be computed by

Jp = TJψ′T T , (B.36)

with T being the Jacobian matrix for transformation of spherical to cartesian
coordinates incorporating partial derivatives of p with respect to ψ′

T =
∂pT

∂ψ′ =


∂x
∂φ

∂x
∂ϑ

∂x
∂τ

∂y
∂φ

∂y
∂ϑ

∂y
∂τ

∂z
∂φ

∂z
∂ϑ

∂z
∂τ

 =

− sinφ sinϑ
τc

cosφ cosϑ
τc

sinφ cosϑl,m

c
sinφ cosϑ

τc
cosφ sinϑ

τc
sinφ sinϑ

c

0 − sinφ
τc

cosφ
c

 ∈ R3×3,

(B.37)
where c denotes the speed of light.

B.9 Appendix: Derivation of the ranging error
bound (REB) and correction Factor Λ

B.9.1 Ranging Error Bound
The REB is derived from the likelihood function (B.7). To account for the DMC,
an signal-to-interference-plus-noise-ratio (SINR) is introduced, which quantifies the
reduction of the SNR due to the interfering DM [16, 39]. With this, we can define
the EFI (which is the equivalent information neglecting nuisance parameters) for
the delay τl,m for a single node as [16,39]

Jτl,m = 8π2β2S̃INRτmK, (B.38)

where β2 is the mean-squared bandwidth [40], which is defined as β2 =
‖ṡ‖2/

(
4π2‖s‖2

)
=
∫
f
f2|S(f)|2df for the normalized pulse ‖s‖2Ts = 1, ṡ being the

derivative of the sampled pulse with respect to the delay τ , and f is the frequency
in the Fourier-domain, [S̃INRτ ]m is the SINR for anchor m, and K is the
number of antennas at anchor m. Additional parameters and further definitions
are described in previous work (see Appendix A in [16] or [12]). With this, the
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contribution of delay measurements to the FIM for measurements in-between
multiple anchors and all nodes of a cluster can be written as

J (τ)
pc

=

M∑
m=1

∑
l∈L

Λ
8π2

c2
β2[S̃INRτ ]m K Rr(φl,m, ϑl,m), (B.39)

where Rr(φl,m, ϑl,m) is the previously mentioned RDM and Λ is the correction
factor discussed in the following subsection. As argued in Section B.5, an upper
bound on this component is used in (B.25).

B.9.2 Correction factor Λ

As the delays τm(pl) of each node in the cluster are in the vicinity of the delay
τm(pc), we can assume that τm(pl) ≈ τm(pc) ∀l ∈ L. Still, small offsets remain.
To address this, we introduce an equivalent log-likelihood of Equation (B.12) as

ln f(r | τm(pc), ε,η,α) = ln f(rc | τm(pc),α), (B.40)

with the assumption of parameters ε being estimated correctly and omitting pa-
rameters η of the DMC. The vector rc is a summed and weighted receive signal
defined as

rc =
∑
l∈L

c∗l rl, (B.41)

with c∗l being complex conjugate weights that are introduced to maximize the SNR
for rc. The vector rl is the received signal from Equation (B.3), omitting indices
m and k for the sake of easier notation. We now define a summed and weighted
received signal without noise as

r(s)c =
∑
l∈L

c∗l s(τ(pl))αl,m ≈ s(τ(pl))cHα, (B.42)

with c = [cl]
T ∀l ∈ L being a stacked version of all weights within a cluster, where

we assume the delays to be approximately equal for all l ∈ L. Furthermore, we
introduce a weighted noise vector r(n)c =

∑
l∈L c∗lww, again omitting indices m, k

for easier notation. From this, we can define an SNR of this mean weighted signal
as

SNRc =
‖r(s)c ‖2

E{‖r(n)c ‖2}
≈ ‖s(τl,m)‖2 |cHα|2

Ns σ2
n ‖c‖2

. (B.43)

Maximizing this SNR, we get

SNRmax
c ≈ ‖s(τ(pc)‖2 ‖α‖2

Ns σ2
l,m,k

, (B.44)

which maximizes the inner product cHα by setting the weights c = α. With this,
we can see that the previous log-likelihood in (B.40) is proportional to

ln f(rc | τl(pc),α) ∝ ‖rc −
∑
l∈L

‖αl‖2s(τl,m)‖2. (B.45)
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We can then express
∑
l∈L ‖αl‖2s(τl,m) = sc, which is a weighted summed base-

band signal with delays τm(pc). We introduce the Fourier transform of the delayed
signal vector s(τl) as S(τl, f) = S(f)e−j2πfτl . With this, we can write the squared
sum of time derivative of sc as

‖ṡc‖2 =

∫
f

∣∣∣∣∣∑
l∈L

‖αl‖2S(f)e−j2πfτl
∣∣∣∣∣
2

f2df

=

∫
f

|S(f)|2
∣∣∣∣∣∑
l∈L

‖αl‖2e−j2πfτl
∣∣∣∣∣
2

f2df

=

∫
f

|S(f)|2|Λ(f)|2f2df

(B.46)

where Λ(f) has a low-pass characteristic, reducing the effective bandwidth of S(f).
We denote the effective reduction of bandwidth by the factor Λ as

‖ṡc‖2 = Λ‖ṡ‖2 = Λβ2. (B.47)

This correction factor Λ for the CRLB describing the relative bandwidth loss in
a cluster with Λ ∈ [0, 1], which corresponds to the factor Λ in Equation (B.25).
This factor can also be interpreted as a mean information loss in a cluster due to
mutual information within the clusters. Here β2 is the mean squared bandwidth
of the signal, defined in Appendix B.10.

B.10 Appendix: Derivation the AEB
The angulation error bound (AEB) for a general angle φ representing either azimuth
or elevation, the EFI for the case incorporating DM is approximated by [16]

JAEB(φ) ≈ 8π2SINR M D2
λ(φ), (B.48)

where D2
λ(φ) is the normalized squared array aperture, which is defined as

D2
λ(φ) =

1

M

M∑
m=1

d2m
λ2

sin2(φ− φm), (B.49)

with φm being the angle of array elements relative to the coordinate system per
anchor, and dm is the distance of array elements to the anchor position. With this,
we can define the AEB for azimuth φl,m and elevation ϑl,m as Aφl,m

=
√
J−1
φl,m

and

Aϑl,m
=
√

J−1
ϑl,m

. For the case of clustering, these bounds can then be found to be

Aφm
=
√
[Jφm

]−1 =

√
[
∑
l∈L

Jφl,m
]−1 (B.50)

Aϑm =
√
[Jϑm ]−1 =

√
[
∑
l∈L

Jϑl,m
]−1, (B.51)
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where Jφm
and Jϑm

are the clustered EFIMs for azimuth and elevation respectively.
Note that here no correction factor is required, as the equivalent aperture reduction
is negligible in the case of the AEB due to f2

c � (Λβ2) [16]. Also, over a whole
scenario, it can be assumed that El[φl,m] ≈ 0 and El[ϑl,m] ≈ 0, thus the dependency
on different positions can be assumed to be negligible for the AEB. From this, we
can define an EFI for a multi-anchor clustered case for azimuth and elevation as

J (φ)
pc

≈
M∑
m=1

∑
l∈L

8π2

d2l,m
D2
λ(φl,m)SINRm K Rr(φl,m +

π

2
, ϑl,m), (B.52)

J (ϑ)
pc

≈
M∑
m=1

∑
l∈L

8π2

d2l,m
D2
λ(ϑl,m)SINRm K Rr(φl,m, ϑl,m +

π

2
), (B.53)

with the previously mentioned RDM and an SINR per anchor as SINRm.
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Abstract—This work proposes a novel algorithm for robust cooperative local-
ization using wideband time-difference-of-arrival (TDoA) measurements and in-
formation coupling between nodes. The algorithm leverages a generalized cross-
correlation framework to exploit the similarity of wideband measurements within
the geometric vicinity of nodes. Alternatively, the algorithm uses a computation-
ally efficient method based on perceptual hashing, a signal compression algorithm
adapted from image-processing, which gives a distance-dependent metric between
nodes. The algorithm is embedded within a message-passing framework, enabling
the estimation of the joint-posterior probability density function of all the nodes.
The paper evaluates the localization performance, using both simulated and real
measurements in various challenging scenarios, and compares it with a cooperative
localization method that uses additional received signal strength measurements in-
between nodes. The results demonstrate that the proposed algorithm can achieve
similar or superior localization accuracy, with the same computational complexity
and without the need for additional measurements. The proposed algorithm shows
significant improvement over non-cooperative measurements. It achieves an im-
provement of root-mean-square error from 2.4m to 1.3m for a large-scale scenario
with approximately 1000 nodes, using a signal bandwidth of 80MHz for the TDoA
measurements and six fixed, dual-antenna, anchor nodes.
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C.1 Introduction
The advent of contemporary electronic devices has led to a demand for location-
specific services and applications, with radio-based indoor localization playing a
crucial role. These applications span a wide range of sectors, including retail,
healthcare, tourism, and logistics, among others [1–9].

A necessary condition for this is a sufficiently good accuracy of localization
results. Current systems focus on the estimation of nodes incorporating for example
received signal strength (RSS) measurements from multiple devices to each other,
wideband measurements to infrastructure like access points or base stations or
measurements with higher bandwidths like ultra-wideband (UWB) [7,10–16].

C.1.1 State of the Art
Different measurement methods each have their own strengths and weaknesses,
largely due to the limitations imposed by the technology used [17,18]. For instance,
measurements of RSS values are relatively straightforward to obtain. However, the
amount of information that a single measurement can provide is limited, offer-
ing only minimal positional information. As a result, there is a need for a large
number of independent measurements to enhance the position information to an
acceptable level, which can be realized within a cooperative localization framework.
Additionally, a significant number of fixed “anchor nodes” are required for position
reference [19–24].

On the other hand, time-difference-of-arrival (TDoA) based localization that
uses wideband measurements in the industrial, scientific, and medical (ISM) bands
(e.g. 80MHz at 2.4GHz), can provide much more information with a single mea-
surement, due to higher bandwidth and usage of angular information. However,
this requires additional wideband anchor infrastructure, known as access points
(APs), similar to [5] [13, Ch. 6]. In this scenario, the devices and APs are equipped
with more complex radio chips to transmit and receive higher bandwidth signals.
Performance with these signals is limited due to a high outlier probability, caused
by multipath propagation. Chips that offer even higher bandwidths are becoming
increasingly expensive and power-consuming, making them uneconomical for many
applications.

Other methods use machine learning for localization, for example methods
based on channel state information [25, 26], or support vector regression [27, 28].
Machine learning algorithms need training data to work, which is a major disad-
vantage for these algorithms.

Cooperative localization algorithms [19–24, 29–31] exploit inter-node measure-
ments (also called cooperative measurements) to improve the positioning perfor-
mance of all cooperating nodes. But additional measurements also mean additional
energy consumption, and rely on the hardware being capable to perform such mea-
surements.

Information coupling on the other hand, does not rely on additional measure-
ments. It can be seen as a method to extract inter-node information by assuming
that nodes in the vicinity of each other share some information within their mea-
surements to base stations.

While information coupling for wideband signals has been used in literature
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before [32–35], those studies focused solely on a very small number of nodes and
positioning bounds thereof, demonstrating the need for information coupling algo-
rithms that are able to deal with realistic scenarios and are computationally viable.
Additionally, it should be pointed out that cooperative localization through infor-
mation coupling, either using generalized cross-correlation (GCC) or perceptual
hashing has not been applied in literature before.

C.1.2 Contribution
In this paper, we propose a novel algorithm that leverages information coupling
within wideband TDoA measurements from multiple transmitting nodes. Addi-
tional inter-node information is utilized by a cooperative localization algorithm
implemented with the sum-product-algorithm (SPA). It is extracted by using a
GCC based likelihood function [36], exploiting similarity of amplitudes and chan-
nel statistics within a geometric vicinity of nodes.

Furthermore, we propose an efficient implementation for very large scenarios
using perceptual hashing [37, 38] as a method to compress wideband signals, and
introduce a distance metric describing correlation between the compressed signals.
This algorithm allows for more accurate positioning performance, or, if estimation
performance is already sufficient, it can be used to reduce hardware requirements,
allowing for example less bandwidth or imperfect radio receivers.

The key contributions are:

• A novel approach to incorporate inter-node information in the form of infor-
mation coupling between nodes, using a GCC for cooperative localization.

• A computationally efficient approximation, making use of perceptual hashing
as a metric for the information coupling between nodes.

• A detailed complexity analysis comparing various methods.

• A validation of the efficacy of the proposed algorithm through both simulated
and real-world measurements.

C.1.3 Concept
Figure C.1 provides an illustration of the proposed method, demonstrating the
interaction between two nodes and two anchors. Wideband radio signals are asyn-
chronously transmitted by the agent nodes and recorded by the anchors, one node
at a time. These signals are directly incorporated into a direct positioning (TDoA
and angle of arrival (AoA)-based) localization algorithm. In addition to that,
the method utilizes inter-node information, as illustrated by the cross-correlation
between signals (zl,i). This correlation measure can be substituted with other mea-
sures such as GCC, perceptual hashing or RSS measurements. Perceptual hashing,
in particular, is a measure derived from a compressed representation of signals,
adapted from image processing, where it is utilized to find similar images. Here
this property is used to find similar/correlated signals. This is computationally
much more efficient than GCC and permits much faster computation times. We
define a posterior probability density function (PDF) integrating this cooperative
information, which is approximated using a message-passing (MP) algorithm. It is
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Figure C.1: Concept of wideband cooperation between two agent nodes and two
anchors.
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Figure C.2: Conceptual flow diagram for the proposed algorithm.

important to note that, while Figure C.1 depicts a scenario with a limited number
of nodes for simplicity, this algorithm is designed to accommodate a large number
of nodes, all of which can be compared with each other to evaluate the information
coupling.

Figure C.2 shows a conceptual diagram of the proposed algorithm. After ini-
tialization, a single-node likelihood is calculated, using wideband data from agents
to multi-antenna anchors. The resulting distribution is then fed into the cooper-
ative localization algorithm, using either likelihood functions for GCC, perceptual
hashing, or RSS. When the cooperative localization algorithm is converged, the
position estimates for all nodes are saved.

Notation

Column vectors are denoted by lowercase and matrices by uppercase bold letters.
The PDF of a random variable is denoted as f(x). For any vector x, we denote the
transpose as xT , the Hermitian transpose as xH , the complex conjugate as x∗, the
vector of absolute values as |x|, the argument as ∠x, the Euclidean norm as ‖x‖
and the expectation operator as E[x]. Calligraphic notation L denotes a set; other
usages of calligraphic fonts are described at their first occurrence. The discrete
Fourier transform of a vector is denoted as F (x). [X]N×N is the upper left N ×N
subblock of a matrix. [X]n,m denotes the n,m-th element of a matrix, and [x]n



C.2. SIGNAL MODELS 101

denotes the n-th element of a vector. Big-O notation for complexity analysis is
denoted as O(x). A table of nomenclature can be found at the end of the paper in
Table C.5.

C.2 Signal Models
This section defines the signal models for wideband and RSS measurements, as
used in this work.

C.2.1 Wideband Signal Model
The wideband signal model is similar to [39–41]. The system configuration com-
prises L transmitting nodes at coordinates pl = [pl,x, pl,y, pl,z]

T ∈ R3 for l ∈
{1, . . . , L}, and receiving antennas at positions qm,k ∈ R3 for m ∈ {1, . . . ,M}
and k ∈ {1, . . . ,K}. The indices k and m denote the antennas within each anchor
and the anchors, respectively.

The radio channel between the transmitting node l and the receiving antenna
k of anchor m is given by

hl,m,k(t;pl) = αl,m,kδ (t− τ(pl, qm,k)) + νl,m,k(t), (C.1)

with propagation delay τ(pl, qm,k) = 1
c ‖pl − qm,k‖, the speed of light c, and the

complex amplitude αl,m of the received line-of-sight (LoS) signal from node l to
anchor m, assuming one complex amplitude per anchor, consisting of multiple an-
tennas. Position-dependent phase shifts between antennas are described later. The
dense multipath component (DMC) νl,m,k(t) is described by a zero-mean complex
Gaussian random process. Assuming uncorrelated scattering, this is modeled by
the auto-correlation function

E
[
νl,m,k(t)ν

∗
l′,m′,k′ (t

′)
]
= Sν (t− τ(pl, qm), η̃l,m) δ (t− t′)

δ [l − l′] δ [m−m′] δ [k − k′] ,
(C.2)

where τ(pl, qm) = 1
c (‖pl − qm‖) is a mean delay per anchor m, with qm being

the mean antenna position per anchor m. We introduce the delay power spectrum
(DPS) Sν(t; η̃) similar to [18,42] as

Sν(t; η̃) = Ω1
γf + γr
γf 2

e−t/γf (1− e−t/γr )u(t), (C.3)

where η̃ = [Ω1, γf , γr]
T corresponds to the normalized power of the DMC Ω1, the

fall time γf , and the rise time γr. The step function u(t) is defined as 1∀t ≥ t, and
0 otherwise.

Assuming each node l transmits a baseband signal s(t) at frequency fc, the
received signal at anchor m and antenna k is

rl,m,k(t) =α̃l,m,ks(t− τ(pl, qm,k)− εl)

+

∫
s(t− λ)νl,m,k(λ+ εl)dλ+ wl,m,k(t),

(C.4)
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with a complex amplitude α̃l,m,k = αl,me−j2πfc(τ(pl,qm,k)+εl) that accounts for the
phase shift at antenna k with respect to the joint amplitude αl,m at array antenna
m, εl is the transmit time of node l, and wl,m,k(t) is additive white Gaussian noise
(AWGN) with double-sided power spectral density (PSD) N0/2. The sampled and
stacked received signals are described as

rl,m = s(pl, qm, εl)αl,m + wl,m ∈ CNsK×1, (C.5)

where rl,m =
[
rTl,m,1, . . . , rTl,m,K

]T
stacks the received signals of K antennas at

anchor m. The noise vector wl,m describes the DMC and AWGN. The baseband
signal vector in (C.5) accounts for the phase shifts at the array antennas,

s(pl, qm, εl) = [e−j2πfc(τ(pl,qm,1)+εl)s̃(τ(pl, qm) + εl)
T , . . . ,

e−j2πfc(τ(pl,qm,K)+εl)s̃(τ(pl, qm) + εl)
T ]T

(C.6)

where

s̃(t) ∈ CNs×1 = [s(−t), s(−t+ Ts), . . . ,

s(−t+ (Ns − 1)Ts)]
T

(C.7)

is a sampled version of s(t) with Ts being the sampling time interval. This rep-
resents a wideband phased-array signal model with identical envelopes and phase
shifts, which allow us to exploit AoA information.

The covariance matrix Cl,m characterizes the noise vector wl,m, representing
AWGN and DMC. We define Cl,m as a block diagonal matrix composed of the
matrices [Cl,m]k for each antenna k of anchor m. This k-th matrix is defined as
[Cl,m]k = [Cl,mν ]k + [Cl,mw ]k ∈ CNs×Ns , with [Cl,mw ]k = σ2

l,mI, where I is the identity
matrix of according dimensions, and noise variance σ2

l,m = N0/Ts. The covariance
for the DMC is[

Cl,mν
]
k
=

∫
Sν (λ− τ(pl, qm)− εl; η̃l,m) s̃(λ)s̃(λ)Hdλ. (C.8)

C.2.2 RSS Signal Model
The distance between two nodes l and i is denoted as dl,i = ‖pl − pi‖. Assuming
the measurements adhere to a log-distance dependent model [11] [43, Sec. 9.2], the
path loss L(pl,pi, P, ρ) between nodes l and i is expressed as

L(pl,pi, P, ρ) = P − ρ 10 log (||pl − pi||/d0) , (C.9)

where P is the reference path-loss at a distance d0, and ρ is the path-loss exponent
[20]. The received RSS value zRSS

l,i between nodes l and i is then given by

zRSS
l,i = L(pl,pi, P, ρ) + wl,i, (C.10)

with wl,i being the noise term, assumed to follow a Gaussian distribution N ∼
(0, σ2).
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C.3 System model
In this section, we describe the posterior PDF, the single-node likelihood and the
inter-node likelihoods.

C.3.1 Posterior PDF
We factorize the joint posterior PDF of all nodes l as follows:

f(θ | r, z) ∝ f(q)
∏
l∈L

f(pl)f(rl | pl, q)

×
∏
i∈Cl

f(zl,i | pl,pi).
(C.11)

The stacked measurement vector is denoted by r = [rT1 , . . . , rTL]T , with

rl =
[
rTl,1, . . . , rTl,M

]T
, z stacks zl,i∀l, i and represents cooperative measure-

ment data, θ = [pT1 , . . . , pTL]T is a stacked vector of all position parameters of
according length, and q = [qT1 , . . . qTM ]T represents a stacked vector of all anchor
positions. We define the full set of nodes by L = {1, . . . , L} and subsets Cl ⊆ L,
which define the nodes for which cooperative measurements are incorporated with
regard to node l. The term cooperative measurements refers to the interchangeable
measurements zl,i, and is also used for measures like GCC and perceptual hashing,
which are not measured directly, but rather computed from the measurements rl
and ri as described below. The geometric prior f(pl) restricts the evaluation of
nodes to plausible positions within a room, f(q) defines the anchor positions. The
third term in the equation corresponds to the single-node likelihood described
in Section C.3.2. The fourth term represents a cooperative likelihood. It is
interchangeable, and we will present three different variants in Section C.3.3. It
should be noted that we assume the single-node likelihood to be independent of
the cooperative likelihoods. This is not entirely true, as we use the same sets of
measurements for the single-node likelihood, and GCC and perceptual hashing
respectively. For practical reasons, these dependencies are neglected, but could be
taken into account in future work.

C.3.2 Single-node likelihood
Assuming the signal model in Section C.2.1, the likelihood function for a single
node is given as

f(rl | pl, q, εl,ηl,αl) =
M∏
m=1

f(rl,m | pl, qm, εl,ηl,m, αl,m), (C.12)

which assumes independence of the DMC and AWGN between anchors, where the
single-node, multi-antenna likelihood function is given as

f(rl,m | pl, qm, εl,ηl,m, αl,m) =

e−(rl,m−s(pl,qm,εl)αl,m)H(Cl,m)−1(rl,m−s(pl,qm,εl)αl,m)

πNsK det(Cl,m)
,

(C.13)
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with parameter vector ηl,m =
[
σ2
l,m, η̃Tl,m

]T
. Assuming the transmit time εl is

independent, the likelihood factorizes into

f(rl, εl | pl, q,ηl,αl) = f(εl)f(rl | pl, q, εl,ηl,αl), (C.14)

where f(εl) is the prior for the parameter εl. Given εl as a nuisance parameter, we
define the marginal as

f(rl | pl, q,ηl,αl) =
∫

f(rl, εl | pl, q,ηl,αl) dεl, (C.15)

representing the single-node likelihood, removing the nuisance parameter
εl and thus exploiting TDoA information inbetween anchors. 1 Here,
αl = [αl,1, . . . , αl,M ]

T , and ηl =
[
ηl,1

T , . . . ,ηl,M
T
]T are LoS amplitudes,

and noise parameters respectively.
For computational efficiency we neglect the influence of the DMC within the

estimation (but not for simulations and channel modeling), assuming that the co-
variance matrix Cl,m is diagonal. This corresponds to an estimation of the strongest
component only, resulting in a simplified likelihood

f(rl | pl, q,σ2
l ,αl) =

∫
f(rl, εl | pl, q,σ2

l ,αl) dεl, (C.16)

with the stacked noise variances σ2
l = [σ2

l,1
T
, . . . , σ2

l,M
T
]T . This can be simplified

further, by incorporating the least-squares solutions for σ2
l and αl as described

in [44], resulting in

f(rl | pl, q) =
∫

f(rl, εl | pl, q) dεl. (C.17)

C.3.3 Likelihoods for inter-node coupling
Here we define the likelihoods for the inter-node coupling, meaning likelihoods be-
tween arbitrary nodes l and i within the full set of nodes L. Note that the words
“cooperative” or “cooperating” are used for inter-node information coupling from
here on, as their usage within algorithms is very similar to cooperative measure-
ments.

GCC-PHAT

The first inter-node likelihood is defined by a GCC between two signals rl and ri
with the phase transform (PHAT) assumption [36]. This inter-node likelihood does
not rely on separate measurements, but on information coupling. We introduce a
Fourier-transformed version of rl,m,k as Rl,m,k = F (rl,m,k) which is the frequency
response of the signal. With this, we define a time-shifted version as

[R̃l,m,k]n = e−jωnτl [Rl,m,k]n (C.18)
1For two anchors in 2D, this function describes the well-known hyperbola of possible node

locations with TDoA.
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where the frequencies of the baseband signal are ωn = (2π n
N − π)B, with B de-

noting the baseband bandwidth of the signal, a delay τl = τ(pl, qm) + εl and
n = [0, . . . , Ns − 1]T being a sample index. We can then define a cross power
spectral density for the PHAT between nodes l and i as

[l,i,m,k]n =
[R̃i,m,k]n[R̃l,m,k]

∗
n

|[R̃l,m,k]n[R̃i,m,k]∗n|
, (C.19)

which relates to the differences of the arguments of the frequency responses
[R̃l,m,k]n and [R̃i,m,k]n. The log-likelihood for GCC with the PHAT assumption
can then be expressed as

log f(zGCC
l,i | pl,pi, εl, εi) ∝ − 1

Ns

K∑
k=1

M∑
m=1

Ns−1∑
n=0

[l,i,m,k]n, (C.20)

which is based on the assumption that the noise is uncorrelated between antennas.
This has been shown to be a log-likelihood function by [36,45]. Its behaviour is illus-
trated below. The measurement vector for the GCC is defined as zGCC

l,i = [rTl , rTi ]T .
Similar to (C.14), we assume that the transmit times εl and εi are independent.
As seen in the single-node likelihood, we marginalize over the parameters εl and
εi, and define the marginal for GCC as

f(zGCC
l,i | pl,pi) =∫ ∫

f(εl)f(εi)f(zGCC
l,i | pl,pi, εl, εi)dεidεl,

(C.21)

where f(εl) and f(εi) are the priors for the parameters εl and εi respectively. The
PHAT assumption, while not strictly necessary, improves the estimation for prac-
tical cases. This is similar to acoustic applications, as seen in [36,46,47] and can be
explained by the similarity of reverb in acoustics to DMC in radio-based channels.
Both are dependent on the room geometry, but the channel statistics are similar for
close-by nodes. I.e. we can assume that Cl,mν ≈ Ci,mν . This is depicted in Figures
C.3a.i and C.3a.ii. Figure C.3a.i shows the unwrapped argument of the cross power
spectral density [l,i,m,k]n for measurements of two nodes l and i to one anchor with
one antenna for correct and incorrect estimation of εl and εi. The measurement
scenario corresponds to the mid-scale measurement scenario detailed in Section
C.5. Figure C.3a.i illustrates that when the frequency responses of R̃l,m,k,n and
R̃i,m,k,n are similar (i.e. the nodes are in proximity, here they are spaced by 0.2m),
and the parameters εl and εi are estimated correctly, the argument of [l,i,m,k]n is
near zero, and the value of the likelihood is maximized. The left-over noise results
mostly from AWGN, which illustrates that Cl,mν ≈ Ci,mν . When a parameter is
estimated incorrectly, a trend in one direction remains in the unwrapped phase,
which results in a lower value for the likelihood. Figure C.3a.ii shows the same plot
for two nodes l and i which are spaced farther apart (in this case approximately
6m), which results in different channel statistics (Cl,mν 6= Ci,mν ). When this is the
case, the unwrapped argument of [l,i,m,k]n behaves similarly to a random-walk,
independent of correct estimation of transmission times. This is due to noise in
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the phase being also influenced by the dense multipath (DM), which leads to more
phase noise in general. As correlation between the two signals is overall very low,
both unwrapped arguments, for correct and incorrect estimation of transmission
times, look similar, as in-phase noise is dominant. Figure C.3b.i and Figure C.3b.ii
show the corresponding magnitude frequency responses of the evaluated nodes.
Smoothing (moving average) in the frequency-domain was applied for 20 bins, as
to better show the overall shape of the frequency response, and suppress noise.
This illustrates the similarity of frequency responses for nodes near each other for
signals from the same antennas. For higher distances, no clear correlation between
frequency responses can be seen. Furthermore, Figure C.3c.i and C.3c.ii show the
corresponding log-likelihoods between the same nodes, evaluated over the differ-
ence of transmission times εl − εi, incorporating measurements from 12 antennas.
The black and red lines in the plot correspond to the correctly estimated and in-
correctly estimated εl and εi in Figure C.3a.i and Figure C.3a.ii respectively. This
illustrates a higher likelihood for nodes within a vicinity, and shows a high degree
of multi-modality, due to reflections of the signals in a room. The second likelihood
is less informative, but still shows some (altough much smaller) correlation at the
correct difference of transmission times.

Figure C.4 shows the marginalized log-likelihood for GCC over distance in a
typical scenario. This illustrates that measurements from nodes in a vicinity cor-
relate with each other, but there are diminishing effects at larger distances. The
illustrated behaviour shows that GCC is very informative for smaller distances, but
increasingly uninformative for larger distances. RSS as a measurement method has
diminishing performance gains for larger numbers of cooperating nodes Nc. This
can be also be seen for perceptual hashing and GCC.

Perceptual Hashing likelihood

Perceptual hashing yields an efficient approximation of GCC. We define a mea-
surement matrix for each node l as Xl = [rl,1, . . . rl,M ]T . We then compute
XDCT = DCTII(Xl), where DCTII denotes the type II discrete cosine transform.
To focus on lower frequencies of the DCT, filtering high-frequency features consist-
ing mostly of noise, we define a reduced version Xred

DCT = [XDCT]ND×ND , where ND
defines a cutoff for the used frequency bins of the DCT. We also define the average
value of the reduced DCT as κDCT being the mean of all elements of Xred

DCT. We
apply an element-wise threshold function as follows:

[Xthr]n,m =

{
0 [Xred

DCT]n,m ≤ κDCT

1 [Xred
DCT]n,m > κDCT

. (C.22)

The vectorized binary representation of the matrix Xthr is denoted by zPH(rl). We
then define a similarity measure between nodes l and i as

zPH
l,i = N2

D −H(zPH(rl), zPH(ri))/N2
D, (C.23)

where H(zPH(rl), zPH(ri)) is the Hamming distance between two hashes. This
measure is bounded by zPH

l,i ∈ [0, 1], with larger values indicating greater similarity
between signals. It equates to a normalized Hamming distance between two percep-
tual hashes and behaves according to a distance-dependent model in a Euclidean
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sense. The normalization is not strictly necessary, but allows the similarity mea-
sure to behave like a statistical distance (i.e. Hellinger distance, Jensen-Shannon
divergence). Figure C.5 illustrates the distance-dependent difference, zPH

l,i , between
perceptual hashes of two nodes l and i. Assuming this follows a saturated log-
distance-dependent linear model, we express the likelihood for perceptual hashing
as

f(zPH
l,i | pl,pi) =

1√
2πσ2

exp
−(zPH

l,i − z̃PH
l,i )

2

2σ2
, (C.24)

with
z̃PH
l,i = P − ρ10 log ((dl,i/d0) + χ) , (C.25)

where P and ρ are used similarly to (C.9), and χ is a parameter describing a
saturation effect for small values. This is due to a characteristic of perceptual
hashing: similar measurement matrices can lead to similarity measures being 1.
For further dissimilarity, the behavior is similar to a log-normal pathloss model,
as the differences in the measurement matrices are also log-distance-dependent on
the mean signal energy.

A saturation effect at a value of 1 signifies identical hashes, showing a limi-
tation of perceptual hashing in distinguishing highly similar signals. The figure
includes two fitted functions: a saturated log-distance fit (refer to (C.25)) and a
non-saturated variant with χ = 0. The saturated log-distance fit demonstrated su-
perior results across all evaluated scenarios, thus it was exclusively used for further
evaluations. To verify this, we used the odds ratio [48,49] between two models M1

and M2 for our measurements as

OM1,M2
=

f(M1 | zPH
l,i )

f(M2 | zPH
l,i )

=
f(M1)

f(M2)

f(zPH
l,i | M1)

f(zPH
l,i | M2)

(C.26)

which favours model M1 over M2 if OM1,M2
> 1. By using marginalization, we can

rewrite the likelihood given model M as

f(zPH
l,i | M) =

∫
f(zPH

l,i | µM ,M)f(µM )dµM , (C.27)

where f(µM ) is the prior PDF for the model parameters of model M . Assuming
a flat prior in the region of interest, we can approximate this integral using the
Bayesian information criterion, as described in [50]. This leads to

ln f(zPH
l,i | M) ≈ ln f(zPH

l,i | µ̂M ,M)− NµM

2
lnNz, (C.28)

where Nz is the number of measurements, and NµM
is the number of free model

parameters. To estimate the parameters µ̂M , we used a least squares fit on the
likelihood f(zPH

l,i | M), with M being either a saturated log-linear (M1) or non-
saturated log-linear (M2) model. We verified this for all scenarios, which typically
showed an odds ratio OM1,M2

of at least 1.7, favoring the saturated fit.

RSS-dependent likelihood

The inter-node likelihood for RSS depends on separate RSS measurements and is
used as a comparison for the other two methods. This is a cooperative likelihood,
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as nodes have to directly cooperate with each other. The cooperative likelihood
for the RSS case can be expressed as:

f(zRSS
l,i | pl,pi) =

1√
2πσ2

exp
−(zRSS

l,i − z̃RSS
l,i )2

2σ2
, (C.29)

where z̃RSS
l,i is defined as:

z̃RSS
l,i = L(pl,pi, P, ρ). (C.30)

In this context, z̃RSS
l,i represents the log-distance-dependent model discussed in

Section C.2.2.
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(c) Log-likelihoods between two nodes over εl − εi, real measurements, 12 antennas.
Same scaling, for illustration purposes. See mid-scale scenario. X-axis scaled by c

(speed of light).

Figure C.3: Different comparisons for GCC. Upper and lower plots use the same
pairs of nodes.
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Figure C.4: Calculated GCC log-likelihood depending on real node positions
(log f(zGCC

l,i | pl,pi)) and normalized to a maximum of zero. Not all links (around
every 300-th) are plotted for better visibility and due to high computational com-
plexity. See large-scale scenario.

10−1 100 101

0.9

0.95

1

Distance in m

z
P

H
l,
i

Log-linear fit Saturated log-linear fit zPH
l,i

Figure C.5: Calculated difference of perceptual hashes between nodes depending
on real distance, large-scale measurement scenario. Additionally plotted are a log-
linear and a saturated log-linear fit. Only every 300-th hash is shown for easier
visualization.
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C.4 Inter-node localization
Inter-node localization algorithms (used in literature mostly as cooperative local-
ization algorithms) yield unbiased and reliable localization results, especially when
a sufficient number of inter-node links are available. This will be further discussed
in the following subsections, where we describe an MP algorithm and analyze its
complexity.

C.4.1 Message Passing Algorithm
For estimation of the posterior PDF, we incorporated an MP algorithm, based
on the SPA, similar to [19–24, 29–31]. In general this is a method to reliably
approximate the posterior PDF described in (C.11), which for example is similar
to [19, Eq. 7]. For details, we refer to the previous work mentioned.

C.4.2 Complexity analysis
The computational complexity of the MP algorithm is primarily determined by
the complexity of the cooperative likelihoods f(zl,i | pl,pi) and the number of
cooperating partners. We denote the number of cooperating partners as Nc for a
single node l and the number of time-steps for marginalization as Nt. It should
be noted that for full cooperation, Nc = L, otherwise Nc < L, with L being the
number of nodes.

The computational complexity of the cooperative RSS-likelihood is O(LNc),
indicating that the complexity scales linearly with the number of cooperating part-
ners Nc for a fixed number of nodes L. The computational complexities of the per-
ceptual hashing and GCC-likelihoods are O(LNcKMNs) and O(LNcKMN2

sNt)
respectively, suggesting that these two likelihoods also depend on the number of
antennas KM , the number of samples per wideband measurement Ns, and the
number of marginalization time-steps Nt (for GCC).

By pre-computing the hashes for each measurement, we can reduce the com-
plexity for perceptual hashing to O(LNcKMNs) ≈ O(LNc), making it comparable
to RSS. In practice, this means that we compute all hashes and similarities be-
tween hashes before evaluating the MP algorithm. We can simplify this, because
the datasets zPH

l,i do not depend on any parameters, but solely on the measured
wideband data. This is not possible for GCC, as the datasets zGCC

l,i depend directly
on positions of nodes and transmit times, in a multi-dimensional fashion.

Figure C.6 illustrates the mean evaluation time for one iteration of the MP
algorithm using three different methods on a typical workstation in our lab. We
vary the number of cooperating partners Nc until all nodes cooperate with each
other, with the number of nodes fixed at L = 96. For each of the 100 realizations
with Nc < L, the cooperating partners are randomly selected. The graph reveals
that the computation times for RSS and perceptual hashing are very similar per
iteration. Although the hashes are precomputed, their computation time is negligi-
ble compared to the MP algorithm. Despite being well-optimized, the computation
time for GCC is significantly larger, highlighting the advantage of perceptual hash-
ing over GCC for large scenarios due to its ability to perform calculations within
practical computation times.
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Figure C.6: Mean evaluation time for different numbers of cooperating nodes Nc,
simulation with L = 96 nodes.

C.5 Experimental Evaluation

We perform four experiments of increasing complexity to evaluate and validate
the proposed algorithm. Initially, we assess a small-scale simulation scenario with
L = 10 nodes, demonstrating the functionality of all three variants of cooperative
likelihoods within the MP algorithm. Subsequently, we execute a mid-scale simu-
lation with L = 96 nodes, where we evaluate the performance dependent on the
number of cooperating nodes. This evaluation is then repeated with real measure-
ments. Finally, we carry out an evaluation on a large-scale measurement campaign
with L = 1078 nodes in an industrial hall.

C.5.1 Common Parameters

For position estimation, we assume a uniform prior distribution within the volume:
4m < x < 21.13m, 7m < y < 15.4m, and 0m < z < 2m. Additionally, we
consider bounds for the unknown transmission time εlb = −30 m

c and εub = 30 m
c .

We discretize the time steps into 31 equally spaced intervals within εlb and εub for
marginalization over ε. This is done for easier evaluation within the algorithms, but
could also be evaluated using particles. We additionally assume prior knowledge
of all anchor positions q. Estimation is done according to the particle-based MP
algorithm described in Section C.4. For RSS measurement simulation, we use
the following parameters: σ = 3.56dB, P = −45dB and ρ = 1.0. Perceptual
hashing is used with ND = 12. The reference distance is d0 = 0.1m for both RSS
and perceptual hashing. The simulation and measurement environment details are
provided prior to the evaluations.

C.5.2 Simulation environment

For evaluation purposes, we developed a simulation for wideband signals within a
room, similar to [39]. For the wideband channel simulation, we scale the signal
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amplitude according to the Friis equation [51]

αl,m = αref

(
λc

4πdl,m

)
, (C.31)

with λc =
c
fc

= c
2.44 GHz , c being the speed of light, αref being a reference amplitude

at 1m and dl,m being the distance between node l and anchor m. The bandwidth
β of all signals is 75.3MHz, matching the measurement bandwidth. The parameter
Ω1 of the DMC at 1m is drawn from an i.i.d. Gaussian random process, and scaled
according to the Friis equation resulting in

[Ω1]l,mdB ∼ N

(
µ, σ2 ×

(
λc

4πdl,m

)2
)
, (C.32)

with the fall and rise time parameters of the DMC fixed at γr = 5 ns and γf = 20 ns,
typical for an indoor scenario [42, 52]. A comprehensive analysis of the Cramér-
Rao lower bound (CRLB) of measurements and a simulation of similar wideband
scenarios without cooperation can be found in [5, 39,53].

C.5.3 Small-scale simulation
The simulation utilizes M = 6 anchors, matching physical positions of the real
measurement scenario. The anchors consist of K = 2 antennas each, spaced 6cm
apart in y-direction, with center of gravity at the anchor positions indicated in
Figure C.7.

We choose the mean normalized energy in the DMC as µ of Ω1 as −20dB, the
variance of the realisations σ2 of Ω1 therein as 2.16dB, and the signal-to-noise ratio
(SNR) α2

l,m

σ2
l,m

at 1m as 25dB.
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Figure C.7: Small-scale: Overview of small-scale simulation scenario with anchors
(red) and area with possible node positions (grey area).

We simulate L = 10 nodes within the grey area shown in Figure C.7. The height
of all simulated nodes is fixed at 1m. We compare a non-cooperative case with
three cooperative likelihoods for the MP algorithm. Model parameters for RSS
and perceptual hashing are assumed to be known from a large number of node
realizations. We use 500 particles. The number of particles was chosen empirically
to give good and reproducible results, larger numbers did not lead to better results.
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Variant: No Coop RSS GCC PHASH
RMSE: 3.48 m 1.71 m 2.52 m 3.03 m

Table C.1: Small-scale: Comparison of root-mean-square error (RMSE) for small-
scale scenario.

Table C.1 shows results for the small-scale scenario. The results show that
the wideband single-node likelihood, which operates without any cooperation, has
the poorest performance. On the other hand, RSS yields the best performance,
likely because these measurements contain the most information. Given the short
distances between nodes in the simulation, RSS improves results quickly, even with
just a small number of cooperating nodes. GCC doesn’t perform as well, which is in
line with expectations, as the additional gain from information coupling is smaller
per measurement, due to relatively strong DMC. Finally, perceptual hashing lags
behind RSS and GCC in these simulations. This is anticipated because perceptual
hashing condenses the information from wideband measurements into a single hash
value, and like GCC, it is also influenced by DMC, unlike the RSS measurements.
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Figure C.8: Small-scale: Comparison of log-posteriors of one realisation and node
for the small-scale scenario. Cut-off for the visualization is at a value of -70,
and normalized to a maximum of 0. Upper left: No Cooperation. Upper right:
Perceptual hashing. Lower left: RSS. Lower right: GCC.

Figure C.8 presents the log-posterior PDFs for a single node for these methods
Without cooperation, the likelihood exhibits a multimodal distribution due to mul-
tipath propagation. The information coupling and cooperative likelihood suppress
incorrect modes, with GCC showing the strongest effect, and perceptual hashing
and RSS being comparable. Plots are normalized to a maximum of 0. This figure,
calculated with 12000 particles and interpolated between them, serves as a concep-
tual example. It should be noted that in this single example GCC looks superior.
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This is due to the right mode dominating results with GCC in this example, which
is not always the case.

C.5.4 Mid-scale simulation and measurement
In this subsection, we assess the performance of a single node l in a mid-scale
scenario against the number of cooperating nodes Nc .

Intersections: 0 1 2 3
µ of Ω1 −15dB −12dB −2dB −8dB
σ2 of Ω1 2.16dB 5.30dB 7.15dB 6.40dB
α2

l,m

σ2
l,m

at 1m 25dB 21.42dB 19.46dB 19.56dB

Table C.2: Simulation: Change of parameters depending on number of intersections
between anchor and node.

For mid and large scale simulations, parameters are scaled according to (geomet-
ric) intersections/obstacles between anchors and nodes. This change of parameters
for the simulation is described in Table C.2, where µ of Ω1 describes the mean of the
signal energy in the DMC, σ2 of Ω1 describes the corresponding variance, and α2

l,m

σ2
l,m

describes the SNR for the amplitude αl,m depending on number of intersections.
Note here that αl,m is implicitly described by α2

l,m

σ2
l,m

.
Figure C.9 depicts a top-view and a corresponding isometric view of the syn-

thetic (and measurement) scenario. Green/blue nodes are used for mid and large-
scale evaluations, black nodes are used only for large-scale evaluations. Anchors
are depicted in red.

We determine the model parameters (P , ρ, χ) for the log-distance saturated
model based on the full set of nodes and the exact node and anchor positions.
However, a well-fitted model can be computed from only a minor percentage of
nodes already [19,31]. This evaluation allows us to compare the performance for a
small number of cooperating nodes within a scenario with a total of L = 96 nodes.
For Nc < L, cooperating nodes are randomly selected once per evaluation. This
implies that the cooperating nodes remain constant for one evaluation with five
iteration steps of the MP algorithm, but vary for new realizations of the channel.
Five iteration steps were sufficient for this evaluation, as the algorithm always
converged within this number of iterations. For this evaluation we use 500 particles.
The number of particles is chosen empirically to give good and reproducible results.
Larger numbers do not lead to better results.

Figure C.10a presents the RMSE performance of the three methods against
the number of cooperating nodes Nc. Additionally the 95% error intervals are
depicted. The GCC method exhibits the best performance in most evaluated cases,
which can be attributed to its higher information content compared to the single
measurements of RSS and the compressed measurements of perceptual hashing.

Although the performance of RSS is comparable to GCC, an offset persists for
larger values of Nc due to the higher uncertainty of RSS. As expected, the perfor-
mance of perceptual hashing is overall inferior due to the lower information content
within the compressed hashes. For full cooperation (Nc = L), the performance does
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(a) Mid-scale simulation: Evaluation of mean RMSE (over realisations) for different
numbers of cooperating nodes Nc for simulated mid-scale scenario with L = 96, 100
realizations of channel simulation and cooperation selection, with corresponding 95%

error intervals.
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(b) Mid-scale measurement: Evaluation of mean RMSE (over realisations) for different
numbers of cooperating nodes Nc for measured mid-scale scenario with L = 93, 100

realizations of cooperation selection
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Figure C.10: Mid-scale simulation and measurement: Evaluations over different
numbers of cooperating nodes Nc.

not attain either the performance of RSS or GCC, but an improvement is still vis-
ible, suggesting further improvements for more nodes and better performance for
larger scenarios when using perceptual hashing.

As previously described, the computational complexity of perceptual hashing
is significantly lower than that of GCC. This suggests that perceptual hashing can
achieve a significant performance gain within approximately the same computation
time as RSS, but without the need for additional measurements. This demonstrates
the ability to directly extract information from the wideband measurements, ex-
ploiting information coupling between nodes.

In addition to the simulated measurements, we conducted real measurements
in an industrial hall with a similar geometry and floorplan as depicted in Figure
C.9. The measurement settings were consistent with those of the simulation. The
nodes facilitated wideband measurements to anchors using a proprietary protocol
and chirp transmission in the ISM-band at 2.4GHz, as described in detail in [5].
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We also retrieved cooperative RSS measurements between nodes.
The node positions are equal to those in the simulation environment, but not

all nodes could be measured, resulting in the inclusion of only 93 nodes in this
evaluation. As in the previous sub-section, model parameters were fitted for known
node positions.

Moreover, not all nodes could obtain RSS measurements from every other node.
Therefore, for RSS measurements, Nc represents the maximum number of allowed
cooperating nodes. This limitation does not significantly limit the overall results,
as less than 10% of RSS measurements were unavailable.

As with previous evaluations, cooperating nodes were selected randomly. How-
ever, in this case, only one set of measurements was evaluated. For this evaluation
we again used 500 particles.

Figure C.10b presents the results for the three different methods. Overall, the
real measurements yield very similar results to the simulation, with almost all re-
sults being in the error intervals seen in Figure C.10a. For the RSS measurements,
we observe a marginally improved gain for a small numbers of cooperating nodes
Nc. This can be attributed to the fact that real RSS measurements are attenuated
when the LoS is blocked. This leads to rightly-confident measurements when LoS
conditions exist between nodes, resulting in enhanced performance even when only
a few LoS measurements are available. This effect is not as pronounced for GCC
and perceptual hashing. Overall, GCC delivers the best performance for full coop-
eration, but shows only minor improvements at Nc > 70. Perceptual hashing yields
the weakest performance of all three methods overall, but shows steady improve-
ment with the number of cooperating nodes Nc, indicating better performance for
larger scenarios, which will be validated in the subsequent subsection. All outliers
for GCC from the error interval seen in Figure C.10a can be reasonably attributed
to small offsets between simulation parameters and real measurements.

C.5.5 Large-scale measurements
To further compare RSS and perceptual hashing, we assess a large-scale scenario
with L = 1078 nodes, using all nodes depicted in Figure C.9. Again these eval-
uations were conducted with different cooperation variants: Synthetic RSS mea-
surements, real RSS measurements, and perceptual hashing based on real wide-
band measurements. Synthetic RSS measurements were generated according to
the model in Section C.2.2 with a variance σ2 = 3.5dB and other parameters
corresponding to the fitted models. It should be noted that synthetic RSS mea-
surements do not incorporate any model for shadowing or multipath propagation.
The log-distance saturated model for perceptual hashing and log-distance model
for RSS were fitted according to known positions. For synthetic RSS and percep-
tual hashing the nodes cooperated fully, i.e. Nc = L. For real RSS measurements
not all links were available, particularly from distant nodes, effectively resulting
in the availability of around 75% of all measurements. Evaluations for GCC were
not conducted for this scenario, due to excessive computational complexity (i.e.,
calculation time) and additional memory constraints. This evaluation utilized 1200
particles, chosen empirically again.

The results in Table C.3 indicate that synthetic RSS measurements yield the
best overall RMSE. This can be attributed to the availability of full cooperation,
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Variant: No Coop RSS (synth.) RSS PHASH
RMSE: 2.41 m 0.96 m 1.21 m 1.33 m

Table C.3: Large-scale: Comparison of RMSE between methods for large-scale
scenario.

and the synthetic RSS model not being affected by multipath propagation. The
performance of measured RSS and perceptual hashing is comparable, with per-
ceptual hashing performing marginally worse. This suggests that for a large-scale
scenario, we can omit additional cooperative measurements like RSS with very sim-
ilar results, by using information coupling from wideband measurements, achieving
far superior results over a non-cooperative evaluation.
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Figure C.11: Large-scale measurement: Evaluation of RMSE for different numbers
of cooperating nodes Nc for measured large-scale scenario with L = 1078. Coop-
eration partners chosen by largest value of either RSS or perceptual hashing.

Figure C.11 shows an evaluation of the RMSE as a function of the number
of cooperating nodes Nc for the large-scale measurements. With consideration of
execution time, we chose the Nc cooperation partners by sorting the values of RSS
and perceptual hashing descending by value, meaning that for any node l we chose
the nodes i for which we measured the strongest links. Both methods show that
for a larger number of cooperations, the RMSE improves. We reason that the
information content of perceptual hashing is smaller per cooperation than for RSS,
but more available links (i.e. full cooperation) leads to a comparable performance.
For a large number of cooperation (i.e. larger than Nc = 400) we can observe
diminishing performance gains for both methods. For both methods, it seems that
performance is worse for full cooperation over slightly less cooperation. This is most
probably only an artifact of the particle-based estimation method, which leads to
slight discrepancies even between realisations with the same measurements.

Figure C.12 shows a cumulative frequency plot of the estimation error for
perceptual hashing with full cooperation (Nc = 1078), with partial cooperation
(Nc = 100, see Figure C.11) and no cooperation as a comparison. It can be seen
that not only the overall estimation error is lower for more cooperation partners
with perceptual hashing, but also the number of outliers is significantly reduced.
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Scenario: No Coop RSS (synth.) RSS GCC PHASH RSS only
Small-scale: 3.48m 1.71m – 2.52m 3.03m –

Mid-scale synthetic 3.34m 1.75m – 1.53m 2.38m –
Mid-scale measured 3.32m – 1.90m 1.46m 2.42m –

Large-scale: 2.41m 0.96m 1.21m – 1.33m 1.12m

Table C.4: (Mean) RMSE result overview for all different scenarios. Most relevant
results are highlighted in boldface.
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Figure C.12: Large-scale measurement: Cumulative frequency of full cooperation
against 100 cooperation partners for perceptual hashing and no cooperation.

C.5.6 Evaluation results overview
This section shows an overview of the evaluations in this paper, and gives an
additional comparison to an existing algorithm using RSS measurements without
wideband measurements.

The results are shown in Table C.4. The additional algorithm for the large-
scale scenario can be seen in the column RSS only. This shows the RMSE for an
alternative cooperative localization algorithm, which needs additional fixed anchor
positions of nodes, see [31, Table 4.1]. This alternative algorithm shows a better
overall localization performance, at the disadvantage that about 10% of node posi-
tions have to be known beforehand. This is not the case for our proposed algorithm,
while still retaining a very comparable performance. Other comparable methods
are not applicable, as machine-learning based methods need training datasets, and
methods based on virtual anchors [41, 54] do not work well for bandwidths where
discrete multipath components cannot be discerned reliably.

C.6 Conclusion
This paper introduces an algorithm that leverages information coupling from mea-
surements across a multitude of nodes. Information coupling exploits mutual infor-
mation from different measurements, for example similar statistical properties. The
proposed algorithm is based on wideband TDoA measurements, where the informa-
tion coupling between nodes is exploited as cooperative information. Two methods
for this are explained in detail, one based on the generalized cross-correlation be-



C.6. CONCLUSION 121

tween wideband measurements of all available nodes, and a simplification based
on perceptual hashing. The latter yields slightly diminished positioning results,
but much faster computation times. Both approaches perform comparable to a
scenario where additional RSS measurements are used as cooperative information.
The solution is presented within an MP framework, enabling the estimation of the
joint-posterior PDF across a large number of nodes.

Previous algorithms that incorporate information coupling between nodes have
been limited to a small number of nodes (10 or less). The algorithm developed in
this paper offers an efficient solution for a larger number of nodes, rendering such
problems manageable.

The algorithm has the potential to enhance the localization performance, par-
ticularly in scenarios involving a large number of low-power and low-end hardware
nodes where single measurements to infrastructure may not provide sufficient qual-
ity.

Overall, this paper proposes a new possibility to improve the localization perfor-
mance of multiple wideband measurements significantly. In a large-scale scenario
with 1078 nodes the performance improves from an RMSE of 2.41m for wide-
band measurements only, to 1.33m using our proposed algorithm with perceptual
hashing. This shows a clear advantage in localization performance, with the only
downside being additional computation time.

While this paper presents significant advancements, there remains room for
future developments. Subsequent work will explore the fusion of multiple mea-
surement methods with the aim of further enhancing performance. Additional
research could also aim at incorporating neural-enhanced cooperative-localization
approaches, as seen for example in [55]. This ongoing research underlines the
potential and versatility of the proposed algorithm.
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Symbol Domain Usage
L N Number of nodes
l {1, . . . , l} Index of node
M N Number of anchors
m {1, . . . ,M} Index of anchor
K N Number of antennas per anchor
k {1, . . . ,K} Antenna index per anchor
Ns N Number of samples per wideband mea-

surement
pl R3 Node position in 3 dimensions
pl,x R Node position in x dimension
pl,y R Node position in y dimension
pl,z R Node position in z dimension

qm,k R3 Antenna position in 3 dimensions
qm R3 Mean anchor position in 3 dimensions
t R Continuous time
c Speed of light

hl,m,k(t;pl) C Receiving channel of l,m, k
αl,m,k C Complex amplitude of l,m, k
τ(x, y) R Propagation delay between position x

and y
νl,m,k(t) C DMC

N0

2 R+ Double sided PSD
Sν(t; η̃) C PDP
η̃ [Ω1, γf , γr]

T Parameters for the PDP
Ω1 R+

0 Normalized energy in the DM
γf R+ Fall time of the PDP
γr R+ Rise time of the PDP
s(t) C Baseband signal
fc R Center frequency

rl,m,k(t) C Received signal at time t from node l and
antenna m, k

wl,m,k(t) C AWGN
α̃l,m,k C Complex amplitude of l,m, k, account-

ing for phase shift between antennas at
anchor

rl,m CNsK×1 Stacked received signals of K antennas at
anchor m

rl,m,k CNs×1 Received signals at anchor m and an-
tenna K

αl,m C Joint complex amplitude of node l at an-
chor m

wl,m CNsK×1 Noise vector describing DMC and
AWGN

εl R Unknown transmit time of node l
s(pl, qm, εl) CNsK×1 Baseband signal vector accounting for

phase shifts at the array antennas
s̃(t) CNs×1 Baseband signal vector for one antenna
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Ts R+ Sampling interval
Cl,m CNsK×NsK Covariance matrix characterizing wl,m

[Cl,m]k CNs×Ns Block of covariance matrix for antenna k
of anchor m

[Cνl,m]k CNs×Ns DMC block of covariance matrix for an-
tenna k of anchor m

[Cw
l,m]k CNs×Ns AWGN block of covariance matrix for

antenna k of anchor m
σ2
l,m R+

0 Noise Variance at anchor m

dl,i R+
0 Distance between two nodes l and i

L(pl,pi, P, ρ) R−
0 Path loss between nodes l and i

d0 R+ Reference distance for path-loss model
P R Reference path loss at distance d0
ρ R path-loss exponent

zRSS
l,i R Received RSS value between nodes l and

i
wl,i R Noise term for RSS
σ2 R Noise variance for RSS
r [rT1 , . . . , rTL]T Stacked wideband measurement vector

for all nodes l

rl
[
rTl,1, . . . , rTl,M

]T
Stacked wideband measurement vector
for all anchors of a single node l

z zl,i∀l, i Stacked cooperative measurement vector
θ [pT1 , . . . , pTL]T Stacked position vector for all nodes l
q [qT1 , . . . qTM ]T Stacked position vector for all anchors m
L {1, . . . , L} Set of all nodes l
Cl Cl ⊆ L Subset of all nodes for which cooperative

measurements are used

ηl,m

[
σ2
l,m, η̃Tl,m

]T
Stacked noise parameter vector for one
node l and anchor m

αl [αl,1, . . . , αl,M ]
T Stacked amplitudes for all antennas and

anchors of node l

ηl
[
ηl,1

T , . . . ,ηl,M
T
]T Stacked noise parameter vector for all

anchors of node l
Rl,m,k F (rl,m,k) Fourier transformed receive vector
ωn R+ Frequencies of the baseband signal
B R+ Baseband bandwidth of signal

l,i,m,k CNs×1 Cross power spectral density between
nodes l and i at one antenna k and an-
chor m

zGCC
l,i [rTl , rTi ]T Measurement vector for GCC for nodes

l and i
Xl [rl,1, . . . rl,M ]T Measurement matrix for perceptual

hashing
XDCT DCTII(Xl) Type two discrete cosine transformed

measurement matrix for perceptual
hashing



124 PAPER C.

Xred
DCT [XDCT]ND×ND Reduced submatrix of XDCT
ND N Number of elements for the cutoff of the

reduced submatrix Xred
DCT

κDCT R+
0 Threshold for perceptual hashing

[Xthr]n,m N Threshold matrix for perceptual hashing
zPH
l,i zPH

l,i ∈ [0, 1] Measurement scalar for perceptual hash-
ing between nodes l and i

OM1,M2 R+
0 Odds ratio between models M1 and M2

µM RNµM Model parameters for model M
µ̂M RNµM Estimated model parameters for model

M
NµM

N+ Number of model parameters for model
M

Nz N+ Number of measurements
z̃RSS
l,i R Log-distance dependent model for RSS
Nc N+ Number of cooperating partners
Nt N+ Number of time-steps for marginaliza-

tion
εlb R Lower bound for the estimation of the

unknown transmit time εl
εub R Upper bound for the estimation of the

unknown transmit time εl
αref R Reference amplitude for wideband simu-

lation
λc

1
fc

Wavelength of the wideband signal
dl,m R+

0 Distance between node l and anchor m

Table C.5: Table of nomenclature
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Abstract—Radio-based position estimation is severely affected by multipath radio
propagation. A sufficiently large signal bandwidth allows for a separation of the
line-of-sight signal component from the multipath components and ensures, there-
fore, accurate positioning. This paper investigates the possibility of combining
multiple, consecutively transmitted subband signals into a combined signal with a
scaled-up effective bandwidth. The Cramér-Rao lower bound (CRLB) is derived
for this time-of-arrival-estimation problem in order to analyze its scaling behavior.
It is found that an overlap of the subband signals in the frequency domain can be
exploited to increase the effective signal bandwidth. However, this method is only
effective in presence of multipath propagation, it does not yield any gain in additive
white Gaussian noise (AWGN) channels without multipath. Theoretical results are
validated by means of computer simulations for chirp-based radio signals.

The financial support by the Austrian Federal Ministry of Labour and Economy, the
National Foundation for Research, Technology and Development and the Christian
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D.1 Introduction

D.1.1 State of the Art
In indoor positioning, larger bandwidths generally allow for better delay estima-
tion due to the neccessity to resolve the line-of-sight signal component from mul-
tipath [1]. However, generation of coherent signals across large bandwidths is
posing a multitude of problems. Practical transceiver chips are often not capable
of generating signals with bandwidths larger than a few MHz [2, 3]. With the de-
sire to use, for example, the entire industrial, scientific, and medical (ISM) band,
some works attempt to transmit multiple frequency-shifted signals, and synthesize
a phase-coherent combined signal by recovering their phase offsets. This enables
some coherence between signals and improves indoor positioning performance.
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D.1.2 Contribution
This work investigates a method to improve delay estimation for indoor position-
ing scenarios by exploiting the information from the dense multipath component
(DMC) in areas of overlapping frequency bands between multiband signals. The
Cramér-Rao lower bound (CRLB) is derived for this estimator to study the effec-
tive bandwidth of this technique. The CRLB is compared to a simulation of the
algorithm, varying the amount of energy in the DMC with respect to the line-of-
sight.

D.1.3 Concept
The concept of the investigated method is demonstrated using simple chirps sig-
nals. Figure D.1 shows a frequency overlap between multiple so-called subchirps,
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Figure D.1: Concept for overlapping multiband subchirps

spanning an overall bandwidth of 80MHz. These subchirps have a different starting
phase, due to the transmitter generating them incoherently [2, 3], but the overall
timing between subchirps is known. To use all information efficiently, this work
shows a way to improve delay estimation performance by exploiting the character-
istic of the dense multipath (DM) being the same for sufficiently short time-periods
within overlapping frequency bands. This works by a two step estimation, where
the phase differences in the overlapping bands are estimated first by a generalized
cross-correlation (GCC), and afterwards a coherent signal model is used to estimate
a joint delay for all subchirps with a maximum likelihood (ML) approach.

Notation

Column vectors are denoted by lowercase and matrices by uppercase bold letters.
The probability density function (PDF) of a random variable is denoted as f(x).
For any vector x, we denote the transpose as xT , the Hermitian transpose as xH ,
the complex conjugate as x∗, the vector of absolute values as |x|, the argument as
∠x, the Euclidean norm as ‖x‖ and the expectation operator as E[x]. Furthermore,
we introduce a trace operator as tr{X} for a matrixX. [X]n,m denotes the n,m-th
element of a matrix, and [x]n denotes the n-th element of a vector. Zero matrices
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are written as 0a × b, where a× b describes the dimension. Diagonal matrices are
notated as diag([x]Ln=l), with indices of the diagonal elements ranging from l to L.

D.2 Signal Model

D.2.1 Chirp-Train Signal
In this section, we explain the model for the chirp-train signal. The overall number
of samples are denoted by M , the number of additonal samples for the DM by L
and the number of samples without DM by N . The instantaneous frequency of the
i-th subchirp with the starting frequency fi and the chirp rate c is expressed as

fi(t) = ct+ fi, (D.1)

with index i = [1, . . . , P ] and P representing the number of subchirps. The in-
stantaneous phase of the i-th subchirp is derived by integrating the instantaneous
frequency with an initial phase φi:

φi(t) = φi + 2π

(
ct2

2
+ fit

)
. (D.2)

The i-th chirp signal is expressed as

si(t) = exp(jφi(t)), (D.3)

with a sampled version of si(t) being

si[n] = exp
(
jφi + j2π

(
c (nTs)

2

2
+ finTs

))
, (D.4)

where the sample index is n = [0, . . . , Nc], with Nc being the length of each sub-
chirp, and Ts being the sampling period. Substituting with a sampling frequency
normalized chirp rate m = cTs leads to

si[n] = xi[n]pi, (D.5)

where
xi[n] = exp(j2πTs

(
mn2

2
+ fin

)
), (D.6)

is the i-th subchirp signal without initial phase shift and pi = exp(jφi) is the i-th
initial phase shift term. For the representation of the chirp train a vector notation
is used. First of all, the chirp signal xi[n] is expressed as

xi =
[
01×(i−1)Nc

, xi[1], . . . , xi[Nc],01×(L+Nc(P−(i−1)))

]T
, (D.7)

such that x =
∑P
i=1 xi. Additionally, L zeros are appended to provide space for a

time-shifting operation. The vector form which contains all phase-shifted subchirps
is given by s =Xp, where X = [x1,x1, . . . ,xP ] is a stacked representation of the
individual vectors from Equation (D.7), and p = [p1, . . . , pP ]

T is a vector which
contains all phase terms. Furthermore, the matrix representation of the chirp train
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vector s where the i-th column contains the phase shifted subchirp xipi is defined
as S = X diag(p) where the diagonal matrix diag(p) has the diagonal entries
[diag(p)]ii = pi.

The sampled time derivative signal of the i-th subchirp can be expressed as

ẋi[n] = j2π(mn+ fi)xi[n], (D.8)

which can be expressed in a matrix notation as ṡ = Ẋp, using the time derivative
matrix Ẋ = [ẋ1, . . . , ẋP ], with the entries of the time derivative vector as

ẋi =
[
01×(i−1)Nc

, ẋi[1], . . . , ẋi[Nc],01×(L+Nc(P−(i−1)))

]T
, (D.9)

to allow the time derivative vector ẋ to be expressed as ẋ =
∑P
i=1 ẋi. The matrix

representation of the derivative chirp train vector ṡ is Ṡ = Ẋ diag(p). The received
signal is then described as

r(t) = αs(t− τ) + (s ∗ ν)(t) + w(t) , (D.10)

where α is the complex amplitude of the signal. The stochastic process ν(t) is
described using the power delay profile Sν(t − τ) and the uncorrelated scattering
assumption [4, 5] where

E[ν(t2)ν∗(t1)] = Sν(t1 − τ)δ(t2 − t1), (D.11)

which means that the process is uncorrelated when t1 6= t2 and therefore ν(t) ∼
CN (0, Sν(t − τ)). Under the assumption that the sampling frequency fs is suffi-
ciently large, Equation (D.10) can be discretized as

r[n] = αs(nTs − τ) + Ts(s ∗ v)[n] + w[n], (D.12)

which can be rewritten into a vector notation as

rpre = αWHP (τ)Ws+ TsS̄ν +w (D.13a)
= αWHP (τ)Ws+ n ∈ CM , (D.13b)

where ν is a realization of the DM process, n is the sum of the two processes,

S̄ = [s̄1, . . . , s̄M ]
T ∈ CM×L, (D.14)

is the convolution matrix with entries

s̄k = [s[k], s[k − 1], . . . , s[k − L]] . (D.15)

where s[k] = 0 for k < 0.
In the case that the phase vector p is unknown, the line-of-sight (LoS) channel

coefficient α simplifies to |α|, leading to

r = |α|WHP (τ)Ws+ n. (D.16)

The noise vector n is distributed according to n ∼ CN (0,Cn). Assuming that
additive white Gaussian noise (AWGN) and the DM are uncorrelated the covariance
matrix Cn can be expressed as

Cn = T 2
s S̄CνS̄

H +
N0

Ts
IM , (D.17)
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with the identity matrix IM of according size. The covariance matrix of the DM
process which contains the power delay profile (PDP) Sν(t) is defined as

Cν = diag
([

Sν(kTs − τ)
]L
k=1

)
. (D.18)

A double-exponential PDP is assumed, defined as

Sν(t− τ) =

{
Ω1

(
1− exp(− t−τ

γr
)
)

exp(− t−τ
γf

) if t ≥ τ

0 otherwise,
(D.19)

where Ω1 is the normalized energy in the DM, describing the energy ratio between
the PDP and the LoS. The parameters γr and γf specify the rise and fall time
respectively. The average energy of the DM components can be obtained as

E
[M−1∑
n=0

|Ts(s ∗ ν)[n]|2
]
= T 2

s

M−1∑
n=0

(ps ∗ Sν)[n], (D.20a)

where ps[n] = |s[n]|2 is the signal power at the sample index n. Assuming that N
is much larger than L such that M ≈ N and ps[n] = 1, Equation (D.20a) can be
approximated as

E
[M−1∑
n=0

|Ts(s ∗ ν)[n]|2
]
≈ T 2

sN

∞∑
k=0

Sν [k]. (D.21)

Using the above assumptions for the chirp train signal and the approximation from
Equation (D.21), we can define an average energy ratio between the LoS and DM
as [6]

KLOS =
|α|2

TsΩ1
, (D.22a)

with the energy normalization factor of the PDP

Ω1 =
∞∑
k=0

Sν [k]Ts. (D.23)

D.2.2 Maximum likelihood estimator
A ML estimator for the delay of the signal neglecting information from overlaps
can be found as [5, 7]

f1(r | τ,p, |α|) ∝ exp((r − |α|WHP (τ)WXp)HC−1
n ×

(r − |α|WHP (τ)WXp)).
(D.24)

For a first estimation of the transmit delay τ , we omit the estimation of DM param-
eters for computational efficiency. Exploiting this, we can estimate all parameters
jointly by maximizing

τ̂ , p̂, |α̂| = arg max
τ,p,|α|

(−‖r − |α|WHP (τ)WXp‖), (D.25)

which gives us an estimated parameter set τ̂ , p̂, |α̂| for delay, phases and amplitude
respectively. This is possible due to Cn simplifying to a diagonal matrix when we
assume only AWGN.
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D.2.3 Maximum likelihood estimator with overlap exploita-
tion

Assuming that DM does not change within the transmission time-frame of all
subchirps, we can exploit the additional energy within the DM for an estimation of
phase differences between subchirps. Using the GCC [8,9], we can find a maximum
likelihood estimator for the overlap between two subsequent subchirps as

f(r | φi, φi+1) =|(r[tl,i, . . . , tu,i] exp(−jφi))×
(r[tl,i+1, . . . , tu,i+1] exp(−jφi+1))

H |,
(D.26)

where tl,i and tu,i and tl,i+1 and tu,i+1 describe the lower and upper frequency
overlap samples between two subsequent subchirps i and i+ 1. Assuming φi = 0,
one can iteratively estimate all differences between starting phases φi and φi+1.
This assumes that there is no parametric dependency between phases p with delay
τ and amplitude |α|. Assuming there is no prior information for the first phase φ1,
we can notate a joint maximum-likelihood estimator incorporating (D.26) as

f(r | τ,p, |α|) ∝ f1(r | τ,p, |α|)
P−1∏
i=1

f(r | φi, φi+1), (D.27)

which describes a joint distribution with the previous estimator in (D.25), which
similarly can now be maximized again to find the delay.

D.3 Cramér-Rao lower bound

D.3.1 Without overlap exploitation
The parameter vector for the CRLB is θ = [τ, |α|, φT1 , . . . , φTN ]T . As the noise vector
n has unknown phases due to AWGN, we assume that the covariance matrix Cn
is independent of the phases φ. The Fisher information matrix (FIM) element for
the time delay τ is:

[I(θ)]1,1 = 2Re
(
∂µ(θ)

∂τ

)H
C−1
n

∂µ(θ)

∂τ
+ tr[•] (D.28a)

= 2Re|α|2sHC−1
n,−τs+ tr[•] (D.28b)

= 2|α|2ṡHC−1
n,−τ ṡ+ tr[•] (D.28c)

=
2|α|2

σ2
w

‖ṡ‖2H + tr[•]. (D.28d)

with

tr[•] = tr
[
C−1
n

∂Cn
∂τ

C−1
n

∂Cn
∂τ

]
, (D.29)

and

D =
2πjfs
M

diag
([

−M

2
, . . . ,

M

2
− 1

])
, (D.30)
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being the frequency domain time derivative matrix for the sampling frequency fs,
and Cn,−τ being a cyclically shifted version of Cn by −τ . We define the time
derivative vector of s as

ṡ =WHDWs. (D.31)

It is assumed that the additional time delay information tr[•], which is mainly
caused by the increased received signal length due to the convolution of the chirp-
train signal with DM, is negligible for high signal-to-noise ratio (SNR) values and
Equation (D.28c) is rewritten by a projection into the Hilbert space to Equation
(D.28d), similarly to [10].

For the magnitude |α| of the LoS the FIM element evaluates to

[I(θ)]2,2 = 2Re
(
∂µ(θ)

∂|α|

)H
C−1
n

∂µ(θ)

∂|α|
(D.32a)

= 2sHC−1
n,−τs (D.32b)

=
2

σ2
w

‖s‖2H. (D.32c)

The signal energy in the Hilbert space H is responsible for the information of the
magnitude. For the phases φ = [φT1 , . . . , φ

T
N ]T of the chirptrain signal model the

corresponding FIM entry is calculated as

[I(θ)]i,i = 2Re
(
∂µ(θ)

∂φ

)H
C−1
n

∂µ(θ)

∂φ
(D.33a)

= 2|α|2Re diag(p)HXHC−1
n,−τX diag(p) (D.33b)

= 2|α|2ReSHC−1
n,−τS (D.33c)

=
2|α|2

σ2
w

Re〈S,S〉H, (D.33d)

where the index i = 3, . . . , P + 2 corresponds to the nφ-th phase of the chirptrain
model. The information of the nφ-th phase is provided by the signal energy of the
nφ-th subchirp in the Hilbert space H. For the time delay τ and the magnitude
|α| of the LoS channel coefficient the corresponding FIM element evaluates to

[I(θ)]1,2 = 2Re
(
∂µ(θ)

∂τ

)H
C−1
n

∂µ(θ)

∂|α|
(D.34a)

= −2|α|ReṡHC−1
n,−τs (D.34b)

= −2|α|
σ2
w

Re〈s, ṡ〉H. (D.34c)

For the time delay τ and the phases φ of the train signal model the FIM entry
calculates to

[I(θ)]1,i = 2Re
(
∂µ(θ)

∂τ

)H
C−1
n

∂µ(θ)

∂φ
(D.35a)

= 2|α|2ImṡHC−1
n,−τS (D.35b)

=
2|α|2

σ2
w

Im〈S, ṡ〉H. (D.35c)
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For the magnitude |α| of the LoS channel coefficient and the phases φ of the
train signal model the FIM element is expressed as

[I(θ)]2,i = 2Re
(
∂µ(θ)

∂|α|

)H
∂µ(θ)

∂φ
(D.36a)

= −2|α|ImsHC−1
n,−τS (D.36b)

= −2|α|
σ2
w

Im〈S, s〉H. (D.36c)

The time-delay error bound is calculated using the Schur complement as

[I−1(θ)]1,1 =

(
2
|α|2

σ2
w

(
F −GH−1GT

))−1

(D.37)

with

F = |α|2‖ṡ‖2H +
σ2
w

2|α|2
tr[•] ∈ R, (D.38)

G = [−Re〈s, ṡ〉H, |α|Im〈S, ṡ〉H] ∈ R1×P , (D.39)

and

H =

[
‖s‖2H −|α|Im〈S, s〉H

−|α|Im〈S, s〉H
T |α|2Re〈S,S〉H

]
∈ RP×P . (D.40)

Therefore, Equation (D.37) can be rewritten as

[I−1(θ)]1,1 =

(
2
|α|2

σ2
w

(
‖ṡ‖2H −GH−1GT

)
+ tr[•]

)−1

. (D.41)

It can be seen that the time-delay error bound from Equation (D.41) has a term
which accounts for the unknown phases φ of the chirp-train signal. It should be
noted that the time-delay error bound in general depends on those phase shifts.

D.3.2 With overlap exploitation
As described in Section D.2.3, we can exploit the assumption that the realisation of
the dense multipath does not change within a single-shot measurement. Therefore
we can exploit overlapping parts of chirps in the frequency domain. Using the
estimator in (D.27), we can define a prior information term for φ as

[B(θ)]i,i = S̃NR 2Ñ (D.42)

for all i ≥ 4, meaning additional information is available for all φnφ
with nφ ≥ 2

and the number of overlapping samples in the frequency domain for two chirps Ñ .
This is similar to [11, p. 33, Ex 3.4], which describes the estimation of a phase
term in AWGN. The additional SNR is defined as

S̃NR =
σν
σw

, (D.43)
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which is the ratio between the variance of the dense multipath and the variance
of the AWGN. Note that this neglects the energy in the signal s, as no additional
information can be gained from the signal energy when it is already used in the
estimator described in (D.25). Combining the prior information term [B(θ)]i,i with
the phase information from the signal energy as described in (D.33), we derive a
modified phase information term

[Ĩ(θ)]i,i = [B(θ)]i,i + [I(θ)]i,i (D.44)

for all i ≥ 4. All further derivations are similar to subsection D.3.1.

D.4 Evaluation
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Figure D.2: CRLB and root-mean-square error (RMSE) for 2 subchirps. Compar-
ison with CRLB of one subchirp. 200 realizations for evaluation, SNR = 40dB,
γr = 5ns, γf = 20ns

We simulated 200 realizations of the DMC under varying transmission times,
maintaining a constant overall SNR across different values of KLOS. The SNR was
defined as SNR = |α|2/Ts+σν

σw
, representing the ratio of signal energy and DM to

noise. A particle-based estimator with 5000 particles was used to jointly estimate
delay and phases. The full bandwidth for single chirps was chosen as 80MHz,
and N = 300 samples were used. For evaluations with 2 and 4 subchirps, the
subchirps were split equally over the frequency band, with an overlap factor of
20%, maintaining total signal energy. As one can see in Figure D.2, for large values
of KLOS, all evaluations converge to the the same value. This shows that with
negligible energy in the DM, the estimation of phases in overlapping frequency
bands does not benefit the delay estimation. This leads to the estimator without
prior information for phases to be efficient. For very small values of KLOS, the
estimators diverge from the CRLB, being limited only by the estimation prior for
the delay. In this region there is negligible energy in the LoS, and thus additional
information for the phases between chirps leads to no additional coherency for
chirps in the LoS. In the region between, the CRLB without overlap exploitation
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Figure D.3: CRLB and RMSE for 4 subchirps. Comparison with CRLB of one
subchirp. 200 realizations for evaluation, SNR = 40dB, γr = 5ns, γf = 20ns

has a significant offset from the CRLB for a continuous chirp (P = 1). This is due to
the two subchirps not being perfectly coherent, as the phase estimation diminishes
the available information. When exploiting the overlap, one can see that for smaller
values of KLOS, the CRLB almost attains the CRLB for a continuous chirp. The
evaluations could not attain the CRLB in this threshold range. But a significant
improvement can be seen between the curves exploiting the overlap and those
without overlap exploitation. These performance gains are comparable to the gains
seen in the CRLB. Figure D.3 shows very similar behaviour, but all evaluations
are shown for P = 4 subchirps. For extremes of KLOS, the behaviour is again
similar with or without overlap exploitation. For the threshold region, behaviour is
again very similar, but the performance gains from overlap exploitation are slightly
larger. This can be explained by the more significant loss from phase estimation,
which can be compensated to a higher degree with additional energy from the
DM due to more overlapping parts of the signal in the frequency domain. It
should be noted that the performance for multiple phase-offset chirps decreases even
for LoS conditions directly with the number of chirps due to additional nuisance
parameters. Additional information could be available when a transceiver chip is
able to switch between bands with coherent phases. In the case where phases are
known perfectly, the accuracy is equivalent to a single coherent chirp.

D.5 Conclusion

This work shows a method to improve the ranging accuracy in signals with over-
lapping frequency bands in scenarios with DM, and their respective performance
bounds. An estimator and these bounds were derived for any number of signals
with overlapping bands. A comparison was done with the performance neglecting
the joint frequency bands between signals, and with one single coherent signal.
These evaluations show a significant margin for improvement, which could be ap-
plied to a variety of different scenarios. These scenarios are not constrained to
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indoor localization, but this additional information gain could potentially be used
generally for many different wireless communication networks.
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