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Abstract

This thesis develops Bayesian methods for parameter optimization, with both general
usage and specific application on stellarator fusion reactor configurations. In contrast
to conventional approaches not only values, but also derivatives of the target function
are incorporated. The impact of including derivative information on the performance
of Bayesian global optimizers is investigated for the Expected Improvement (EI) and
Knowledge Gradient (KG) acquisition function. In addition, the convergence of the
Bayesian optimizer is compared to local methods that rely on gradient information. The
derivative enabled Bayesian Optimization was implemented in Python using the Python
package BoTorch. Apart from two toy models the developed framework was used to
optimize the coil currents of a stellarator with Simsopt. The obtained results of the
Bayesian Optimization were slightly better than those of the L-BFGS-B method, until
the Gaussian process regression reached its maximum accuracy. Moreover, an interactive
tool for exploratory data and model analysis was further developed using plotly/dash.
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Kurzfassung

In dieser Arbeit werden Bayes’sche Methoden zur Parameteroptimierung für den all-
gemeinen Gebrauch und die spezielle Anwendung auf Stellarator-Fusionsreaktor-Kon-
figurationen entwickelt. Im Gegensatz zu herkömmlichen Ansätzen werden nicht nur
Funktionswerte, sondern auch Ableitungen der Zielfunktion einbezogen. Die Auswirkung
der Einbeziehung von Ableitungsinformationen auf die Leistung von Bayes’schen glob-
alen Optimierern wird für die Akquisitionsfunktionen Expected Improvement (EI) und
Knowledge Gradient (KG) untersucht. Des weiteren wird die Konvergenz des Bayes’schen
Optimierers mit lokalen Methoden verglichen, die auf Gradienteninformationen beruhen.
Die abgeleitete Bayes’sche Optimierung wurde in Python mit dem Python-Paket BoTorch
implementiert. Über zwei Testmodelle hinaus wurde das entwickelte Framework verwendet
um die Spulenströme eines Stellarators mit Simsopt zu optimieren. Bis der Gaußprozess
seine maximale Genauigkeit erreicht, sind die Ergebnisse der Bayes’schen Optimierung
etwas besser sind als jene mit der L-BFGS-B-Methode. Zusätzlich wurde ein interaktives
Tool für die explorative Daten- und Modellanalyse mit plotly/dash weiterentwickelt.
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1 Introduction

On the road to a positive energy gain of fusion reactors and the enablement for later
commercial use many challenges lie ahead. One of the major challenges in a stellarator
type reactor is the optimization of the coil parameters and currents. The problem at
hand is to optimize the output through systematically varying the model parameters, a
so-called parameter study. The nature of this problem is not exclusive to plasma physics,
but encountered in many fields of physics and engineering. There are different approaches
to find the best set of parameters (the global optimum) including grid search, random
sampling, Monte-Carlo sampling, and response surface modelling.

In the frame of this thesis the latter one is investigated in more detail. In order to
achieve the goal Bayesian optimization is used. Through the means of Gaussian process
regression a model to describe the relationship between the input and output dimensions
is established. However, in literature, this approach is also known as response surface or
response model.

The aim of this thesis is to utilize derivative observations for the optimization of the
target. This information has an increased availability due to the rise of auto-differentiable
functionalities in various software packages. Therefore, it was explored how the gradient
information can be embedded into the model (the Gaussian process), how the performance
changes and what the limitations of the method are. A second major part of parameter
studies is the selection of the input parameter set for the next iteration. This was done
using different acquisition functions, primarily the Expected Improvement (EI) and the
Knowledge Gradient (KG).

The project was implemented in Python using the libraries BoTorch with GPyTorch and
SciPy as a backend. In the process of this thesis, the developed algorithm was used to
optimize the coil currents of a stellarator in order to generate a previously calculated
magnetic field (a Stage-II optimization) using the Python package Simsopt.
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2 Gaussian Progress Regression

The goal in various kind of parameter studies is to find an input-output mapping. One
example is the combination of gasoline mixture and air intake for the optimization of the
efficiency of a combustion engine. There are different approaches to get to this mapping,
one is to make assumption about the underlying function. For example to model the
problem with a summation of polynomial functions with different coefficients and solve
the least-squares problem. This can be useful if the underlying structure or theory is
known. On the other hand, if this is not the case, the assumption will restrict the
potential outcome significantly if no information is available. The second approach is to
allow all kinds of functions, but assign a prior probability and condition it on observations.
To tackle this infinite number of possibilities one can use Gaussian Processes (GP).

2.1 Gaussian Process

A Gaussian process is a generalization of the Gaussian probability distribution.
Whereas a probability distribution describes random variables which are scalars
or vectors (for multivariate distributions), a stochastic process governs the
properties of functions. [30]

One can approach a Gaussian process from a weight space or a function space view. The
following sections briefly explain both approaches, primarily based on the state-of-the-art
book on Gaussian Processes by Carl Edward Rasmussen and Christopher K. I. Williams
[30], with some additional insights from [16].

Weight space view

For the weight space view, a common linear regression problem (see Eq. 2.1.1) with a
normal distributed error term ε can be started with. However, instead of the standard
least-squares approach, a Bayesian approach will be used. The observed noisy output y
of f evaluated at input x is
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y = f(x) + ε, (2.1.1)

ε ∼ N (0, σ2
n). (2.1.2)

For the linear problem stated in Eq. 2.1.1 a weight space approach can be made by
describing the unknown function f(x) with a multiplication of a weights vector w and
input vector x,

y = x⃗T ⋅ w⃗, (2.1.3)

x⃗ = [
1
xi
] , (2.1.4)

w⃗ = [
β0
β1
] . (2.1.5)

In a Bayesian framework one now assumes a prior distribution for the weights w (Eq. 2.1.6)
as a Gaussian Prior with zero mean and a covariance matrix Σ according to

p(w) = N (0,Σ). (2.1.6)

Starting from the model in combination with the noise assumption (Eq. 2.1.3) leads
to the expression for the likelihood (probability density of the observations given the
parameters) which is factored over all training points,

p(y ∣X,w) =
n

∏
i=1

p (yi ∣ xi,w) =
n

∏
i=1

1
√
2πσn

exp
⎛

⎝
−
(yi − x

⊺
iw)

2

2σ2
n

⎞

⎠

=
1

(2πσ2
n)

n/2 exp(−
1

2σ2
n

∣y −X⊺w∣
2
)

= N (X⊺w, σ2
nI) .

(2.1.7)

In order to calculate the posterior distribution over the weights p(w ∣ y,X) the Bayes
Theorem is used. As always in Bayes’ Theorem the normalization is the marginalization
over the weights,

p(w ∣ y,X) =
p(y ∣X,w)p(w)

p(y ∣X)
. (2.1.8)

This expression can be rewritten by completing the square to achieve a more readable
expression, where A = σ−2n XXT +Σ−1.

p(w ∣ y,X) ∼ N (w =
1

σ2
n

A−1Xy,A−1) (2.1.9)
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If a prediction y∗ is to be made at a test point x∗, the error term needs to be averaged
out in order to get the prediction f∗ = y∗ − ε∗ = f(x∗). The predictive distribution is
therefore the posterior probability weighted averaged over all possible parameter values

p (f∗ ∣ x∗,y,X) = ∫ p (f∗ ∣ x∗,w)p(w ∣ y,X)dw

= N (
1

σ2
n

x⊺∗A
−1Xy,x⊺∗A

−1x∗) .
(2.1.10)

If the base model is more complex than this simple linear model, the approach needs to be
extended. One possible idea is to project or map the inputs into some high dimensional
space and then do a linear regression in this space. This is done using a non-linear
mapping function ϕ(X). The input vector/matrix X is then replaced by the mapping
ϕ(X). The problem is that there are endless possibilities for this kind of mapping with
little guidance what mapping to choose. Often there is a model comparison needed within
a set of potential mappings.

Function space view

In the previous section a distribution over weights was used. Starting from each weight a
specific function is implied which leads to a distribution over functions. This distribution
over functions is called a Gaussian Process (GP) and is formally defined as follows:

A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution. [30]

A Gaussian Process is completely defined by its mean function (m(x) or µ(x)) and
covariance function or kernel (cov(x,x′) or k(x,x′)). For a process f(x) one can specify

f(x) ∼ GP (µ(x), k (x,x′)) (2.1.11)

with the mean function µ(x) and the kernel k (x,x′)

µ(x) = E[f(x)], (2.1.12)

k (x,x′) = E [(f(x) − µ(x)) (f (x′) − µ (x′))] . (2.1.13)

The mean function is the average over all functions in the distribution. In reality the prior
mean function is often set to be zero for practical reasons. This means that the inference
is only done via the kernel (covariance function). The kernel models the correlation
between different locations. There is a vast variety of useful kernels. The selection is done
based on assumptions such as smoothness or correlations in the data. A very common
assumption for the correlation between points is that closer points are more similar than
distant points, in other words the correlation between the points decays with distance.
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A very commonly used kernel is the radial basis function (RBF) or squared exponential
kernel (see. Eq. 2.1.14). In this case the ℓ represents the length scale which specifies the
smoothness of the function. If is defined as

k (xp, xq) = exp(−
∣xp − xq ∣

2

2ℓ
) . (2.1.14)

There are a vast variety of different kernels which each have their advantages and
disadvantages. A discussion on different kernels and the effect of lengthscales can be
found at [30] and [16].

2.2 Prediction with Observations

Up to now, no observations or training data are incorporated into the GP. In a simple
case, the situation of noise-free observations is considered. The joint distribution of of
the training outputs f and a set of test outputs f∗ according to the prior is shown in
Eq. 2.2.1. In this notation the training data points or observations are the result of actual
simulations or measurements whereas the test data points are evaluation of the model.
Here, the kernel K (X∗,X∗) denotes the n×n∗ covariance matrix between training point
matrix X and test point matrix X∗

[
f
f∗
] ∼ N (0, [

K(X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

]) . (2.2.1)

To obtain the posterior distribution, all function of the prior that do not fit with the
observations need to be rejected. The conditioned GP can be written as

f∗ ∣X∗,X, f ∼ N (K(X∗,X)K(X,X)−1f ,

K(X∗,X∗) −K(X∗,X)K(X,X)−1K(X,X∗)).
(2.2.2)

The upper part of Fig. 2.1 shows a prior distribution with zero mean. To illustrate
this, a few example functions are drawn as dashed lines; however, an infinite number of
such functions exists. In the bottom half of the figure, the prediction of the posterior
mean, along with the confidence interval and some illustrative functions, is shown. The
conditioning of the GP on the observations is clearly visible in the posterior. It is also
possible to include both homoscedastic and heteroscedastic noise observations into the
Gaussian Process. For further details, the reader is refereed to [30].
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Figure 2.1: Conditioning of the Gaussian Processes with a RBF kernel on observations
from the prior distribution with zero mean (top) to the posterior distribution
(bottom). In both sub-figures, the mean and the corresponding confidence
interval are shown, along with five of the infinitely many possible functions,
which are depicted as dashed lines. Adapted from [26].

2.3 Gradient Information

The incorporation of derivative information into Gaussian Processes is discussed in [30]
in Chapter 9.4. The main message is, that due to the linearity of differentiation the
derivative of an GP is another GP. The properties of linearity are also treated in [2]. The
inference is done by means of a joint Gaussian distribution of function values and their
partial derivatives. The covariance between these two can be formulated as shown in
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Eq. 2.3.1 and 2.3.2.

cov(fi,
∂fj

∂xdj
) =

∂k(xi, xj)

∂xdj
(2.3.1)

cov(
∂fi
∂xdi

,
∂fj

∂xej
) =

∂2k(xi, xj)

∂xdi∂xej
(2.3.2)

With n observations inD dimensions this leads to n×(D+1) values. Not in all applications,
however, all partial derivatives are used either due to insufficient availability or to save
computational resources. In that case the corresponding rows and columns of the matrix
are removed.

In addition to the presented approach by [30] a more detailed discussion can be found in
[34]. Moreover, in [16] an approach to derivatives via differentiation is described. The
effect of the incorporation of gradient information is discussed in Sec. 6.
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3 Bayesian Optimization

The following chapter is largely based on the review paper by Peter I. Frazier [14].

Bayesian Optimization, also known as BayesOpt, BayOpt, or just BO rallies around
the question of maximizing (or minimizing) an objective function. The problem can be
formulated as

max
x∈A

f(x) (3.0.1)

where A is the parameter space. In most cases the objective function has some common
properties. One is that the objective is ”expensive to evaluate”, which implies that
the optimization should be conducted with the minimal number of function evaluations.
In addition, the objective is an so-called ”black box” function, which means that no
structure like linearity or convexity can be leveraged. Typically the input space A ⊂ Rd

is limited to a few dimensions (typically d < 20) and the output is continuous. In the end
it is the goal to find the global optimum of the objective not just a local one.

3.1 Core Idea

For the workflow of a BO two main components are needed, a Bayesian statistical model
(e.g. a Gaussian Process) to model the objective function and an acquisition function to
decide at what input combination to sample next.

The basic workflow is depicted in Fig. 3.1. At the beginning a Gaussian Process is
initialized with a prior (typically a zero mean) on the objective function f . As a second
step the observation of f on N0 initial locations needs to be conducted. This can either
be a simulation run or a measurement. This observation locations should be chosen space
filling (e.g. by means of a Halton sequence or a Sobol sampling) in the parameter space.
As a third step of the initialisation the model should be updated (conditioned) with all
the available information. This includes the optimization of the lengthscales of the model
and calculating the posterior probability distribution. It is worth noting, that the first
two steps can be interchanged.

The initialization sequence is followed by the optimization loop. This loop consists of the
following tasks: First an acquisition function (see Sec. 3.2) based on the current posterior
probability distribution is initialized. Secondly, the maximum xn of the acquisition

8
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Figure 3.1: Basic workflow of a Bayesian Optimization.
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function over x using some sort of optimizer (e.g. gradient descent mixed with a random
multi-start theme) needs to be observed. Then observe yn = f(xn) at the previously
calculated location (this involves an actual measurement or a simulation run). As a last
step of the optimization loop, the model is conditioned on f using all available data
including the new observation. This is methodically the same process as in the last step
of the initialization.

At the end of each optimization loop there are two possible termination conditions. The
first is that some kind of convergence criterion is fulfilled. For this a wide variety of
choices are available. The other is that a maximum number of iterations is reached. In
either case, the optimization loop ends and a result is obtained.

This result of the optimization is either the point x∗ where the largest value f∗ was
observed or the location of the maximum posterior mean µ∗, depending on the risk
taken. In the latter case, the actual value of the input parameters can deviate from the
maximum posterior mean, since the value was not actually observed and the model is
always accompanied with some quantified uncertainty.

Simple Example

A simple toy model optimization is shown in Fig. 3.2. For a toy model no real simulation
or measurement was conducted, instead a testfunction f(x) = sin(10x) + cos(5x) + 0.5x
was used as ground-truth. At the beginning the initial steps of the flow chart (Fig. 3.1)
were conducted. For the initial training points the testfunction was evaluated (observed)
at three different locations. The GP with a zero mean prior was then conditioned with
initial observations. In the top left sub-figure this initial situation is shown. It is visible,
that the posterior mean is no longer zero but has its indicated maximum near the leftmost
observation. In addition, the 95% confidence interval and the testfunction is shown. The
sometimes casually called ”sausage like” shape of the confidence interval discussed in the
previous chapter is also clearly visible.

In the bottom left sub-figure the acquisition function EI(x) (in this case Expected
Improvement) is shown over the domain of x (see Sec. 3.2.3). The maximum of the
acquisition function xn = argmaxx∈AEI(x) is indicated in both sub-figures with the
vertical black dashed line. In the following the testfunction was observed at the new
location yn = f(xn). The new observation is included in the training dataset and the
posterior is conditioned on the training dataset. With this new point added, the posterior
mean is now resembling the testfunction already a lot better and the uncertainty interval
is also reduced. This optimization loop is now done 6 times. It is visible that the Expected
Improvement decreases to nearly zero after an observation is conducted (e.g. EI(x = 2.2)
in the last sub-figure after sampling there in the previous iteration).

The effect of different acquisition functions is discussed in more detail in Sec. 3.2 and 6.

10
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3.2 Acquisition Functions

The following chapter on acquisition functions is mostly based on [16] accompanied by
some interpretations by [14].

One important question in Bayesian Optimization is how to select the input combination
for the next iteration. The idea is to have an easy-to-evaluate function that quantifies the
information gained by a new observation based on the currently available information.
Once such an acquisition function is established the determination of the maximum
of this function can be done with state-of-the-art algorithms like BFGS or multi-start
gradient ascent. In this way the easy-to-evaluate (”cheap”) acquisition function is
evaluated multiple times instead of the expensive-to-evaluate (”expensive”) original
physical simulation.

For the acquisition function several different approaches could be used. These can
be classified into two main groups, a one-step look-ahead approach for some utility
function or adaptations of multi-armed bandits algorithms for optimization. In the
following the focus lies on the one-step look-ahead functions Expected Improvement (EI)
and Knowledge Gradient (KG). Other examples for acquisition functions would be the
probability of improvement, mutual information, or upper confidence bound.

3.2.1 Exploration vs. Exploitation

One of the main questions selecting an acquisition scheme is always the balance between
exploration and exploitation. In the following, the different aspects will be described
based on the example shown in Fig. 3.2.

Exploitation

Exploitation describes the sampling in proximity to an already known (good) location.
The goal is to find an even better location near the current local maximum. This approach
may lead to a larger immediate reward (improvement). One example is the new sampling
location found in the second and third iteration of the optimization in Fig. 3.2. In both
cases the new point is located in the proximity of the current maximum of the posterior
mean.

Exploration

On the other hand, exploration in this context refers to sampling in yet not so well
known locations. This scheme will not lead to a high immediate reward but may provide

12



valuable information for the following iterations. Ideally, the exploration finds a new local
maximum which was not known before. In the example show in Fig. 3.2 the locations
in the first and fourth step could be seen as exploration. In both cases the new point
is located in a region of high uncertainty where within the uncertainty a new local
maximum could arise. A new observation in a region of low observation density reduces
the uncertainty in the region significantly (depending on the model lengthscale).

3.2.2 One-Step Look-Ahead

Expected Improvement (EI), Knowledge Gradient (KG) and other one-step look-ahead
acquisition functions all have a similar structure. The acquisition function is the expected
marginal gain in utility. It is built upon an utility function u that acts as some kind of
metric on a given dataset D. The acquisition value

α(x;D) = E [u(D′) ∣ x,D] − u(D) (3.2.1)

is the difference between expectation value of the utility function based on the updated
dataset D′ and the utility function of the current data set D. The updated dataset
includes the presumed new observation y′ on the proposed location x′ in the form
D′ = (X′,Y′) = D ∪ {(x′, y′)}.

The next sampling location x is calculated from the acquisition function as the location of
the maximum according to Eq. 3.2.2. In this context A is the search domain (parameter
space) for the new location.

x = argmax
x′∈A

α(x′;D) (3.2.2)

3.2.3 Expected Improvement (EI)

Expected Improvement is a very common acquisition scheme or as [16] puts it:

Sequential maximization of Expected Improvement is perhaps the most widespread
policy in all of Bayesian optimization.

The key ingredient for Expected Improvement is to use a one-step look-ahead approach
(see Sec. 3.2.2) combined with the simple reward utility function (Eq. 3.2.3). The simple
reward utility function returns the maximal observed value in the data set D and is
defined as

u(D) =maxµD(x). (3.2.3)

The idea of Expected Improvement is to maximize the expected marginal gain in utility
u(D′) − u(D). This is also called instantaneous improvement and is realised through

13



sampling the next observation at x. Starting from the one-step look-ahead acquisi-
tion function in Eq. 3.2.1 and the simple reward utility function combined with the
marginalisation rule the Expected Improvement acquisition function reads

αEI(x;D) = ∫ [maxµD′(x
′
)] p(y ∣ x,D)dy −maxµD(x) = E [[f(x′) − f∗]

+
] , (3.2.4)

where a+ = max(a,0). To get the location for the next iteration the maximum of this
acquisition function must be calculated according to Eq. 3.2.2.

The Expected Improvement scheme tends to sample near ”good” locations as the simple
reward favours immediate improvement which is an exploitation behaviour. However,
after a number of observations close to each other, the acquisition value collapses near
this location and an exploration behaviour is immanent. This for example can be seen in
Fig. 3.2 where the acquisition value near the three observations slightly above x = 0 drop
compared to the upper end after the third iteration. Expected Improvement balances
between exploration and exploitation, but leans a bit towards exploitation. One possible
solution is the Log Expected Improvement.

This explanation is based on reference [16]. For a slightly different approach that includes
hints for the numerical implementation, see reference [14].

3.2.4 Knowledge Gradient (KG)

The Knowledge Gradient (KG) was first proposed by Frazier and Powell [12]. The idea
is similar to Expected Improvement (see Sec. 3.2.3), to create a one-step look-ahead
acquisition function. However, in this case the global reward utility function

u(D) =max
x∈A

µD(x) = µ
∗
D (3.2.5)

is used instead of simple reward utility function (see Eq. 3.2.3). Here µD(x) is the
posterior mean and µ∗D is the maximum posterior mean.

In Expected Improvement the assumption was that one only wants to return a previously
evaluated point as final result. This is reasonable for a noise free-setting when one is
highly risk adverse. However, if some risk is tolerated and the observations are not noise-
free it is reasonable to return a not yet evaluated point with some attached uncertainty.
Nevertheless, risk neutrality is still present and leads to the following acquisition function
for the acquisition function:

αKG(x;D) = ∫ [max
x′∈A

µD′(x
′
)] p(y ∣ x,D)dy −max

x′∈A
µD(x

′
) = E [µ∗D′ − µ

∗
D] . (3.2.6)

Since the global reward honors the increase of the maximum of the posterior mean
somewhere in the domain it is not important that the posterior mean at the new
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observation is better, but the overall maximum of the posterior mean increases. However,
due to the need of calculating the new maximum posterior mean the method is much
more computationally expensive. Possible solutions to mitigate this involve Monte Carlo
approaches (see Sec. 4.1.3).

One possible interpretation is, that the global reward utility function is in some sense
the ”knowledge” of the global maximum of the posterior mean offered by the available
data D. The acquisition function is consequently the expected change in the knowledge
due to the addition of an observation at x′.

The Knowledge Gradient scheme often suggests a new point near a yet best seen point.
Near this location there will likely be a local optimum, but the actual location is yet
unknown. A new point in the proximity, regardless if it is better or worse than the
current best seen, will add valuable information about the location of the optimum. If
one somehow learns the ”derivative” at the point by finite difference, one can point
to which side the optimum is. That the point is potentially worse than the previously
sampled, would be a problem in a simple reward scheme. However, this is not the case in
a global reward scheme due to the importance of the change in the maximum posterior
mean over the whole domain. The consideration about the derivative at the location
leads to the idea of incorporating gradient information in the first place if available (see
Sec. 2.3 and Sec. 3.2.5).

As shown in the examples in Sec. 6 KG tends to do more exploration than EI and finds
the global optimum more efficient. This is due to the fact, that in EI a high reward is
only granted if it guessed the right side of a good point for a local optimum. KG is only
interested in the increase of maximum of the posterior mean and the sampling on both
sides is a success.

In the review paper of Frazier [14] also some pseudo-code implementations are listed.

3.2.5 Derivative-Enabled Knowledge Gradient (dKG)

For the Knowledge Gradient acquisition function (see Sec. 3.2.4) a derivative-enabled
version was proposed in [34]. The algorithm is based on the Knowledge Gradient approach
in [13] using batch evaluation [32]. For details about the batch evaluation the reader is
referred to the mentioned literature.

The formulation of the derivative-enabled Knowledge Gradient function (dKG) can be
found in [34]. There however, the goal is to find a global minimum while our goal is to
find a global maximum. In an essence, the paper states that the difference between the
the derivative-enabled Knowledge Gradient function (dKG) and a batch KG proposed in
[32] is that the posterior mean now also depends on the derivative observations due to
the incorporation of the gradient information into the GP (see Sec. 2.3). Furthermore,

15



this requires the calculation and marginalization of the distribution of these gradient
observations for the posterior at each step.

Thus, the d-KG algorithm differs from KG not just in that gradient obser-
vations change the posterior, but also in that the prospect of future gradient
observations changes the acquisition function. [34]

A comparison between EI and KG with their derivative-enabled counterparts can be
found in Sec. 6.

Due to the bad scaling of the GP inference in higher dimensions O(n3(d+ 1)3), it can be
useful to not include all partial derivatives to reduce the computational cost. In [34], an
approach with only one directional derivative from each iteration is proposed. However,
this approach is not realised in the scope of this thesis.

The efficient computation of the dKG is quite difficult to implement. A discretization
free approach with stochastic gradient ascent is proposed in [34]. In the following, the
Python library BoTorch is used, which has an Monte Carlo implementation of the KG
(see Sec. 4.1.3 and [3]).
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4 Implementation

Several software packages are available for the implementation of Bayesian optimization.
The most popular libraries include Cornell-MOE 1 ([32] and [34]), Dragonfly2 ([24]),
Spearmint3 and BoTorch4 ([3]) to list a few. A more extensive list and a discussion can
be found in [3].

Cornell-MOE is a proof-of-concept code written in C++ by the authors of [34]. However,
the adaption of it seems to be quite challenging. On the other hand BoTorch is an
actively maintained package written in Python. Therefore BoTorch was used for this
thesis. In the following the approach of BoTorch will be described.

4.1 BoTorch

BoTorch is an Python package for Bayesian optimization build upon PyTorch 5 and
GPyTorch6 ([15]) and mainly developed by META. As described in the paper [3], the
package combines Monte-Carlo (MC) acquisition functions with a novel sample aver-
age approximation optimization approach, auto-differentiation, and variance reduction
techniques. For this work especially the novel ”one-shot” formulation of the Knowledge
Gradient is used.

In the following the idea of BoTorch is sketched in a simplified way. This is a summary
of Chapter 3 and 4 of [3].

1see https://github.com/wujian16/Cornell-MOE
2see https://github.com/dragonfly/dragonfly
3see https://github.com/HIPS/Spearmint
4see https://github.com/pytorch/botorch
5see https://pytorch.org/
6see https://gpytorch.ai/
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4.1.1 Monte-Carlo Acquisition Function

The first part of the one-step look-ahead acquisition functions discussed in Sec. 3.2 can
generally be written as

α(x;Φ,D) = E[a(g(f(x)),Φ) ∣ D] (4.1.1)

where g is an objective function, a is an utility function and Φ are parameters independent
of x (see Eq. 3.2.1). In some cases this can be solved analytically (e.g. for Expected
Improvement). However, in general this is not possible. Therefore BoTorch uses Monte
Carlo (MC) integration to approximate the expectation using samples from the posterior.
The MC approximation αN(x;ϕ,D) using N samples result to

αN(x;Φ,D) =
1

N

N

∑
i=1

a(g(ξiD(x)),Φ) (4.1.2)

where ξiD(x) ∼ fD(x) and is drawn i.i.d. (independent and identically distributed) from
the model.

4.1.2 Sample Average Approximation (SAA)

According to the paper [3], the new methodological approach of BoTorch is to use
the Sample Average Approximation (SAA) within Bayesian Optimization. Instead of
re-drawing samples for each optimization of the MC acquisition function, a fixed set of
locations is used for the evaluation of the acquisition function. Once drawn, the base
sample set is fixed and used for the whole optimization of the acquisition function (e.g.
Stochastic Gradient Descent (SGD) or other first order methods). The authors state that
this can be seen as a specific incarnation of the method of common random numbers.
The candidate set x′ can be obtained by

x′ = argmax
x∈A

αN(x;Φ,D). (4.1.3)

The gradient ∇xα̂N(x;Φ,D) can be computed through auto-differentiation as the average
of the sample-level gradients.

Due to the use of fixed base samples, the authors conclude, that the SAA approach
benefits from the applicability of the various methods of deterministic optimization. This
includes the possibility to use quasi-Newton methods, which converge faster and are less
sensitive than stochastic first-order methods. BoTorch uses a multi-start optimization
via L-BFGS-B as a default (for details see [3] Appendix F.1). The bias introduced by the
SAA only has a minor effect on the performance compared to the analytic ground truth
(if the sample size is large enough) and is even often better than stochastic approaches.

For further details regarding the convergence properties the interested reader is refereed
to the original paper [3] (Sec. 4.1 and Appendix D).
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4.1.3 One-Shot Formulation of the Knowledge Gradient using SAA

As described in Sec. 3.2.4, the Knowledge gradient (KG) acquisition function quantifies
the expected increase of the maximum of the posterior mean µ∗D due to adding an
additional observation. Compared to the Expected Improvement (EI) acquisition function
(see Sec. 3.2.3), it yields better performance, however, it is also computationally more
expensive due to the nested optimization problem.

The acquisition function (Eq. 3.2.6) can be rewritten as

αKG(x;D) = E [µ∗D′ ∣ D] − µ
∗
D, (4.1.4)

where µ∗D = maxx′∈AE [g(f(x′)) ∣ D] and µ∗D′ = maxx′∈AE [g(f(x′)) ∣ D′] with D′ ∶= D ∪
{x′, yD(x

′)}.

This maximization of αKG(x;D) is now a nested optimization problem. This involves
finding the maximum over all x and in each evaluation finding the maximum posterior
mean. For details the reader is refereed to [14]. Depending on the implementation, some
kind of nested loop (see Algorithm 3 in [14]) is needed in order to solve it.

However, in [3] the nested problem is treated via the SAA approach, which makes it a
deterministic problem. Using the reparameterization trick and using fixed samples as
described in Sec. 4.1.2 the resulting MC approximation of KG is

αKG,N(x;D) =
1

N

N

∑
i=1

max
xi∈A

E [g(f(xi)) ∣ Di
x] − µ

∗
D. (4.1.5)

According to the authors, due to the fixed base samples when calculating the maximum of
Eq. 4.1.5, the sum and the max can be exchanged, which leads to the following expression

max
x∈A

αKG,N(x,D) ≡max
x,x′

1

N

N

∑
i=1

E [g(f(xi)) ∣ Di
x] , (4.1.6)

where x′ are the ”next stage” or ”fantasy” points. Here the problem is solved jointly over
x and x′ (fantasy points) instead of solving the inner problem to completion for every
fantasy point for each gradient step w.r.t. x. This leads to an increased dimension of the
problem of (q +N) × d instead of q × d, however methods for deterministic optimization
can be used. The authors also note that the problem increases linearly with N , but
observe good performance for moderate N .

4.2 Python Implementation

Following the theory discussed in the previous sections, the actual implementation of the
Bayesian Optimization using BoTorch will be discussed. The Python package developed
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in the course of the thesis is named bayoptder and available at https://github.com/
itpplasma/bayoptder. It provides a command line interface (CLI) (see Sec. 4.2.3).

In the following, the implementation of the core workflow depicted in Fig. 3.1 will be
discussed. First, the noise free case, as shown in the tutorials of BoTorch and subsequently
the inclusion of the derivative observations to the model. Afterwards the package usage
is described.

4.2.1 BO Implementation in BoTorch

Throughout the workflow of Fig. 3.1, from an programming point of view four main
ingredients are needed. These are the following:

• initialization of the GP

• update the posterior probability of the GP with new observations

• initialization of the acquisition function

• selecting the next iteration location through maximizing the acquisition function

In the following these parts will briefly be described based on the tutorial of BoTorch [11].

GP Initialization

At the beginning, one needs to initialise a GP model. BoTorch provides a wide range of
models and also supports the GPyTorch model class. An overview over all the models
can be found at [10]. The built-in BoTorch models can be classified into Single-Task
GPs (homo- and heteroscedastic noise, mixed discrete and continuous features and full
Bayesian with SAAS prior), Multi-Task GPs (homoscedastic noise, Kronecker structure
and full Bayesian with SAAS prior) and Model List of Single-Task GPs. In addition, it
supports custom models which will be discussed in Sec. 4.2.2.

In Listing. 4.1 a SingleTaskGP is initialised. The code consists of three parts. First, a
set of training data is generated based on the testfunction y(x) = sin(2πx1) ⋅ cos(2πx2)
for x ∈ [0,1]2. In line 16 an stochastic error with σ2 = 0.05 is added to the observations
and then the noisy observations are standardized. In the second section the model is
initialised as SingleTaskGP from the standard BoTorch models with the training data
D = {xn, yn} with n data points. In the last section the lengthscales of the model are
optimized through the build in optimization function fit gpytorch mll which relies on
the scipy.optimize library.
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1 import os

2 import math

3 import torch

4

5 from botorch.fit import fit_gpytorch_mll

6 from botorch.models import SingleTaskGP

7 from botorch.utils import standardize

8 from gpytorch.mlls import ExactMarginalLogLikelihood

9

10 # Generate Training Data

11 bounds = torch.stack([ torch.zeros (2), torch.ones (2)])

12

13 train_X = bounds [0] + (bounds [1] - bounds [0]) * torch.rand(20, 2)

14 train_Y = torch.sin(2 * math.pi * train_X[:, [0]]) * torch.cos(2 *

math.pi * train_X[:, [1]])

15

16 train_Y = standardize(train_Y + 0.05 * torch.randn_like(train_Y))

17

18 # Initialise Model

19 model = SingleTaskGP(train_X , train_Y)

20

21 # Optimize the lengthscales of the model

22 mll = ExactMarginalLogLikelihood(model.likelihood , model)

23 fit_gpytorch_mll(mll);

Listing 4.1: Example of a model initialization (adapted from [11]).

Update Posterior

After a new observation is conducted, this observation needs to be incorporated into the
model and the lengthscales of the model need to be updated. In general, there are two
different methods to do this. One is to initialize a new model with the new extended
training data set Dn+1 = Dn ∪ {xn+1, yn+1} as shown in Listing 4.2.

1 # Extend Training Data with new observation

2 train_X = [train_X , new_X]

3 train_Y = standardize ([train_Y , new_Y])

4

5 # Initialize model

6 model = SingleTaskGP(train_X , train_Y)

7

8 # Optimize the lengthscales of the model

9 mll = ExactMarginalLogLikelihood(model.likelihood , model)

10 fit_gpytorch_mll(mll);
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Listing 4.2: Example of including a new observation via initialization of a new model
and optimizing the lengthscales.

The other method is to use the build-in method condition on observation, as shown
in Listing 4.3. This method should be used, if the model supports fantasizing (e.g. needed
for MC acquisition functions such as the Knowledge Gradient acquisition function).

1 # Condition model on new observation

2 model = model.condition_on_observations(new_x , new_Y)

3

4 # Optimize the lengthscales of the model

5 mll = ExactMarginalLogLikelihood(model.likelihood , model)

6 fit_gpytorch_mll(mll);

Listing 4.3: Example of including a new observation via condition on observation and
optimizing the lengthscales.

The conditioning has the benefit that no new model with default lengthscales is initialised,
but just the new data is added to the model. In both cases it is needed to optimize the
lengthscales again. This is done in the same way as in Listing 4.1 line 21 to 23.

The problem concerning the default lengthscales after a new initialization can be solved
through starting the optimization with the previous values. Therefore the ”old” length-
scales are saved and then loaded to the model before starting the lengthscale optimization.

Acquisition Function Initialization

In Sec. 3.2 different acquisition function were discussed. Both the Expected Improvement
(EI) and Knowledge Gradient (KG) are implemented in BoTorch. The initialization can
be done according to Listing 4.4 for both the EI and KG acquisition function.

1 from botorch.acquisition import ExpectedImprovement ,

qKnowledgeGradient

2

3 # Initialization of the Expected Improvement (EI) function

4 EI = ExpectedImprovement(model , best_f=best_f)

5

6 # Initialization of the Knowledge Gradient (KG) function

7 qKG = qKnowledgeGradient(model , num_fantasies=NUM_FANTASIES)

Listing 4.4: Example of initialising the EI and KG acquisition function for a given model.
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In this case best f is the current posterior mean maximum. The constant NUM FANTASIES

describes the number of fantasy points during the MC process. An increased number of
fantasy points leads to a more accurate approximation of KG. However, this leads to the
need of both more memory as well as wall time. The q in the qKG originates from the
possibility to calculate a batch of size q points at once. The idea is to calculate q new
observations parallel before updating the model again (see [33]). In this case q defaults
to 1.

Acquisition Function Maximum

After the initialization of the acquisition function the maximum needs to be determined.
This optimization is usually done with the optimze acqf function. This is a wrapper for
the scipy.optimize.minimize function, but first some checks and rescaling are done if
needed.

1 from botorch.optim import optimize_acqf

2

3 candidates , acq_value = optimize_acqf(

4 acq_function=qKG ,

5 bounds=bounds ,

6 q=1,

7 num_restarts=NUM_RESTARTS ,

8 raw_samples=RAW_SAMPLES ,

9 )

Listing 4.5: Example of optimizing an acquisition function using the optimze acqf

function of BoTorch within specified bounds and a batch size of q = 1.

As shown in Listing 4.5, the boundaries of the optimization as well as the number of
restarts NUM RESTARTS and raw samples RAW SAMPLES need to be provided. In most cases
the boundaries for the optimization are the ones of the parameter space.

The number of raw samples is used in generating the initial conditions for the optimization
in BoTorch internally. A higher number of raw samples yields better initial conditions.
Starting for the initial conditions the optimization is done NUM RESTARTS times. In the
end an increase of both constants leads to better results. [4]

4.2.2 Inclusion of Gradient Observation

Based on the implementation seen in the previous subsection the question arises, how
to incorporate the gradient observations into the system. The goal is to construct a
model (a GP) that includes the derivative observation in a way discussed in Sec. 2.3 and
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[30] (Chapter 9.4). On top of the custom derivative enabled GP model the standard
acquisition function provided by BoTorch is used, as proposed by M. Balandat in [6].
However, BoTorch and specially the SciPy backbone converge quite badly if the inputs
are not (nearly) normalized and the outputs are not standardized. Therefore, a scaling
scheme was developed (see Sec. 4.2.2).

Custom derivative enabled GP

For the custom derivative enabled GP, the idea is to have inputs train X with dimensions
(n× d) and train Y with dimensions (n× (1+ d)), where n is the number of samples/ob-
servations and d is the is the number of dimensions of the problem. The first columns of
train Y are the function values, the columns 2 to d+ 1 are the derivatives of the function
with respect to the input dimensions. The GP therefore needs a multitask Gaussian
likelihood with d + 1 dimensions, as well as a kernel that supports d + 1 dimensions.

Based on the discussion in the GitHub Issue 636 of BoTorch [6], the best way is to start
with the GPyTorch tutorials on regression with derivative information in 1d and 2d ([18]
and [19]). In the tutorial for the 1d case [18] the following GP, as shown in Listing 4.6,
was proposed.

1 class GPModelWithDerivatives(gpytorch.models.ExactGP):

2 def __init__(self , train_x , train_y , likelihood):

3 super(GPModelWithDerivatives , self).__init__(train_x ,

train_y , likelihood)

4 self.mean_module = gpytorch.means.ConstantMeanGrad ()

5 self.base_kernel = gpytorch.kernels.RBFKernelGrad ()

6 self.covar_module = gpytorch.kernels.ScaleKernel(self.

base_kernel)

7

8 def forward(self , x):

9 mean_x = self.mean_module(x)

10 covar_x = self.covar_module(x)

11 return gpytorch.distributions.MultitaskMultivariateNormal(

mean_x , covar_x)

12

13 likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(

num_tasks =2) # Value + Derivative

14 model = GPModelWithDerivatives(train_x , train_y , likelihood)

Listing 4.6: GP model proposed in the GPyTorch tutorial [18] to incorporate derivative
observations in the model for a 1d case.

Based on that, some adaptions where made as shown in Listing 4.7. First, the likelihood
was included into the init function as attribute self.likelihood. Secondly, a
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new variable dim was introduced defined as train X.shape[-1]. The dimensionality of
the likelihood is now dynamically controlled via the dim variable. In addition, in the
setting of the base kernel a individual lengthscale for each dimension is set via the flag
ard num dims=dim.

1 class GPWithDerivatives(GPyTorchModel , ExactGP , FantasizeMixin):

2 def __init__(

3 self ,

4 train_X ,

5 train_Y ,

6 ):

7 # Dimension of model

8 dim = train_X.shape[-1]

9 # 1+d dimensional likelihood

10 likelihood = MultitaskGaussianLikelihood(num_tasks =1 + dim

)

11 super().__init__(train_X , train_Y , likelihood)

12 # Gradient -enabled mean

13 self.mean_module = gpytorch.means.ConstantMeanGrad ()

14 # Gradient -enabled kernel

15 self.base_kernel = gpytorch.kernels.RBFKernelGrad(

16 ard_num_dims=dim , # Separate lengthscale for each

input dimension

17 )

18

19 self.covar_module = gpytorch.kernels.ScaleKernel(self.

base_kernel)

20 # Output dimension is 1 (function value) + dim (number of

derivatives)

21 self._num_outputs = train_Y.shape [0] # 1 + dim

22 # Used to extract function value and not gradients during

optimization

23 self.scale_tensor = torch.tensor ([1.0] + [0.0] * dim ,

dtype=torch.double)

24

25 def forward(self , x):

26 mean_x = self.mean_module(x)

27 covar_x = self.covar_module(x)

28 return MultitaskMultivariateNormal(mean_x , covar_x)

Listing 4.7: GP model incorporating gradient observations adapted from the GP model
proposed in the 1d example by GPyTorch [18] and cleaned up / restructured
with insights from [35].

In the first trials the evaluation of the posterior mean of the model failed. Since the
model has a multitask structure, the posterior also returns multiple values. However,
since only the function value is of interest, the several outputs need to be transformed
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via a posterior transform. The weights in this case are 1 for the function value and 0
for all the derivatives. The core idea for the transformation can be found for example at
[9] or the tutorial shared by M. Balandat in [6]. This weighting is done since the goal is
to optimize the function value and not the derivative for now. The weights are stored in
a new attribute, the scale tensor. This is a tensor (vector) of size (d + 1) × 1 with a 1 in
the first entry and zeros for all others. After achieving a working prototype, a tutorial by
A. Yermakov [35] was found which rallies around the same challenge. The advantages of
the implementation (cleaner and more straight forward) were subsequently included in
this work.

Scaling

In order to achieve better numerical stability and performance, BoTorch and the SciPy
backend recommend for the inputs for the models to be normalized and the outputs to
be standardized. This is especially relevant, if the values a very large. Based on some
trails the effect is neglectable for values of order one.

BoTorch provided an special input transform and outcome transform for all the stan-
dard models. For example in the SingleTaskGP. [8]. These built-in transforms enable the
user to specify once how the data should be transformed. Afterwards, when evaluating
the posterior the user does not have to think about the scaling. One potential usage of
the SingleTaskGP with both transforms can be seen in the Listing 4.8 below.

1 model = SingleTaskGP(

2 train_X ,

3 train_Y ,

4 train_Yvar ,

5 input_transform=Normalize(d=train_X.shape [-1]),

6 outcome_transform=Standardize(m=train_Y.shape [-1]),

7 )

Listing 4.8: Example
for the SingleTaskGP with normalited inputs and standardized outputs
using the built-in transforms input transform and outcome transform.
Adapted from [8].

This works well, but this is not possible for the custom derivative enabled GP. In theory the
input transform would work that way, but the outcome transform would not work due
to the connection between the function values and their derivatives. For the normalization
of the input (x ∈ [0, 1]d) the standard approach in Eq. 4.2.1 was used. Depending on the
availability of boundaries xmin and xmax or the lower (lb) and upper bound (ub) were
used for the scaling. For the output, the idea was to just manually standardize the whole
train Y tensor individually for each column. The problem, however, is that this can not
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be done individually for each column. For the function values itself (first column of the
train Y tensor) the ordinary standardization with Eq. 4.2.2 can be done.

xnorm =
x − xmin

xmax − xmin
=

x − lb

ub − lb
(4.2.1)

yscaled =
y − µy

σy
(4.2.2)

For the derivatives one can not simply shift the values by the mean and divide by the
standard deviation. However, one must only rescale the derivatives in the same way as
the function values were scaled. The shift by the mean is not needed due to the chain
rule of differentiation. In addition, since the input values where also scaled (normalized),
this scaling must also be taken into account according to the chain rule. In the end, this
yields the scaling of the derivatives like

y′scaled =
y′

σy
⋅

1

xmax − xmin
=

y′

σy
⋅

1

ub − lb
. (4.2.3)

After the training data is rescaled in the above mentioned fashion, it is plugged into
the model. Due to the fact that now a model without transformations is just fed with
rescaled data, the output of the model is also scaled. Therefore, the result (evaluation of
the posterior) needs to be unscaled in the opposite fashion according to Eq. 4.2.4. For
the derivatives this must be done following Eq. 4.2.5 which also includes the input scaling
factors.

y = yscaled ⋅ σy + µy (4.2.4)

y′ = y′scaled ⋅ σy ⋅ (xmax − xmin) + µy (4.2.5)

In the context of scaling some additional aspects need to be considered. The most
prominent issue is the maximum amplitude of the derivatives. Since in the current
approach the output data is standardized (mean zero and standard deviation one), the
scaling factor is the standard deviation of the function values. As already mentioned, the
derivatives are only scaled, not shifted, so the values will not have a zero mean. But they
will also not have a standard deviation of one, but can be scattered with a substantially
larger standard deviation. Up to now, this has not been a problem, however, if the
maximum standard deviation is to large some rescaling could be needed. For example,
the standard deviation of each column could be calculated and the whole tensor could be
divided by the largest standard deviation. This would ensure that all columns fulfill the
recommendation of BoTorch at least with respect to the standard deviation (range).

Another question is, how often should the data be rescaled. On possibility is to rescale the
data each time a new observation is added to the set. This is needed, if one wants to ensure
that the training data is standardized in each iteration. However, one could argue that the
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purpose of rescaling is to enhance the numerical stability and performance/convergence
of the parameter optimization. Therefore, it can be sufficient if the mean and standard
deviation are reasonably near the expected values. In this case a rescaling could take
place after a certain number of iterations or after some threshold is reached. The benefit
of this would be that there is no need to determine the mean and standard deviation in
each iteration which will enhance the performance.

At this point the data is rescaled in every iteration. The scaling parameters are saved in
each iteration along with all the other data. This method enables the possibility to load
the (scaled) model later on and unscale the data. This includes the scaling of the test
inputs and the unscaling of the model outputs. The scaling method can be controlled in
the config.yaml file.

However, in the future the implemented scaling capabilities may not be enough and some
of the above described approaches or another, maybe more sophisticated approach will be
needed. An implementation of an additional scaling method should be feasible without
too much work.

4.2.3 Package Usage

The package provides a command line interface for bayoptder. The argparser supports a
number of different arguments listed below alongside a short description.

• --path: The path to the config.yaml file.

• --output: The path to the output file.

• --action: The action to perform. It can be one of the following:

– all: Calls main.calc data() to conduct all tasks (default).

– calc: Calls main.calc data() to calculate the data.

– plot: Calls plot data.plot data() to generate a 1D or 2D plot of the result.

– conv: Calls plot data.plot convergence() to generate a convergence plot.

• --start: The number of samples to start plotting from. The default is 0.

• --initial data: The path to the initial data. The default is None.

The most important ones are the first three. Starting with the --path argument, which
is the relative path to the config.yaml file. In this file all relevant parameters for the
calculations are defined. Some examples can be found in the GitHub repository of the

28



package. The next argument is the output path, which defines where the results will be
saved to. The third important argument is the --action. This controls which of the
implemented processes are started. The processes can be split into the calculation/opti-
mization according to Fig. 3.1 and two plotting processes. The plotting is on the one hand
the generation of static plots as described in Sec. 5.1 and on the other the generation
of convergence plots according to Sec. 5.2. By default all three processes are triggered.
However, if the calculation was already done and the iterations where more than 10
samples were present should be done, the arguments --action="plot" and --start=10

would be used. The last argument is the initial data option, where the location to
already sampled training data can be provided.
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5 Visualization

After the first initial runs of BoTorch in a Jupyter Notebook 1 the question arose about the
best way to visualize the data. In the long run, the goal is to create publication-quality
plots. Additionally, a tool of much help to analyze the data and the model exploratory
and to visually interpret whether the model is functioning correctly.

There are four main parts that are of interest for the basic visualization:

• training data

• posterior mean

• confidence intervals

• acquisition function

Later on more quantities, like the observed gradients or the ground truth of the toy
models, are of interest. These need to be added subsequently.

In the following, the different ideas and tools used for the visualization are discussed.
First starting with a simple implementation of 1D and 2D plots, followed by a more
sophisticated interactive approach that also allows exploratory data analysis based on
plotly/dash2. At the end of the optimization the data is saved as netCDF files using
xarray3 ([21] and [22]) which are later on used for the visualization.

5.1 Static 1D/2D Plot

At the beginning, the first step was to identify the simplest version of a plot. Therefore
the starting point was to visualize the first three points of the list above for a 1D case.
The most common way to plot data in python is the plotting library matplotlib 4.

1see https://jupyter.org/
2see https://dash.plotly.com/
3see https://xarray.dev/
4see https://matplotlib.org/
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Training Data

The plotting of the first point, the training data, is quite straight forward and shown in
Listing 5.1. Since the training data is stored in the train data.nc file, the first step is to
load the netCDF file with xr.open dataset() from the xarray library. The training data
is then just plotted with the plot() function of matplotlib. If gradient information is also
included in the training data than, it will be plotted in 1D in form of linear extrapolation
as a tangent at the data point.

1 train_data = xr.open_dataset(f"{path}/ train_data.nc")

2 train_x = train_data.train_x.values

3 train_y = train_data.train_y.values

4 train_dy = train_data.train_dy.values

5

6 # Plot training data as black stars

7 ax.plot(

8 train_x

9 train_y ,

10 "k*",

11 label="observed values",

12 )

13

14 # Plot training data gradients

15 if train_data.attrs.get("do_grad"):

16 delta = 0.05

17 l = train_x - delta

18 r = train_x + delta

19 yl = train_y - delta * train_dy

20 yr = train_y + delta * train_dy

21

22 x_coords = np.stack ([l, r])

23 y_coords = np.stack ([yl, yr])

24

25 ax.plot(

26 x_coords ,

27 y_coords ,

28 "k",

29 label="observed derivative",

30 )

Listing 5.1: Minimal example of loading and plotting the training data stored in the
train data.nc file as black stars into a existing figure using the xarray
open dataset() function to load the data and the matplotlib plot function
to plot the data.

Note that the .values is needed to access the data within the xarray DataSet or
DataFrame.
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Posterior mean and confidence region

The next step is to plot the posterior mean along with its confidence interval. To get the
posterior mean one needs to evaluate the model posterior. This evaluation is done on
so-called test points, which are loaded from the test data.nc netCDF file in the same
way as the training data before. Getting the model is a bit trickier. The model parameters
are save in a model.pth file. In order to have the correct model at hand, first a fresh
model needs to be initialized with the training data in a similar fashion as described
in Sec. 4.2. However, the training data needs to be scaled in the same way as in the
calculation (specified in the config.yaml and the attributes of train data.nc). Since
now the model has the default lengthscales, the trained lengthscales of the optimization
are needed. Therefore, the saved model parameters are loadaed form the model.pth

file into the model through model.load state dict(). To get now the posterior mean,
the model is evaluated on the test points using the method model.posterior(test x)

method and then the mean is calculated. To determine the confidence bands, the bulit-in
PyTorch method confidence region() is applied. The plotting is then again quite
straight forward. The mean is just plotted as a line with the plot() function. The
confidence region is shaded using the fill between() function. The whole procedure is
sketched as a minimal example in Listing 5.2.

1 #load test data

2 test_data = xr.open_dataset(f"{path}/ test_data.nc")

3

4 # initialize model

5 model = SingleTaskGP(

6 train_X ,

7 train_Y ,

8 )

9 # load correct lengthscales

10 model.load_state_dict(torch.load(f"{path}/model.pth"))

11

12 # evaluate model

13 posterior = model.posterior(test_data.x.values)

14 mean = posterior.mean

15 lower , upper = posterior.confidence_region ()

16

17 # plot posterior mean

18 ax.plot(test_x , mean , "b", label="mean")

19

20 # shade confidance region

21 ax.fill_between(

22 test_x ,

23 lower ,

24 upper ,

25 alpha =0.3,

26 label="confidence",
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27 )

Listing 5.2: Minimal example of calculating and plotting the posterior mean along with
the confidence interval including the initialization, loading and evaluation of
the model on given test points.

If the data is scaled as described in Sec. 4.2.2, the test data need to be normalized
according to Eq. 4.2.1 and the posterior mean and confidence bands need to be unscaled
according to Eq. 4.2.4. If some different scaling scheme is used, the corresponding
unscaling needs to be done at this point.

In more than one dimension the test data needs to be a meshgrid instead of just a
linear vector which yields matrices for the posterior and the confidence bound. If the
problem has more dimensions than the figure, a planar cut must be done for each non-axis
dimensions. Typically, this value will be the midpoint of the dimension’s range.

Acquisition values

Especially with the discussion about the different acquisition function in mind (see
Sec. 3.2) it would be interesting to visualize them. In the course of the optimization
loop the acquisition function is initialized (see Sec. 4.2.1) and then the maximum of
the acquisition function is calculated (see Sec. 4.2.1) and the location is taken as next
sampling location. In order to display the acquisition values, first the acquisition function
needs to be evaluated at all test points. The approach is similar to the evaluation of
the posterior (see Listing 5.2) including the considerations concerning the scaling. A
minimal example of the evaluation and plotting of the acquisition function is displayed
in Listing 5.3.

1 #load test data

2 test_data = xr.open_dataset(f"{path}/ test_data.nc")

3

4 # evalute acquisition function

5 acq_func_values = acq_func(test_data.x.values)

6

7 # plot acquisition values

8 ax.plot(

9 acq_func_values ,

10 label="acq func",

11 )

Listing 5.3: Minimal example of the evaluation of an analytic (non MC) acquisition
function and plotting of the acquisition values for given test points.
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As previously mentioned for the evaluation of the posterior, if the model is trained with
scaled (normalized) inputs the test data test data.x.values also need to be scaled in
the same way. The acquisition values do not need to be unscaled like the posterior mean,
as they are not tied to the absolute function values. Additionally, since the next iteration
location is selected at the argmax, the absolute values are irrelevant, only the relative
values across the domain matter. If the model operates in more than one dimension, the
data handling must be adjusted accordingly.

It is important to emphasise that a continuous evaluation of the acquisition function is
only possible for analytic acquisition functions. For MC acquisition functions, evaluating
different test points requires some recalculation. Due to performance reasons, the results
of the multi-start runs of the acquisition function maximization are saved and can be
plotted as data points. For both analytic and MC cases, the maximum of the acquisition
function is also indicated. Although there are methods to address this issue, they come
with difficulties and numerical instabilities. An extended discussion about the can be
found at [5] and [7].

1D examples

In the following, two examples of such a plot for the one dimensional case are shown. In
Fig. 5.1 in the upper subplot the training data (observed values), the posterior mean
(mean), its maximum (best prediction), the confidence interval (confidence) and the
ground truth (true values) are shown. In the lower subplot the evaluation of the Expected
Improvement acquisition function is shown with its maximum indicated. In both plots,
the vertical dashed line marks the location of the next iteration.

In Fig. 5.2 the same setup is shown, but with the use of gradient information (which is
indicated by the tangents at the observations). In this case, the Knowledge Gradient
acquisition function is used. Therefore, in the lower subplot shows the results of the
multi-start gradient ascent to find the best acquisition value. As in the previous figure,
the location of the next sample points is indicated with a dashed vertical line.

5.2 Convergence

To compare the performance of different methods, a metric is needed to quantify the
quality of the results. In general, two different ways to quantify the convergence of the
result for the toy models with known analytical solutions were thought of. One method
measures the absolute difference between the value of the best prediction (maximum
posterior mean) and the known analytical maximum. The other method measures the
distance in the parameter space between the location of the best prediction and the
analytical maximum.
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Figure 5.1: Plot of the training data (observations) alongside the posterior mean, its max-
imum and confidence interval, as well as the ground truth and the Expected
Improvement acquisition values with the next sampling point indicated with
a vertical dashed black line.

The first one is straightforward, the absolute difference is calculated at each iteration
and plotted over the number of iterations. The second one is a bit more tricky. The
question is how to calculate the distance between to points in the parameter space. For
a one dimensional system this is straightforward. However, in in a multidimensional case
this is a bit challenging. The initial approach is to use the L2-norm. This is reasonable
as long as the lengthscales are similar. In case of broadly ranging lengthscales some kind
of weighting factor of the different dimensions that correlate with the lengthscale could
be useful. However, this was not implemented yet, but could be done in future work.

For real world applications where the ground truth is unknown, it is not possible to plot
the differences to the ground truth as described above. Instead, some modification to the
convergence approaches need to be done. First, the maximum posterior mean can be
plotted over the iterations, and its behavior can be observed. Alternatively, the relative
change of the maximum can be plotted, possibly over a few iterations, as improvements
may not occur in every iteration. For the second method, where the distance in the
parameter space is measured, the distance from the origin or the current best location
can be plotted over the iterations. This approach allows the movement of the location of
the maximum to be quantified.
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Figure 5.2: Plot of the training data (observations) with the gradient alongside the
posterior mean, its maximum and confidence interval, as well as the ground
truth and the Knowledge Gradient acquisition values with the next sampling
point indicated with a vertical dashed black line.

5.3 Interactive UI

When dealing with more than two dimensional parameter spaces, the visualization of
the data through 1D or 2D projections and plotting via matplotlib becomes more and
more challenging. In more than two dimensions, new questions arise when evaluating the
posterior. In one and two dimensions this was quite straightforward, just a vector or a
meshgrid was needed. However, in a three or more dimensional case where two of this
dimensions are along the axis of a 2D plot, there are two possibilities to visualize the
posterior. Either one takes the mean over all the other dimensions, or selects a certain
value of the other dimensions to evaluate the posterior. In order to conduct exploratory
data analysis the latter approach seems more useful. In addition, it would be beneficial
if one could quickly change the input dimensions to investigate different correlations.
Especially for debugging in the development and exploratory data analysis later on, an
interactive tool would be of much help.

In the bachelor thesis of the author, already a similar problem namely the Visualization
of response data from models with high dimensional input spaces (see [20]) was treated. In
the course of the thesis the author developed the interactive graphical analysis tool within
proFit [1]. The details of the implementation along with a user guide of the original
tool can be found in [20] and [29]. In the course of this thesis the tool was extracted
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from proFit and adapted/enhanced to work as a standalone solution. The tool is called
proFitUI and the code is available at https://github.com/itpplasma/profitUI.

The front-end of the tool has remained nearly unchanged. However, in the back-end some
substantial changes were made. Within proFit the data was mostly stored in hdf5 binary
files (see [28]), while the models where implemented through a universal surrogate class
with specified methods to evaluate the posterior (see [27]). Due to the use of netCDF
as file format in the bayoptder and the usage of GPyTorch models some adaptions were
needed. Especially the different ways to access the data caused a lot of work. Previously
the dropdown values were used for indexing via a mapping on a linear index. Due to
the use of xarray.DataSets the indexing is based on variable names and slicing without
handmade masks is possible. In addition, for the new structure the calculation and
visualization is clearly separated. The data is saved with bayoptder and then loaded with
proFitUI. In proFitUI the training data (train data.nc), the model (model.pth) and,
if available, the test data (test data.nc) are loaded and preprocessed. The evaluation
of the model posterior as well as the unscaling (see Sec. 4.2.2) is done within proFitUI.

In Fig. 5.3, 5.4, and 5.5 the proFitUI interface with all the different filter and model
options is shown. The data depicted in the figures is taken from the paper of Grassler et
al [17] where the tool was already used.
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Figure 5.3: Example of a scatter plot with proFitUI where one input on the x-axis and the output on the z-axis along with
the posterior mean of the model for different values of a third variable including the confidence intervals. The data
shown was taken from [17].
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Figure 5.4: Enlarged image of the actual plot in Fig. 5.3 without all the control panels. The data shown was taken from [17].
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Figure 5.5: Example of a scatter plot with proFitUI where two input are on the x- and
y-axis and the output on the z-axis along with the posterior mean of the
model. The data shown was taken from [17].
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6 Comparison of Optimizers

Following the discussion on the implementation, a look on actual results will be shown.
Therefore, some benchmarks were done on several toy models. The goal was to compare
the Expected Improvement (EI) and the Knowledge Gradient (KG) acquisition function
with and without the use of gradient information and also to each other.

6.1 1D Toy Model

As a simple and intuitive mock-up case the function y(x) = sin(10x) ⋅ cos(5x) + 0.5x was
used in the interval x ∈ [0,2.2]. This lead to a ground truth (testfunction) with four
maxima, three local and one global (within the search space). The idea was to sample
the function at N0 = 3 random locations and then run the optimization for four iterations
to end up with seven observations.

Expected Improvement (EI)

The first case, the Expected Improvement (EI) acquisition function with and without
gradient information was investigated. The iterative process is shown in Fig. 6.1. In the
upper row the observations (black stars) are shown as sampled from the testfunction
(ground truth in dotted red) alongside the posterior mean with the according 95%
confidence interval (blue). The current maximum of the posterior mean, the best
prediction is shown as red star. In the lower row, the acquisition function value is plotted.
The dashed vertical line indicates the location of the maximum of the acquisition which
is the proposed location for the next sample.

In the second run, the gradient was also observed and included into the model as described
in Sec. 2.3. In Fig. 6.2 the same three starting points where used as before in Fig. 6.1.
The gradient observation is visualised by the black line around the data point. This
represents a linear extrapolation of the slope at the data point as a tangent.

When comparing the two figures (Fig. 6.1 and Fig. 6.2) it is visible that even with only
four points the posterior mean resembles the ground truth a lot better when the gradient
information is included in the model. Especially near the observations the slope matches
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Figure 6.1: Four iterations of the Bayesian Optimization of the testfunction y(x) =
sin(10x) ⋅cos(5x)+0.5x for the parameter space of x ∈ [0, 2.3] with zero noise,
N0 = 3 and the Expected Improvement (EI) acquisition function without
derivative information.
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Figure 6.2: Four iterations of the Bayesian Optimization of the testfunction y(x) =
sin(10x) ⋅ cos(5x) + 0.5x for the parameter space of x ∈ [0,2.3] with zero
noise, N0 = 3 and the Expected Improvement (EI) acquisition function with
derivative information.
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very well. In addition, the uncertainty near the observations is a lot smaller. After
sampling only five new points (eight in total) the testfunction is very well described by
the model (posterior mean) and the objective (to find the maximum) is already fulfilled
with only five points. In contrast, in the case without the derivative information after
eight points the model does not really resemble the testfunction. The lengthscale is too
long and the current best prediction is at the highest local maximum, but not the global
maximum of the search space. For this comparison it can be concluded that the inclusion
of the gradient information increases the quality of the model dramatically.

Knowledge Gradient (KG)

For the toy model, now instead of the Expected Improvement (EI) acquisition function
the Knowledge Gradient (KG) acquisition function is used. The case without gradient
information is show in Fig. 6.3. In this case, due to the Monte Carlo implementation
of the KG in BoTorch it is not possible to display the acquisition function over x. The
maximum of the acquisition function is found using a multi-start gradient ascent (see
Sec. 5.1), therefore it is only possible to show the result of each of the gradient ascents.
In the end, the location with the largest acquisition value is used as location for the
sampling in the next iteration.

In comparison in Fig. 6.4 the derivative observations are included into the model. Again
the derivative observation are shown by the linear extrapolation of the slope at the
observed points with a tangent.

Similar to the discussion for the Expected Improvement (EI) it is clearly visible that the
inclusion of the gradient information visibly yields significantly better results. The per-
formance improvement will be discussed in detail in the following section on convergence.

Convergence

As discussed in the previous section the result appears to be significantly better when
using gradient information in addition. Now the interesting question is, how much
does the optimization improve when using the gradient information. Therefore, the
convergence calculation described in Sec. 5.2 is used to quantify the difference in the
location, whereas for illustrative reasons a slightly different approach was chosen for the
values.

In this case, the analytical ground truth for the toy model is known. In the following,
the known ground truth for the global maximum is slightly above y = 2.4 and indicated
with a black dashed line. In addition, the best prediction (maximum posterior mean in
Fig. 6.1 to 6.4) and the best training point (observation) is plotted for each iteration.
This is shown for both acquisition function and with and without gradient information
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Figure 6.3: Four iterations of the Bayesian Optimization of the testfunction y(x) =
sin(10x) ⋅ cos(5x) + 0.5x for the parameter space of x ∈ [0,2.3] with zero
noise, N0 = 3 and the Knowledge Gradient (KG) acquisition function without
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N0 = 3 and the Knowledge Gradient (KG) acquisition function with derivative
information and a batch size of q = 1.
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(Fig. 6.1 to 6.4) in Fig. 6.5.

(a) Expected Improvement (EI) without gradi-
ent information (see Fig. 6.1).

(b) Knowledge Gradient (KG) without gradient
information (see Fig. 6.3).

(c) Expected Improvement (EI) with gradient
information (see Fig. 6.2).

(d) Knowledge Gradient (KG) with gradient in-
formation (see Fig. 6.4).

Figure 6.5: Convergence of the current best prediction (maximum posterior mean - red
stars), the best training points (observation - black stars) in Fig. 6.1 to 6.4
compared to the analytical maximum for all four variants of the 1D toy model.

The visual assessment in the previous chapter is now shown quantified in a sense that
due to the inclusion of the gradient information the maximum values are found with
5 observations (data points) for both acquisition functions. The two models without
derivative information need 8 (Knowledge Gradient) and 11 observations (Expected
Improvement) to locate the maximum. An interesting observation is that the model with
the Knowledge Gradient acquisition function does not sample a training point near the
maximum. Nevertheless, the model predicts the maximum values very good, but has
small deviations from the analytical solution for the iterations with 5 and 6 observations.
The prediction approaches the analytical value in the end, even though no data point
was sampled near the maximum.
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As second way to inspect the convergence, the distances of the location of the analytical
maximum and the current best prediction where determined. The resulting convergence
curves are displayed in Fig. 6.6.

(a) Expected Improvement (EI) without gradi-
ent information (see Fig. 6.1).

(b) Knowledge Gradient (KG) without gradient
information (see Fig. 6.3).

(c) Expected Improvement (EI) with gradient
information (see Fig. 6.2).

(d) Knowledge Gradient (KG) with gradient in-
formation (see Fig. 6.4).

Figure 6.6: Convergence of the absolute distance between the location of the current best
prediction (maximum posterior mean - red stars in Fig. 6.1 to 6.4) and the
location of the analytical maximum for all four variants of the 1D toy model.

In the investigation of the convergence of the distance between the best prediction
x∗ and the analytical maximum xtrue two different aspects are visible. For the cases
where no derivative information was used the global maximum was not found within the
iterations investigated (see Fig.6.1 and 6.3). Both needed more iterations and get close
to the analytical maximum after 7 (Knowledge Gradient) and 11 observations (Expected
Improvement). Interestingly the distance in the location for KG without gradient is close
after 7 iterations, whereas the values is quite a bit of still after 7 iterations. However, in
the cases with derivative information the global optimum was found and approached value
for the distance in the order of 10−5 (EI with gradients) and 10−4 (KG with gradients).
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One can see that the distance decreases until some threshold is reached. This result is to
be expected if the figures Fig. 6.6c and 6.6d are compared with Fig. 6.5c and 6.5d.

6.2 2D Toy Model

Following the 1D toy model, the next more complex, but still easy to visualize case is a 2D
toy model. The idea arose upon studying the 2D regression example from GPyTorch [19].
Instead of the Franke function a multiplication of sinus and cosine was used. The
boundaries for the parameter space of the testfunction y(x0, x1) = sin(10πx0) ⋅ cos(5πx1)
where chosen in a way that along the x0 direction on local maximum and one minimum
(one wavelength) and along the x1 direction two local maxima and one local minimum
(1.5 wavelength) fit. In Fig. 6.7 the ground truth for the 2D toy model is shown.

Figure 6.7: Analytic solution (ground truth) for the 2D toy model y(x0, x1) = sin(10πx0) ⋅
cos(5πx1).

The optimization is done in a similar way to the 1D case described in Sec. 6.1. In
this case at the start N0 = 5 observations where selected in a space filling manner as
initial condition. For the visualization some adaptions needed compared to the approach
described in Sec. 5.1 since now the problem is of higher dimension. Therefore, the
matplotlib colormaps are used.
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Expected Improvement (EI)

At first, the Expected Improvement (EI) acquisition function without and with gradient
information was investigated. In Fig. 6.8 the optimization is shown for eight iterations
without gradient information and in Fig. 6.9 with gradient information. In the left frame
the maximum posterior mean is shown as a colormap along with the observations (black
stars). The current best prediction is indicated as blue cross while the best candidate for
the next sampling is indicated as a black cross. On the right panel the acquisition values
a shown alongside the best candidate (black cross).

In Fig. 6.8 it is visible that the Expected Improvement acquisition function tends to
sample in the proximity of good observations as described in Sec. 3.2.3. This effect is in
this 2D case even more pronounced than in the 1D case in Fig. 6.1. The strong single
island like behaviour of the acquisition function in the last four iterations indicates that
the usage of a LogEI acquisition function could be useful, but is beyond the scope of the
thesis.

In case of the derivative enabled variant, it is clear in Fig. 6.9 that the result is significantly
better than in the non-gradient information case. The result even after a few iterations
resembles the ground truth a lot better. Already then two of the three maxima were
found and the third is at least identified as a local optimum.

Knowledge Gradient (KG)

The same 2D toy model was also optimized for the Knowledge Grdient (KG) acquisi-
tion function. Again this was done without (Fig. 6.10) and with gradient information
(Fig. 6.11). As discussed before (see Sec. 5.1 and 6.1) the acquisition values can only be
plotted for the results of the multi-start gradient ascents. In each plot on the right side
there are eight acquisition values shown. However often there are fewer points visible,
this is due to the fact that several gradient ascents yield the same location as candidate
point. The best candidate is indicated with a black cross in both plots.

One can see that the model with the gradient information outperforms the gradient-free
model significantly. In the non-gradient case, one local optimum is found and predicted
quite well, whereas in the gradient case, similar to the EI case, two maximum are well
described and the third one is slightly visible. A more detailed discussion about the
performance can be found in the following section section on convergence.

In Fig. 6.12 a 3D view of the model with 12 observations (Model of Fig. 6.11 with
additional candidate point included) is shown using the proFitUI (see Sec. 5.3).
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Convergence

Apart from the visual interpretation of the figures (Fig. 6.8 to Fig. 6.11) a look on the
convergence can be insightful. However, since the model has three equal maxima the
evaluation of the convergence is not trivial. There are two approaches with different
goals. One is to look at the best prediction and not care about which of the maxima
this is at how good the other maxima are described. The other method is to split the
parameter space in three subspaces (around the maxima) and look at the best prediction
in each of the subspaces.

In the following the model was divided into three subspaces around the maxima, indicated
in Fig. 6.7 with the black lines. In Fig. 6.14 the convergence of the best prediction and
the best observation is depicted for each of the subspaces. All maxima have a values of
y = 1, which is indicated with the dashed black line. For each subspace the best prediction
(dashed line) and best observation (dotted line) is shown in the colors blue, orange and
green.

As expected from Fig. 6.8 the maximum of subspace 2 approaches the true maximum
well in Fig. 6.13a, while the other two maxima are not found at all. In addition, since no
observation is made in subspace 3 there are no observations (dotted line) for this subspace
in the convergence graph. The distance between the analytical maximum and the best
prediction and the best observation (L2-norm) shows similar behaviour. Especially when
looking at the distance, some interesting effects are visible. First, in the EI method,
the best prediction tends to improve parallel to the best observations. In contrast, for
KG, the best prediction improves even when the best observations stays constant. This
behavior occurs because KG does not sample at the best location but rather at a location
where the maximum posterior mean increases the most. Another noteworthy effect is
observed in the KG case without derivative information. Here the optimization of the
lengthscales appears have been gotten stuck in a local minimum between sample 7 and 11.
As seen in Fig. 6.10 the posterior mean values are comparably close to zero, indicating
that the lengthscale was way too long. However, the lengthscale optimization escaped
the local optimum after 11 samples. Since the model parameters of the previous iteration
are used as starting value for the next (as described in Sec. 4.2.2) it could be beneficial to
try a different set (perhaps the default parameters) after a certain number of iterations
to avoid such local problems. This adjustment is something that could be done in the
future work.

Another illustration of the optimization can be see in Fig. 6.15. Here the movement of
the best prediction and best observation on the 2D plane is shown. In the case with
gradient information (Fig. 6.15c and 6.15d) the location is found nearly at initialization
which is visible through the high precision around the maximum.
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Figure 6.8: Eight iterations of the Bayesian Optimization for the testfunction y(x0, x1) =
sin(10πx0) ⋅cos(5πx1) with zero noise, N0 = 5 and the Expected Improvement
(EI) acquisition function without derivative information.
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Figure 6.9: Eight iterations of the Bayesian Optimization for the testfunction y(x0, x1) =
sin(10πx0) ⋅cos(5πx1) with zero noise, N0 = 5 and the Expected Improvement
(EI) acquisition function with derivative information.
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Figure 6.10: Eight iterations of the Bayesian Optimization for the testfunction y(x0, x1) =
sin(10πx0) ⋅ cos(5πx1) with zero noise, N0 = 5 and the Knowledge Gradient
(KG) acquisition function without derivative information.
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Figure 6.11: Eight iterations of the Bayesian Optimization for the testfunction y(x0, x1) =
sin(10πx0) ⋅ cos(5πx1) with zero noise, N0 = 5 and the Knowledge Gradient
(KG) acquisition function with derivative information.
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Figure 6.12: 3D scatter plot and responce surface of the model with the Knowledge
Gradient (KG) acquisition function with gradients information with N = 12
observations (Fig. 6.11 with the additional iterations included) visualized
with proFitUI.
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(a) Expected Improvement (EI) without gradi-
ent information (see Fig. 6.8).
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(b) Knowledge Gradient (KG) without gradient
information (see Fig. 6.10).
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(c) Expected Improvement (EI) with gradient
information (see Fig. 6.9).
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(d) Knowledge Gradient (KG) with gradient in-
formation (see Fig. 6.11).

Figure 6.13: Convergence of the current best prediction (maximum posterior mean -
dashed line), the best training points (observation - dotted line) in Fig. 6.8
to 6.11) for each of the different subspaces (1: blue, 2: orange, 3: green)
compared to the analytical maximum for all four variants of the 2D toy
model.
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(a) Expected Improvement (EI) without gradi-
ent information (see Fig. 6.8).
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(b) Knowledge Gradient (KG) without gradient
information (see Fig. 6.10).
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(c) Expected Improvement (EI) with gradient
information (see Fig. 6.9).
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(d) Knowledge Gradient (KG) with gradient in-
formation (see Fig. 6.11).

Figure 6.14: Convergence of the euclidean norm of the location of the best prediction
(maximum posterior mean - dashed line), the location of the best training
points (observation - dotted line) in Fig. 6.8 to 6.11) for each of the different
subspaces (1: blue, 2: orange, 3: green) compared to the analytical location
of the maximum for all four variants of the 2D toy model.
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(a) Expected Improvement (EI) without gradi-
ent information (see Fig. 6.8).
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(b) Knowledge Gradient (KG) without gradient
information (see Fig. 6.10).
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(c) Expected Improvement (EI) with gradient
information (see Fig. 6.9).
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(d) Knowledge Gradient (KG) with gradient in-
formation (see Fig. 6.11).

Figure 6.15: Movement of the location of the best prediction (maximum posterior mean -
left side), the location of the best training points (observation - right side)
in Fig. 6.8 to 6.11) in a 2D plane for each of the different subspaces (1: blue,
2: orange, 3: green) compared to the analytical location of the maximum
(red crosses) for all four variants of the 2D toy model.
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7 Simsopt

In the previous section the performance of the developed package was assessed on two
toy models. As a next step it is interesting to apply the methods to an actual problem
in plasma physics. Therefore the optimization of coils for a fusion device, in this case a
stellarator, was chosen. In the following the optimization of the coils and its challenges
are described. The description is largely based on the review paper [23].

The design of a stellarator and the needed optimizations can be split in two major parts:

• Stage-I: magnetic field based on equilibrium models,

• Stage-II: coil shape and current designed to generate the desired magnetic field.

In the remainder of this section the main area of interest will be the above mentioned
Stage-II. The focus lies on the optimization of the coils, not the magnetic equilibrium.
For details on the determination of the magnetic field the reader is refered to [23].

For the optimization of the coils the Python package Simsopt1 (see [25]) is used. Sim-
sopt has high-level Python routines that call C++ and Fortran backends if needed for
performance.

The magnetic equilibria used for the coil optimization are taken from QUASR2. QUASR
(A QUAsi-symmetric Stellarator Repository) is a database of over 320,000 curl-free
stellarators and the coil sets that generate them, optimized for volume quasi-symmetry.
In general, the configurations can be classified by the number of coils per half period.
This is equivalent to the number of different coil shapes.

7.1 Stage-II Optimization

In a Stage-II optimization there are two different parts to be optimized. On the one hand
it is the coil shape and on the other the coil currents in order to represent the desired
magnetic field. This is done via the minimization of the target normal field on a given
surface.

1see https://github.com/hiddenSymmetries/simsopt
2see https://quasr.flatironinstitute.org/
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Since this thesis focuses on the optimization and not on the plasma physics itself, the
approach is mainly based on the Simsopt tutorial on Stage-II optimization found at [31].
The first idea was to optimize the Fourier modes of the coils (the coil shape). However, if
one wants to include 3 or 4 orders of the Fourier coefficients for a configuration with one
coil per half period, the problem has a dimension of order 102. It soon turned out, that
this is not possible with the current state of the bayoptder package. To make this work,
a better scaleable kernel and physical informed priors for the lengthscales could help.

Based on this observation, the next approach was to take a configuration from QUASR that
has 5 coils per field period, keep the Fourier coefficients fixed and just varys the currents
in the coils. This results in a much lower dimensionality. Therefore, the configuration
0124275 was selected (see https://quasr.flatironinstitute.org/model/0124275).
A picture taken from the site is shown in Fig. 7.1.

Figure 7.1: Picture of the configuration 0124275 with five coils per field period taken
from https://quasr.flatironinstitute.org/model/0124275.

7.2 Implementation

For the optimization, the idea was to use the optimizer developed within bayoptder instead
of the standard optimizer scipy.minimize. Therefore, first the magnetic surfaces and
the coil shapes are loaded into Simsopt. Since the trivial solution for a vanishing normal
magnetic field is a non-existing field, this must be avoided. To achieve this, the current
of the first coil was fixed. The other four can be varied which leads to a four-dimensional
problem.
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To compare the developed BO optimizer with the scipy.minimize three different calcu-
lations where made. The first was the optimization of the currents with the standard
optimizer using SciPy L-BFGS-B till convergence. Then L-BFGS-B runs with a differ-
ent number of iterations as a reference. To test the BO optimizer the same problem
was optimized with both acquisition functions (EI and KG), as well as without and
with gradient information. In Fig. 7.2, Fig. 7.3, and Fig. 7.4 the convergence of the
methods is compared. For all variants some boundaries and initial values needed to be
defined. The SciPy optimizer needs one location as initial guess. The values for the
currents from QUASR are in the order 106. The parameter space for the BO was set to
[−1 ⋅ 107,1 ⋅ 107]4 with initial space filling sampling at N0 = 4 locations. As initial guess
x0 for the L-BFGS-B runs the corner of the parameter space with the lowest values was
used.
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(a) Expected Improvement (EI) without gradi-
ent information.
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(b) Expected Improvement (EI) with gradient
information
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(c) Knowledge Gradient (KG) without gradient
information.
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(d) Knowledge Gradient (KG) with gradient in-
formation.

Figure 7.2: Convergence of the best prediction and best observation of the optimization
of the currents of the coils 2 to 5 of the configuration 0124275 from QUASR
using the SciPy L-BFGS-B optimizer and the BO optimizer from bayoptder
with two different acquisition functions and without and with gradients.

62



0 5 10 15 20 25 30
samples

10 5

10 4

10 3

10 2

10 1

100

101

102

|
*

y t
ru

e|
best prediction
best observation
L-BFGS-B reference

(a) Expected Improvement (EI) without gradi-
ent information.
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(b) Expected Improvement (EI) with gradient
information.
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(c) Knowledge Gradient (KG) without gradient
information.
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(d) Knowledge Gradient (KG) with gradient in-
formation.

Figure 7.3: Convergence of the best prediction and best observation relative to the best
L-BFGS-B result of the optimization of the currents of the coils 2 to 5 of
the configuration 0124275 from QUASR using the SciPy L-BFGS-B optimizer
and the BO optimizer from bayoptder with two different acquisition functions
and without and with gradients.

In Fig. 7.2 it is visible that the cases with gradient observations perform significantly
better than the ones without gradient observation as expected from the toy models. It is
apparent that the KG case converges faster towards the solution than the EI. In the case
with gradient information the best prediction of the model is near the solution right at
initialisation, even though the best observations are still far away. This again shows the
immense improvement due to the inclusion of the gradient information.

In Fig. 7.3 it is visible that the convergence even for the gradient informed cases is limited
to order 10−4 for the EI gradient case and order 10−3 for the KG gradient case. The
slightly worse value for the KG is probably based on the fact that the samples are further
away from the best prediction and the model adds some uncertainty. The lower bound
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(a) Expected Improvement (EI) without gradi-
ent information.
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(b) Expected Improvement (EI) with gradient
information.
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(c) Knowledge Gradient (KG) without gradient
information.
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(d) Knowledge Gradient (KG) with gradient in-
formation.

Figure 7.4: Convergence of the location of the best prediction and best observation
relative to the best L-BFGS-B result of the optimization of the currents of
the coils 2 to 5 of the configuration 0124275 from QUASR using the SciPy
L-BFGS-B optimizer and the BO optimizer from bayoptder with two different
acquisition functions and without and with gradients.

of about 10−4 is probably due to numerical limitations in the inversion of the matrix in
PyTorch. However, the origin of this limitation can only be guessed.

Especially in the cases with gradient information it is visible that the location (see
Fig. 7.4) is fixed with only a few iterations. This is consistent with the behaviour of the
prediction for the values (see Fig. 7.2). However, the distance to the solution of the first
run is quite large (order 105). This is a strong indication that the problem has a local
minimum there and in the course of the 30 iterations no other local optimum is found.
This behaviour is similar to the observations made for the 2D toy model, where the
non-gradient informed versions did not find the third maximum in the observed number
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of iterations. Therefore, an acquisition function that has a stronger focus on exploration
could help here.

The insights of this example yields the conclusion that the gradient informed method is
significantly better at finding optimum compared to the non-gradient case. However, the
accuracy is limited to the order 10−4, probably due to the matrix inversion. Therefore
it can be useful to use BO to find the local optima and subsequently use a gradient
optimizer like L-BFGS-B to find the actual optimum.
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8 Conclusion and Outlook

In the course of this thesis the Python package bayoptder was developed. It combines
the Bayesian Optimization approach of BoTorch with the SAA-approximation and the
MC acquisition function with the usage of gradient information. The new method shows
promising results and significantly increased performance through adding the gradient
information.

The effect of the gradient information is vividly shown for the 1D toy model (see Sec. 6.1).
The different behaviour of the two acquisition functions Expected Improvement (EI) and
Knowledge Gradient (KG) are discussed with respect to exploration vs. exploitation and
the computational cost. For the 2D toy model (see Sec. 6.2) the benefit of the gradient
information is amplified and the different kinds of convergence criteria with respect to
the value or the location are presented.

In Sec. 7 the method is applied to a Stage-II optimization problem of a stellarator. A
configuration with results near the optimum was found, but also the limits of the current
implementation became apparent, especially with respect to the dimensional scaling.

In addition, the interactive visualization tool originally developed for proFit was further
enhanced. It now is available as a standalone package named proFitUI and can be used
for exploratory data analysis and visualization. With regard to the visualization the
possibility for further improvements arose, as this was not the main focus of the thesis.
This includes, among other things, the possibility to display units, as well as more options
to control the non-axis parameters of the fits. In the future, it would be desirable to create
an interface between the plotly/dash backend and matplotlib, in order to generate plots
with matplotlib after setting the parameters and filters within the proFitUI interface.

The proFitUI package has already had a use in current research activities. The plasma
physics group at the Graz University of Technology applied the package in combination
with the bayoptder package for the publication of Grassler et al [17].

In the current state of bayoptder there is room for improvement. This includes the
scalability with respect to dimensions. However, this could be improved through the usage
of other kernels, which scale better with the number of dimensions. If the lengthscales of
the model spread over several orders of magnitude, the underlying lengthscale optimzer
encounters difficulties. Therefore, it could be a solution to assign physical informed priors
for the lengthscales. In the current state, the lengthscales from the previous iteration are
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used as the starting values for the new lengthscale optimization. Furthermore, it could
be useful to occasionally employ a different set of starting parameters to avoid getting
stuck in a local lengthscale optimum. In addition, the scaling of the observations before
conditioning the model could be improved. Instead of scaling in every iteration, there
could be a rescale after a fixed number of iterations, or else after a certain threshold is
reached.

Regarding the performance of the code, enhancements can be achieved. Since this is more
of a proof-of-concept, a lot of diagnostics and intermediate saving options are included
that slow down the calculation. Furthermore, with minor adaption to the code, it should
be executable on a GPU instead of an CPU. This modification is going to speed up the
computation.

In conclusion, the approach shows promising results. After finding the location of
the optima by using the Bayesian global optimization with derivative observation, a
subsequent application of a gradient optimizer like CG of L-BFGS-B seems to be the
most promising use-case. However, some further improvements, as mentioned above, can
be incorporated to achieve even better results.
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