
Julian Göschl, Bsc

Creation and Evaluation of a
Matchmaking Platform for Student

Projects

Master’s Thesis
to achieve the university degree of

Master of Science
Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor
Dipl.-Ing. Dr.techn. Michael Krisper

Institute of Technical Informatics
Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

Graz, April 2023

Danksagung

Ich möchte meinem Supervisor Michael Krisper für die Unterstützung während
dieser ganzen Arbeit danken, sowie für die grundlegende Idee des Projekts.
Außerdem möchte ich meinen Eltern, sowie meiner Schwester Helena für jegliche
Hilfe danken. Weiters danke ich allen Lehrern und Professoren, die mir auf dem
Weg geholfen haben. Zuletzt möchte ich meinen Freunden und Kommilitonen
danken, sowie allen, die an der User Study dieser Arbeit teilgenommen haben.

i

Abstract

In this thesis, a matchmaking platform and recommender system for students at
Graz University of Technology was created and evaluated. The purpose of this
platform is to simplify the process of finding an appropriate and fitting thesis topic
for a Master’s or Bachelor’s Thesis. For that, a mobile application for students,
and a web application for lecturers were created. The mobile application was
built in Flutter, using the programming language Dart, while the web application’s
front-end was built in Angular, with the back-end coded in node.js. Moreover,
related work and background information on the following topics are covered in
this thesis: Software Architecture, Design Patterns, Matchmaking, Recommender
Systems, Multi-Platform Development, Databases, and the main frameworks for
the two platforms of this project: Flutter and Angular. The software architecture
and details of the implementations of this project are discussed in detail, as well
as the design patterns in use. Lastly, the created project was evaluated by as-
sessing the project’s requirements and a user study was carried out, indicating
that the project indeed solves the students’ struggle of finding a suitable thesis
topic.

ii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Motivation . 2
1.3 Structure of the Thesis . 3

2 Background and Related Work 4
2.1 Software Architecture . 4

2.1.1 How does Software Architecture influence Software Devel-
opment? . 5

2.1.2 Problems of Software Architecture 6
2.2 Design Patterns . 9

2.2.1 How is a Design Pattern defined? 9
2.2.2 How can Design Patterns be categorized? 11

2.3 Matchmaking . 14
2.3.1 What are use cases for matchmaking algorithms? 17

2.4 Recommender Systems . 19
2.4.1 Which techniques are most commonly used? 20
2.4.2 Which problems are Recommender Systems Facing? . . . 22

2.5 Multi-Platform Development . 25
2.5.1 What is Multi-Platform Development? 25
2.5.2 Types of Multi-Platform Implementations 26

2.6 Flutter . 28
2.6.1 What is Flutter? . 28
2.6.2 Structure of Flutter . 28
2.6.3 Architecture of Flutter . 29
2.6.4 Libraries for Flutter/Dart . 30
2.6.5 Testing Flutter applications 31
2.6.6 Comparison to alternatives 31

iii

2.7 Databases . 34
2.7.1 What is a database? . 34
2.7.2 What are relational databases? 34
2.7.3 What are NoSQL databases? 35
2.7.4 SQL vs. NoSQL . 37

2.8 Angular . 38
2.8.1 What is Angular? . 38

3 Architecture and Design 41
3.1 Elements of the Architecture . 41
3.2 Database structure . 43

3.2.1 Terminology of Firestore . 44
3.2.2 Database tables . 44
3.2.3 Database requirements . 46

3.3 Mobile Application Software Architecture 47
3.3.1 Why Flutter? . 47
3.3.2 Requirements of Mobile Application 47

3.4 Web Application Software Architecture 53
3.4.1 Requirements of the Web Application 53

3.5 Other Project Requirements . 58

4 Implementation 59
4.1 Implementation of the Database Access 59
4.2 Implementation of the Mobile Application 61
4.3 Implementation of the Web Application 63

4.3.1 Angular - Frontend . 63
4.3.2 node.js - Backend . 65

4.4 Implementation of the Web Crawler 66

5 Design Patterns 67
5.1 Design Patterns in Mobile and Web Application 67
5.2 Design Patterns exclusive to Mobile Application 71
5.3 Design Patterns exclusive to Web Application 74

6 Evaluation 75
6.1 Assessment of Requirements . 75

6.1.1 Assessment of Requirements 75
6.1.2 Mobile Application requirements 76

iv

6.1.3 Web Application requirements 77
6.1.4 Other requirements . 79
6.1.5 Summary of requirements 80

6.2 User Study . 81
6.2.1 Experimental Design . 81
6.2.2 Results . 82

7 Discussion 85
7.1 Limitations . 85
7.2 Future Work . 86

8 Conclusion 87

Bibliography 87

v

List of Figures

2.1 Connections between Design Patterns 13
2.2 Explaination Matchmaking process 14
2.3 Perceived Matchmaking Balance in League of Legends 16
2.4 Online Game Matchmaking - Htrae 18
2.5 Concept of Collaborative filtering 21
2.6 Architecture of Flutter . 30
2.7 Databases in comparison . 37

3.1 Overview of the architecture of this project 42
3.2 Database structure . 44
3.3 Views of mobile application . 48
3.4 Feedback View and its questions 49
3.5 Swipe View with an example Card of a Project 50
3.6 Liked Topics View with a few liked example projects 51
3.7 Form to add new project . 54
3.8 Preview of the Project currently being added or edited 55
3.9 Visibility card at the bottom of the add/edit view 56
3.10 Display of the current user’s projects on the left side of the view . . 56
3.11 Feedback view in web application 57

4.1 Pre-defining possible routes in Flutter 62
4.2 Files and their datatypes part of an Angular view 63
4.3 Setting possible routes within Angular 64
4.4 List of crawlable Projects on ITI website 66

5.1 Observer Pattern UML . 68
5.2 Flutter implementation of the Singleton Design Pattern 69
5.3 Singleton Pattern UML . 69
5.4 Eager Acquisition UML . 70
5.5 Strategy Pattern UML . 71

vi

5.6 Lazy Acquisition Pattern UML . 72
5.7 Command Pattern UML . 74

6.1 User study results for statement 3 82

vii

List of Tables

2.1 Categorization of the original 23 patterns 11
2.2 Comparison performance React Native vs. Flutter 32
2.3 Comparison execution times React Native vs. Flutter 33
2.4 Pricing overview Google’s Firestore service 36

6.1 Summary of all requirements . 80

viii

Listings

2.1 Example of two-way data binding in Angular 39
4.1 Simplified Firebase access in Flutter. 60
4.2 Routing with arguments . 62
4.3 Proxy config frontend to backend location in proxy.conf.json . . 64
5.1 Command Pattern usage in Web Application 74

ix

Chapter 1

Introduction

In this thesis, I tackled a problem every student has during their life at university:
finding a fitting topic for their bachelor’s or master’s thesis. Before finishing a
bachelor’s or master’s degree, students in most majors need to write a thesis
on a topic within their field of study. Before hitting that burden, do not realize
how hard finding a fitting topic for their thesis often is. For example, within Graz
University of Technology, most institutes only offer an outdated, incomplete list of
topics, sometimes within PDF files and some institutes do not offer a list on their
website at all. This often leads to the best possible way for students to get a good
overview of open thesis topics: personally contacting lecturers to request a list of
their topics.

This brought up the idea to collect topics and offer the students an overview of
those topics within a mobile application called “TU Project Finder”, hence greatly
simplifying the process of looking for topics interesting to the student. Moreover,
this application also may help lecturers accelerate the process of finding students
interested in their written out theses, while also avoiding the extra work of answer-
ing students’ emails asking for a list of their possible theses.

A central focus of this thesis is also looking at design patterns, that describe a
problem within software development, alongside a solution, which can be applied
to different applications and circumstances. Matchmaking and recommender sys-
tems are also central points of this thesis.

1

1.1 Context

This thesis is a master’s thesis at Graz University of Technology, to be more
precise the Institute of Technical Informatics.

The implemented applications are specific to the needs of students and lec-
turers of TU Graz, who are the two target groups of the project.

1.2 Motivation

One main problem this project solves, which has already been talked about, is
the struggle students face when looking for a topic for their bachelor’s or master’s
thesis. The other main problem is lecturers struggling to find students to work on
their projects.

Currently, students often have to contact lecturers via email to get a list of
possible topics. Due to every student having to find and write a thesis to receive
their degree, offering an application to them, that gives an overview of possible
topics and helps to find a fitting one, would help students greatly.

Moreover, this is also of personal interest to me, the writer of this thesis, due
to struggling while looking for a bachelor’s thesis, which I ultimately chose, due
to other students recommending one. While looking for a topic for the master’s
thesis, the only way I found to work, was by contacting lecturers, whose lectures
were interesting to me.

2

1.3 Structure of the Thesis

• Chapter 1 is where the structure of this thesis is shown: the introduction.
• Within Chapter 2, background information and related work on subjects im-

portant to understanding this thesis are covered. These subjects include:

– Software Architecture in general
– Design Patterns and their importance to software development
– Matchmaking platforms that allow people to connect
– Recommender Systems that give appropriate suggestions
– Multi-Platform Development to support multiple operating systems
– Specific technologies like Flutter, Angular etc.

• In Chapter 3, the architecture and the design of the applications are cov-
ered, along with the requirements set for the project.

• Chapter 4 provides an insight into the implementation of mobile and web
applications implemented in the process of writing this thesis.

• In Chapter 5, design patterns in this application are explained, as well as
the context each was used in.

• Chapter 6 evaluates the project’s success in two parts. Firstly, requirements
are looked at, whether they were fulfilled or not. Secondly, a user study was
carried out, which will be discussed.

• Chapter 7 is the discussion, where limitations and future work will be cov-
ered.

• Lastly, Chapter 8 is the conclusion of the thesis.

3

Chapter 2

Background and Related Work

In this chapter, the background and related work for the thesis are described.
This covers the topics of Software Architecture, Design Patterns, Matchmaking,
Recommender Systems and Multi-Platform Development with a major focus on
the Flutter framework, due to its importance to this work.

2.1 Software Architecture

“The software architecture of a system is defined as the structure or
structures of the system, which comprise software components, the
externally visible properties of those components, and the relation-
ships among them.” - L. Bass, P. Clements, and R. Kazman [1].

What is Software Architecture? As a method to understand large-scale soft-
ware structures, software architecture originally emerged in the early 70s by Par-
nas [2]. It is used as a high-level blueprint for software design throughout all
stages of the development, as well as maintenance [3]. Parnas’ approach was
to make use of modularization software and hide information to improve flexibility
and comprehensibility within the software, structure [4].

Nowadays, the main goal of software architecture is, to keep up the software
quality throughout the whole lifespan of a software project [4]. To achieve this,
extensive planning needs to be done beforehand and every adaption of the orig-
inal architecture should be well documented. Before creating the architecture of
the software requirements must be defined by various shareholders. These re-
quirements can be split in functional and non-functional requirements, with func-
tional requirements describing what the software should do, and what features

4

it should include, while non-functional requirements describe rather generalized
and emerging properties, such as up-time of the software [5]. Software Archi-
tecture may also be described as the bridge between the requirements and the
code [6].

2.1.1 How does Software Architecture influence Software De-
velopment?

Garlan describes the following aspects in which the software architecture influ-
ences the software development process [6]:

• Understanding
• Management
• Reuse
• Communication
• Evolution
• Construction
• Analysis

Understanding One goal of software architecture is to simplify a large-scale
system by creating an easy-to-understand abstraction of the whole system. To
make the system more understandable, software architecture also explains ar-
chitectural decisions [6].

Management A thought through software architecture often leads to a better
understanding of requirements, possibilities and possible risks. Moreover, suc-
cessful projects often even include “creating a well-structured software architec-
ture” of one of the key milestones of the project [6].

Reuse A well-designed software architecture has multiple reusable parts. It
allows for different reusable libraries, as well as the framework itself may be
reusable. Something that is often reused or rather reapplied, are Design Pattern,
which will be discussed later in this work [6] in section 2.2.

Communication Software architecture allows easier communication between
all stakeholders, due to common vocabulary as well as an easy understandable,
structured abstraction of the whole system [6].

5

Evolution By having an accurate description of the system and all of its com-
ponents, changes, and maintenance is simpler, as well as estimating the costs
for the change and maintenance will get easier [6].

Construction When using the abstraction of the software as a blueprint for the
development process, creating the system will be more efficient, faster, and more
structured [6].

Analysis Analysis of different metrics gets easier with a well-structured soft-
ware architecture. Clearly defining all system requirements with metrics to verify
them helps to check their status constantly and therefore assure a higher level of
quality within the software development process [6].

2.1.2 Problems of Software Architecture

The list of problems a team may face within software architecture is long, with
some being more widespread than others. The problems this work will discuss
are:

• Documentation
• Erosion
• High-level architecture to Code
• Bias
• Complexity and Scalability

Documentation Due to the fact that the requirements and the documentation
of systems are often outdated and do not cover every aspect of a system, the
development team will get less reliant on it [7]. Moreover, if the requirements are
not organized well enough or changes are not communicated, this could lead to
struggles, due to not everybody having the same knowledge about those specifi-
cations.

Most specifications are file-based, which may simplify the process in the be-
ginning but might end up as an extra burden further down the road. Coordinating
the sharing of all files, including requirements and their changes may end up
being a lot of extra work [7].

Over time, bad documentation leads to design decisions being unclear to a
point where most of them will be untraceable [7].

6

Erosion Connected to the documentation is something called software archi-
tecture erosion. This problem is faced when the implemented architecture ends
up not being structured like the intended structure. This often results in complex,
hard-to-understand, and hard-to-maintain software with an overall low code qual-
ity [8]. This can be solved by checking conformance between implementation and
intended architecture regularly.

A study on software erosion published by US Air Force showed that the imple-
mentation of the same feature, done in an eroded version of the same software
takes about twice as long and the amount of produced errors increased eight-
fold [9].

Impact of Architecture Decisions to the Source Code High-level architec-
tural requirements are hard to translate to the source code. Moreover, some
high-level architectural decisions are made without the technology in mind, such
as programming language. Therefore, a developer might be forced to differ from
the architectural requirements because the intended architecture simply will not
work in some cases. This again often leads to the problems already mentioned
in the paragraph about documentation, that changes of the architecture are not
documented or hard to trace [8].

Bias Every software architect is biased in multiple ways and therefore will not
make completely rational decisions. Cognitive bias is a term, describing a hu-
man’s inability to decide or reason rationally. There is a broad number of biases
that may influence the software architect’s decision-making [10].

Anchoring bias, for example, is when decisions are made in a certain context.
This context is often assumed implicitly, and every decision is made with that
context in mind, meaning the context is the anchor of each decision.

Another frequent bias is confirmation bias. For example, when a software
developer tests their source code, they is way more likely to choose test cases
that verify their code, rather than faulty ones [11]. If something works once, the
architect is biased to keep using it.

7

Lastly, framing bias should be covered. If, for example, two groups receive
the same requirements, one group receives the requirements in a very detailed,
descriptive text, while the other group only receives them in a less compulsory
way, making them seem more like a list of ideas and possibilities. Only through
a different wording of the requirements, the first group will try to stay as close
to the requirements as possible, thinking they are mandatory, while the other
group tries to come up with creative and new ideas, not focusing too much on the
requirements received [10].

Complexity and Scalability In an evolving software architecture, each problem
and combined solution may alter or add new requirements or design decisions.
The whole system, therefore, co-evolves leading to the system getting progres-
sively more complex.

The scalability of the system suffers from a higher complexity of the architec-
ture. Moreover, some architectural methods are unable to scale well, therefore
increasing the complexity of the system in return.

Design Patterns Until now, this work mostly covered high-level software ar-
chitecture, where mostly the overall structure of the software project is defined.
Further down the levels of architecture is the level that defines the architecture of
modules and interconnections [12]. This level covers packages, classes, compo-
nents, as well as design patterns.

Design patterns are a central topic in this work and therefore covered in more
detail in section 2.2. As part of the low-level software architecture, design patterns
aim at making parts of the code structure to be reusable in many versatile use
cases. Each design pattern differs from the others, with some being defined
broadly and usable in many cases and others being only viable in a handful of
use cases. Besides reusability, another useful aspect of design patterns is that
they are an abstraction of more complex design decisions, therefore making them
easier to understand as well as allowing a common vocabulary within the software
architecture and the development process[13].

A more in-depth description of design patterns is given in the next section, as
well as later in chapter 5, when the usage of design patterns within the TU Project
Finder will be discussed.

8

2.2 Design Patterns

“Each pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice” - Christopher Alexan-
der [14]

What is a Design Pattern? A design pattern is used to describe a software ab-
straction that can be used to solve similar problems over and over again. Patterns
can describe how objects are created and how they communicate among other
use cases [15].

The so-called Gang of Four (or GoF) took Alexander’s approach that pat-
terns describe problems that appear in different places in our environment, with
each also describing the basic solution that can be applied over and over again.
Alexander’s approach is originally meant for buildings and towns, and the GoF
applied it to software development. The GoF created a list of 23 original design
patterns [16]. Those patterns are not supposed to be complex or domain-specific,
but rather simple and reusable across various systems facing similar problems.

Design patterns are used to capture and define design know-how and reuse it.
By doing so, they can improve communication between developers by defining a
dictionary of patterns and simplifying structures of highly experienced developers
and making them usable for beginners. Moreover, they can help improve imple-
mentation speed, speed up maintenance and refactoring, and simplify the code
structure [17].

2.2.1 How is a Design Pattern defined?

With way over 100 different design patterns in existence, there needs to be a
standardized way to define them. There are many different ways to define them,
with the most common ones being [18][19]:

• Alexandrian Form
• Canonical Form
• Coplien Form
• GoF Form
• Compact Form
• POSA1/2/3/4 Forms

9

• Portland Form

Alexandrian Form Originally not meant for software design patterns but quite
commonly used nevertheless. Alexander defined a pattern through seven sec-
tions [14]:

• Title
• Prologue
• Problem statement
• Discussion
• Solution
• Diagram
• Epilogue

GoF Form Gamma et al. proposed that graphical notations of design patterns
are useful but not sufficient because they do not display the ideas behind the
pattern usage, the trade-offs that are needed as well as alternative patterns or
other names the patterns are known as. Their suggested form to define patterns
is the following [16]:

• Name
• Classification
• Also Known As (not always)
• Motivation
• Applicability
• Structure
• Participants
• Collaborations
• Consequences
• Implementation
• Sample Code
• Known Uses
• Related Patterns

10

Compact Form The so-called compact form is a commonly used short way to
define patterns [18] only including as few sections as needed:

• pattern name: a short that can be used to identify the pattern
• problem: when should the pattern be applied
• solution: describes the elements, their relationships and what they are

used for
• consequences: results and trade-offs of the pattern

2.2.2 How can Design Patterns be categorized?

The Gang of Four proposed a categorization using two dimensions. The first one,
which is about purpose, distinguishing between creational, structural, and behav-
ioral patterns, and the second dimension about the scope makes the distinction
between whether the pattern is applied to a class or an object [16].

Using this way to categorize the original 23 patterns, the following table was
created:

Purpose
Creational Structural Behavioural

Class Factory Method Adapter Interpreter
Template Method

Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator

Scope Object Facade Memento
Proxy Flyweight

Observer
State
Strategy
Visitor

Table 2.1: Categorization of the original 23 patterns [16].

Why are Design Patterns useful? Some advantages of using design patterns
have already been mentioned, like making complex structures more abstract and

11

simpler, which also allows lesser experienced developers to implement and make
use of those patterns [12].

Software projects can start to rot while growing without taking care of the
problems. There are four primary symptoms of that happening, which include
rigidity, fragility, immobility, and viscosity [12].

• Rigidity in this context means that the software gets stiff and difficult to
change, mostly because changing one small thing will result in the need
to adapt different parts of the code [12].

• Fragility is closely related to rigidity, with fragility meaning that fixing one
problem of the code will often result in another problem of the code being
exposed somewhere else [12].

• In this case, immobility means that one is not able to reuse code snippets
of the same or other projects because the risks caused by separating the
needed part are too big [12].

• Lastly, viscosity can be split into the viscosity of the design and the environ-
ment. An example of viscosity is when a developer needs to make a change
and has multiple possibilities, with some preserving the current design and
others changing it. In cases where changing it is easier than keeping the
current one [12].

All those symptoms can often be avoided by applying fitting design patterns where
needed.

Composite Design Patterns Often design patterns only differ in small details
and the developer has the choice of which one fits his use case. However, there
is also a way to combine the beneficial parts of multiple design patterns for a
specific use case to create a new, composite, design pattern [20].

Model-View-Controller can be seen as a widely known composite design pat-
tern because it consists of three patterns combined to be used as one. Compos-
ite design patterns combine multiple design patterns and the developer selects
those parts that benefit the implementation, allowing for even more flexibility with
the downside of often having a more complex structure [20].

12

Relationships between Design Patterns Some patterns are applied to the
same use case, some patterns are combined to create a new composite de-
sign pattern, and some patterns are already composite and use another pattern
in their implementation. Zimmer analyzed the 23 GoF patterns and tried to find
all existing connections between them. He also classified the connection as “one
pattern uses the other”, “one pattern is similar to the other” or “one pattern can
be combined with the other” [21]. His results can be seen in Figure 2.1

Figure 2.1: Connections between Design Patterns by Zimmer [21].

13

2.3 Matchmaking

This section covers background information and related work on the topic of
matchmaking.

What is matchmaking? Matchmaking is used to match users to other users,
services, or groups of other users. By implementing algorithms to optimize that
matching process, the developer often faces a multitude of struggles, such as the
users thinking that the matchmaking is biased even though it is supposed to be
unbiased [22][23]. Moreover, matchmaking algorithms often include prioritization
of services or users which gets controlled or could be manipulated by the market
operators.

Optimization of matchmaking algorithms also may benefit the global economy,
for example, by enabling users to share unused cars or houses. Sharing platforms
such as AirBnb, Lieferando, or Uber that use matchmaking algorithms to connect
the user to possible customers are predicted to grow their yearly revenue to $335
billion in 2025 from only $14 billion in 2014 [22].

Figure 2.2: Matchmaking process where everything can be a resource and re-
sources are matched with the consumer through the matchmaking platform

14

Which topics are researched within Matchmaking? Research within match-
making algorithms is done in different directions. Some of the studied topics,
important to this work, are:

• General optimization of matchmaking algorithms
• Decentralization
• Remove algorithmic bias

General optimization Matchmaking does not have a universal implementation
for every use case. Different use cases require different algorithms. Some algo-
rithms also got outdated over time and replaced by successor algorithms, which
for example is the case for the TrueSkill matchmaking algorithms that are now
getting replaced by TrueSkill2. Both algorithms are used for skill rating systems
and predicting the match outcome, mostly for online video games. TrueSkill only
allows for a match outcome prediction accuracy of 52% while TrueSkill2 predicts
the outcome with an accuracy of 68% [24].

Decentralization Matchmaking algorithms such as MATCH focus on making
the algorithm safer by decentralizing it. By doing so, MATCH tries to allow the
end-user a bigger impact on the choice-making process, while also being sturdy
against malicious matchmakers that differ from the match-making policy of the
system in use. This also allows the algorithm to always match the user with the
best currently available counterpart [22].

Remove bias Since most algorithms are to some degree controlled by the mar-
ket operators, most match-making processes are influenced [22].

Even when the system itself is as unbiased as possible, it often seems to be
unfair or biased to the end user. In dating apps, for example, users are often
allowed to select their preferences such as age, race, and religion among oth-
ers. To name one example, in the dating app CoffeeMeetsBagel a number of
users reported only being matched with other users of the same ethnicity, even
though they selected ethnic neutrality. This is often perceived to be biased by
the user [23]. This is not only the case in dating apps but also, for example, in
skill-based matchmaking for multiplayer online games. Despite all players being
ranked as being on the same level of skill, some players will consider the match-
making to be unfair [25].

15

Which problems are matchmaking algorithms facing? Depending on the
specific use case, each matchmaking algorithm faces different problems, and
some of them have already been discussed in the previous section.

Bias is among the biggest problems for the end-user. De Vos et al. [22],
for example, are trying to remove the influence or bias caused by the market
operators. But even without a bias within the algorithm itself, it often seems like
there is one.

Sometimes users may perceive matchmaking algorithms as unfair. This not
only was the case for dating apps like CoffeeMeetsBagel [23] but also for online
video games.

Figure 2.3: Perceived Matchmaking Balance in League of Legends. Showing that
users perceive the teams as rather unbalanced when they are on the losing team,
while perceiving the teams as balanced when placed in the winning team [25].

As visible in Figure 2.3 there is a huge difference in how the balance of the
game is perceived depending on whether the user wins or loses the game. In
League of Legends, matchmaking is based on the ELO system, even though the
exact algorithm is not publicly known. ELO matchmaking was originally devel-
oped for chess with the intention to match chess players to equally skilled play-
ers. Some Research suggests that this matchmaking algorithm is not optimal for
online video games like League of Legends or Dota 2, which are quite similar [26].

16

2.3.1 What are use cases for matchmaking algorithms?

The most prevalent use cases for matchmaking algorithms include:

• Web Services
• Online Video Games
• Dating Services

Web Services Matchmaking in Web Services often tries to match the user to
either the web services itself or, what is currently more common, to other users
within the web service. The immense growth of global revenue when it comes to
sharing platforms like Airbnb [22] can be attributed to match-making algorithms
to a certain degree. By optimizing those algorithms, this business sector was
able to grow by more than 2000% within 10 years. Despite this growth, these
algorithms are facing ever-changing problems, some of which were already dis-
cussed, ranging from market operators having control over the results to security
problems.

Online Video Games Most online video games use matchmaking algorithms
to match players with those that are rated as being at the same skill level, this
can be one-on-one matching or groups of players as teams. With more than
27 million daily players [25], League of Legends is one of the biggest computer
online games, which therefore also receives a lot of research. League of Legends
uses a matchmaking algorithm based on the ELO system. Research suggests
that the used algorithm can be improved in different ways. ELO rating is mostly
based on a score that increases or decreases by a certain value depending on
the ranking of the opponent’s ELO rating and whether the player won or lost.
Suggested improvements for complex video games like League of Legends, for
example, include involving expected queue times for the games [25] or due to
the diversity in playable characters including the role the player wants to play in
matchmaking [24].

17

Figure 2.4: Matchmaking for Online Games - Htrae compared to other latency
matchmaking algorithms that focus on minimizing the latency between users [27].

Even in video games where no skill-based matchmaking is used, there are
matchmaking algorithms in use. Agarwal and Lorch implemented the Htrae al-
gorithm which focuses and optimizing the latency between the users in an online
video game, in their case Halo 3. By using Htrae and comparing it to competing
algorithms like OASIS, iPlane and, Pyxida on a dataset of 50 million matches, they
concluded that they could outperform all the other algorithms. As one can see in
Figure 2.4 the average ms of latency between all users in the lobby created by
Htrae is significantly lower than in lobbies created by competing algorithms [27].

Matchmaking in video games is not only used to match users to other uses.
Sarkar et al. discuss using matchmaking to match the user to levels depending on
their calculated skill rating. In their work, they suggest treating tasks or levels like
users and trying to give them a skill rating. By doing so, the player is matched with
the most fitting level for his skill level. By doing so, in the video game “Paradox”
they found that the player will often complete more difficult levels as well as a
higher quantity of levels [28].

Dating Services When it comes to dating services matchmaking algorithms,
most of these services allow the user to enter his preferences in some way like
already covered, this can result in the user being treated unfairly by the algo-
rithm [23]. Moreover, not only the algorithms are influenced by the user’s ratings
of proposed matches by the algorithm, but also the user itself. As research sug-
gests, even though the users try to show themselves as authentic as possible, the
users often are seen tweaking their profile according to other user profiles they
are interested in [29].

18

Because the matchmaking algorithm of Tinder, the most successful dating
service using matchmaking with about 6.5 million monthly downloads1, is secret,
the way it filters and suggests profiles is not clear. One assumption about Tinder
is that users can influence their ranking by paying extra money.

2.4 Recommender Systems

“It is often necessary to make choices without sufficient personal ex-
perience of the alternatives. In everyday life, we rely on recommen-
dations from other people either by word of mouth, recommendations
letters, movie, and book reviews printed in newspapers, or general
surveys.” - Paul Resnick and Hal R. Varian [30]

What are Recommender Systems? Recommender Systems are used to pre-
dict information a user would like by applying machine learning. Quite a few
different techniques are being applied including:

• Content-based filtering
• Collaborative filtering
• Demographic filtering
• Knowledge-based filtering
• Hybrid filtering

All of them are trying to achieve the same goal while using different paths to get
the optimal recommendation for each user. Therefore, the suggested information
provided by a recommender system varies from user to user, sometimes even
for the same user on a different platform. This can be the case due to the fact
that the recommender system can give a more detailed suggestion when getting
access to the user’s smartphone sensors, like GPS, compared to the data from a
Computer [31].

1https://www.statista.com/statistics/1200234/most-popular-dating-apps-worldwide-by-number-
of-downloads/

19

2.4.1 Which techniques are most commonly used?

When it comes to the real-life usage of techniques applied in recommender sys-
tems, the three most prevalent types are collaborative filtering, content-based
filtering, and hybrid filtering [32]. As already mentioned, they are all trying to
achieve the best possible set of recommendations for each user but differ in the
way they are trying to produce those recommendations.

Content-based Filtering This type of recommender system bases the sugges-
tions made on the similarity of items. This means that items, the user liked in
the past, are compared to other items, and through different metrics, a similarity
is calculated, after which the most similar ones are suggested to the user. The
used metrics can include a simple list of keywords, for example, for movies, a
similar title, actors, or genres can be included in the decision-making process.
Depending on the type of item the recommender system is applied to, different
features will be included in each item profile. Hence, the similarity calculation also
differs depending on whether the items are, for example, movies, articles, or like
in the case of Amazon, a huge list of very different items [32].

Collaborative Filtering Compared to content-based filtering, collaborative fil-
tering focuses more on the history of the user itself by creating a profile for each
user and creating relations to users that are interested in the same items [32][33],
by doing so, a user-item matrix is created. As displayed simplistically in Figure
2.5, two users previously liked two similar items, hence their user profile similarity
is recognized as high by the algorithms. This leads to the item the left user has
not yet liked or disliked, being suggested to him, since a similar user bought it
[34].

20

Figure 2.5: Concept of Collaborative filtering inspired by [34]. Step 1: Both users
purchase the same products. Step 2: One user purchases a product the other
does not purchase. Step 3: The system recommends the unique purchase of one
user to the other user.

This process can also be applied to groups of users instead of each individual.
Therefore, users are clustered, instead of being looked at individually. After being
placed in a group of users, each user included in that group will receive the same
recommendations, depending on which items fit their group most. This approach
could also be classified as being a demographic recommender system [33][35].

Hybrid Filtering This group can not be generalized in the way they work but
rather is a collective of all techniques, which can not be classified as one of
the techniques mentioned above. Facebook, for example, uses a hybrid rec-
ommender system combining all of the techniques mentioned above [32]. Hybrid
filtering focuses on picking aspects of different techniques to optimize the recom-
mendations to best fit the expectations.

21

2.4.2 Which problems are Recommender Systems Facing?

Most recommender systems have similar struggles, while some problems can be
rather specific to a small number of implementations. Some of the most prevalent
problems include:

• Cold Start [32]
• Sparsity [32]
• Lack of Data [32]
• Over Specialization [32]
• Scalability [32]
• Changing data or user preferences [32]
• Data poisoning [36]
• Privacy of user [37][38]
• Trust [39]
• Cultural [40]
• Creation of bubbles [41][42]

Cold Start The problem of a cold start can arise in three different ways. The
first is when a system is completely new and has little information about the ex-
isting users and items to create a reliable set of recommendations. This leads to
recommendations for all users will be vague and mostly inaccurate. Secondly, a
cold start can happen, when a new user joins the system and there is no infor-
mation about the preferences of this specific user. This will lead to standardized
results, not fitting the needs of the user. Lastly, when a new item is added to the
system which is not similar to any item currently in the system. Mostly, this leads
to the item not being suggested to anybody because the similarity to both other
items in general and the recently searched items by users is very low [32].

Sparsity In collaborative filtering, the problem of sparsity arises when a user
rated too few items to successfully create this user’s user-item matrix and predict
other items they like [32]. It is similar to the cold start because it occurs due to a
lack of data

22

Lack of Data This problem is closely related to the cold start because, espe-
cially at the beginning of a system, there is too little information in most cases
to produce satisfying recommendations. Moreover, one can face the problem of
a lack of data, when the users of the system get inactive, hence producing not
enough data to keep the recommendations up to date[32].

Over Specialization When a recommender system focuses on a too specific
topic, the quality of the produced recommendations may suffer. When a grocery
shop offers a lot of different types of sugar, they will get too hard to distinguish
and therefore recommendations will get worse [32].

Scalability Scalability problems may be faced when the system grows, but the
software is not optimized to handle bigger amounts of data, therefore slowing
down the recommendation process or completely breaking down. But not only
software can cause problems in this regard, but also hardware can bring up prob-
lems. If the hardware, the recommendations are calculated on has too little RAM
or a processor that is too slow, the system will get inefficient [32].

Changing data or user preferences This problem arises, when the attributes
of an item change, for example, the product name or ingredients, as well as when
the preferences of a user change. These problems should be considered when
building a recommender system because in most systems, attributes of an item
or user preferences are bound to change over time [32].

Data Poisoning Collaborative filtering recommender systems can be very sus-
ceptible to data poisoning, meaning that fake users are generated to achieve a
target. These fake users are created in a way to be as similar to a big group of
other users while also, for example, liking the item they are trying to promote in
a malicious way. These attacks can be detected but by only creating a few fake
users that only try to promote a small number of items in a big recommender
system, like Amazon, detection gets progressively harder [36].

23

Privacy of user In today’s world, privacy is becoming more prevalent than ever.
To enhance collaborative recommender systems, it can be useful to combine
the databases of multiple companies to improve the recommendation process.
This, on the other hand, can be a huge privacy problem. Canny [37] suggested
a privacy-preserving collaborative filtering algorithm. The user’s recommenda-
tions are generated without the usage of private data. There are many other
approaches to solving the problem of privacy in recommender systems, with only
a few of them having a high accuracy [38].

Trust Trust is not a simple concept and therefore hard to include in recom-
mender systems. A recommender algorithm should consider the following prop-
erties [39]:

• Strength: Not every relationship has the same level of trust; therefore dif-
ferentiation is needed

• Transitivity: If user A trusts user B and user B trusts user C, then user A
will most likely have a certain degree of trust in user C

• Composability: How different recommendations from different users for the
same item influence the user the recommendations is created for

• Dynamicity: Trust of user A to user B changes of time, therefore strength
of trust must be adapted

• Assymetry: If user A trusts user B the system can not assume that user B
trusts user A in the same way

• Context dependence: User A trusting user B on one topic does not always
imply that this is the same on another topic

Cultural Most recommender systems as well as the studies done on them are
focusing on the English language. Whenever a recommender system is created
for other languages, maybe even other writing systems, like for example the Ara-
bic script, research is rarely done. Therefore, the implementation of such a rec-
ommender system might face problems due to less research. Although recom-
mender systems for Arabic content are not researched to the same degree as the
ones for English content, they are already achieving very satisfying results in, for
example, sentiment analysis [40].

24

Creation of bubbles Research disagrees with the existence of filter bubbles in
recommender systems. Due to the fact that collaborative filtering algorithms are
trying to optimize the recommendations by grouping users up, some argue that
homogeneous bubbles are created, which, especially on social media platforms,
may lead to extremists being grouped up and therefore radicalizing more. This
often leads to, for example, Facebook displaying less different-minded content
and only showing the content of similar-minded users [41].

Röchert et al. [41] showed that right-wing populism networks are created as
isolated communities within the social media platform itself. This shared informa-
tion often even includes misinformation, sometimes called “fake news” [41][42].

2.5 Multi-Platform Development

This section discusses the background and related work of Multi-Platform devel-
opment, also known as Cross-Platform development.

Multi-Platform Development is currently growing in popularity, mostly within
mobile development, due to the popularity of the two mobile operating systems –
Android (72% of the market [43]) and iOS (27% [43]). Due to the importance of
Flutter and Dart, those frameworks will be the main focus later in this section of
this work.

2.5.1 What is Multi-Platform Development?

The need to make use of a type of Multi-Platform Development is growing to cover
various platforms and markets with a single code base, instead of two or more
codebases with very similar, yet incompatible for other platforms. Even though
native applications allow for broader and more optimized use of features of de-
vices, such as optimized cameras, GPS, or calendars, in the end, every platform
needs its own code base, exponentially increasing the effort and development
cost [44].

There are many ways to implement Multi-Platform applications, some of which
will be covered next in this work.

25

2.5.2 Types of Multi-Platform Implementations

There are various ways to implement Cross-Platform applications. The main fo-
cus later on in this section will be on Flutter, but besides that, other approaches
to Multi-Platform development are [44]:

• Mobile Web Applications
• Hybrid Applications
• Interpreted Applications
• Cross-Compiled Applications

Mobile Web Applications One way to implement a Multi-Platform Project is
to circumvent common problems that occur when adapting to multiple operating
systems by running the application in a browser. Such applications are based on
common web technologies such as HTML, CSS, and JS, among others. This also
allows the application to be run on any device without an installation process.

On the downside, these applications are not optimized for the device and
therefore often face restrictions when it comes to the usage of sensors, cameras,
and other tools the device would offer to native implementations [44].

Hybrid Applications Similar to Mobile Web Applications, so-called Hybrid Ap-
plications, are based on commonly used web technologies like HTML, CSS, and
JS. The main difference to Mobile Web Applications is that Hybrid Applications
are not run within a browser, but instead through an application that is installed
on the device. This enables the application to access more features of the device,
like camera or GPS, while allowing the developers to reuse most of the code for
different platforms because most of the execution is done through a web container
on the device using API calls [44].

While this type of implementation offers a solution to a lot of problems Mobile
Web Applications are facing, the execution through web containers still often is
significantly slower compared to a native application [45].

One of the most widespread frameworks for such a hybrid application is Phone-
Gap which is based on Apache Cordova and uses JS, HTML5 as well as CSS3 for
its cross-platform hybrid implementations [46][47]. However, PhoneGap faces the
same problems most other hybrid applications also struggle with: slow response
times and missing a native design, hence not feeling natural to the user [47].

26

Interpreted Applications A not-as-widespread solution to the implementation
of cross-platform projects are interpreted applications. These are applications
that are for the most part translated to the native code for each platform, but
the remaining part is translated or interpreted during the runtime of the applica-
tions [44]. Ruby and Java are the most commonly used languages for such a
project, with Appcelerator Titanium being the most popular environment for soft-
ware development. While being dependent on the platform, this type of Multi-
Platform development allows for a native design of interfaces [44].

Cross-Compiled Applications This type of Multi-Platform implementation com-
piles the application natively to be executable on multiple platforms. Notable ex-
amples of such a framework are Microsoft Xamarin, which uses C#, or Applause,
which uses its own programming language, namely Xtext [44]. In recent years,
Meta, formerly known as Facebook, published their own framework that allows
for cross-platform compilation with React Native. Google followed shortly after
with their Flutter framework, which makes use of Google’s programming language
Dart [43].

Cross-Compiled Applications allow for a single code base that compiles to a
native application, while also solving problems of the formerly discussed multi-
platform approaches, such as execution speed, and not being able to use native
interfaces among others.

Due to the importance of Google’s Flutter framework, the next section of this
work will discuss it in more detail.

27

2.6 Flutter

Due to Flutter’s importance for this work, this section covers background and
related work for Flutter, including the peculiarity of Flutter, as well as comparisons
to other frameworks.

2.6.1 What is Flutter?

Flutter is mainly used to develop iOS and Android applications, while also allowing
the development for Web, Windows, Linux, and macOS with a single codebase.

While allowing for lower development and maintenance costs due to the ex-
istence of only a single codebase compared to multiple native ones [43], Cheon
and Chavez [48] showed that the needed SLOC (Source Lines of Code) are about
37% in the Flutter codebase, therefore also decreasing costs of development.

Google’s Flutter framework’ 1.0 version for cross-platform applications was
launched in 2018 2 and, as already mentioned, makes use of Google’s program-
ming language, called Dart, which was first released in 20113.

2.6.2 Structure of Flutter

Flutter is a widely spread cross-platform framework, which, unlike most of its
competitors, offers a close-to-native performance. Before we have a closer look
at performance comparisons, this section will take a closer look at how Flutter is
structured and how it works.

Flutter allows the user interface to be directly coded, instead of using a markup
language, like Android with XML [48]. The main paradigm of the user interface
design of Flutter is based on widgets. Pretty much everything within Flutter is a
widget, ranging from simple types like text fields, buttons, icons to more complex
types, such as gestures, themes as well as padding, with most of them allowing
to be nested within each other to allow the construction of the user interface.
According to Cheon and Chavez, this paradigm of “everything is a widget” and
the extensive use of nesting leads to some developers calling the user interface
development process of Flutter a “nested hell”. Worth mentioning is the fact that
it is possible to flatten this nesting, by implementing and splitting everything into
smaller methods, allowing for better maintainability and readability [48].

2https://docs.flutter.dev/resources/faq
3http://googlecode.blogspot.com/2011/10/dart-language-for-structured-web.html

28

Widgets can be divided into two big groups: On one hand, there are State-
lessWidgets and on the other hand, StatefulWidgets. Each widget is designed to
look like a mixture of iOS design-like Cupertino and Android design-like Material
catalog [49].

• StatelessWidgets: are a lesser complex type of those two. They basically
will not change their state after the creation. Since all the class variables
are supposed to be final, the only way to change this type of widget is by
calling its constructor with other values, which should be avoided for the
most part [49].

• StatefulWidgets: allow of different states of the widget without repeat-
edly recalling its constructor, but instead by calling a designated setState
method. This type of widget includes two classes, the StatefulWidget itself
and another class handling the state of it. Once a change of a class variable
leads to a change in the user interface, the setState method is called. By
doing so, the state’s build method is called, and the widget is rebuilt within
the user interface [49].

2.6.3 Architecture of Flutter

Flutter’s architecture is based around three main layers4, each of which is split
into multiple layers on their own, as seen in Figure 2.6 [49].

The lowest layer, the Embedder layer, is different for every platform, Flutter
can be compiled for. Moreover, this layer allows Flutter to include native plug-
ins and features, such as GPS or camera, allowing Flutter to seem like a native
application.

The C and C++-based middle layer, also known as the Engine-Layer, allows
Flutter’s good performance. Additionally, this layer includes its own rendering
engine. Therefore, Flutter applications will look the same on every platform, by
not running through each platform’s native rendering engine.

4https://docs.flutter.dev/resources/architectural-overview

29

Figure 2.6: Architecture of Flutter by flutter.dev5.

The layer for the framework of Flutter is based on Dart. This includes the wid-
gets we already looked at in this work with all their different facets, like gestures,
animations, looks, and everything else surrounding them.

2.6.4 Libraries for Flutter/Dart

Libraries for Flutter or Dart are called packages. The basic packages included in
the Flutter SDK allow for a broad variety of widgets and features but depending
on the usage, are often lacking different features [48]. An example of a lack-
ing feature are notifications, which are not possible without an external package.
In the development process of Flutter or Dart applications, usage of third-party
packages, which can be found on Flutter’s own platform6 is widespread [48].

5https://docs.flutter.dev/resources/architectural-overview
6https://pub.dev/

30

Compilation Dart supports two different types of compilation, depending on the
compilation mode:

• Firstly, ahead-of-time compilation, which is used in release mode, produces
the SDK ready to be run on the end user’s device or a VM.

• Secondly, Dart and therefore Flutter allows for just-in-time compilation, al-
lowing for a hot reload within the VM, while in debug mode. By enabling
just-in-time compilation, the developer can simply reload the VM instead of
restarting it to apply changes to the source code [50].

2.6.5 Testing Flutter applications

Flutter allows its applications to be tested in three different automatic approaches [49]:

• Unit Tests: Within Flutter, unit testing allows the developer to test each
method and class by defining lambda functions which check if the values
returned by each method or class are the expected ones.

• Integration Tests: This type of testing is used to control, whether different
components work together as intended by the developer.

• Widget Tests: Like the name suggests, widget tests are used to test a
single widget or a group of widgets and their behavior. Conveniently, this is
possible without the use of an emulator of either iOS or Android, but instead
directly within Flutter.

2.6.6 Comparison to alternatives

In this part of this work Flutter will be compared to its closest competitor, Face-
book’s React Native, as well as to native Android implementations.

Comparison Flutter vs. native Android Android applications are mostly writ-
ten in Kotlin or Java. For their comparison between Flutter and Android, Cheon
and Chavez [48] rewrote an Android application written in Java to Flutter. While
doing so, they faced a few differences that needed adaption, to name some exam-
ples include concurrency, where Android uses multi threading and Flutter isolates,
or, as already mentioned, the user interface design, where their Android applica-
tion used XML as a markup language while Flutter allows for the interface to be
coded using Flutter’s widgets.

31

While rewriting the application they found that the final Flutter application, with
the same functionality as the Android application, had a 37% smaller codebase,
with the share of the codebase for user interface design, network and model
interestingly staying approximately the same. Cheon and Chavez did not discuss
performance comparisons between Android and Flutter [48].

Comparison Flutter vs. React Native In their comparison between React Na-
tive and Flutter, Mota and Martinho mostly focused on the performance side to
be more precise on the launch of the application, lists displaying local and remote
content, camera for image and video capture, accessing local and remote multi-
media content and lastly, various animations [43]. See table 2.2 for their results.

iOS Android

Features
React
Native

Flutter
React
Native

Flutter

Launch 2 ✓ 1 ✗ 2 ✗ 3 ✓

Local Lists 9 ✓ 6 ✗ 3 ✗ 15 ✓

Remote Lists 3 ✗ 12 ✓ 8 ✗ 10 ✓

Take Photos 0 ✗ 4 ✓ 0 ✗ 5 ✓

Record Video 4 ✓ 0 ✗ 1 ✗ 4 ✓

Access Image 0 ✗ 4 ✓ 0 ✗ 5 ✓

Access Video 0 ✗ 4 ✓ 1 ✗ 4 ✓

Streaming 3 ✓ 2 ✗ 2 ✗ 3 ✓

Animations 2 ✗ 3 ✓ 0 ✗ 6 ✓

Total 23 ✗ 36 ✓ 17 ✗ 55 ✓

Table 2.2: Comparison performance of features React Native vs. Flutter on An-
droid and iOS by Mota and Martinho[43]. “✓” marks the better value in each
rating, while “✗” marks the worse value.

Each test case was developed in React Native as well as Flutter and com-
piled to run on iOS and Android, with each device being connected to the same
network.

By appointing points for each test and applying a leverage system, Mota and
Martinho show that in a vast majority of use cases, Flutter outperforms Face-
book’s React Native, with them marking that in some scenarios React Native is
the better option in a special case [43].

As seen in table 2.2, on Android every tested feature Flutter outperformed
React Native but on iOS for some features React Native has the upper hand.

32

Interestingly, even though React Native shows a stronger performance on iOS, in
general in the test cases for remote lists it did, struggle on iOS while being close to
Flutter on Android. Overall, Flutter shows a better performance on both operating
systems by scoring about 57% more on iOS and 223% more on Android when
compared to the points scored by the React Native applications [43].

Lastly, when comparing the metrics of execution time, CPU usage, RAM us-
age, and Frames per Second (FPS), and again awarding points as well as apply-
ing a leverage system. Mota and Martinho concluded that only in RAM usage,
React Native has the upper hand on iOS. Especially being outclassed by Flutter
when it comes to FPS, as seen in table 2.3

iOS Android

Metrics
React
Native

Flutter
React
Native

Flutter

Execution Time 11.45 ✗ 13.92 ✓ 10.04 ✗ 16.84 ✓

CPU 2.09 ✗ 15.94 ✓ 14.45 ✗ 25.64 ✓

RAM 38.98 ✓ 8.18 ✗ 3.83 ✗ 25.51 ✓

FPS 7.54 ✗ 28.56 ✓ 0.00 ✗ 401.24 ✓

Total 60.07 ✗ 66.60 ✓ 28.32 ✗ 469.22 ✓

Table 2.3: Comparison performance during feature tests React Native vs. Flutter
on Android and iOS with leverage system applied by Mota and Martinho[43]. “✓”
marks the better value in each rating, while “✗” marks the worse value.

A pattern already seen in the feature tests is that React Native is closer to
Flutter when compiled to iOS compared to the results for the tests run on Android.

Overall, Mota and Martinho concluded that Flutter is the better alternative to
a native implementation due to its good performance in a variety of features on
both tested platforms. Worth noting is that on iOS React Native showed to be a
good alternative, particularly in RAM usage. Therefore Mota and Martinho rec-
ommend React Native for applications with few visual effects and a local SQLite
database for iOS while recommending Flutter for cross-platform Android and iOS
applications with more complex visual impacts due to its strong performance in
the FPS metric [43].

33

2.7 Databases

This section covers background information on databases, focusing on the dif-
ference between SQL and NoSQL databases, with a focus on Google’s NoSQL
database, Firebase.

2.7.1 What is a database?

The main target of a database is to store data and make it as easy as possible
to access, edit and manage. Data within a database can range from personal
information about users to GPS locations of places and everything in between.

Fast access to the data within a database is getting increasingly important in
the world of today, hence new types of databases and data structures arise. Cur-
rently, the most commonly used type of database is a relational database using
SQL. Other types of databases include distributed databases, cloud databases,
or the currently attention-gaining NoSQL databases [51].

2.7.2 What are relational databases?

Overall, relational databases are the most common type of database in use to
date with SQL being the most widely-known type. SQL stands for “Structured
Query Language” and is a standardized language to interact with relational databases [52].

Relational databases structure their data within tables split into columns and
rows. Each row normally includes all the data for one entry, while each column
houses the same type of data for multiple entries. The main functions SQL offers
are [52]:

• Data definition: user defines the structure of data as well as relations be-
tween entries

• Data retrieval: user may retrieve data
• Data manipulation: user can add new data, edit existing data or delete

existing data
• Access control: user can restrict access to data for other users
• Data sharing: multiple users may access at the same time without concur-

rency problems
• Data integrity: data is protected from corrupting, due to SQL’s integrity

constraints

34

SQL databases follow the ACID properties, which include atomicity, consistency,
isolation, and durability. The goal of those properties is to ensure the correctness
of the database [51].

• Atomicity: The atomicity property means that operations within a transac-
tion must either be all executed successfully or none are executed.

• Consistency: Consistency means that every transaction is executed in iso-
lation to ensure database consistency.

• Isolation: Isolation ensures that concurrent transactions are run isolated
– meaning that even if there are interim results, other transactions will not
gain access to the results until the whole transaction is done.

• Durability: The durability property ensures that after a transaction has been
completed, the changes will persist within the database, even in the case of
failures in subsequent transactions.

2.7.3 What are NoSQL databases?

NoSQL stands for “Not Only SQL” and a variety of NoSQL databases are cur-
rently gaining traction, due to their flexibility and support of big data. Most NoSQL
databases allow for unstructured data, which is often too complex for typical rela-
tional databases within the SQL category. Example use cases are ranging from
webcam data, over huge collections of documents to typical SQL database prob-
lems [53].

Unlike relational databases, NoSQL databases do not require the same num-
ber and types of data columns within a collection, which is the name often used
for tables within NoSQL databases. This leads to data within a collection, not
having the same characteristics. Moreover, they generally do not follow the ACID
rules [54][51].

NoSQL databases offer a diversity of structures, but most may be classified
within these three categories [54]:

• Key-Value Stores
• Document Stores
• Graph Databases

Key-Value Stores Key-Value stores make use of a dictionary type of accessing
data. Each entry has a unique key that allows the user to access data stored in
an entry. The structure of each entry may differ, unlike in relational databases.
Example databases would be Voldemort and Redis [54].

35

Document Stores Document Stores use JSON files or JSON file-like structures
within their entries. Each entry, often called documents in NoSQL databases,
contains an ID unique to its collection. Due to the JSON-like structure, nesting
is possible and allows for documents to contain a theoretically infinite number of
sub-documents, with each of those may differ in their stored data and data types.

Databases of this type are for example MongoDB, CouchDB, and Firebase,
which will be covered in more detail later in this section [54].

Graph Databases Focusing on linked data, graph databases allow for data
to be stored based on relations to other data within the database in graphs.
GraphDB, Neo4J, and BigData are databases making use of this structure [54].

Firebase Firebase, or to be more precise, Google’s Firestore, is a NoSQL database
that can be classified as “document stores” database. Therefore, data is stored
in JSON-like nested documents within collections. Each document can have a
structure differing from another, while also including sub-documents but not al-
lowing a many-to-many relationship [55].

Firestore allows for real-time updates and unlike SQL does not require any
server-side code [56]. Native support for Android, iOS, Windows, macOS, and
Linux applications through the support of implementations in Java, Flutter, and
C++ among many others, allows Firestore databases to be used for a wide variety
of projects [57].

Unlike most other databases, Firebase allows the user to natively cache data
and therefore keeps it available while having no network connection and automat-
ically updates all the changed data once a connection is established again [57].

Table 2.4 shows the pricing model of Firebase and Firestore.

Cloud Firestore Pricing
Pricing Plan No-cost up to Pay as you go
Stored data 1 GB total $0.18/GB/month over No-cost
Network egress 10 GB/month $0.12/GB over No-cost
Document writes 20.000 writes/day $0.18/100.000 writes over No-cost
Document reads 50.000 reads/day $0.06/100.000 reads over No-cost
Document deletes 20.000 deletes/day $0.02/100.000 deletes over No-cost

Table 2.4: Pricing overview of Google’s Firestore service in use as a database
within this project

36

2.7.4 SQL vs. NoSQL

Over recent years, there were a lot of papers comparing SQL and NoSQL databases,
some of which will be discussed here.

Li and Manoharan [58] attempted to compare Microsoft SQL with a total of six
different NoSQL databases, namely, MongoDB, RavenDB, CouchDB, Cassandra,
Hypertable, and Couchbase. Their goal was to compare those seven databases
in the four main database operations - instantiate, read, write, and delete. Each
database needed to run these operations on different datasets, varying in size
from 10 up to 100,000 operations. Their results showed, that only MongoDB
and Couchbase could outperform Microsoft SQL in every test case, while all the
other NoSQL databases showed performance problems in different aspects. It is
worth mentioning that MongoDB outperformed Couchbase and SQL by a factor
of five or more when it came to the instantiating test case, which can be seen in
Figure 2.7 [58].

Figure 2.7: Comparison of the seven databases analyzed by Li and Manoharan
when it comes to instantiating[58]

37

Another paper by Parker et al. [53] compared MongoDB and an SQL database
not only by running the four operations mentioned earlier, but also by updating
non-key attributes and aggregate queries. They found, just like Li and Manoha-
ran, that MongoDB outperforms for inserts, updates and simple queries, but
compared to SQL struggles with non-key updates and queries and aggregate
queries [53][58].

Last but not least, Ohyver et al. [56] compared the Firebase NoSQL database
with a MySQL database as database for their daily nutrition needs mobile appli-
cation. Their tests compare the two databases by running create, read, update
and delete operations on test cases with one to 3000 entries and after applying
the Wilcoxon Signed-Rank test to the results, which is of no special interest. Their
results show that Firebase Realtime database, also known as Firestore, outper-
forms MySQL in every tested operation, but for the update and delete operations
MySQL slightly outperformed Firestore when it came to test cases with more than
about 2500 entries. They concluded that Firebase outperformed MySQL in their
tests and was hence deemed more suitable for their mobile application [56].

2.8 Angular

This section will cover some background information on the Angular frontend
JavaScript/TypeScript framework.

2.8.1 What is Angular?

Angular was first introduced by Miško Hevery and Adam Abrons as an open-
source frontend framework in 2009. Their main goal was to achieve a highly pro-
ductive web development experience with their JavaScript framework. In 2010, it
was released as a front-end web application framework by Google, where 1.8.3
is the currently active version as of 2023 [59].

It is also used by Google, YouTube, Facebook Applications, Nike among a lot
of other well-known brands to implement their frontend [60].

38

There are a few rare or unique solutions within Angular including:

• MV*
• Components & Templates
• Data Binding
• Dependency Injection
• Angular CLI
• First-Party Libraries

MV* Also known as Model View Whatever is a version of the well-known Model
View Controller pattern, but instead of a Controller, the programmer may choose
whatever he wants, be it MVC, MVVM, MVP [60].

Components & Templates Components are like the building bricks of an An-
gular project. Each component contains an HTML file, a CSS style file, and a
TypeScript class with a Component decorator. Templates are used to tell Angular
how to render components. This is done within the HTML file, and each HTML file
may refer to other components and therefore to their HTML file. This, for example,
allows for the creation of one header component. This header component is then
used as a part of each template to create each view, allowing for fewer duplicate
code [59].

<input type = ” t e x t ” id= ” hero −name” [(ngModel)] = ” hero . name”>

Listing 2.1: Example of two-way data binding in Angular

Data Binding Data Binding allows for variables to be used within both, the
HTML, as well as the TypeScript file. User input directly saves variables within
the TypeScript class corresponding to the HTML file.

Moreover, Angular uses two-way data binding, which allows for instantaneous
communication between the HTML file and the TypeScript file. Listing 2.1 dis-
plays, how the implementation of two-way data binding looks within the HTML
file. In this example, the class “hero” has a variable named “name” which may be
changed from either the user, within the text field, or from the TypeScript side, for
example through a change within a database7.

7https://angular.io/guide/binding-syntax

39

Dependency Injection Angular’s dependency injection pattern allows for the
dependencies within TypeScript classes without caring about instantiation. When-
ever a TypeScript class depends on another, the file is injected and Angular auto-
matically handles the instantiation8.

Angular CLI Angular CLI is a command-line interface tool to build, develop, and
test Angular applications. It is not the only way to do so, but the recommended
way. The most commonly used commands include9:

• ng build: Builds the Angular application to the output directory
• ng serve: Builds the Angular application and runs it within the command

line. Also rebuilds on code changes
• ng test: Automatically runs unit tests for the project
• ng e2e: Like “ng serve” but also runs end-to-end tests

First-Party Libraries Angular offers a wide variety of first-party libraries. This
list includes Angular Router, for client-side navigation and routing. Angular Forms
is a library to build forms, also supporting the validation of forms. Angular Http-
Client supports client-server communications. Alongside a few other easily us-
able first-party libraries essential to building the client-side of a web application10.

8https://angular.io/guide/dependency-injection
9https://angular.io/cli

10https://angular.io/guide/what-is-angular

40

Chapter 3

Architecture and Design

This work consists of two main code bases for applications that are meant to
be used by end users. Besides that, a web crawler, a Firebase database, and
a planned integration within the TU Graz Single-Sign-On system are part of the
project’s architecture.

3.1 Elements of the Architecture

There are two targeted code bases within this work: mobile and web.
For the mobile application, the target end users are students looking for projects

for their master’s or bachelor’s thesis. The web platform targets university profes-
sors looking for students to work on their suggested theses or other projects.

Moreover, a smaller side project is a web crawler, that is used to collect written-
out projects of institutes of TU Graz, to get a broader variety of projects for the
students to choose from. The crawler collects projects and theses from the official
websites of each institute and stores them in our database, therefore making them
visible to the students within the mobile application. Also, lecturers may edit their
projects within the web application.

A central part of this work is the database. In our case, a Firebase database
is used, which is a NoSQL database system hosted by Google offering a well-
documented implementation within the Flutter framework used for our mobile
application. This database holds all the information for our code bases. More
details and a detailed overview of the database structure will be covered later in
this chapter.

41

Lastly, an integration within the TU Graz Single-Sign-On system is planned, to
allow the lecturers to easier access the web platform of this project and therefore
allow them to post and edit their projects and theses for the students.

Figure 3.1: Overview of the architecture of this project

How are the main components of this project’s architecture working to-
gether? As shown in Figure 3.1, the central part of this project is the Firebase
database, which consists of the Firestore database storing data for both platforms
of this project. It gets its data from the web application by the lecturers, the web
crawler as well as the image database.

The Firebase database holds two main tables, one for feedback and one for
the projects. Within the feedback table, feedback of students, as well as lecturers,
is stored. The project table holds everything needed for projects to be presented
to the students. More details on the database can be found in section 3.2.

42

These two database tables are directly accessed by the mobile and web plat-
forms. The mobile application stores the feedback data anonymously directly into
the feedback table while retrieving data from the projects table. Data of students
is not stored within the database, but instead, locally on the user’s device. This
will be described in more detail within chapter 4.

• The mobile application may only save data to the feedback table and only
retrieve data from the projects table.

• The web application posts data to the feedback table and retrieves data from
the projects table, as well as being able to edit and add new projects to the
projects table.

• The web crawler can only access the projects table, while its main focus is
to add new projects and to check for duplicates, it may also retrieve existing
projects from the projects table.

3.2 Database structure

The database structure is split into two parts, one database with two collections or
tables (one for feedback and one for projects) and another database for images.

The database system and its features The service used for the database is
Cloud Firestore, which is a sub-product of Firebase and can be classified as a
NoSQL database. This means that there is no defined structure and every entry
within the database may have different content types and sizes, which is not the
case in our project.

Moreover, Firestore allows for entries to have sub-tables with their own entries,
which can have sub-tables again, and so on until a depth of 100. On top of
that, NoSQL also means that queries are fundamentally different from the more
broadly used SQL queries. Firestore does not provide the user with a system of
automatically incrementing ID system, but with the possibility to give each entry
a randomly generated string as a unique identifier.

Another feature offered by Cloud Firestore is the native support of offline data.
Data requested by a device is cached and can be used offline and once a network
connection is established again, it will be synchronized with the database again.

43

Lastly, this system offers real-time updates, which allow data to be changed in
run-time and updated instantly once a change is detected in a used entry within
the database. Most data in our case is retrieved once, but this feature is still in use
in this work and provides a simple and efficient way to update data on run-time
without the programmer needing to check due to the native implementation within
Firebase’s methods.

3.2.1 Terminology of Firestore

Due to Firestore being a NoSQL database, terminology differs from what is known
to users familiar with SQL. What would be considered a table within a SQL
database may also be referred to as a collection. Each table has entries or doc-
uments, which is what they are mostly called in Firestore. These documents, on
the other hand, either contain data, which is saved in fields within the document,
or sub-tables, also called sub-collections. Each document may hold one or more
sub-collections while also having data saved in fields at the same time.

3.2.2 Database tables

Figure 3.2 displays the structure of the Firebase NoSQL database and its two
collections: feedback and projects.

Figure 3.2: Database structure

44

Feedback collection Within the feedback table, as the name suggests, feed-
back on our system provided by students and lecturers is collected, and it includes
the following content for each entry:

• future-rating: whether the user intends to use the software in the future
• happiness-rating: how happy the user is with the application
• suggest-rating: how likely the user is to suggest the application to others
• useful-rating: usefulness of the application to the user
• text: text field for the user to add additional feedback
• appversion: app version used when posting this feedback
• date: date, when feedback was added to the database
• platform: web or mobile

The data type of each field within a document of the feedback table can be
seen in Figure 3.2. Each int value in this case ranged from 1-4, depending on the
provided rating from the user. The range was chosen, so the user has to choose
a side, rather negative or positive, so there are no neutral feedback forms.

Projects collection This table holds all information on projects, except the im-
ages, which will be covered later in section 3.2.2. Each document of the project’s
collection has the following fields:

• id: unique identifier as a string
• date: date of last update
• title: title of the project
• desc: project description
• prof: lecturer in charge of project
• email: email contact of lecturer in charge
• url: website of lecturer or institute
• keywords: list of two keywords to describe each project, such as “AI” or

“complex numbers”
• major: majors of students the project should be suggested to
• type: type of project, may be bachelor, master, project, or other. Length:

1-4
• visible: whether the project is visible in the mobile application or only ed-

itable in the web
• editors: email address of other users allowed to edit the project

45

Figure 3.2 shows the data types of each data field within an entry of the
projects’ collection. Some fields, such as the prof, email, or URL field, are mostly
self-explanatory, and others, like the keywords or visible, will be explained in more
detail, within chapter 4.

Image storage Everything about projects, except the title image of the project,
is stored in the projects’ collection. These images are stored as PNG or JPG
files within the Storage service of Firebase. The service allows files to be stored
in a cloud service, which is connected to the project within the Firebase system.
Every project has one title image. To connect the file to the project, each image
is named with the ID of the project it belongs to.

In some cases there is no image connected to the project. Therefore, the
institute’s logo or the TUGraz logo will be displayed instead.

3.2.3 Database requirements

The main requirements for this systems’ database were:

• Supported by Flutter and Angular/node.js
• Simple to expand
• Stable service - high uptime
• Image storage

46

3.3 Mobile Application Software Architecture

The main goal of the mobile application’s architecture was to be as easy to un-
derstand and use for the end user as possible.

3.3.1 Why Flutter?

The design decision to use the Flutter framework was made, due to the possibility
to compile to multiple platforms, most notably iOS and Android. Moreover, Flutter
offers a wide variety of packages, especially compared to other cross-platform
frameworks, which made it the best choice for this project’s requirements and
plans. Furthermore, the Flutter framework offers simple implementations for a
multitude of problems, such as routing and Firebase, which will be covered in
more detail in chapter 4.

3.3.2 Requirements of Mobile Application

When discussing the views and features of the mobile application, the following
features and requirements were chosen to be essential and will be discussed
hereafter:

• Local User - User settings (aka. Start) View
• User feedback - Feedback View
• Swiping Projects - Swipe View
• Overview of liked Topics - Liked Topics View
• More detailed Projects - Project View
• Contact lecturer of project - External Mail-Application
• Same design across all platforms
• Low network traffic
• Matchmaking within Swipe View

All views are displayed in Figure 3.3. The next part of this work will cover
more detailed explanations of each requirement or view and their importance for
the project.

47

Figure 3.3: Views of mobile application

48

Figure 3.4: Feedback View and
its questions

Local User - User settings View To pre-
serve the user’s anonymity, we chose to only
locally store user data on the user’s mo-
bile device. Besides allowing for better user
anonymity and no login system, this minimizes
database costs because fewer requests to the
Firebase database are needed.

The User settings View is the first view a
user sees when opening our mobile application
and due to Flutter being cross-platform, it will
look the same on iOS and Android. After filling
out all the information, which will be covered
within chapter 4, the user can save and con-
tinue to the swipe page or the feedback page.

User feedback - Feedback View Allowing
the users to give direct feedback through a
dedicated view. As seen in Figure 3.4, the user
is asked five questions. Ratings for the first four
questions are from 1-4, where 1 is the lowest
and 4 is the highest possible rating, while the
last question is open for overall feedback by the
user and the questions asked are:

• How happy are you with our app?
• How useful is our app?
• Are you going to use our app in the fu-

ture?
• Would you suggest our app to others?
• Is there anything else you want to tell us?

49

Swiping Projects - Swipe View This view is the key part of our mobile applica-
tion with its Tinder-like swiping gesture, as well as the cards, that are supposed
to look and feel like profiles on Tinder.

An example card can be seen in Figure 3.5, with an image at the top, if up-
loaded, showing optimally something related to the project itself, or in this case,
a filler image of the institute in charge of the project or TU Graz itself.

After there is the title, name of the lecturer in charge, and a short summary
of what the project is about. The Tinder-like swiping gesture includes being able
to swipe the project’s card right or left, where left means “No” or “Not interested”
and right means “Yes” or “Interested”. After a project gets swiped to the right, it
will get added to the user’s list of liked projects or topics.

The algorithm behind the order in which the projects will be discussed in more
detail in chapter 4.

Figure 3.5: Swipe View with an example Card of a Project

50

Figure 3.6: Liked Topics View with a
few liked example projects

Overview of liked Topics - Liked Topics
View Another view of the mobile applica-
tion is a simple overview of all projects or
topics the user previously liked. Only the ti-
tle and the person in charge are shown in a
list, which is shown in Figure 3.6. By click-
ing on a project, the Project View shows
a more detailed view and also allows the
student to contact the lecturer.

This View can be accessed by clicking
the Heart Icon on top of the Swipe View
and the Project View.

More detailed Projects - Project View
This view is accessed through either the
“More Information”-Button on a project’s
card within the swipe view or by clicking a
project in the user’s liked topics.

The project view contains all the infor-
mation and the same image as the card
within the swipe view. It is the intended way
to contact the lecturer, who is in charge of
a project. This can be done by clicking on
the contact email at the bottom of the view.

This view gives a more detailed view on
the project, by including a link to the web-
site of the lecturer or institute, showing the
project’s types (for example, Master’s Thesis or Bachelor’s Thesis), and the al-
lowed studies for the project.

Contact lecturer of project Clicking on the email address below the contact
allows the student to contact the lecturer in charge of the project. This opens the
user’s default mail application and prefills it with a predefined short default text,
the recipient, and the subject.

The predefined text and subject are meant to be an assistance to the user and
can be adapted or completely changed if wanted.

51

Same design across all platforms Due to using Flutter as the framework, this
requirement was fulfilled quite easily. Even though Flutter allows for differing de-
signs on different platforms, it is not its intended way to implement Flutter applica-
tions. Therefore, our Flutter application automatically allowed a standard design
for Android and iOS.

Low network traffic The mobile application only retrieves data from that database
that might become relevant to the user. This was done by implementing the Lazy
Loading pattern, which is explained in more detail in chapter 5. A project’s title
image is only retrieved right before it is needed, reducing network traffic even
further.

Matchmaking within Swipe View The last requirement of the mobile appli-
cation is the matchmaking process. This algorithm’s target is to match the user,
through the input they made in the User settings View, with the most fitting projects
while completely filtering out projects with wrong majors and project types – which
is the simple part of the matchmaking process.

This requirement will be thoroughly covered in chapter 4.

52

3.4 Web Application Software Architecture

This section will cover the requirements of the web application alongside its struc-
ture and views.

Framework Front End The Angular framework by Google was used to imple-
ment the web application’s front end. Worth mentioning is that just like Flutter, it
is released by Google.

Moreover, the Angular framework has a native implementation of Firebase,
which makes using the already covered Firebase database within the web appli-
cation quite straightforward, making the decision to pick Angular for the front end
clearer. In early design Firebase was meant to be accessed through the front
end, due to the simple use through Angular, but it was later swapped to be part
of the back end to allow for a cleaner cut between both frontend and backend of
the web platform.

Framework Back End As the backend framework express.js, a node.js web
application framework was chosen. Mainly this choice was made, due to the
flexibility and simplicity of express.js, as well as allowing for a decently simple
Firebase database.

3.4.1 Requirements of the Web Application

Requirements for the Angular web application are comparatively simple when
looking at those of the mobile application:

• Lecturer adds new Project
• Lecturer edits/deletes existing Project
• Mobile Application Card Preview
• Project Visibility
• Login/SSO
• Feedback

53

Lecturer adds new Project As already discussed, there are two main ways a
new project can be added to the project’s database, one of them being that a new
project entry is created by a lecturer or someone in a comparable position.

Figure 3.7: Form to add a new project (without the Preview, which can be seen in
Figure 3.8)

The information the user can or should enter can be seen in Figure 3.7 and
are already covered within section 3.2 and will be covered in more technical detail
within chapter 4.

Moreover, on the right side of the view the user can see a preview of how the
project may end up looking within the mobile app.

54

Lecturer edits/deletes existing Project Every lecturer may edit or delete an
existing project, they created, or the crawler connected to their account. The view
is just like the view to add a new project, but loads existing data for a project
from the Firebase database. Unlike in the “Submit a new Project” view, at the
bottom the user can choose between saving changes made and deleting instead
of submitting a new project.

Figure 3.8: Preview of the Project cur-
rently being added or edited

Mobile Application Card Preview
The next requirement of the web ap-
plication is a live preview of how the
project currently being added or edited
may look for the users within the mo-
bile application. This card preview in-
cludes the uploaded image, as well as
entered project name, the name of the
person in charge of the project, and
the project’s description. Once one of
these fields gets updated, the preview
is meant to instantly update to show
the changes. An example preview of a
new project can be seen in 3.8. When
there is no input to a field, the name of
the field will be displayed in the preview
as placeholder and in the case that
there is no image uploaded, a place-
holder image will be displayed, which
can be seen in 3.8.

Project Visibility While adding or
editing a project, the lecturer may
change how long a project should be
visible within the mobile application.

55

As displayed in Figure 3.9, the lecturer may hide the by unchecking the “Project
visible?” check mark. Other than that, a lecturer may set a deadline for the project,
after which the project will automatically turn invisible to users of the mobile ap-
plication. This may be done, by directly choosing a date through a date picker,
which may not be more than 12 months in the future, or by choosing 6 months or
12 months from the day of editing.

Figure 3.9: Visibility card at the bottom of the add/edit view

The main reason 12 months was chosen as the maximum time span a project
can be visible, is that this way the risk of unsupported projects being shown within
the web application is reduced. Moreover, this visibility control allows the lecturer
to directly control their project’s visibility as well as lifespan.

Figure 3.10: Display of the
current user’s projects on
the left side of the view

In the case a person in charge of a project is
still looking for a student to work on the project after
the set time span ran out or is about to, he may just
update it within the edit project view, again up to 12
months from the time of editing.

Login/SSO The current web application login
system is implemented using a simple username
and password combination, which is meant to be
replaced by a full integration within the TU Graz
Single-Sign-On system, to allow lecturers to get ac-
cess to their project through the login system they
are used to. Moreover, as the name suggests, they
only need to sign in once per session and the SSO
system recognizes them on all platforms within the
SSO system.

56

After logging in, the system allows the user to
submit a new project or, as seen in Figure 3.10, the user will get a list of all his
projects on the left side of his screen. By clicking on one of those, he may edit or
delete it.

Feedback To get more insight into the user’s thoughts about this project’s web
application, the implementation of a feedback form made sense. This may be
seen within 3.11 and includes the same questions covered in more detail within
the feedback paragraph for the mobile application and feedback collection in the
database.

Figure 3.11: Feedback view in web application

57

3.5 Other Project Requirements

A handful of requirements for the project do not fit within either the web or mobile
application’s requirements and will therefore be listed here:

• Projects list up-to-date
• Real-time synchronization
• 99% Uptime

Projects list up to date For all currently supported institutes, the web crawler
should allow for an always up-to-date projects list. Lecturers or editors will mostly
add projects for institutes not supported by the web crawler as well as projects
not included in the officially written-out projects by an institute.

Real-time synchronization Whenever a user requests data from the database,
the data should be up-to-date. This should be the case for the web and mobile
platforms. Realistically, this can not completely be achieved, since most lecturers
and editors will not update data to projects, directly after the project is defined. It
should be tried to achieve this requirement with the best possible effort.

99% Uptime A high percentage of uptime should be achieved by the database,
the web application, and the mobile application.

Due to the database being outsourced, this is out of our hands, but historically
this should not be a problem uptime-wise, since firebase pretty much guarantees
an uptime of over 99.95%1. The web application’s uptime will depend on the
server it will be run on later. Lastly, the mobile application’s uptime mostly de-
pends on the user’s network connections and the ability to receive data from the
database. However, once data has been retrieved it is possible to use the mobile
application even without a working network connection, due to caching.

1https://firebase.google.com/terms/service-level-agreement

58

Chapter 4

Implementation

This chapter will cover the implementation of the mobile application, web appli-
cation, web crawler, and database. Important packages/libraries and each plat-
form’s structure will also be discussed.

4.1 Implementation of the Database Access

Within this section, the ways each platform accesses the database are explained.

Firebase in Flutter Within Flutter, the packages firebase core and cloud firestore

are used to access the data from the projects and feedback collections. firebase core

allows to initialize the connection to the database with an API key, while cloud firestore

allows retrieving and updating data within Firestore. A simplified database access
in Flutter is shown in Listing 4.1.

firebase storage allows for access to the images linked to the projects. This is
done by requesting images, which are named like the unique ID of a project.

Firebase in Web Application Due to Firebase allowing for direct access within
Angular, it was first planned to implement the database connection through the
frontend it was later decided to make a clear cut between the frontend and back-
end and place the database access in the backend.

59

Query db = F i rebaseF i res to re . ins tance . c o l l e c t i o n (” p r o j e c t s ”) .
where (” v i s i b l e ” , isEqualTo : t r ue) ;

awai t db . get () . then (
(value) {

f o r (var p r o j e c t i n value . docs){
L i s t ? keyword = [] ;
P ro jec t tmppro jec t = Pro jec t (

p r o j e c t . get (” t i t l e ”) ,
p r o j e c t . get (” p ro f ”) ,
desc : p r o j e c t . get (” desc ”) ,
p r o j e c t : p r o j e c t . get (” p r o j e c t ”) ,
p r o j e c t I D : p r o j e c t . re ference . id ,
major : p r o j e c t . get (” major ”) ,
keywords : keyword

) ;
p r o j e c t L i s t . add (tmppro jec t) ;

}
}

) ;

Listing 4.1: Simplified Firebase access in Flutter, without retrieving every field
from the database and catching exceptions.

Within the backend, the package firebase-admin allows for database access.
Unlike in the Flutter application, this package allows for both, the access to the
collections and the image storage. Again, it gets initialized with a private key
before getting access to retrieving, adding, editing, and deleting projects, adding
feedback, and adding and changing images.

Firebase in Web Crawler The web crawler uses the python library firebase admin
to access and edit data within the database. Just like in the other platforms of this
project, a private key is used to establish a connection to the projects collection.

60

4.2 Implementation of the Mobile Application

This mobile application’s Flutter implementation will be covered in more detail in
this section. Important packages, the routing process, matchmaking, as well as
the general structure, and other important design decisions will be covered.

Overall thought Overall Flutter’s structure is layered, and most Widgets may
have child Widgets. Therefore, our implementation is split into layers. Most layers
are extracted into their own methods, while layers with multiple child Widgets are
often split into multiple methods.

When it comes to views, each view is a file and, depending on whether it is
stateless or stateful, contains one or two classes. Besides the views, which were
covered in section 3.3, routing, notifications, images, database access, and a
main class are used to implement this project.

Important Packages Within this project’s Flutter implementation, a variety of
packages were used, while only a handful of them have real importance to the
project. These include:

• Tcard: For creating “Tinder”-like swipe cards
• shared preferences: For storing the user’s settings locally
• firebase core and cloud firestore: To access Firestore data
• firebase storage: To access Firebase’s image storage
• string similarity: Calculate ranking of projects depending on keywords
• flutter local notifications: To create notifications

Why is the user stored locally? The decision to keep the user local and not
save any data within the database was made due to data privacy reasons, since
the user’s data is not stored, besides, when feedback is sent.

Moreover, the application, therefore, is more user-friendly, due to the fact that
no login is needed. Once the needed data for filtering is entered, no more data
input is needed and everything is stored locally on the user’s device through the
shared preferences package.

61

Figure 4.1: Pre-defining possible routes
in Flutter

Routing Routing in Flutter is mostly
implemented by pre-defining possible
routes shown in Figure 4.1. Routes
need to have unique names, except
the initial route does not have a name
but instead a single slash.

This Rout-class is initialized within
the main class to start the application
with the initial route. The Rout-class
does not need to be included within the
other classes using it to navigate be-
tween the different screens, due to it
being called within the main-functions
runApp-call.
onTap : (){

Navigator . pushNamed(context , ’ / i n fo ’ , arguments : { ’ index ’ : conver t ID to Index (l i k e d L i s t [index]) }) ;
}

Listing 4.2: Routing with arguments

Within the LikedScreen-class the /info route is called with arguments, due
to the InfoScreen-class being dependent on which projects should be displayed,
this can be seen in Listing 4.2. Most other calls within the navigator only supply
context and the route.

Matchmaking Matchmaking between the user and the projects is done locally.
After the user sets their information, mainly the project type, the major and op-
tionally up to two keywords, the matchmaking process starts.

Firstly, the data, for all visible projects of the user’s major will be retrieved from
the database.

The list of projects will be ranked using the Sørensen–Dice coefficient, which
is used by the string similarity package in use. Each of this user’s keywords
Sørensen–Dice coefficient with each of the project’s keywords will be calculated
and then averaged out. This average lies between 0 and 1, where the project
closest to 1 will be listed as first. Some projects may not contain keywords and
therefore will be given a 0 within the string similarity rating.

62

4.3 Implementation of the Web Application

Important packages for the frontend and backend implementation, as well as the
structure of both ends, will be explained in this part of the work.

4.3.1 Angular - Frontend

Here everything noteworthy about the Angular implementation will be covered.
Overall, every part of a view in Angular is split in four files. One html-file for

the overall structure, one css-file for the design and structuring, one spec.ts-file
for testing and a ts-file for methods behind the view. Moreover, each view can
include other modules, for example, in our case a header, which is used in every
view.

Figure 4.2: Files and their datatypes part of an Angular view

Launching the frontend The Angular frontend of this project is launched by
running ng serve --proxy-config proxy.conf.json within the command line.
Calling --proxy-config proxy.conf.json is used to redirect calls to the backend
to the right location.

63

{
” / ap i / * ” : {

” t a r g e t ” : ” h t t p : / / l o c a l h o s t :3000 ” ,
” pathRewri te ” : {

” ˆ / ap i ” : ” ”
}

}
}

Listing 4.3: Proxy config frontend to backend location in proxy.conf.json

As seen in Listing 4.3, target sets the location of the backend server, which
in our case currently is located at localhost:3000, as well as rewriting the path.
This is done because within the frontend calls include /api before the actual
command while they are expected to only have the command itself.

Figure 4.3: Setting possible routes within An-
gular

Web Application Routing For
routing within Angular, possible
routes need to be pre-defined,
similarly to how it was done in
Flutter. Figure 4.3 displays the
definition of all routes within the
project, as well as the compo-
nents to which the router redi-
rects the user to.

Worth noting is the last line,
here we redirect every unknown
path to the /404 path due to
them being unknown. Moreover,
the third last row within Figure 4.3 shows variable paths, where :id is every pos-
sible ID a project may have within the web platform.

Frontend Packages Packages within the frontend are a rarity, due to the di-
verse native options within Angular. Routing, backend communication, and build-
ing forms, for example, are all included within the @angular package.

A variety of modules, which are parts used to build the frontend, such as
buttons, date picker, or input fields, are also part of the @angular package library.
All needed modules are imported within a local app.module.ts file, allowing all
.html and .ts files to make use of them.

64

Communication with Backend To communicate with the backend, a service-
file is created, which is a class called from other classes or views allowing the
usage of within web development widely known GET, PUT and POST calls.

This way, data can be requested from the backend, as well as data, such
as feedback and projects, can be sent to the backend. These calls include a
path, which is used like a command, which is where the proxy-file from earlier
comes into play, as well as variables that are part of the path, which mostly is
data entered by the user.

4.3.2 node.js - Backend

This part covers important implementation thoughts about the backend, imple-
mented with node.js.

Commands Possible calls the frontend may send to the backend to handle
mainly include:

• GET project - Retrieving projects from database and pass to frontend
• POST project - User adds new project and adds to database
• POST feedback - User enters feedback to be stored to database
• POST edit - User edits existing project to be edited within database
• PUT delete - User deletes existing project in database
• POST image - User adds image to a new or existing project

Moreover, it is worth mentioning that all used methods, GET, POST, PUT are http
methods.

65

4.4 Implementation of the Web Crawler

This section will cover the web crawler’s implementation.

Structure of the Web Crawler The web crawler is focused on crawling new
projects within the ITI institute of TU Graz.

Figure 4.4: List of crawlable Projects on
ITI website2.

It is a web crawler, starting at the in-
stitute’s open projects page and crawl-
ing for all projects that are displayed
there. Each project is scanned for the
type, like Master, Bachelor, or other,
as well as the major, which in this in-
stitute’s case mostly is Computer Sci-
ence, Software Engineering and Man-
agement, or Electrical Engineering.
Figure 4.4 shows a list of the cur-
rently available theses topics, which
are shown by opening the “Teaching”
tab.

Before adding projects to the
database, the projects are checked for
existence within the database, and if
they are not found, the crawler adds
the newly found projects to the Fire-
base database.

Due to the fact that ITI does not add
images to their written-out projects, the
project’s image will be the ITI logo by
default.

2https://www.tugraz.at/en/institutes/iti/home

66

Chapter 5

Design Patterns

This chapter covers a variety of Design Patterns used in this project. Firstly,
patterns used in both, the mobile and the web applications will be covered, after-
wards patterns exclusively used within the mobile application and lastly, patterns
that were used within the web application will be discussed.

5.1 Design Patterns in Mobile and Web Application

This section will cover most Design Patterns that were implemented in both the
mobile and the web application:

• Iterator
• Async Await
• Observer
• Singleton
• Reactor
• Eager Loading

Iterator The iterator pattern is among the most widely known and used patterns,
and possibly is the most widely spread pattern. It is used to iterate over a list,
array, or a similar data structure to access or manipulate the items within these
data structures.

67

Async Await Async Await is used in both applications to wait for a response
from the database. Once await is called, the program executes other code while
waiting for the response from, in our case, the database. This pattern has a lot
of different applications and is not only applicable to databases or other external
responses.

Observer An Observer pattern was used within both, the mobile and the web
applications, but the use cases are different. This pattern is used to observe one
or more variables for changes.

Figure 5.1: Observer Pattern UML

In the mobile application, the observer pattern was used to track the number of
cards left for the user to swipe, once this number reached five or fewer remaining
cards, the observer will call a method to get more projects from the database to
get more cards.

Within the web application, this pattern was used to observe changes within
the project that is currently being created or edited. Changes will lead to the
observer calling a method to change the preview card if needed.

68

Singleton Just like the Observer pattern, the Singleton pattern was implemented
in both platforms with different use cases. This pattern only allows a single object
of a class, which is defined to be a singleton, each constructor call after the first
will lead to the already existing object being returned to the caller.

Figure 5.2: Flutter implementation of the Singleton Design Pattern

Within the mobile platform, there are two main use cases. The database and
the notification system, of which the Flutter implementation, can be seen in Figure
5.2. The web application uses the singleton pattern, for example within the app-
service, which is the communication point of the frontend to the backend.

Figure 5.3: Singleton Pattern UML

Reactor The Reactor pattern allows for service requests to be delivered con-
currently by multiple clients. This pattern is not directly implemented within either
of the platforms but used to to the Reactor pattern being part of the Firebase
database service.

69

Eager Acquisition Whenever everything that might be needed in the future is
directly downloaded from the database, one would call that Eager Loading.

In the web applications case, this is everything related to the logged-in user.
Whenever a user is logged in, the data for all his projects is retrieved from the
database, and within the mobile application Eager Loading is used to download
the data of all projects within the user’s selected major and project type, all data
besides the images that is.

Figure 5.4: Eager Acquisition UML

70

5.2 Design Patterns exclusive to Mobile Application

Within the Mobile Application, a variety of Design Patterns were used. In contrast,
others were implemented completely intentionally – a full list of all patterns that
may be found within the mobile application includes:

• Strategy
• Future
• Lazy Acquisition/Loading
• Caching
• Null-Safety
• Extract Method
• Half-Sync/Half-Async

Strategy The Strategy pattern is used to choose one algorithm to run out of a
group of interchangeable algorithms.

Figure 5.5: Strategy Pattern UML

In this project, it was used to differentiate between iOS and Android – firstly,
because during compilation there are differences, and secondly, due to the notifi-
cations working in different ways.

71

Future A Future is a data object that is returned to the client from a service
before the computation is finished. After completion, the client receives the final
object. Within Flutter, the client receives a Future object after requesting data
from the Firebase database. In our case, we know exactly how the final object
will be structured, and therefore may already call the functions with the Future as
input.

Lazy Acquisition Lazy Loading is used to only download data from the database
when it is really needed.

The implementation of this pattern within this project is used to only download
the images of a project when its card is about to be shown. This is done to
minimize the application’s network usage.

Figure 5.6: Lazy Acquisition Pattern UML

Caching After acquiring data, the data is stored locally and therefore does not
need to be acquired from a database but instead is loaded from the local storage.

Caching is used to minimize network usage in this project. Firebase supports
caching natively. Everything requested from the Firebase databases, including
the projects themselves, as well as their images, will automatically be cached in
Firebase’s cache.

Null-Safety Null-Safety is a pattern applied by Flutter and Dart. It ensures that
every variable does not contain null as a value unless it is initialized to be null.
Types like int can not have null as a value overall.

Null-Safety can also be classified within the Null-Object pattern as it is a way
to handle objects with no value.

72

Extract Method This is a refactoring design pattern that was applied. By ex-
tracting and splitting code into new methods with self-explaining method names,
we allow for smaller methods and simpler-to-understand code.

This pattern was applied to most views because in the beginning, it was easier
to build the basic GUI within in a handful of methods, but after they were split into
more, once the design got more detailed.

Half-Sync/Half-Async This pattern allows for two layers, one being synchronous,
while the other layer is asynchronous. These layers may communicate directly,
like in the case of this project, or with another layer in between for queuing.

Most of the project is reliant on the asynchronous layer, because of its de-
pendency on the data from the Firebase database. A small part, of the local
user data, is synchronous and both layers communicate directly, due to the direct
access of the asynchronous layer to data of the synchronous layer.

73

5.3 Design Patterns exclusive to Web Application

Design patterns which are exclusively found within the web application are cov-
ered in this section.

Encapsulated Field Whenever this pattern is implemented, the variable can
only be accessed and changed through getter and setter methods. Within the
backend of the web application, all changes to the data may only be done through
getter and setter methods.

Command Command pattern implementation encapsulates requests as an ob-
ject and then forwards the object to a receiver to execute them accordingly.
postFeedback (feedback : any){

th is . h t t p . post (” / ap i / feedback ” , feedback , h t tpOpt ions) . subscr ibe (response => {

Listing 5.1: Implementation of the Command Design Pattern in the Web Applica-
tion

As seen in Listing 5.1, the Command pattern was used for the communication
between the frontend and the backend. The part of the url after ‘/api/ is the
command, which in return is handled by the backend. In the case of this example,
the feedback entered by the user will be stored in the database.

Figure 5.7: Command Pattern UML

Client-Server Like the name suggests, this pattern includes a client and a
server, where the client requests a service and the server fulfills it. The Client
in our project is the frontend and the backend, including the database, is the
server in our case.

74

Chapter 6

Evaluation

This chapter will cover an evaluation of the project’s goals and achievements.
Firstly, the requirements defined within the Software Architecture (chapter 3) will
be revisited and analyzed. Afterwards, other capabilities of the system will be dis-
cussed. Lastly, a user study was done with students of TU Graz to get feedback
on the mobile application.

6.1 Assessment of Requirements

Within this section, most requirements listed within chapter 3 will be discussed,
and whether they are completely fulfilled. Moreover, capabilities will be discussed.

6.1.1 Assessment of Requirements

This section will cover the requirements of the project and assess them. Most
requirements are qualitative requirements, therefore, each will be rated on a ful-
fillment scale of 1-5, depending on how the implementation worked out.

75

6.1.2 Mobile Application requirements

Within this part of this work, the requirements of the mobile application will be
covered. The following requirements will be looked at:

• Local User
• Swiping Projects
• Contact lecturer of project
• Same design across all platforms
• Low network traffic
• Matchmaking within Swipe View

Local User The architectural decision to keep the user only in the local storage
was implemented successfully and can therefore be rated a 5 on a scale of 1-5.
This allowed for more anonymity for the user, as well as simplified the matchmak-
ing process, due to it being moved to the local device. Moreover, there is not
much data being stored, therefore, the usage of the user’s storage is limited to a
few strings.

Swiping Projects The Tinder-like swiping process was implemented according
to the requirements. By making use of the Flutter package tcard, which not only
allowed for the animation of swiping cards either left or right but also for handling
the user’s input in the background. Also, the card design allowed by tcard is
quite simple, due to each card being handled like a normal view in Flutter. This
allows for a lot of freedom in the design process, as well as a known format for
the developer. This completely fulfilled the requirement but some small additions,
such as adding buttons for liking and disliking, might improve the implementation
of this requirement, therefore this requirement is a 4/5.

Contact lecturer of project Contacting the lecturer with a predefined email text
and therefore fulfilling this requirement was done using the url launcher string

package for Flutter. This requirement can be rated a 5/5, since it met all expecta-
tions.

76

Same design across all platforms Successfully implementing this require-
ment was quite simple, while achieving a 5 on the fulfillment scale of 1-5. By
implementing the project in Flutter, this requirement was fulfilled passively, due
to, as already explained in section 2.6, Flutter allowing the code to be compiled
to be executed on iOS and Android, along other platforms.

Low network traffic Lowering the network traffic was done by only retrieving
text data of visible projects before ranking them and filtering the project of interest
to the current user. Images, which are the main network traffic of this project, are
only retrieved once they are needed. Moreover, caching allows for even lower
traffic, due to images being cached, as well as text data for liked topics. There
are most likely always possibilities to lower the network traffic of our platform,
therefore this requirement only achieved a 4 on our fulfillment scale.

Matchmaking within Swipe View Overall the matchmaking is done locally, be-
sides the filtering of non-visible projects. The ranking is done using the Sørensen–Dice
coefficient, which is used by the Flutter package string similarity, depending
on the keywords entered by the user and stored within each project.

The matchmaking process was chosen to be implemented in a simplistic way,
due to only a few dozen projects being in question at any time. With the project
growing and the number of projects shown to each student might grow and a
different matchmaking process might be better, therefore, due to the current al-
gorithm working well for the current scope of the application, a rating of 4 on our
1-5 fulfillment scale was selected.

6.1.3 Web Application requirements

Next, most requirements for the web application will be covered, which include:

• Add new project
• Edit/Delete existing project
• Preview card
• Project visibility
• Login/SSO
• Feedback

77

Add new project This requirement was fulfilled with Angular’s first-party libraries
for forms and form validation. The form for the creation of a new project includes
data displayed to the user, such as the project’s name or the lecturer in charge,
data needed for the matchmaking process, such as the keywords and lastly, vis-
ibility control. Moreover, a preview card is included in this view, which will also
be covered in this section of the paper. On the fulfillment scale, this requirement
achieved a 5.

Edit/Delete existing project Quite similar to the view for the creation of a new
project, this requirement was implemented only using Angular’s first-party libraries
and in a very similar design to the one seen in the view for adding a new project,
therefore, like the “Add new project” requirement, a score of 5 on the fulfillment
scale is achieved. The main difference to the “Add new project” requirement is
that instead of a button to submit the new project at the bottom of the view, two
buttons can be found in this view. One to save the changes made to the project
loaded and another one to delete the whole project from the database.

Preview card Using Angular’s first-party method mat-card, a preview card was
created, with the goal of giving lecturers a viewing of what the project will look like
to students seeing the project within their Flutter-built Android or iOS application.
The information displayed only includes data entered by the lecturer or loaded
from the database. This preview card can be seen in both the add new project
view, and the edit/delete project view. Overall, this preview card is quite similar to
the one displayed in the mobile application, but due to small, visible differences,
especially the “More Information” button, a score of 4/5 was achieved.

Project visibility Completing this requirement was done within the functionality
of Angular’s form-building and form validation features. With a check, the edi-
tor may choose to turn the project visible or invisible to the students, but unlike
deleting, this allows the editor to still edit the project and turn it visible later on.
Moreover, the editor needs to set a date, after which the project automatically
turns invisible. The maximum duration for visibility is 12 months, which is done
to avoid “dead” projects within the mobile application. Just like projects manu-
ally being set to invisible, each project may be set to visible again after being set
to invisible automatically. Due to the implementation of this requirement fulfilling
everything expected, a score of 5 on the fulfillment scale was chosen.

78

Login/SSO The requirement for the login system is fulfilled, but they project is
not yet integrated into the TU Graz SSO, therefore only achieving a 3/5 on the
fulfillment scale. The current login system is very simple. Moreover, currently,
the project editing is bound to the email addresses of the lecturer or designated
editors. Each user can only open the edit/delete view for each project they are
assigned.

Feedback Like every other form within the web application, this application’s
feedback form was built with only Angular’s first-party form and form validation
libraries and scored a 5 on the fulfillment scale.

6.1.4 Other requirements

Lastly, other requirements for this project included:

• 99% Uptime
• Real-Time Synchronization
• Project list up to date

99% Uptime For the mobile application, a 99% uptime is guaranteed by Fire-
store guaranteeing an uptime of at least 99.95%1, and everything else depends
on the user’s network connection. Moreover, even if the user does not have a
working network connection, he may use the mobile application due to caching,
which may lead to some projects not having title images, but other than that the
application works as normal.

Within the web application, uptime can not be guaranteed at the moment. This
is the case, due to the web application not yet permanently being hosted. In the
case the application will get hosted by TU Graz, a 99% uptime should be realistic.

Real-Time Synchronization Projects being up-to-date is achieved due to Fire-
store’s real-time updates. Therefore, every change by an editor or lecturer within
the web application will automatically update projects within the mobile applica-
tion in real-time. This is also the case for projects added through the web crawler.
This, of course, can only happen if the mobile user has a working network con-
nection. This requirement achieved a 5 on the fulfillment scale.

1https://firebase.google.com/terms/service-level-agreement

79

Project list up to date Projects added by a lecturer or editor are within their
area of responsibility to keep up to date and therefore cannot be guaranteed to be
up-to-date. Projects posted on institutes’ official projects list will be automatically
added to the projects’ database. This, however, is only the case if the institute
is supported by the web crawler, which at the moment is only the case for the
ITI institute of TU Graz. The fulfillment of this requirement is hard to rate, due to
future work with institutes, therefore this requirement can only be rated with a 3/5
score.

6.1.5 Summary of requirements

Table 6.1 summarizes every requirement of the project and its rating on the fulfill-
ment scale, from 1 to 5, except one, which can not be rated at the moment.

Requirements
Requirement Platform Requirement met?
Local User Mobile 5/5
Swiping Projects Mobile 4/5
Contact lecturer of project Mobile 5/5
Same design across all platforms Mobile 5/5
Low network traffic Mobile 4/5
Matchmaking within Swipe View Mobile 4/5
Add new project Web 5/5
Edit/Delete existing project Web 5/5
Preview card Web 4/5
Project visibility Web 5/5
Login/SSO Web 3/5
Feedback Web 5/5
99% Uptime Other Possible
Real-Time Synchronization Other 5/5
Project list up to date Other 3/5

Table 6.1: Summary of all requirements and their fulfillment score on a 1-5 scale

80

6.2 User Study

In this section, the user study, which was carried out with TU Graz students, will be
covered. Firstly, the questions asked why they were asked, and the expectations
will be covered. Subsequently, the results of the user study will be shown and
analyzed.

6.2.1 Experimental Design

The user study was carried out with 13 students, each student individually, and
only focused on the mobile applications side of the project, due to the web appli-
cation being irrelevant to the students.

Firstly, a presentation about the features and design of the mobile application
was held, followed by each student filling out a form on their opinion on the project
through questions, which are covered next. These questions were answered with-
out any guidance and anonymously by each student.

Questions asked After the presentation, each student filled out a survey, in-
cluding questions about their thoughts on the mobile application.

The questionnaire contained five statements, which each student could rate
from 1-6, where 1 meant they do not agree with the statement at all, and 6 meant
they fully agree. This scale also was selected due to it not allowing a neutral value
or opinion on a statement. Lastly, there is an open feedback field, which allows
each attendant to give their opinion on the project and ideas they may want to
see implemented.

Questions asked in the questionnaire are meant to collect data on the opinions
about the mobile application, especially from the view of a student, and contain
the following statements rateable from 1-6:

• This application overall seems useful to me.
• I would use this application when looking for a thesis.
• This application would simplify the process of finding a topic for a thesis.
• This application would work among students at TU Graz.
• I would recommend this application to fellow students.

As well as the open question “Are there any comments or suggestions you
would like to add about the TU Project Finder that would help improve it?”.

81

Expectations Positive feedback was expected, due to the problems students
usually face when looking for a thesis. Most institutes of TU Graz only offer out-
dated, unstructured, or no lists at all. Therefore, it is to be believed, that most
students would like a platform offering a central point to look for possible thesis
topics, which at the moment, does not exist at TU Graz. Therefore, overall, very
positive feedback on the statements within the form can be expected.

Moreover, the Tinder-like swiping process makes it simple for students to ex-
plore possible projects, even to some degree “gamifying” the process, allowing for
a process, which at the moment is a real struggle for most students, to possibly
even be an enjoyable experience.

Lastly, the possibility for students to enter any feedback they would like, there
might be some ideas to be implemented in the project in the future.

6.2.2 Results

After each of the 13 students rated the statements listed above on a scale of
1-6, the results were really good. Each statement’s average rating was above
at least 5.3, with the lowest-rated statements being “This application would work
among students at TU Graz.” and “I would recommend this application to fellow
students.”, meaning on average, each student on average would agree with this
statement. 5.3 being the worst rated statements are really promising results for
this user study and the project overall.

Figure 6.1: User study results for the statement “This application would simplify
the process of finding a topic for a thesis.”

The two statements with the highest agreement are “This application would
simplify the process of finding a topic for a thesis.” and “I would use this application
when looking for a thesis.”, which are really well-rated, with an average above
5.5 each. In Figure 6.1, for the first of those two top-rated statements, “This

82

application would simplify the process of finding a topic for a thesis.” the exact
ratings can be seen. Ratings for “I would use this application when looking for a
thesis.” look the same.

When it comes to the open feedback field at the end of the user study, some
interesting comments were made, namely:

• Student website, TUG online or Studo
• Like/Dislike statistics for lecturers
• Suggest Keywords
• Current finding process

Student website, TUG online or Studo This was the most suggested improve-
ment in the feedback field. Three students suggested implementing TU Project
Finder as part of the Studo application, which is an application most students at
TU Graz use to organize their lives at university, including emails, calendars, and
registering for lectures, among other things.

Other related suggestions were also offering the student’s application as a
website, so they would not need to install another application on their phone,
as well as suggesting integration into TUG online, which is the online platform for
students and lecturers to organize their lives at university, so to speak the browser
version of Studo.

Due to the broad usage of Studo, an integration into this application could
definitely make sense and should be discussed in the future.

Like/Dislike statistics for lecturers Offering lecturers a monthly update on the
Like/Dislike statistics of their projects could be an interesting feature, to also offer
the lecturers’ feedback on how their topics perform among students. Although this
feature might be unpopular among some lecturers, overall this could help increase
the quality of topics written out at TU Graz and further improve the process of
finding topics for students.

Suggest Keywords Moreover, feedback included that the application should
suggest keywords for students, which could definitely work and should be looked
into.

83

Current finding process Overall, each feedback discussing the current finding
process showed that there is a place for this application, due to the current pro-
cess not being structured well, and students being clueless about the best way
of finding topics. Problems in the current process found within the user study
include:

• Own ideas
• Emails
• Other ways

Own ideas Some students said that it is common in their major that students
approach lecturers with their own ideas and possible topics, which can be hard,
due to students often not knowing the scope of a bachelor’s or master’s thesis.
This was listed by students majoring in architecture and teaching.

Emails Another feedback student gave, majoring in teaching and one that did
not name their major, was that they found possible topics mainly through emails
by lecturers, whose lectures they attended in the past. Even if this works in some
cases, it is possibly not the way most students want and should rely on, due to
most lecturers not regularly sending out their topics.

Other ways Other students found their topics in the past through fellow students
recommending them to a lecturer or even through an outdated bulletin board at
an institute.

84

Chapter 7

Discussion

This chapter will cover possible limitations in the future, as well as planned future
work to further improve this project.

7.1 Limitations

Possible limitations of this project may include:

• Generalization of students
• Adaptation of institutes
• Growing user base

Generalization of students Overall, a generalization of the results to all stu-
dents of TU Graz is limited by a small number of students, which were part of the
user study. Moreover, even with those students covering a few different majors,
a lot of other majors may work differently in the way their process of looking for a
thesis is.

Adaptation of institutes Another possible limitation of the project is the willing-
ness of institutes of TU Graz to publish their projects in a well-structured way on
their website, where they could be collected with a web crawler, or directly add
projects to our database through the web application.

85

Growing user base Starting to grow a user base at TU Graz might be a struggle
at first, but this could be countered by possibly integrating the mobile application
as part of the at TU Graz widely used Studo application, which was a suggestion
part of the feedback from some students during the user study.

7.2 Future Work

There are a few possible ways this project may be expanded or improved on in
the future, including:

• TU Graz Single-Sign-On
• Web Crawler
• Studo

TU Graz Single-Sign-On Integrating the web application into the TU Graz SSO
system would largely benefit the project, due to easier access for lecturers and
editors to their projects within the system. Currently, all sites part of the TU Graz
network allow login with the same login credentials and once logged in, you stay
logged in on the device for a while and across the whole network. Moreover,
this would not only make it easier for lecturers, but most likely also increase their
willingness to make use of the web platform.

Web Crawler Currently, the web crawler is only fully implemented for the ITI
institute of TU Graz. Even though, expanding the crawler to all institutes of TU
Graz is impossible, due to a lot of institutes not offering an up-to-date list, or no
list at all. However, institutes maintaining their lists may be integrated into the web
crawler pretty quickly and therefore minimizing effort for lecturers and editors of
an institute, which in turn could possibly motivate other institutes to do the same.

Studo Some students suggested this during the user study, which makes sense
since most students already use the Studo application to handle their calendar,
mail, exams along other things at university. Students possibly want to avoid
having more applications than are needed on their phones. Moreover, integration
into the Studo application could, even though it would probably be a lot of effort,
simplify the process of growing a user base and making our application known to
students at TU Graz. This possible cooperation is yet to be discussed with them.

86

Chapter 8

Conclusion

This project worked on solving the common problem of most students at TU Graz,
which is trying to find a suitable topic for their bachelor’s or master’s thesis. On
the other hand, it should be as easy as possible for lecturers to publish topics
within this platform.

A Flutter application for iOS and Android was chosen as the optimal solution
to help the students find possible topics in an easy and gamified way. To solve
the lecturers’ side of the problem, an Angular web platform was built to allow the
lecturers themselves or their designated editors to add, edit, and remove from our
database. Moreover, to collect more topics for the students to swipe through, a
web crawler was implemented. At the moment only works for the ITI institute of
TU Graz as a proof of concept, but should be expanded to other institutes offering
an online list of topics in the future.

Overall, after carrying out a user study with students from various majors,
overwhelmingly positive feedback was gathered. Every student agreed with the
statements that “This application would work among students at TU Graz.” as
well as “This application would simplify the process of finding a topic for a thesis.”,
which shows the possibly bright future of this project.

In the future, working on an efficient solution to keeping projects within the
database up to date, mostly through web crawlers for more institutes as well as
helping institutes add their new projects to our database on their own, should be
looked at. Moreover, implementing TU Graz Single-Sign-On for the web applica-
tion is needed, to allow lecturers and editors to add new projects with as little work
as possible. Lastly, possibly implementing TU Project Finder within the studo app
would allow for a wider availability for students, due to the broad usage of the
application at TU Graz.

87

Bibliography

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012. → Cited on page 4.

[2] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, p. 1053–1058, 12 1972. [Online].
Available: https://doi.org/10.1145/361598.361623 → Cited on page 4.

[3] P. Zhang, H. Muccini, and B. Li, “A classification and comparison of model
checking software architecture techniques,” Journal of Systems and Soft-
ware, vol. 83, pp. 723–744, 05 2010. → Cited on page 4.

[4] L. Dobrica and E. Niemela, “A survey on software architecture analysis meth-
ods,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 638–
653, 2002. → Cited on page 4.

[5] F. Solms, “What is software architecture,” in ACM International Conference
Proceeding Series, 10 2012. → Cited on page 5.

[6] D. Garlan, Software Architecture. John Wiley & Sons, Ltd, 2007. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.
ecse375 → Cited on pages 5 and 6.

[7] A. Tang, P. Liang, and H. Vliet, “Software architecture documentation: The
road ahead,” in Proceedings - 9th Working IEEE/IFIP Conference on Soft-
ware Architecture, WICSA 2011, 06 2011. → Cited on page 6.

[8] M. Silva and I. Perera, “Preventing software architecture erosion through
static architecture conformance checking,” in 2015 IEEE 10th International
Conference on Industrial and Information Systems (ICIIS), 12 2015, pp. 43–
48. → Cited on page 7.

[9] M. Dalgarno, “”when good architecture goes bad,” methods and tools,”
Method and Tools, vol. 17, pp. 27–34, 2009. [Online]. Available:

88

https://doi.org/10.1145/361598.361623
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse375
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse375

https://www.methodsandtools.com/archive/archive.php?id=85 → Cited on
page 7.

[10] H. Vliet and A. Tang, “Decision making in software architecture,” Journal of
Systems and Software, vol. 117, 01 2016. → Cited on pages 7 and 8.

[11] W. Stacy and J. MacMillan, “Cognitive bias in software engineering,”
Commun. ACM, vol. 38, no. 6, p. 57–63, 6 1995. [Online]. Available:
https://doi.org/10.1145/203241.203256 → Cited on page 7.

[12] C. R. Martin, “Design principles and design patterns,” objectmentor, 2000.
→ Cited on pages 8 and 12.

[13] P. Petrov and U. Buy, “A systemic methodology for software architecture
analysis and design,” in 2011 Eighth International Conference on Informa-
tion Technology: New Generations, 2011, pp. 196–200. → Cited on page
8.

[14] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns,
Buildings, Construction. New York: Oxford University Press, 8 1977.
[Online]. Available: http://www.amazon.fr/exec/obidos/ASIN/0195019199/
citeulike04-21 → Cited on pages 9 and 10.

[15] J. O. Copien, Software Design Patterns: Common Questions and Answers.
The Press Syndicate of the University of Cambridge, 1998. → Cited on page
9.

[16] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley Professional, 1994. [Online]. Available: http:
//www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/
dp/0201633612/ref=ntt at ep dpi 1 → Cited on pages 9, 10, and 11.

[17] W. Tichy, “A catalogue of general-purpose software design patterns,” in Pro-
ceedings of TOOLS USA 97. International Conference on Technology of Ob-
ject Oriented Systems and Languages, 01 1997, pp. 330–339. → Cited on
page 9.

[18] W. Cunningham, “Pattern forms,” 2005. [Online]. Available: https:
//wiki.c2.com/?PatternForms → Cited on pages 9 and 11.

89

https://www.methodsandtools.com/archive/archive.php?id=85
https://doi.org/10.1145/203241.203256
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://wiki.c2.com/?PatternForms
https://wiki.c2.com/?PatternForms

[19] M. Krisper, “Finding the right design pattern using binding time properties,”
2016. → Cited on page 9.

[20] D. Riehle, “Composite design patterns,” in Proceedings of the 1997 Confer-
ence on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’97). ACM Press, vol. 32, 10 1997, pp. 218–228. → Cited on
page 12.

[21] W. Zimmer, Relationships between Design Patterns. USA: ACM
Press/Addison-Wesley Publishing Co., 1995, p. 345–364. → Cited on page
13.

[22] M. de Vos, G. Ishmaev, and J. Pouwelse, “Match: A decentralized
middleware for fair matchmaking in peer-to-peer markets,” in Proceedings of
the 21st International Middleware Conference, ser. Middleware ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 74–88.
[Online]. Available: https://doi.org/10.1145/3423211.3425678 → Cited on
pages 14, 15, 16, and 17.

[23] D. Paraschakis and B. Nilsson, “Matchmaking under fairness constraints: a
speed dating case study,” in Communications in Computer and Information
Science (CCIS,volume 1245), 04 2020. → Cited on pages 14, 15, 16, and 18.

[24] T. P. Minka, R. Cleven, and Y. Zaykov, “Trueskill 2: An improved bayesian
skill rating system,” in Technical Report MSR-TR-2018-8. Microsoft, 2018.
→ Cited on pages 15 and 17.

[25] M. Claypool, J. Decelle, G. Hall, and L. O’Donnell, “Surrender at 20? match-
making in league of legends,” in 2015 IEEE Games Entertainment Media
Conference (GEM), 10 2015, pp. 1–4. → Cited on pages 15, 16, and 17.

[26] M. Myślak and D. Deja, “Developing game-structure sensitive matchmaking
system for massive-multiplayer online games,” in Lecture Notes in Computer
Science (LNISA,volume 8852), 11 2014. → Cited on page 16.

[27] S. Agarwal and J. Lorch, “Matchmaking for online games and other latency-
sensitive p2p systems,” in ACM SIGCOMM Computer Communication Re-
view, vol. 39, 08 2009, pp. 315–326. → Cited on page 18.

[28] A. Sarkar, M. Williams, S. Deterding, and S. Cooper, “Engagement effects of
player rating system-based matchmaking for level ordering in human compu-

90

https://doi.org/10.1145/3423211.3425678

tation games,” in FDG ’17: Proceedings of the 12th International Conference
on the Foundations of Digital Games, 08 2017. → Cited on page 18.

[29] J. Ward, “What are you doing on tinder? impression management on a
matchmaking mobile app,” Information, Communication & Society, vol. 20,
pp. 1–16, 11 2016. → Cited on page 18.

[30] P. Resnick and H. R. Varian, “Recommender systems,” Commun.
ACM, vol. 40, no. 3, p. 56–58, 3 1997. [Online]. Available: https:
//doi.org/10.1145/245108.245121 → Cited on page 19.

[31] O. Artemenko, V. Pasichnyk, and N. Kunanec, “E-tourism mobile location-
based hybrid recommender system with context evaluation,” in 2019 IEEE
14th International Conference on Computer Sciences and Information Tech-
nologies (CSIT), vol. 2, 2019, pp. 114–118. → Cited on page 19.

[32] N. Mishra, S. Chaturvedi, A. Vij, and S. Tripathi, “Research problems in rec-
ommender systems,” Journal of Physics: Conference Series, vol. 1717, p.
012002, 01 2021. → Cited on pages 20, 21, 22, and 23.

[33] F. Ricci, L. Rokach, and B. Shapira, Recommender Systems: Introduction
and Challenges. Springer Science+Business Media New York 2015, 01
2015, pp. 1–34. → Cited on pages 20 and 21.

[34] A. Pujahari and V. Padmanabhan, “Group recommender systems: Combin-
ing user-user and item-item collaborative filtering techniques,” in 2015 Inter-
national Conference on Information Technology (ICIT), 2015, pp. 148–152.
→ Cited on pages 20 and 21.

[35] M. A. Ghazanfar and A. Prugel-Bennett, “A scalable, accurate hybrid rec-
ommender system,” in 2010 Third International Conference on Knowledge
Discovery and Data Mining, 2010, pp. 94–98. → Cited on page 21.

[36] L. Chen, Y. Xu, F. Xie, M. Huang, and Z. Zheng, “Data poisoning attacks
on neighborhood-based recommender systems,” Transactions on Emerging
Telecommunications Technologies, vol. 32, 06 2021. → Cited on pages 22
and 23.

[37] J. Canny, “Collaborative filtering with privacy via factor analysis,” in
Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR ’02. New

91

https://doi.org/10.1145/245108.245121
https://doi.org/10.1145/245108.245121

York, NY, USA: Association for Computing Machinery, 2002, p. 238–245.
[Online]. Available: https://doi.org/10.1145/564376.564419 → Cited on
pages 22 and 24.

[38] J. Zhan, C.-L. Hsieh, I.-C. Wang, T.-S. Hsu, C.-j. Liau, and D.-W. Wang,
“Privacy-preserving collaborative recommender systems,” Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
vol. 40, pp. 472 – 476, 08 2010. → Cited on pages 22 and 24.

[39] M. Raizada, “Survey on recommender systems incorporating trust,” in 2022
International Conference on Applied Artificial Intelligence and Computing
(ICAAIC), 2022, pp. 1011–1015. → Cited on pages 22 and 24.

[40] A. Al-Ajlan and N. AlShareef, “A survey on recommender system for arabic
content,” in 2022 5th International Conference on Computing and Informatics
(ICCI), 2022, pp. 316–320. → Cited on pages 22 and 24.

[41] D. Röchert, M. Weitzel, and B. Ross, “The homogeneity of right-wing populist
and radical content in youtube recommendations,” in SMSociety’20: Interna-
tional Conference on Social Media and Society, 07 2020, pp. 245–254. →
Cited on pages 22 and 25.

[42] C. Stöcker, How Facebook and Google Accidentally Created a Perfect
Ecosystem for Targeted Disinformation. Springer Nature Switzerland AG,
01 2020, pp. 129–149. → Cited on pages 22 and 25.

[43] D. Mota and R. Martinho, “An approach to assess the performance of mo-
bile applications: A case study of multiplatform development frameworks,”
Proceedings of the 16th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2021), pp. 150–157, 2021. →
Cited on pages 25, 27, 28, 32, and 33.

[44] L. Delia, N. Galdámez, P. Thomas, L. Corbalán, and P. Pesado, “Multi-
platform mobile application development analysis,” in 2015 IEEE 9th Interna-
tional Conference on Research Challenges in Information Science (RCIS),
05 2015, pp. 181–186. → Cited on pages 25, 26, and 27.

[45] P. Gokhale and S. Singh, “Multi-platform strategies, approaches and chal-
lenges for developing mobile applications,” in 2014 International Conference
on Circuits, Systems, Communication and Information Technology Applica-
tions (CSCITA), 04 2014, pp. 289–293. → Cited on page 26.

92

https://doi.org/10.1145/564376.564419

[46] A. Keus, S. Noichl, and U. Schroeder, “Vergleich von technologien
zur entwicklung barrierefreier mobiler lernapplikationen,” in DELFI 2019.
Gesellschaft für Informatik e.V., 09 2019. → Cited on page 26.

[47] C. Rieger and T. A. Majchrzak, “Towards the definitive evaluation
framework for cross-platform app development approaches,” J. Syst.
Softw., vol. 153, no. C, p. 175–199, 7 2019. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.04.001 → Cited on page 26.

[48] Y. Cheon and C. Chavez, “Converting android native apps to flutter cross-
platform apps,” in 2021 International Conference on Computational Science
and Computational Intelligence (CSCI), 2021, pp. 1898–1904. → Cited on
pages 28, 30, 31, and 32.

[49] J. Franz, “Evaluation von zustandsverwaltungssystemen für das mobile
cross-plattform-framework flutter,” p. 83, 2022. → Cited on pages 29 and 31.

[50] L. Dagne, “Flutter for cross-platform app and sdk development,” p. 37, 5
2019. → Cited on page 31.

[51] B. Lutkevich, “database (db).” [Online]. Available: https://www.techtarget.
com/searchdatamanagement/definition/database → Cited on pages 34
and 35.

[52] J. Groff, P. Weinberg, and A. Oppel, SQL The Complete Reference, 3rd
Edition, ser. The Complete Reference. McGraw Hill LLC, 2008. [Online].
Available: https://books.google.at/books?id=mvAcp4dM FQC → Cited on
page 34.

[53] Z. Parker, S. Poe, and S. Vrbsky, “Comparing nosql mongodb to an sql db,” in
ACMSE ’13: Proceedings of the 51st ACM Southeast Conference, 04 2013.
→ Cited on pages 35 and 38.

[54] R. Hecht and S. Jablonski, “Nosql evaluation: A use case oriented survey,” in
2011 International Conference on Cloud and Service Computing, 2011, pp.
336–341. → Cited on pages 35 and 36.

[55] I. k. g. Sudiartha, I. N. Indrayana, I. W. Suasnawa, S. Asri, and P. Sunu,
“Data structure comparison between mysql relational database and firebase
database nosql on mobile based tourist tracking application,” Journal of
Physics: Conference Series, vol. 1569, p. 032092, 07 2020. → Cited on
page 36.

93

https://doi.org/10.1016/j.jss.2019.04.001
https://www.techtarget.com/searchdatamanagement/definition/database
https://www.techtarget.com/searchdatamanagement/definition/database
https://books.google.at/books?id=mvAcp4dM_FQC

[56] M. Ohyver, J. Moniaga, I. Sungkawa, B. Subagyo, and I. Chandra, “The com-
parison firebase realtime database and mysql database performance using
wilcoxon signed-rank test,” Procedia Computer Science, vol. 157, pp. 396–
405, 01 2019. → Cited on pages 36 and 38.

[57] A. T. Kabakus, “A performance comparison of sqlite and firebase databases
from a practical perspective,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi,
vol. 7, pp. 314–325, 01 2019. → Cited on page 36.

[58] Y. Li and S. Manoharan, “A performance comparison of sql and nosql
databases,” in 2013 IEEE Pacific Rim Conference on Communications, Com-
puters and Signal Processing (PACRIM), 08 2013, pp. 15–19. → Cited on
pages 37 and 38.

[59] R. Branas, AngularJS Essentials. Packt Publishing, 8 2014. → Cited on
pages 38 and 39.

[60] S. Delcev and D. Draskovic, “Modern javascript frameworks: A survey study,”
in 2018 Zooming Innovation in Consumer Technologies Conference (ZINC),
05 2018, pp. 106–109. → Cited on pages 38 and 39.

94

	Introduction
	Context
	Motivation
	Structure of the Thesis

	Background and Related Work
	Software Architecture
	How does Software Architecture influence Software Development?
	Problems of Software Architecture

	Design Patterns
	How is a Design Pattern defined?
	How can Design Patterns be categorized?

	Matchmaking
	What are use cases for matchmaking algorithms?

	Recommender Systems
	Which techniques are most commonly used?
	Which problems are Recommender Systems Facing?

	Multi-Platform Development
	What is Multi-Platform Development?
	Types of Multi-Platform Implementations

	Flutter
	What is Flutter?
	Structure of Flutter
	Architecture of Flutter
	Libraries for Flutter/Dart
	Testing Flutter applications
	Comparison to alternatives

	Databases
	What is a database?
	What are relational databases?
	What are NoSQL databases?
	SQL vs. NoSQL

	Angular
	What is Angular?

	Architecture and Design
	Elements of the Architecture
	Database structure
	Terminology of Firestore
	Database tables
	Database requirements

	Mobile Application Software Architecture
	Why Flutter?
	Requirements of Mobile Application

	Web Application Software Architecture
	Requirements of the Web Application

	Other Project Requirements

	Implementation
	Implementation of the Database Access
	Implementation of the Mobile Application
	Implementation of the Web Application
	Angular - Frontend
	node.js - Backend

	Implementation of the Web Crawler

	Design Patterns
	Design Patterns in Mobile and Web Application
	Design Patterns exclusive to Mobile Application
	Design Patterns exclusive to Web Application

	Evaluation
	Assessment of Requirements
	Assessment of Requirements
	Mobile Application requirements
	Web Application requirements
	Other requirements
	Summary of requirements

	User Study
	Experimental Design
	Results

	Discussion
	Limitations
	Future Work

	Conclusion
	Bibliography

