
Bianca Oswald, BSc

AI-assisted MiniLab

for Gait Analysis on Quadrupeds

MASTER’S THESIS

to achieve the university degree of

Master of Science

Master’s degree programme: Biomedical Engineering

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn., Jörg Schröttner

Dr. Christoph Leitner

Institute of Health Care Engineering

Graz, November 2022

EIDESSTATTLICHE ERKLÄRUNG

AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt und die den be-

nutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der

vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly indicated all

material which has been quoted either literally or by content from the sources

used. The text document uploaded to TUGRAZonline is identical to the present

master’s thesis.

Datum / Date Unterschrift / Signature

Die Technische Universität Graz übernimmt mit der Betreuung und Bewertung einer
Masterarbeit keine Haftung für die erarbeiteten Ergebnisse: Eine positive Bewertung
und Anerkennung (Approbation) einer Arbeit bescheinigt nicht notwendigerweise die
vollständige Richtigkeit der Ergebnisse.

Abstract
AI-assisted MiniLab for Gait Analysis on Quadrupeds

Machine learning is already widely used in healthcare to aid physicians in the process of making

diagnoses. The developed software applies such techniques to classify the gait of a dog as lame

or healthy based on measured pressure data and gait analysis videos. For the body part detection

on the videos, an open-source Convolutional Neural Network (CNN) named DeepLabCut (DLC) is

used, providing a markerless pose estimation. Thanks to transfer learning, the final model achieved

a cross-entropy loss of 0.00636 as well as a train error of 4.76 px and a test error of 5.45 px, even

though only a small data set of 1160 frames from ten different patients was employed. The trained

XGBoost classifier achieved an accuracy of 95.24% on previously unseen data, i.e., the test data,

which was extracted from the training data set and not part of the training. However, the applica-

tion of this model to new (unknown) test patients yielded only 58.33% accuracy, indicating that the

model does not generalize to new subjects. To obtain a well-generalized model, a large amount of

curated data is usually required, which means that the data set used for the training of the XGBoost

classifier needs to be extended. The importance of data diversity as well as the feature selection is

demonstrated by the performed parameter study.

Keywords: machine learning, markerless pose estimation, DeepLabCut, XGBoost classification, gait

analysis on quadrupeds

Kurzfassung
AI-unterstütztes MiniLab für die Ganganalyse bei Vierbeinern

Maschinelles Lernen wird im Gesundheitswesen bereits häufig eingesetzt, um Ärzten bei der Erstel-

lung von Diagnosen zu helfen. Die entwickelte Software nutzt solche Techniken, um den Gang

eines Hundes anhand von gemessenen Druckdaten und Ganganalysevideos als lahm oder gesund zu

klassifizieren. Für die Erkennung der Körperteile in Videos wird ein quelloffenes “neuronales Fal-

tungsnetzwerk” namens DeepLabCut verwendet, das eine markerlose Posenschätzung ermöglicht.

Dank des Transferlernens erreichte das endgültige Modell einen Kreuzentropieverlust von 0,00636

sowie einen Trainingsfehler von 4,76 px und einen Testfehler von 5,45 px, obwohl nur ein kleiner

Datensatz von 1160 Bildern von zehn unterschiedlichen Patienten verwendet wurde. Der trainierte

XGBoost-Klassifikator erreichte eine Genauigkeit von 95,24% bei zuvor ungesehenen Daten, d.h. den

Testdaten, die aus dem Trainingsdatensatz extrahiert wurden und nicht Teil des Trainings waren. Die

Anwendung dieses Modells auf neue (unbekannte) Testpatienten ergab jedoch nur eine Genauigkeit

von 58,33%, was darauf hindeutet, dass das Modell nicht auf neue Probanden generalisiert wer-

den kann. Um ein gut verallgemeinertes Modell zu erhalten, ist in der Regel eine große Menge an

kuratierten Daten erforderlich, was bedeutet, dass der für das Training des XGBoost-Klassifikators

verwendete Datensatz erweitert werden muss. Die Bedeutung der Datenvielfalt und der Merkmal-

sauswahl wird anahnd der durchgeführten Parameterstudie gezeigt.

Keywords: Maschinelles Lernen, Markerlose Posenschätzung, DeepLabCut, XGBoost Klassifikation,

Ganganalyse bei Vierbeinern

I

Contents

1 Introduction 1

1.1 Gait analysis for dogs . 1

1.1.1 Topographical anatomy, gait patterns, and lameness 1

1.1.2 The Pressure Analyzer (PA) . 4

1.2 Deep learning for markerless pose estimation . 6

1.2.1 Deep Neural Networks . 6

1.2.2 Convolutional Neural Network . 8

1.2.3 Residual Networks . 12

1.2.4 Network training . 13

1.3 Classification . 17

1.3.1 Decision tree based classifiers . 17

1.3.2 Random Forest vs. XGBoost . 20

2 Aims and objectives 22

3 Materials and methods 23

3.1 Provided data . 23

3.2 Body part predictions with DLC . 24

3.2.1 Architecture . 24

3.2.2 Training process . 26

3.3 Classification with XGBoost . 30

3.3.1 Data preparation . 30

3.3.2 Parameter study . 38

3.4 Loss functions and evaluation techniques used . 40

4 Results and discussion 43

4.1 DLC body part prediction results . 43

4.1.1 Evaluation of training iterations . 43

4.1.2 Predictions on unseen data . 48

4.2 XGBoost classification results . 52

4.3 The gait analysis environment . 57

5 Conclusion 58

6 Literature 60

II

Appendices 63

A AIDog Project . 63

B List of Figures . 68

C List of Tables . 70

III

Abbreviations

ML machine learning

CNN Convolutional Neural Network

DNN Deep Neural Network

DLC DeepLabCut

ANN Artificial Neural Networks

ReLU rectified linear unit

ELU exponential linear unit

SELU scaled exponential linear unit

ResNet Residual Network

GD gradient descent

SGD stochastic gradient descent

PA Pressure Analyzer

RF Random Forest

OOB out-of-bag

VetMed University of Veterinary Medicine Vienna

GUI graphical user interface

CrLa craniolateral

CrMe craniomedial

CaLa caudolateral

CaMe caudomedial

FL front left

FR front right

HL hind left

HR hind right

MAE mean average Euclidean error

RMSE root mean square error

FFT fast Fourier transform

ROC receiver operating characteristics

AUC area under curve

IV

TPR true positive rate

FPR false positive rate

V

Terminology

Parameter Learnable variables of an algorithm

Weights Parameter in fully connected layers

Kernel Parameter in convolutional layers

Hyperparameter Variables determined by the researcher prior to the training

process; no learnable variables

Epoch One forward and one backward pass of all training examples

Batch size Number of frames processed simultaneously

Iterations Number of passes, each pass using [batch size] number of

examples

Features; Columns Synonym for attribute-value vectors representing input data

for classifiers

VI

1. Introduction

1.1. Gait analysis for dogs

This section briefly describes the topographical anatomy of dogs, their gait patterns, and different
types of lameness with their associated symptoms. In addition, the Pressure Analyzer (PA), a state-
of-the-art ground reaction force data acquisition tool that aids in the detection of lameness [1], is
discussed.

1.1.1. Topographical anatomy, gait patterns, and lameness

To simplify orientation on the body as well as the body surfaces, a dog’s body is split into lines and
planes (see Figure 1.1). The dorsal (a) and ventral (b) midlines in the longitudinal direction define
the body’s center. They encompass the median surface (A), which divides the dog’s body into the
two halves left and right. The sagittal planes (B) run parallel to this median surface, subdividing
the body into unequal areas. The transverse planes (C) are perpendicular to the longitudinal planes
and refer to the transverse cross sections of the body. Finally, there are the dorsal planes (D), which
are parallel to the dorsal body and perpendicular to the longitudinal and transverse planes. These
planes are also called bilateral planes because symmetrical body sides appear in this view. [2]

Figure 1.1: Topographical anatomy of a dog: The body’s right and left halves are separated by
the median plane (A), which connects the dorsal midline (a) and ventral midline (b). The sagittal
planes (B) split the body longitudinally into unequal sections. While the transverse planes (C)
subdivide the body in transverse direction, the dorsal planes (D) divide the body perpendicular to
the longitudinal and transverse planes. Adapted from Figure 1. [2]

1

The phrases listed in the following table are used to describe the orientation and topographical
relations of organs:

Term Direction/relation Body part

Caudal Towards the tail Body

Cranial Towards the head Body

Rostral Towards the tip of the nose Head

Dorsal Related to the back or dorsum Body

Ventral Towards the belly Body

Proximal Towards the attached end Axis of the body

Distal Towards the free end Axis of the body

Palmar Surface of the manus (hand), faces caudally Limb in normal standing attitude

Plantar Surface of the pes (foot), faces caudally Limb in normal standing attitude

Dorsal From the carpus/tarsus distally Thoracic/pelvic limb

Abaxial Away from the axis Central axis of the manus or pes

Axial Towards the axis Central axis of the manus or pes

Table 1.1: List of terms used in anatomy to describe directions and topographical relations of organs
of dogs. [2]

Gait patterns

A thorough assessment of the dog’s gait can detect gait patterns and, as a result, diagnose any
lameness that may be present, greatly enhancing the identification of the dog’s injured area [3]. The
dog’s gait can be split into symmetrical gaits such as the walk, trot, and pace and asymmetrical
gaits such as the gallop [4]. The walk and trot are most commonly used in gait analysis, since the
walk is the slowest and easiest gait to observe and the trot is the only gait where neither the fore nor
the hind limb is supported by the contralateral1 limb in bearing weight [5]. The locomotion begins
with the front legs falling and the hind limbs propelling the dog forward at the same time. The
forelimbs recover and the body’s pitching movement is stabilized. The forward drive of the dog is
mainly maintained by the propulsion of the hind limbs and forelimbs, whereby the center of gravity
fluctuations of the dog are not as pronounced as in humans, for example. [3]

Figure 1.2: Forelimb movement during walking: The left image shows the stance phase of the
step and the right image the swing phase. The direction of the movement is indicated in the figure
by means of arrows and the joints are numbered as follows: 1-shoulder, 2-elbow, 3-carpal, and 4-
metacarpophalangeal. Adapted from Figure 2. [3]

One entire cycle of leg movement, or step cycle, consists of the stance phase and the swing phase
and is referred to as the stride. The initial half of the stance phase, which is caused by surface

1 Contralateral comes from Latin and means “located on the opposite side or half of the body”.

2

contact-induced braking forces, is followed by a propulsion phase, the second part of the stance
phase. Throughout the entire stance phase, the paw remains in contact with the ground. The swing
phase represents the time while the paw is in the air and consists of three parts: The propulsive force
causes the leg to first swing backward; the muscles next cause it to swing forward for the movement;
and finally, the muscles cause the leg to swing back towards the ground. During both the stance and
swing phases, various forces act on the bone structure and the muscles of the legs. [5] Figure 1.2
shows these two phases for a forelimb movement during walking. As can be seen in the left picture
of the figure, the leg is always touching the ground during the stance phase, while the leg is in the air
during the swing phase (right picture). The joints are marked with numbers – 1-shoulder, 2-elbow,
3-carpal, and 4-metacarpophalangeal – and the arrows indicate the corresponding direction of the
movement. [3]

Although all limbs are utilized to accelerate and decelerate, their functions are very different. Since the
hind limbs of a dog essentially serve to generate the forward momentum of the body, this propulsive
force arises earlier in their stance phase than in the stance phase of the forelimbs. Therefore, the hind
limbs are more loaded during acceleration than the front limbs. The much more medial placement of
the hind legs in the moment of contact has an additional positive effect on the exertion of this driven
force. The front limbs on the other hand are basically used for restraint, with the main propulsive
force required to move the front limbs being provided by the well-muscled shoulder region, which
also serves to absorb the resulting shocks. Furthermore, the front limbs sustain around 60% of a
dog’s static weight. [3]

Walk and Trot

The walk is a symmetrical gait where the left and right legs complete the same movements but half
a stride later. At any given time, the dog is supported by two, three or even four legs. Long-legged
dogs keep their ipsilateral2 leg pairs close together to avoid inferences between their limbs. As a
result, only dogs with relatively long legs can pace. [3] While walking, the hind legs support the
forward swing while the front legs assist to slow down and absorb shock. Although the weight is
carried by all four limbs, the weight load on the front legs is greater. [4] Basically, the forelimb’s
stance phase is noticeably longer than the hind limbs’. However, after the swing phase of the fore
legs is shorter than that of the hind legs,the stride cycle is still the same for all legs. Both the
stance and the swing phases decrease as walking speed increases. [6] The length of the leg affects
how long the paw stays in contact with the ground, so a dog with long legs has a longer contact
time than a dog with short legs. The impact of both front feet at the beginning of each support
phase is connected to a downward movement of the head and neck, whereas an upward movement is
connected to the recovery of each limb. Compared to the forelimb, the hind limb is supported by a
rather rigid structure thanks to the pelvis’s connection with the sacrum. The lateral motions of the
spinal column allow for horizontal movements of the hip joints in reference to the body. As a result,
the dog moves its tail towards the hind limb, which is touching the ground (stance phase). [4]

The trot, is also a symmetrical gait, but with a little more speed than the walk. The dog is supported
by alternating pairs of diagonal limbs, which normally touch the ground nearly at the same moment.
However, some dogs go through a hovering phase that occurs in between the carrying stages of the
gait. This phenomenon is known as the so called “flying trot”. To ensure that the ground is cleared
for the placement of the ipsilateral hind limb, the front limbs ground contact is substantially shorter
than that of the hind limbs. [4] Long-legged dogs are more likely to encounter obstacles during the
trot, so they rotate their bodies at an angle to the direction of movement, allowing the hind limb
to pass beyond the forelimb without being obstructed. This activity is known as “crabbing”, and is
also present in the walk (“crab walking”). [3]

2 Ipsilateral comes from Latin and means “located on the same side or half of the body”.

3

Lameness

When a dog is lame, one or more limbs cannot support the dog optimally, resulting in additional
weight bearing on the healthy limbs [4]. It is possible to detect such a shift by observing the dog’s
gait from a lateral, cranial, and caudal perspective and concentrating on the fluidity and coordination
of the gait, the movement and position of the head and tail, asymmetries between the left and right
legs as well as leg dropping and back arching [3].

Head nodding is a typical sign of forelimb lameness. The dog tends to raise its head when the
lame forelimb touches the ground to lessen the weight on this leg. conversely, the head is lowered
(“nodded”) when the sound leg is supporting the dog’s weight. [7] Moreover, the duration of the
stance phase for the injured limb is reduced, while it is extended for the healthy limb. In addition
to the longer stance phase, the sound leg also exhibits a greater stride length than the lame leg. [4]
This aberrant behaviour of the front legs is often compensated by a more advanced posture of the
hind limbs. The latter takes a greater role in supporting the dog, further reducing the weight that is
passed through the lame front leg. [3]

Unlike the head action observable for forelimb lameness, dogs with hind limb lameness tend to nod
their heads down when the injured hind leg touches the ground. This movement occurs because the
dog is trying to shift its weight to the forelimbs, using its head and neck as a counterweight. [8]
To further unload the lame leg, the dog increases the stride length of the two front limbs and shifts
their extension during the stance phase further caudally [3]. Another sign of hind limb lameness is
evident in the behavior of the tail. Healthy dogs swing their tails from one side to the other, while
injured dogs move their tail up and down. The upward movement occurs, when the lame hind leg
contacts the floor, further reducing the weight on the injured leg. [4] While lameness is more severe,
and especially when moving faster, the animal may also have a “bunny hopping” gait in which both
hind limbs are extended at once [8].

1.1.2. The Pressure Analyzer (PA)

The PA is a data acquisition tool (Pressure Analyzer 1.3.0.2; Michael Schwanda) used by the Uni-
versity of Veterinary Medicine Vienna (VetMed) to support the handling and visualization of data
acquired with a pressure plate. It consists of two programs, the PA measurement tool used during
the measurement process and the PA tool itself, where the results after the measurement are dis-
played. The Zebris FDM Type 2 pressure plate (Zebris Medical GmbH, Allgäu, Germany) used for
the measurements contains 7040 sensors with a sampling rate of 100 Hz, is mounted in the middle
of a 7 m walkway, and is covered with a rubber mat to avoid distraction or slippage. [1]

Figure 1.3: GUI of the PA measurement tool

4

Before the measurement starts, some basic information, such as patient ID and name, is provided in
the PA measurement tool (see Figure 1.3). In the settings section, among other things, the make
of the pressure plate and camera used are specified and the option to save the recorded video in a
separate file can be selected. In addition, the “Measure Weight” button at the bottom left of the
graphical user interface (GUI) determines the weight of the dog via the pressure plate. After all
entries and settings have been made, the measurement can be started. [1]

Figure 1.4: GUI of the PA tool: Visualization of the measurement data synchronously with the
video. “FL” stands for the left front leg, “FR” for the right front leg, “HL” for the left hind leg, and
“HR” for the right hind leg.

The results of the measurements are displayed via the PA tool, which consists of different areas.
Figure 1.4 shows an example of a patient’s data, where “FL” stands for front left, “FR” for front
right, “HL” for hind left, and “HR” for hind right paws. In the lower right corner, the recorded
video can be played back directly in the tool and the visible diagrams and measurement points are
displayed synchronously with the video. [1]

Since the dog also moves outside the pressure plate during the gait analysis, there are sections in
the video without measurement data and thus without diagrams. To easily and quickly display the
parts with data, the PA tool includes the two tabs “Passes” and “Pressure groups”, which can be
seen in the upper right corner of Figure 1.4. On the first tab, all passes are listed where one pass
corresponds to the time period in which the dog passes over the pressure plate exactly once. Since
the corresponding start and end frames are also linked here, it is possible to jump directly to this part
of the video by clicking on the listed pass. This basic idea of “jumping” is also possible within the
second tab, which contains the individual pressure groups and distinguishes between the individual
steps. [1]

For example, in Figure 1.4, ten steps are listed for the pressure group area of the front left (FL)
paw, which means that the PA collected data of ten measurements for this paw throughout the
examination. The collected data is associated with the corresponding step, including the frame
number where the step began and ended. Thus, the marked pressure group in Figure 1.4 contains
the data for the second step of the left front leg, which starts with frame 713 and ends with frame
757.

When one of the passes or a pressure group is selected, the rectangle symbolizing the pressure plate
displays the corresponding paw prints. This rectangle may be found in the top left area of Figure 1.4,

5

which also shows that marking the second step of the FL paw marks the corresponding paw print in
the rectangle as well. Directly below it are the control buttons for the video and a line corresponding
to the duration of the video. The green and orange boxes below this line symbolize the passes during
the video, so it is very easy to see which pass is currently displayed. [1]

In the “Data/Group” area (in Figure 1.4 to the left of the video), the measured pressure for each
stance phase of the paws is displayed in color. It is possible to select different representations, such
as the mean value of all stance phases or only the last one. In the lower left corner, Figure 1.4 shows
the graph area with the two tabs “Measurement plot” and “Group plots”. The first tab depicts
the force curves for each paw as a function of the frames in the video, while the second one shows
the force curves as a function of the stance phase. Here, it is also possible to view the “Stance
quadrant statistics”, which includes the force curves for the craniolateral, craniomedial, caudolateral,
and caudomedial areas of each paw. In addition, the PA tool provides a function for creating a
report where all the data is exported to an Excel file template. Parameters that can be evaluated
with the help of the PA tool include for example the peak vertical force, vertical impulse, stance
phase duration, and the step length. [1]

1.2. Deep learning for markerless pose estimation

This section briefly describes the motivation for using machine learning (ML) techniques in motion
analysis, the basic structure of a Deep Neural Network (DNN), and in particular CNNs. Additionally,
the advantages of using residual networks and transfer learning are mentioned and an overview of
common deep learning tools used for animal pose estimation is given.

1.2.1. Deep Neural Networks

Computerized tracking often involves placing reflective markers on animals, which can be very dis-
ruptive, and the quantity and position of these markers must be specified in advance [9]. Therefore,
the currently used motion capture systems are very expensive and require highly skilled personnel,
yet quantitative motion analysis is essential for decision making in medicine [10].

Thanks to new deep learning methods, powerful tools have been developed in recent years to support
this type of measurement [11]. With this development, it has become possible to extract the posture
of individuals with a standard video filmed with a simple smartphone, for example, instead of using
laboratories and reflectors [10]. The ability to capture the movements of patients in their natural
environment is especially crucial in the field of gait analysis [12], as it is possible that the patient
will behave differently in the laboratory [10]. In addition, the usability of standard videos means a
more cost-effective and easy-to-use application [10].

DNN algorithms used for pose estimation typically fall into the category of object detection [13],
which not only identifies item types but also estimates the position of each object using a bounding
box [14]. Prior to the era of deep learning, the object detection pipeline was split into three parts.
In the first part, sliding windows were used to search for potential object locations in the picture,
also known as regions of interest. From each of these sliding windows, a fixed-length feature vector
was extracted in the second step to obtain semantic information about the detected area. In the last
part, the region classifiers were taught how to categorize the regions covered. The fact that each
stage of the detection pipeline was constructed and tuned independently prevented optimization of
the overall system and was one of the causes of such detectors’ limitations. [14]

However, object recognition algorithms based on DNNs can be optimized end-to-end and thus are
able to attain accuracy comparable to that of humans [14]. The design of such systems was inspired
by the human visual system, whose cells are controlled by feature detectors. In other words, when
recognizing a human face, for example, each cell in the primary visual cortex processes only simple

6

features like lines, curves, or dots, while the target components such as eyes or eyebrows are rec-
ognized in the higher-level visual cortex. The integration of more complex visual features with the
context (e.g., the name) occurs in the posterior inferior temporal cortex, followed by the anterior
inferior temporal cortex, which assigns its name to a specific context, e.g., is the person female
or male. The evolved Artificial Neural Networks (ANN)s (which in recent years have been further
developed into CNNs) mimic this visual system, i.e., the hierarchical structure, the ability for highly
parallel processing, and the fact that the human system selects only the most relevant neurons along
the spatial dimension within each layer. [15]

Figure 1.5: Markerless pose estimation based on deep learning: Using human annotated labels,
the ML models are trained to infer keypoint representations directly from the image or video used as
input. The architecture of these models usually consists of a feature extractor and a decoder, which
are trained end-to-end in modern systems. Adapted from Figure 2. [13]

Figure 1.5 depicts an example of an object detection algorithm, where the images of a mouse are
used as input for the feature extraction (in this example also referred to as encoder), followed by the
representation of the downsampled features. At the end, there is a keypoint estimation (decoder)
which outputs the x and y coordinates for the body parts of interest. Only a database consisting of
human-labeled images is used for training, so no special equipment is required. [13]

The data set, the model, the loss function, and the optimization are the four fundamental elements
of ML algorithms [16]. Decisions regarding these components affect the quality of performance as
well as the behavior of a pose estimation and provide the opportunity to design the system according
to the requirements of the application. [13]

Figure 1.6: Neurons and their layer connections in an ANN: The neurons are arranged in a
directed graph, each of them is connected to all neurons in the next layer. Each connection represents
a learnable parameter (weights). Adapted from Box 1. [13]

7

Each model is made up of a particular number of individual layers, which in turn consist of simple
units [13]. These units are connected to the units of the next layer in a unique way, depending
on the chosen model [11]. In the case of ANN, each neuron is connected to each neuron in the
following layer, and each of these connections reflects the model’s weights (see Figure 1.6) [13],
whereas in CNNs, the layers are connected by filters, which represent the parameters (more details in
Section 1.2.2) [17]. The algorithms learn by iteratively updating their weights using the optimization
algorithm to minimize the loss function that compares the model’s predicted pose to human-labeled
truth data, thus serving as a quality indicator [13].

Overview of available packages

To develop proper data loaders, data augmentation pipelines, and training regimes, an understanding
of deep learning languages is required. As a result, several packages have emerged in recent years
that provide users with a complete pipeline. This starts with custom data labeling, including frame
selection and labeling tools, and continues with the creation of training and test data sets using data
augmentation and loaders, to neural networks, with code for performance evaluation and tools for
reading captured machine-labeled data. [13]

Table 1.2 provides a summary of the most commonly used animal pose estimation tools. As indicated
in this table, DLC has many advantages over the other tools, the presence of pre-trained networks
being one of the most important ones. Apart from that, DLC is independent of the species, can be
used for 3D as well as multi-animal projects, and provides a training code, a GUI, and example data.
[13]

Due to all of these advantages, it was decided to use DLC, a CNN based algorithm, for this dog gait
analysis application (see Chapter 3: materials and methods).

Any Species 3D >1 Animal Training Code Full GUI Ex.Data PT-NNs Released Citations

DeepLabCut yes yes yes yes yes yes many 4/2018 491

LEAP yes no yes yes yes yes no 6/2018 98

DeepBehavior no yes yes no no no no 5/2019 15

DeepPoseKit yes no no yes partial yes no 8/2019 48

DeepFly3D no yes no 2D only partial yes fly 5/2019 21

FreiPose no yes no partial no yes no 2/2020 1

Optiflex yes no no yes partial yes no 5/2020 0

Table 1.2: This table provides a brief overview of popular deep learning tools used for pose estimation
in animals. It covers capabilities and benefits, such as whether the tool can be used for each species,
for 3D and even multi-animal projects. The availability of a training code, GUI, and example data
is also mentioned. Furthermore, the availability of beyond human pre-trained neural networks (PT-
NNs) is covered. Adapted from Table 1. [13]

1.2.2. Convolutional Neural Network

One of the most frequently used tools in the fields of image-related application like object detection
are CNNs [18], which show some significant advantages compared to the classical ANNs [19]. One of
the biggest benefits of CNN-based models is the much smaller number of parameters, which makes
it possible to develop deeper models and thus solve even more complex problems. Moreover, when
using CNNs, it is not necessary to care about the position of the object to be detected, the model
detects it independent of its position in the images. Higher level features such as faces are thereby
identified in the deeper layers, while edges or simpler shapes are detected in the first layers. [19]
The layers commonly implemented in CNNs are the convolutional and pooling layers that carry out
feature extraction, and the fully connected layer used to map these features to the final output [17].

8

Convolutional Layer

One of the CNN’s fundamental components is the convolutional layer employed to extract significant
information from images [18]. The convolution operation is performed between the kernel, also called
filter, and the input tensor, which represents an area with the size of the kernel on the input image
[17]. For each element in this area, the element-wise multiplication is executed and its results are
summed up to create the feature map [18]. This procedure is repeated until the filter has been
applied to all areas of the input image, see Figure 1.7. In this step, two hyperparameters can be
defined: the kernel size as well as the number of kernels. When applying this procedure to more than
one kernel, one obtains a large number of feature maps, each representing different characteristics
of the input tensors. [17]

(a) Convolution for the first result value
in the feature map

(b) Convolution for the last result value
in the feature map

Figure 1.7: Convolutional layer: In this example, the kernel size is 3 × 3 and the stride is one.
The convolution is calculated for each element in the input tensor. The results are summed up and
displayed in the feature map. Then, the tensor is moved with a stride size of one and the procedure
is repeated for the next area. This process is performed repeatedly until the last area of the input
image is reached. Adapted from Figure 3. [17]

Another hyperparameter to be specified is the stride, which describes the distance between two
successive kernel positions [17]. Usually, a stride of one is used [17] since applying a small value
results in a more detailed representation of the image [18]. In case the stride should provide a
downsampling of the feature map, which reduces the computation time, a larger value is required
[17]. The use of convolution operations as described above results in a reduction of the height and
width of the output feature map, and it is not possible to position the center of the kernel on the
outermost element of the input tensor. To counteract these problems, there is a special technique
called padding, mostly zero padding, which adds rows and columns around the input tensor filled
with zeros, as shown in Figure 1.8. With the use of padding, a convolutional layer has a total of
four hyperparameters that must be set before training the model. These include the kernel size, the
number of kernels, the stride and the padding. [17]

9

Figure 1.8: Convolutional layer with padding: In this example the kernel size is 3 × 3, and the
padding and stride are set to one. The padding adds one row and one column on each site of the
input tensor and increases the size from 5 × 5 to 7 × 7. Therefore, the center of the kernel is now
also on the outermost element of the input tensor and the feature map size is the same as the input
image size, so there is no shrinkage. [17]

Pooling Layer

A very common and frequently used method for downsampling is to use pooling layers as an alterna-
tive to employing large strides in the convolutional layer [17]. As already mentioned in the previous
section, a high value used for the stride results in a reduced representation of the image, i.e., it is
possible that important details of the picture get lost. Therefore, the preferable option is to use
a small stride size to gather as much information as possible, then use the pooling layer to reduce
the feature map’s size by maintaining just the relevant features. [18] Downsampling feature maps
reduces their in-plane dimensionality,3 introduces translation invariance to tiny shifts and distortions,
and limits the number of parameters that can be learned. Max pooling is one favourite pooling
operation used in CNNs. It extracts a specified patch (defined by the pooling layer’s kernel size)
from the input image and preserves only the maximum value of this area. [17]

Figure 1.9: Max pooling: It extracts a specified patch, which is defined by the kernel size of the
pooling layer (in this case it is set to 2× 2) and keeps only the max value of the patch in the feature
map to reduce the output dimension. Adapted from Figure 6. [17]

Figure 1.9 shows an example of a max pooling layer with a size of 2× 2 and a stride of two. This is
a commonly used filter size, as it downsamples the in-plane dimension by a factor of two. A patch
with the size of the kernel is extracted on the input tensor and only the maximum value is kept.

3 Note: Only the height and width are reduced, the depth of the feature maps remains the same.

10

With a stride of two, the next patch area is extracted and again only the maximum value is kept.
This process is repeated until the entire range of the input tensor has been used. In this example,
the dimension of the input tensor is 4×4, so the max pool operation is performed exactly four times,
resulting in an output dimension of 2× 2. [17]

Another type of pooling is average pooling, which calculates the average for the specified area of the
input-tensor instead of simply keeping the maximum value [18]. In addition to the effect that, as
with max pooling, the learnable parameters are reduced, average pooling ensures that the CNN also
takes inputs that vary in size. Pooling layers have four hyperparameters, these include the pooling
method, the kernel size, the stride, and the padding, but they do not have any parameters that can
be learned. [17]

Fully-Connected Layer

Finally, the features extracted by the convolutional layers and downsampled by the pooling layers are
mapped from a subset of fully-connected layers to the final output [17]. As the name implies, in a
fully-connected layer, every node is connected to every node in both the previous and the next layers,
much like the neurons in ANNs. Each connection represents a learnable weight, which means that in
a CNN, fully-connected layers own most of the parameters and thus also incur high computational
cost. [19]

Activation functions

The application of activation functions is necessary for a Neural Network to handle complex tasks;
otherwise, the network would behave as a Linear Regression Model [20]. Therefore, the output of
the convolution operation as well as the output of the fully-connected layers are passed through
nonlinear activation functions. There are several types of nonlinear activation functions, the most
commonly used are the sigmoid, hyperbolic tangent, rectified linear unit (ReLU), and softmax. [17]
The convolutional layer’s activation function is selected based on the training speed and the model’s
performance, while the selection of the activation function applied to the fully-connected layer de-
pends on the model’s application [21].

Sigmoid (see Equation 1.1) is applied element by element to the feature map, transforming each
element individually to the range between zero and one. During the backpropagation (described in
detail in Section 1.2.4) used to update the weights and kernels in the algorithm, derived activation
functions must also be propagated. As can be seen from Equation 1.2, which shows the derivative of
the sigmoid function, a large input value causes the gradient of sigmoid to be very close to zero, i.e.,
the weights and kernels are poorly updated, resulting in nearly no learning progress of the algorithm.
This problem is known as “vanishing gradient” and becomes more and more significant as the depth
of the network increases, because the multiplication of small values along the backpropagation path
leads to ever decreasing gradients. This can reach a point where the gradient becomes zero, which
means that the weights and kernels are not updated at all. [21]

σ(x) =
1

1 + e−x
(1.1)

d

dx
σ(x) =

e−x

(1 + e−x)2
(1.2)

As can be seen in Equations 1.3 and 1.4, the hyperbolic tangent function is quite similar to sigmoid.
However, the range now extends from minus one to one and the gradient of the hyperbolic tangent
is much steeper. Due to the fact, that the function is centered at zero and the gradients are not
limited to a specific direction, the hyperbolic tangent is favored over the sigmoid function. [20]

11

tanh(x) = 2sigmoid(2x)− 1 (1.3)

d

dx
tanh(x) =

4e−2x

(1 + e−2x)2
(1.4)

With the ReLU function represented in the Equations 1.5 and 1.6, the problem of the vanishing
gradient is mitigated, since it’s derivative is always one for any input value greater than zero. Un-
fortunately, for negative values or zero values as input, the gradient of the ReLU function becomes
zero, so in this case the weights are not updated. This problem is known as “dying ReLU”, but there
are already various functions derived from the ReLU that counteract this problem. These include the
exponential linear unit (ELU) (see Equations 1.7 and 1.8), the leaky ReLU (see Equations 1.9 and
1.10), and the scaled exponential linear unit (SELU) (see Equations 1.11 and 1.12) whose gradients
for negative values (or zero values) as input are no longer zero. [21]

ReLU(x) = max(0, x) (1.5)

d

dx
ReLU(x) = {1 if x > 0; 0 otherwise} (1.6)

ELU(x) = {x if x > 0; α ∗ (ex − 1) if x < 0} (1.7)

d

dx
ELU(x) = {1 if x > 0; (ELU(x) + α) otherwise} (1.8)

LeakyReLU(x) = {x if x > 0; αx if x < 0} (1.9)

d

dx
LeakyReLU(x) = {1 if x > 0; α otherwise} (1.10)

SELU(x) = λ ∗ {x if x > 0; α ∗ (ex − 1) if x < 0} (1.11)

d

dx
SELU(x) = λ ∗ {1 if x > 0; α ∗ ex otherwise} (1.12)

Equation 1.13 shows the softmax function, which is basically used as the activation function for the
fully-connected layers in a network. The function normalizes the output values of this last layer to
the probabilities of the target classes and is therefore applied for classification tasks with multiple
classes. [17]

softmax(x)i =
exi

K∑
j=1

exj

(1.13)

1.2.3. Residual Networks

The principle underlying residual learning connections or “shortcut connections” is simply skipping
one or more layers and performing identity mapping4, which is then added to the output of the stacked

4 An identity map (also known as identity function) is a function, that always returns the value that was used as
its argument. So the input is equal to the output.

12

layer, as can be seen in Figure 1.10. These shortcut connections do not add any extra parameter
or complexity in computation and still allow for an end-to-end training of the entire network using
stochastic gradient descent (SGD) with backpropagation. In general, as the number of layers in
a network increases, so does the time required for training. To counteract this phenomenon, the
building block used in deeper Residual Network (ResNet)s such as ResNet-50/101/152 is modified to
a so-called “bottleneck” building block. As visible in the right picture of Figure 1.10, this “bottleneck”
design consists of three layers, first a 1 × 1, followed by a 3 × 3, and finally a 1 × 1 convolutional
layer again, whereby the 1 × 1 convolutional layers are responsible for reducing and increasing the
depth of the feature maps. [22]

Figure 1.10: Building blocks in ResNets: The left image depicts a building block section from
the ResNet-34 architecture. In this case, shortcut connections are added in every second layer. The
right image shows a modified building block, the so-called “bottleneck” building block, which is used
in deeper ResNets (e.g. 50/101/152 layers). In each shortcut section, 1× 1 convolutional layers are
used to increase or decrease the depth of the feature maps. [22]

By using this bottleneck design, a 152-layer ResNet, for instance, requires 11.3 billion floating-
point operations, whereas a VGG-16 network (16 layers, no shortcut connections), requires 15.3
billion. This contrast demonstrates that, despite the significant layer increase, ResNets are less
complex than networks without shortcut connections. [22] In other words, by employing residual
learning connections, a network’s depth can be increased without sacrificing performance. Another
significant benefit of ResNets is, that identity mapping holds true not only during forward propagation
but also during backpropagation and thus prevents the occurrence of vanishing or exploding gradients
(explained in detail in Section 1.2.4). [23]

1.2.4. Network training

Training a network is an iterative process with the goal to find the most suitable model for the
application at hand. To achieve this, the algorithm updates its weights or kernels until the discrepancy
between the output predictions and the ground truth labels of the training data set reaches its
minimum [17]. The optimization algorithm most frequently used for this purpose is the gradient
descent (GD) [18]. The basic steps for this process are as follows: The algorithm takes the input
and predicts an output using its current weights and kernels. The loss function compares these
predictions to the labeled ground truth data and calculates its loss value. Finally, the weights or
kernels get updated via GD and backpropagation according to the calculated value and the process
starts over again. This process is shown schematically in Figure 1.11, using a CNN in this example.
[17]

13

Figure 1.11: Training process of neural networks: The algorithm takes the input image and
predicts the output by using its current weights and kernels. This output is compared to the labeled
data using the loss function, and the loss value is calculated. According to this value, the kernels
and weights are updated and the process starts over again. [17]

Loss function, learning rate and gradient descent

The type of loss function belongs to the hyperparameters and is thus chosen depending on the
particular application. The cross-entropy function, for example, is frequently employed in multiclass
classification, while the mean square function is more generally utilized in regression applications.
To minimize the estimated loss value, the negative direction of the gradient of the loss function is
used to update the weights and kernels. [17] This gradient is calculated with respect to all weights
within the network, and after all gradients have been computed, each weight gets updated accord-
ingly. This entire process of updating the network weights using GD in order to reduce the loss is
called backpropagation. [18] Equation 1.14 provides the mathematical expression for updating a sin-
gle parameter, where w stands for the weight, α for the learning rate and L for the loss function [17].

w := w− α ∗ δL

δw
(1.14)

To indicate the step size of the update, the gradient is multiplied by the learning rate α, which is
another hyperparameter of the network [17]. The significance of choosing this value5 is demonstrated
in Figure 1.12. The thick black dots represent the starting weight, i.e., the weight with which the
algorithm is initialized. As already mentioned, the target is to reduce the loss to a minimum, in
terms of the graph this means to reach the global minimum. As can be seen in the right image of
Figure 1.12, choosing a small value for alpha leads to a short step size, making the GD very slow.
By choosing a high learning rate, one can accelerate GD, but there is a chance that doing so will
cause the algorithm to become stuck in a local minimum and fail to reach the global minimum (see
left picture). [18]

For the GD method, the network weights are always updated after all training data has passed through
the network once. In other words, if for example one million data samples are used for the training
process, the initial update of the parameters is performed after one million samples have been sent
through the model. Before the weights are updated the second time, the entire data must again
traverse the network, and so forth. Since it takes more than one update of the parameters to opti-
mize a model, i.e., to reach the minimum loss, the GD method can lead to extensive training times,
especially for large training data sets. To counteract this, the SGD method, in which the weights
are updated after each single data point, is frequently applied. In contrast to the GD method, the

5 Note: The values to be considered for the learning rate range from 10−6 to 1.

14

Figure 1.12: High learning rate vs low learning rate: This figure illustrates the loss function as a
graph of loss to weights, where the black dots represent the initialized weight. Updating the weights
with a large α leads to big steps downward, i.e., the GD is fast but could also prevent the reaching
of the global minimum (left image). To make short steps a small learning rate is necessary, but this
also slows down the GD as shown in the right picture. Adapted from Figure 4. [18]

model already learns with the first single data point, which makes it converge faster and reduces the
required training time. The technique known as mini-batch GD represents a combination of SGD
and GD. With this method, the user-defined hyperparameter called batch-size is used to divide the
training data set into subgroups. After one subset has fully traversed the network, the weights are
updated. If the batch-size is set to 50, for instance, the first update occurs after 50 data points have
been processed by the model. [18]

As already briefly described in previous sections, using gradient descent and backpropagation, es-
pecially in deeper networks, may cause the problem of vanishing and exploding gradients. The
reason for this is that each layer depends on its previous layer, so when computing the derivatives of
the loss with respect to the weights, it is necessary to propagate back through the network to the very
first layer. The various derivatives are multiplied throughout this process, resulting in ever-increasing
values (exploding gradients) for big values and ever-decreasing values for small values (vanishing
gradients). As already described in Section 1.2.2, the vanishing gradients may be caused by the use
of sigmoid or tanh as activation functions in the layers and can be solved by replacing these functions
with ReLU. [18]

The problem of the exploding gradients occurs when the network is initialized with large weights and
can be circumvented by means of the gradient clipping technique. In this method, the gradients
are normalized according to a vector norm and limited to a specified range. When a gradient value
exceeds this range, it is replaced by the boundary value of the range closest to this value. For
example, if the range is limited to ±0.7 and the gradient exceeds it in the positive direction, it will
be replaced with +0.7 and vice versa. [18]

Data set

The data used to train and test the algorithm is essential to the success of a deep learning applica-
tion because it gives the model experience. At the beginning of a model’s training, it does not yet
know how to perform well on that particular task. By repeatedly being exposed to data, the model
gains an understanding of the data and can continuously improve its performance. [16] Before the
training starts, the entire data set is at least split into a training set and a test set [13]. Depending

15

on the task, it might be useful to additionally use a validation or development6 set [17]. For the
optimization of the model’s parameter during the training process, only data from the training data
set is used [16]. Accordingly, it is necessary that the amount of data in the training set is much larger
than in the test or validation set. This fine-tuning process involves evaluating the model after certain
training iterations before adjusting the hyperparameters and restarting the training. This is where
the validation or development data comes in, as the evaluation needs to be performed on data never
used during the training. Depending on the application, the training procedure may require multiple
evaluations, so the model could start to overfit to the validation data. [17] Therefore, only the test
data set, which comprises data that have not been exposed in either the training or the evaluation
process, is used to diligently examine whether the trained model generalizes effectively and so offers
outstanding results even on basis of new data [16].

Overfitting and techniques to prevent it

Overfitting occurs when the trained model does not generalize successfully from the training data
to new data, i.e., the model works perfectly on the training data but does very badly on unseen
data. This issue typically occurs when the training set is too small, has insufficiently accurate data,
or contains excessive noise, so it comes to noise learning. [24] Utilizing overfitted models has some
drawbacks. Models that are overfitted demand more memory and computing power than models that
are not overfitted. Additionally, employing such models might need gathering extra (unnecessary)
features for every instance, raising the cost and complexity of predictions. A medical diagnosis made
with an overfitting model, for instance, would need pointless testing. Overfitted models may perform
less accurately on new data than models that are not overfitted, which is another drawback. This
impact has been proven in numerous systems and areas. [25]

Figure 1.13: Over- and underfitting: Recording the loss over the iterations during the training
and validation process could help to detect overfitting or underfitting of the model. If the model
performs badly in both cases, i.e. both errors are high, underfitting is present and further training
is required (red colored area). Overfitting may be identified if the gap between the validation and
training errors is large (green colored area), i.e., the model performs well on the training data but
poorly on the validation data (unseen data). [17]

Possible overfitting or underfitting of the model can be detected by keeping track of the losses during
the training and validation phases. As can be seen in Figure 1.13, underfitting (red colored area) oc-
curs when the algorithm performs poorly in both cases. This underfitting indicates that the network
has been under-trained and can be solved by additional training. In case of overfitting, the training
error is already very small while the validation error is high, in other words, there is a relatively
large gap between the two. [17] So the objective is to find the moment when there is a perfect

6 The “validation” in medicine corresponds to the “test” in ML; to avoid confusion, the word “development set” is
sometimes used instead of “validation set”.

16

balance between overfitting and underfitting. In addition to monitoring the loss, keeping track of
the accuracy on the test data can help to achieve this goal. If the accuracy does not improve with
further training, the training should be stopped. [24]

Since a model trained on large data sets usually generalizes better, one solution to reduce overfitting
of the algorithm would be to increase the amount of training data. Due to the fact that additional
data is often not available, other techniques such as regularization with dropout or weight loss, batch
normalization, and data augmentation have been developed. Regularization with dropout ensures
that the model is less sensitive to certain weights by setting randomly picked activations to zero
during training, while the weight decay technique penalizes the model’s weights so that they take
only small values. Batch normalization is a sort of flexible layer that adaptively normalizes the input
values of the subsequent layer. Aside from the effect of reducing overfitting, batch normalization also
makes it possible to use greater learning rates and a lower dependence on initialization. With the help
of data augmentation, the training data set can be expanded by adding transformed images. For
this purpose, the images from the original training set are randomly modified by cropping, rotating
or mirroring them, for example. [17]

Transfer Learning

In many applications, researchers face the problem that the data set used is quite small, but training
a model from scratch requires a lot of data. By means of transfer learning, however, it is possible to
train a model even with small data sets and still achieve outstanding performance [26]. The funda-
mental concept behind transfer learning is to use a model that has already been trained as a jumping
off point for a comparable problem in a different but related field [27]. In other words, the network
for the new task is initialized with the weights from the network that was trained from scratch with
a huge data set [13]. In this process, the fully connected layers of the pre-trained model must be
replaced by the fully connected layers applied for the new task, leaving only the convolutional base
(convolutional layer and pooling layer) of the transferred model. Now, the model for the new task can
either be trained using the fine-tuning method, where all or parts7 of the weights, including the ones
of the convolutional base, are updated, or using just the weights of the newly added fully-connected
layers (fixed feature extraction method). [17] The use of pre-trained models is highly advisable when
only a small amount of labeled data is available for the actual task, since less training data is needed,
and it also saves training time and increases robustness. [13]

1.3. Classification

The purpose of classifiers in medicine, the basic structure of decision tree-based models, and the
difference between Random Forest (RF) and XGBoost are briefly explained in this section.

1.3.1. Decision tree based classifiers

A decision tree based classifier makes predictions by splitting the input as long as every data point is
classified [28]. The decision tree’s basic structure is shown in Image (a) of Figure 1.14. Except for
the initial point at the top of the tree, which is referred to as the root, the split points of a decision
tree are called nodes. [28]. All splits result in a specific number of branches, each of which contains
the corresponding subset of the data. The following nodes use these subsets for decision-making and
further divide them in accordance. This splitting process is performed until the end of the tree is
reached and each record is assigned to a class. The nodes at the end are called leaves and contain
all final predictions. [29]

7 Note: Typically, the layers at the beginning of the network are not updated because they extract more general
features like edges and lines.

17

(a) Basic structure (b) Example

Figure 1.14: Basic structure and an example of a decision tree: The left picture (a) represents
a basic structure. At the top of the tree is the root, where the first split is carried out. The arrows
represent the branches that lead to the nodes. The nodes at the end of a tree are called leaves
and contain all final predictions. Image (b) shows a decision tree example for a task called “Take
a walk?”, where “Outlook”, “Humidity”, and “Wind” represent the feature vectors on which the
tree makes decisions. The corresponding attribute values of the vectors are visible on the branches,
e.g., “High” and “Normal” are attributes of the “Humidity” vector. The circles represent the leaves,
containing the class labels; in this example the classes “YES” and “NO”.

An example of a decision tree model is given in image (b) of Figure 1.14. Based on the attribute-
value vectors “Outlook”, “Humidity”, and “Wind”, the model decides whether to take a walk or
not, i.e., whether the class is “YES” or “NO”. The attribute values for each of these vectors are
represented by the corresponding branches, e.g., “High” and “Normal” are the attribute values of
the vector “Humidity”. The decision tree attempts to learn how to categorize objects by examining
a collection of instances [30]. An instance is a case, whose class is already known [30], i.e., for the
presented example, one of the cases might be as follows: Outlook = Sunny, Humidity = Normal,
Wind = Weak. If the class, in this example it would be the class “YES”, is already known for this
case, it is called an instance. Decision trees use these instances, which are typically represented
as attribute-value vectors as demonstrated in the example, as learning input and produce mappings
from attribute values to classes. After adequate training, the mapping should be able to reliably
classify both the given cases and new (unknown) cases. [30]

The aim of every decision made within a tree is to find a data split that results in the least possible
error. This is accomplished by using an error method known as the “gini criterion”, which determines
the gini index for each potential split. This index lies between zero (zero errors) and one (all errors),
i.e., the closer this index is to zero, the smaller the error. An index of 0.5, for example, indicates that
the elements are distributed evenly, which is no better than a random estimate. Equation 1.15 shows
the mathematical expression of the gini criterion, where pi stands for the probability that the split
leads to the right value and the total number of classes is provided by c. [29] Before the algorithm
picks a decision node, first the gini index is computed for each attribute followed by calculating the
weighted sum of the gini indexes for the feature. Based on these outcomes, the attribute with the
lowest gini index value is picked. [31]

gini = 1−
c∑

i=1

(pi)
2 (1.15)

18

Figure 1.15: Example data set for gini calculation: The data set consists of the four features
“Outlook”, “Temperature”, “Moisture”, and “Breeze” and covers 14 data entries. The column “Play
Game” represents the target column with the two classes “Yes” and “No”. [31]

For example, for the data set depicted in Figure 1.15, which consists of four features and 14 data
entries (rows), first the gini index for the attributes of the feature “Outlook” are calculated (see
Equations 1.16, 1.17, and 1.18) and the results are used in the second step to compute the weighted
sum for this feature (see Equation 1.19). These steps are repeated for the next three features of the
data set, and finally the feature with the smallest gini index is selected to be the first decision node,
the root. Thus, the initial partitioning of the tree is based on the Outlook feature, resulting in the
three branches Daylight, Cloudy, and Rainfall with corresponding sub-data sets. In the next step,
the gini index calculations for the remaining features (the already used Outlook feature is excluded)
are performed in the individual branches, using the “newly formed” sub-data sets. These steps are
repeated until the tree has been created. [31]

gini(Outlook=Daylight) = 1−
c∑

i=1

(pi)
2 = 1− (2/5)2 − (3/5)2 = 0.48 (1.16)

gini(Outlook=Cloudy) = 1−
c∑

i=1

(pi)
2 = 1− (4/4)2 − (0/4)2 = 0 (1.17)

gini(Outlook=Rainfall) = 1−
c∑

i=1

(pi)
2 = 1− (3/5)2 − (2/5)2 = 0.48 (1.18)

gini(Outlook) = (5/14) ∗ 0.48 + (4/14) ∗ 0 + (5/14) ∗ 0.48 = 0.342 (1.19)

The data used as input for a decision tree must be prepared accordingly, depending on the model.
Loading, cleaning, analyzing, and manipulating are among the phases of data preprocessing, all of
which are subsumed under the term “data wrangling” [29]. Decision trees tend to overfit, especially
when the available training data may not be representative of the population they are supposed to
represent. This is because the trees try to refine the training data into subsets that contain just one
class. [30] One way to avoid this is to fine-tune hyperparameters accordingly, the other way is to
aggregate the predictions of many trees, as is the case with RF and XGBoost classifiers. [29]

Regardless of the area of application, proper decision making is one of the most important key factors
in medicine and is generally based on past experience with comparable situations, new study results,

19

and personal judgment. As the number of solved cases and study outcomes is growing rapidly, it
is becoming increasingly challenging to manage these huge amounts of data and make decisions.
Therefore, more and more technical tools are being used to assist physicians in making decisions.
Decision tree based classifiers have already been used widely and successfully in medicine because
they have the ability to learn automatically, are simple, and make decisions effectively and reliably.
[30]

1.3.2. Random Forest vs. XGBoost

XGBoost (the XG stands for extreme gradient) and RF classifiers belong to the ensemble methods,
which are made up of different ML models called base learners that operate together, making them
more powerful and less error-prone. The final result is determined by majority vote, meaning that
if two out of three models predict NO, the final prediction is NO. The most popular base learners
for both are decision trees, the only difference being that RF combines the trees by bagging and
XGBoost combines them by boosting. [29]

Bagging is an acronym for bootstrap aggregation, which refers to sampling with replacement. The
strategy of bagging is to generate “new” data sets for each of the decision trees in the ensemble by
randomly selecting data from the original data set. [28] The process for this is as follows: one single
data sample is randomly selected, added to the new data set and returned instantly to the original
data. Only then the next sample is randomly selected, giving the option of picking the same sample
again. This process is repeated until each new data set contains the same number of data as the
original data. [29]

Figure 1.16: Example of bagging in RF classifiers: The original data is represented by 20 marbles.
Bootstrapping describes the step in which individual marbles are selected for each decision tree and
placed back immediately, resulting in the possibility that some of the marbles are picked more than
once, while others are not selected at all. This is evident in the last decision tree, which contains
seven black marbles, although only five are included in the data. At the end, the individual results
are aggregated and the decision is made via majority rule. [29]

An illustration of the bagging method is shown in Figure 1.16, with the original data set represented
as 20 separate marbles. For each individual decision tree, marbles are picked one at a time and
returned immediately, thus some may be selected many times and others may not be selected at all.
For example, the data set for the last decision tree in the picture contains seven black marbles even
though there are only five in the original data set. In contrast, decision tree number one on the left
includes only one of the five available black marbles. As already mentioned, the data sets for each
decision tree created in RF contain the same number of samples as the original data, so mathemat-
ically estimated two-thirds of the samples for each tree are unique and one-third contain duplicates.

20

Following the model’s bootstrapping phase, each decision tree generates its own prediction, which is
then aggregated to the final result using the majority rules, as previously indicated. [29]

This bagging method makes the RF an effective classifier with many advantages. Apart from the fact
that RF models are faster than AdaBoost models (these models will be explained in the following
sections) without losing accuracy, they are not susceptible to overfitting. Moreover, RF is more
noise resistant due to the combination of bagging and random selection of features to split, and
it can handle both continuous and categorical variables. Another major advantage is the so-called
out-of-bag (OOB) data which is generated during bagging. [32] By means of a hyperparameter, it
can be specified that the data remaining after the bagging process is retained as OOB data [29].
With this data, the generalization error, correlation and strength, and the importance of individual
variables can be estimated without the need of a separate test data set [32].

Over the past few decades, boosting has been one of the most effective general machine learning
algorithms for attaining optimal outcomes. The idea behind boosting is to learn from the previous
tree’s errors and create a new tree on top of it that corrects those errors. This is the main difference
to the bagging method, where each tree is built from scratch. In this learning process, algorithms
transform weak learners, which are slightly better than random guessing, into strong learners. To
benefit from this repeated error correction, it is important to start with weak learners, as using strong
learners from the beginning will restrict the learning process. [29]

Boosting may be divided into two types: the AdaBoost method and the gradient boosting method.
AdaBoost is one of the early boosting models and focuses only on updating the weights that have a
greater impact on erroneous predictions. [29] To do this, AdaBoost models fit the weak learners to
the data set, weight the sum of each weak learner’s predictions, take the one with the fewest classi-
fication mistakes and update this learner’s weights focusing on those most likely to have contributed
to an incorrect prediction [28]. The gradient boosting method builds the new tree also based on the
errors of the previous tree, but here already correct decisions are disregarded. The basic steps for
the training process of an gradient boosting model are as follows: First step is to initialize a weak
base learner and fit it to the data set. After that, predictions are made using the training data and
the residuals8 are calculated. These residuals are used as target column for the next tree, i.e., the
new tree is fit to the calculated residuals and not to the training data and each weight is updated
accordingly. With repeating this process, the residuals get smaller and smaller and the learners be-
come stronger. When the training is finished, predictions are made for each tree in the ensemble
using the test data set and the prediction results are summed up and used for the evaluation of the
model. [29]

An advanced variant of gradient boosting is the open source XGBoost model [33], where the “ex-
treme” in extreme gradient boosting refers to pushing the boundaries of computational performance
to their farthest limit [29]. Thanks to the scalability of the XGBoost models, state-of-the-art results
can be achieved for a wide range of problems using far fewer resources. This scalability is due to
various algorithm and system improvements, such as sparsity-aware split finding, parallel processing,
cache access, and block compression and sharding. [33] The sparse-aware split finding technique
allows only sparse matrices for identifying the splits within the tree. This makes XGBoost much
faster than competing systems, since only non-zero data points are stored in these matrices, saving
a significant amount of space. [29] Since data sorting is the most time-consuming step in learning
with trees, XGBoost employs in-memory units called blocks. Each column is sorted by the feature
value, and the data for each block is saved in compressed column format. By utilizing these blocks,
XGBoost is able to employ parallel computing for both the sorting and split finding processes, which
ultimately saves a significant amount of time. [33] With all these improvements, XGBoost models
run more than 10 times faster on a single computer than other systems [33], so it was decided to use
the XGBoost classifier for the gait analysis application (see Chapter 3: materials and methods).

8 Difference between the model’s predictions and the actual values.

21

2. Aims and objectives

Develop a Python-based project that uses state-of-the-art ML techniques to observe a dog’s gait
based on a video and measured pressure data and detect any irregularities. If the dog is lame, the
program is supposed to classify the dog as diseased, otherwise as healthy.

22

3. Materials and methods

3.1. Provided data

The data used for the training, evaluation, and testing process was provided by VetMed and covers
twelve different dogs, six of whom are diagnosed as healthy and six as lame. For these gait analyses,
the patients were guided over a pressure plate in a laboratory environment. Picture (b) in Figure
3.1 shows a screenshot taken from one of the provided videos illustrating the laboratory situation
from the camera perspective. To prevent the dogs from being distracted or slipping, the pressure
plate (marked with a yellow rectangle) was covered with a rubber mat and embedded in a 7 m
long walkway [1]. The green arrow in Figure 3.1 indicates the walking direction, i.e., the patients
walked towards and away from the camera obliquely. The image on the left shows the laboratory
environment in abstract form: the gray rectangle represents the pressure plate (54.2 x 203.2 cm)
and the yellow triangle together with the blue rectangle represent the camera, which was placed at
a 30° angle to the pressure plate.

(a) Abstract picture of labo-
ratory environment

(b) Real laboratory environment

Figure 3.1: Laboratory environment for gait analyses: The pressure plate, marked with a yellow
rectangle, is mounted in a 7 m walkway and covered with a rubber mat to avoid slipping and
distraction of the patients [1]. The green arrow indicates the walking direction of the patients, which
was more or less diagonally towards and away from the camera. The picture on the left shows an
abstract interpretation of the laboratory environment. The grey rectangle represents the mounted
pressure plate. The camera was positioned in a 30° angle to the walking direction.

As already briefly described in Section 1.1.2 “The Pressure Analyzer”, the measured data was pro-
cessed with the PA tool and finally exported to an Excel file. Thus, data is stored in two different
formats for each patient, namely the ppf files, which can be read and displayed with the PA, and
the associated xlsx files. In addition to the collected data, each gait analysis was recorded and saved
on video. To make a diagnosis, the dog was observed during both walking and trotting [3], which
is why a total of two independent gait analyses were performed per patient. Separate folders were

23

provided for each patient, whereby each of these folders contains four data and two video files of
the respective patient. As a result, a total of 24 Excel files with the measurement data and 24 gait
analysis videos were available for training, evaluation, and testing.

Naming of the files

In order to distinguish between the different patients as well as the two gaits, step/walk and trot, all
files were named according to a specific scheme. As can be seen in Table 3.1, a simple numbering
from 01 to 12 is used to differentiate between the patients. This is followed by adding an “H” for
a dog diagnosed as healthy or a “KJ” for a lame dog. Next, the differentiation of the gaits was
carried out by specifying an “S” for the step/walk or a “T” for the trot. With the numbering at
the end of the file name, the gait analysis processes and thus the recorded videos are numbered
consecutively1. Files belonging to one patient and one gait analysis, i.e., step/walk or trot, differ
only in their file types (ppf, xlsx, mkv or avi). For example, P0001 H S V0001.mkv represents the
video file recorded during the step/walk of patient number one, who is diagnosed as healthy. The
Excel file for patient number twelve, who was analyzed regarding the trot and diagnosed as diseased,
is saved as P0012 KJ T V0022.xlsx.

P00ww x y V00zz
ww Patient number 01 - 12

x Diagnosis
H Healthy
KJ Diseased

y Gait
S Step/walk
T Trot

zz Video number 01 - 22

Table 3.1: Naming scheme of the provided files.

3.2. Body part predictions with DLC

In this section, the DLC algorithm used for the body part predictions is explained, covering its
architecture and the training process as well as the parameter settings used for the training iterations.

3.2.1. Architecture

DLC is an open source Python-coded toolkit that allows to train a network based on human labeled
data and to automatically label new data [9]. In order to mark the body parts of interest by hand, an
interactive graphical user interface is provided through which the extracted frames are loaded, labeled,
and saved [34]. In addition, a selection of pre-trained DLC models are available on the “model zoo”
website, which can be downloaded and used [26]. The DLC algorithm is based on the part detectors
of the DeeperCut algorithm [9], which are built on the 50-, 101-, and 152-layers ResNets [22], which
achieve excellent results in detecting human body parts due to pre-training on the ImageNet data set
[35]. With over 15 million annotated high-resolution images, which belong to approximately 22.000
categories [36], ImageNet provides a comprehensive data set for object recognition [9]. For the body
part prediction, the ResNet-50 architecture described below was used.

1 Note: The video numbering for patient twelve is the same as for patient eleven, i.e., 24 videos were provided, but the
numbering of these videos only ranges from 01 to 22, as 21 and 22 are used twice.

24

Figure 3.2: Genuine ResNet-50 architecture and the adaptions made for DeeperCut: The
brackets enclose the respective building blocks, whereby the number next to them indicates the
number of stacked blocks. Conv1 consists of a convolution with a kernel size of 7× 7 and 64 filters,
all with a stride of two, representing one layer, while the Conv2 bank provides three layers per block
and three blocks stacked, resulting in a total of 3× 3 = 9 layers. Continuing this way and summing
up all the layers, the result is exactly 50 layers. The max/average pooling layers as well as the
activation functions are generally not considered, while the softmax and the fc layers are seen as one
common layer. DeeperCut has slightly adjusted this architecture for the body part detection. These
adaptions are summarized in the blue text boxes on the right. Adapted from Table 1. [22]

As illustrated in Figure 3.2, the genuine 50-layer ResNet consists of five different convolutional banks
(conv1 to conv5) and a final layer, where the average pooling, the 1000-dimensional fully connected
(fc) layer, and a softmax layer are counted as a common layer [22]. For the sliding-window based
body part detection, DeeperCut has slightly adapted the ResNets used (see blue boxes on the right
in Figure 3.2). First, both classification and average pooling were removed, then the stride of the
respective first convolutional layer in the conv5 block was reduced from 2 px to 1 px to avoid
downsampling [35]. To retain the receptive fields2 of the 3 × 3 convolutional layers in the conv5
block, holes were added to these layers and deconvolutional layers were finally added at the end of
the architecture [35] to generate a scalar field of activation values that correspond to the original
image’s area [9]. The output of the deconvolutional layer is coupled to the output of the conv3 bank
to take advantage of finer features extracted earlier in the architecture [9].

The probability that a body part is at a particular pixel (px) is given by the probability score-maps,
whereby each body part has its own sore-map output layer. These score-maps are labeled one (unity
probability) during the training process for any body part that is up to 17 px away from the ground
truth (human label). To minimize the cross-entropy loss between the predicted and the ground truth
score-map, SGD is used. [9] The sigmoid function is employed as the activation functions of the
DeeperCut algorithm [35].

2 The receptive field represents the size of the region in the input that produces the feature.

25

3.2.2. Training process

Note: DLC refers to both the passes during a training exercise as well as the number of trainings
executed as an “iteration.” To avoid confusion, the iterations used to count the number of training
sessions performed are termed “training iterations” and those performed during training sessions are
termed “internal iterations.”

The training process is an iterative procedure in which an evaluation is performed after each training
iteration to check the performance of the trained model. If this is not sufficient, the training param-
eters or the data set are adjusted and the next training iteration is started. This process is repeated
until the result of the evaluation is satisfactory with respect to the amount of data available for train-
ing. For parameters not explicitly mentioned in the following sections, the default (recommended)
parameters of DLC were used.

For canine gait analysis, a total of seven training iterations were performed and evaluated, using a
batch size of one to allow different sizes of the frames. Initially, the videos of patients number two
through five and eight through eleven were used. For training iterations zero and one, 30 frames
were extracted from each of these videos, resulting in a total of 480 frames. For training iterations
two and three, ten additional frames per video were extracted, increasing the data set to 640 frames.
With iteration four, patient numbers one and twelve were added to further expand the data set. For
each of the four added videos, 40 frames were extracted, so that the data set eventually consisted
of 800 labeled frames. After training iteration four (part two), a network refinement was performed
in which outlier frames were extracted from three videos and added to the data set, providing a
total of 1160 frames for training iteration five. The number of frames finally used in each iteration
is summarized in the last column of Table 3.2. All extractions were done using “kmean”, where
DLC first downsamples the video, groups the frames, and then picks frames from different groups to
ensure a variety of the training data [34].

(a) The body parts of interest (b) Example of a labeled frame

Figure 3.3: Labeled body parts of interest: The right picture illustrates a frame extracted from
the video file of patient two (P0002 H S V0003), showing the five body parts labeled by hand. The
abstract image on the left shows a dog from its side, pointing out the positions of the body parts of
interest. Since it is the left side, the right back stifle is not visible and therefore not marked.

In the extracted frames, the required body parts, i.e., head, neck, sacrum, and the right and left
back stifles, were labeled manually, with only visible body parts marked and hidden ones omitted.
The right picture in Figure 3.3 depicts an example frame where all visible body parts are labeled
(symbolized by the colored crosses)3. The abstract picture on the left serves to illustrate the positions
of the placed labels more clearly.

3 Note: The colored rectangles with the names were added manually for better visibility of the body parts.

26

For the training iterations, training data sets were created with a train-test split of 0.95, meaning
that 95% of the data was used for training and 5% was used to evaluate the models. Before splitting
the data, DLC combines all the frames and shuffles them [34]. Training iteration zero was initialized
with the weights of the pre-trained model “full dog” (see Table 3.2) downloaded from the open
source model zoo [26]. Since a total of 20 body parts were used for this model, but only five are
needed for the gait analysis application, the weights for the last layer, i.e., the deconvolutional layer,
had to be deleted. Otherwise, DLC is currently not able to process a change in the number of body
parts.

To be able to use weights from previous training iterations, DLC stores them as snapshots with the
corresponding index [34]. For each training iteration, snapshots were saved after every 1000 internal
iterations. For memory reasons and due to the fact that only the last few snapshots are relevant
anyway, a maximum of five snapshots were kept at the same time, meaning that after 5000 internal
iterations, the maximum of five snapshots is reached and the algorithm begins to overwrite the
existing snapshots with the newer ones (e.g., snapshot-1000 is overwritten with snapshot-6000 and
so on). As can be seen in Table 3.2, each training iteration was initialized with the weight from the
previous training, except for training iteration zero, which was initialized with the snapshot from the
model zoo, as mentioned above, and training iteration four part one, which was initialized with the
snapshot from training iteration two. Table 3.2 also lists the maximum internal iterations performed
for each training, after which each training was finished.

For each training, the calculated losses and their learning rates were displayed for each 500th internal
iteration and stored in a log file, which can be found in the corresponding training folder. For the
learning rates, the multi-step function was used, where DLC automatically updates the learning rates
during training according to the settings [34]. These settings are also presented in Table 3.2.

Training
Weights initialized Learning rates

Max internal Number of
iteration iterations frames

0 Model zoo “full dog” – snapshot-75000
0.005 until 2000

15000 4800.02 until 5000
0.002 until 15000

1 Iteration 0 – snapshot-15000
0.005 until 7000

10000 480
0.002 until 10000

2 Iteration 1 – snapshot-10000
0.02 until 8000

15000 6400.002 until 11000
0.001 until 15000

3 Iteration 2 – snapshot-15000 0.001 until 5000 5000 640

4 - part 1 Iteration 2 – snapshot-15000
0.005 until 5000

10000 8000.002 until 7000
0.001 until 10000

4 - part 2 Iteration 4 (part 1) – snapshot-10000
0.02 until 5000

10000 8000.002 until 8000
0.001 until 10000

5 Iteration 4 (part 2) – snapshot-10000
0.002 until 7000

15000 1160
0.001 until 15000

Table 3.2: Settings used for the training iterations. Each training iteration started with the
last stored weights from the previous one, except for training iteration four, where the first part was
initialized with the weights from number two, and training iteration zero, which was initialized with
the weights from the model zoo. For the learning rates, multiple steps were used for the internal
iterations, so that DLC automatically changes the learning rate during training according to the
settings. For each training iteration, a maximum of internal iterations was set. The last column
represents the amount of data available for the training.

27

After training iteration four – part two, a network refinement was performed. Three of the videos
used for the training were randomly selected (video number 16, 19, and 21) and analyzed by the
model, i.e., all predictions were made by the trained model. From these analyzed videos, 40 frames
were extracted using the outlier algorithm “jump”. This algorithm extracts frames where the predic-
tions of body parts differ from the predictions in the previous frame by more than a certain threshold
epsilon [34]. This epsilon describes the distance at which the body parts leap between the frames
[34] and was set to 20 px.

(a) Comparison frame 0721 and 0722

(b) Corrected coordinates for frame 0722

Figure 3.4: Outlier extraction example:

Figure 3.4 shows an example of how this algorithm works, using an excerpt from the analysis of video
number 16. As mentioned earlier, the algorithm “jump” compares two consecutive frames at a time,
e.g., frames 721 and 722, as illustrated in the upper picture (a) in Figure 3.4. The blue rectangles
highlight the x and y coordinates that do not have a large gap, whereas the red rectangles mark co-
ordinates whose difference is larger than the defined epsilon threshold indicating a wrong prediction.
In this example the x and y coordinates of the sacrum and the x coordinate of the right back stifle
were affected. Because of these discrepancies, frame number 722 is identified as an outlier. This
process is repeated until all outlier frames are found. Usually this is a huge number of frames for
longer videos like in this case. However, since some of these are similar to each other and thus would
have a similar learning effect, it is not necessary to use all of the frames. Therefore, only 40 frames
of each video were extracted, using the already described “kmean” parameter to ensure that these
frames are as different as possible. Via the graphical use interface, the wrong labeled body parts
were corrected by hand and the edited frames were added to the training data set. Picture (b) of
Figure 3.4 shows the frame number 722 as part of the training data set. As can be seen in the blue
rectangle, the labels for the head, withers and left back stifle did not change since these predictions
were made properly and therefore no refinement was necessary. The x and y coordinates for the
sacrum (left red rectangle) were adjusted and the label for the right back stifle (right red rectangle)
was completely deleted, since it was not visible at all in this frame. After correcting all outlier frames,
the training was continued with training iteration five. With this process it was possible to improve
the performance of the algorithm without extending the data set.

For the evaluation after each training iteration, DLC calculates the mean average Euclidean er-
ror (MAE)4 between the manually generated labels and those predicted by the algorithm in px.
During each evaluation process, a total of four MAE values are calculated. These include the train-
ing error with and the training error without p-cutoff, as well as the test error with and the test error
without p-cutoff. The p-cutoff variable is used to identify body part predictions with low likelihood
values by serving as a specified threshold. This indicates that while all predictions are included in the
calculations of the two MAEs “without p-cutoff”, only predictions that fully satisfy the requirement

4 Note: The MAE is proportional to the average root mean square error (RMSE).

28

likelihood > p-cutoff were considered in the calculations “with p-cutoff”. This distinction allows a
better understanding of the trained model’s performance (see Section 4.1.1). Note: For the test
errors, frames from the test set are used to evaluate the performance of the algorithm on unseen
data, i.e., data not used for training. [34]

Figure 3.5: Example of a test frame after the evaluation of training iteration one: The plus
symbol represents the manually labeled body parts. The DLC predictions for the head, sacrum, and
withers were predicted with a likelihood greater than the p-cutoff threshold (set to 60%) and are
therefore marked with a dot. For the stifles, the predictions are labeled with an “x”, indicating a
likelihood ≤ p-cutoff .

Additionally, the body parts with a likelihood smaller than the p-cutoff are highlighted differently in
the evaluation frames. Figure 3.5 shows an example of a test frame that was used for the evaluation
of training iteration one. The plus symbol indicates the manually labeled body parts, the predictions
of DLC are labeled either as a dot, if the predictions were made with a likelihood greater than the
p-cutoff threshold, or as “x” in the event of a likelihood smaller than the p-cutoff [34]. The p-cutoff
threshold was set to 60% for each evaluation process. As is visible in Figure 3.5, the predictions for
the head, withers, and sacrum fully meet this requirement (marked with dot), but the two stifles
were predicted with a likelihood of less than 60% (marked with “x”).

With training iteration five, the training process was stopped. The model’s performance on unseen
data was tested with patients number six and seven, whose data were not part of the training data
set. Since its performance was sufficient (see results and discussion in Section 4.1.2), this model
was used for the body part prediction in the application, i.e., all available gait analysis videos were
analyzed with this model. The output files of these analyzes, which contain the x and y coordinates
as well as the corresponding likelihood values of each body part per frame, were stored as Excel
files. These data were appropriately processed to enable the extraction of a total of three features
(explained in Section “Feature extraction from the DLC file” in subchapter 3.3.1: Data preparation),
which, along with the features extracted from the provided pressure data, were used as input for the
XGBoost classifier.

29

3.3. Classification with XGBoost

This section describes the data preparation procedure for the XGBoost classifier for the provided
PA data and the body part predictions obtained from the DLC part. Furthermore, the performed
parameter study is explained and the testing of the trained classifier is outlined.

3.3.1. Data preparation

During data preparation, a data frame is created whose rows contain the patient data and whose
columns represent the features that XGBoost uses for decision making. The selection of the features
is a very important step, as the accuracy of the classifier depends on it (see Section 3.3.2: Parameter
study). The final data frame consists of 24 features extracted from the PA data, three features
extracted from the body part prediction files, and, for training purposes, one target column. Figure 3.6
shows an excerpt from this data frame covering eleven features and the target column. The features
for the hind right (HR) paw including its four areas craniolateral (CrLa), craniomedial (CrMe),
caudolateral (CaLa) and caudomedial (CaMe), the movement, the mass, and the dog’s weight are
extracted from the PA files (see orange rectangles). The blue rectangle marks the three features
extracted from the DLC files, while the red rectangle highlights the target column containing the
diagnoses. The green and purple rectangles indicate the rows belonging to two different patients.
The individual steps of the data preparation are described below.

Figure 3.6: Excerpt from the data frame used for parameter study and training showing some
of the columns representing the features used for decision-making (orange and blue rectangles) and
the target column, which is only used for training purposes (red rectangle). The rows contain the
values of the patients extracted from the files, with the green rectangle highlighting the lines that
belong to one patient and the purple rectangle representing the ones that already belong to the next
patient. This data frame is used for the parameter study as well as for the training and consists of
27 features, one target column, and 104 rows.

Note: Unless otherwise noted, the examples and data extracts used below refer to patient number
one, analyzed during the step/walk and diagnosed as healthy (P0001 H S V0001).

Feature extraction from the PA files

The features selected from the provided PA Excel files are the pressure data (forces) for each paw
and its four areas CrLa, CrMe, CaLa, and CaMe, the calculated mass, and the weight of the dog. In
addition, the “movement” feature is added to distinguish between the two gaits studied, the trot and
step/walk. To recall, each paw is divided into four sections: CrLa, CrMe, CaLa, and CaMe. Caudal

30

refers to the opposite direction, that is, towards the tail, while cranial represents the direction towards
the head. Medial relates to the ”middle of the dog,” whereas lateral corresponds to the directions
to the sides of the dog. An abstract image of these areas for the left paws (forepaw and hind paw
areas are identical) is shown in Figure 3.7. For the right paws, lateral and medial are reversed, ie.
CrMe and CaMe are on the left side of the right paw and CrLa and CaLa are on the right side. The
forces acting on each of these areas during a stance phase are measured with the pressure plate and
summed using the PA.

Figure 3.7: Abstract illustration of the left paw’s areas

Since XGBoost does not allow non-numeric columns [29], one-hot encoding, a process by which
categorical features are converted into a form that can be provided to ML algorithms, was used.
During this process, the feature of each sample corresponding to its original category is assigned the
value of one. Thus, the “movement” feature is split into the two new columns “Movement step”
and “Movement trot”, specifying one for all rows where a “step” or a “trot” was present and zero
for the remaining rows (see Figure 3.6 orange rectangle on the right). For the training process, it is
necessary to add a target column, which contains the diagnoses made by the physicians, at the end
of the data frame. To obtain a numerical column here as well, zero is set if the dog is diagnosed as
healthy and one if the dog is lame.

In order to utilize the measured forces as input for the XGBoost, the data for each paw and each of
its areas is averaged separately. To extend the data set, these averages are calculated for each pass
instead of using the entire measured data at once. A pass, as already mentioned in Section 1.1.2,
represents the time period in which the dog passes the pressure plate exactly once. For example,
patient one shows measured data for a total of five passes, resulting in five rows in the data frame
instead of just one. It should be noted that the PA tool did not store data for ALL passes done
during the gait analyses, which means that the number of passes performed by the dog does not
match the number of passes used for classification.

The frame numbers of the video and the corresponding measurement data for the paws are listed on
the sheet “Data Frame” in each Excel file. Figure 3.8 illustrates an excerpt from this sheet, where
column one lists the frame numbers and columns two through five contain the measured forces for
the FL, front right (FR), hind left (HL), and HR paws (in that order). In frame number 14995, for
instance, the measured value for the FL is 166.389771, while the HR is reported as zero, indicating
that this leg was not on the pressure plate at that time.

31

Figure 3.8: “Data Frame” sheet excerpt from the provided Excel file: Column one shows
the frame numbers of the video, columns two to five contain the measured forces, whereby a zero
indicates that the paw did not touch the measure plate. The last column sums up the forces measured
in each frame.

From this “Data Frame” sheet, the numbers of the start and end points for each pass are extracted
and used to calculate the duration of the passes with Equation 3.1. With the help of these computed
values, the averages for each paw and each pass are calculated according to Equation 3.2 and added
to the data frame, where each pass is stored in a new row. Thus, the four features FL, FR, HL, and
HR are extracted, containing the averaged forces of the paws.

pass duration = end point pass− start point pass (3.1)

paw avg pass =

end point pass∑
start point pass

pressure data pass

pass duration
(3.2)

The pressure data measured for the four areas of each paw are stored separately in the “Data
Quadrant Area” sheet of the Excel files and are therefore not listed next to the frame number where
they were measured5. To ensure that the correct values are averaged and appended to the data
frame, it is necessary to know how many steps were measured during the complete gait analysis and
how many steps belong to the individual passes.

For example, for patient number one, there is measurement data for ten steps of the FL paw and
twelve steps of the FR paw, and as already mentioned, this patient has a total of five passes. By
determining the number of steps per pass, it was found that on the first pass, the FL paw touched
the pressure plate twice while the FR paw touched it three times. Thus, for the calculation of the
average forces of each paw area, the first two columns of the FL paw areas and the first three
columns of the FR paw areas must be considered.

5 Note: The first column is called “Frame”, but it does not correspond to the frames in the videos. It only shows a
consecutive numbering of the lines.

32

Figure 3.9: “Data Quadrant Area” sheet excerpt from the provided Excel file: The picture
shows the first two steps for the CrLa and the CrMe areas of the FL paw (blue rectangles), which
are part of the first pass for patient number one. The yellow rectangle highlights the third step of
the CrMe area of the FL paw, which is already part of the next pass. For the FR paw, three steps
have touched the pressure plate during the first pass, so the first three columns are used to calculate
the average for this first pass (the green rectangle highlights this for the CrLa area).

Figure 3.9 shows an excerpt of the ”Data Quadrant Area” sheet, highlighting the columns for
calculating the average force of the first pass for the CrLa and CrMe areas of the FL paw in blue
rectangles and the columns used for the CrLa area of the FR paw in the green rectangle. The yellow
rectangle shows the CrMe area from the third step of the FL paw, which is already part of the
calculation for the second pass. Finally, 16 additional features are extracted, namely the averaged
forces for the four areas CrLa, CrMe, CaLa, and CaMe of each paw. The following equation was
used to calculate these averages:

area avg pass =

∑
number steps per pass

area pressure data pass

pass duration
(3.3)

To distinguish between big and small dogs, the mass as well as the weight of each patient are added
as features. Both values are stored in the Excel file sheet “Übersicht”. One of the great advantages
of models based on decision trees is that they are not affected by the scale of the input, so no
normalization of the data is required [37]. With that, the feature extraction from the data provided
by the PA tool is finished. To recap, four features represent the averaged forces for each paw, 16
features depict the averaged forces for each of the four areas per paw, one feature represents the
mass, one feature indicates the dog’s weight, and two features represent the distinction between the
step/walk and trot.

Feature extraction from the DLC prediction files

The output files from the DLC algorithm contain the predicted x and y coordinates (in px) as well
as the likelihood value for each body part per frame. Figure 3.10 depicts an excerpt of one of these
output files, illustrating the scorer, i.e., the used model for analyzing the videos, the body parts and
the corresponding predictions. The first column refers to the frames of the video, e.g., at frame zero,
the model predicted the dog’s head at x = 736.3904 px and y = 227.2096 px with a likelihood of
69.0264%.

Figure 3.10: Excerpt from a prediction file showing the predicted x and y coordinates (in px)
as well as the likelihood values for each body part and frame. In the first line, the model used for
analysis is noted as scorer.

33

The fundamental frequencies are extracted from the movement of the head, withers, and sacrum and
used as features for the classifier. These features are added to the data frame accordingly as “Fund-
Head”, “FundWithers”, and “FundSacrum”. The steps of the signal processing from the available
coordinates to the extraction of the frequencies are outlined in Figure 3.11 and are explained below
using the head movement of patient number ten during trot (P0010 KJ T V0020), unless otherwise
noted.

Figure 3.11: Signal processing for feature extraction from the DLC prediction files

In a first step, all x and y coordinates are interpolated for which the likelihood value is below the
specified threshold of 0.6 (60%). This value for the threshold was chosen because a prediction with
a likelihood of more than 60% is already considered sufficient. Since this interpolation can only be
performed if there is data before and after the area to be corrected, affected rows at the beginning
and the end of the data cannot be interpolated and are therefore deleted. This can be seen, for
example, in Figure 3.10, where the probability for the withers within the first five frames and for the
sacrum within the first three frames is below this threshold, i.e., the first five frames are deleted for
this patient.

Figure 3.12: Raw signal vs. filtered signal of head marker for patient number ten. The orange
signal indicates the head movement after the pre-filter and Hampel filter, while the blue signal
corresponds to the raw (unfiltered) data of the head. The purple circle marks an area where the dog
is in the back of the room, far away from the camera, while the green circle represents an area where
the patient is close to it.

34

In the next step, outliers are extracted using a pre-filter followed by a Hampel filter. Figure 3.12
shows the head signals of patient number ten before (blue signal) and after (orange signal) filtering,
clearly demonstrating that outliers have been removed from the raw data. The pre-filter calculates
the absolute z-values for each of the data points (x and y coordinates), relative to the sample mean
µ and the standard deviation σ (see Equation 3.4). Each of these calculated values is compared to
a specified threshold, with the values for the x and y coordinates replaced by a “NaN” if either or
both z-values are below that limit. This threshold is set to 3σ (three times the standard deviation)
according to the so-called “3-σ-rule”, a simple and popular heuristic for detecting outliers [38]. The
outliers determined in this way are finally interpolated linearly, with the number of successive inter-
polation points limited to 20.

|z| = data− µ

σ
(3.4)

The Hampel filter, one of the most robust and efficient outlier identifier, slides a moving window over
the entire data. On each window a robust adjustment of the “3-σ-rule” named Hampel identifier is
applied to characterise each data point with respect to its preceding and subsequent samples. [39]
Thus, the filter calculates the median and estimates the standard deviation sigma, using the median
absolute deviation (MAD) (σ ≈ 1.4826MAD) for each window. After that, each data point within a
window is compared to its calculated mean, and if the value deviates by more than three times the
median absolute deviation, it is treated as an outlier and replaced by the median value. For the size
of the sliding windows, a value of 25 is defined6.

Since the camera position was not ideal during the experiments, the dog walks, as already mentioned,
more or less obliquely towards and away from the camera. Consequently, the patient appears larger
in the frames where it is close to the camera and smaller in the frames where it is far away. The
resulting issue is that the dog’s movements are clearly visible near the camera but the further away
he gets from the camera, the smaller and harder they are to see. Additionally, this phenomena also
happens with outliers, i.e., when the dog is near the camera, an outlier results in a considerably larger
discrepancy between the x and y coordinates of the preceding frame and those of the “outlier-frame”.
For instance, the length of the outlier jags visible in Figure 3.12 (raw signal) are significantly larger
in the green circle (≈ 210px), where the patient is near the camera, than those in the purple circle
(≈ 20px), where the dog is far away. Depending on where the dog is located in the video, a scaling
of the x and y coordinates is applied as a workaround. For this purpose, first the Euclidean distance
(see Equation 3.5) between the sacrum and the hind stifle in each frame is calculated, using the
right stifle when the dog moves away from the camera and the left stifle when it moves towards the
camera. This distinction is made because the left back stifle is more visible than the right back stifle
when the dog is walking towards the camera and vice versa.

eucl dist =
√
((x stifle− x sacrum)2 + (y stifle− y sacrum)2) (3.5)

After calculating the Euclidean distances, the scaling factors are computed by taking the first distance
as the reference (its scaling factor is set to one) and using the equation below to get the remaining
scaling factors for each frame:

scaling factor =
ref distance

eucl dist
(3.6)

6 Note: Several window sizes were tried, 25 was the best fit.

35

Finally, the x and y coordinates for each frame of the head, withers, and sacrum are multiplied by the
appropriate scale factor (see Equations 3.7 and 3.8) to ensure that the movements are independent
of the dog’s position in the video and thus comparable.

x scaled = x ∗ scaling factor (3.7)

y scaled = y ∗ scaling factor (3.8)

The position vectors’ lengths are computed in the following step using the scaled coordinates. Since
the algorithm has its coordinate origin in the upper left corner, the vectors calculated for points near
the left edge of the frame are short and become larger as the distance of the dog to the left edge
increases. As a result, there are peaks in the signal that coincide with the dog backing away from
and moving towards the camera.

Figure 3.13: Screenshot of the labeled video and the corresponding head movement: The
labeled video was played synchronously with the movement signal of the head of patient number ten.
The green arrows indicate the dog’s movement towards the camera, decreasing the distance to the
coordinate origin of the algorithm, and the red arrows refer to the dog’s movement away from the
camera (increasing distance). The red rectangle marks the area where the dog was only in the back
of the room.

This behavior is illustrated in Figure 3.13 for the head signal of patient number ten, where the green
arrows indicate movement towards the camera and the red arrows indicate movement in the opposite
direction. In other words, each peak to the top corresponds to the position at which the dog is
farthest away. The red rectangle highlights an area in the signal where the patient did not move
forward, but remained in the background for a while. To counteract this interference, the coordinate
origin used for the calculation of the vectors is shifted from the upper left corner to the upper middle
of the dog’s walking range. Therefore, the maximum x coordinate is identified and divided by two
to get x half. Including this value in the calculation of the vectors, as shown in Equation 3.9, re-
sults in a shift of the y-axis . This is done separately for all frames, ensuring that in each frame the
distances from the shifted y-axis to the furthest point of the dog to the left and to the right are equal.

vector length =
√
(x− x half)2 + y2 (3.9)

36

After this process step, the time series is smoothed with a Gaussian filter, using a sigma of one.
Figure 3.14 shows two snapshots from the gait analysis of patient ten including the signal after the
scaling, shifting, and smoothing process. The video is played synchronously with the data once again,
with the dashed line indicating the current point in the signal. Both images were taken in such a
way that a peak in the signal is shown. In the top picture (a), the dog is very close to the camera,
but in the bottom picture (b), it is far away, indicating that the peaks are now independent of the
dog’s position and merely illustrate the movements of the head.

Since a fundamental frequency of more than 1 Hz is expected, the signal is high-pass filtered (order
= 3, cutoff = 1 Hz) before it is finally transformed to the frequency domain using the fast Fourier
transform (FFT). The frequency with the highest intensity in each case is extracted as the funda-
mental frequency of the head, neck, and sacrum. Thus, the three features from the DLC files are
extracted and added to the data frame. As these features are extracted on the basis of the entire
gait analysis and not on the basis of the individual passes, as is the case with the features of the PA
data, the extracted frequencies are the same for each of the rows belonging to one patient.

(a) Dog near the camera

(b) Dog further away from the camera

Figure 3.14: Screenshot of the labeled video and corrected head signal: The dashed lines
represent the corresponding point in the signal for the currently displayed image. Picture (a) shows
the snapshot when the dog is near the camera, while the patient is far away in image (b). For both
cases, there is now a peak at an upward position in the signal (marked by the dashed lines), which
means that the peaks are independent of the dog’s position in the video.

37

3.3.2. Parameter study

The data frame used for the parameter study consists of 27 features (columns), the target column
(diagnosis), and 104 rows containing the processed data of patients number two to eleven, as already
mentioned in Section 3.3.1. In the file P0002 H T V004, the data for the paw area is missing for
one of the steps, i.e., for this step made within the gait analysis, there is force data for the paw but
no force data for its areas CrLa, CrMe, CaLa, and CaMe. Since it is not possible to identify the step
at which this occurred, the file cannot be processed during data preparation and is therefore not part
of the final data frame. Patients number one and twelve are not included in either the training or
the parameter study process, as they act as test patients to validate the trained XGBoost.

For the parameter study, different combinations of the features were used as input to train the
XGBoost Classifier, where the features “Mass”, “Weight”, and “Movement”7 were present in each
combination to distinguish between large and small dogs as well as between the trot and step/walk.
The combinations are listed in Table 3.3, where the “Forces” represents the 20 features containing
the averaged forces of the paws and their four areas. For each combination, training and test per-
formance, which takes values between zero (poor) and one (perfect), as well as the accuracy value
(in percentage) were calculated and displayed. Additionally, the log losses for the training data set
and the receiver operating characteristics (ROC) curves including the area under curve (AUC) values
are illustrated in a diagram for all combinations. The train-test split was set to 80:20, meaning that
80% of the data set was used for training, with the random state parameter set to five to ensure
that this split was always the same for each run of the script and each combination, so the results
are comparable.

Mass Weight Movement Forces FundHead FundWithers FundSacrum

1 x x x x

2 x x x x

3 x x x x

4 x x x x x

5 x x x x x

6 x x x x x

7 x x x x x x

8 x x x x

9 x x x x x

10 x x x x x

11 x x x x x

12 x x x x x x

13 x x x x x x

14 x x x x x x

15 x x x x x x x

Table 3.3: Feature combinations used in the parameter study.

Before the parameter study starts, the “RandomizedSearchCV” (randomized search with cross-
validation) function provided by sklearn is used to find the most suitable hyperparameters for the
classifier with respect to the input data. This way, the function forms all possible combinations of
the hyperparameters defined in a grid and outputs the combination that yields the best accuracy
[29]. As fine-tuning all XGBoost hyperparameters would be very time-consuming, the focus is on

7 Note: The two separate columns for step and trot are simply summarized as “Movement” in the text for the sake of
simplicity.

38

the seven hyperparameters most commonly fine-tuned by machine learning experts [29], which are
briefly described in the following sections.

N estimators defines how many trees are trained on the residuals and is per default set to 100.
Increasing this value could lead to an improvement of the score by using a large data set. For each
boosting round, the defined value of the learning rate, whose default value is 0.3, decreases the
weights of the trees. Reducing this value prevents overfitting on the one hand (since the transferred
weights are smaller) but also means that more trees are needed to achieve good accuracy. Another
hyperparameter used to prevent overfitting is the max depth, which limits the length of the tree.
Gamma, also known as the Lagrange multiplier, sets a bar that nodes must clear in order to split
further with respect to the loss function. Its default value is zero, and although there is no upper
limit for the gamma, a value higher than ten is already assumed to be excessive. [29]

The minimum sum of weights required within a node to be split further is defined by the hyper-
parameter min child weight, and by means of subsample, the threshold for the percentage of
training instances (rows) for each boosting round is specified. Setting the subsample below 100%
and increasing the min child weight reduces overfitting. The last hyperparameter colsample bytree
is used to reduce the impact of the features by randomly picking specific columns according to the
given percentage. [29]

The hyperparameter values used as input for the “RandomizedSearchCV” function are listed in Table
3.4. For n estimators, max depth, and gamma, only integer values from a specified range were used,
ensuring that the default values are included. The remaining parameters were defined to cover float
values between zero and one. The search was done using the repeated stratified k-fold with five
splits and three repetitions, resulting in 15 cross-validations per iteration. A total of 500 iterations
were performed to find the best fitting model, using “accuracy score” for the evaluation of each
hyperparameter combination and split. The results of the randomized search are saved in the “Re-
sults RandomizedSearch.xlsx” file and can be found in the “Software\Classification\Param Study”
folder.

Hyperparameter Start value End value Value type

N estimators 50 800 Integer

Learning rate 0 1 Float

Max depth 1 10 Integer

Gamma 0 1 Integer

Min child weight 0 1 Float

Subsample 0 1 Float

Colsample bytree 0 1 Float

Table 3.4: Feature combinations used in the parameter study.

Figure 3.15: Result extract of the randomized search summarizing only the three selected models
of interest for the parameter study. The model numbering has been added by hand and displays a
sequential numbering of the three selected models not indicating any ranking.

39

Reviewing the results, the best scored model achieved a mean test score of 0.99349206, as displayed
in the first row of Figure 3.15 (model one). Since this model would require 751 estimators, leading to
a high computational cost, another model with a similar score but fewer estimators was chosen. This
model’s hyperparameters along with its score, which is 0.98380952, are depicted in the second row
of Figure 3.15. In this model (hereafter referred to as model two), the accuracy of almost all feature
combinations was 100%, indicating a problem with the hyperparameters (the results for this model
can be found in the text file “ParamStudy Model2”). Looking at the calculated performances of all
combinations, the train performances were all rated 1.0, which could be an indication of overfitting.
An additional hint that model two may be overfitting is the fact that the test scores for eleven of
the 15 splits computed during the randomized search also have a value of 1.0. Thus, model two is
not used for the parameter study, and when selecting the model for the parameter study, care was
taken to select one whose test values were all below 1.0. Model number three shown in Figure 3.15
fulfills these criteria and achieved a good mean test score of 0.903968254.

For the final training of the XGBoost classifier, all 27 features were used as input, and the train and
test log losses as well as the accuracy were calculated and plotted for evaluation purposes. Since the
hyperparameters, the train-test split, and the random state were the same as for the training during
the parameter study, the accuracy is equal to that of the parameter study, where all features were
used. The trained model was finally tested on unseen data from patients one and twelve. An excerpt
of this test data frame is shown in Figure 3.16 and consists of the 27 features, the target column
for evaluation purposes and 24 rows, containing only the data from the files P0001 H S V0001,
P0001 H T V0002, P0012 KJ S V0021, and P0012 KJ T V0022.

Figure 3.16: Excerpt from the test data frame, which only contains the data from the two test
patients one and twelve, resulting in 24 rows. In the picture, ten of the 26 extracted features are
visible.

3.4. Loss functions and evaluation techniques used

As can be seen in Figure 3.17, the sigmoid cross-entropy loss function used to evaluate the DLC al-
gorithm and the logarithmic loss (log loss) used for the XGBoost evaluation, are identical. These
identical losses are characterized by two titles since their definitions come from different sources.
While the cross-entropy loss derives the probability value from the predicted value using the sigmoid
activation function, the log loss acquires the probability value via the conditional probability distribu-
tion (see logarithmic loss explanation in Figure 3.17). In this distribution, p stands for the likelihood
of being predicted as a member of a positive class, while 1-p stands for the opposite probability. The

40

logarithmic loss rises as the likelihood of a correct prediction goes down, and it decreases when the
probability of a correct prediction is close to one. The gap between the actual and predicted outputs
is referred to as cross entropy. The two probability distributions are more closely spaced apart the
lower the cross entropy value. As a result, sigmoid cross entropy loss and logarithmic loss have the
same meaning. [40]

Figure 3.17: Formula and explanation of log loss and sigmoid cross-entropy loss.

The ROC is an evaluation metric used in binary classification problems that represents a probability
curve for several decision thresholds. Based on the threshold, the classifier categorizes each of the
instances. For example, with a threshold of 0.5, all instances with a prediction probability above
0.5 will be classified as positive, all others as negative. The terminology of positive and negative
class is related to the sigmoid function, which outputs a probability value between zero and one:
positive if the prediction probability of the instance is within the area between the threshold and
one; negative if it’s within the region between the threshold and zero. The ROC curve is plotted
with true positive rate (TPR) (see Equation 3.10), also known as sensitivity, on the y-axis and the
false positive rate (FPR), which results from one minus the specificity (see Equation 3.12), on the
x-axis. The sensitivity calculates the proportion of the positive class, which got correctly classified,
while the level of specificity (see Equation 3.11) reveals how much of the negative class was correctly
categorized (true negative rate).

TPR =
true positive

true positiv + false negative
(3.10)

Specificity =
true negative

true negative+ false positive
(3.11)

FPR = 1− Specificity =
false positive

true negative+ false positive
(3.12)

The area under the ROC curve is represented by the AUC value, which shows the ability of the
trained model to differentiate between the positive and negative class. The more accurately the
model predicts the classes, the higher is this value. The ideal model would have an AUC value of
one, which means that it optimally differentiates between the classes, i.e., all positive instances are

41

classified as positive and all negative instances are classified as negative; there are no false predic-
tions. This is reflected in the left picture of Figure 3.18, where the value for the FPR is zero and the
TPR value is one. In the second image from the left, the worst case scenario can be seen: an AUC
value of approximately 0.5 means that the model is not able to distinguish between the positive and
negative classes, in other words, the model is deciding randomly for each instance. Any AUC value
less than 0.5 means that the amount of incorrectly predicted instances is greater than the amount of
the correctly predicted ones. Thus, a value of zero means that all positive instances are classified as
negative and all negative instances are classified as positive, resulting in a FPR value of one and a
TPR value of zero (see picture to the right). The third image from the left displays the ROC curve
for an AUC value of 0.7, indicating that the model can reliably distinguish between positive and
negative classes with a 70% chance. Each AUC value between 0.5 and one means that the model
identifies more true positives and true negatives than false positives and false negatives.

Figure 3.18: ROC curve and AUC value examples.

42

4. Results and discussion

4.1. DLC body part prediction results

In this section, the results of the training iterations, including the evaluation results and the cross-
entropy loss, as well as the results of the predictions of the final model for unseen data are presented
and discussed.

4.1.1. Evaluation of training iterations

As briefly described in Section 3.2.2, the training process of the model included a total of seven
training iterations. After each of these iterations, the model was evaluated with test data (see
Table 4.1 for results) and the cross-entropy loss was plotted over the internal iterations. Using the
evaluation results and the plot, the learning progress of the model was interpreted after each training
iteration, and depending on the outcome, adjustments were made before starting the next training
iteration. These adaptations included either changes in the learning rates, adding training data,
and/or extracting outliers. The results, plots, and adjustments made for each training iteration are
outlined in the following sections.

The following table summarizes the evaluation results of each training iteration.

Training Internal Train error Test error Train error with p-cutoff Test error with p-cutoff p-cutoff
iteration iterations (px) (px) (px) (px)

0 7000 19.26 28.02 5.29 8.27 0.6

1 10000 14.39 19.42 6.64 8.61 0.6

2 15000 7.4 15.69 4.57 5.80 0.6

3 3000 6.40 20.44 4.73 7.48 0.6

4 20000 9.56 11.03 5.14 5.22 0.6

5
13000 9.07 8.03 5.00 5.46 0.6
14000 8.55 7.98 4.76 5.45 0.6
15000 9.40 8.89 5.25 8.68 0.6

Table 4.1: Evaluation results of training iterations showing the test and train errors (with and
without p-cutoff), the number of maximum internal iterations, and the used p-cutoff threshold for
each training iteration.

Training iteration 0

As can be seen in Table 4.1, this model, which has been trained with 7000 internal iterations, has
relatively high train and test errors (19.26 px and 28.02 px). However, if only the predictions with
a probability greater than 60% are considered, the values are already in a good range (5.29 px and
8.27 px). Although only 480 frames were used for the first training iteration, excellent initial results
were achieved thanks to transfer learning. By initializing the model with the weights from the pre-
trained model zoo algorithm, the model did not have to learn from scratch and thus only needed
7000 internal iterations to reach train and test errors with p-cutoff < 9 px.

43

Figure 4.1: Cross-entropy loss diagram for training iteration zero: At the beginning a learning
rate of 0.005 is used, which is automatically updated to 0.02 after the 2000th internal iteration.
Starting with internal iteration number 5000, the learning rate is updated again and a value of 0.002
is used.

The cross-entropy loss plot for training iteration zero is shown in Figure 4.1, with the vertical lines
designating the internal iterations where the learning rate was adjusted. Note: The smaller the
learning rate, the finer the updates of the weights. The learning rate values used are recommended
by DLC and have therefore been retained as such. Variations were only made during the updates.
Initially, a learning rate of 0.005 was used, which was changed to 0.02 at the 2000th internal iteration.
As can be observed in Figure 4.1, the cross-entropy loss decreases quite rapidly at the beginning,
and as the learning rate changes, it starts to increase for some internal iterations, reaching a peak
at internal iteration 2500. This behavior is normal, as the weights are now updated with a larger
value. After this peak, the cross-entropy loss steadily decreases, with this decrease slowing down as
expected with the update of the learning rate to 0.002.

Since the timing of updating learning rates always depends on the application and the amount of
data available for the training, there is no basic rule for it. Therefore, especially for the first training,
it was tested more or less randomly how the loss evolves for 480 existing frames at different learning
rates.

Training iteration 1

This training iteration is the continuation of training iteration zero, i.e., the last saved snapshot of
the previous training was used to initialize the weights. The training and test errors without the
p-cutoff values decreased further and are now 14.39 px and 19.42 px, while the errors with p-cutoff
values increased slightly to 6.64 px and 8.61 px (see Table 4.1). This increase could be due to
the fact that DLC predicts a larger number of body parts with a probability above 60% and/or the
distances for these predictions to the ground truth labels are still quite large.

Figure 4.2 illustrates the cross-entropy loss for this training iteration. Since the learning rate of 0.002
in training iteration zero decreased very slowly, this training iteration was initialized with a slightly
higher learning rate of 0.005 and only updated to 0.002 with the 7000th internal iteration. In the
beginning, the cross-entropy loss decreased relatively fast, but afterwards the learning progress was
very slow, indicating that the selected learning rates were too small [18]. Therefore, this training
iteration was terminated with the 15000th internal iteration and continued as training iteration two
with different learning rate settings.

44

Figure 4.2: Cross-entropy loss diagram for training iteration one: The learning rate is initialized
with 0.005 and updated after the 7000th internal iterations to 0.002.

Training iteration 2

Training iteration two was initialized with snapshot 10000 from training iteration one. The errors
for the train and test evaluation have further decreased for both the calculations with and without
the p-cutoff threshold. Although the error rate is decreasing, it can be seen in Table 4.1 that the
gap between the train and test errors is increasing (4.57 px vs. 5.80 px with p-cutoff and 7.4 px vs.
15.69 px without p-cutoff).

Figure 4.3: Cross-entropy loss diagram for training iteration two: At the beginning, the learning
rate was set to 0.02, which was updated to 0.002 at internal iteration 8000. With iteration 11000,
the learning rate was updated to 0.001.

The diagram of the cross-entropy loss for this training iteration (see Figure 4.3) shows very nicely
the effect of changing the learning rate to a higher value. Due to the relatively small learning rates
chosen for the previous training, it was not possible to achieve a loss below 0.005 even after 10000
internal iterations (see Figure 4.2). However, with the learning rate of 0.02 used for training iteration
two, the loss exceeded 0.005 relatively quickly, as shown in Figure 4.3. In the range of 8000 to 11000
internal iterations, a learning rate of 0.002 was used, which still resulted in a good reduction of the
loss. For the last few internal iterations, the learning rate was updated to 0.001 to make smaller
steps towards the ground truth data, since the loss was already close to 0.003. As a result, the
cross-entropy loss first reaches a brief plateau and then suddenly begins to increase again. This
behavior, along with the increased gaps between the two train and test errors, indicates a possible
incipient overfitting of the model.

45

Training iteration 3

To determine whether the sudden increase in cross-entropy loss from the previous training iteration
indicated overfitting, training iteration two was continued into training iteration three at the same
learning rate (0.001). A separate training iteration was chosen so that the weights of the model prior
to overfitting would remain stored separately and not be overwritten by further internal iterations,
which would be unusable when overfitting occurs.

Figure 4.4: Cross-entropy loss diagram for training iteration three: With a learning rate of
0.001, the progress was quite slow and stable until the loss decreased rapidly before it started to
increase.

The evaluation of this training iteration shows an even larger gap between train and test error without
p-cutoff (6.4 px vs. 20.44 px) and an increase in the train error with p-cutoff of 0.16 px and for
the test error with p-cutoff 1.68 px. Together with the fact that, as can be seen in Figure 4.4, the
loss only increases from iteration 2000, it was proven that overfitting occurs with continued training.
Therefore, training iteration three was excluded and training iteration four was initialized with the
weights of training iteration two after extending the training data set.

Training iteration 4

As can be seen in Table 4.1, the train errors slightly increased compared to the evaluation results
of training iteration two (as mentioned above, training iteration three was excluded). On the one
hand, the training error without p-cutoff increased from 7.4 px to 9.56 px, and the training error with
p-cutoff increased from 4.57 px to 5.14 px. The test errors, on the other hand, decreased to 11.03
px (without p-cutoff) and 5.22 px (with p-cutoff). These are exactly the results that were expected
after adding new data to the training data set. The increase in the training error indicates that more
training data is available and that the algorithm needs to be trained more with this expanded data
set. The reduced errors in the test evaluation, on the other hand, show that the model performs
more effectively on unseen data as a result of additional training data.

Training iteration four was divided into two parts, since the training for the first part was interrupted
after 10000 internal iterations to adjust the learning rates. Figure 4.5 illustrates the cross-entropy
loss for both parts in one diagram. For the first part, the learning rates were chosen to be quite
small. With a learning rate of 0.005 until the 5000th internal iteration, the loss was in the range of
0.0085 and 0.007. However, after the learning rate was first changed to 0.002 and then to 0.001
(at iteration number 7000), the learning progress was again quite slow. Therefore, the training was
stopped at this point to change the learning rate to the higher value of 0.02.

46

Figure 4.5: Cross-entropy loss diagram for training iteration four: After 10000 internal iterations
(part one), the training was interrupted to adjust the learning rates. Afterwards, the training was
continued until 20000 internal iterations (part two).

With this change, the cross-entropy loss increased as expected with the initial internal iterations,
but then started to decrease in a positive way. Even after changing the learning rate to 0.002, the
decrease was still satisfactory. At internal iteration 18000, the learning rate value was updated again,
with the loss settling just above 0.006. With the already low learning rate, the cross-entropy loss did
not decrease further, so the data set used for training had to be adjusted to achieve a better result.
For this purpose, a network refinement was performed before the next training iteration was started.

Training iteration 5

For this iteration, the learning rate was initially set to 0.002 in order to make slightly “larger” steps
in the beginning and was changed to 0.001 at the 7000th internal iteration. As can be seen in Figure
4.6, the learning progress was good in the first half of the training but started to flatten out in the
second half. Towards the end of the training, the loss began to alternately increase and decrease,
indicating the beginning of overfitting.

Figure 4.6: Cross-entropy loss diagram for training iteration five: The initial learning rate of
0.002 was changed to 0.001 in the middle of the training, resulting in a slight increase of the cross-
entropy loss. In the second half of the training, the loss was quite stable until it began to alternate
at the last few thousand internal iterations.

The evaluation results for the last saved snapshot (15000) indicate a train error of 9.40 px and a test
error of 8.89 px, i.e., compared to training iteration four, there is a reduction of the errors without
p-cutoff. Both error results with p-cutoff increased, with the training error rising from 5.14 px to

47

5.25 px and the test error growing from 5.22 px to 8.68 px. The fact that this test error is smaller
than the training error could be explained by the possibility that more of the “easier” cases ended
up in the test data set when the data was split into test and training sets. Since the errors increased
with p-cutoff and the diagram of the cross-entropy loss showed a strange behavior at the end, two
more evaluations were performed with the same model using the snapshots 13000 and 14000.

As can be seen in Table 4.1, iteration 13000 shows a similar behavior to snapshot 15000. The train
error and the test error without p-cutoff decreased to 9.07 px and 8.03 px, with the test error being
smaller than the train error once again. For the values with p-cutoff, the train error was reduced to
5.00 px, but the test error increased to 5.46 px. For snapshot 14000, the results for the train and
test errors without p-cutoff are 8.55 px and 7.98 px, respectively. So it is still the case that the train
error is larger, but now the distance between these two errors is only 0.57 px instead of 1.04 px, as
it is the case for snapshot 13000. The train error with p-cutoff went down to 4.76 px and the test
error increased slightly to 5.45 px (see Table 4.1).

Final DLC model

Figure 4.7: Cross-entropy loss diagram for all training iterations

In Figure 4.7, the cross-entropy loss for all training iterations (except the excluded training iteration
three) is plotted in one graph. Although the loss was smallest after training iteration two, the training
was continued with additional data because this model did not perform well on the unseen (test)
data. This is reflected in the relatively large gap between the train and test errors (without p-cutoff)
in Table 4.1. Since the learning progress started to flatten out during training iteration five and
there was no more data to add, the training process was terminated after a total of 67000 internal
iterations. With respect to the evaluation results of the last three snapshots from training iteration
five described above, it was decided to use snapshot 14000 from iteration five as the final model.

To recap, the final model used for the body part prediction of the videos was trained with 1160
frames extracted from 20 different videos belonging to ten different patients and took 66000 iterations
(snapshot 14000). This model achieved a cross-entropy loss of 0.00636 and train and test errors of
9.40 px and 8.89 px (without p-cutoff) and 4.76 px and 5.45 px (with p-cutoff).

4.1.2. Predictions on unseen data

In order to check whether the performance of the final model is sufficient, labeled videos were cre-
ated for patients six and seven and manually reviewed. As already mentioned above, these two
patients were excluded from the training process, meaning that the algorithm has not seen these
videos during training. For the creation of labeled videos, DLC provides a function to save all la-
beled frames of the video in a corresponding folder. All four labeled videos including their separately

48

stored frames as well as the prediction files for the test patients are located in the folder “Soft-
ware\Classification\Test patients”.

Figure 4.8: Predicted coordinates and likelihood values for selected frames of patient number
six and patient number seven.

To illustrate some important aspects of the algorithm’s performance, the following sections use
selected frames from the folders “temp-P0006 H T V0012” (patient six, video twelve) and “temp-
P0007 KJ S V0013” (patient seven, video 13) as well as the likelihood values from the associated
prediction files P0006 H T V0012.xlsx and P0007 KJ S V0013.xlsx. Since the stored labeled frames
from the videos had their frame numbers included in the file names and these numbers are also
reflected in the Excel files, each prediction (coordinates and likelihood) can be explicitly assigned
to the associated frame. Figure 4.8 summarizes the predicted coordinates as well as the likelihood
values for the seven frames used as examples in the next sections. For the marking of the body parts,
DLC uses the following color scheme: head – blue, withers – purple, sacrum – pink, left back
stifle – orange, and right back stifle – yellow. Body parts predicted with a likelihood ≤ 0.6 are
not marked in the frames.

(a) Patient six – frame 00613 (b) Patient seven – frame 05774

Figure 4.9: Labeled frames with good predictions: For patient number six (a) all body parts were
predicted correctly with likelihood values bigger than 60%. The case is similar for patient number
seven, where only the withers is not marked in the picture because it is predicted with a likelihood
smaller than the threshold.

As visible in the left image (a) of Figure 4.9, the algorithm successfully identified all five body parts
for patient number six. For patient number seven (image (b)), head, sacrum as well as the left
and right back stifles are labeled properly, only the withers is not marked in the picture. However,
considering that the withers is predicted with a likelihood of 53.74%, as illustrated in Figure 4.8 for
frame number 5774, which is just barely below the specified threshold, it is still a good performance.

49

(a) Patient six –
frame 01896

(b) Patient seven –
frame 06979

Figure 4.10: Labeled frames with moderate predictions: The left image (a) shows the back
of patient number six, where the model correctly predicted the right back stifle (yellow dot), but
completely mis predicted the head (blue dot). For the anterior part of patient number seven, which
is shown in the right image (b), both the head and the withers were predicted properly.

Since the dogs turn around outside the camera field before moving away from the camera again,
each video contains some frames in which only parts of the dogs can be seen. Two corresponding
examples are shown in Figure 4.10, where only the posterior part of patient six in the left image and
only the anterior part of patient seven in the right image visible. Since DLC does not output “NaN”
values, non-visible body parts are also predicted, but with very small likelihood values in well-trained
models. For this reason, an interpolation of the x and y coordinates of body parts whose likelihood
values are below the specified threshold is essential in data preparation. In picture (b), only the head
and the withers are visible, but the model still also provides coordinates for the sacrum (likelihood
4.17%), the left (likelihood 1.58%) as well as the right (likelihood 10.79%) back stifles (see Figure
4.8, frame number 6979), which are interpolated during the data preparation. For patient number
six (image (a)), only the right back stifle and the sacrum are visible. Unfortunately, the model falsely
predicted the head with a likelihood of 70.36% and the sacrum, which should have been predicted in
this frame, only with a likelihood of 32.25%, as can be seen in frame 1896 in Figure 4.8. Since these
false predictions have likelihood values greater than the specified threshold, they are not included in
the interpolation step during the data preparation. To get rid of these predictions anyway, a pre-filter
followed by a Hampel filter were applied to the data after the interpolation step.

50

(a) Patient six – frame 00328 (b) Patient seven – frame
10222

Figure 4.11: Labeled frames with bad predictions: In image (a), the doctor obscures the dog
while walking to the other side at the beginning of the video, leading to incorrect predictions by the
model. Similarly, in the right image of patient number seven, the leg of the owner leading the dog
during the analysis partially covers the dog, making it difficult for the model to identify the body
parts.

As besides the dogs, the physicians who led the experiments and the owners who guided the patients
are also visible, the videos include passages in which the dogs are partially covered by a human.
Consequently, the model has problems identifying the body parts in these sections of the videos.
This problem can be observed in the two images (a) and (b) of Figure 4.11, where in both cases, the
leg of a human obscures parts of the dog. In the case of patient six, the model predicted the sacrum
and left back stifle along the human leg with quite high likelihood values of 75.71% and 77.41% (see
line 328 in Figure 4.8). In patient number seven, the human’s leg covers the dog in such a way that
the model predicted the withers (likelihood 94.27%) where the sacrum is located, and the sacrum
was predicted at a spot next to the seated human in the background with a likelihood of 65.48%
(frame 1022 in Figure 4.8). As already mentioned above, these outliers are filtered with the pre- and
Hampel filters during data preparation.

Figure 4.12: Labeled frame showing an ideal position: The dog is in a 90° angle to the camera
position, so its side and therefore the head, withers, sacrum, and the respective back stifle are clearly
visible.

With the algorithm’s achieved cross-entropy loss of 0.00636, the interpolation of the body parts with
likelihoods below 60%, and the extraction of wrongly predicted body parts (outliers) with likelihoods
greater than 60% via pre- and Hampel filters, it was possible to extract accurate features from the
signals. However, the performance of the algorithm could have been even better if, on the one hand,
only the patient would have been seen in the videos and, on the other hand, the camera position had
been chosen differently. An example of such an “ideal” position is shown in Figure 4.12, which was
obtained while patient number six was turning around in the video. With the camera positioned at

51

90° towards the dog, the head, withers, sacrum, and respective back stifle would have been clearly
visible and could have been labeled much more easily and accurately, resulting in a more precise
training data set and a better trained model.

4.2. XGBoost classification results

This section presents and discusses the results of the parameter study, which uses different feature
combinations as input to the classifier, as well as the performance of the XGBoost on new (unseen)
data. For both cases, the model with the following hyperparameters was used:

Train- N Max Learning
Gamma

Min Sub- Col- Random
Test estimators depth rate child sample sample state
split weight bytree

0.2 263 2 0.24 0 0.65 0.12 0.52 5

Table 4.2: Hyperparameter settings for the XGBoost classifier.

Parameter study

The results of the parameter study are listed in Table 4.3, whereby the features used in each case,
which were already listed in Chapter 3.3.2, are mentioned again for the sake of completeness. In
order to ensure good readability, the features have been abbreviated as follows: H - FundHead, W -
FundWithers, S - FundSacrum, M - Movement, Ma - Mass, We - Weight, F - Forces.

Feature combination Performance Accuracy

Number Features Train Test (%)

1 M, Ma, We, H 0.97 0.94 95.24

2 M, Ma, We, W 0.97 0.94 95.24

3 M, Ma, We, S 1.0 1.0 100.00

4 M, Ma, We, H, W 0.97 0.94 95.24

5 M, Ma, We, H, S 0.94 0.83 85.71

6 M, Ma, We, W, S 0.97 0.89 90.48

7 M, Ma, We, H, W, S 0.97 0.89 90.48

8 M, Ma, We, F 1.0 1.0 100.00

9 M, Ma, We, H, F 1.0 1.0 100.00

10 M, Ma, We, W, F 1.0 1.0 100.00

11 M, Ma, We, S, F 0.99 0.96 95.24

12 M, Ma, We, H, W, F 1.0 0.85 85.71

13 M, Ma, We, H, S, F 1.0 1.0 100.00

14 M, Ma, We W, S, F 1.0 1.0 100.00

15 all 0.99 0.94 95.24

Table 4.3: Results for the different feature combinations showing the calculated train and test
performance (rounded to two comma places) as well as the accuracy for each combination.

52

Figure 4.13: Feature importance

The diagram in Figure 4.13 illustrates the importance of each feature, which is provided by the
“xgboost.plot importance” function. For the importance type parameter, the ’gain’ was selected
that averages the gain across all splits the feature is used in. The higher this value, the more
important the feature is for the predictions.

Note: As the features mass, weight, and movement are used in each combination, they are not
explicitly mentioned in the following discussion.

As can be seen in Table 4.3, the combinations one, two, and four achieved the same results, with
a training performance of 0.97, a performance on the test set of 0.94, and an accuracy of 95.24%.
Basically, these are very good results, and since the training performance is slightly better than the
performance on the test data, no overfitting occurred. However, these sets using only the head
and withers are not suitable for this application, as some types of lameness are evident only in the
sacrum. An accuracy of 100% as well as test and training performances of 1.0 could indicate that
the data set provides too little variance for the combinations three, eight, nine, ten, 13, and 14.
For example, using only the sacrum (combination three) results in a problem, whereas using only
the head (combination one) or withers (combination two) does not, meaning that perhaps not all
patients diagnosed as diseased exhibit problems at the sacrum and therefore the data for this feature
is not diverse enough.

However, when the sacrum is combined with other features such as the head, withers, and forces,
this problem does not occur because (almost) all of these features are of greater importance to the
classifier, as is shown in Figure 4.13. This is evident from the results in Table 4.3, where combination
five (head and sacrum) has an accuracy of 85.71%, combinations number six (withers and sacrum)
and seven (head, withers, and sacrum) have an accuracy of 90.48%, and combination eleven (forces
and sacrum) achieved 95.24%. Numbers five and six would also not be well suited for this application,
as, once again, they do not include all three body parts. Additionally, they did not reach a good
accuracy and have a greater discrepancy between train and test performance, which could indicate
possible overfitting. This problem also occurs in combination seven, where the training performance

53

is 0.97 but the test is only 0.89, meaning that the model works well on the training data but not so
well on the unseen data. Thus, in order to train a classifier efficiently using only the movements of
the head, withers, and sacrum as input features (apart from weight, mass, and movement), a much
larger data set would be required. Very good results were achieved with the combination of the
features sacrum and forces, with a training performance of 0.99, a test performance of 0.96, and,
as already mentioned, an accuracy of 95.24% (see Table 4.3, combination eleven), whereby, once
again, only one of the three movement features was used here.

Quite interesting results can be seen in Table 4.3 for combination twelve (head, withers, and forces),
which only achieved an accuracy of 85.71% with a training and test performance of 1.0 and 0.85,
respectively. This is a perfect example of overfitting, as the model performs perfectly on the training
data but poorly on the test data. With train and test performances of 0.99 and 0.94 and an accuracy
of 95.24%, the model achieved pretty good results while using all extracted features as input (see
Table 4.3, combination 15). The difference between the training and test performance is very small,
which is why no overfitting has occurred yet. Nevertheless, a train performance of 0.99 indicates
that further training with the same data set could cause the model to overfit, i.e., in order to improve
the accuracy, the data set has to be extended first.

Figure 4.14: Log losses of train data sets

Figure 4.14 illustrates the log losses and provides a good overview of the performance of the model
during the training for each feature combination. The x-axis represents the number of estimates,
which are referred to as epochs. It can be seen that the feature selection has no significant effect
on the log loss for the first 50 to 100 epochs, as it decreases at the same rate for all combinations.
However, as epochs increase, the importance of feature selection becomes significant. At the end of
the training, all combinations that included the forces achieved better log losses (all below 0.2) than
those that did not, meaning that combinations that included only the head, sacrum, and withers
(again, in addition to the mass, weight, and movement that are always part of the combinations)
would require more epochs to achieve similar results.

54

Figure 4.15: ROC curves and AUC values for each combination

In Figure 4.15, the ROC curves including the AUC values for each of the feature combinations are
presented. The curve plots the true positive rate (also called sensitivity) against the false positive
rate (1 - specificity) at different thresholds. The black dashed line denotes a kind of “baseline” where
a random classifier would be expected to yield points. The closer the curve of the classifier is to that
line, the less accurate the classifier. For a good comparison of the different feature combinations,
the AUC was used, which summarizes the performance of each combination into one single measure
and works well as a broad indicator of prediction accuracy. A value of one indicates a classifier which
is able to distinguish perfectly between all the positive and negative class points, while a zero would
mean that the classifier predicts all negatives as positives and vice versa.

As visible in Figure 4.15, none of the curves are close to the baseline, so the classifier is basically
performing quite well for all feature combinations. The lowest AUC values ranged from 0.8 to 0.9
and were calculated for combinations five, six, seven, and twelve, which matches the accuracy results,
where these four sets also performed the worst (see Table 4.3). For combinations where the accuracy
value is 95.24% (one, two, four, eleven, and 15), the AUC score is either 0.94 or 0.96, which indicates
a nearly perfect distinction between the two classes healthy or diseased. For those feature combina-
tions where an accuracy of 100% is achieved because the variance of the corresponding feature data
is not sufficient, an AUC value of 1.0 is calculated as expected.

XGBoost performance on unseen data

The following table summarizes the number of incorrect and correct predictions as well as the accu-
racies achieved with XGBoost during and after the training process on unseen data.

Data used Wrong predictions Correct predictions Accuracy (%)

Test data set 1 20 95.24

Patients 1 and 12 10 14 58.33

Table 4.4: XGBoost predictions and accuracy on unseen data: The first line presents the results
for the test data set used to evaluate the model during the training process. The performance of the
trained XGBoost on the new data from patients one and twelve are outlined in row two.

55

As already mentioned, during the training process, the data was split into a test and a training data
set, with the entire data set first being shuffled and then randomly sliced with respect to the given
split value of 80:20. This test data set is not part of the training and is used to evaluate the classifier
during the training process on unseen data. The results are outlined in the first row of Table 4.4,
where XGBoost predicts 20 out of 21 diagnoses correctly, thus achieving an accuracy of 95.24%1.

Figure 4.16: XGBoost log losses for train and test set

The calculated log losses for the train and the test set are plotted in Figure 4.16. In the training,
the model reached a log loss value of less than 0.2 after 263 epochs (as already mentioned in the
parameter study section), which means that the model makes very good predictions. For the test
log loss, the value is only slightly higher, indicating that the model performs well even with unseen
data, as reflected by only one wrong prediction out of 21 (see Table 4.4, row number one).

The final trained model was evaluated using data from patients one and twelve, who were entirely
unknown to the classifier. The model incorrectly predicted ten out of 24 diagnoses and achieved an
accuracy of only 58.33%. The fact that the two accuracy outcomes varied so much suggests that
the final model does not generalize to new patients. To put it another way, the model does well on
previously unknown data that was extracted from the training data set (test data set), but it does
poorly on entirely new data (as shown with patients one and twelve). Generalization usually requires
a huge amount of curated data [41].

1 Note: Since the training was done with the same model, data set, and data split, the results are the same as those
of the parameter study.

56

4.3. The gait analysis environment

As already noted in the previous sections, the lab situation during the gait analyses was not ideal.
The camera’s position, for example, was placed at an angle at one of the mat’s end, thereby the
dogs ran diagonally towards and back away from the camera. As a result, the patient’s size vary
throughout the video, i.e., the closer the dog gets to the camera, the larger it appears. Regardless
of the position in the room or whether the dog is lame or not, each patient has distinct motion
patterns that the head, withers, and sacrum follow when walking or running (with the exception of
special occurrences such as sniffing). To recall: the DLC algorithm outputs the x and y coordinates
of each body part per frame, which are used to calculate the vectors to represent the motion of
the head, withers, and sacrum. Each movement leads to a difference between the coordinates of
the previous frame and those of the current frame, resulting in vectors of different lengths and thus
in signal jags. When the dog is near the camera, a movement leads to a large discrepancy in this
coordinates, while a comparable movement results in very small differences when the dog is far away.
Thus, the signal jags are of different sizes for similar movements, which in turn lead to an incorrect
representation of the motion signal. Without correction, the XGBoost classifier, whose input includes
features extracted from these signals, would have been trained in a non-generalized way; specifically,
the model would only able to correctly classify new patients when the exact same camera position is
used in the gait analyses.

By scaling the x and y coordinates as described in Section 3.3.1, the data used as input for the
XGBoost model is independent of the camera position used during the gait analyses, in other words,
the classifier does not care about the position of the camera. Nevertheless, with respect to the
purpose of this application, the camera should not be placed at the pressure plate’s ends, because
in this case, the dog’s side is not captured. For example, if the dog is walking straight towards the
camera, only its head is visible and the withers as well as the sacrum are obscured, so that a proper
observation of these two movements is not possible. If the camera is positioned at a 90° angle to
the pressure plate, the scaling correction is completely obsolete, as the dog now appears in the same
size throughout the video.

During the gait analysis, the dogs run several times towards the camera, turn around, run back away
from the camera, and turn around again. Another issue brought on by the camera’s position is the
fact that one of these “turns” happens right next to the camera. Hence, there are sections of the
video where the patients are not fully visible, which means that information about the body part that
is not visible is lost. Since the turn occurs relatively quickly, always affecting only a few consecutive
frames, interpolation can be used to fill in these information gaps. However, by increasing the
distance between the camera and the pressure plate, it is possible to ensure that the dog’s second
turn also takes place entirely within the camera’s field of view, preventing such a loss of data.

Besides the selected camera position, the fact that the patients were being guided by their owners
was not optimal either. As a result, in some sections of the video, the dog was partially covered by
a human body part. Basically, DLC offers two options for handling such hidden body parts: either
only the visible body parts are labeled, in which case the algorithm learns to identify only the visible
ones, or the positions of such hidden body parts are “guessed” during the labeling process, in which
case the algorithm learns to detect covered parts as well. However, it is not advised to “guess” the
positions of body parts because it is hard to mark such hidden body parts consistently and properly,
which makes the algorithm’s training more challenging and thus affects accuracy. Therefore, for
this gait analysis application, occluded body parts were not labeled, which means that the trained
algorithm does not identify them either. Interpolation is employed to restore the lost information,
just as it was for the issue described in the previous section. For a more efficient training and hence
an even better accuracy of the algorithm, videos where only the patient appears are advantageous.

57

5. Conclusion

The three main milestones in the development of the “AIDog Project” were the training and validating
of the DLC algorithm, the feature extraction (including signal processing and data wrangling), and
the training and validating of the XGBoost classifier. For the DLC part, the first step was to convert
the MKV videos to AVI format, because the algorithm does not support this type. Since the provided
data set is quite small, transfer learning was utilized in order to achieve better results. Thus, the
weights of the algorithm were initialized with the weights of the open-source pre-trained “full dog”
model provided by the model zoo. After seven training iterations with a total of 66000 learning
iterations, the training process of the DLC was finished. Test data were used to evaluate the model
after each training iteration, and based on the results, the training data set was extended and/or the
learning rate was adjusted. The training data set included 480 frames initially before growing to 640
frames after the second training iteration and to 800 frames after the fourth. An outlier extraction
was carried out following the sixth training iteration, where DLC extracted frames from the selected
videos where the body part coordinates exhibited a significant difference from those in the previous
frame. The labels of these frames were manually adjusted and the corrected frames have been added
to the training data set, resulting in 1160 frames for the last training iteration. The final model was
validated with the videos of patients number six and seven, and achieved an excellent cross-entropy
loss of 0.00636 as well as a train error of 4.76 px and a test error of 5.45 px. It should also be
mentioned that the DLC algorithm can be trained for any species, with model zoo already providing
a variety of pre-trained open-source models.

The output files of the DLC, which contain the predicted x and y coordinates and their likelihood
per body part and frame, were used to extract the fundamental frequencies of the patients’ head,
withers, and sacrum movements. Here, to eliminate false predictions, each x and y coordinate, whose
likelihood value was below the specified threshold of 60%, was interpolated. Afterwards, outliers were
extracted applying a pre filter (sigma = 3) followed by a Hampel filter (sigma = 3, window size = 25).
In the next step, scaling the x and y coordinates fixes the issue that the patient appears in various sizes
throughout the video due to the camera position. Additionally, the vectors were calculated with the
middle of the frame as the origin for the x-axis to ensure equal distances to the left and right edges1.
Subsequently, the signals were smoothed using a one-dimensional Gaussian filter (sigma = 1), and
a third-order high-pass filter with a cutoff frequency of 1 Hz ensures that irrelevant frequencies are
removed. Finally, the signals were transformed using the fast Fourier transform and the fundamental
frequencies for the head, withers and sacrum were extracted. From the provided Excel files that
contain the data measured by the pressure plate, 22 features were extracted. These included the
averaged forces for each paw, the averaged forces for each of the four areas per paw (CrLa, CrMe,
CaLa, and CaMe), the mass and the dog’s weight. An additional feature was added to distinguish
between the step/walk and the trot analyses. Since the XGBoost does not allow non-numerical
columns, one-hot encoding was used to transform this feature into a numerical one. For training
purposes, the target column with the physician’s diagnoses has been added, where an one is set if
the dog is lame and a zero if the dog is healthy.

Before the XGBoost classifier training started, the randomized search function (with cross-validation)
was used to identify the most suitable hyperparameters with respect to the input data. Here, the
focus was set on the seven most frequently used ones: n estimators, learning rate, max depth,
gamma, min child weight, subsample, and colsample bytree. The importance of feature selection as

1 Note: DLC has its origin in the upper left corner.

58

well as the diversity in the data within each feature is demonstrated in the parameter study, which
was conducted as part of the training. Results for six of the 15 feature combinations indicate a lack
of diversity in the data, as both test and training performance scored a 1.0. To recall, a value of
1.0 means that the model differentiates perfectly between the classes, i.e., each case is classified
correctly. The fact that both test and training data exhibit this excellent performance reflects an
overly similarity in the data sets. Four other combinations caused the classifier to overfit. Only
five of the 15 feature combinations yielded in well-performing models. These findings demonstrate
how a classifier’s performance is strongly influenced by the features that are applied to it. The final
XGBoost model achieved 95.24% accuracy for previously unseen data, i.e., the test data set extracted
from the training data set (patients two through eleven) that was not part of the training. However,
applying this model to the completely new data of patients one and twelve yields an accuracy of only
58.33%, indicating that the trained model does not generalize well. Since, as already mentioned in
previous sections, generalization usually requires a lot of curated data, it is necessary to extend the
training data set to obtain a well-generalized XGBoost model for this application.

59

6. Literature

[1] E. Schnabl-Feichter, A. Tichy, and B. Bockstahler, “Coefficients of variation of ground reaction
force measurement in cats,” PLOS ONE, vol. 12, no. 3, D. Thamm, Ed., e0171946, Mar. 2017,
issn: 1932-6203. doi: 10.1371/journal.pone.0171946.

[2] K.-D. Budras, P. H. McCarthy, W. Fricke, and R. Richter, Anatomy of the Dog, fifth, rev,
K.-D. Budras, Ed. Schlütersche Verlagsgesellschaft mbH & Co. KG, Hans-Böckler-Allee 7,
30173 Hannover, 2007, isbn: 978-3-89993-018-4.

[3] D. Leach, G. Sumner-Smith, and A. I. Dagg, “Diagnosis of lameness in dogs: a preliminary
study.,” The Canadian Veterinary Journal, vol. 18, no. 3, pp. 58–63, Mar. 1977, issn: 00085286.

[4] D. M. Nunamaker and P. D. Blauner, “Normal and abnormal gait,” in Textbook of small
animal orthopaedics, vol. 1083, International Veterinary Information Service New York, 1985,
p. 1095, isbn: 03-975-20980.

[5] B. J. Carr and D. L. Dycus, “Canine gait analysis,” Recovery & Rehab, vol. 6, pp. 93–100,
2016.

[6] J. Blaszczyk and C. Dobrzecka, “Speed control in quadrupedal locomotion: principles of limb
coordination in the dog,” Acta Neurobiol Exp (Wars), vol. 49, pp. 105–124, 1989.

[7] H. Scott and P. Witte, “Investigation of lameness in dogs,” In Practice, vol. 33, no. 1, pp. 20–
27, Jan. 2011, issn: 0263-841X. doi: 10.1136/inp.c7447.

[8] P. Witte and H. Scott, “Investigation of lameness in dogs,” In Practice, vol. 33, no. 2, pp. 58–
66, Feb. 2011, issn: 0263-841X. doi: 10.1136/inp.d453.

[9] A. Mathis, P. Mamidanna, K. M. Cury, et al., “DeepLabCut: markerless pose estimation of
user-defined body parts with deep learning,” Tech. Rep. 9, 2018, pp. 1281–1289. doi: 10.
1038/s41593-018-0209-y.

[10] L. Kidziński, B. Yang, J. L. Hicks, A. Rajagopal, S. L. Delp, and M. H. Schwartz, “Deep
neural networks enable quantitative movement analysis using single-camera videos,” Nature
Communications, vol. 11, no. 1, 2020, issn: 20411723. doi: 10.1038/s41467-020-17807-z.

[11] M. W. Mathis and A. Mathis, Deep learning tools for the measurement of animal behavior in
neuroscience, Feb. 2020. doi: 10.1016/j.conb.2019.10.008.

[12] Christoph Leitner and Stefan Kaltenböck and Christian Baumgartner and Markus Tilp, Val-
idation of an AI assisted simple method to study muscle-tendon dynamics during running.
International Society of Biomechanics, Jul. 2021.

[13] A. Mathis, S. Schneider, J. Lauer, and M. W. Mathis, A Primer on Motion Capture with Deep
Learning: Principles, Pitfalls, and Perspectives, Oct. 2020. doi: 10.1016/j.neuron.2020.
09.017.

[14] X. Wu, D. Sahoo, and S. C. Hoi, “Recent advances in deep learning for object detection,”
Neurocomputing, vol. 396, pp. 39–64, Jul. 2020, issn: 0925-2312. doi: 10.1016/J.NEUCOM.
2020.01.085.

[15] K. Yun, A. Huyen, and T. Lu, “Deep Neural Networks for Pattern Recognition,” Sep. 2018.

[16] R. Bhalley, “Machine Learning Basics,” in Deep Learning with Swift for TensorFlow, Berkeley,
CA: Apress, 2021, pp. 1–35. doi: 10.1007/978-1-4842-6330-3{_}1.

60

[17] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an
overview and application in radiology,” Insights into Imaging, vol. 9, no. 4, pp. 611–629, Aug.
2018, issn: 18694101. doi: 10.1007/S13244-018-0639-9/FIGURES/15.

[18] S. Ravichandiran, Hands-on deep learning algorithms with Python. Packt Publishing Ltd., Jul.
2019, isbn: 978-1-78934-415-8.

[19] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural net-
work,” in Proceedings of 2017 International Conference on Engineering and Technology, ICET
2017, vol. 2018-Janua, IEEE, Aug. 2018, pp. 1–6, isbn: 9781538619490. doi: 10.1109/

ICEngTechnol.2017.8308186.

[20] S. Sharma, S. Sharma, and A. Athaiya, “ACTIVATION FUNCTIONS IN NEURAL NET-
WORKS,” International Journal of Engineering Applied Sciences and Technology, vol. 4, no. 12,
pp. 310–316, 2020.

[21] R. Bhalley, Deep Learning with Swift for TensorFlow. Apress, 2021. doi: 10.1007/978-1-
4842-6330-3.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Tech.
Rep., 2016, pp. 770–778.

[23] Koki Saitoh, Deep Learning from the Basics. Packt Publishing Ltd., Mar. 2021, isbn: 978-1-
80020-613-7.

[24] X. Ying, “An Overview of Overfitting and its Solutions,” Journal of Physics: Conference Series,
vol. 1168, no. 2, p. 022 022, Feb. 2019, issn: 1742-6588. doi: 10.1088/1742-6596/1168/
2/022022.

[25] D. D. Jensen and P. R. Cohen, “Multiple Comparisons in Induction Algorithms,” Machine
Learning, vol. 38, no. 3, pp. 309–338, 2000, issn: 08856125. doi: 10.1023/A:1007631014630.

[26] A. Mathis, T. Biasi, S. Schneider, et al., “Pretraining boosts out-of-domain robustness for
pose estimation,” Proceedings - 2021 IEEE Winter Conference on Applications of Computer
Vision, WACV 2021, pp. 1858–1867, 2021. doi: 10.1109/WACV48630.2021.00190.

[27] E. Raff, Inside Deep Learning. Manning Publications Co., 2022, isbn: 9781617298639.

[28] P. Singh, Fundamentals and Methods of Machine and Deep Learning. John Wiley & Sons, Inc.
and Scrivener Publishing LLC, 2022, isbn: 978-1-119-82125-0.

[29] C. Wade and K. Glynn, Hands-On Gradient Boosting with XGBoost and scikit-learn. Packt
Publishing Ltd., Livery Place, 35 Livery Street, Brimingham B3 2PB, UK., 2020, isbn: 978-1-
83921-835-4.

[30] V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman, “Decision Trees: An Overview and Their
Use in Medicine,” Journal of Medical Systems 2002 26:5, vol. 26, no. 5, pp. 445–463, Oct.
2002, issn: 1573-689X. doi: 10.1023/A:1016409317640.

[31] S. Kumar, T. Daniya, M. Geetha, and K. S. Kumar, “Classification and regression trees with
gini index,” Advances in Mathematics: Scientific Journal, vol. 9, no. 10, pp. 1857–8438, 2020.
doi: 10.37418/amsj.9.10.53.

[32] Y. Liu, Y. Wang, and J. Zhang, “New Machine Learning Algorithm: Random Forest,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 7473 LNCS, pp. 246–252, 2012, issn: 03029743. doi:
10.1007/978-3-642-34062-8{_}32.

[33] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 785–794, 2016. doi: 10.1145/2939672.

61

[34] T. Nath, A. Mathis, A. C. Chen, A. Patel, M. Bethge, and M. W. Mathis, “Using DeepLabCut
for 3D markerless pose estimation across species and behaviors,” Nature Protocols, vol. 14,
no. 7, pp. 2152–2176, 2019, issn: 17502799. doi: 10.1038/s41596-019-0176-0.

[35] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele, “Deepercut: A deeper,
stronger, and faster multi-person pose estimation model,” in Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 9910 LNCS, Springer Verlag, 2016, pp. 34–50, isbn: 9783319464657. doi:
10.1007/978-3-319-46466-4{_}3.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional
neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2017, issn:
0001-0782. doi: 10.1145/3065386.

[37] A. Zheng and A. Casari, Feature Engineering for Machine Learning. O’Reilly, 2018, isbn:
978-1-491-95324-2.

[38] R. Lehmann, “3σ-Rule for Outlier Detection from the Viewpoint of Geodetic Adjustment,”
Journal of Surveying Engineering, vol. 139, no. 4, pp. 157–165, Nov. 2013, issn: 0733-9453.
doi: 10.1061/(ASCE)SU.1943-5428.0000112.

[39] A. B. Batista Júnior and P. S. M. Pires, “An Approach to Outlier Detection and Smoothing
Applied to a Trajectography Radar Data,” Journal of Aerospace Technology and Management,
vol. 6, no. 3, pp. 237–248, Sep. 2014, issn: 2175-9146. doi: 10.5028/jatm.v6i3.325.

[40] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A Comprehensive Survey of Loss Functions in Machine
Learning,” Annals of Data Science, vol. 9, no. 2, pp. 187–212, Apr. 2022, issn: 2198-5804.
doi: 10.1007/s40745-020-00253-5.

[41] C. Leitner, R. Jarolim, B. Englmair, et al., “A Human-Centered Machine-Learning Approach
for Muscle-Tendon Junction Tracking in Ultrasound Images,” IEEE Transactions on Biomedical
Engineering, vol. 69, no. 6, pp. 1920–1930, Jun. 2022, issn: 0018-9294. doi: 10.1109/TBME.
2021.3130548.

62

Appendices

A. AIDog Project

This section provides a brief overview of the Python scripts developed in PyCharm (JetBrains s.r.o.,
Prague, Czech Republic) according to the PEP-8 coding standard. All required site packages are
provided in the Anaconda environment “AIDog-env.yaml”1.

train DLC

This sub-project contains all the scripts used to train the DLC algorithm. When working on Windows,
make sure to open the project with administrator rights, otherwise DLC will have problems adding
videos to the project.
Note: The following only offers a quick overview of the scripts, for the settings within the yaml
files, please refer to the user manual provided by DLC: “Using DeepLabCut for 3D markerless pose
estimation across species and behaviors” [34].

video converter re encoder.py

Input: Video(s) used for the training or analyzing
Output: Re-encoded video(s) in AVI format

DLC does not allow the MKV video format, so first of all use this script to convert all videos to AVI.
Since it is possible that the videos could get corrupted during this process, this script also re-encodes
the videos. Note: If the video is already in the right format, it is recommended to use re-encoding
anyway to avoid errors due to corrupted videos during the training or analyzing process.

train utils.py

In this script the functions used by DLC for training are accessed. Before the main.py is executed,
some parameters have to be set in the function “start training”. These include the number of
iterations to be displayed and saved as well as the maximum number of iterations per training. In
case of an adaptation of the body parts, the parameter “keepdeconvweights” must be set to false
to delete the weights in the deconvolutional layer as described in Section 3.2.2, it is currently not
possible to solve this in any other way.

main.py

Input: Videos for training
Output: Trained DLC

This is the main script for the training application and provides two possibilities: Either start a new
project or open an already existing one. To start a new project, specify the name of the project and
the experimenter, the path to the folder with the videos used for the training, and the path where the
project should be created. Make sure that the parameters to open a new project are set to “None”.
If the videos should not be copied to this folder, set the copy videos parameter to false and DLC
will only create symbolic links [34]. If weights from the model zoo are used, they are automatically

1 Do not update any packages, as DLC requires special versions for some of them, for example: wxpython ≤ 4.1.0.

63

downloaded and added to the project. After the parameters are all defined, including the parameters
of the training function in train utils.py as described above, the script can be executed and the full
process flow starts.

With the provided project and experimenter names, DLC creates a new project folder with the
config.yaml file and the subfolders. The body parts of interest, the quantity of frames to extract, and
the train-test-split value are just a few examples of the parameters that are defined in this config.yaml
file. Once these adjustments are complete, DLC extracts the frames and the experimenter can begin
to label the extracted frames. With the labeled frames, DLC creates a data set and splits it into
a train and a test data set. Before the training starts, the appropriate settings for the training are
made in the pose cfg.yaml file, which is located in the train subfolder. These include, for example,
the learning rates and the initialization of the weights. The training progress is stored in the train
subfolder, which can be found in the corresponding training iteration folder (dlc models). [34]

To open a project, simply provide the path to the project folder and the starting point in the script.
The starting points can be “extract”, “label”, “dataset” or “train”. Depending on the selected point,
the process flow starts with the corresponding phase of the process flow. Each time an existing project
is opened, the experimenter is asked whether new videos should be added. To do this, specify the
folder path of the new videos before running the script and type “Yes” in the command window.
The whole process flow will start automatically and the frames can be extracted from the videos.
During this process, DLC will ask the experimenter for each of the videos individually, so it is also
possible to extract frames for specific videos only [34]. This procedure is very handy if, for example,
only frames from the new videos should be added and no additional frames from the already used
videos.

network evaluation.py

Input: DLC model to evaluate
Output: Evaluation results as CSV file

This script is used to evaluate the trained model. Unless otherwise defined, DLC uses the last
snapshot saved during the last training iteration. This can be changed by adapting the two parameters
“iterations” and “snapshotindex” in the config.yaml file of the project. For the iterations, simply set
the number of the wanted training iteration, for the snapshot index it is possible to either evaluate
all of them (set parameter to all), only the last one (set parameter to -1) or a specific one from the
stored snapshots (set parameter to specific number2). For the results, DLC creates the subfolder
“evaluation-results” where the calculated MAE values are stored as a CSV file and, if the plotting
parameter is set to “True”, the frames used for the evaluation can be found. [34]

analyze videos.py

Input: Video(s) to analyze
Output: DLC predictions (x and y coordinates with likelihood as XLSX file); labeled video

For the analysis of the videos, specify the training iterations and the snapshot index to be used in the
config.yaml file (as described for the network evaluation). The x and y coordinates including their
likelihood values are stored in an XLSX file for each video. Optionally, it is also possible to create
labeled videos.

2 Note: DLC refers to a list index, not the snapshot number, i.e., if there are 5 stored snapshots, use snapshotindex 3
to evaluate the fourth stored snapshot.

64

network refinement.py

Input: Analyzed video(s) with DLC predicted labels
Output: Re-labeled frames added to the training data set

This script takes the video(s) provided and extracts outliers based on the defined parameters. The
number of frames to be extracted is specified in the config.yaml file.The experimenter can review the
labels generated by the algorithm for each extracted frame and change or remove them as needed.
Note: Be careful when deleting labels, this step cannot be undone. Save the relabeled frames and
load the next file until each file is relabeled. Then, DLC merges the newly labeled images with
the existing data set and creates a new training iteration (the iteration parameter in config.yaml is
automatically incremented). [34]
After that, a new training can be started by executing the main.py script.

process flow.py

In this script all functions used for the process flow are specified. The full process flow is defined as
follows [34]:

• DLC creates new directory

• Experimenter adapts config.yaml file

• DLC extracts frames

• Experimenter labels extracted frames

• DLC creates data set

• Experimenter adapts pose cfg.yaml file (in train folder of current training iteration)

• DLC starts training

In the case of a new project and the starting point “extract”, the full process will start. For the other
starting points “label”, “dataset”, and “train”, the process will start with the corresponding stage
of the flow. After some of the steps, terminal input is required from the experimenter; this ensures
that the experimenter has enough time to adapt the yaml files and to check the labeled images.

ML classifier

DataWrangling utils.py and SignalProcessing utils.py

These two scripts contain all the functions needed for the data wrangling process, with DataWran-
gling utils.py covering the functions required for the feature extraction from the PA files. Within this
script, SignalProcessing utils.py is accessed where the processing of the DLC files is performed. The
features extracted during this signal process are returned and added to the data frame within the
DataWrangling utils.py.

train XGBoost dataprep.py

Input: Excel files containing pressure data and body part prediction data
Output: Data frame with features and averaged values

Since the Excel files from the PA tool and the DLC output share the same name, they must be
provided in different folders. All files in the folders are extracted and stored in two different lists.
The basic structure of the data preparation is to take one PA file, process its data, and assign the
extracted features (averaged forces, mass and weight) to the data frame. The diagnosis and move-
ment are identified by the name of the file and added as well. This is done for each pass (subset) of

65

the PA data, with the extracted features of each subset stored in separate rows of the data frame.
Afterwards, the DLC file with the same name, i.e., the same patient and the same gait analysis, is
selected, the fundamentals extracted and assigned in the same row of the data frame. This com-
pletes the data processing for one patient, so the next patient’s data preparation is started. For the
average of the paws and their areas, a loop is used to process one paw at a time. At the beginning
of the script, the numbers of the columns in the PA files are checked to identify if there is measured
data of the areas for each measured paw, otherwise, the file is excluded from the process. With the
parameter “pass diff”, the possibility is provided to create data frames without differing between the
passes, i.e., if this parameter is set to “False”, the entire measured data is averaged and each row
within the final data frame represents one patient.

XGBoost RandomizedSearch.py

Input: Data frame containing the processed data
Output: Most suitable parameters for the classifier

Search for the Most suitable hyperparameters using the “RandomizedSearchCV” function, provided
by the sklearn library, by defining a set of values within a grid. For the search, the repeated stratified
k-fold is used.

XGBoost ParamStudy.py

Input: Data frame containing the processed data
Output: Accuracy, log loss, and ROC curve for each of the feature combinations

Within this script, the different feature combinations are defined and processed. For all these combi-
nations, the same XGBoost model is used and the train and test performance as well as the accuracy
values are printed. After all combinations went through the training of the classifier, the ROC curves,
including their AUC values, and the log losses computed during the training are plotted.

train XGBoost.py

Input: Data frame containing the processed data
Output: Accuracy, log loss, and ROC curve

Specify the path to the saved data frame containing the features to be used and set the hyperpa-
rameters for both the XGBoost classifier and the test-train-split before running the script. After the
training is completed, the log loss and ROC curve diagrams as well as the accuracy score for the
trained classifier are displayed and the trained classifier is stored as DAT file.

test XGBoost.py

Input: Data frame containing new data
Output: Accuracy, predicted and true diagnoses

This script loads the trained XGBoost model and tests it using a data frame containing new data.
The predicted and the true diagnoses as well as the achieved accuracy are printed in the terminal.

Final Program.py

Input: PA Excel file and video of the patient
Output: Diagnosis

This script combines the analysis of the video and the classification parts and is used to classify
“new” patients. For the input, it is important that the PA file names still contain the letters for
differing between the trot “ T ” or the step/walk “ S ”, as this is hard coded in the script. Put the
pressure data file and the recorded video in the same folder and simply provide the path to it. First,
the video will be analyzed using the trained DLC algorithm. The training iteration number as well
as the used snapshot index will be displayed in the terminal, so it is possible to cross-check. In case

66

another model should be used, simply change the snapshot index and the training iteration index in
the config.yaml file in the project folder. After this, the data preparation of the pressure data and the
predictions starts using the entire measured data, so there is no differentiation between the passes.
The data frame is saved as an Excel file, so in case of any problems or doubts, it is possible to look
at the processed data. Finally, the trained and saved XGBoost model is loaded and the classification
of the patient is displayed in the terminal.

67

B. List of Figures

1.1 Topographical anatomy of a dog . 1
1.2 Forelimb movement during walking . 2
1.3 GUI of the PA measurement tool . 4
1.4 GUI of the PA tool . 5
1.5 Markerless pose estimation based on deep learning 7
1.6 Neurons and their layer connections in an ANN 7
1.7 Convolutional layer . 9
1.8 Convolutional layer with padding . 10
1.9 Max Pooling . 10
1.10 Building blocks in ResNets . 13
1.11 Training process of neural networks . 14
1.12 High learning rate vs low learning rate . 15
1.13 Over- and underfitting . 16
1.14 Basic structure and an example of a decision tree 18
1.15 Example data set for gini calculation . 19
1.16 Example of bagging in RF classifiers . 20

3.1 Laboratory environment for gait analyses . 23
3.2 Genuine ResNet-50 architecture and the adaptions made for DeeperCut 25
3.3 Labeled body parts of interest . 26
3.4 Outlier extraction example . 28
3.5 Example of a test frame after the evaluation of training iteration one. 29
3.6 Excerpt from the data frame used for parameter study and training 30
3.7 Abstract illustration of the left paw’s areas . 31
3.8 “Data Frame” sheet excerpt from the provided Excel file 32
3.9 “Data Quadrant Area” sheet excerpt from the provided Excel file 33
3.10 Excerpt from a prediction file . 33
3.11 Signal processing for feature extraction from the DLC prediction files 34
3.12 Raw signal vs. filtered signal of head marker . 34
3.13 Screenshot of the labeled video and the corresponding head movement 36
3.14 Screenshot of the labeled video and corrected head signal 37
3.15 Result extract of the randomized search . 39
3.16 Excerpt from the test data frame . 40
3.17 Formula and explanation of log loss and sigmoid cross-entropy loss 41
3.18 ROC curve and AUC value examples . 42

4.1 Cross-entropy loss diagram for training iteration zero 44
4.2 Cross-entropy loss diagram for training iteration one 45
4.3 Cross-entropy loss diagram for training iteration two 45
4.4 Cross-entropy loss diagram for training iteration three 46

68

4.5 Cross-entropy loss diagram for training iteration four 47
4.6 Cross-entropy loss diagram for training iteration five 47
4.7 Cross-entropy loss diagram for all training iterations 48
4.8 Predicted coordinates and likelihood values for selected frames 49
4.9 Labeled frames with good predictions . 49
4.10 Labeled frames with moderate predictions . 50
4.11 Labeled frames with bad predictions . 51
4.12 Labeled frame showing an ideal position . 51
4.13 Feature importance . 53
4.14 Log losses of train data sets . 54
4.15 ROC curves and AUC values for each combination 55
4.16 XGBoost log losses for train and test set . 56

69

C. List of Tables

1.1 Anatomical terms to describe directions and topographical relations of organs . . 2
1.2 Overview of deep learning tools used for pose estimation in animals 8

3.1 Naming scheme of the provided files . 24
3.2 Settings used for the training iterations . 27
3.3 Feature combinations used in the parameter study 38
3.4 Feature combinations used in the parameter study 39

4.1 Evaluation results of training iterations . 43
4.2 Hyperparameter settings for the XGBoost classifier 52
4.3 Results for the different feature combinations . 52
4.4 XGBoost predictions and accuracy on unseen data 55

70

