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Abstract

Cryptocurrencies have been more popular than ever during the COVID-19 pandemic,

but shortly afterwards plummeted again in price. To mathematically capture the phe-

nomenon of these rapidly changing prices, various approaches were carried out. The

first part of this paper is dedicated to an in-depth literature review on the approaches

that have been used and a brief summary of their findings. As a result of this analysis

a certain model class called the GARCH model emerges as the most popular tool to

describe model prices of cryptocurrencies. Subsequently, the most important models of

this class are then derived and a popular subset of the class is introduced. For these,

stationarity conditions are given, and their parameters are discussed. Additionally, an

estimation method is given for the main models. Furthermore a short overview of the

history of cryptocurrencies, especially Bitcoin, is given, demonstrating the high volatil-

ity of the cryptomarket. The last chapter uses the derived class of GARCH models

to find the best univariate model for Bitcoin prices and the best multivariate model

for six of the largest cryptocurrencies. The univariate models are used to analysze the

price movements of Bitcoin and also to simulate European call option prices, which are,

unsurprisingly, found to be exorbitant. The estimation of the mulivariate models gives

insight into the correlation between the cryptocurrencies, suggesting that diversification

within the cryptocurrency market is impossible.
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1 Introduction

Cryptocurrencies had a bumpy ride during the last three years; Bitcoin alone reaching a market

capitalization of over 1.2 trillion USD during November 2021 is impressive, but plummeting

to below 400 billion USD, right after the COVID-19 crisis passed, was an equally impressive

downswing. Predicting these heavy fluctuations in price is a challenging task, but if success-

ful could yield a calculatable risk for investments in cryptocurrencies. Which in turn could

increase their use to a wider variety of financial institutions. Of course, getting a handle on

the risk of cryptocurrencies has already been attempted numerous times and with a variety

of mathematical models. This is done in similar ways as for other assets, which is one of the

reasons why they will be referred to as cryptoassets. With the other reasons being, that they

are no stable value storage and that the Basel Committee refers to them as such [Committee,

2022]. Even though cryptoassets are similar to other assets, cryptoassets display unusually

high volatility, which makes calculating a prudent but at the same time manageable risk re-

serve such a difficult task. First, an overview of previous attempts at modelling cryptoassets

is given, which shows that not all models perform equally well over different time horizons.

Most frequently, autoregressive models are used. These models not only have the advantage

of their idea being straightforward, but also show good performance due to their flexibility.

In particular, the GARCH model class, which exclusively models the volatility of a process, is

a commonly used modelling tool, which can be used in combination with AR models, but is

more frequently used without them. In shorter time periods the actual rise, which has mostly

been the trend of successful cryptoassets, is less significant and favors a pure GARCH model

even more. Moreover, this rising trend is not a given, since cryptoassets do sometimes fall

from favour, but modelling is usually limited to those that are currently on top and there-

fore often gives the impression that all cryptoassets are rising in price. Therefore, a shorter

time period will also be chosen here. Concerning the aforementioned flexibility, the class of

GARCH models offers a number of different parametrizations, some of which are introduced in

this thesis. First, a class of univariate models is introduced and an estimation method of the

standard GARCH model is provided. Then multivariate GARCH models are presented, but

only the CCC/DCC class is considered, since it features computational advantages over the

costly VEC-GARCH model and additionally, is able to capture nonlinearities in the squared

returns. After the introduction, a short detour into some history of the cryptoasset market

is made. Here primarily Bitcoin is featured, which is a bias that is found throughout the

whole paper. As Bitcoin is not only the cryptoasset with the highest market capitalization,

but also the oldest one still active, it has a prominent place in the cryptoasset market and

therefore deserves increased attention. In addition, for many who are not familiar with the

topic, the words “cryptocurrency” and “Bitcoin” are somewhat of a synonym. This is due

to the sustained reign of Bitcoin over the list of highest capped cryptoassets, while the ranks

1
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below it have been subject to changes over the last years. Moreover, each asset has its own

history and special features, but Bitcoin is a good candidate for what is commonly expected of

a cryptoasset, since it utilizes the Blockchain technology and features the proof of work concept

from [Nakamoto, 2008] which makes it decentralized. After the detour, the GARCH models

are fitted to different cryptoassets. The univariate models are only fitted to the Bitcoin data.

The best-performing univariate model is also used to calculate option prices, which reflect

the volatility of the underlying asset. Risk management is briefly mentioned, but long-term

investments with borrowed capital do not seem to be possible when adequately accounting for

necessary reserves. Lastly the DCC-GARCH model is fitted to the data of the six cryptoassets

Bitcoin, Ethereum, BNB, XRP, Cardano and Dogecoin. This model shows a strong positive

correlation between the six assets, which reflects a behaviour similar to the volatility of the

individual assets, i.e. both are GARCH models with high persistance. The thesis is structured

in the following way: Section 2 contains the literature review, split in the two subcategories

univariate modelling and multivariate modelling. Section 3 introduces the univariate GARCH

models and possible estimation of the standard GARCH model. In Section 4, the multivariate

GARCH models are defined and the CCC- and DCC-GARCH models are discussed with more

depth. The short history of the cryptoasset market with the focus on Bitcoin is displayed

in Section 5. In Section 6, the models that were introduced in Section 3 and 4 are fitted to

available datasets and future returns are simulated. With those risk margin and option prices

are derived.

2
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2 Literature review

2.1 Univariate Analysis

Univariate models focus only on past values of the returns of the cryptoassets and use no

further market related information. The advantages of univariate models come from their sim-

plicity. Therefore, less assumptions have to be made and less computational power is required.

This gives the opportunity to use more advanced models or to reduce the number of necessary

parameters.

Source Data Period Methodology Purpose and Findings
[Ardia et al., 2019] 18.08.2011-

03.03.2018

Markov-switching

GARCH models

Tests for regime switches in GARCH models

for the volatility of Bitcoin. Therefore, two

different GARCH models (GJR and normal)

are tested with 1/2/3 regimes. The 2-regime

models have the best in sample performance.

Further it is shown that regime switching dras-

tically improves Value-at-Risk forecasts.

[Phillip et al., 2018] -31.07.2017 Generalized Long

Memory SV model

In this paper some attributes of crypotassets

are directly implemented in the model. These

include long memory, leverage effect and heavy

tails. This model is implemented for a total of

224 cryptoassets, which is the reason why the

starting dates differ.

[Catania and Grassi,

2017]

2013-2019 Score-driven GHSKT

model

Implements several different generalizations of

a score driven model using a GHSKT distri-

bution for the innovation. This is done for

606 different cryptoassets, which are selected

based on time series length (≥ 700 days). It

is found that robust filters are necessary and

time-varying skewness improves predictions.

Further concern is expressed about the use of

non-robust GARCH models.

[Chu et al., 2017] 22.06.2014-

17.05.2017

various GARCH

models

Twelve different GARCH models with eight

different innovation distributions for six differ-

ent cryptoassets are compared. The IGARCH

and GJR-GARCH provide the best fit for the

data, but concerns about structural changes

influencing the results are expressed. Further-

more, Value at Risk is studied, and it is found

that acceptable estimates of the measure can

be obtained.

3
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Source Data Period Methodology Purpose and Findings
[Madan et al., 2019] 29.06.2018-

31.08.2018

Black-Scholes model

Laplace model

Heston model

Variance gamma

models

Uses vanilla option prices to calibrate the mod-

els. Black-Scholes is found to not capture the

dynamics very well, but the more advanced

models produced a good fit. Lastly the liquid-

ity of Bitcoin options is analysed. It is found

that in-the-money long-term options are the

most liquid.

[Hou et al., 2019] 31.07.2014-

29.09.2017

SVCJ model The SV, SVJ, SVCJ and a generalization of the

SVCJ model are implemented for Bitcoin re-

turns as well as for the CRIX index. For these

models, the Bitcoin option prices are obtained

via Monte Carlo Simulation. It is found that

including jumps and co-jumps is significant for

those prices. A comparison between the mod-

els yielded, that the SVCJ model mostly per-

forms as well as its generalization. Another

finding was that jumps in volatility and returns

are anti-correlated.

[Guo, 2022] 18.12.2017-

04.12.2020

GARCH model

IGARCH model

GJR-GARCH model

EGARCH model

TGARCH model

Considers Bitcoin futures, which are grouped

in three categories (by maturity). Then several

GARCH models are implemented with two dif-

ferent distributions, the normal distribution

and the NIG distribution. Further Value at

Risk forecasts are calculated. The results in-

dicate that the heavy tailed GARCH models

outperform the not heavy tailed ones and in

case of the Value at Risk estimates the non-

parametric estimates are outperformed as well.

[Troster et al., 2019] 19.07.2010-

16.04.2018

various GARCH

models

GAS model

Implements eight types of GARCH models and

the GAS model with five different distribu-

tions. In the comparison of them the heavy

tailed GAS models outperform all GARCH

models and the normal GAS model. Further

Value at Risk forecasting is done, where again

the heavy tailed GAS models perform the best.

[Chu et al., 2015] 13.09.2011-

08.05.2014

fitting distributions At first it is argued that the data is almost

i.i.d., then 15 different distributions are fitted

to the dataset via Maximum Likelihood Esti-

mation. The generalized hyperbolic distribu-

tion is found to be the best fit to the data.

Confidence intervals for future predictions are

very large, which is attributed to Bitcoins high

volatility.

4
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Source Data Period Methodology Purpose and Findings
[Katsiampa, 2017] 18.07.2010-

01.10.2016

AR-GARCH model

AR-EGARCH model

AR-TGARCH model

AR-APARCH model

AR-CGARCH model

AR-ACGARCH model

Studies several AR-GARCH models. The AR-

CGARCH model has the best goodness of fit,

which suggests that there is a short-run and

a long-run component in the conditional vari-

ance.

[Cheikh et al., 2020] 28.04.2013-

01.12.2018

ST-GARCH model For four cryptoassets, namely Bitcoin,

Ethereum, Ripple and Litecoin, a smooth

transition GARCH model is implemented and

compared with four other GARCH specifica-

tions. For most assets, the ST-GARCH model

outperforms the others and strong asymmetry

is found, where positive shocks increase the

volatility more than negative shocks. Further

the Ethereum time series does not start until

07.08.2015.

[Bouri et al., 2017a] 18.08.2011-

29.04.2016

AGARCH model Studies the impact of the price crash in 2013

on the save haven properties of Bitcoin. It is

found that Bitcoin was only a safe haven before

the crash.

[Matic et al., 2021] 01.01.2017-

01.08.2020

SVCJ model

KDE-GARCH

First, SVI-implied volatility surface is cali-

brated and used to price cryptoassets. Then

the two models are used to generate Monte

Carlo paths. These are in turn used to hedge

options using a variety of hedging techniques.

Results indicate, that a SVCJ model with low

jump frequency is the best fit.

[Bouoiyour and Selmi,

2016]

01.12.2010-

22.07.2016

various GARCH

models

A total of nine GARCH models are imple-

mented and compared. Then the time period

is split in two at 31.12.2014. For the first pe-

riod the Component with Multiple Threshold

(CMT)-GARCH model is found to be the best

performing model, while for the second period

it is an asymmetric power GARCH model. It

is found that from 2015 onward, the bitcoin

returns become way less persistent, which ar-

gues against a long-memory property of the re-

turns. Further the reaction to negative shocks

is greater than to positive ones. In conclusion,

it is suggested that while the volatility at the

end of the researched time period is low, the

bitcoin market was still far from being mature.

[Bouoiyour and Selmi,

2015a]

Prior version of the above using a smaller time

horizon and a TGARCH model for the first

and an EGARCH model for the second time

period. It also leads to similar conclusions.

5
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Source Data Period Methodology Purpose and Findings
[Mensi et al., 2019] 01.07.2011-

03.03.2018

ARFIMA-GARCH

model

ARFIMA-FIGARCH

model

ARFIMA-FIAPARCH

model

ARFIMA-HYGARCH

model

Implements four types of GARCH models to

explore the impact of long-term memory and

structural breaks on the conditional volatil-

ity of Bitcoin and Ethereum (data starting

at 09.08.2015). It is found, that without ac-

counting for the two aforementioned properties

volatility persistence is overestimated. Also

forecasting is improved if structural breaks

are taken into account. The best performing

model was the FIGARCH model.

[Naimy and Hayek, 2018] 01.04.2013-

31.03.2016

GARCH model

EGARCH model

The EGARCH model outperforms the

GARCH model.

[Venter et al., 2020] 01.01.2016-

03.01.2020

GARCH model

GJR-GARCH model

Both models are applied to Bitcoin returns and

the CRIX index; these are used to create im-

plied volatility surfaces for option prices. The

results suggest that there is no asymmetry in

the option prices, furthermore the obtained

prices are consistent with the current market

prices.

6
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2.2 Multivariate Analysis

Within the multivariate analysis there is an additional differentiation. The first kind of mul-

tivariate papers examines the external factors influencing the cryptoasset market, they are

called the price drivers of cryptoassets. The second kind attempts to understand the rela-

tions of cryptoassets among each other. For both kinds of papers, the most usual modelling

approach are autoregressive time series models, usually some types of GARCH and ARDL

models. Other approaches include SV models, wavelet analysis, regression analysis, Bayesian

structural time series and machine learning.

2.2.1 Crypto price drivers

Many different time series were checked for a relation to cryptoassets. On the one hand internal

factors, i.e. variables in direct relation to the cryptoassets themselves, and on the other hand

factors only correlated through the economy.

Internal Factors

Hashrate: A hash is the evaluation of a hash function, which is used in proof of work

networks such as Bitcoin. The hashrate describes how much computing power is cur-

rently invested in mining a cryptoasset.

Volume: The total amount of a cryptoasset that exists.

Trade Volume: The total amount of a cryptoasset that is traded within a certain time

period.

Transaction Volume: The total amount of a cryptoasset that is used to purchase

goods or services (not involving a crypto exchange) within a certain time period.

Google/Wikipedia searches: The amount of people that searched for a cryptoasset

or a crypto related term.

Number of addresses: The total amount of addresses participating in a cryptoasset

network.

Estimated output volume: The total amount of new cryptocurrency.

Difficulty: The difficulty of creating a new block, i.e. how much computing power is

needed per new block.

Velocity: The number of times one coin is expected to be traded in a certain time

interval.

7
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Total number of transactions

Number of tweets

Twitter sentiment

Conformation time of transactions

External Factors

Commodities: Assets such as gold and oil are among the most frequently used factors

for modelling cryptoassets.

Stock indices: Most often the S&P 500 is used, but many different market indices have

been compared to cryptoassets.

Exchange rates: Most often USD/EUR or USD/GBP are used, but others appear as

well.

Other financial indicators and assets: There are several other figures representing

the market as well, like future prices or bond yields.

8
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Source Variables Data

Period

Methodology Purpose and Findings

[Kjærland et al., 2018] S&P 500

Hashrate

Volume

Gold

Oil

VIX

Google searches

01.01.2013-

20.02.2018

ARDL Model

GARCH Model

Finds that S&P 500, BTC Trading Vol-

ume and the number of Google searches

are relevant for predicting Bitcoin re-

turns. The other variables were all in-

significant.

[Dyhrberg, 2016a] Federal funds rate

USD/EUR

USD/GBP

FTSE index

Gold futures

Gold cash

19.07.2010-

22.05.2015

GARCH model

EGARCH Model

Conducts analysis if BTC behaves like

a currency or a commodity. They find

indications of both. The strong reaction

to the federal funds rate is usually ob-

served for currencies, but its response to

exchange rates is similar to a commod-

ity.

[Aalborg et al., 2019] Volume

Transaction volume

Number of addresses

VIX

Google searches

01.03.2012-

19.03.2017

linear Regression Analysis on predicting returns, trad-

ing volume and volatility. Changes in

unique addresses are positively corre-

lated with the BTC return. Further they

find that trading volume has only weak

predictive power for the returns. Trad-

ing volume itself is influenced by trans-

action volume and the Google searches.

Realized volatility is used to calculate

the volatility from the returns and it is

found that on a daily level it is correlated

with the trading volume, which fails to

extend to weekly data.

[Bouri et al., 2018b] S&P GSCI Commod-

ity

Ounce of gold

MSCI world

PIMCO investment

grade bond

US dollar index

17.07.2010-

02.02.2017

ARDL model

NARDL model

QARDL model

QNARDL model

Finds asymmetric nonlinear relation-

ships between BTC and two of the mod-

elling variables, namely gold and aggre-

gated commodity. This is not in line

with several other studies and implies

that BTC is not an isolated economy,

leading to the conclusion that BTC is

not a safe haven.

[Georgoula et al., 2015] Total numer of trans-

actions

USD/EUR

S&P 500

Hashrate

Wikipedia searches

Google searches

Number of tweets

Twitter sentiment ra-

tio

27.10.2014-

12.01.2015

Machine learn-

ing

vector space

machine

Vector Error-

Correction

model

Finds positive short-term correlation be-

tween BTC media popularity and its

price. Notably a positive correlation

with the hashrate is found, in contrast

to [Kjærland et al., 2018]. Furthermore

a negative short time correlation to the

USD/EUR exchange rate is found. The

same is true for the S&P 500 index,

which is attributed to people selling bad

performing stocks to invest into BTC

and vice versa. Lastly a positive cor-

relation with the total number of BTC

is found.

9
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Source Variables Data

Period

Methodology Purpose and Findings

[Bouri et al., 2018a] MSCI world

MSCI Emerging mar-

kets

MSCI China

S&P GSCI commod-

ity

S&P GSCI energy

Ounce of gold

US Dollar index

US 10 year treasury

yields

19.07.2010-

31.08.2017

smooth

transition VAR -

bivariate

GARCH-in-

mean

Studies spillovers in returns and

volatility between BTC and other tra-

ditional assets and currencies. Find-

ings indicate that the connection is

stronger for returns than for volatil-

ity. Further asymmetric spillovers are

found in both bull and bear markets

and their effects vary conditional on

the situation. Also, BTC usually is

the recipient of these spillovers. So,

it is possible to predict the volatility

of BTC from the other volatilities, but

not the other way around. For in-

vestors this means that not only is it

necessary to observe the state of the

market, but it is also necessary to dif-

ferentiate between different markets in

order to make an informed decision

concerning BTC.

[Kristoufek, 2015] Total number of BTC

Number of transac-

tions

Estimated output

volume

Ratio trade

volume/transaction

volume

Hashrate

Difficulty

BTC exchange rates

Google searches

Wikipedia searches

Financial Stress

index

Gold

14.09.2011-

28.02.2014

Wavelet coher-

ent analysis

First it is found that trade, money sup-

ply and price level do influence the

BTC price in the long-run. Secondly, a

rising price should lead people towards

starting to mine, but miners are found

to be vanishing due to the increase in

the difficulty and hashrate because of

specialized hardware. The third find-

ing is, that the interest in cryptocur-

rency is also driving the price of BTC,

especially in the long-run. Fourth, Bit-

coin is not a safe haven. Lastly no ev-

idence is found that the Chinese and

US markets are connected.

[Bouoiyour and Selmi,

2015b]

Google searches

Trade vol-

ume/transaction

volume

Velocity

Estimated output

volume

Hashrate

Gold

Shanghai market

index

05.12.2010-

14.06.2014

ARDL model

Granger causal-

ity

They find that Google searches,

Shanghai market index and

trade/transaction ratio all have

significant positive short-term impact

(in descending order). But in the long

run all but the trade/transaction ratio

cease to have significant influence

and even the trade/transaction ratio

loses importance. Furthermore, the

hashrate becomes significant. In

conclusion, the long-term future is

very difficult to predict and can be

influenced by certain factors, whose

impact are difficult to foretell (like the

reaching of the maximum amount of

BTC).
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Source Variables Data

Period

Methodology Purpose and Findings

[Sovbetov, 2018] Crypto 50 index

Crypto 50 Volume

Crypto 50 volatility

S&P 500

Gold

U.S. interest rates

Google searches

EUR/USD

2010-2018 ARDL model The first contribution of this paper is

the generation of a Crypto 50 index,

that is the weighted average over 50

cryptoassets. Further, this paper fo-

cuses on five cryptoassets. It is found,

that in the short- and long-run Bit-

coin and Ethereum respond more to

the crypto market than the other three

cryptoassets. Trading volume is signif-

icant and positive for all five assets,

but its significance is greater in the

long-run. Volatility is also always sig-

nificant and negative, but its short-run

impact is larger. Google searches are

only significant in the long-run and not

significant at all for Dash. The S&P

500 shows a weak positive long-run re-

lationship, but short-run it has only

a minor negative influence on Bitcoin.

Lastly the Error Correction Term was

significant for all five cryptoassets and

the strongest correction was displayed

by Bitcoin.

[Bouri et al., 2017b] S&P 500

FTSE 100

DAX 30

Nikkei 225

Shanghai A-share

MSCI World

MSCI Europe

MSCI Pacific

PIMCO Investment

Grade Corporate

Bond index

US dollar index

SPGS Commodity

index

Oil

Gold

18.06.2011-

22.12.2015

DCC-MGARCH This paper applies the DCC-

MGARCH model in order to find

if BTC is a diversifier, hedge and/or a

safe haven. They use weekly and daily

data and show that the results on the

safe haven and hedge properties differ

between the different time horizons.

In most cases, diversification is found

to be possible.

[Guesmi et al., 2019] MSCI Emerging Mar-

kets index

MSCI Global Market

index

USD/EUR

USD/CNY

Gold

Oil

VIX

01.01.2012-

05.01.2018

VARMA-DCC-

GJR-GARCH

model

First, several VARMA-GARCH mod-

els are compared and the beformen-

tioned is chosen due to its AIC value.

Further it is found that a short position

in Bitcoin is a good hedge against the

other variables. The hedge with Bit-

coin is especially effective for a portfo-

lio containing gold, oil and the MSCI

Emerging Markets index.
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Source Variables Data

Period

Methodology Purpose and Findings

[Nguyen et al., 2019] Oil

Gold

S&P 500

LIBOR

USD index

08.08.2014-

07.06.2017

DCC-MGARCH

model

Examines diversification options of

seven cryptoassets against economic

factors. Structural breaks and ARCH

disturbances are found for each cryp-

toasset. Further, insignificant corre-

lations with the economic factors are

found, implying low hedge capabilities.

[González et al., 2021] Gold 26.01.2015-

30.06.2020

NARDL model Studies the impact of the gold price

on 12 different cryptoassets. Fur-

thermore, two sub periods are anal-

ysed. One is the epicentre of

the first COVID-19 wave (01.03.2020-

30.06.2020) and the other one in-

cludes the build up as well (01.01.2020-

30.06.2020). The first finding is that

all cryptoassets except for Tether show

significant positive dependencies on

the gold price for all periods. This

correlation increases particularly dur-

ing the epicentre of the crisis. Second,

cointegration increases in the COVID-

19 periods. Third, the long run elastic-

ities for the entire period are only sig-

nificant for Bitcoin SV, while during

the COVID-19 periods they become

drastically more significant, and are

generally positive, except for Tether.

Fourth, long-run asymmetry can be

observed only during the COVID-19

periods, but short-run asymmetry is

not only present during the COVID-

19 crisis, but also for ten of twelve

observed assets in the entire period.

Fifth, the cryptoassets show high per-

sistence to changes in the gold price.

Finally, the NARDL model explains a

highly increased amount of cryptoasset

returns during the COVID-19 period,

which suggest that especially in times

of economic turmoil, the connectedness

of cryptoassets to the gold price in-

creases.

[Jareño et al., 2020] Gold

Crude Oil

S&P 500

VIX

STLFSI index

08.2010-

11.2018

Quantile Regres-

sion

NARDL model

Analyses the sensitivity of Bitcoin re-

turns to returns of other assets and in-

dices. The reaction of the Bitcoin re-

turns to the mentioned variables tends

to be stronger in extreme market con-

ditions. Further, a positive significant

connectedness with gold is found.
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Source Variables Data

Period

Methodology Purpose and Findings

[Klein et al., 2018] Gold

Silver

Crude Oil

S&P 500

MSCI World index

MSCI Emerging Mar-

kets 50 index

01.07.2011-

31.07.2017

APARCH model

FIAPARCH

model

BEKK-GARCH

model

Analyses the similarities between gold

and Bitcoin (and CRIX). A t-

distribution is chosen as the underly-

ing distribution, which makes the FI-

APARCH model the best performing

one. Further, Bitcoin has the same

asymmetric response to market shocks

as precious metal, but it is very persis-

tant to variance shocks. Also, Bitcoin

was shown to decline as the market de-

clines, which is contrary to gold. This

implies that Bitcoin is not an effective

hedge against the markets.

[Poyser, 2017] USD trade volume

on BTC exchanges

Conformation time of

transactions

Hashrate

Transactions per day

Google searches

(countrywise)

S&P 500

CBOE VIX

bearish sentiment

(AAII survey)

Gold

EUR/USD

USD/CNY

01.2013-

05.2017

Bayesian Struc-

tural Time Series

Applies different takes of the Bayesian

Structural Time Series approach to the

topic. Finds negative correlation to the

gold price and USD/CNY exchange

rate, but a positive one for USD/EUR

exchange rate. The trends in the differ-

ent countries show varying signs, and

their relevancy varies over time. The

internal factors have no relevant im-

pact.

[Symitsi and Chalvatzis,

2019]

US Dollar index

Various Gold indices

Various Oil indices

Exchange rates

Dow Jones Industrial

Average

S&P 500

Housing Sector index

30 year Treasury

Bond index

20.09.2011-

14.07.2017

DCC-GARCH

model with

univariate GJR-

GARCH model

Uses three different models for gold

(silver) and oil respectively, and seven

exchange rates (all containing USD).

Performs analysis on portfolios with

and without Bitcoin in different states

of the market. It is found, that port-

folio risk is decreased by adding Bit-

coin due to its low correlation with

the other assets considered. However,

these benefits decrease, if the portfo-

lio already contains a wider range of

assets.

[Charfeddine et al., 2020] Gold

Crude Oil

S&P 500

18.07-

2010-

01.10.2018

ARFIMA-

FIAPARCH

model

Time varying-

copulas

DCC-GARCH

model

Investigates the relationship between

conventional financial assets and two

cryptoassets, namely Bitcoin and

Ethereum. Time-varying dependence

is found via the Copula approach. Fur-

ther diversification benefits are found,

but the optimal portfolio only in-

cludes a small weight in Bitcoin and

Ethereum. Further hedging capabili-

ties are found to be weak.
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Source Variables Data

Period

Methodology Purpose and Findings

[Catania et al., 2019] S&P 500

Nikkei 225

Stoxx Europe 600

Gold

Silver

5 year Europe credit

default swap

US 1 month treasury

yields

US 10 year treasury

yields

VIX

08.08.2015-

28.12.2017

TVP-VAR mod-

els

KS models

AR-EWMA

model

Studies a variety of different univariate

and multivariate models on four ma-

jor cryptoassets. Further model com-

binations are made, where it is found

that combinations of univariate mod-

els provide improved point forecasting,

while density forecasting is improved

by combining multivariate models.

[Dwita Mariana et al.,

2021]

Gold

S&P 500

01.07.2019-

06.04.2020

DCC-GARCH

model

Bitcoin and Ethereum are tested for

safe haven properties in reference to

the COVID-19 pandemic announce-

ment. Findings indicate that both are

short-term safe havens, with Ethereum

being the better one, but this advan-

tage comes at the price of higher return

volatility.

[Stens̊as et al., 2019] 7 stock indices for de-

veloped markets

6 stock indices for de-

veloping markets

5 MSCI indices

4 commodity indices

6 commodity prices

13.09.2011-

01.01.2018

DCC-GARCH

model

Studies diversifier, hedge and safe

haven properties of Bitcoin for devel-

oped and developing markets as well as

for commodities. Bitcoin is found to be

a hedge in most developing countries,

for all other considered variables it acts

as a diversifier. Further, save haven

properties are only observed during pe-

riods of high uncertainty.

[Dyhrberg, 2016b] USD/EUR

USD/GBP

FTSE index

19.07.2010-

22.05.2015

AGARCH model

TGARCH model

Researches Bitcoins similarities to gold

by studying its responses to economic

factors. Findings indicate, that Bit-

coin can be used as a hedge against the

FTSE index and the Dollar, though for

the Dollar only in the short-term.
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2.2.2 Inner relations of the cryptoasset market

The crypto market contains a huge battery of different assets, the listed papers consider be-

tween 3 and 17 of them for correlations. Bitcoin is the only asset considered in all papers; the

next most popular ones are Ethereum and Litecoin.

Source Cryptoassets Data

Period

Methodology Purpose and Findings

[Ciaian et al., 2018] Bitcoin

Litecoin

Dogecoin

Monero

Ripple

DigitalCash

NEM

Peercoin

Bitshares

Nxt

Namecoin

Novacoin

CounterParty

Qora

Mintcoin

Feathercoin

Primecoin

2013-2016 ARDL model The paper analyses the interdependen-

cies between Bitcoin and the altcoin

market. To do so, Bitcoin, 16 Altcoins

and two Altcoin indices are used in the

model. It is found, that Bitcoin and

the altcoin market are strongly inter-

dependent in the short-run, but in the

long-run the macro-financial indicators

outweigh the impact of Bitcoin on

the altcoin market (indicators used are

Wikipedia searches, the total volume,

the gold price, the NASDAQ index,

US 10-year treasury yields, EUR/USD

and USD/CNY exchange rates and the

oil price). Further, the total volume

has been found insignificant on the re-

turns of the cryptoassets.

[Chaim and Laurini,

2019]

Bitcoin

Ethereum

Ripple

Litecoin

Stellar

Dash

Monero

NEM

Verge

16.08.2015-

31.10.2018

Multivariate SV

with jumps

in mean and

volatility

Describes the return and volatility

dynamic between nine cryptoassets.

Finds volatility periods in 2017 and

early 2018, further jumps become

larger and more frequent from 2017

on. Also, the long-term memory de-

pendence is well represented in the cho-

sen model.

[Hu et al., 2021] Bitcoin

Ethereum

XRP

Litecoin

Bitcoin cash

EOS

Binance coin

25.07.2017-

02.07.2019

Univariate

ARMA-GARCH

with

multivariate

innovations

Tests different marginal and joint dis-

tributions for the sample innovations

from the GARCH part of the model.

The best performing model is the one

with gaussian marginals and joint t-

distribution with five degrees of free-

dom. Further, optimal portfolios for

different risk minimization objectives

are constructed, with the result, that

one of these optimal portfolios outper-

forms the S&P 500 in cumulative re-

turns. Also, option prices on these

optimal portfolios are calculated using

Monte Carlo simulation.
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Source Cryptoassets Data

Period

Methodology Purpose and Findings

[González et al., 2020] Bitcoin

Ethereum

Ripple

Bitcoin cash

Tether

Bitcoin SV

Litecoin

EOS

Binance coin

Tezos

XRP

26.01.2015-

07.03.2020

NARDL model The connectedness of Bitcoin and ten

other cryptoassets is studied via the

NARDL model. Three different time

horizons are used (daily, weekly and

monthly). They find correlations for

all assets and timeframes, but the

newest assets in the monthly time hori-

zons (probably due to lack of data-

points), but their connectedness dif-

fers. Further, asymmetric movement

is found primarily in the short run.

[Demir et al., 2021] Bitcoin

Ethereum

Ripple

07.2015-

03.2019

NARDL model This paper examines the asymmetric

effects of BTC on Ethereum, Ripple

and Litecoin. To do this they apply

a NARDL model with several control

variables, namely Wikipedia searches,

oil price, gold price, 10-year US trea-

sury yields, USD/EUR exchange rate

and the NASDAQ Composite index.

They find short-run asymmetries for

all Altcoins considered and that a de-

crease in BTC price has greater impact

than an increase. Further it is found

that the period after the crash at the

end of 2017 is the main contributor to

the asymmetry.

[Omane-Adjepong and

Alagidede, 2019]

Bitcoin

BitShares

Litecoin

Stellar

Ripple

Monero

Dash

08.05.2014-

12.02.2018

Wavelet analysis

GARCH model

GJR-GARCH

model

This paper studies the connectedness

and volatility spillover between seven

cryptoassets. Diversification among

cryptoassets is limited. Co-movement

and volatility spillovers are sensitive to

both timescale and volatility measures.

[Shi et al., 2020] Bitcoin

Dash

Ethereum

Litecoin

Ripple

Stellar

08.08.2015-

01.01.2020

Multivariate fac-

tor SV model

Analyses the correlation between six

cryptoassets. It is found that Bitcoin is

related to Litecoin and that Ethereum

is related to Ripple, Dash and Stellar.

[Kumar and Suvvari,

2019]

Bitcoin

Ethereum

Ripple

Litecoin

15.08.2015-

18.01.2018

DCC-IGARCH

model

wavelet methods

This paper studies volatility spillovers

between Bitcoin, Ethereum, Ripple

and Litecoin. It is found that, there

is significant short-run correlation over

the whole time period. The results

concerning volatility spillover are, that

it is only evident after 2017. This is in-

terpreted as a sign of the crypto market

not being settled.
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Source Cryptoassets Data

Period

Methodology Purpose and Findings

[Tu and Xue, 2019] Bitcoin

Litecoin

28.04.2013-

31.07.2018

Granger causal-

ity test

BEKK-

MGARCH

model

Studies the effect of the fork of Bitcoin

into Bitcoin and Bitcoin Cash. This

is done by comparing Bitcoin to Lite-

coin before and after the fork. While

volatility spillovers in both periods go

from Bitcoin to Litecoin, the direc-

tion of shock transmission changes af-

ter the fork (01.08.2017). This indi-

cates a weakened market position of

Bitcoin.

[Yousaf and Ali, 2020] Bitcoin

Ethereum

Litecoin

03.10.2018-

01.04.2020

VAR-AGARCH

model

Examines the return and volatility

spillover between Bitcoin, Ethereum

and Litecoin in the COVID-19 period

and before. It is found that diversifi-

cation between the three cryptoassets

is less effective during the COVID-19

period, but hedging effectiveness is in-

creased.

[Canh et al., 2019] Bitcoin

Litecoin

Ripple

Stellar

Monero

Dash

Bytecoin

05.08.2014-

31.12.2018

DCC MGARCH

model

Researches volatility spillovers be-

tween seven cryptoassets. It is found,

that structural breaks occur first in the

smaller capped cryptoassets and then

spread to the larger ones. Further, sig-

nificant positive correlations between

the assets are found (over 0.6 in 6/7

cases), suggesting a lack of diversifica-

tion in the crypto market.

[Katsiampa et al., 2019] Bitcoin

Litecoin

Ethereum

07.08.2015-

10.07.2018

BEKK-

MGARCH

model

Analyses Bitcoin, Litecoin and

Ethereum pairwise for shock transmis-

sion and volatility spillover. There is

no shock transmission from Litecoin to

Ethereum, all other transmissions are

found. Further volatility spillover is

found between all three cryptoassets.

[Corbet et al., 2020] Bitcoin

Ethereum

Ripple

Bitcoin Cash

Bitcion SV

Litecoin

Binance coin

EOS

Tezos

Stellar

Ethereum classic

IOTA

NEM

01.01.2019-

31.03.2020

GARCH model Analyses the relationship between 13

cryptoassets during the outbreak of

COVID-19. To do so, the assets

are modelled with three control vari-

ables namely, their traded volumes, the

GBP/USD exchange rate and a sen-

timent time series, which was created

by filtering twitter posts that mention

both cryptocurrencies and COVID-

19 and analysing their contents. It

is found, that negative sentiment of

COVID-19 does have an effect on the

volatility of the cryptoasset returns.

Growth in traded volumes and re-

turns suggests, that cryptoassets be-

came more attractive as value storage

during the times of financial turmoil.
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3 Univariate GARCH models

This Section aims to introduce the GARCH model and six possible generalizations.

3.1 Preliminary concepts

First, it is necessary to introduce a few basic concepts of time series analysis from [Francq and

Zakoian, 2019].

Definition 3.1. A time series is a discrete stochastic process (Xt)t∈Z.

Remark. Often an observation of such a process is also called a time series, here such a single

realization of a time series will be referred to as path.

Definition 3.2. A time series is called weak white noise, if it satisfies (i), (ii) and (iii), and

strong white noise, if (iii) is replaced by (iii′).

(i) E[Xt] = 0, ∀t ∈ Z

(ii) E[X2
t ] = σ2 <∞, ∀t ∈ Z

(iii) Cov[Xt, Xt+h] = 0, ∀t, h ∈ Z, h ̸= 0

(iii′) (Xt)t∈Z is an independent and identically distributed sequence.

Definition 3.3. A time series (Xt)t∈Z is called strictly stationary, if (X1, . . . , Xk)
′ and

(X1+h, . . . , Xk+h)
′ have the same joint distribution ∀k ∈ N, ∀h ∈ Z.

Definition 3.4. A time series (Xt)t∈Z is second order stationary, if it satisfies the following

(i) E[X2
t ] <∞, ∀t ∈ Z

(ii) E[Xt] = m, ∀t ∈ Z

(iii) Cov[Xt, Xt+h] = γX(h), ∀t, h ∈ Z

Remark. It is easy to see, that weak/strong white noise is a second order/strict stationary

process, but not every second order/strict stationary process is a weak/strong white noise

process.

Further, strict stationarity does not imply second order stationarity in all cases, because the

notion of second order stationarity needs the first two moments to exist.

Remark. In finance, the time series that is modelled is the one of the logarithmic transformed

data, i.e. rt = log(pt) − log(pt−1) where pt is the price of the asset at time t. With this

transformation, financial time series usually become strict stationary. This can be checked with

the augmented Dicky-Fuller test. [Kjærland et al., 2018], [Hou et al., 2020] and [Katsiampa,

2017] are examples for papers, that use this approach for cryptoassets.
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Definition 3.5. The autocorrelation function of a second order stationary process (Xt)t∈Z

is defined as

ρ(h) :=
γ(h)

γ(0)
(1)

where

γX(h) := Cov[Xt, Xt+h]

is called the autocovariance function.

Theorem 1. Let (Xk)k∈Z be a second order stationary time series, then ∀k ∈ Z and all

n, h ∈ N

γ̂(h) = γ̂(h, n, k) :=
1

n

n−h∑
i=1

[(
Xi −

1

n

n∑
j=1

Xk+j

)(
Xi+h −

1

n

n∑
j=1

Xk+j

)]
(2)

is an asymptotically unbiased estimator for γ(h), i.e.

∀k ∈ Z, ∀h ∈ N : lim
n→∞

γ̂(n, h, k) = γ(h) a.s.

Moreover, this provides an asymptotically unbiased estimator for ρ(h) by

ρ̂(h) =
γ̂(h)

γ̂(0)

Proof.

E

[
1

n

n−h∑
i=1

[(
Xi −

1

n

n∑
j=1

Xk+j

)(
Xi+h −

1

n

n∑
j=1

Xk+j

)]]
=

1

n

n−h∑
i=1

E
[(
Xi −

1

n

n∑
j=1

Xk+j

)(
Xi+h −

1

n

n∑
j=1

Xk+j

)] (3)

For second order stationary processes, it holds that E[Xt] = m ∀t ∈ Z, therefore for all k ∈ Z

1

n

n∑
j=1

Xk+j → m a.s. for n→ ∞

by the strong law of large numbers. Since (Xk)k∈Z is stationary, it follows that

lim
n→∞

E
[(
Xi −

1

n

n∑
j=1

Xk+j

)(
Xi+h −

1

n

n∑
j=1

Xk+j

)]
= E

[(
Xi − E[Xi+h]

)(
Xi+h − E[Xi+h]

)]
= Cov[Xi, Xi+h] = γ(h)
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Using Dominated Convergence with the dominating function 4E[X2
i ].

Taking the limit in equation (3) and using this yields the result.

3.2 Purpose of the GARCH model

The goal of modelling a time series is to get the residuals of the chosen model to be white

noise, i. e. to predict everything that follows a pattern. The well known autoregressive moving

average model (ARMA model) predicts patterns in the values of the Xt, so what is the GARCH

model needed for? The following example will illustrate the reason to implement GARCH:

Figure 1: Sample time series path created with an ARMA(3,1) model α = [0.4, 0.3, 0.3],
β = 0.1 , with time varying volatility (created by GARCH(1,1) model).

In Figure 1 a path of a time series is displayed. Treating this as the input data e.g. the

returns of a given asset, one wants to find a model to best describe its patterns. Just by looking

at the graph, it is easy to observe, that high/low values are more likely to come after high/low

ones. This contradicts (iii) of the properties of white noise. To change that one can fit an

ARMA model to the observed data. In this case, since the data was created by such a model,

the whole covariance structure is explained by the model.
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Figure 2: Errors of the ARMA(3,1) model

Figure 2 shows the error terms from the fitted ARMA model. Even though it does not look

like it, the way this path was created did satisfy condition (ii) for white noise, which will be

revisited later. So now the error terms are weak white noise, but it is easy to recognize that

there still is some pattern left. The remaining structure, that can be observed, is that high

and low variances alike form clusters.
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Figure 3: Volatility generated by GARCH(1,1) with ω = 0.1, α = 0.1 and β = 0.2

In Figure 3 the actual volatility of each error for the path of the chosen GARCH model is

shown. Now the path of the volatility above has to be described by a model. If this were

a real data set, one would need to estimate the volatility graph above. This is where the

GARCH model comes into play, in a similar approach to the ARMA model it tries to predict

the variance of future returns, thereby giving the errors independence.
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Figure 4: Errors after applying the GARCH model

In Figure 4 the final errors are shown. Now no patterns of first or second order can be

observed and it holds that the variance is independent, i.e. E[X2
t | Xi ∀i ∈ Z \ {t}] = σ2.

3.3 GARCH model

3.3.1 Definition of the model

Definition 3.6. Let (Xt)t∈Z be a time series and Ft = σ({Fs | s ≤ t}) the information set up

to time t ∀t ∈ Z. Further let p ≥ 0, q > 0, ω > 0, αi ≥ 0 ∀i = 1 . . . q and βi ≥ 0 ∀i = 1 . . . p.

Then (Xt)t∈Z is called a (normal) GARCH(p,q) process, if

Xt | Ft−1 ∼ N (0, σt) (4)

with

σ2t = ω +

q∑
i=1

αiX
2
t−i +

p∑
i=1

βiσ
2
t−i (5)

[Bollerslev, 1986]

GARCH stands for Gerneralised Autoregressive Conditional Heteroscedasticity, so it models

the conditional variance of the process in an autoregressive way. If in the model above qp = 0,

then it is the ARCH model by [Engle, 1982] (p=0 gives ARCH model and q=0 gives the ARCH

regression). Further, it is easy to see that the variance is only depending on past observations,
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meaning that the one step ahead variance forecast is deterministic, in contrast to Stochastic

Volatility (SV) models.

Remark. The distribution can easily be generalised by replacing equation 4 by

Xt = σtηt (6)

and using any other distribution for an i.i.d. random series (ηi)i∈Z. Most models use normal

distributions, so if no distribution is mentioned, the normal case is the default one. If all ηi

have distribution L, we call X an L-GARCH(p,q) process. However in the literature, some

papers have already shown that heavy tailed distributions outperform the normal distribution

when studying the case of cryptoasset returns. Examples are [Guo, 2022], [Troster et al., 2019]

or [Chu et al., 2017].

Equation (4) is called the mean equation and equation (5) is called the variance equation

for obvious reasons.

3.3.2 Stationarity of the GARCH model

It is easy to see, that not for all admissible choices of αi and βi the corresponding GARCH

process becomes stationary. For example, if one takes αi = 0 ∀i ∈ N, β1 > 1 and αi = 0 ∀i ≥ 1,

it holds that σ2t = hω+ σ2t−hβ
h
1 which would lead to an explosion of the variance. Stationarity

analysis is quite cumbersome, therefore mostly results are presented here:

Theorem 2. Let (ηi)i∈Z be an i.i.d. random series with law L. The L-GARCH process is

second order stationary, if and only if

q∑
i=1

αiV[η1] +
p∑

i=1

βi < 1 (7)

In this case it holds that

E[σ2t ] = ω(1−
q∑

i=1

αiV[η1] +
p∑

i=1

βi)
−1 (8)

Proof. See [Bollerslev, 1986] for the proof of the normal case, which is simple to generalize.

Theorem 3. A GARCH(1,1) process is strictly stationary if

γ := E[log(αη21 + β)] < 0 (9)

holds.
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Proof. Define

a(ηt) := αη2t + β

Equation (5) can be used recursively to get

σ2t = ω + a(ηt−1)σ
2
t−1 = ω + a(ηt−1)ω + a(ηt−1)a(ηt−2)σ

2
t−2

= ω

(
1 +

N∑
n=1

a(ηt−1) . . . a(ηt−n)

)
+ a(ηt−1) . . . a(ηt−N−1)σ

2
t−N−1

=: ht(N) + a(ηt−1) . . . a(ηt−N−1)σ
2
t−N−1

(10)

The process ht := limN→∞ ht(N) exists in R+ ∪ {∞}, since all summands are non-negative.

Further h fulfills the same recursion as σ2, in that

ht = ω + a(ηt−1)ht−1

Next it will be shown that ht is a.s. finite if γ < 0.

By the strong law of large numbers on the i.i.d sequence (log(a(ηt)))t∈Z it holds that

(
a(ηt−1) . . . a(ηt−N )

) 1
N

= exp

(
1

N

N∑
n=1

log(a(ηt−n))

)
→ exp(γ) a.s. for N → ∞

The Cauchy rule for series with non-negative terms given in Lemma 1 can now be used to get

the result for ht. In the case γ < 0 it follows from equation (10) that σ2t = ht a.s.. Therefore,

Xt admits the following representation

Xt =
√
htηt =

(
ω +

∞∑
n=1

a(ηt−1) . . . a(ηt−n)ω

)1/2

ηt

Lemma 2 bellow gives strict stationarity.

Lemma 1. Let
∑∞

n=1 an be a series with non-negaitve summands and λ := limN→∞
∏N

n=1 a
1/N
n ,

then if λ < 1 the series converges and if λ > 1 it diverges.

Lemma 2. Let (Zt)t∈Z be a strict stationary sequence and (Yt)t∈Z be defined by

Yt := f(. . . , Zt−1, Zt, Zt+1, . . . ) (11)

then if f is a measurable function from R∞ to R, (Yt)t∈Z is also strict stationary.

[Billingsley, 1995] Theorem 36.4
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Remark. By Jensen’s inequality one can see that this is a relaxation to what was needed

above. For a normal GARCH process this means α1 can be as large as 3.65, but note that the

second moment does not exist anymore. To state the general case, some addtitional work has

to be done.

Definition 3.7. Let (Ai)i∈N be a sequence of random n×n matrices, then the top Lyapunov

exponent is defined as

γ(A) := lim
t→∞

1

t
log || AtAt−1 . . . A1 || a.s. (12)

Remark. The top Lyapunov exponent does not depend on the choice of the matrix norm.

For the GARCH model with parameters θ = (ω, α1, . . . , αq, β1, . . . , βp) define

At :=



α1η
2
t · · · . . . · · · αqη

2
t β1η

2
t · · · . . . · · · βpη

2
t

1 0 · · · · · · 0 0 · · · · · · · · · 0

0 1
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

0 · · · 0 1 0 0 · · · · · · · · · 0

α1 · · · . . . · · · αq β1 · · · . . . · · · βp

0 · · · · · · · · · 0 1 0 · · · · · · 0
...

... 0 1
. . .

...
...

...
...

. . .
. . .

. . .
...

0 · · · · · · · · · 0 0 · · · 0 1 0



∈ R(p+q)×(p+q)

bt :=



ωη2t

0
...

0

ω

0
...

0


∈ Rp+q, zt :=



X2
t
...

X2
t−q+1

σ2t
...

σ2t−p+1


∈ Rp+q

With this the GARCH model admits the representation

zt = bt +Atzt−1

where the equations of the GARCH model are column 1 and q+1. Now let A = (Ai)i∈N, then

γ(A) is the top Lyapunov exponent of this GARCH model.
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Theorem 4. A GARCH(p,q) model is strictly stationary, if and only if its top Lyapunov

exponent satisfies γ(A) < 0.

Both results for strict stationarity stem from [Francq and Zakoian, 2019], where proofs can

also be found.

Theorem 5. A stationary GARCH process is weak white noise.

Proof. (i) E[Xt] = E[σtηt] = E[E[σtηt | ηt−1]] = ω(1−
∑q

i=1 αiV[η] +
∑p

i=1 βi)
−1E[ηt] = 0

(ii) Analogous to (i).

(iii) Cov[Xt, Xt+h] = E[XtXt+h] = E[σtσt+hηtηt+h] = V[σt]2E[ηtηt+h] = 0

3.3.3 Parameter interpretation

In the case of a weakly stationary GARCH process, ω is the parameter for the long-term

variance. This can easily be seen in equation (8). From that equation one can also observe that

the variance of the process is unaffected, as long as
∑q

i=1 αiV[η] +
∑p

i=1 βi remains constant.

In the most common case, it holds that V[η] = 1, therefore, in the case of p = q, it is possible

to swap the values of the αi and βi without changing the variance.

If the sum of the αi is close to one, the reaction to volatility shocks in the process is a rapidly

varying volatility. These rapid movements increase if p is smaller, since taking multiple past

observations into account smoothens the process. Below, a process that admits these rapid

changes is shown.
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Figure 5: GARCH(1,1) with ω = 1, α = 0.7 and β = 0.1

On the other hand, when the sum of the βi is high, the volatility shocks show high persistence.

This displays in a constant high volatility, as the graph below demonstrates.

Figure 6: GARCH(1,1) with ω = 1, α = 0.1 and β = 0.7
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3.3.4 Identifying GARCH orders

In this section the aim is to find plausible orders for the GARCH(p,q) model, which can

be compared via an information criterion after estimation. The innovation of the process

X2
t is defined by νt := X2

t − σ2t . Substituting X2
t − νt for σ2t in equation (5), the following

representation of the process X2 is obtained:

X2
t = ω + νt +

r∑
i=1

(αi + βi)X
2
t−i +

p∑
i=1

βiνt−i (13)

with αi := 0, βj := 0 for i ≥ q, j ≥ p, respectively, and r = max(p, q). Notice that this is a

representation of an ARMA(r,p) model. The next step is to identify the orders of this ARMA

model. For this the so-called corner method can be used.

Let ρX2 be the autocorrelation function of the process (X2
t )t∈Z, then define the j × j Toeplitz

matrix

D(i, j) :=


ρX2(i) ρX2(i− 1) · · · ρX2(i− j + 1)

ρX2(i+ 1) ρX2(i)
. . .

...
...

. . .
. . . ρX2(i− 1)

ρX2(i+ j − 1) · · · ρX2(i+ 1) ρX2(i)

 (14)

Theorem 6. Let ∆(i, j) = det(D(i, j)), then P and Q are the minimal ARMA orders, if and

only if

(i) ∆(i, j) = 0 ∀i > Q and j > P

(ii) ∆(i, P ) ̸= 0 ∀i ≥ Q

(iii ) ∆(Q, j) ̸= 0 ∀j ≥ P

[De Gooijer and Heuts, 1981]

Proof. We give a short illustration of the proof idea. The ARMA(P,Q) model reads

Xt = ω + νt +
P∑
i=1

αiXt−i +

Q∑
i=1

βiνt−i (15)

For this model one can show that for k > Q it holds that

ρ(k) =
P∑
i=1

αiρ(k − i) (16)

So, if i > Q and j > P , the first column can easily be factorized into the following p columns.

If i = Q, the above factorization ceases to be valid, and for any size of the matrix we have
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a diagonal that prevents this factorization since i ≯ Q. If j = P , the above does not yield a

singular matrix, since the matrix has j columns and the factorization needs j + 1. The other

direction follows by assuming there are smaller orders and using the factorization to contradict

either (ii) or (iii).

H
HHH

HHi
j

1 2 · · · q q + 1 · · · K

1 ∆(1, 1) ∆(1, 2) · · · ∆(1, q) ∆(1, q + 1) · · · ∆(1, K)
2 ∆(2, 1) ∆(2, 2) · · · ∆(2, q) ∆(2, q + 1) · · · ∆(2, K)
...

...
...

...
...

...
p ∆(p, 1) ∆(p, 2) · · · ∆(p, q) ∆(p, q + 1) · · · ∆(p,K)

p+ 1 ∆(p+ 1, 1) ∆(p+ 1, 2) · · · ∆(p+ 1, q) 0 · · · 0
...

...
...

...
... 0

...
K ∆(K, 1) ∆(K, 2) · · · ∆(K, q) 0 · · · 0

Figure 7: Table for corner method

Figure 7 shows the matrix of the ∆(i, j) for an ARMA(p,q) model. At the bottom right is

the name-giving corner of zeros in the matrix.

In practice, the exact values of ρ are not known. After replacing the exact values by the

estimates ρ̂, a test becomes necessary to evaluate the possible orders. Two possible ways to

obtain these candidate orders will be illustrated below.

[De Gooijer and Heuts, 1981] used that if ∆̂ is a 1×n vector of determinants and H0 is that

they all have i ≥ q + 1 and j ≥ p+ 1 it holds that

T (∆̂)(ÂĜHÂ
t)−1∆̂t d−→ X 2

n , under H0 (17)

where Â is an n×H matrix with

Â(r, s) =
∂∆̂(r)

∂ρ̂(s)

T is the number of observed data points and ĜH is the H ×H covariance matrix with

ĜH(r, s) =
∞∑

h=−∞

(
ρ̂(h)ρ̂(h− r + s) + ρ̂(h+ s)ρ̂(h− r)

− 2ρ̂(h)ρ̂(s)ρ̂(h− r)− 2ρ̂(r)ρ̂(h)ρ̂(h− s) + 2ρ̂(r)ρ̂(s)ρ̂(h)2
) (18)
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where H is the maximum index h such that ρ̂(h) is used in one of the determinants ∆̂1, . . . ∆̂n.

The sum in (18) can in practice not be infinite. [Chan, 1999] suggests, that 50 should be a

sufficient number for estimation. Another option to estimate this matrix is to use an estimator

along the lines of equation (29). The inversion of the matrix in (17) can pose a problem, since

it is not given that the estimated matrix is non-singular. [De Gooijer and Heuts, 1981] used

a generalized inverse. They find disappointing performances for small samples, but large ones

work well. Further, visual inspection was found to not give a clear answer.

Another approach is used by [Chan, 1999]. With similar notations as above, but with a

shifted matrix ∆̃ = (∆̂(i+ 1, j + 1))i,j and Ãi,j(s) = ∆̃(i+ 1, j + 1)/ρ(s) for s = 1 . . . h, a new

matrix is defined by

D∗ =


O, if

∣∣∣∣ ∆̃(i+ 1, j + 1)

SE(∆̃(i+ 1, j + 1))

∣∣∣∣ < 2

X, otherwise

with

SE(∆̂(i+ 1, j + 1)) =

√
Ãi,jĜHÃT

i,j

T

In the new D∗ matrix, the value O stands for a value that is not significantly different from

zero, while X stands for a value that is significantly different form zero. In this case the

problem of matrix inversion is gone and it also gives a good visual view which leads to some

promising candidates for p and q, but it is not a formal significance test. Nevertheless, [Chan,

1999] finds good performance of the corner method in large samples, where it outperforms the

other algorithms that are considered.

Now continuing with the model for X2, it is possible, given enough sample data, to find

promising candidates (r̂, p̂) for r and p. Since it holds, that r = max(p, q) ≥ p, [Francq and

Zakoian, 2019] suggest using

(p, q) =

(p̂, r̂) if r̂ ≥ p̂

(p̂, i) for i = 1 . . . r̂, if r̂ < p̂

as candidates.

3.3.5 Testing for ARCH

Before estimating a GARCH model, first one needs to test, if the data displays conditional

heteroskedasticity. This is generally done using a LM (Lagrange multiplier) test, which is used

in [Dyhrberg, 2016a] or [Nguyen et al., 2019].
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Definition 3.8. In a model with unknown parameter vector θ ∈ Rd and observations X =

(X1, . . . Xn), the hypothesis

H0 : Rθ0 = r

with a matrix of full rank R ∈ Rs×d and r ∈ Rs is tested with the LM test statistic or score

test statistic

LMn :=
1

n

∂ln(θ̂)

∂θT
Î−1(θ̂)

∂ln(θ̂)

∂θ
(19)

where ln is the log-likelihood function given the observations X, θ̂ = argmaxRθ=r ln(θ) is the

maximum of the constrained log-likelihood function and with Î being an estimator of the

Fisher Information. For example

Î = − 1

n

∂2ln(θ̂)

∂θ∂θT

Further the term
1√
n

∂ln(θ)

∂θ

is called the score.

Theorem 7. If the score exists almost everywhere and satisfies a CLT, it holds that under H0

LMn → χ2
s (20)

Proof. A more precise formulation of the theorem and its proof can be found in [Aitchison and

Silvey, 1958].

The following derivation of the LM test for the ARCH effect is following [Francq and Zakoian,

2019].

The ARCH model, that is tested for, can be stated as

Xt = σtηt, ηt ∼ i.i.d(0, 1) (21)

σ2t = ω +

q∑
i=1

αiX
2
t−i (22)

with ω > 0 and αi ≥ 0.

For calculation purposes, the variance of the innovations is fixed, but it can easily be incorpo-

rated in the σ part, so nothing changes for the generality of the model. The hypothesis that

is tested is

H0 : α1 = · · · = αq = 0 (23)

In the absence of a log-likelihood function, a gaussian quasi-log-likelihood function is used,

which is given in the following form
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qln(θ) = −1

2

n∑
t=1

{
X2

t

σ2t (θ)
+ log σ2t (θ)

}
, σ2t (θ) = ω +

q∑
i=1

αiX
2
t−i (24)

For this, the convention of Xt = 0 for t < 0 is used. Conditions to the usability of the quasi-

likelihood are briefly discussed in Section 3.3.7.

In the proof of the LM test, it is used that

1√
n

∂ln(θ0)

∂θ
→ N (0,F)

This no longer holds true for the quasi-log-likelihood. Therefore, one has to calculate the limit.

In this case θ0 = (ω0, 0, . . . 0).

1√
n

∂qln(θ0)

∂θ
=

1

2
√
n

n∑
t=1

X2
t − σ2t (θ0)

σ4t (θ0)

∂σ2t (θ0)

∂θ
(25)

Plugging in Xt = σtηt and using the form of σ2t (θ0) represented in equation (24) one gets

1√
n

∂qln(θ0)

∂θ
=

1

2
√
n

n∑
t=1

η2t − 1

ω0


1

X2
t−1
...

X2
t−q

 (26)

It is easy to see, that the expectation of this term is zero. Since ηt is independent of Xs for

all s < t it follows that we just need to check E[η2t − 1], which is assumed to be zero by the

variance and expectation conditions on ηt. To obtain the covariance matrix of the vector given

in (26), more calculations are necessary. For this define κη = E[η4t ]. For the first entry, one

gets

V
[

1

2
√
n

n∑
t=1

η2t − 1

ω0

]
=

1

4nω2
0

E
[ n∑

t=1

(η2t − 1)2
]
=

1

4nω2
0

E
[ n∑

t=1

η4t − 1

]
=
κη − 1

4ω2
0

The remaining diagonal elements of the covariance matrix are

V
[

1

2
√
n

n∑
t=1

η2t − 1

ω2
0

X2
t−1

]
=

1

4nω2
0

E
[ n∑

t=1

(η2t−1)2σ4t (θ0)η
4
t−1

]
=

1

4n
E
[ n∑

t=1

(η2t−1)2η4t−1

]
=

(κη − 1)κη
4
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Let i > j ≥ 2, then for those non-diagonal elements, which are not in the first column or

row, one gets

E
[
1

4n

n∑
t=1

η2t − 1

ω0
X2

t−i

n∑
t=1

η2t − 1

ω0
X2

t−j

]
=

1

4nω2
0

E
[ n∑

t=1

(η2t−1)2X2
t−iX

2
t−j

]
=

1

4n
E
[ n∑

t=1

(η2t−1)2
]
=
κη − 1

4

Lastly, for the non-diagonal elements of the first row or column, we almost analogously get

E
[
1

4n

n∑
t=1

η2t − 1

ω0

n∑
t=1

η2t − 1

ω0
X2

t−j

]
=

1

4nω2
0

E
[ n∑

t=1

(η2t−1)2X2
t−j

]
=

1

4nω0
E
[ n∑

t=1

(η2t−1)2
]
=
κη − 1

4ω0

So, the new CLT is
1√
n

∂qln(θ0)

∂θ
→ N (0, I) (27)

where I is

I =
κη − 1

4ω2
0



1 ω0 . . . . . . ω0

ω0 ω2
0κη ω2

0 . . . ω2
0

... ω2
0

. . .
. . .

...
...

...
. . .

. . . ω2
0

ω0 ω2
0 . . . ω2

0 ω2
0κη


=:

κη − 1

4ω2
0

[
1 ω0

ωt
0 Ipp

]

Now the last piece, that is missing is the score term for θ̂ = argmaxθ=(ω,0...0) ln(θ). For

α = (α1, . . . αq), it holds that

∂qln(θ̂)

∂θ
=

(
0

∂qln(θ̂)
∂α

)

since θ̂ is the maximiser. Further

∂qln(θ̂)

∂α
= −1

2

∂

∂α

n∑
t=1

(
X2

t

σ2t (θ̂)
+ log σ2t (θ̂)

)
=

1

2

n∑
t=1

(
X2

t

ω̂2
− 1

ω̂

)
X2

t−1
...

X2
t−q


So, to get LMn, only the lower right-hand q × q matrix of I−1 needs to be calculated, this

block will be referred to as I−1
qq . This can simply be calculated by

I−1
qq =

(
κη − 1

4ω2
0

(Iqq − ωt
0ω0)

)−1

=
4ω2

0

κη − 1

(
ω2
0(κη − 1)Iq

)−1

=
4

(κη − 1)2
Iq

where Iq is the identity matrix of size q × q.
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The closed-form expression of LMn is

LMn =
1

n

∂qln(θ̂)

∂αT
I−1
qq

∂qln(θ̂)

∂α
=

1

n

q∑
h=1

(
1

κη − 1

n∑
t=1

(
X2

t

ω̂2
− 1

ω̂

)
X2

t−1
...

X2
t−p


)2

(28)

but I−1
pp and κη are unknown and have to be estimated. There are several ways to do this.

Here, only one example of a HAC (heteroscedastic and autocorrelation consistent) covariance

matrix estimator will be presented. For this let Score(n) := 1√
n
∂qln(θ0)

∂θ

Î(ST ) :=
T

T − r

T−1∑
j=−T+1

ker

(
j

ST

)
Γ̂(j), where

Γ̂(j) =



1

T

T∑
n=j+1

Score(n) Score(n− j)T for j ≥ 0,

1

T

T∑
n=−j+1

Score(n+ j) Score(n)T for j < 0,

ker(x) := 1− | x |, ST ∈ o(T 1/4), lim
T→∞

ST = ∞

(29)

There are several choices for the kernel function and the ST function. This estimator was

proposed in [Newey and West, 1987], and is consistent under the conditions given in Theorem

2 of their paper. The notation, in which the estimator is stated, is from [Andrews, 1991], where

the class of estimators is extended by on one hand giving several different kernel functions and

on the other hand increasing the possible choices of ST to o(T ).

3.3.6 Estimation of the GARCH model

Estimation of the GARCH model can be done via Maximum Likelihood Estimation. Here,

again the gaussian quasi-log-likelihood will be used. This Section and the next one follow the

steps presented in [Francq and Zaköıan, 2004], where the proofs for the results stated herein

can be found.

For these models q + p+ 1 parameters need to be estimated.

θ = (ω, α1, . . . αq, β1, . . . , βp)
t ∈ Θ ⊂]0,∞[×[0,∞[p+q

Let θ0 be the true and unknown parameter values, and let X1, . . . Xn be a known realization

from the GARCH model with parameters θ.
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Conditional on starting values X0, . . . , X1−q, σ̂
2
0, . . . σ̂

2
1−p the quasi-likelihood is given as

Ln(θ) = Ln(θ;X1, . . . Xn) =

n∑
t=1

1√
2πσ̂2t

exp

(
− X2

t

2σ̂2t

)

where σ̂2t is recursively defined through

σ̂2t = ω +

q∑
i=1

αiX
2
t−i +

p∑
i=1

βiσ̂
2
t−i, ∀t ≥ 0

The two different options of starting values suggested in [Francq and Zaköıan, 2004] are

X2
0 = · · · = X2

1−q = σ̂20 = · · · = σ̂21−p = ω

and

X2
0 = · · · = X2

1−q = σ̂20 = · · · = σ̂21−p = X2
1

In [Francq and Zakoian, 2019] additionally the long run variance from Theorem 2 is suggested

X2
0 = · · · = X2

1−q = σ̂20 = · · · = σ̂20 = ω(1−
q∑

i=1

αiV[η] +
p∑

i=1

βi)
−1

for the case that second order stationarity is assumed.

Lastly, the estimator can be formulated via the quasi-log-likelihood as

θ̂n := argmin
θ∈Θ

ln(θ) = argmin
θ∈Θ

1

n

n∑
t=1

X2
t

σ̂2t
+ log σ̂2t (30)

It is also possible to use a Maximum Likelihood Estimator with a predetermined density

for ηt. This can sometimes yield an advantage, by either reducing the assumptions on the

moments of ηt for asymptotic normality, that will be needed in Theorem 13, or by making the

estimator efficient, if it is not already. In the case of a missspecified distribution, this equals

a non-gaussian quasi-likelihood estimator, which can be consistent given a constraint on the

distribution η, which is already fullfilled in the normal case for the choice of E[η] = 0. A list

of these constraints can be found in [Francq and Zakoian, 2019].
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3.3.7 Consistency conditions of quasi-likelihood estimators

First define

Aθ(z) :=

q∑
i=1

αiz
i, Bθ(z) := 1−

p∑
i=1

βiz
i

Further let γ(A) be the top Lyapunov exponent as defined in Section 3.3.2 and θ0 be the true

value of θ.

Theorem 8. For the quasi-likelihood estimator θ̂n in equation (30), with initial conditions as

above, it holds that θ̂n → θ0, as n→ ∞, if the following conditions are met:

1. θ0 ∈ Θ and Θ is compact

2. γ(A) < 0 and ∀θ ∈ Θ,
∑p

i=1 βi < 1

3. η2t has a non-degenerate distribution and E[η2t ] = 1

4. If p > 0, Aθ(z) and Bθ(z) have no common root, Aθ(1) ̸= 0 and αq + βp ̸= 0

Theorem 9. Under the conditions of Theorem 8 and the additional assumptions

1. θ0 ∈ Θ̊ where Θ̊ is the interior of Θ

2. κη := E[η4] <∞

it holds that
√
n(θ̂n − θ0) → N (0, (κη − 1)J−1) (31)

where

J := Eθ0

[∂2(X2
t

σ2
t
+ log σ2t

)
∂θ∂θT

]
= Eθ0

[
1

σ4t (θ0)

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θT

]

As mentioned above, these theorems originate from [Francq and Zaköıan, 2004], where their

proofs can be found. Condition 1 of Theorem 9 implies that αi > 0 and βi > 0, which is not in

line with the model assumptions. This is a problem, making this asymptotic distribution not

always valid. Although by imposing

E[X6
t ] <∞ (32)

as an additional assumption to ensure the existence of J from Theorem 13, one gets a similar

asymptotic distribution, but constrained on a space ∆ := ∆1×∆2×· · ·×∆p+q+1 where ∆1 = R
and for ı = 1, . . . , p+ q+1 : ∆i = R if θi ̸= 0 and ∆i = [o,∞[ if θi = 0. Further the condition

in equation (32) is sufficient, but not necessary. [Francq and Zakoian, 2019]
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3.4 GARCH Extensions

There are several different types of univariate GARCH models that are being used to model

cryptoassets. Usually, they include more parameters to model certain properties that the

standard GARCH model misses. In this subsection, a few of these models will briefly be

introduced, but their implementation will not be discussed in as much detail as for the GARCH

model above.

3.4.1 IGARCH model

Definition 3.9. Let (Xt)t∈Z be a time series, (ηt)t∈Z be an i.i.d. sequence with law L that

satisfies E[η1] = 0. Further let p ≥ 0, q > 0, ω ≥ 0, αi ≥ 0 ∀i = 1 . . . q and βi ≥ 0 ∀i = 1 . . . p.

Then (Xt)t∈Z is called an IGARCH(p,q) process, if

Xt = σtηt (33)

σ2t = ω +

q∑
i=1

αiX
2
t−i +

p∑
i=1

βiσ
2
t−i (34)

q∑
i=1

αi +

p∑
i=1

βi = 1 (35)

IGARCH stands for integrated GARCH model and was introduced in [Engle and Bollerslev,

1986]. This model is more or less a special case of the GARCH model. The only extension

is that ω is allowed to be zero, in this case the model will almost surely converge to zero, as

shown in [Nelson, 1990]. For the following, it is assumed that ω > 0.

The actual important attribute of this model is, that even though the second order stationarity

is not given anymore (since the unconditional variance does not exist), it still is strictly sta-

tionary. For the IGARCH(1,1) model, the proof can be found in [Nelson, 1990]. The general

stationarity results are the same as specified above for the GARCH model.

This the IGARCH model creates a volatility process that characterizes itself through shock

persistence. Furthermore if the sample sizes for the estimation of a GARCH model increases,

it often approaches an IGARCH model. This is typically attributed to model missspecification

[Paolella, 2018].
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Figure 8: Sample path of an IGARCH(1,1) model with α = β = 0.5 and ω = 1

Figure 8 depicts a sample path of an IGARCH(1,1) model. Notable here is that even though

the conditional variance does not exist, it is easy to see that the variance does not explode,

which is in agreement with the stationarity result.

3.4.2 EGARCH model

Definition 3.10. Let (Xt)t∈Z be a time series, (ηt)t∈Z be an i.i.d. sequence with law L that

satisfies E[η1] = 0 and V[η1] = 1. Further let p ≥ 0, q > 0, ω, αi, βj , θ, γ ∈ R, for i = 1, . . . , q

and j = 1, . . . , p. Then (Xt)t∈Z is called an EGARCH(p,q) process, if

Xt = σtηt (36)

lnσ2t = ω +

q∑
i=1

αig(ηt−i) +

p∑
i=1

βi lnσ
2
t−i (37)

g(ηt−i) = θηt−i + γ(| ηt−i | −E[| ηt−i |]) (38)

EGARCH stands for exponential GARCH and was proposed in [Nelson, 1991] to address

three problems. Firstly, that volatility tends to rise in response to “bad news”, i.e. negative

returns, and to fall in response to good news. This dynamic is named “leverage effect” and

is not captured in the standard GARCH model, since the impact is weighted symmetrically.

Secondly, the constraints of nonnegativity the aforementioned GARCH models impose on the
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parameters. Third and lastly, shock persistence in the GARCH model is subject to the norms

used to measure it.

The solution to the first two problems is visible in the model equations. Equation (38) has a

symmetric component with parameter γ and an asymmetric one with parameter θ. In order

to get the assymetric effect desired in [Nelson, 1991] in an EGARCH(1,1) model it must hold

that θα1 < 0.

Further parameters for EGARCH can be chosen in R, since the log of σ2t can be negative,

though it is suggested to choose parameters so that −γ < θ < γ, guaranteeing that large

absolute values of ηt will increase the variance, which is generally assumed to be true in

financial time series.

Strict stationarity of the model is given under the fourth condition of Theorem 8 with the

addition that no polynomial has a root in the unit disk [Francq and Zakoian, 2019].

Equation (37) can be rewritten as

σ2t = eω
q∏

i=1

exp
(
αig(ηt−i)

) p∏
i=1

σ2βi
t−i

to illustrate that this model uses multiplicative dynamics. Further, by plugging in g one can

see that in the exponent the gamma coefficient comes in front of

exp(| ηt−i |)
exp(E[| ηt−i |])

showcasing that the ratio between the exponent of the expectation and the exponent of the

realization is used for the symmetric part.
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Figure 9: Sample path of an EGARCH(1,1) model with α = β = 0.3, ω = 1, θ = −0.2
and γ = 0.7

Figure 9 shows a realization of an EGARCH(1,1) model, with the parameters chosen as

above; one can see, that a positive η is multiplied by θ + γ = 0.7, while a negative one is

multiplied by θ − γ = −0.9. The coefficient being negative results in a positive addition to

the variance, which has more impact than that of a positive realization, implying presence of

the leverage effect. However this can only be observed when the parameters are known and is

hardly visible in the plot.

3.4.3 TGARCH model

Definition 3.11. Let (Xt)t∈Z be a time series, (ηt)t∈Z be an i.i.d. sequence with law L that

satisfies E[η1] = 0 and V[η1] = 1. Further, let p ≥ 0, q > 0, ω, αi,+, αi,−, βj ∈ R for i = 1, . . . , q

and j = 1, . . . , p. Then (Xt)t∈Z is called a TGARCH(p,q) process, if

Xt = σtηt (39)

σt = ω +

q∑
i=1

(
αi,+X

+
t−i − αi,−X

−
t−i

)
+

p∑
i=1

βiσt−i (40)

where

X+
t :=

Xt, if Xt > 0

0, else
, X−

t :=

Xt, if Xt < 0

0, else
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TGARCH stands for threshold GARCH and does not model the variance, but the standard

deviation. It was proposed in [Zakoian, 1994] and also features asymmetry. The actual condi-

tional standard deviation is | σt | and not σt, but negative values are allowed for the equations

above.

A stationarity condition for the TGARCH(1,1) model is given by

ω > 0, α1,+ ≥ 0, α1,− ≥ 0, β1 ≥ 0 and E[α1,+ +−η+1 α1,−η
−
1 + β1] < 0

Similar as for the GARCH model in Theorem 4 a strict stationarity condition can be found by

regarding the top Lyapunov exponent for a matrix equation for the TGARCH model [Francq

and Zakoian, 2019].

Figure 10: Sample path of a TGARCH(1,1) model with α+ = 0.4, α− = −0.6, β = 0.5
and ω = 1

The sample path in Figure 10 belongs to a TGARCH(1,1) model; in contrast to the EGARCH

model, the amount of asymmetry is directly visible in the choices of the α coefficients. Again,

visibility of these asymmetries is not given in the plot.

3.4.4 GJR-GARCH

Definition 3.12. Let (Xt)t∈Z be a time series, (ηt)t∈Z be an i.i.d. sequence with law L that

satisfies E[η1] = 0 and V[η1] = 1. Further let p ≥ 0, q > 0, ω > 0, αi ≥ 0, α∗
i ≥ 0, βj ≥ 0 for
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i = 1, . . . q and j = 1, . . . , p. Then (Xt)t∈Z is called a GJR GARCH(p,q) process, if

Xt = σtηt (41)

σ2t = ω +

q∑
i=1

(αi1(Xt−i≥0) + α∗
i1(Xt−i<0))X

2
t−i +

p∑
i=1

βiσ
2
t−i (42)

GJR-GARCH stands for Glosten Jagannathan and Runkle GARCH and was introduced in

[Glosten et al., 1993]. It includes asymmetry in a framework that is even more similar to the

original GARCH model than the previous two. The main selling point of the GJR-GARCH

model is that it captures the leverage effect, but is way simpler than the EGARCH model and

can be compared to a pure GARCH model more easily.

Stationarity of the GJR-GARCH model is studied in [Noori and Mohammad, 2021], where a

necessary and sufficient condition for second order stationarity is found to be

q∑
i=1

(
α

2
+
α∗

2
) +

p∑
i=1

βi < 1

Figure 11: Sample path of a GJR-GARCH(1,1) model with α = 0.1, α∗ = 0.8, β = 0.2
and ω = 1

Figure 11 displays a realization of a GJR-GARCH(1,1) model, herein the asymmetry is

vastly increased, but still it is not observable in the plot alone.
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Figure 12: Shows the variance of the GJR-GARCH(1,1) realization from above (black)
and a smoothed version of the returns (red) as comparison

In Figure 12, two paths are displayed. Shown in black is the variance of the GJR-GARCH(1,1)

realization of Figure 11, and in red a smoothed version of the returns. The smoothing is done

by taking an arithmetic mean over five observations (i− 2, i− 1, i, i+1, i+2). The purpose is

to depict the trend of the returns Xt around time t. With this smoothing, one can see, that in

periods of time where Xt had a positive trend, the variance remains rather small, but as soon

as a negative trend occurs, spikes are created, which grow until the trend becomes positive

again. At this point, the variance starts to fall off again.

3.4.5 APGARCH

Definition 3.13. Let (Xt)t∈Z be a time series, (ηt)t∈Z be an i.i.d. sequence with law L that

satisfies E[η1] = 0 and V[η1] = 1. Further, let p ≥ 0, q > 0, ω > 0, αi ≥ 0, | ζi |≤ 1, βj ≥ 0, for

i = 1, . . . , q, j = 1, . . . , p and δ > 0. Then (Xt)t∈Z is called an APGARCH(p,q) process, if

Xt = σtηt (43)

σδt = ω +

q∑
i=1

αi(| Xt−i | −ζiXt−i)
δ +

p∑
i=1

βiσ
δ
t−i (44)

APGARCH stands for asymmetric power GARCH and was introduced in [Ding et al., 1993].

The purpose of δ is to improve the modelling of the ”long memory” property. The δi are similar

to those in the EGARCH model, just that the APGARCH model uses an additive variance
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equation. The model can be reduced to the standard GARCH by setting δ = 2 and ζi = 0,

or to the TGARCH model by setting δ = 1. It is also a generalization of the GJR-GARCH

model, by using δ = 2 and αi, ζi that solve αGJR = α(1− ζ)2 and α∗
GJR = α(1 + ζ)2.

A strict stationarity condition for the APGARCH(1,1) model is

E[α1(1− ζ1)
δ | ηt |δ 1(ηt>0) + α1(1 + ζ1)

δ | ηt |δ 1(ηt<0) + β1]

Since the APARCH model is a generalization of the above, for sample paths it is referred to

those Figures, as they incorporate the more commonly used cases.

3.4.6 GARCHM model

Definition 3.14. Let (Xt)t∈Z be a time series, (ηt)t∈Z be an i.i.d. sequence with law L that

satisfies E[η1] = 0 and V[η1] = 1. Further, let p ≥ 0, q > 0, ω > 0, αi ≥ 0, βj ≥ 0 for

i = 1, . . . , q, j = 1, . . . , p and λ ∈ R. Then (Xt)t∈Z is called a GARCH(p,q)-in-mean

process, if

Xt = σtηt + λσ2t (45)

σ2t = ω +

q∑
i=1

αiX
2
t−i +

p∑
i=1

βiσ
2
t−i (46)

[Tsay, 2010]

GARCHM stands for GARCH-in-mean and is an add-on to the GARCH model, that can

be used on any of the described models above. Here, the variance impacts the mean equation

directly. This addition can be interpreted as a risk premium, by setting λ < 0 to reduce the

returns.
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Figure 13: Sample path of GARCH-in-mean(1,1) model, with α = 0.4, β = 0.4, λ = 0.05
and ω = 1

In Figure 13, a sample path of a GARCH-in-mean(1,1) model is shown. In blue, a trendline

is displayed, and in red, the x-axis is highlighted. From equation (45), one can see that it

holds that E[Xt] = E[σtηt + λσ2t ] = λE[σ2t ] < 0 for λ < 0. This fact is visualised above by the

comparison between the blue trendline and the red x-axis.
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4 Multivariate GARCH models

4.1 Changes for multivariate models

While the concept of strict stationarity can easily be used for multivariate processes as well,

second order stationarity needs to be generalized.

Definition 4.1. A process Xt ∈ Rm is second order stationary if

(i) E[X2
it] <∞, ∀t ∈ Z, i = 1, . . . ,m

(ii) E[Xt] = µ, ∀t ∈ Z

(iii) Cov[Xt, Xt+h] = Γ(h), ∀t, h ∈ Z

[Francq and Zakoian, 2019]

Remark. While the input of Γ is still a scalar, the output now is an m×m matrix.

When looking at the first equation of the univariate GARCH model

Xt = σtηt

one can observe, that, in the multivariate, case Xt and ηt become vectors, but σt becomes a

matrix. So, the equation transforms to

Xt = H
1/2
t ηt

where Xt ∈ Rm, Ht ∈ Rm×m, and ηt = (η1t , . . . , η
m
t ) ∈ Rm are i.i.d. random vectors with

distribution L on Rm with E[ηit] = 0, ∀i = 1, . . . ,m and V[η] = Im. In the GARCH model,

the variance only depends on the past so it holds that

V[Xt | Ft−1] = Ht (47)

where Ft−1 is the information set up to time t − 1. The condition on the variance in the

univariate case was σ > 0, which in the multivariate case generalizes to Ht > 0 and hij = hji.

Ensuring positive definiteness and symmetry is more difficult than just ensuring positivity.

However, ifHt is positive definite and symmetric, it is, by the Cholesky decomposition, possible

to choose H
1/2
t as a triangular matrix with positive diagonal elements.

Definition 4.2. Let A = (aij)
m
i,j=1 ∈ Rm×m be a symmetric matrix. Then

vech(A) := (a11, . . . , a1m, a22, . . . , a2m, . . . , amm)
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is a bijective transformation from the class of symmetric m ×m matrices to m × (m + 1)/2

vectors.

With this it is possible to define a very general multivariate GARCH (MGARCH) model

Definition 4.3. Let (Xt)t∈Z be anm-dimensional time series vector, (ηt)t∈Z be a vector valued

i.i.d. sequence with law L that satisfies E[ηt] = 0 and V[ηt] = Im. Further, let p ≥ 0, q > 0,

ω ∈ R
m(m+1)

2 and Ai, Bj ∈ R
m(m+1)

2
×m(m+1)

2 for i = 1, . . . , q, j = 1, . . . , p. Then (Xt)t∈Z is called

a VEC-GARCH(p,q) process, if

Xt = H
1/2
t ηt (48)

where Ht is positive definite, such that

vech(Ht) = ω +

q∑
i=1

Aivech(Xt−iX
T
t−i) +

p∑
i=1

Bivech(Ht−i) (49)

The ARCH version of this model was introduced in [Engle et al., 1984] and generalized in

[Bollerslev et al., 1988]. The VEC-GARCH model uses all information given to predict the

covariance matrix for the next step. Therefore, it is very general, which is not always an

advantage. The model uses (p + q)
(m(m+1)

2

)2
+ m(m+1)

2 parameters, which is of order four in

m and becomes large quickly. This can lead to several problems like, for example, overfitting

or costly estimation.

There are several more parsimonious parametrisations for MGARCH models, in this paper

the CCC- and DCC-GARCH models are discussed in more detail. Furthermore one other

model has been frequently used to model cryptoassets, so for the sake of completeness it is

briefly introduced here.

The BEKK (Baba Engel Kraft Kroner) GARCH model was introduced in [Engle and Kroner,

1995], but originally, four people worked on the creation, therefore the name. It is a direct

restriction of the VEC-GARCHmodel above, by usingm×mmatrices and working onXt−iX
T
t−i

directly instead of vec(Xt−iX
T
t−i), which drastically reduces the amount of parameters used.

Definition 4.4. Let (Xt)t∈Z be an m-dimensional time series vector, (ηt)t∈Z be a vector valued

i.i.d. sequence with law L that satisfies E[η1] = 0 and V[η1] = Im. Further, let p ≥ 0, q > 0,

K ∈ N, Ω ∈ Rm×m, Ω positive definite and Ai, Bj ∈ Rm×m for i = 1, . . . , q, j = 1, . . . , p. Then

(Xt)t∈Z is called a BEKK-GARCH(p,q) process, if

Xt = H
1/2
t ηt (50)

with

Ht = Ω+

q∑
i=1

K∑
k=1

AikXt−iX
T
t−iA

T
ik +

p∑
i=1

K∑
k=1

BikHt−iB
T
ik (51)
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4.2 CCC-GARCH model

4.2.1 Definition of the model

The Constant Conditional Correlations GARCH model was introduced by [Bollerslev, 1990].

The name refers to the restriction that is imposed on the data. The Pearson correlations of

the Xt are assumed to be constant, i. e. if Xt = H
1/2
t ηt and Ht = (hij)

m
i,j=1 then it holds that

hij,t

h
1
2
ii,th

1
2
jj,t

= ρij (52)

This makes it possible to only update the hii, i = 1, . . . ,m instead of the whole matrix. Define

R := (ρij)
m
i,j=1 (53)

Further, define for each m the function diagm, that returns a diagonal m × m-matrix with

diagonal equal to the input vector or the diagonal of the input matrix.

Definition 4.5. Let (Xt)t∈Z be anm-dimensional time series vector, (ηt)t∈Z be a vector valued

i.i.d. sequence with independent components that follows a law L that satisfies E[η1] = 0m

and V[η1] = Im. Further, let ht = (h11,t, . . . , hmm,t), X
2
t = (X2

1t, . . . , X
2
mt), R = (ρij)

m
i,j=1 with

ρij as in equation (52) and Dt = diagm
(
(
√
h11,t, . . . ,

√
hmm,t)

)
. Moreover let p ≥ 0, q > 0,

ω ∈ (R+)m and Ai, Bj ∈ (R+
0 )

m×m for i = 1, . . . , q, j = 1, . . . , p..

Then (Xt)t∈Z is called a CCC-GARCH(p,q) process, if

Xt = H
1/2
t ηt (54)

with

Ht = DtRDt (55)

and

ht = ω +

q∑
i=1

AiX
2
t +

p∑
i=1

Biht−i (56)

Note, that the order of parameters in m is now only two. Ensuring positivity of Ht is

quite straightforward. It suffices to choose R positive definite and symmetric, and that the

coefficients of Ai and Bi are non-negative. Further, if both Ai and Bj are diagonal for i =

1, . . . , q, j = 1, . . . p, respectively, then the CCC-GARCH model consists of m univariate

GARCH(p,q) models with correlation matrix R.

Example. Illustration of the difference to the VEC-GARCH model
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Consider a bivariate CCC-ARCH(1) model, with

A =

[
2 1

1 2

]
R =

[
1 c

c 1

]
ω =

(
1

1

)

Then it holds that

h1,t = 1 + 2X2
1,t−1 +X2

2,t−1

h2,t = 1 +X2
1,t−1 + 2X2

2,t−1

From this follows for Ht

Ht = DtRDt =

[√
h1,t 0

0
√
h2,t

][
1 c

c 1

][√
h1,t 0

0
√
h2,t

]
=

[
h1,t c

√
h1,t
√
h2,t

c
√
h1,t
√
h2,t h2,t

]

Plugging in the values for h1,t and h2,t, the off-diagonal elements of Ht become

c
√
1 + 2X2

1,t−1 +X2
2,t−1

√
1 +X2

1,t−1 + 2X2
2,t−1

This term is nonlinear in the squared returns, therefore there can not be a representation of

this in form of a VEC-GARCH model as in Definition 4.3. If R is a diagonal matrix, i.e. an

identity matrix, this becomes possible, though in this case one should not use a multivariate

model to begin with.

4.2.2 Stationarity of the CCC-GARCH model

In a similar manner as in the steps leading to Theorem 4, a matrix for the CCC-GARCH model

can be constructed.

Define η̂t := R
1
2 ηt and Γt := diagm

(
(η̂21,t, . . . , η̂

2
m,t)

)
with this and the convention that the

squares are applied element wise, it holds that

X2
t = Htη

2
t = DtRDtη

2
t = RD2

t η
2
t = R diagm(η2t )ht = Γtht

Multiplying equation (56) with Γt therefore yields

X2
t = Γtω +

q∑
i=1

ΓtAiX
2
t +

p∑
i=1

ΓtBiht−i (57)

which can be rewritten as

zt = bt +Atzt−1
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with

bt =



Γtω

0
...

0

ω

0
...

0


∈ Rm(p+q) zt =



Xt

...

Xt−q+1

ht
...

ht−p+1


∈ Rm(p+q)

At =



ΓtA1 . . . . . . . . . ΓtAq ΓtB1 . . . . . . . . . ΓBp

Im 0 . . . . . . 0 0 . . . . . . . . . 0

0 Im
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

0 . . . 0 Im 0 0 . . . . . . . . . 0

A1 . . . . . . . . . Aq B1 . . . . . . . . . Bp

0 . . . . . . . . . 0 Im 0 . . . . . . 0
...

... 0 Im
. . .

...
...

...
...

. . .
. . .

. . .
...

0 . . . . . . . . . 0 0 . . . 0 Im 0



∈ Rm(p+q)×m(p+q)

Let A = (At)t∈Z, then γ(A) is called the top Lyapunov coefficient for the CCC-GARCH model.

Theorem 10. A CCC-GARCH(p,q) model is strictly stationary, if and only if its top Lyapunov

exponent satisfies γ(A) < 0.

Proof. The proof can be found in [Francq and Zakoian, 2019].

Second order stationarity is again very similar to the univariate case. With matrices, the

spectral radius has to be constrained, but apart from that a very similar result to Theorem 2

holds.

Theorem 11. The CCC-GARCH process is second order stationary, if and only if

ρ

( q∑
i=1

Ai +

p∑
i=1

Bi

)
< 1 (58)

where ρ denotes the spectral radius. In this case it holds that

h̃ := E[ht] =
(
Im −

q∑
i=1

Ai −
p∑

i=1

Bi

)−1

ω (59)

51



Cryptoasset Return Modelling Söllinger

4.2.3 Estimation of the CCC-GARCH model

Similar to chapter 3.3.6, a QML estimators can be derived. Again, all theorems for this Section

come from [Francq and Zakoian, 2019], where proofs are provided.

Let θ = (ω, vec(A1), . . . , vec(Aq), vec(B1), . . . , vec(Bp), ρ21, . . . , ρm1, ρ32, . . . ρm2, . . . , ρm,m−1) be

the vector of parameters to be estimated and (X1, . . . , Xn) be an observation. Again, let the

initial values be

X2
0 = · · · = X2

1−q = h0 = · · · = h1−p = 0

or

X2
0 = · · · = X2

1−q = h0 = · · · = h1−p = ω

The normal quasi-likelihood function can be stated as

Ln(θ) = Ln(θ;X1, . . . , Xn) =
n∏

t=1

1

(2π)m/2 | Ĥt |1/2
exp

(
− 1

2
XT

t Ĥ
−1
t Xt

)
(60)

where | · | denotes the determinant and Ĥt is recursively defined for t ≥ 1 by

Ĥt = D̂tRD̂t, D̂t = diagm((

√
ĥ11,t, . . . ,

√
ĥmm,t))

ĥt = (

√
ĥ11,t, . . . ,

√
ĥmm,t)

T = ω +

q∑
i=1

AiX
2
t +

p∑
i=1

Biĥt−i

Thus, the QMLE is

θn = argmax
θ∈Θ

Ln(θ) (61)

with parameter space Θ ⊂ (0,∞)m × (0,∞)m
2(p+q) × (−1, 1)m(m−1)/2.

Regarding the consistency of the estimator in equation (61), let γ(A) once again be the

Lyapunov coefficient of the CCC-GARCH model as in Section 4.2.2 and θ0 be the true value

of θ. Further, define the polynomials

Aθ(z) :=

q∑
i=1

Aiz
i, Bθ(z) := Im −

p∑
i=1

Biz
i

In the vector case the assumption of no common roots does not guarantee that Bθ0(z)
−1Aθ0(z)
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is unique. Therefore, some preliminary notions are necessary. Define the m× 2m matrix

M1(Aθ0 ,Bθ0) := [Aq, Bp]

Definition 4.6. Two polynomials P (B) and Q(B) are left coprime if, for every common

factor U(B), i.e., P (B) = U(B)P1(B) and Q(B) = U(B)Q1(B) for some polynomials P1(B),

Q1(B), we have that U(B) is constant.

Theorem 12. For the quasi-likelihood estimator θn in equation (61), with initial conditions

as above, it holds that θ̂ → θ0, as n→ ∞, if the following statements hold:

1. θ0 ∈ Θ and Θ is compact

2. γ(A) < 0 and ∀θ ∈ Θ, | B(z) |= 0 =⇒ | z |> 1

3. η2i,t has a non-degenerate distribution for i = 1, . . . ,m

4. If p > 0, Aθ0(z) and Bθ0(z) are left coprime and M1(Aθ0 ,Bθ0) has full rank m

5. R is a positive definite correlation matrix ∀θ ∈ Θ

Theorem 13. Under the conditions of Theorem 12 and the additional assumptions

1. θ0 ∈ Θ̊ where Θ̊ is the interior of Θ

2. E
[
|| ηtηTt ||2

]
<∞

it holds that
√
n(θ̂n − θ0) → N (0, J−1IJ−1) (62)

where J is a positive definite matrix and I is a positive semi-definite matrix, given by

J := E
[
∂2lt(θ0)

∂θ∂θT

]
, I := E

[
∂lt(θ0)

∂θ

∂lt(θ0)

∂θT

]

where lt(θ) = XT
t Ĥ

−1
t Xt + log(| Ht |) is the negative quasi-log-likelihood up to a multiplicative

scalar and additive constants.

Under the conditions of Theorem 11, [Francq et al., 2014] suggest an approach to reduce the

number of parameters estimated by the QML estimator by m. This is done using that

E[X2
t ] = E[ht] = h̃ =

(
Im −

q∑
i=1

Ai −
p∑

i=1

Bi

)−1

ω
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This leads to a new representation for equation (56), which is

ht − h̃ =

q∑
i=1

Ai(X
2
t − h̃) +

p∑
i=1

Bi(ht−i − h̃) (63)

A simple estimator of h̃ is given by

ˆ̃
h =

1

n

n∑
i=1

X2
i

The remaining parameters have to be estimated with the QMLE as above. In a very general

setting, this has limited impact, but often just diagonal matrices are considered for Ai and

Bi. Adding that (1,1) are the most popular choices for (p,q), this can become a significant

reduction. [Francq and Zakoian, 2019] includes a table with a comparison of runtimes to the

pure QML estimation.

4.3 DCC-GARCH model

4.3.1 Definition of the model

One weakness of the CCC-GARCH model is its primary assumption of constant conditional

correlation. This is a big restriction and usually not true in practice. In [Engle, 2000], it

was found that, in a bivariate case where many methods are feasible, the CCC model is

outperformed by other multivariate GARCH specifications, such as the BEKK-GARCH model.

To solve this inadequacy the Dynamic Conditional Correlation GARCH model was introduced,

which performs best in the cases studied.

Definition 4.7. Let (Xt)t∈Z be anm-dimensional time series vector, (ηt)t∈Z be a vector valued

i.i.d. sequence with independent components that follows a law L that satisfies E[ηt] = 0m

and V[ηt] = Im. Further, let ht = (h11,t, . . . , hmm,t), X
2
t = (X2

1t, . . . , X
2
mt), ϵi,t = Xi,t/

√
hii,t,

with ϵt = (ϵ1,t, . . . , ϵm,t) and Dt = diagm
(
(
√
h11,t, . . . ,

√
hmm,t)

)
. Moreover let S be the

unconditional correlation matrix S = E[ϵtϵt] ∈ Rm×m and p ≥ 0, q > 0, ω ∈ (R+)m, α ≥ 0,

β ≥ 0, α+ β < 1 and Ai, Bj ∈ (R+
0 )

m×m for i = 1, . . . , q, j = 1, . . . , p.

Then (Xt)t∈Z is called a DCC-GARCH(p,q) process, if

Xt = H
1/2
t ηt (64)

with

Ht = DtRtDt (65)

ht = ω +

q∑
i=1

AiX
2
t +

p∑
i=1

Biht−i (66)
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Rt = diagm(Qt)
−1/2 Qt diagm(Qt)

−1/2 (67)

Qt = (1− α− β)S + αϵt−1ϵ
T
t−1 + βQt−1 (68)

The correlation part of this model is presented as in [Aielli, 2013], in the original represen-

tation in [Engle, 2000], equation (68) used matrix coefficients. Let E be an m×m matrix with

every entry being 1, then

Qt = (E −A−B) ◦ S +A ◦ ϵt−1ϵ
T
t−1 +B ◦Qt−1 (69)

where ◦ denotes the Hadamard product (elementwise multiplication). Here A and B have to

be positive semi-definite matrices and E −A−B has to be positive definite.

The general idea here is to let the conditional correlation matrix follow a univariate GARCH(1,1)

processes given by equation (68). Equation (67) ensures that Rt is a correlation matrix, i.e.

diag(Rt) = (1, . . . , 1). Further, if α = β = 0, then the CCC-GARCH model is obtained.

It is possible to model Rt differently, the only necessary condition here is that Rt is a correla-

tion matrix. For example, [Engle, 2000] suggests an exponential smoothed empirical correlation

matrix defined by

ρij,t =

t−1∑
s=1

λsXi,t−sXj,t−s√
t−1∑
s=1

(
λsX2

i,t−s

)
t−1∑
s=1

(
λsX2

j,t−s

) = [Rt]ij (70)

but in the end decides for the formulation as a GARCH process.

4.3.2 Corrected DCC-GARCH model

In the DCC-GARCH model, it is assumed that S is the unconditional correlation matrix, so

it must hold that S = E[ϵtϵTt ] = E[Rt] = E[diagm(Qt)
−1/2 Qt diagm(Qt)

−1/2].

Theorem 14. Assume E[Qt] and E[ϵtϵTt ] are constant in t, then it holds for a DCC-GARCH

model that

S =
1− β

1− α− β
E[diagm(Qt)

1/2ϵtϵ
T
t diagm(Qt)

1/2]]− α

1− α− β
E[ϵtϵTt ] (71)

Proof. Taking the expectation of equation (68) and rewriting it yields

S =
1− β

1− α− β
E[Qt]−

α

1− α− β
E[ϵtϵTt ]
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From equation (4.3.4) follows

E[Qt] = E[diagm(Qt)
1/2 Rt diagm(Qt)

1/2] = E[diagm(Qt)
1/2 ϵtϵ

T
t diagm(Qt)

1/2]

which proves the result above. [Aielli, 2013]

Theorem 14 shows, that S being the unconditional correlation matrix is not generally true.

This leads to inconsistency for the estimators provided in [Engle, 2000]. In [Aielli, 2013]

instead, equation (68) is suggested to be

Qt = (1− α− β)S + αdiagm(Qt)
1/2ϵt−1ϵ

T
t−1diagm(Qt)

1/2 + βQt−1 (72)

which yields

S = E[diagm(Qt)
1/2ϵt−1ϵ

T
t−1diagm(Qt)

1/2]

This model is called the cDCC-GARCH model, for stationarity and estimation this model will

be used, as results for stationarity of the DCC-GARCH model by [Engle, 2000] are non-explicit,

and the estimation is very similar.

[Francq and Zakoian, 2019] points out that in equation (72) both sides can be multiplied by

arbitrary positive definite matrices and still yields the same result for Rt, therefore the choice

of S is not unique. Here S is chosen to be a correlation matrix, i.e. diag(S) = (1, . . . , 1).

4.3.3 Stationarity of cDCC-GARCH

Stationarity of the cDCC-GARCH model is discussed in [Aielli, 2013]. For the stationarity

analysis there they generalize equation (72) to be a BEKK-GARCH model. In the model here

these conditions simplify to a not very surprising result.

Theorem 15. Consider the following

(A1) The law of ηt has absolutely continuous density, which is positive in a neighborhood of

the origin

(A2) S is positive definite

(A3) The model fulfills the necessary strict stationarity conditions for a CCC-GARCH model,

i.e. suppose α = β = 0, then the condition γ(A) < 0 in Theorem 10 has to hold.

(A4) The model fulfills the necessary weakly stationarity conditions for a CCC-GARCH model
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given in equation (58) in Theorem 11, i.e.

ρ

( q∑
i=1

Ai +

p∑
i=1

Bi

)
< 1

where ρ denotes the spectral radius.

(A5) E[Xit
2] <∞ ∀i = 1, . . . ,m.

(i) Then if A1-A3 hold, then vech(Rt) and ϵt are strictly and second order stationary. In

this case, the long-term correlation is

S = E[diagm(Qt)
1/2ϵt−1ϵ

T
t−1diagm(Qt)

1/2] (73)

(ii) Then if A1-A4 hold, then additionally vech(Ht) and Xt are strictly stationary.

(iii) Then if A1-A5 hold, then Xt is also second order stationary.

Remark. In [Aielli, 2013], the condition α+β < 1 is also listed, which is here already assumed

in the model definition. This ensures second order stationarity for the GARCH(1,1) processes

that model the correlation matrix.

4.3.4 Estimation of cDCC-GARCH

Similar to Section 4.2.3, a normal quasi-likelihood can be defined. Again, the same starting

values can be used, adding one for Q0, for example Im. The parameter vector enlarges to θ =

(ϕ, ψ), where ϕ = (ω, vec(A1), . . . , vec(Aq), vec(B1), . . . , vec(Bp)) are the parameters known

from the CCC-GARCH model that do not model correlation and ψ = (α, β, vec(S)) ∈ Ψ ⊂
(0, 1)2 × (−1, 1)m(m−1)/2 is the vector of new parameters specifying the dynamic correlation.

Ln(θ) = Ln(θ;X1, . . . , Xn) =
n∏

t=1

1

(2π)m/2 | Ĥt |1/2
exp

(
− 1

2
XT

t Ĥ
−1
t Xt

)
(74)

where Ĥt, R̂t and Q̂t are recursively defined for t ≥ 1 by

Ĥt = D̂tR̂tD̂t, D̂t = diag((

√
ĥ11,t, . . . ,

√
ĥmm,t))

ĥt = (

√
ĥ11,t, . . . ,

√
ĥmm,t)

T = ω +

q∑
i=1

AiX
2
t +

p∑
i=1

Biĥt−i

R̂t = diagm(Q̂t)
−1/2 Q̂t diagm(Q̂t)

−1/2

Q̂t = (1− α− β)S + αϵt−1ϵ
T
t−1 + βQ̂t−1
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Similar to the CCC-GARCH model, a multi-step estimator can be introduced to shorten

computation time. For this the quasi-log-likelihood function is used, which is given, up to

additive constants, by

ln(θ) = −1

2

n∑
t=1

(
log | Ĥt | +XT

t Ĥ
−1
t Xt

)
(75)

Using Ĥt = D̂tR̂tD̂t and D̂
−1Xt = ϵt this can be rewritten as

ln(θ) = −1

2

n∑
t=1

(
2 log | D̂t | + log | R̂t | +ϵ̂Tt R̂−1

t ϵ̂t

)

In [Engle, 2000], this is split into two parts

ln(θ) = ln(ϕ, ψ) = ln,v(ϕ) + ln,c(ϕ, ψ)

First, ln,v is maximized w.r.t ϕ, which yields ϕ̂. The second part is done as in [Aielli, 2013] to

ensure consistency for S.

Set

Ŝϕ,α,β =
1

n

n∑
t=1

diagm(Q̂t)
1/2ϵ̂t−1ϵ̂

T
t−1diagm(Q̂t)

1/2

where diag(Q̂t) = (q̂11,t, . . . , q̂mm,t) is recursively defined for t ≥ 1 by

q̂ii,t = (1− α− β) + αϵ̂2i,tq̂ii,t−1 + βq̂ii,t−1

Now ψ is obtained through a constrained optimization.

(α̂, β̂) = argmax
α,β≥0, α+β<1

ln(ϕ̂, α, β, Sϕ̂,α,β)

The constraint α+ β < 1 ensures stationarity of the GARCH processes that model Qt. Lastly

set Ŝ = Sϕ̂,α̂,β̂. Thus, we never optimize over more parameters than given in ϕ at once.
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5 Overview of the crypto market

This Section aims to give a short introduction to what cryptoassets are and what they are used

for. For this Bitcoin will be used as a primary example. Furhtermore the Bitcoin data will be

shortly discussed herein and some general figures about the size of the cryptoasset market will

be given. The precise technical functionality of cryptocurrencies is omitted here, as just the

financial aspects are of concern for this paper. All data used on cryptoasset prices is taken from

the website [coinmarketcap.com, 2022] and daily closing prices are considered. The current

value of the Bitcoin refers to the value at the 1st of September 2022, which is 20,127 USD.

5.1 Bitcoin

Bitcoin utilizes the Blockchain technology. This Blockchain contains all transactions ever made

inside the Bitcoin network. In order to keep this chain up to date, so-called miners regularly

add new blocks to it. Before a miner can add a block, they first must solve a puzzle, and if they

are able to do so they are awarded some amount of Bitcoins. Furthermore, other miners check

whether the block is correct. In this system, which is called proof of work, the miners check

each other, and the system can just be corrupted if the computing power of the corruptors

outweighs that of the uncorrupted miners.

In this chain the difficulty of the puzzles that need to be solved is adjusted in order to meet

the current computing power of the network, i.e. the amount of Bitcoin given out to miners

over a certain time period does not depend on the total computing power of the network. Also,

the maximum amount of Bitcoin that can be issued has been set at 21 million, but the coins

issued to a miner per block are halved in certain timeframes in order to push the date, on

which this limit is reached, even further into the future. Currently, about 19 million coins are

in circulation.

Important properties of Bitcoin

There are several important differences between Bitcoin and fiat money like the Euro or Dollar.

Here the most important are outlined:

� Divisible: As there is no physical money, Bitcoin is in theory arbitrarily divisible. In

practice, the smallest unit of Bitcoin is called a Satoshi. One Bitcoin equals 100 million

Satoshis, which puts the current price of a Satoshi at about 0.0002 USD.

� Decentralized: Behind fiat currencies, there is always an organisation (e.g. govern-

ment), but in the case of Bitcoin, transactions are saved in the blockchain and checked

by the miners. Since the miners are spread across the globe, there is no single institution

which holds the power in the Bitcoin network.
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� Anonymous: While all transactions in the crypto network are visible and can be looked

up at e.g. blockchain.com, the names of the people participating in these transactions

are not shown.

These differences are associated with advantages and disadvantages alike. Decentralization

prevents a direct regulation of the network by one central authority, but therefore it is also

safe from having a corrupt authority and is not tied to the fate of such an authority, e.g., it is

not tied to a single country that might have huge inflation because of a struggling economy.

However, having a central authority is often also perceived as a safety behind an asset. The

US government for example backs the USD and has reserves to support it, should need be. In

the case of Bitcoin, there is no such thing, if no one wants to buy them they become worthless.

Warren Buffet famously said that, if he could have all Bitcoins in existence for 25 Dollars, he

would not buy them, because their only use would be to sell them back to the people he just

bought them from. These lines of thought can often bring doubt into the minds of investors,

leading to price fluctuations. In addition, there is of course the concern that somebody could

possess 51% of all the computing power in the network, but this is highly unlikely. In the

blog article [BRAIINS, 2021], an approximation is made on how much money the necessary

hardware would cost, resulting in a figure of over five billion USD. While maybe theoretically

payable, liquidity of the market for these products prevents this possibility. However one needs

to keep in mind that mining always generates a certain payoff independent of the number of

miners, which in return means that the number of profitable miners is dependent on the price

of Bitcoin. This could lead to significantly less safety during periods of low prices.

Apart from the economic concerns, decentralization achieved through proof of work also has

environmental concerns. According to the website [DIGICONOMIST, 2022], the Bitcoin net-

work used up to 200 terawatts hours per year. The data from [WORLDDATAINFO, 2022]

suggests, that this is more than three times the amount of power consumed in Austria. While

power usage has dropped significantly due Bitcoins decline in value, it is still huge. In 2012, an

alternative for proof of work was introduced in proof of stake in [King and Nadal, 2012]. This

concept drastically decreases the environmental concerns and is already applied in Ethereum,

which switched to it from proof of work.

While anonymity sounds good, it leads to some serious issues. Being nearly untraceable, Bit-

coin is a perfect breeding ground for illegal activities. This in turn increases the desire to

regulate it by centralized authorities.

5.2 History of cryptoassets

This subsection aims to review the early history of cryptoassets and continues with the history

of Bitcoin up to present day. In more recent years, there are too many different assets on

the market, leading to the history of the whole market becoming too wide, but [Ciaian et al.,
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2018] found at least strong short-term dependencies between the assets, suggesting that major

events probably have a similar impact on most of the popular cryptoassets.

Until 2007

The first cryptoasset was developed as early as 1990 by the company DigiCash. This cryp-

toasset was called eCash and lasted till 1998, when DigiCash went bankrupt. Several other

cryptoassets such as E-Gold, Bit Gold (not to be confused with Bitcoin Gold) and B-Money

were invented around that time. These predecessors of the modern cryptoassets had some

of the desirable properties that make modern cryptoassets so popular, but ultimately, none

of them were a success. Nevertheless, they laid the technological foundation for the modern

cryptoasset market. It was not until 3 years later that the first cryptoasset which is still on

the market was released. [Reiff, 2022]

2008 - 2010

In 2008, the paper [Nakamoto, 2008] proposed a new way of using the Blockchain technology.

Satoshi Nakamoto is a pseudonym, and until today it isnot known who stands behind it. How-

ever, one year later, the same person or group released an implementation of their cryptoasset,

which became Bitcoin. At first, Bitcoin was not used as actual cash, but more of a hobby

for computer enthusiasts. It took until May 2010 before the first purchase with Bitcoins was

made. Here, 10,000 of them were used to purchase two pizzas. With the current value, this

would be just over 200 million USD.

2011

After that, Bitcoin exchanges emerged, where Bitcoins could be exchanged directly for fiat

currencies and their price rose rapidly, reaching parity with the dollar in February [Scaillet

et al., 2017]. After this, more and more vendors accepted payment in Bitcoins. Unfortunatly,

this did not only include legal ones. The article [Chen, 2011] popularized a criminal website

called Silk Road. This website used Bitcoin as a payment system for illegal substances. Other

websites such as Wikileaks also started to accept Bitcoin in 2011, since normal donations were

restricted by the US government. Of course there were plenty legal ones as well, but the illegal

vendors gave Bitcoin a real use case.

Due to the code for Bitcoin being open sourced, it did not take long until other cryptoassets,

called altcoins, entered the market. One example of an altcoin, that is still popular today, was

introduced in 2011 as Litecoin.
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2013 - 2014

The 29th of April 2013 is the begining of available price data at coinmarketcap.com. So

far, Bitcoin was trending upwards and saw a steep rise in the end of 2013, where the price

exceeded 1,000 USD for the first time. In February 2014, the largest crypto exchange called

Mt.Gox was hacked. In this process, between 500,000 and 1,000,000 Bitcoins were lost, leading

to the collapse of the exchange. This illustrated the danger of cryptoassets to investors and

organizations alike. Leading not only to legal obstacles and an immediate downwards trend, but

also to a long-term drop in value that continued until 2015. However, the database of Mt.Gox

was leaked, giving unique data for a time period between February 2011 and November 2013.

This made it possible to track the Bitcoin IDs in that time interval and sometimes even showed

the location of the traders. The unique data set was used in [Scaillet et al., 2017] to do high

frequency jump analysis for the Bitcoin returns. This paper is not included in the overview

above, since its findings are sadly not reproducible for current returns.

Figure 14: Bitcoin price history from 29.04.2013 until 31.12.2014. The first increase over
1,000 USD is marked in blue and the month with the Mt.Gox incident is
highlighted red.
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2015 - 2016

Still on the downtrend in the beginning of 2015, Bitcoin reached its minimum on the 14.01.2015

at a price of 178 USD. Then, during the rest of these two years, the price slowly crept back

up to where it already had been in 2013. In 2015, Ethereum, currently the second largest

cryptoasset, was created.

Figure 15: Bitcoin price history from 2015 - 2016. The lowest point 178 USD is marked
in blue.
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2017 - 2018

At the end of 2017, the Bitcoin price exploded for the second time. This rapid increase was

attributed to the FOMO (fear of missing out) concept, i.e. people thinking it would just

continue to increase and that if they do not invest, they would miss out on the easy money

that was to be made there. The fastest growth occurred during the eight day stretch from

29.11.2017 to 07.12.2017 (marked red in Figure 16), where the price shot up over 8,000 USD.

The price ultimately reached its climax at the 07.12.2017, where one Bitcoin was worth 19.497

USD; this record held for almost three years. The reversal in price occured due to the increasing

believe that these high prices were a bubble. Since Bitcoin is backed mainly by the believe of

its investors, the prophecy of a bubble made itself true in the sharp decline experienced shortly

after the rise, leaving Bitcoin at around 4,000 USD at the end of 2018.

Figure 16: Bitcoin price history from 2017 - 2018. Shown in red is the price increase by
more than 8,000 USD over the eight days from 29.11.2017 to 07.12.2017 and
in blue the maximaum price of 19.497 USD.
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2019 - June 2020

In the first half of 2019, the Bitcoin price doubled again to remain relatively calm until the

end of February 2020. At 11.03.2020, the WHO declared COVID-19 a pandemic, which lead

to the Bitcoin price falling by more than 37% within a single day (highlighted red in Figure

17). Until June, the price came back to its level previous to the drop.

Figure 17: Bitcoin price history from 2019 - June 2020. SHown in red is the plummeting
of the price after COVID-19 was announced a pandemic.
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June 2020 - September 2022

The second wave of COVID-19 had a very different influence on the Bitcoin price from the

first one. This time, it caused the Bitcoin price to rise. On the 8.11.2021, the record from

2017 was finally broken (marked green in Figure 18), but the price continued to skyrocket to

over 60,000 USD, thereby increasing sixfold. The first peak was reached at 13.04.2021, where

the price was 63,503 USD (marked red in Figure 18). After that, the price of Bitcoin more

than halved as it went below 30,000 USD again, before reaching its all time high on 08.11.2021

with one Bitcoin equalling 67,566 USD. On this day, the market capitalization also reached

its maximum at 1,274 billion USD. But it did not last for long, and shortly after, the Bitcoin

price droped again and currently stands around 20,000 USD, less than a third of what it was

worth once.

Figure 18: Bitcoin price history from June 2020 - September 2022. The three dots mark
the breaking point of the mark set in 2017 (green), the first COVID-19 peak
at 63,503 USD (red) and the all-time high at 67,566 USD (blue) in that order
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Complete price graph

Figure 19: Complete chart of the Bitcoin price

The complete graph often misleads to assuming that the early days of Bitcoin saw fewer

radical shifts than the current ones. However, it depicts, that even though it truly is a roller-

coaster, it has, so far, an upwards trend.

This subsection shows, that Bitcoin is a true nightmare for any risk averse investor, since

hardly any time passes until it doubles or halves.

5.3 Descriptive statistics of the cryptoasset market

Currently, coinmarketcap.com lists over 9,000 different cryptoassets, with almost 2,500 having

more than 10,000 USD in market capitalization. In this Section, a few statistics of the top ten

cryptoassets will be provided.

The data in the following table refers to the 01.09.2022.
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Name
Price

in USD

market cap

in million USD
supply capped

starting

year

Bitcoin 20,127 385,208 19.13 million 21 million 2009

Ethereum 1,586 193,834 122.2 million not capped 2015

Tether 1 67551 67.55 billion not capped 2015

USD Coin 1 52,026 52.03 billion not capped 2018

BNB 278 44,919 161.3 million 200 million 2017

Binance USD 1 19,427 19.41 billion not capped 2019

XRP 0.33 16,542 49.64 billion 100 billion 2012

Cardano 0.45 15,638 34.18 billion 45 billion 2015

Solana 31 11,046 349.7 million not capped 2019

Dogecoin 0.062 8,275 132.7 billion not capped 2013

Notice that Tether, USD Coin and Binance coin are at parity with the USD. This is not a

coincidence. These three assets are designed to stay at a constant price that is maintained by

fiat reserves. They are actually better referred to as cryptocurrencies, as they do not have the

characteristics of an asset, since they are just as volatile as the USD. While price stability can

be an advantage, it also comes at the cost of being centralized again. However, for modelling

purposes, these currencies are not of interest and will be omitted form here on.

Figure 20: A normalized logarithmic price is displayed to highlight the growth rates of
the assets from September 2019 to September 2022
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Figure 20 aims to compare the seven remaining assets. Therefore, the data is transformed in

the following way. Let price(t) be the price of one of the cryptoassets t days after 01.09.2019,

then the relative price is calculated by

relative price(t) = log

(
price(t)

price(0)

)
First, the price is normalized and then, the logarithm is taken. Therefore, every cryptoasset

(but one) starts with the value 0 at 01.09.2019. For Solana, this transformation is done at the

10.04.2020, as this is the starting point for the data. This is why, the comparison with Solana

lacks a little, but this way, the normalizing value is prior to the COVID-19 price explosion,

which gives a better indicator of how this affected each of the cryptoassets. Furthermore,

even when normalizing at the starting day for Solana, a new cryptoasset has more potential

for multiplying itself, which makes it unsurprising to see Solana at the top of the chart from

September 2021. Dogecoin toped the chart before that due to getting a lot of attention di-

rected towards it by Elon Musk. Be aware that the general upwards trend all assets here

have in common is biased by the choice of the assets. Since they are chosen due to their high

market capitalization, these are assets that currently outperform the market and are therefore

not indicative of the trend of the crypto market.

For modelling, not the actual price is used, but the returns of the assets or the log-returns.

To get the log-returns, the transformation, that was already mentioned in Remark 3.1, is used.

return(t) =
price(t)

price(t− 1)
− 1, log−return(t) = log

(
price(t)

price(t− 1)

)
The following table has statistics for the returns of the seven cryptoassets for the time period

from 01.09.2019 to 01.09.2022.
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Name Average size Maximum Minimum Median

Bitcoin 2.57% 18.7% -37.2% 0.084%

Ethereum 3.50% 25.9% -42.3% 0.267%

BNB 3.59% 69.8% -41.9% 0.127%

XRP 3.73% 56.0% -42.3% -0.09%

Cardano 4.10% 32.2% -39.6% 0.162%

Solana 5.99% 115.5% -37.2% 0.116%

Dogecoin 4.47% 355.6% -40.2% -0.037%

In the table above, the first column gives the average size of the absolute returns, meaning the

average daily change in these three years. This underlines the argument, that these assets are

extremely volatile; Bitcoin even seems to be one of the less volatile among them. Also, the

two assets leading the relative price chart both had days during the last three years on which

their price more than doubled. Further, one can observe that all of the assets have a minimum

return close to 40%, meaning that every single one of the top seven cryptoassets fell by more

than a third of their value within a single day. This alone indicates, that necessary reserves for

investments into the crypto market need to be relatively high. Also to add some contrast, the

S&P 500 data included in the R-package [Hubbard, 2022], which ranges from October 2010 to

October 2020, with 92 missing days, was analyzed. The data given there suggests, that the

maximum return in these ten years was 9.38% and the minimum was -9.51%, though one has

to keep in mind that the S&P 500 is a weighted average and therefore less volatile.
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6 Modelling

For the modelling part, the time horizon from Figure 20 is used,. As the market is still rela-

tively young, it might be influenced by structural breaks as mentioned in [Mensi et al., 2019].

Therefore, a shorter time period (three years) is chosen, which focuses on the COVID-19 pe-

riod. In order to find a good observation window one could compare in- and out-of-sample

performances for different time horizons, but this is not introduced and done here. Further-

more the log-returns are used for modelling, as these tend to be weakly stationary. Below,

in Figure 21, the log-returns for Bitcoin are displayed. To get a better impression of whether

there is a pattern or not, the red line is the smoothed absolute values of the log-returns.

Figure 21: The log-returns of Bitcoin between the 01.09.2019 and 01.09.2022. The red
line is the smoothed absolute values of the log-returns.

6.1 Univariate GARCH modelling

The univariate models are only considered for the Bitcoin data. However, before a model can

be fitted to the data, some preliminaries have to be checked. These were introduced in the

Chapters 3.3.4 and 3.3.5. Then, several models are checked against each other.
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6.1.1 Preliminaries

Identifying the GARCH orders

Following the steps given in chapter 3.3.4, a 10×10 corner matrix is evaluated. In the following

table, only the exponent is given such that the first significant digit is in front of the comma.

@
@
@
@@

i

j
1 2 3 4 5 6 7 8 9 10

1 -2 -3 -3 -2 -3 -4 -1 -2 -3 -3

2 -2 -5 -4 -3 -5 -4 -2 -4 -4 -4

3 -3 -4 -4 -4 -4 -4 -3 -5 -5 -6

4 -2 -3 -4 -6 -6 -6 -4 -5 -6 -6

5 -3 -5 -4 -6 -9 -7 -5 -6 -7 -8

6 -3 -4 -4 -6 -7 -7 -6 -8 -8 -9

7 -1 -3 -3 -4 -5 -6 -7 -8 -9 -10

8 -3 -4 -5 -5 -6 -8 -8 -9 -11 -11

9 -3 -5 -5 -5 -7 -8 -11 -11 -11 -12

10 -3 -4 -6 -6 -8 -0 -11 -12 -13 -13

Contrary to the statement in [De Gooijer and Heuts, 1981], here it is pretty straightforward

to visually identify the GARCH orders. Marked above in red, the corner gives a jump of at

least one order of magnitude in all but one cases, giving a very good hint at which orders to

use. The approach suggested by [Chan, 1999] also yields a matrix containing only O values,

confirming that (p, q) = (1, 1) are indeed the suggested orders.

Stationarity- and LM-test

Stationarity is checked with an augmented Dicky-Fuller test available in the R-package [Trapletti

et al., 2022], which yields -9.4, thus strongly implying weak stationarity. The test is not cov-

ered in this paper, but is very predictable, as its 1% critical value with the observation count

present here would be a little more than -3.5 which is far away from the actual result.

For the LM-test, the package [Fisher, 2012] was used, for the hypothesis α1 = 0, the test

returns a p value of 0.037, which suggests that ARCH disturbances are present in the data.
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6.1.2 Choice of model

There are several ways to compare models, here the AIC (Akaike Information Criterion) will

be used.

Definition 6.1. For a model with k parameters, let l̂ be the maximum of the log-likelihood

function. Then the Akaike information criterion is defined by

AIC := 2k − 2l̂ (76)

This is used to prevent overfitting, which would occur, if just the likelihood would be consid-

ered. There are several other criteria, that can be considered, with the most popular being the

BIC (Bayesian Information Criterion), but in this paper, only the AIC will be considered, since

further analysis, that was not featured in this paper, would be necessary to decide between

the best models for the AIC and BIC, should they be different.

The six different univariate GARCH models that were introduced in Section 3 will be com-

pared here. For this the following four distributions will be used.

Definition 6.2.

Normal distribution:

f(x) :=
1√
2πσ

exp

(
− 1

2

(x− µ

σ

)2)
, µ ∈ R, σ ∈ R+ (77)

Student-t distribution:

f(x) :=
1√

nπΓ(n2 )
Γ(
n+ 1

2
)

(
1 +

x2

n

)−n+1
2

, n ∈ N+ (78)

Normal inverse gaussian distribution:

f(x) :=
αδK1(α

√
δ2 + (x− µ)2)

π
√
δ2 + (x− µ)2

exp

(
δ
√
α2 − β2 + β(x− µ)

)
, α, β, δ, µ ∈ R (79)

Generalized hyperbolic distribution:

f(x) :=
(
√
α2 − β2)λδ−λ

√
2πKλ(δ

√
α2 − β2)

exp

(
β(x− µ)

)
×
Kλ− 1

2
(α
√
δ2 + (x− µ)2)

(

√
δ2+(x−µ)2

α )
1

2−λ

, α, β, γ, δ, µ ∈ R

(80)

With K· being a modified Bessel function of the second kind.
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So all in all, 24 different univariate models are considered for the Bitcoin data. The fitting of

these models is done with the R-package [Galanos and Kley, 2022]. There, the AIC is defined

slightly different, in the end it is divided by the number of observations, in our case 1,097. The

table below lists the AIC value for every model considered.

AIC GARCH IGARCH EGARCH TGARCH GJRGARCH APGARCH

Normal -3.692054 -3.670079 -3.727049 -3.729607 -3.725948 -3.727865

Student-t -3.967987 -3.969791 -3.973637 -3.975366 -3.966203 -3.973549

Nig -3.966720 -3.966014 -3.971416 -3.973364 -3.964996 -3.971543

Hyperbolic -3.965566 -3.966415 -3.970788 -3.972764 -3.963762 -3.970943

The Student-t distribution has the best fit for all considered models, the same is true for

the TGARCH model. The only distribution that clearly does not fit very well is the normal

distribution. The heavy tailed ones lose out slightly, because they contain more parameters

themself, which is penalized by the AIC. This is in contrast to the results of the study in [Guo,

2022], indicating that the dynamics between 2017 and 2020 differ from those between 2019 and

2022.

The choice of an asymmetric model is not really surprising, as several papers in the literature

review already mentioned, that the impact of negative returns on the volatility was greater

than that of positive returns, which is exactly what is found here as well. The following table

gives the estimated model parameters for the TGARCH(1,1) model. Further the estimation

determined that the optimal number of degrees of freedom for the student-t distribution was

three.

Parameter Value

ω 0.000675

α+ 0.0648775

α− 0.0816845

β 0.937365

The large value of β implies very high shock persistence. Furthermore, since α+ + β > 1 and

α− + β > 1, the long-term variance does not exist.

6.1.3 Option prices

In order to determine option prices, the chosen TGARCH model from above is simulated. As

starting point, two different choices are made. Firstly, the last point of the data will be chosen,

so all prices are given as if the options were sold on the 01.09.2022, secondly, the model will
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be given 100 days of burn-in and then the 101st day is used as starting point, this will give

prices for an arbitrarily chosen day. Before the actual option prices, seven model paths, their

sigma values and Bitcoin prices are displayed in Figure 22, 23 and 24, respectively.

re

Figure 22: Comparison of seven paths of simulated log-returns of the TGARCH(1,1)
model

Figure 22 does not visualise each path clearly as most returns are very small and therefore

not really possible to distinguish. The more interesting part of this plot is the comparison of

the clearly visible peaks to Figures 23 and 24.
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Figure 23: Comparison of the value of σ for the log-return paths in Figure 22

In Figure 23, the paths of the value σ from the log-return paths above is depicted. By

comparison to Figure 22, one can see that extreme returns tend to be caused by high volatility,

while not all periods of high volatility lead to extreme returns. Furthermore, the persistence

of shocks is readily apparent as shocks cause returns to rise in an instant, but it always takes

some time to settle again. Also, about half of the paths (blue, light blue and red) are quite

calm over the entire period, while the others have at least one interval of high volatility.
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Figure 24: The actual Bitcoin prices that the log-return paths in Figure 22 display. The
price is given in 1,000 USD.

Figure 24 shows the price process reflecting the log-returns from Figure 22. The high volatil-

ity of the paths becomes clearly visible here and while all but two paths appear as if they were

calm, they surely are not. The green path more than halves in price, while the red path more

than doubles. Only the grey path ends the year at a similar value as it began with.
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One-day options

One-day options should obviously be the cheapest. Figure 25 shows the option price in relation

to the strike price for the one-day options. The prices are for European call options and are

calculated by simulating 1,000 paths. Strike prices are considered from 15,000 USD to 25,000

USD. Further, concerning the starting point, hardly any difference is visible for the one-day

options, and in fact, at no strike price is there a difference greater than 5 USD between them.

The blue line uses the starting value as given in the data and the red one uses the arbitrary

chosen starting value, created via burn-in as mentioned above. The call with the current

price as strike would cost 255.6 USD, which is 1.2% of the price of one Bitcoin. In the 1,000

considered paths, the maximum price after one day is 26,770 USD, while the minimum price

is 15,820 USD.

Figure 25: Shown above are the prices of one-day Bitcoin options by strike price. The
blue line is the chosen starting value, the red line the arbitrary starting value.
The black dot marks the point of an option with the price of the 01.09.2022
as strike price (20,127 USD) and marks its cost at 225.6 USD with starting
day chosen as for the blue line.

78



Cryptoasset Return Modelling Söllinger

One-week options

Figure 26 represents the same graph, but for a time horizon of one week. The interval of the

considered strikes is increased to 12,500-27,500 USD. Some small separation between the blue

and red line becomes visible, indicating that options at the 01.09.2022 are generally lower than

on an average day. Here, the values for the red line are already always greater than those

of the blue line, and the difference is 94 USD at most. The call with the current price as

strike already tripled in price coming in at about 3.4% of the Bitcoin price. Furthermore, the

maximum price after one week in the 1,000 paths is 29,235, while the minimum is 10,460 USD.

Figure 26: Shown above are the prices of one-week Bitcoin options by strike price. The
blue line is the chosen starting value, the red line the arbitrary starting value.
The black dot marks the point of an option with the price of the 01.09.2022
as strike price (20,127 USD) and marks its cost at 680 USD with starting day
chosen as for the blue line.
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One-month options

In Figure 27 the interval is increased again and now ranges from 10,000 USD to 30,000 USD.

The difference between the blue and the red line increases again and now reaches up to 271

USD, while the minimal difference still is around 30 USD. The price of the one-month call is

with 1,506 USD already about 7.5% of the price of a Bitcoin. The maximum and minimum

values in the simulation are 42,531 USD and 10,102 USD, respectively.

Figure 27: Shown above are the prices of one-month Bitcoin options by strike price. The
blue line is the chosen starting value, the red line the arbitrary starting value.
The black dot marks the point of an option with the price of the 01.09.2022
as strike price (20,127 USD) and marks its cost at 1,506 USD with starting
day chosen as for the blue line.
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One-year options

The longest time horizon considered is one year. For an asset like Bitcoin, this is already a

huge time span, which is reflected in the prices of these options. The window for the strike

price for Figure 28 now ranges from 5,000 USD up to 50,000 USD; however, even this increased

window does not create a graph as flat as the ones for the options with shorter maturity were.

Now the blue and red line are very distinct, and their minimum distance is 1,788 USD, while

the maximum is as high as 2,311 USD. The call option price is at 13,718 USD, which is more

than two thirds of a Bitcoin. This indicates, that looking further into the future is a pointless

endeavour, as buying a Bitcoin now has almost the same price as buying an option with the

current price as strike, so buying the coin outright prevents from spending the whole cost of

the coin twice. In the simulation, the lowest occurring price after one year is 1,134 USD, so a

loss of almost 95%, while the highest occurring price is 2,005,759 USD, almost the hundredfold

of the original price.

Figure 28: Shown above are the prices of one-year Bitcoin options by strike price. The
blue line is the chosen starting value, the red line the arbitrary starting value.
The black dot marks the point of an option with the price of the 01.09.2022
as strike price (20,127 USD) and marks its cost at 13,718 USD with starting
day chosen as for the blue line.
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Empirical distributions

Lastly, the empirical distributions of the simulated Bitcoin price at the maturity of the different

options, i.e. 02.09.2022, 08.09.2022, 01.10.2022 and 01.09.2023, respectively, are displayed in

Figure 29. The simulated prices at the 01.09.2023 already had many huge outliers, for the

purpose of the graph, they were truncated at the price of 50,000 USD, which is why the bar

at the 50,000 USD mark is so large, but as mentioned above, the actual prices continue into

the million range.

Figure 29: The graph displays the four empirical distributions of the simulated Bitcoin
prices, that were used for the option pricing, with the tail of the distribution
from the 01.09.2023 cut off.

Implications for Risk management

Looking at the Figures 19, 24 and 29, the hope for a small reserve fades quickly. Looking at

the 5% VaR for the one-year horizon, the simulation yields that 73% of the invested amount

needs to be held in reserves. The expected shortfall at 5% leads to an astounding 81% of the

exposure that needs to be kept as a reserve.

In its most recent consultation [Committee, 2022], the Basel Committee refers to Bitcoin as a

type two asset. This more or less means, that banks need to have suffiecient reserves so they

can absorb a full write-off of all their capital invested in Bitcoin and other cryptoassets in this

classification group. While this is an as careful as possible approach, the modelling results

do not give any confidence in lowering this. While diversification could be considered, several

studies on this have been conducted, with mixed results (see chapter 2.2). The difficulties in
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hedging them further support the prudent approach by the Basel Committee.

6.2 Multivariate GARCH modelling

In this Section, only six out of the seven cryptoassets will be considered, as the data for Solana

does not cover the full time period. For these six assets, multiple DCC-GARCH models will

be fitted to the data. The models will be fitted using the R-package [Galanos, 2022]. Then,

one of these models will be chosen based on its AIC and will be viewed in-depth.

6.2.1 Choice of model

The DCC-GARCH models are implemented via univariate GARCH models in order to reduce

the computation amount. This means, that the matrices Ai and Bi in Definition 4.7 are di-

agonal. There will be two choices of univariate models that will be compared, the standard

GARCH model and the TGARCH model. When the standard GARCH model is used, the

model corresponds exactly to the one in Definition 4.7, while for the TGARCH model, equa-

tion (66) in Definition 4.7 is replaced with equation (40) from the TGARCH model. Also, only

two choices of distributions for these univariate models are considered, namely the normal

distribution and the student-t distribution; these distributions are only used to fit the matrices

Ai and Bi and are not used any further in the model. Regarding the mulivariate distribution,

again the multivariate normal distribution and the multivariate student-t distribution are con-

sidered. This yields a total of eight models that will be compared, but first, the necessary

multivariate distributions will be defined.

Definition 6.3.

The multivariate normal distribution of dimension p is defined by

f(x) :=
1√

det(2πΣ)
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
, µ ∈ Rp,Σ ∈ Rp×p positive definite

(81)

The multivariate student-t distribution of dimension p is defined by

f(x) :=
1

n
p
2π

p
2Γ(n2 ) det(Σ)

− 1
2

Γ(
n+ p

2
)

(
1 +

1

n
(x− µ)TΣ−1(x− µ)

)−n+p
2

,

n ∈ N+, µ ∈ Rp,Σ ∈ Rp× p positive definite

(82)

Below, the eight DCC-GARCH models and their AIC values are displayed, again given

divided by the sample size. One can see, that the AIC is most influenced by the choice of

the multivariate distribution, where the student-t distribution significantly outperforms the
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normal distribution. Furthermore, the TGARCH model is outperformed, while the univariate

distributions vary in performance. Since in theory, they should converge to the same GARCH

model (used as quasi-likelihood) it is not surprising that their impact is low. The optimal AIC

value is marked in red. Therefore, the choice is the model from Definition 4.7, with student-t

univariate and student-t multivariate distributions.

Standard GARCH normal distribution student-t distribution

multivariate normal -23.78788 -23.56667

multivariate student-t -25.80597 -25.95420

TGARCH normal distribution student-t distribution

multivariate normal -23.63243 -23.55327

multivariate student-t -25.60590 -25.55661

The univariate coefficients estimated for the model are displayed in the table below. The pa-

rameter values of Bitcoin are very similar to those estimated with the TGARCH model. Also,

Bitcoin shows the highest persistence among the assets.

Cryptoasset ω α β

Bitcoin 0.00003807994 0.06858828 0.9284978

Ethereum 0.0001673347 0.08912286 0.8542801

BNB 0.0002248226 0.1676200 0.7627335

XRP 0.0001261342 0.1520014 0.8469985

Cardano 0.0003522731 0.1842818 0.7413640

Dogecoin 0.0003585561 0.3930778 0.6059222

The DCC part of the model consists of 18 parameters, 15 of which are given in the matrix

S below. Although it does not give the exact correlation, it is very close, which can be seen by

comparing it with the average correlation matrix given in Section 6.2.2.

S Bitcoin Ethereum BNB XRP Cardano Dogecoin

Bitcoin 1 0.8235833 0.7481507 0.6645459 0.7048817 0.5631000

Ethereum 0.8235833 1 0.7898964 0.7135488 0.7609968 0.5697338

BNB 0.7481507 0.7898964 1 0.6683996 0.7243145 0.5314576

XRP 0.6645459 0.7135488 0.6683996 1 0.6839440 0.5412609

Cardano 0.7048817 0.7609968 0.7243145 0.6839440 1 0.5345644

Dogecoin 0.5631000 0.5697338 0.5314576 0.5412609 0.5345644 1
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The two parameters that describe equation (68) are

α = 0.04973892 and β = 0.9194281

The high value of β shows high persistence of shocks to the correlation, i.e. high-correlated

periods tend to be followed by high-correlated periods.

The last parameter is the degrees of freedom for the multivariate student-t distribution which

is 4.

6.2.2 Model graphs

Here are values describing the model output of the DCC-GARCH model chosen above. As

the actual correlation between the assets changes each day, the outputs consist of 1,097 6× 6

correlation matrices. The following matrix is the mean over all 1,097 days of the correlations

between two assets. As mentioned above, it is quite similar to S. In fact, all differences are

below 0.05. The strongest correlation is found between the largest two cryptoassets, Bitcoin

and Ethereum, while the weakest correlation is found between Dogecoin and BNB. It is worth

noting that the correlation in general is very strong, suggesting that the crypto market is

strongly connected, which makes diversification within the market futile.

mean cor. Bitcoin Ethereum BNB XRP Cardano Dogecoin

Bitcoin 1 0.8189741 0.7444730 0.6695164 0.6996167 0.5913520

Ethereum 0.8189741 1 0.7906767 0.7255052 0.7579945 0.5863877

BNB 0.7444730 0.7906767 1 0.6802852 0.7253880 0.5573929

XRP 0.6695164 0.7255052 0.6802852 1 0.6963695 0.5873497

Cardano 0.6996167 0.7579945 0.7253880 0.6963695 1 0.5684471

Dogecoin 0.5913520 0.5863877 0.5573929 0.5873497 0.5684471 1
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Figure 30 shows the correlation between Bitcoin and the other five modelled cryptoassets. It

can be observed, that most correlations towards Bitcoin behave similarly, indicating that during

certain periods, Bitcoin behaved unusually different than the rest of the analyzed market. The

minimum correlation is observed between Bitcoin and Dogecoin at the 26.07.2020, where it fell

to 0.167, the maximum correlation was observed on 13.03.2020 between Bitcoin and Ethereum,

where it reached 0.970.

Figure 30: Shows the estimated correlation between Bitcoin and the other 5 modelled
cryptoassets between 01.09.2019 and 01.09.2022
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7 Conclusion

The results given by the TGARCH model with the student-t distribution that was imple-

mented here seem to be very reasonable. The parameters given by the TGARCH model do

reflect the properties of Bitcoin found in previous studies, i.e. high shock persistence and nega-

tive returns having a greater impact than positive ones. Furthermore, extreme paths are found

in the simulation, but such relative price explosions can be found in Bitcoins early history,

and although they are not as likely today, it occurs only in one of the 1,000 paths. Also, the

European call option prices estimated by the simulation correspond to the extreme volatility

of the underlying. It is found that long term options on Bitcoin are unnecessary, since the

call option price is almost as high as the price of a Bitcoin. Moreover, plugging the model

data into some risk measures instantly reveals, why the approach of the Basel Committee in

[Committee, 2022] seems to be the correct way to go for now. Perhaps the market matures to

a point where a smaller reserve would be possible, so far however there is no indication of that

happening anytime soon.

The DCC-GARCH model shows strong correlations between the six assets studied. A note-

worthy trend can be seen that assets with higher market capitalization are generally more

correlated to other assets than those with low market capitalization. Also, the correlation

between the assets is generally very high, but can suddenly drop due to events affecting only

a single asset directly, e.g. Dogecoin suddenly getting pushed.

As for further research, various other fitting tests, such as in-sample testing or a general good-

ness of fit test, could be used to continue the investigation of the model fit. Theoretically,

there are also more GARCH variations, and other commonly used models such as stochastic

volatility or NARDL (Nonlinear Autoregressive Distributed Lags) models could be studied and

compared to the GARCH results. While this could certainly lead to an even more improved

model, the results concerning risk management and option prices would very likely stand, as

well as the heavy correlation within the market.
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