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Abstract 

This thesis explores the Baroreflex Sensitivity (BRS), a cardiac parameter, emphasizing its 

clinical relevance, computational methodologies and visualization techniques. The thesis is 

divided into two phases: a literature review and a practical phase. The literature review 

identifies three primary clinical roles of BRS - outcome prediction, risk stratification, and 

disease diagnosis in cardiovascular-related conditions such as congestive heart failure (CHF), 

post-myocardial infarction (POST-MI), diabetes mellitus, and hypertension. Among 

computational methods, the sequence method is the most cited, while spectral methods, 

including the transfer function and alpha coefficient, offer unique capabilities such as tracking 

BRS changes across time and frequency domains. Strengths and limitations of these methods 

are discussed, with an emphasis on their non-interchangeability and the impact of parameter 

variations on outcomes. 

The practical phase involved implementing the transfer function-based spectral method for BRS 

computation and comparing two spectral decomposition techniques: the Welch method 

(frequency domain) and the Short-Time Fourier Transform (STFT, time-frequency domain). 

Key spectral parameters affecting BRS calculations, such as sampling frequency, window size, 

FFT size, and overlap, are analyzed, revealing their influence on BRS variability and 

visualization. This phase also introduces normalized 3D spectrograms for STFT-based BRS 

visualizations. 

The thesis underscores the need for future work reflecting standardized protocols, larger studies, 

optimized algorithms, and tailored parameter settings to enhance BRS research and facilitate 

its integration into clinical practice. Suggestions for further research and potential incorporation 

into medical devices are also provided, paving the way for improved BRS-related healthcare 

applications. 

 

Keywords: baroreflex sensitivity, transfer function analysis, baroreflex sensitivity visualization, 

time-frequency domain, short-time fourier transform 
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Zusammenfassung 

In dieser Arbeit wird die Baroreflex-Sensitivität (BRS), ein Herzparameter, untersucht, wobei 

seine klinische Relevanz, Berechnungsmethoden und Visualisierungstechniken im 

Vordergrund stehen. Die Arbeit gliedert sich in zwei Phasen: eine Literaturübersicht und eine 

praktische Phase. In der Literaturübersicht werden drei primäre klinische Anwendungen von 

BRS identifiziert: Ergebnisvorhersage, Risikostratifizierung und Diagnose bei 

kardiovaskulären Erkrankungen wie kongestiver Herzinsuffizienz (CHF), Post-Myokardinfarkt 

(POST-MI), Diabetes mellitus und Hypertonie. Unter den Berechnungsmethoden wird die 

Sequenz Methode am häufigsten genannt, während spektrale Methoden, einschließlich der 

Übertragungsfunktion und des Alphakoeffizienten, einzigartige Möglichkeiten bieten, wie z. B. 

die Verfolgung von BRS-Änderungen über Zeit- und Frequenzbereiche hinweg. Die Vorteile 

und Nachteile dieser Methoden werden diskutiert, wobei der Schwerpunkt auf ihren 

Unterschieden und den Auswirkungen von Parametervariationen auf die Ergebnisse liegt. 

Die praktische Phase umfasste die Implementierung der auf Übertragungsfunktionen 

basierenden Spektralmethode für die BRS-Berechnung und den Vergleich zweier spektraler 

Dekompositionstechniken: die Welch-Methode (Frequenzbereich) und die Kurzzeit-Fourier-

Transformation (STFT, Zeit-Frequenz-Bereich). Die wichtigsten spektralen Parameter, die die 

BRS-Berechnungen beeinflussen, wie die Abtastfrequenz, die Fenstergröße, die FFT-Größe 

und die Überlappung, werden analysiert und ihr Einfluss auf die BRS-Variabilität und die 

Visualisierung aufgezeigt. In dieser Phase werden auch normalisierte 3D-Spektrogramme für 

STFT-basierte BRS-Visualisierungen eingeführt. 

Die Arbeit unterstreicht die Notwendigkeit zukünftiger Forschungen mit standardisierten 

Protokollen, größeren Studien, optimierten Algorithmen und angepassten 

Parametereinstellungen, um die BRS-Forschung zu verbessern und ihre Integration in die 

klinische Praxis zu erleichtern. Es werden auch Vorschläge für die weitere Forschung und die 

mögliche Integration in medizinische Geräte gemacht, die den Weg für verbesserte BRS-

Anwendungen im Gesundheitswesen erleichtern. 

 

Schlüsselwörter: Baroreflex-Sensitivität, Übertragungsfunktionsanalyse, Visualisierung der 

Baroreflex-Sensitivität, Zeit-/Frequenzbereich, Kurzzeit-Fourier-Transformation 
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1 Introduction  

1.1 Definition of baroreceptor sensitivity 

Baroreceptors are mechanoreceptors (stretch receptors, sensors) located mainly in the carotid 

sinus, aortic arch and the lungs. [1], [2], [3] They are major players in the arterial baroreflex 

system which is involved in the short and long-term regulation of the arterial blood pressure 

(BP) homeostasis.  

These receptors sense small and large changes in blood pressure pulsation (rises and falls) 

occurring in daily life under different circumstances, and send information signals to the higher 

centers in the brain stem. These centers react responsively to these changes, allowing the whole 

baroreflex system to keep the BP constant around a reference value. [2], [4], [5]  

More specifically, when BP increases, the baroreflex mechanism reacts by increasing the vagal 

activity which slows down the heart rate (HR) to protect the heart. [6] This response is termed 

cardiac, vagal or parasympathetic response. On the other hand, sympathetic responses occur 

when the BP drops and HR increases. [5], [7], [8] Nevertheless, the effect on the HR is not the 

only way the baroreflex system controls BP buffering. [6] More about the baroreflex physiology 

is explained in Chapter 1.2. 

Hence, the cardiac or vagal ‘baroreceptor sensitivity’, ‘baroreflex sensitivity (BRS)’ or ‘blood 

pressure-heart rate reflex’ represents a physiological parameter (biomarker) - first described in 

the late 1960s [9] - that quantifies the amount of change in the heart rate (HR) provoked by the 

changes in the systolic blood pressure (SBP). [7], [10] Given that it represents the change in the 

interval between successive heart beats (termed RRI as the interval from one of an ECG's R-

waves to the next) triggered by the change in SBP, its derived unit is a millisecond per 

millimeter of mercury (ms/mmHg). [11]  

In general, a high BRS value seems to reflect high stability of the autonomic control of the 

cardiovascular system in humans [7], [8], [12], [13] More precisely, it actually describes the 

efficiency of the vagal-mediated HR response. [14], [15]  

BRS has proven its clinical value in research as well as in clinical studies as a strong prognostic 

and predictive marker of autonomic dysfunction (AD) and when being measured intravenously 

as a risk stratification parameter in various cardiovascular diseases. [3], [16] 

However, for any given physiological parameter to become a useful clinical index and to be 

deployed in routine clinical practice, in addition to its proven clinical value [17], its 

measurability, reproducibility and reliability are crucial. [18] How many of these crucial 

characteristics are fulfilled for BRS – and to what extent – was assessed in the course of this 

thesis. 

Another significant BRS characteristic that makes it potentially useful in clinical application is 

the possibility of its improvement (leading to higher BRS values) by diverse treatment options. 

[10], [19], [20], [21] According to research, various therapies such as a specific drug therapy 

[22], nocturnal home dialysis [23], slow breathing sessions applied in yoga [24], chronic 
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baroreceptor stimulation by implantable device [21] etc. are currently targeted to improve BRS 

and possibly prevent future cardiovascular events.  

1.2 Baroreflex physiology 

The baroreflex mechanism portrays a complex closed-loop physiological phenomenon [25] that 

consists of three separate baroreflex branches: [1], [14] 

1. Cardiac  

2. Vascular 

3. Myocardial   

The cardiac branch regulates BP swings by manipulating the HR, the vascular branch modulates 

the contraction and relaxation of the blood vessels and the myocardial branch is responsible for 

myocardial contractility. [1] 

Notably, it has been reported that the cardiac BRS and the BP buffering capacity are actually 

mainly unrelated, since BP buffering is primarily controlled by the vascular branch and is 

achieved by regulating the peripheral resistance. In contrast, cardiac BRS measures the 

baroreflex response to the sinus node. [6], [12], [14] 

Furthermore, because measuring peripheral resistance is a more complex procedure and is not 

currently feasible in clinical practice, the cardiac component of the baroreflex is predominantly 

used in research due to its ease of measurement. [4]  

Therefore, the topic of this thesis is focused only on the cardiac baroreflex branch; the other 

two branches were not addressed further in this thesis.   

1.2.1 Baroreflex time delay 

Due to its closed loop negative feedback nature (see Chapter 1.7.1), one more baroreflex feature 

that seems to be physiologically relevant is the baroreflex time delay. [5], [25]  

As mentioned before, following a rise in BP, baroreceptors activate, stimulating vagal nerve 

discharge to the sinus node, and the HR decreases (bradycardic or parasympathetic effect).  On 

the other hand, when BP drops, baroreceptors deactivate, leading to vagal withdrawal and 

sympathetic response activation, increasing HR (tachycardic effect). Hence, the time difference 

between the SBP change and subsequent RRI reaction in each direction is termed the baroreflex 

delay – it is the response time the baroreflex needs. [5] 

In healthy humans, the vagal (parasympathetic) response acts quickly (200-600 ms). Yet the 

reaction of the sympathetic response is slower - usually taking 2-3 seconds to reach its full 

effect. [5] It has been reported that a standard baroreflex delay period suitable for all individuals 

does not exist. [25] 

Nevertheless, it appears that a longer baroreflex delay seems to be relevant in certain 

pathologies. For example, it is present in chronic renal failure (CHF) [25], diabetes [26] and 

syncope patients with low orthostatic tolerance. [27] It can also appear after spinal cord injury 

[28]. Thus, the phenomenon could indicate some issue in the autonomic stability even if the 
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BRS index is still preserved. [28] Hence, this delay should also be determined in addition to the 

BRS value.   

1.3 BRS behavior 

BRS is a highly individualistic attribute [29] and, similarly to BP and HR, fluctuates constantly 

during a 24-hour cycle. [30], [31] On two consecutive days, when measured under the same 

conditions with the same procedure, BRS index can vary between 0.5 to more than 2 times. On 

some days it varies within relatively narrow limits, on others the differences can be wide or 

even occur in different distribution ranges. [32], [33]  

This behavior and average value differ between healthy subjects and those suffering from 

disease because the BRS has been found to be reduced in various diseases. [30], [34] It is also 

proven that its magnitude declines with age. [7] Specifically, the biggest drop in BRS value in 

healthy individuals is observed during the fifth decade of life, after which it stays predominantly 

constant until death. [35], [36], [37], [38] 

Furthermore, this parameter is reported as sensitive to external influences of different kinds 

(e.g., respiration) that affect both BP variability (BPV) and HR variability (HRV). [39] It is 

negatively affected by poor lifestyle choices, such as obesity [22], as well.  

In terms of daily BRS fluctuations, research suggests that the BRS value increases during 

sleep/night hours [30], [40] and its behavior changes during different activities and in various 

body postures [39]. (Fig. 1.1, 1.2) 

  

Figure 1.1: Time modulation of BRS (determined via sequence method) in a subject undergoing a series of 

different activities. Adapted from Di Rienzo et al. (1997) [4] 

The BRS index measured in older and younger subjects during 24h. (Fig. 1.2) 



4 
 

 

Figure 1.2: The 24-hour profile of BRS (determined via sequence method) in younger and older individuals. [30] 

According to Jira et al. [29], the BRS index shows lower intraindividual variability than 

interindividual variability in humans, and seems to be dependent on mean RRI. If the RRI stays 

mostly constant, the BRS value should be more reproducible. Additionally, the BRS value 

appears most reproducible at lower absolute BRS values, rather than when increased.  

1.4 BRS reference values 

In general, it is reported that, in healthy individuals, the normal BRS range is usually between 

3 – 30 ms/mmHg. In some exceptional cases, or in children and younger adults, this could be 

even higher, also depending on the BRS algorithm used. [29]  

According to numerous studies, BRS values below 3 ms/mmHg point to a serious baroreflex 

impairment. [41] This ‘depressed’ BRS usually presents a high risk of cardiac mortality or 

adverse cardiovascular events and can lead to adverse clinical outcomes. [12] 

Furthermore, there is not yet a standardized measurement protocol for BRS, although there is a 

clear need for this to be developed. [7], [18] The protocols differ from study to study, which 

makes the direct comparison of BRS results often impossible. [18] 

For this reason, and due to many external influences mentioned earlier - particularly due to age 

and breathing pattern influences - standardized reference values for the BRS index are also 

missing. [7] However, since the lack of reference values was seen as a gap in useful clinical 

information, certain studies in following years did provide some reference values for particular 

subpopulations (e.g. children [42], working healthy population [43], elderly [7]) which may be 

valid when specific algorithms are applied.  

Recently, the study by Suarez-Roca et al. [44] summarized the findings of a number of studies, 

grouping the BRS values into three separate ranges and providing an interpretation of the 

results:  

• BRS range 0-3 ms/mmHg is regarded as severely impaired,  

• 3-6 ms/mmHg is regarded as moderate impairment and  

• Higher than 6 ms/mmHg is regarded as normal BRS. 
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Literature also suggests that the BRS might be better represented as a range of values, instead 

of being reduced to a single [45] or small number of values, as it is done by pharmacological 

methods (see Chapter 1.5.1), and as it is found in the majority of modern techniques. [29] 

The next sections describe several techniques used to estimate BRS: one type stimulates 

baroreceptors’ response artificially, and another quantifies the ‘spontaneous’ behavior of 

baroreceptors. Also, the most prominent challenges present in measuring BRS by these 

techniques were outlined. 

1.5 Techniques based on artificially stimulated baroreceptor activity  

1.5.1 Invasive procedure for BRS estimation 

Smyth et al. [9] described an invasive procedure measuring cardiac BRS by intra-venous 

injection of the vasoconstrictive drug angiotensin in humans, which artificially triggers 

baroreceptor activity. This substance raises the SBP level by 15-20 mmHg points and 

simultaneously causes the prolongation of the following RRI. As a result, the linear relationship 

between the rise of SBP and the response of RRI (time delay of 1 beat – which is called a lag 

of 1) was observed; the average BRS value (BRS slope) was estimated by deploying the linear 

regression analysis technique between the SBP and RRI. [9]  

In the majority of studies from following years, angiotensin was replaced by phenylephrine 

(another vasoconstrictive substance) but this procedure in some occasions was combined with 

injections of an additional drug - nitroprusside (a vasodilative substance) [46]. This was done 

as baroreceptor activity is actually triggered by both positive and negative BP changes. [19] 

In multiple studies, this method was acknowledged as the ‘gold standard’ for BRS estimation 

as the BRS index measured by phenylephrine did prove its clinical value in cardiovascular 

diseases. [10], [16], [46]  

Nonetheless, further research raised various issues associated with the phenylephrine method 

[46] - such as not being applicable in patients with high BP and certain other cardiovascular 

issues. [47] The dosage of the drug injected also differs between studies, causing variable BRS 

values and making results hard to compare. Furthermore, this procedure is more time-

consuming [10] and the drug itself does not only affect the baroreceptors, but also other 

receptors (e.g., cardiopulmonary receptors). [3] As a result, further research was primarily 

concentrated on finding a non-invasive way of measuring BRS.  

1.5.2 Non-invasive procedures for BRS estimation 

For a while, the neck chamber method and the Valsalva maneuver (VM) were used to increase 

BP quickly and stimulate the baroreceptors, approaches mainly applied in the laboratory 

environment.  

The VM is a procedure where a particular subject blows into a closed mouth-piece to observe 

the resulting short-term changes in BP and RRI. [3] 
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On the other hand, the neck chamber method is a procedure where a neck suction device (collar) 

applies controlled negative or positive pressure to a person’s neck to provoke internal BP 

change and stimulate the carotid baroreceptors. [3]  

Nonetheless, these non-invasive procedures did not manage to replace the pharmacological 

method as they came with their own sets of issues and additional risks. For instance, the VM 

technique affects some other major receptor groupings, aside from baroreceptors.  Thus, it is 

‘not selective’ enough in measuring BRS. [48] Further research finally introduced a 

‘spontaneous’ BRS index in the 1980s.  

1.6 Techniques based on spontaneous baroreceptor activity (spontaneous BRS) 

Spontaneous BRS represents the foundation for all modern, computerized techniques which 

measure the linear changes between SBP and concurrent RRI fluctuations, but without any prior 

external influence on the baroreceptors. [49] Since natural BP and RRI oscillations are present 

at all times in humans, even at resting conditions, it was assumed that the spontaneous BRS 

behavior may provide meaningful information, perhaps clinically useful as well, as it provides 

a deeper understanding of how this parameter acts over time in humans. Thus, the spontaneous 

BRS estimation methods were believed to present an opportunity to determine the ‘real’ BRS 

values under normal daily conditions. [50] 

Some of the major advantages these methods offer include the fact that they are non-invasive 

(as the BP is non-invasively measured including or excluding an additional ECG device [7], 

[48]), can be applied in the clinician’s offices instead of only in a laboratory environment [49], 

constitute no discomfort for patients, provide simpler methodological procedure for clinicians 

to follow, and do not carry the risks connected to drug effects. The time duration of the BRS 

estimation is also significantly shorter. [10] In addition, the BRS estimation can be repeated 

numerous times if necessary and, as a result, these methods can be applied on wider populations. 

[10], [51] 

However, there are two additional features of the baroreflex control of circulation affecting 

BRS measurement process: a presence of the nonlinear relationship between the RRI and SBP 

changes, and the baroreflex resetting phenomenon. [4], [51] 

1.6.1 Nonlinearity of the baroreflex response 

The baroreflex response can be described as a sigmoidal curve with two extremes at each end: 

a saturation level at the top, and a threshold along the bottom. [4], [10] (Fig. 1.3) Hence, the 

linear relationship between SBP and RRI occurs only in the central area of the curve between 

these two extremes.  

According to this curve, ‘stimulated’ BRS results cannot be directly compared to spontaneous 

BRS results since they describe a different baroreflex behavior taking place in different regions 

of the curve. [51] 
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Figure 1.2: Nonlinearity of the baroreflex response [4] 

Pharmacological methods or neck chamber methods [52] activate a stronger BP response and, 

as a result, produce larger RRI response as well. On the contrary, spontaneous BRS operates at 

much smaller amplitudes of RRI and SBP changes. [45] Although so far confined to research 

performed on canine subjects, the results showed that two different types of baroreceptors seem 

to be involved - one type responds to resting (spontaneous) BRS and the other to dynamic BRS 

stimulation. [45]  

Consequently, the literature suggests that methods based on spontaneous BRS are mainly 

employed to estimate the BRS value within the linear range of the curve, but only the 

pharmacological method can explore the full baroreflex response. [51] This explains why the 

reported BRS values between methods based on spontaneous versus stimulated BRS correlate 

to some extent, but it should not be expected that they would provide identical BRS results. 

[51] 

Another nonlinear feature of the baroreflex response is the phenomenon of "stochastic 

resonance" which enhances the system's ability to detect weak signals by adding limited noise 

to the input, thus allowing the weaker signal to cross the sensory threshold. This behavior, 

known in neuroscience for facilitating weak signal transmission, appears to apply to 

baroreceptors as well. Specifically, research has shown that when a small amount of noise is 

introduced to the carotid baroreceptors, an enhanced baroreflex response occurs in reaction to 

a subthreshold stimulus generated by an oscillating tilt table. [4] 

1.6.2 The baroreflex resetting phenomenon 

The baroreflex resetting can be described as a phenomenon that occurs when baroreceptors 

adjust their activation threshold to a higher BP reference point after being under the constant 

stimulation of elevated BP for some time. [4] More precisely, according to one study, complete 

resetting to a new reference value occurs after 48 hours in rats. [12] Furthermore, it has been 

reported that this phenomenon manifests mainly toward the end of the night - a time when BP, 

HR and sympathetic activity could shift suddenly. Thus, in the case of a person with an 

attenuated baroreflex function, this mechanism may partially explain the occurrence of 

cardiovascular events, such as a sudden death or myocardial infarction - at that same time of 

the day - due to poor baroreflex mechanism. [53] The presence of this resetting phenomenon is 

also reported in other biological receptors, not only in baroreceptors. [4] 
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Nevertheless, research suggests that in humans, during their day-to-day lives, the linearity of 

the sigmoidal curve prevails even if a sudden rise in BP occurs. [4], [30]  

1.7 Overview of spontaneous BRS algorithms 

In the literature, there are two fundamental types of methods used for the determination of 

spontaneous BRS. One is calculated in the time domain, and the other in the frequency domain 

– the spectral methods. 

The time domain methods describe the behavior of the spontaneous BRS as a time-variant 

parameter, while the spectral methods explore the BRS as a frequency-dependent characteristic. 

[29], [45]  

In the 1980s, the sequence method was developed which was the first time-domain technique. 

[54]  This method still represents the most popular method applied in BRS research. The second 

time-domain technique is the cross-correlation method (xBRS) which was introduced in 2004. 

[55] 

Regarding the spectral methods, two types are most frequently employed: the transfer function 

method (TF) [56] and the alpha coefficient (also known as alpha index). [20]  

Over the years, newer and more exotic methods or models for the BRS calculation have been, 

and are continuing to be developed. [3], [57] These include the bivariate phase-rectified signal 

averaging (PRSA) method [58], trigonometric regressive spectral analysis (TRS) [46], Z 

coefficient method based on statistical dependence between SBP and HR changes [59], and 

impulse response function [37], among others. Additionally, in recent years, time-frequency 

domain algorithms have been introduced which employ: wavelet transformation [60], [61], 

Wigner-Wille distribution [62], Zhao-Atlas-Marks distribution (ZAM) [63] and others. 

However, since these methods were rarely applied in clinical research studies and some are not 

yet validated [46], they are not here included in subsequent discussions.   

1.7.1 Closed versus open loop model for the baroreflex mechanism 

In the literature, two types of models are generally used to explain the complex baroreflex 

physiology applied for the BRS calculation – the open loop and the closed loop model. [20], 

[64], [65] 

From the physiological perspective, the baroreflex mechanism is a closed loop system with 

negative feedback that includes both the ‘feed-backward (FB)’ and the ‘feed-forward (FF)’ 

pathways that exist between the SBP and RRI changes (Fig 1.4). [13], [20], [64]  
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Figure 1.3: Schematic drawing of FB and FF reciprocal interactions between BP and HR; NBP and NHR refer to 

‘noise’ influences independent from HR and BP [3]  

The FB pathway takes into account only the SBP variation that leads to corresponding RRI 

change, while the FF pathway acts in the opposite direction from the FB; it considers the 

influence of the RRI variation on the following SBP change by the vasculature. [20], [64]  

The FF pathway is not considered a part of the cardiac baroreflex branch and is termed 

‘mechanical’ [19] – related to the Starling law of the heart and arterial windkessel effects. [66] 

For this reason, the FF pathway mainly remains ignored in the literature and disregarded in the 

development of the majority of BRS algorithms. [64] 

Therefore, the closed baroreflex loop needs to be converted into the open loop, or to include 

major mathematical simplifications to make the BRS estimation possible, as performed e.g. in 

the alpha coefficient method. [20], [64], [67] 

Nonetheless, according to Barbieri et al. [64], the correct measurements of cardiac BRS might 

be possible only when the FF pathway is either completely abolished or its effect is much 

smaller than the stimulation of the baroreceptors, hence, it would be applicable in situations 

when the baroreflex loop remains open - for instance, it is reported as applicable in case of 

pharmacological and neck chamber methods due to stronger baroreceptor stimulations.  

However, according to La Rovere et al. [68], the loop seems to remain open even in supine 

resting individuals in the LF band and, thus, the open loop approach seems adequate in that 

case as well. In addition, the open loop approach is generally assumed as applied in the sequence 

method and in the TF method as well. [64], [67] 

The closed loop approach, on the other hand, can be found in various studies that develop 

complex mathematical models in an attempt to describe the functioning of the whole 

cardiovascular system in a way closer to the real physiology. [69], [70] Some of these models 

include the effect of respiration on the BPV and HRV, some do not, and other studies attempt 

to decouple the FF and FB pathways within the baroreflex loop. These studies are mainly 

focused on the causality between SBP and RRI changes. [66], [70]  
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1.7.2 Spectral methods: Origin and frequency bands 

The idea behind the development of spectral methods for the BRS estimation is based on the 

assumption that specific frequency regions of the HRV spectrum are regulated by the 

baroreflex. [71]  

It is believed that the BRS spectrum - obtained from the combination of the HRV and SBPV 

spectra - at specific frequencies or within specific frequency bands may be able to provide 

meaningful information about an individual’s cardiovascular health. When coupled with the 

right interpretation, BRS spectral analysis may give clinicians an opportunity to understand 

better the exact causes or severity of the baroreflex issues. [72] This information could not be 

derived from the time-domain methods.  

In general, while the subject breaths normally, the power spectra of both RRI and SBP time 

series generally tend to contain three peaks - one centered between 0.1 to 0.15 Hz – the low 

frequency (LF) peak - and the other centered at the average breathing rate, thus centered 

between 0.2 to 0.4 Hz – known as the high frequency (HF) peak. [18] The third peak is usually 

in the very low frequency (VLF) band (below 0.04 Hz) but this peak was broadly disregarded 

in BRS studies (see Chapter 2.3.1.2). [18], [56] 

Additionally, even though the borders of these frequency ranges tend to vary slightly in certain 

studies, this does not seem to have a significant impact on BRS results. [26], [34]  

Hence, in most cases the ordinary BRS spectrum contains the HF and LF peak-like shapes at 

similar frequency ranges as well. Subsequently, the two frequency bands used most often in the 

literature are the LF (0.04 – 0.15 Hz) and the HF bands (0.15 – 0.4 Hz). This approach was 

applied in this thesis as well. 

Fig. 1.5 depicts the BRS spectrum of two healthy subjects with a constant breathing rate (at 

0.33 Hz). [18] As it could be seen, sizes and shapes of peaks generally vary even between 

healthy individuals, with the same breathing rate; however, the interplay between the two is not 

yet clear.  

  

Figure 1.4: BRS spectrum calculated in two healthy subjects with paced breathing rate at 0.33 Hz. Adapted from 

Bothova et al. (2010) [73] 

  

LF-Peak HF-Peak 
LF-Peak 

HF-

Peak 



11 
 

1.8 The aim of this thesis   

In summary, this thesis is divided into two main phases: 

1. In the first phase of this thesis, the relevant scientific literature on BRS was summarized 

to give an understanding of the application and estimation of BRS in clinical practice 

and research. In the main clinical areas where BRS has been shown to be of value, a 

summary of relevant information has been presented along with an outline of associated 

challenges in the most important areas.  Also, some examples of how BRS is visualized 

in research were given. 

2. In the second (practical) phase, the preferred spectral BRS estimation method was 

selected, implemented in Python, further developed in a time-frequency domain and 

applied to a set of actual patient data. The real-world data were used to provide 

suggestions for the visualization of BRS changes over time which might be of use in 

clinical practice and incorporated into medical devices.   
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2 Literature part 

The questions to be addressed in the literature section of this master’s thesis were the following: 

• What is the clinical impact of BRS, what are potential therapeutic consequences, in 

which circumstances is it important? 

• What algorithms for determining the BRS are present in the literature? 

• What are the specific strengths/weaknesses of different algorithms in the context of 

medical requests?  

• Which algorithms for BRS calculation are useful/indicated for which application?  

• Which algorithms for BRS calculation are proven to be of medical benefit? 

• What are advantages and disadvantages of the different sequence methods available 

today?  

• What conclusions can be drawn from the literature with regard to a comparison of 

advantages/disadvantages of spectral vs sequence methods? 

• Which algorithms are already integrated within currently available products?  

This resulted in the following inclusion and exclusion criteria. 

Inclusion criteria: 

• Articles describing the clinical benefits of baroreflex sensitivity (BRS) 

• Articles which demonstrate advantages and/or disadvantages of different BRS 

algorithms applied for specific medical requests  

• Articles describing definition and the clinical value of the baroreflex effectiveness index 

(BEI)  

• Articles describing the behavior of BRS during autonomic function testing 

• Articles providing certain reference values for the BRS and the BEI 

• Articles describing therapies specifically designed to improve BRS  

• Articles investigating the progress of therapies for certain diseases by measuring the 

BRS improvement 

• Articles using different BRS methods to explore BRS behavior during anesthesia 

Exclusion criteria: 

• Articles in which BRS was not mentioned in the abstract 

• Articles focusing on assessing BRS in animal studies 

• Articles focusing on research rather than medical benefit/clinical value of BRS: 

o Articles investigating BRS in certain ethnicities or particular groups of people 

(e.g. athletes, yoga practitioners)  

o Articles exploring BRS behaviors in different geographical regions (e.g. Arctic 

expeditions)  

o Articles focusing only on the physiology of the baroreflex system 

o Articles estimating BRS during certain daily activities (e.g. swimming) 
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2.1 Methods 

To identify research papers which were most relevant to the topic of this master’s thesis, on 

05.10.2021 a systematic literature search of the Medline database was performed 

(https://pubmed.ncbi.nlm.nih.gov). To identify and select the relevant literature to be able to 

answer the questions of this thesis, four different combinations of search terms and filters were 

applied:  

I. ‘("baroreflex" OR "baroreceptor") AND ("sensitivity" OR "function" OR "activity" OR 

"index" OR "gain") AND ("calculation" OR "algorithm" OR "method" OR "estimation" 

OR "analysis" OR "technique" OR "assessment") AND ("sequence" OR "sequential")’ 

II. ‘("cardiac" OR "cardiovagal" OR "vagal") AND ("baroreflex" OR "baroreceptor") 

AND ("sensitivity" OR "function" OR "activity" OR "index" OR "gain") AND 

("calculation" OR "algorithm" OR "method" OR "estimation" OR "analysis" OR 

"technique" OR "assessment") AND ("spectral")’ 

III. ‘("clinical") AND ("value" OR (("useful" OR "utility") AND "index")) AND 

("baroreflex" OR "baroreceptor") AND ("sensitivity" OR "function" OR "activity" OR 

"index" OR "gain") AND ("calculation" OR "algorithm" OR "method" OR "estimation" 

OR "analysis" OR "technique" OR "assessment")’ 

IV. ‘("baroreceptor" OR "baroreflex") AND "effectiveness index “’ 

Additional filters included in the PubMed search were articles written in English, German, 

French and Spanish and applied only on humans.   

In total, 958 articles were found. In addition to these articles, 51 extra papers were included 

(supplementary articles which were referenced by a colleague at CNSystems or which were 

noted as key references found in the bibliography of articles present in the prior general search). 

The abstracts of all articles were scanned and only papers which were suitable to answer the 

questions of this thesis were included for further analysis. In the list of articles included, 51 

were duplicates. After scanning the abstracts, 753 articles were excluded as only those papers 

related to clinical benefits and certain algorithm comparisons were considered relevant. The 

remaining 205 articles were tagged and provided the basis for deeper analysis.  

2.2 Results 

2.2.1 Tagging matrix (Appendix 1 - digital appendix) 

The tagging matrix was the tool used for the structured analysis of all papers included. The 

matrix consists of 205 rows, each representing an article, and 67 columns, where each of the 

columns, excluding those containing the name of the article and its publication year, is used as 

a specific tag designed to extract the most relevant information from each paper.  

The cells were primarily filled with values 0 and 1, where 1 means ‘yes/present in the article’, 

and 0 as a ‘no/not present in the article’. On some occasions, the letter ‘w’ was also applied, 

which indicated ‘weak evidence’ or ‘not fully present’. Some of the cells were, if deemed 

necessary, filled in with words. Some of the primary tags applied were the following: 

• Disease (+ various diseases listed in different columns) – present or not 

• BRS algorithm (+ each method listed in separate columns) – present or not  
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• Medical benefits of BRS – present or not 

• Autonomic function testing – applied in the paper or not 

• Anesthesia – applied in the paper or not 

• Baroreflex effectiveness index – mentioned or not 

• Healthy subjects – healthy subjects studied or not 

• Sample size – filled in the number of subjects included in the study 

• Breathing rate – spontaneous or controlled  

• Body position/activity during the measurement – filled in with words 

• Review – is the paper a review article or not 

• Referenced paper – is the paper a referenced paper or found in the original search 

• Pharmacological method – only the BRS pharmacological method applied or not  

2.2.2 Algorithm clinical benefit matrix (Appendix 2 - digital appendix) 

Since the baroreflex function is mainly linked to a cardiovascular system, the research is 

predominantly focused on medical states that could be significantly affected by BRS 

impairment. This would include, inter alia, the BRS value of a subject calculated in post 

myocardial infarction (POST-MI) state, or in cases following a diagnosis of diabetes mellitus 

(DM1 and DM2), chronic heart failure (CHF), coronary artery disease (CAD) and 

cardiomyopathy, and/or BRS value during and after an (acute) stroke, cerebral hemorrhage and 

others.  

The research studies generally examine the advantages and/or disadvantages each BRS 

estimation method may have in a specific disease or in certain clinically relevant applications 

(e.g. during autonomic function testing, under anesthesia), or carry out a comparison of 

different methods applied to estimate the BRS, evaluating their success in relation to a particular 

clinical role of BRS.  

The next step contained construction of a second matrix described as the ‘Matrix with clinical 

benefits’ which includes medical requests - diseases and clinical applications - with related BRS 

medical benefits estimated by techniques frequently referenced and analyzed in the literature. 

This matrix consists of 25 columns and 19 rows, with the rows organized into two sections. The 

first section lists various individual algorithms, including BEI computation, used to estimate 

BRS in selected studies, while the second section summarizes comparisons between these 

algorithms. The columns, meanwhile, represent medical areas - diseases and applications - 

where BRS is relevant. The resulting cells primarily detail the clinical benefits of BRS inc. short 

summary of the researched topic and/or the algorithmic benefit explored in the studies. 

However, 25 review articles, as secondary sources, were not included in the second matrix since 

the primary sources (original research papers) were considered more relevant. 

2.3 Discussion 

In this section, the following two topics were discussed:  

(1) the BRS algorithms used in clinical literature and  

(2) the medical application fields where BRS algorithms are applied. 
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2.3.1 Algorithms present in the literature 

From the 205 tagged articles, 129 were selected as relevant for the “Matrix with clinical 

benefits” in which BRS algorithms were applied in the clinical literature for different purposes. 

Therefore, in this section, an overview of the various methods to derive BRS used within 

clinical literature is presented. (Fig. 2.1) 

 

Figure 2.1: Overview of BRS algorithms present in the clinical literature 

In the following paragraphs, the most important BRS algorithms are presented in detail. 

2.3.1.1 Sequence method 

The sequence method – a non-invasive BRS estimation method - is a time domain method. 

Originally, it was tested on unanesthetized cats and later applied on humans as well. [30] 

However, this technique is derived directly from the pharmacological BRS method described 

earlier (see Chapter 1.5.1) and is based on the linear regression analysis as well. [30] 

Blaber et al. [74] proved that the spontaneous interaction between SBP and following RRI 

changes in the parallel direction represent ‘true baroreflex events’ or ‘sequences’ and are not 

accidental occurrences. [73] Therefore, the sequence technique is thus an open-loop method 

[64] based on the premise that spontaneous beat-by-beat fluctuations in SBP throughout the day 

are the sole cause of linear changes induced in RRI. [74], [75] As a result, the BRS value is 

estimated as a ratio between the magnitude of the RRI change and the magnitude of the SBP 

change, as in (1). 

BRS =  
∆ RRI

∆ SBP
(1) 

This algorithm itself first identifies spontaneous sequences lasting three to six beats each. The 

sequences of three beats are most frequently found in humans [11], [76], while longer sequences 

represent a less common phenomenon. [11], [30] Additionally, it has been noted that with the 

increasing sequence length, BRS value decreases. [11], [30] In general, sequences are formed 

when progressive increases in SBP are followed by RRI prolongations (decrease in HR) or vice-

versa, when both, the SBP and RRI simultaneously decrease (increase in HR). The first type of 

sequence is described as ‘SBP+/RRI+’ [30]  or ‘up’ [77] or ‘bradycardic’ [78] sequences. 

Similarly, the second type is named ‘SBP-/RRI ‘[30] or ‘down’ [77] or ‘tachycardic’ [78] 

81

44 41

11 5 2 1 1
0

10

20
30

40

50
60

70
80

90

Sequence
method

Transfer
function

Alpha
index

xBRS PRSA CDM ARMA Z method

BRS Algorithms

number of articles found per method



16 
 

sequences. Furthermore, both, ‘up’ and ‘down’ sequences are also called ‘baroreflex’ type 

sequences [79] as they are both regulated by the cardiac baroreflex. According to Del Paso et 

al. [80], ‘up’ sequences represent the vagal activation, while ‘down’ sequences reflect the vagal 

withdrawal. 

On the other hand, ‘non-baroreflex sequences’ also exist, and Di Rienzo et al. [79] described 

them as ‘converging (SBP-/RRI+)’ and ‘diverging (SBP+/RRI-)’ sequences.  They are formed 

when the SBP and RRI changes occur in opposite directions. [79] However, both of these types 

are potentially useful in further research on baroreflex physiology. [79] Additionally, it has 

been reported that ’non-baroreflex’ sequences represent only ca. 30% or less of all baroreflex 

sequences. [65], [74], [79] 

After a sequence identification, a linear regression between RRI and SBP is applied to each of 

the sequences discovered, and the BRS value is determined as a regression coefficient (gain) of 

the slope. [79] In the next step of this technique, all BRS slopes derived from each sequence 

detected in the recording are summarized. The estimated mean value derived from all up and 

down sequences represents the final BRS slope of an individual. [25] 

 

Figure 2.2: Two BRS slopes - sequence method: blue slope shows higher BRS value than the red slope [81] 

The steeper the slope, the higher the BRS value of an individual. Generally, a steep slope serves 

as a sign for good vagal baroreflex function. On the contrary, a slope which is steep to a lesser 

degree, points to impaired vagal baroreflex function and indicates that there may be potential 

issues with the cardiovascular system. [81] (Fig. 2.2) 

With regard to different visualization techniques, sequence methods present their BRS results 

in two different ways. In some studies, the BRS result is given separately for up and down 

sequences, as suggested by Martínez-García et al. [25], as two different BRS slopes (BRSseq+ 

and BRSseq-). [82] In other papers, in addition to up and down slopes, the mean BRS slope is 

given as well. [83] 

The sequence method contains five computational parameters that need to be set ahead of any 

BRS measurement, since depends on these parameters to determine what type of sequences the 

algorithm will detect in the recording and consider as valid sequences. The parameters include: 
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• Minimum number of beats considered as a sequence (usually ≥ 3) 

• Minimum thresholds for detection of SBP and RRI variations 

• Minimum threshold for required correlation coefficient between SBP and RRI 

• Time delay – ‘Lag’ or ‘time shift’ - between the initial SBP change and the 

corresponding RRI response 

The correlation coefficient describes the linearity between two signals, where a high correlation 

coefficient indicates high linearity. In general, the value goes from 0 (no linearity) to 1 (full 

linearity) and, in most cases, the required threshold is usually set in a range from 0.80 to 0.95. 

[84] 

These parameters help the algorithm to sort out sequences retaining only the valid examples 

before the BRS slope is computed. However, variable parameter settings applied in the studies 

led to the application of numerous variations of the sequence method. [85] Furthermore, the 

choice of thresholds for sequence detection has a significant impact on BRS values as well as 

on the number of sequences found in a particular recording, affecting the measurability rate of 

BRS. [84], [85] 

Another parameter that deserves to be mentioned – also regarded as the most controversial 

parameter - is the choice of the appropriate lag. In general, the RRI response to an initial SBP 

change could occur during the same heart cycle (lag of 0 beats), during the next heart cycle (lag 

of 1 beat) or during the cycle afterward (lag of 2 beats). (Fig. 2.3)  

 

Figure 2.3: Sequence calculation with lags 0,1 or 2 [42] 

It is believed that rapid coordination of HR with SBP changes at lag 0 likely reflects faster input 

from carotid baroreceptors, given its proximity to the heart. In contrast, lags 1 and 2 likely 

represent delayed HR adjustments driven by central input from the ANS. [42] 

According to the relevant literature reviewed for this thesis, the lags most frequently applied in 

the studies are lags 0 and 1. This is due to the fact that the lag of 2 beats appears to produce 

smaller number of valid sequences in humans, especially in the supine position. [27] On the 

other hand, the lag 0 and 1 suit the majority of people. [27], [84] 

When choosing between the two lags (0 or 1), the most popular solution appears consistent with 

adopting the lag which generates the highest number of valid sequences in a person, since that 

way the BRS result is less biased. [84]  

Some authors have associated lags with the mean RRI in an individual – they proposed an 

approach to choose the right lag depending on the RRI length. [86], [87] Blaber et al. [74] stated 

that delay in cardiac baroreflex response in humans is around 775 ms. For shorter RRI, the 

response would probably manifest in the following beat (Lag 1). In contrast, in the case of 
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longer RRI, the response can occur during the same cycle (Lag 0). Nevertheless, this lag theory 

has not been confirmed as a scientifically justified solution for the whole population.  

Davies et al. [84] tested different lags (-4 to +4 beat shifts) in normal as well as in patients with 

heart failure. They concluded that the lag choice in both groups has a visible impact on the 

number of sequences found, but appears to have no influence on calculated BRS results. [85], 

[88]  

In the literature surveyed, another metric of vagal baroreflex control was also introduced in 

2001. [89] It was named the baroreflex effectiveness index (BEI) and is applied in combination 

with the sequence method. [89] BEI is estimated as the ratio between all valid baroreflex type 

sequences and all SBP ramps (spontaneous successive increases or decreases in SBP values on 

a beat-by-beat basis, independent from the modulation of the RRI) found in a particular 

recording, as in (2). [4]  

BEI =
total number of RRI | SBP sequences

total number of SBP ramps
 x 100 (%) (2) 

Therefore, the results could be given for all sequences (BEI) or for ‘up’ and ‘down’ sequences 

separately (BEI + and BEI-). This measure describes the efficiency of the cardiac baroreflex – 

its engagement rate; it quantifies how often the baroreflex is involved in a control of the HR 

within a particular time window. Although useful, this additional metric cannot replace the BRS 

index, since they offer different, although complementary, information about cardiac baroreflex 

control. [90]  

For this reason, it has been recommended to estimate both BRS and BEI with the intention to 

extract a fuller picture of the cardiac baroreflex mechanism. [1] For instance, this index has 

been reported to convey a certain clinical value in cases when baroreflex dysfunction is present 

since, under those circumstances, the baroreflex mechanism is usually less engaged when 

compared to healthy individuals. 

The BEI index did show certain clinical value in some studies.  For instance, it was proposed 

as the most sensitive discriminator of cardiovascular autonomic neuropathy (CAN) in diabetes 

[91], and also was reported as being an independent prognostic predictor of long-term survival 

in chronic renal patients (when high enough). [92]  

Similar to the BRS index, BEI decreases with prolonged sequence length, and also during high-

paced frequency breathing as well. [93], [94] 

2.3.1.2 Transfer function method 

The Transfer Function (TF) method was originally introduced in 1985 and, in 1987, was also 

validated for BRS quantification in humans. [56]  

Like other spectral methods, the TF technique is based on the spectral presentation of minor 

spontaneous rhythmic fluctuations of cardiovascular signals occurring around a natural set 

point. These oscillations occur constantly in RRI and SBP time series in humans; the TF 

technique describes their rhythmic co-occurrence across frequency ranges of interest, usually 
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within the LF and/or the HF bands as they are believed to be under baroreflex control. [56], 

[95]  

The TF technique is often employed to describe the response of a linear time-invariant system 

in relation to gain, coherence and phase shift at various frequencies. It is considered one of the 

most extensively utilized techniques in short-term investigations of BP, HR and respiration 

signals. [96] 

As mentioned earlier, this technique’s fundamental assumption is a linear open-loop 

relationship between input and output signals. [96] However, this assumption may be seriously 

compromised in the coupling of HR and BP signals, unless specific conditions are met (e.g. 

small signal variations, analysis of fluctuations in selected frequency bands). [96] 

The modulus of the transfer function (Gxy(fk)) or transfer gain at a specific frequency (fk) is 

calculated as the cross-spectral density (CSD) (Sxy(fk)) between SBP and RRI variabilities 

divided by the power spectral density (PSD) of the SBP (Sxx(fk)) variability alone, as in (3). 

[56], [73], [97] 

|Gxy(fk)| =  
Sxy(fk)

Sxx(fk)
(3) 

In general, PSD (or ‘auto-spectrum’) portrays the signal’s power distribution across different 

frequency regions. It thus reveals how much variability exists in signals across different 

frequencies. Hence, the PSD of RRI is expressed in units ms²/Hz, while the PSD of SBP is 

expressed in mmHg²/Hz [72] On the other hand, the CSD represents the relationship between 

two signals across a range of frequencies expressed in the units ms*mmHg/Hz. [96] 

The ‘coherence’ or ‘magnitude squared coherence’ portrays the linear correlation between the 

fluctuations of two signals at a given frequency, calculated as in (4). [56] This parameter has 

the same function as the correlation coefficient from the regression analysis. [56], [98] 

Generally, the coherence is a normalized value and ranges between the values of 0 and 1, and 

is dimensionless. A value 0 indicates there is no linearity between the two signals and value of 

1 indicates full linearity. [56], [99] Additionally, any value below 1 also indicates that 

nonlinearities or noise could be present in the signal which is a normal occurrence in 

cardiovascular signals. [96] 

Coh(fk) =  
|Sxy(fk)|2

Sxx(fk) x Syy(fk)
(4) 

Additionally, from the CSD of RRI and SBP variabilities, the coherence spectrum and the phase 

spectrum (often excluded) can be derived. [56], [95], [100] (Fig. 2.4) 
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Figure 2.4: BRS gain and coherence spectrum of a 57-year-old woman computed by TF method - (a) during slow 

breathing, (b) during fast breathing and (c) during spontaneous breathing. The strong black line represents the high 

coherence (coh2) area. It can also be seen that BRS and coherence shift constantly. [7]  

Furthermore, the phase, computed as the argument (angle) from the CSD between the signals, 

illustrates the temporal relationship between SBP and RRI fluctuations across different 

frequency regions. [72], [94] However, the issue with the phase estimation is the ambiguity in 

determining which signal in the cross-spectrum leads the other. Therefore, determining the most 

suitable description relies on relevant physiological considerations (Chapter 2.5.4). [72] If 

necessary, the phase displayed in degrees at specific frequency could be transformed into 

seconds. [100] 

The requirement for a reliable phase calculation, in literature, is a high coherence threshold, 

usually set above 0.5. [56], [60], [97] 

TF modifications: BRS value and coherence criterion interplay 

It is important to distinguish between transfer gain computations, as in (3) and the BRS value 

derivation. Specifically, the determination of the BRS value often follows one of three 

approaches when employing the TF method, which leads to variations in the resulting output 

of this method in the literature. (Table 2.1) 

  

(a)

(b)

(c)
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Reference  BRS value computation 

method 

Coherence criterion Frequency bands 

Robbe et al. 1987 [56] 

 

‘Original’ TF method 

BRS value as the mean of all 

included transfer gain points 

which satisfy the coherence 

criterion in a specific 

frequency band 

Accepts only transfer 

gain points where 

coherence between 

SBP-RRI > 0.5 

(arbitrary threshold) 

LF and HF band 

Pinna et al. (WBA-TF) [95] BRS as the mean of all transfer 

gain points across the whole 

LF band independent from any 

coherence criterion 

Excluded from BRS 

computation 

LF band 

Bothova et al. [73] BRS value as the single 

transfer gain in the LF band 

occurring at the highest 

coherence value in that 

frequency band 

Usually highest 

coherence > 0.5 

LF band 

Table 2.1: Three methods of BRS value determination found in the literature  

Robbe et al. [56] approach, termed ‘Original TF’ method, typically takes the coherence criterion 

into account during BRS calculations. This entails incorporating only TF gain points where the 

coherence at specific frequency points exceeds the chosen threshold, arbitrarily set above 0.5. 

In contrast, frequency points generating coherence values below the threshold are excluded 

from further computations. Thus, the ultimate BRS value is calculated as the mean of all transfer 

gain points integrated into the analysis for the LF and HF bands separately.  

Additionally, Robbe at al. [56] concluded that the coherence spectrum shows the highest values 

in healthy adults in the LF range and lowest values in the frequency range below 0.07 Hz (VLF 

band) pointing to low linearity between SBP and RRI in this region. [95], [98]  For this reason 

- in all BRS studies - frequencies below 0.04 Hz are never applied in the BRS evaluation 

procedures, since the VLF range seems not to be associated with the baroreflex function, but 

rather with other long-term processes, such as body temperature regulation, etc. [56]   

One study by James et al. [101] pointed out an interesting finding that, after drug injection to 

estimate BRS in elderly subjects, the power, phase and coherence between SBP and RRI 

actually increased in the VLF band. Thus, longer (> 10 beats) baroreflex type sequences which 

usually do not occur in a normal daily life – generated via artificial stimulation of SBP - are 

part of the VLF region, not LF and HF bands. For this reason, the direct comparison of the 

pharmacological BRS results with daily spontaneous BRS results - obtained via spectral or 

sequence methods – may not be desirable approach, as it appears that these do not occur at same 

frequency regions assumed to be under the baroreflex control. 

However, the observation regarding high coherence values in the LF band, agrees with the 

majority of other studies which also indicate that only the LF band - not the HF band - seems 

to be the appropriate frequency area for the short-term spontaneous BRS calculation. [33], [73], 

[95]   

For this reason, Bothova et al. [73] narrowed their focus exclusively to a single transfer gain 

point within the LF band determined at the frequency with the highest coherence value and 

adopted this gain as the BRS index. Pinna et al. [95], on the other hand, introduced another 

variation of the TF method – termed the ‘weighted band average’ TF (WBA-TF). This TF 

variation disregards the coherence criterion altogether and calculates the BRS value in the LF 

range by averaging all BRS transfer gains across the whole LF band. 
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This WBA-TF approach was described as particularly valuable in patients with an established 

baroreflex dysfunction who, due to physiological changes caused by their disease, lack higher 

coherence between the RRI and SBP necessary for traditional BRS estimation.  

In general, due to low coherence values, the original TF method produces fewer transfer gain 

points available for BRS calculation in the LF band if the coherence threshold is set too high; 

thus, their results end up being more scattered around the mean. Consequently, the resulting 

BRS estimate may not be considered reliable. [95]    

Hence, the major advantage of the WBA-TF approach, compared to the ‘original’ TF method, 

lies in the fact that the BRS index calculated produces more points necessary for BRS 

calculations, filters out higher variation of BRS values by averaging gains across the whole LF 

band and, in turn, generates more stable results. [95]   

The TF method in the relevant literature was computed either by employing the FFT 

(nonparametric) approach or the autoregressive modeling procedure (AR model - parametric 

approach). [102]  

In the studies selected for deeper analysis this thesis, the TF method was mainly computed by 

employing the FFT algorithm (33 papers) while the AR model was employed less often (8 

papers). However, overall literature did not establish definitively which method is superior in 

BRS estimations.  

The only study to compare these two spectral estimators in the TF method application - 

conducted by Pinna et al. [102] in 2017 - found that the BRS value calculated using the FFT-

based TF method had greater prognostic value in POST-MI patients compared to the value 

derived from the AR approach. However, the authors suggested that this outcome was likely to 

have been influenced more by the differences in how BRS values were calculated, rather than 

the choice of the spectral estimator, as each method used a distinct BRS value computation 

technique. 

On point, research comparing different spectral estimators for the BRS TF analysis is generally 

lacking in literature from all periods. Therefore, it is reasonable to suggest that the most 

appropriate method (FFT or AR) can only be determined once more comprehensive research, 

employing a consistent BRS determination technique, is available. This would facilitate a 

clearer comparison of the clinical relevance of BRS obtained by both methods across various 

populations, including both healthy and diseased subjects. 

More details on different spectral estimators are provided in the following chapter (see Chapter 

2.5). 

2.3.1.3 Alpha coefficient method 

The alpha coefficient [103] method was first introduced in 1988 by Pagani et al. [20], [104] It 

is based on TF as well, but the alpha gain is estimated as the square root of the ratio between 

power spectra of RRI (PRRI) and SBP (PSBP) in a specific frequency band. In this technique, 

indices ɑLF and ɑHF are calculated separately by using (5). [20]  
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ɑLF =  √
PRRILF

PSBPLF

 and ɑHF =  √
PRRIHF

PSBPHF

(5) 

The RRI is perceived as output and the SBP as the input signal. Power spectra of RRI and SBP 

are computed by integrating the PSD within HF and LF bands separately. [33] 

The BRS gain in LF and HF bands is computed under the assumption that the coherence 

between the signals is high (> 0.5). However, coherence is not always computed when using 

this method.  

In some studies, the average of ɑLF and ɑHF is estimated to indicate the total BRS gain. [38] In 

others, the gain is calculated only in one of the bands. [49], [75], [76], [78] 

Generally, the alpha method in literature - as is the TF method - is calculated either by 

employing the FFT approach or the AR model. [105]  However, according to Clyton et al. [105], 

the results obtained by this technique do not differ significantly if the BRS gain is averaged 

across the whole frequency band of interest. 

2.3.1.4 Cross-correlation baroreflex sensitivity (xBRS) 

This algorithm is a time domain method first introduced in 2004. [55] The technique is also 

based on SBP and RRI variabilities - it calculates their cross-correlation and regression slope 

over fixed time - although sliding - windows. The window length usually lasts 10 seconds with 

an intention to include fully the whole baroreflex frequency range. As mentioned prevoiusly, 

this frequency range includes both slow and fast frequencies.  

 

The method also incorporates a variable time delay (shift) of 0 - 5 seconds between associated 

SBP-RRI changes, as the most suitable time delay varies between persons. This approach is 

taken since, according to Westerhof et al. [55], 5 seconds are adopted as long enough to 

accommodate the sympathetic portion of the baroreflex response to the RRI as well. The delays 

expressed in lags and beats in the sequence method here are converted to seconds. 

  

During computation, however, the thresholds for the minimal required SBP and RRI changes 

are disregarded; the cross-correlation is estimated six times per window.  

After the highest cross-correlation coefficient is selected, the regression slope is calculated. 

Requirements for an accepted BRS slope mean that it has to be positive and the probability of 

it being a random regression must be below 1%.  

 

Finally, the particular regression slope is divided by the cross-correlation coefficient to 

determine the BRS result. This approach is intended to filter out any random noise that could 

have been included in SBP and RRI signals. The time delay which best fits the particular 

regression slope is selected as the appropriate time delay. [55] 

2.3.2 Spectral methods: TF versus Alpha coefficient method 

The key distinction between the alpha coefficient and the TF lies in their underlying 

assumptions. According to the alpha coefficient method, it is suggested that all RRI variability 

is exclusively driven by changes in SBP, although this assertion may not be entirely accurate. 
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Conversely, the TF method adopts a more nuanced perspective, restricting its consideration to 

the portion of RRI variability that is shared between SBP and RRI for the BRS estimation.[106]  

For this reason, the alpha coefficient always generates higher values than the TF method and is 

reported to have a c. 41% positive bias. [7], [64], [67] 

According to Gerritsen et al. [7] the TF method is preferable as it, in part, corrects for the ‘non-

correlating’ noise and estimates the phase shift. This preference is not absolute, as it should be 

noted that the alpha index could also produce the phase shift, (if necessary) although this is very 

rarely seen in the studies from the literature relevant to this thesis. [20]  

The alpha coefficient appears to be a simpler method for the calculation than the TF, but the 

coherence criterion may represent an issue if it is set too high for the alpha index (> 0.5). [7] 

This criterion limits its use on pathological subjects who lack high linearity between SBP and 

RRI. [95] In contrast, the WBA-TF method variation disregards this issue and could be applied 

to larger populations. [95]  

In general, both methods produce similar values in situations where the coherence is high; this 

is true mainly in healthy subjects. Yet, in cases where the coherence is lower, the difference in 

results is more noticeable. [64]  

The difference between methods is also less visible when slow metronomic breathing is used, 

since this type of breathing increases the coherence, but also overestimates the BRS result. [7]  

2.3.3 Overview of general advantages/disadvantages of BRS algorithms 

All non-invasive methods for measuring BRS involve not only pure baroreflex, but also other 

cardiovascular and thoracic stretch reflexes. [107] In more recent times, it is reported that the 

BRS assessment demonstrated in certain health issues (e.g. reflex syncope, atrial fibrillation, 

and CHF) appears to improve its specificity by applying various inducive maneuvers (e.g., 

standing, HUT). [108] However, the major requirement for any acceptable BRS estimation is 

the presence of the sinus rhythm. [109] 

The disadvantage of the BRS algorithms is reflected in the fact that they cannot be applied on 

all individuals. They must contain specific exclusion criteria to provide valid output such as the 

presence of atrial fibrillation [84], [110], [111], atrial flutter [108], permanent pacemakers 

[107], [108], frequent supraventricular or ventricular ectopic beats. [108], [111]  

According to Barthel et al. [109], some of the other issues include non-stationarities (see 

Chapter 3.1.2.2.1) and noise that BP and RRI usually contain. Efforts have been made to reduce 

these influences by applying different filters, yet the filters may, on the other hand, potentially 

affect the predictive ability of the results. 

Another important point is that different algorithms seem to focus on different parts of 

baroreflex physiology. [45] The sequence method uses only short sequences (3-6 beats in 

length) and focuses on parasympathetic baroreflex breach, reflecting fast vagal increase or 

withdrawal, while spectral methods are believed to have a chance to investigate also the 

sympathetic (slower) component of the baroreflex. For this reason, it is assumed that sequence 

BRS results are more associated with the HF band, and less with the LF band of spectral 

estimates. [101] 
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On the other hand, the VLF band had not been used for BRS determination since the coherence 

value between SBP-RRI was reported as lowest in that range as explained earlier. Therefore, 

spectral results could not be accepted as reliable in that band. Yet the recording period used for 

the spectral analysis in that study by Robbe et al. [56] was only 4.5 minutes long. Thus, the 

short time period may have limited their ability to analyze the VLF band properly.  

Additionally, as mentioned earlier, phenylephrine injections used for invasive BRS estimation, 

whose prognostic clinical usefulness was already proven in the ATRAMI study (see Chapter 

2.3.5), trigger longer sequences in SBP and provoke a stronger RRI response in return; this 

procedure thus actually appears to increase the coherence in the VLF band between SBP and 

RRI. [101] 

In contrast to these findings, the study by Eckberg et al. [33] investigated baroreflex physiology 

in a recording of 20 minutes by employing the alpha coefficient method (time-frequency 

analysis) in nine healthy supine resting adults, and concluded that spontaneous major and 

constant oscillations of cardiac BRS, without any artificial stimulation of baroreceptors, do 

occur mainly in the VLF band (central frequency of all subjects was reported to be close to 0.01 

Hz, or every 90 seconds). 

Therefore, the limitations of BRS algorithms may not lie solely in their inconsistent results in 

different studies or be related to unclear parameter settings. A significant issue is that by 

excluding the VLF band, researchers may struggle to define (and agree) on the full spontaneous 

baroreflex operating range, the physiological aspects behind it and on relations between BRS 

indices produced by different algorithms. This state of research makes it more difficult to 

establish the clinical usefulness of spontaneous BRS indices. 

General strengths and weaknesses of the sequence and spectral methods (TF and alpha 

coefficient) are given in tables 2.2 and 2.3. 
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Sequence method 
General properties 

Strengths Weaknesses 

• Dynamic measure of the parasympathetic (vagal) 

activity on the heart [10] 

• Method likely indicates baroreceptor effects on the 

sinus node with high specificity: it is supported by the 

near-total disappearance of both positive and negative 

baroreflex sequences following sinoaortic denervation 

in animals [76] 

• Discriminate baroreflex and non-baroreflex activities: 

separates baroreflex type and non-baroreflex type 

sequences [65] 

• Separate analysis of up and down sequences:  follows 

both positive and negative SBP changes [25] 

• Linear regression is easier to apply than spectral 

methods and easier to interpret [112] 

• Does not require external stimulation [113]  

• Not operator-dependent [113] 

• Does not require stationarity as do spectral methods 

[32] 

• Not time-consuming, but longer recordings 

recommended  [113] 

• BEI could be added as a complementary parameter 

which seems useful in specific medical fields: in that it 

expresses the engagement rate of the baroreflex [89] 

 

  

• May miss the sympathetic part of BRS due to short 

sequences [6], [102] 

• Separate analysis of BRS changes in LF and HF bands 

not possible [112] 

• Baroceptors probably do not modulate the sinus node 

only in sequence-like form, but also trigger a beat-to-

beat change in RRI in relation to a beat-to-beat change 

in the SBP [20] 

• Relies on invariant time delay (lag) between RRI and 

BP changes across all subjects [107] 

• Choosing the right parameters (sequence length, 

thresholds for RRI changes, SBP changes, correlation 

coefficient, lags) is very important and influences 

results [84], [101]  

• Sequence length effect: BRS and BEI values decrease 

when sequence length increases [30]  

• Non-causal method: based on a simple open-loop 

model between SBP and RRI without taking into 

account respiration and other influences [101] - can 

overestimate the BRS value [69], [101]  

• High correlation coefficient between RRI and SBP 

does not formally confirm causality between RRI and 

SBP [69] 

• Limited value in individuals who lack high 

correlations between RRI and SBP [114] 

 

Table 1.2: General strengths and weaknesses of the sequence method 
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Spectral methods 
General properties 

Strengths Weaknesses 

• Spectral methods: Not time consuming: 3 minutes 

are sufficient for LF and HF band analysis [41] 

• Spectral methods: Offer a chance to follow BRS 

changes over time in LF and HF bands: allowing more 

in-depth analysis of BRS differences between subjects 

and their autonomic mechanisms [112] 

• TF: Computes phase spectrum [67]: describes a 

temporal relationship between RRI and SBP 

oscillations in LF and HF band 

• TF: Computes coherence spectrum: describes the 

extent of the linear relationship between RRI and SBP 

in LF and HF band 

• TF: Computes BRS spectrum: useful for spectrum 

shape interpretations (see Chapter 2.5.1) 

• WBA-TF variation: Computes BRS value even when 

coherence between signals is lower than 0.5 [95], 

[102] 

• Alpha: Easier to compute than the TF method 

 

 

 

• Spectral methods: Sensitive to ectopic beats and 

other artifacts which reduce their measurability and 

applicability in clinical practice: requires visual 

inspection of signals before the analysis begins [115] 

• Spectral methods: Operator dependent: Subjective 

choice of RRI and SBP signal segments used for 

spectral analysis 

• Spectral methods: Sensitive to noise in SBP and RRI 

signals [109] 

• Spectral methods: Require excessive preprocessing 

of data to ensure signal stationarity: editing and filter 

applications could lead to different results (Chapter 

3.1.2.3) [101], [109] 

• Spectral methods: Noncausal methods: SBP-RRI 

causality is not taken into account when BRS is 

computed [69], [101] 

• Spectral methods: BRS values could not be 

calculated if no LF or HF components in the power 

spectrum of SBP are detected [102] 

• Spectral methods: BRS results are dependent on the 

spectral algorithm used and parameter settings (type 

and size of the spectral window, order of the 

autoregressive model, threshold for coherence) [96], 

[101] 

• Alpha: Assumption that there is always high 

coherence (> 0.5) present between RRI and SBP [116] 

(add 40) 

• Alpha: The phase between SBP and RRI can be 

calculated but rarely performed [20] 

• Alpha: Positive bias against the TF method [7], [67]: 

includes respiration effects  

Table 2.2: General strengths and weaknesses of the spectral methods (TF and alpha coefficient) 

2.3.4 Algorithms for medical requests/applications 

The BRS index serves mainly as autonomic dysfunction (AD) marker in different diseases; 

however, types of BRS analyses vary depending on the specific medical characterizations of 

each disease, and according to the clinical value that BRS offers (Digital Appendix 2). Thus, to 

be able to discuss the strengths and weaknesses of different methods in relation to various health 

issues, this section of the thesis relates to the specific diseases that are most often found in the 

literature, ranked by the number of articles found for each disease.   

Four bar charts below reflect the number of times each method has been applied in the selected 

literature for the four most popular BRS-associated diseases: diabetes mellitus, hypertension, 

CHF and POST-MI. (Fig. 2.5 and 2.6) 
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(a)                                                                         (b) 

Figure 2.5: Bar charts for (a) CHF and (b) hypertension with a number of times each method was applied in studies  

 

(a)                                                                            (b) 

Figure 2.6: Bar charts for (a) diabetes and (b) POST-MI with a number of times each method was applied in studies  

In addition to cardiovascular diseases, BRS algorithms were most frequently applied in two key 

areas: assessing BRS during autonomic function tests in healthy individuals under various body 

postures or physical activities, including different breathing patterns (27 papers), and evaluating 

BRS in subjects under different types of anesthesia (8 papers). Anesthesia usually reduces BRS 

and changes the relationship between SBP and RRI, thus making the assessment of BRS more 

challenging. [117], [118], [119] 

2.3.4.1 Chronic heart failure 

Articles included 

Overall, for CHF there were 14 relevant articles found in the time span 1999-2020.  These 

papers focus on heart failure and, in most cases, exclude other diseases from consideration. 
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Clinical value of BRS in CHF 

Heart failure is a critical medical event associated with AD. [102], [108] As a result, BRS as a 

marker of AD is often reduced, suggesting that a more precise BRS assessment could lead to 

better risk stratification and outcome prediction, as well as to better care for CHF patients.  

Some of the proposed therapies to improve autonomic function and increase BRS include 

different medication therapies [111], cardiac resynchronization therapy (CRT) [108], baroreflex 

activation therapy (BAT) [110], vagus nerve stimulation [21] and slow breathing sessions. [120]  

Since reduced BRS serves as a high-risk predictor of negative outcomes such as sudden death, 

cardiac mortality and morbidity, major adverse cardiovascular events (MACE) and frequent 

hospital admissions, the quantity of reduction in BRS also has prognostic value, although the 

actual value may depend on the BRS algorithm used. [102], [108], [110] The prognostic value 

of BRS depends on the measurement timing as well (before or after any treatment), as it seems 

to have a different prognostic power in untreated versus optimally managed patients, as well as 

in different types of heart failure. [110] 

Challenges associated with the BRS measurement in CHF patients 

In CHF patients, the presence of nonlinear dynamics of baroreflex due to their pathology, 

together with frequent ectopic activity, restrict the power of the algorithms to measure BRS 

accurately. [102], [108], [115]  

Additionally, the BPV in the LF region is distinctly depressed [102], as well as the HRV in both 

LF and HF ranges [102]. This leads to a low signal-to-noise ratio (SNR). [102] For this reason, 

the algorithms face difficulty in differentiating what is due to the real baroreflex mechanism 

and what is due to noise.  

Moreover, abnormal breathing patterns are often present in this patient population – in up to 

50% of CHF patients according to Pinna et al. [115] - and these patients are usually prone to a 

higher breathing frequency. [107] The different respiratory rates, which are also present during 

spontaneous breathing, act as a confounding factor on cardiovascular variability measurements. 

[107], [115], [121] That is the main reason why measurements by spectral analysis are 

preferrable in the LF band with paced breathing recordings. [102] 

Specific advantages and disadvantages of BRS algorithms in the CHF population are presented 

in tables 2.4-2.6. 
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2.3.4.1.1. Advantages and disadvantages of different BRS methods in CHF 

Sequence method 

CHF application 

Advantages Disadvantages 

• Reproducibility (same-day): Good reproducibility in 

CHF patients, less in the controls [107] 

 

• Measurability: Frequent ectopic beats hinder 3-beat 

sequences occurrence which causes the failure of the 

method [107] 

• Reproducibility (same-day): Irregular or differing 

respiratory rates worsen the reproducibility [107]  

• Reproducibility and success rate: Wrong thresholds 

(lags choice, thresholds for RRI and SBP changes, 

threshold for correlation coefficient) lead to poor 

results and to high failure rate (low measurability) - 

limits use in clinical practice [84], [102], [107] 

• Thresholds recommendation: RRI and SBP 

variation thresholds influence BRS result – caution 

when setting them (high RRI and low SBP threshold 

select sequences which deliver high BRS, which is 

rare in CHF patients). Advised that it is best to use the 

lag which produces the most valid sequences (Lag 0 

produced most sequences in controls and CHF 

patients) and avoid putting any correlation coefficient 

threshold to avoid bias in BRS results; optimal 

thresholds vary between controls and CHF patients 

and influence agreement with other BRS algorithms  

[107] 

• Prognosis: BRS value did not show prognostic value 

in CHF patients since prognostic information appear 

only connected to the LF band [102] 

 

Table 2.3: Sequence method: advantages and disadvantages in CHF application 
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TF method: WBA-TF (no coherence criterion) versus original TF (coherence > 0.5) 

CHF application 

Advantages Disadvantages 

WBA-TF (nonparametric) 

• Measurability: 100% - BRS was computed in all 

CHF patients [102] 

• Parameters: No coherence criterion issue [121], 

[122] 

• Critical BRS value: Proposed critical value of BRS < 

3ms/mmHg reflects the complete baroreflex 

impairment - this BRS value seems to be a biological 

threshold for the functioning of the baroreflex, below 

which RRI changes are not any more linearly related 

to SBP changes [122], [123] 

• Risk stratification: Improved risk stratification 

classification when it was added to the clinical 

prognostic model and showed an acceptable stability 

of results [102] 

 

WBA-TF 

• WBA-TF (nonparametric): Cannot replace the 

phenylephrine method in the risk stratification 

classification, but can be integrated with it [115] 

• WBA-TF: Prognosis: Non-baroreflex information is 

present in the calculated BRS value so the prognostic 

information cannot be directly associated to the 

baroreflex function [68]  

Original TF  

• Measurability: Reduced due to high ectopic rate in 

CHF patients [121],[115] 

• Parameters: Coherence threshold > 0.5 is an issue - 

in CHF patients it was common to have coherence 

value < 0.4 [102] 

• Prognosis (parametric): Provided some prognostic 

value in CHF patients but not good stability, or did not 

help to improve risk stratification: recommended to do 

averaging procedure over the whole LF band to 

enhance stability of measurements [102] 

• Measurability (parametric): Low SBP variability of 

CHF patients in the LF band limited the application of 

the method (Measurability was 96% but still lower 

than for the nonparametric WBA-TF which was 100 

%) [102] 

Table 2.4:TF method: advantages and disadvantages in CHF applications  

Alpha coefficient 

CHF application 

Advantages Disadvantages 

• Nothing specific mentioned • Measurability: Not always computable in CHF 

patients [102] 

• Prognosis: aHF (parametric) did not show any 

prognostic information in CHF patients [102] and has 

poor reproducibility [107]  

• Prognosis: aLF (parametric) did provide prognostic 

information for CHF patients, but did not significantly 

improve the risk classification when added to the 

clinical prognostic model, and didn’t demonstrate 

good stability (poor reproducibility) in the validation 

procedure [102]  
Table 2.5: Alpha coefficient: advantages and disadvantages in CHF application 

2.3.4.2 Hypertension 

Articles included 

Overall, for hypertension, there are 13 relevant articles found in the time span 1988-2015.  

These papers focus only on hypertension or on hypertension mixed with some other health 

issues, such as stroke. [12] 

Clinical value of BRS in hypertension 

The presence of hypertension per se in an individual indicates a significant risk factor for 

cardiovascular disease as it was confirmed that BRS, as AD marker [12], [22] as well as BEI 

[92] - in case the renal failure was additionally present - could be used as an independent risk 

indicator and predictor for mortality and the development of major advanced cardiac events 

(MACE) in hypertensive patients. [53] 
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Since hypertensive patients have decreased BRS in the early stages of hypertension, it was 

originally believed that hypertension causes baroreflex impairment. [30] Evidence now 

reported from more recent studies indicate that lower BRS is actually a factor that plays a role 

in the development of hypertension. [53] 

Reduced BRS in hypertension cases is further reduced in patients with stroke history [12], 

metabolic syndrome [12], [22] and chronic renal failure (CRF) [92], making hypertensive 

patients with different comorbidities more easily prone to sudden death and higher mortality 

rates. [92]  

For this reason, appropriate assessment of BRS in hypertension, or identifying hypertension 

[124], is the goal of numerous studies. [101], [112] In addition, in some studies, specific therapy 

efforts, such as slow breathing sessions [24] or physical training [20] were also tested while 

monitoring BRS, trying to find opportunities to improve the BRS in that patient population.   

Specific BRS characteristics in hypertensive patients  

BRS is reduced in hypertension [53], [125] approximately 35 [112] - 40% [30] when compared 

to normotensive patients. 

In older hypertensive patients (> 40+) the night/day variation of BRS is small or absent, but in 

younger patients the modulation is still present; the BRS slope increases at night, while the 

number of valid baroreflex sequences decreases. [30], [76] 

Reduction in BRS slope of ‘up’ (slowing down the HR) sequences seems to be of particular 

relevance in prognosis of cardiovascular events. ‘Up’ sequences reflect parasympathetic 

activation, while down sequences reflect parasympathetic deactivation. [53] 

In addition, the baroreflex seems to be less engaged (lower BEI) in hypertensive patients as the 

number of valid baroreflex type sequences discovered in measurements is lower than in normal 

subjects. [30] Moreover, the number of valid sequences is even lower in older hypertensive 

patients in comparison to younger hypertensives when the same thresholds for both groups are 

applied in setting the ‘valid sequence’. [76] On the other hand, in younger patients BRS is 

directly connected to HR while in older subjects this connection disappears. [76] 

Specific advantages and disadvantages of BRS algorithms in hypertensive population are 

presented in tables 2.7-2.9. 

  



33 
 

2.3.4.2.1. Advantages and disadvantages of different BRS methods in hypertension 

Sequence method 

Hypertension 

Advantages Disadvantages 

• Diagnosis: Suitable method to diagnose hypertension 

and to be used for risk stratification for MACE and 

mortality [30], [92], [112] 

• Risk stratification: ‘Up’ sequences appear more 

relevant for the risk of mortality [53] 

• Risk stratification: BRS measured in a supine 

position most correlated with other risk factors in 

hypertension; BRS slope may assess risks of 

cardiovascular events [124] 

• Risk stratification and outcome prediction: BEI as 

additional support and an independent risk factor can 

be calculated in hypertensives with the renal disease -

BRS and BEI are not interchangeable since BRS 

predicted sudden death, but BEI predicted the all-

cause mortality in this patient population [92] 

• Algorithm: Differentiates 24-hour BRS behavior 

between older and younger hypertensives and also 

between hypertensives and age-matched controls: 

same thresholds set for young and older subjects [30], 

[76] 

• Parameters: Lag 1 used in all selected research 

papers: no reasons given 

 

• Parameters: Different thresholds settings influence 

results, the caution is required with different age 

populations (e.g. in elderly, if RRI threshold is set, 

there is high tendency to bias BRS results) – advised 

that thresholds should be relaxed in elderly population 

to allow better measurability [101] 

 

Table 2.6: Sequence method: advantages and disadvantages in hypertension 

Alpha coefficient method 

Hypertension 

Advantages Disadvantages 

• Diagnosis: Suitable method to diagnose hypertension 

[76], [101], [125]  

• Diagnosis: Mean alpha index (mean of aLF and aHF) 

at rest may identify hypertension when age and sex 

data are added to the model: accuracy was c. 80%, but 

more evidence is required before a final conclusion 

can be determined [125] 

• Diagnosis: aLF showed reduced BRS in hypertensives 

and displayed day/night variations [76] 

• Risk stratification: aLF index seems useful in 

assessing the risk of cardiovascular events [124] 

• Diagnosis: The alpha method may be useful when 

SBP is relatively stable and the recording is of shorter 

duration [76]  

• Parameters: Coherence threshold is an issue when set 

above 0.5 in hypertensives [101] 

 

Table 2.7: Alpha coefficient: advantages and disadvantages in hypertension 

TF method 

Hypertension 

Advantages Disadvantages 

• Diagnosis: Suitable method to diagnose borderline 

hypertension: BRS - TF (LF) [112] 

• Risk stratification: BRS-TF (LF) (with HF breathing) 

may be marker of high cardiovascular risk in 

hypertensive patients with stroke history (BRS most 

reduced when metabolic syndrome added < 

3ms/mmHg) [12] 

• Diagnosis: Breathing at 6bpm overestimates BRS in 

the LF band and should be avoided for diagnostic 

purposes [73]  

Table 2.8:Transfer function: advantages and disadvantages in hypertension 

2.3.4.3 Diabetes mellitus 

Articles included 
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Overall, for diabetes mellitus (DM1 and DM2) there are 11 relevant articles found in the time 

span 1997-2020. Three articles focus solely on DM1, two on DM2, and the rest include both 

types concurrently. 

Clinical value of BRS in diabetes 

In diabetes mellitus, there is a substantial need for a detection of cardiovascular autonomic 

neuropathy (CAN or AN or AD) [26] which affects around 20% of all diabetic cases [126] and 

represents a high risk for cardiovascular mortality, even doubling it, according to Javorka et al. 

[26] For this reason, the measurement of spontaneous BRS could act as a possible non-invasive 

solution for early diagnosis. It offers a less complicated clinical procedure than other 

standardized clinical tests, for patients as well as for clinicians. [78] Furthermore, BRS is 

recommended as a potential AD diagnosis marker which could be useful in times when even 

regular diagnostic tests still show a negative result [78], or in asymptomatic diabetic cases that 

show no evidence of CAN. [91], [127]  

Characteristics of diabetes (DM1 and DM2) 

It is reported that DM1 and DM2 have different onset times, prevalence, treatment options and 

the development of AN. [91] Diabetic patients usually, aside from DM, deal with additional 

health issues such as obesity, hypertension and CRF, which influence and reduce BRS values 

even further. [91] 

Specific advantages and disadvantages of BRS algorithms in a diabetic population are presented 

in tables 2.10-2.12. 

2.3.4.3.1. Advantages and disadvantages of different BRS methods in diabetes mellitus 

Sequence method 

Diabetes mellitus 

Advantages Disadvantages 

• DM1: Diagnosis (age ± 21): Up and down sequences 

useful: Reduced slope of up sequences (implies longer 

baroreflex time delay in DM1), preserved slope of 

down sequences: asymmetric baroreflex impairment 

noticeable - sequence method more sensitive than 

others [26] 

• Diagnosis: Number of up and down baroreflex 

sequences is reduced in diabetics; this is relevant [78], 

[91], [128], but also the number of SBP ramps 

increases (BP varies more) in this group 

• Diagnosis: BRS slope showed mixed results: in some 

cases was relevant [127], in others not [128] 

• (Mixed DM) Diagnosis (age 22-54): Sequence 

number (used > 4 beats sequence) and/or BRS slope 

were enough to detect early AD [78] 

• (Mixed DM) Diagnosis (middle age): BRS slope was 

sensitive enough to detect CAN [91]  

• BEI is clinically useful: (mixed DM - middle age) 

BEI was the most sensitive discriminator of AD [91] 

• Parameters: Lag 1 mostly applied in studies: no 

reasons given 

 

• Algorithm: Assumes a linear relationship between 

SBP and RRI changes which may not be valid in 

diabetics [26] 

• Measurability: Appropriate number of sequences 

must be found in diabetics for this technique to work 

[103] 

• Measurability: Frequent premature beats and atrial 

fibrillation present in diabetics made the BRS 

estimation often unfeasible [103]   

• (DM2) Diagnosis: In middle-aged and older patients, 

the reduction of BRS in the supine position is harder 

to measure or not detected at all [103], [126]; wrong 

thresholds could be the issue 

• (DM1) Diagnosis: in children and adolescents BRS 

must be combined with HRV metrics for better 

diagnosis [129] 

• (Mixed DM) Diagnosis: BRS slope values show large 

variability in DM patients – reduces the physiological 

relevance [128] 

Table 2.9: Sequence method: advantages and disadvantages in diabetes mellitus 
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Alpha coefficient method 

Diabetes mellitus 

Advantages Disadvantages 

• (Mixed DM) Diagnosis (age 22-54): Shows 

progressive reduction of BRS (aLF) with higher 

degrees of CAN able to detect CAN, coherence > 0.5 

[78] 

• (DM2) Diagnosis (age ± 50): Mean alpha, aLF and 

aHF were sensitive in early detection of CAN more 

than the sequence method, coherence > 0.5 [126] 

• (Mixed DM) Diagnosis (age 20-54): Mean alpha 

detected CAN, no info if coherence criterion was 

applied [130] 

• DM1: Diagnosis (age ± 35): Significant BRS (mean 

alpha) impairment determined in supine and standing 

positions, coherence set above 0.4 [131] 

• Diagnosis: Mean alpha was most used BRS index in 

DM  

• Parameters: Coherence criterion (> 0.5) reduced the 

number of patients in whom BRS could be measured 

[126]  

Table 2.10: Alpha coefficient: advantages and disadvantages in diabetes mellitus 

TF method 

Diabetes mellitus 

Advantages Disadvantages 

• (mixed DM) Diagnosis (age ± 48): HF and LF gain 

didn’t’ reach significance but were lower than in 

controls [128] 

• (mixed DM) Diagnosis (age ± 45): HF gain detects 

patients labeled as without AD or in early stages only 

in a standing position, gain computed at maximum 

coherence in each frequency band [127]  

• DM 1: Diagnosis (age ± 21): Time delay in SBP-RRI 

was reported as important: the phase should be 

computed [26]  

• DM 1: Diagnosis (age ± 21): Coherence was > 0.5 in 

patients but didn’t reach the level of statistical 

significance [26] 

• DM 1: Diagnosis (age ± 22): LF gain detected BRS 

decrease and longer recordings (3-42 min) proved 

more useful to make the method more reliable, 

coherence > 0.5 – used different LF band limits, HF 

breathing [34] 

• Diagnosis: In supine position spectral results do not 

seem useful [127]  

• DM 1: Diagnosis (age ± 21): LF gain showed lower 

sensitivity to detect changes in BRS in this group of 

patients, coherence set > 0.5, 60 min recording, HF 

breathing [26] 

• Parameters: Coherence criterion could be an issue in 

diabetics; it lowers measurability [128] 

• Diagnosis: Clinical value of the LF gain shows 

controversial results [26], [34], [128]   

Table 2.11: Transfer function: advantages and disadvantages in diabetes mellitus 

2.3.4.4 Post-myocardial infarction (POST-MI) 

Articles included 

Overall, for POST-MI population, there were 10 relevant articles in the time span 1998-2014. 

These papers all focus only on myocardial infarction in the acute [83] and 2-4 weeks post-

infarction phase. [41], [109], [132]  

Clinical value of BRS in POST-MI population 

Individuals who survived the first myocardial infarction were categorized as having a higher 

risk for cardiac mortality after their first event than those who had not suffered from a previous 

heart attack. [41], [109] According to research, the BRS has clinical value as the detector of 

AD, and thus is able to predict the risk of cardiac mortality occurring in subsequent years. [109], 

[132] Furthermore, it is also suggested that BRS could be particularly useful for the risk 

stratification procedure - to identify POST-MI subjects, who have moderate risk for cardiac 
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mortality. However, when estimated BRS is combined with other standard risk factors - e.g. 

with HRV indices or with reduced LVEF – their combination can improve the prognosis. [41]  

On the other hand, in the acute phase – only a few hours after MI - one particular study described 

the role of BRS as a prognostic factor for the successful tissue reperfusion after the primary 

percutaneous coronary intervention (a therapy treatment). It has been reported that the change 

in BRS can separate the individuals who are improving from others whose condition is 

worsening after the intervention. [83] Additionally, according to Barthel et al. [109] the 

baroreflex function could be improved in POST-MI cases with rehabilitation programs (e.g. 

with exercise), but studies confirming the improvement in survival rates have yet to be 

provided.    

Specific BRS characteristics in POST-MI population 

The BRS index is usually reduced in POST-MI patients compared to normal subjects since the 

baroreflex is weak in this group of patients. According to Honzikova et al. [41], [132], their LF 

peak presented in spectral methods is usually shifted to lower frequencies (0.07 – 0.12 Hz) and 

the lack of SBP variability at 0.1 Hz in some of the patients has been reported as well. [32], 

[41] Furthermore, the coherence value between SBP and RRI appears to be low in this 

population [41], [67]; yet the prolonged baroreflex delay has not been reported. The BRS index 

estimated via phenylephrine method cannot be replaced with the spectral BRS index in this 

group, as there is a bigger difference in results between patients with depressed and more 

preserved LVEF. [67] 

Specific advantages and disadvantages of certain BRS algorithms in POST-MI population are 

presented in tables 2.13-2.15. 

2.3.4.4.1. Advantages and disadvantages of different BRS methods in POST-MI 

Sequence method 

POST-MI application 

Advantages Disadvantages 

• Outcome prediction: BRS slope predicted mortality 

(12.5 years follow-up): no information was provided 

on algorithm parameters used [133] 

• Parameters: Lag 0 was used once (other studies did 

not provide information on lags) 

• Measurability: Recordings longer than 8 minutes are 

recommended in POST-MI to improve measurability 

and reliability [102] 

• After PCI therapy (acute-MI): BRS slope was able 

to differentiate between BRS recovery and early 

worsening after treatment; BRS is present in the acute 

MI phase, was not lost due to medical condition [83] 

• Measurability (acute-MI): Full – considered as 

reliable method, but no information provided on lag 

used [83] 

 

• Measurability: Lack of valid sequences could be 

found due to small amplitudes and fast changes in 

SBP and RRI [32], [69], hence not a reliable method 

[32] 

• Parameters: Invariant lag delay used (not clear which 

lag) - it might be better to use variable delay (lags) to 

improve measurability [32] 

• Risk stratification: BRS slope provided poor 

prediction for all-cause mortality [109] 

• Acute-MI phase: BRS shows a high variance in this 

phase [83] 

Table 2.12: Sequence method: advantages and disadvantages in POST-MI applications 
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Alpha coefficient method 

POST-MI application 

Advantages Disadvantages 

• Nothing specific mentioned  • Measurability: Low in POST-MI [32] 

• Reliability: Less reliable than WBA-TF method and 

aHF shows the worst reliability in POSTI-MI – aHF 

improved with paced breathing  [32] 

• Algorithm: non-causal method - Possibility that aHF 

and aLF overestimate the real BRS value in patients 

with impaired LVEF [32] 

Table 2.13: Alpha coefficient: advantages and disadvantages in POST-MI applications 

TF method: WBA-TF (no coherence threshold) and TF (coherence > 0.5 or measured at the highest coherence) 

POST-MI application 

Advantages Disadvantages 

TF  

• Risk stratification: Critical value of 3ms/mmHg in 

POST-MI was estimated; mortality increased 5 times 

in patients with moderate risks (BRS gain in LF 

measured at the highest coherence) [41], [132] 

• Outcome prediction: BRS LF and HF gain predicted 

mortality in POST-MI (12.5 years follow-up): no 

information on algorithm parameters [133] 

WBA-TF 

• Reliability: Reliable method in POST-MI [32] 

• Measurability: Full in POST-MI [32], [95] 

• Parameters: Coherence criterion exclusion better for 

POST-MI cases (especially with depressed LVEF) 

[32], [95] 

 

TF and WBA-TF 

• Frequency band: Only the LF band was applied and 

considered relevant in POST-MI studies, with some 

small variations in band limits 

• Algorithm: Short recording time (3 minutes) required 

[41], [132]  

TF 

• Measurability: Low - high failure rate (30%) due to 

strict coherence criterion and due to lack of variability 

at 0.1 Hz in some of the patients; low SBP variability 

in the LF band leads to low coherence if noise is 

assumed as constant [32], [41], [132] 

• Parameters: High coherence threshold SBP-RRI is an 

issue in POST-MI cases [32], [41] 

 

 

 

Table 2.14: Original TF and WBA-TF methods: advantages and disadvantages in POST-MI applications 

2.3.5 Algorithms proven to be of medical benefit? 

In the tagging matrix there is a tag labelled ‘medical benefit’– the column is then filled with the 

options 0 (indicating no medical benefit), 1 (indicating evidence of medical benefit/claim for 

the medical benefit) or ‘w’ (standing for weak evidence). Weak evidence was tagged in studies 

that had a cohort with less than 10 subjects, or if the final conclusion included words like ‘may’ 

be of clinical value or ‘needs further conformations’ from larger studies. 

The sequence method, including all of its variations, is widely used in clinical studies and it has 

proven its value many times. For instance, value could be seen in the data related to 

hypertensive patients with CRF [92], in the vasovagal syncope recurrence during HUT [113], 

in dynamic assessment of the cardiac anticholinergic drug effects [10], in detecting AN in DM 

[91], and in following recovery after an intervention during the acute phase of POST-MI. [83] 

On the other hand, the spectral methods have also shown their clinical value in the following 

instances: the alpha coefficient (solely aLF index) acting as an independent predictor of acute 

kidney disfunction and low cardiac outflow state [134]. This method is also useful in the 

detection of hypertension - although with a c. 80% success rate [125]. This technique also 

appears to be useful in following the BRS variations during the day. [20] 
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Particularly in cases of CHF, the WBA-TF method seems to offer useful independent prognostic 

information but it should be noted - due to lower measurability - its use could be expanded in a 

combination with the ’new risk index’. [121], [123] The study by Pinna et al. [102], for instance, 

confirmed the value of the prognostic information derived from the WBA-TF approach. 

However, all these studies worked with a cohort that had below 400 patients and thus larger 

multicentral studies, with preferably current cohorts, are needed to validate the clinical benefit.     

The cross-correlation method (xBRS) showed its clinical value in the stroke outcome prediction 

- acute intracerebral hemorrhage [135] – although the sample size was below 50 subjects. The 

other useful clinical value can be seen in discovering that longer baroreflex delay is essentially 

found in cardiac patients who are not treated with beta blockers. [136]   

The bivariate phase-rectified signal averaging (PRSA) method has been confirmed to generate 

the independent prognostic information in the CHF and POST-MI patients. [58], [102], [109] 

However, according to the literature selected for this thesis, the number of research studies 

applying it is still very low.  

Of these, the ATRAMI study [16], using the phenylephrine method to estimate BRS, examined 

close to 1,300 individuals. This study appears to be accepted by the broader research community 

as providing real clinical evidence for their BRS-related findings in the prediction of total 

cardiac mortality after myocardial infarction. [132]  

2.3.6 Algorithms on the market 

The Task Force Monitor (CNSystems Medizintechnik GmbH, Graz, Austria) includes the 

sequence method. [1], [137] 

The time cross-correlation (xBRS) method has proven its value in the BRS estimation and was 

validated in 2017. [138] Additionally, it is this BRS algorithm that is currently incorporated 

into an operational medical device – FINAPRES NOVA (Finapres Medical Systems B.V., 

Enschede, The Netherlands) - which is currently on the market. (Fig. 2.7)  

 
Figure 2.75: The Cross-correlation method (xBRS) [139] 

Other software options are also available for purchase. For instance, the sequence method is 

incorporated into the following software packages: 

• Heart Scope Software (AMPS Ltd, NY, USA) [83] 
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• BRS Analysis software (Nevrokard, Slovenia) [126] 

• Small Animal Baroreflex Sensitivity Analysis SA-BRS software (Nevrokard, Slovenia) 

(Fig. 2.8) 

• CardioSeries v2.1 or v2.4 (Brazil) [140], [141] 

• Spike2 (v.2, Cambridge Electronics Design, Cambridge, UK) [52] 

 

Figure 2.8: Nevrokard BRS software - Sequence method (source: http://www.nevrokard.eu/maini/brs.html) 

Software packages using spectral methods (used for research) include:  

• Nevrokard® BRS Analysis software (Nevrokard Kiauta, Izola, Slovenia) [126] (Fig. 

2.9) 

• Small Animal Baroreflex Sensitivity Analysis SA-BRS software (Nevrokard, Slovenia) 

• HemoLab Software (Harald Stauss Scientific, Dunuggan, USA) [142] 

• Ponemah® Software (Data Sciences International, USA) [142] 

 
 

Figure 2.9: Nevrokard BRS software - Spectral method (Source: http://www.nevrokard.eu/maini/brs.html) 

http://www.nevrokard.eu/maini/brs.html


40 
 

2.4 Conclusions 

In summary, it appears that the main clinical benefits of BRS emerging from the literature are:  

• its role in outcome prediction, risk stratification and diagnosis of certain cardiovascular 

and neurological diseases;  

• it can also play a role in measuring the effects of the different therapy options (inc. 

physical exercise and medications) on BRS by using it as a valid measure for the 

assessment of therapeutic progress.   

However, while the studies address a broad spectrum of diseases, they often lack focus on the 

rationale behind the selection of specific algorithms, types of spectral estimators or the 

identification of optimal parameter settings. As a result, the research appears fragmented and 

typically yields only a limited number of studies on specialized topics with direct relevance to 

the specific clinical value of BRS.  

Overall, the spontaneous BRS index has a potential as a clinically useful index in a 

prognosis/risk stratification of cardiovascular diseases, and/or to detect AD when applied alone 

or analyzed in conjunction with standard risk factors for a better prognosis.  However, a full 

validation of its clinical value requires stronger evidence from larger and more consistent 

clinical studies.  

As can be seen in Chapter 2.3.3 regarding the advantages and disadvantages of methods applied 

in different diseases, the reliability and measurability of algorithms depend upon the population 

selected (healthy or ill subjects, specific disease characteristics) and the settings of algorithmic 

parameters. Outcomes also vary based upon the types of spectral estimators used that differ in 

studies. Definitive and reliable results are hence often impossible to derive, compare and form 

strong conclusions.  

According to the literature, a first issue arises in measurability which is additionally affected in 

cardiac patients due to the presence of ectopic beats, thus leading to the rejection of many 

patients from relevant studies. Abnormal breathing patterns also influence results.  

A second issue lies in the fact that the majority of algorithms are based on high linearity between 

SBP and RRI signals. This, per se, limits the BRS use in clinical conditions of patients who 

suffer from poor cardiovascular health and have a less linear SBP-RRI relationship. [17]  

2.4.1 General advantages/disadvantages of spectral vs sequence methods 

Overall, both types of methods – spectral and sequence – have their advantages and limits; so 

far, a universally agreed ‘best’ method for BRS estimation does not exist. 

The sequence method assumes that all SBP variations linearly related to the RRI are of 

baroreflex origin.  Thus, it also includes in the BRS calculation other influences (e.g. 

respiration) that independently drive the fluctuation of the two signals. [69], [82] For this 

reason, it often overestimates the BRS value. [69]  

In most cases, the sequence method BRS results correlate more with the spectral BRS which is 

determined within the respiratory rate-related HF band, and correlates less with the spectral 
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BRS estimated in the LF band - which is attributed more to its assumed sympathetic influence. 

[101] 

Overall, the sequence method primarily measures fast vagal nerve traffic to the heart and 

ignores slower sympathetic activity due to shorter sequences being employed. [6] Spectral 

methods, in contrast, cover both frequency bands. However, the sequence algorithm is based 

on a simpler mathematical model (linear regression) than the spectral methods and is generally 

regarded as easier to use, and the BRS slope as easier to interpret.  

On the other hand, the sequence method requires appropriate threshold setting before BRS 

measurement, as the thresholds affect the results considerably, also varying between different 

groups of individuals. [84] If the thresholds are incorrectly chosen, the sequence algorithm often 

generates missing slots (no BRS values) as the sequences are undetectable in a particular 

recording. On the contrary, spectral techniques produce more BRS points during the 

calculation. They include smaller beat-to-beat changes of SBP and RRI in their calculations, 

not only sequence-shaped changes (lasting few beats); they also do include some noise. [30], 

[109] (Fig. 2.10 and 2.11) 

This noise could be problematic when the subjects have a very low BRS value, since in those 

circumstances it could be hard to separate the noise from the real signal. [6] Spectral methods 

offer phase calculation between SBP and RRI and are thus useful in estimating baroreflex time 

delay, a topic of potential interest which needs to be further researched. This phase computation 

is not usually pursued using the traditional sequence method.  

Finally, the sequence method has the advantage that it does not require signal preprocessing 

steps before BRS estimation and is able to separate positive and negative SBP changes (up and 

down sequences), explaining the fast vagal activation and withdrawal on HR better. Yet spectral 

methods seem to provide more accurate BRS results than the time-domain techniques when 

applied with the noninvasive measurement of the pressure waves signals alone - without the 

need for an additional ECG. [48] 

 

Figure 2.10: Diagnosis of brain death by the spectral method (alpha coefficient method) [99] 
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Figure 2.11: Diagnosis of brain death (BD) by the sequence method [99] 

Both types of methods tend to provide parallel trends regarding BRS fluctuations (Fig. 2.12) 

However, they are not interchangeable, although the information they provide is similar 

between the two. [71] 

 

(a)                                                                          (b) 

Figure 2.12: Same BRS behavior expressed by the (a) spectral and (b) sequence methods during the etomidate 

anesthesia. As it can be seen, baseline BRS is higher than etomidate BRS in both cases. In the sequence method 

the slope is steeper in the baseline stage, however, the spectral method shows that the change in BRS comes mainly 

from the HF band, not the LF band [45] 

2.4.2 Issues with the literature analysis  

Comparison of BRS techniques in the literature was difficult for numerous reasons: sample 

sizes were considered small, according to some sources. [23], [129]  As a result, it was hard to 

decide on the real clinical value of claims based on these studies. According to Gerritsen et al. 

[7] there is a need for larger studies on BRS reproducibility and a need to confirm the predictive 

power of various algorithms to reach full agreement on early claims for clinical use.  

Moreover, direct comparison and value assessment was made difficult by a range of body 

positions employed (supine, standing, passive head up tilt test (HUT)), varying recording times 

of SBP and RRI time series during measurements, patient breathing rates which were both 

spontaneous and/or controlled above or below 0.2 Hz, the algorithms (especially the sequence 

method) applied numerous different thresholds, and often did not disclose the full information 

about the algorithm applied. In addition, in many studies there was no clear explanation given 
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why any of the parameters and thresholds were applied. For these reasons, the results of many 

studies could not be directly compared.  

As explained earlier, the differences in results between different BRS algorithms go beyond 

unclear parameter settings. A further major issue arising is the exclusion of the VLF band, 

which complicates defining the full baroreflex operating range, understanding the physiological 

mechanisms behind it, and correlating BRS indices across different algorithms. This uncertainty 

hinders the establishment of the clinical utility of spontaneous BRS indices. 

The BRS estimation protocol (inc. the BRS algorithm, parameter settings and frequency bands) 

would benefit from being standardized for different medical requests (diseases and 

applications), so the results from numerous studies would be easier to compare and the BRS 

clinical value extracted with more evidence and hence greater confidence. [48] In addition, the 

BRS reference values should be determined with agreed protocols and then be used for 

determining the clinical use or continuous research.  

A short summary of recommendations regarding experimental protocols for BRS measurement 

procedures and different algorithm settings for the four pathological states described above are 

given in Appendix A.  

2.4.3 What is still unknown in the research 

Throught the full period covered by the literature, many theories have been put forward as to 

the physiological sources of regulation of the LF and HF bands in the BRS spectrum, and how 

the BRS spectral results should be interpreted for diagnostic purposes.  According to more 

recent studies, it is believed that the LF band is controlled by both the sympathetic and 

parasympathetic effects on the heart, while the HF band is regulated only by the 

parasympathetic system and respiration. 

Thus, the physiological foundation of the BRS spectrum across different frequency bands has 

not yet been fully researched and requires further clarifications. This may be particularly 

relevant to the VLF band, and it should be decided whether this band should also be included 

in BRS estimations. 

Another issue lies in the fact that none of the BRS estimation methods measures pure BRS, 

although many mathematical models have been developed with the intention to describe how 

the baroreflex complex mechanism operates. Yet, it is still the fact that the majority of the BRS 

methods applied in clinical studies to this day are not capable to separate FF from FB pathways 

in the baroreflex loop, not able to completely avoid respiration or other neural and humoral 

influences on the BRS, or even develop an easier-to-use BRS method that incorporates the SBP-

RRI causal relationship. [76] 

Overall, the autonomic nervous system (ANS) control is also a significant research topic as it 

is a complex regulatory system influenced by numerous different interconnected variables. In 

the literature, it is described as a potential treatment target for cardiovascular diseases. Yet, as 

there are many unknowns in this field, the physiology of the autonomic control and how it could 

be improved upon also requires further research. [8] 
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2.5 Objective of the practical part 

Building upon the insights provided in preceding chapters, the objective of the practical phase 

of this thesis as explained above (see Chapter 1.8) was to implement (using Python (Version 

3.9) with the Spyder editor installed on the Lenovo p53 laptop) a chosen spectral method suited 

for offline (ad hoc) BRS determination sourced from relevant literature. Therefore, taking into 

account the differences between the alpha coefficient and the TF method described in Chapter 

2.3.2, the TF method became the preferred choice for computing and visualizing BRS. 

As previously mentioned, BRS spectral analyses (both alpha coefficient and TF method) 

commonly employ either FFT or AR algorithms.  However, due to missing BRS related 

literature providing deeper insights into the TF analysis and discussing the difference between 

these two spectral estimators, another collection of articles (n=18) was gathered specifically for 

the practical phase. These articles were obtained using the snowball method inspired by the 

methodology outlined by Meel-van den Abeelen et al. [143]; they were thus primarily sourced 

from references within BRS literature or from studies focused on the HRV spectral analysis (in 

frequency and time-frequency domain).  

In general, the AR model describes signal dynamics as a linear combination of p past samples 

of that signal, each weighted by constant coefficients, along with a zero-mean white noise term. 

It was shown recently that AR modeling fits the HRV behavior well, and that 3 minutes of past 

beat values, influence the current beat in healthy humans. [144] 

In the context of BRS, a bivariate AR model is used since SBP and RRI are analyzed jointly. 

This AR model characterizes the dynamics of the output series (RRI) as a linear combination 

of p past samples from both the output series itself and the input series (SBP), each weighted 

by constant coefficients, along with a zero-mean white noise term. Here, p represents the model 

order of the bivariate process. [20], [70] Overall, the AR modeling approach seems well-suited 

for BRS computations when the sympathetic component of the baroreflex is considered, as the 

current BRS value is influenced by previous beats. In contrast, the vagal component acts more 

rapidly, affecting the current or subsequent beat. [60] 

The primary challenge in most AR model studies as reported by Li et al. [145] lies in the use of 

different algorithms to compute coefficients, the application of various criteria for selecting 

appropriate model orders, and the use of differing model orders themselves. This makes direct 

comparisons between studies difficult. In BRS studies this topic has not yet been researched.  

When focusing specifically on HRV studies, the FFT and AR methods tend to yield notably 

different results in terms of power calculation across frequency bands and the careful 

interpretation of results is generally advisable. These differences between methods appear 

further amplified when varying body postures or patient populations (healthy versus e.g. 

diabetics, with non-linearities present, are considered. [146], [147] 

In terms of BRS computation methods, power estimation is more closely linked to the alpha 

coefficient method, as power computations of RRI and SBP are central aspects of the method. 

Thus, one might expect more pronounced differences between the two approaches when the 

alpha method is applied.  
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Yet the BRS results generated by the two techniques in supine position via the alpha coefficient 

method show only minor differences, especially when transfer function estimates are averaged 

over the relevant frequency range. [105] 

Finally, due to a lack of BRS studies focusing on differences between AR and FFT approaches 

when the TF method is applied, due to a higher number of BRS studies employing the FFT 

approach, and given the built-in integration of the FFT package in Python, the nonparametric 

approach was chosen as the preferred method for the TF approach in this thesis.  

Further information on the distinctions in a spectrum shape between these two methodologies 

(AR and FFT) is provided in Appendix C.  

2.5.1 BRS visualization motivations 

Understanding clinicians’ and researchers’ needs is crucial for analyzing and presenting 

biomarkers such as BRS. Some clinicians prioritize clear numeric representations, especially 

BRS magnitude (value), as important for differentiating health statuses from potential 

pathologies. [60] For this reason, the BRS value in the LF band seem more clinically relevant, 

particularly if BRS falls below 3ms/mmHg, while the BRS behavior in the HF band is currently 

considered optional for visualization due to limited research and clinical validity.[15] 

Certain literature sources also observe and comment on BRS spectrum shape differences 

between healthy and pathological subjects, but this approach is not yet utilized diagnostically. 

Some examples are given in Fig. 2.13 and 2.14 below.  

It must be noted that unlike in HRV and BPV studies, the importance of the spectrum's power 

in the LF and HF band of HRV and BPV is not critical for the BRS calculation, except in the 

case of the alpha coefficient method. [33]  

In contrast, in the TF approach, the key focus lies on individual transfer gain points across 

frequencies within these bands. [56], [96] The objective is to evaluate the shape of TF across a 

spectrum of frequencies that envelop a relevant physiological region. In all cases it is crucial to 

acknowledge that TF spectral estimate is susceptible to errors and its uncertainty is particularly 

heightened in regions of low coherence. [96] 

The BRS spectrum, in short, represents a spectrum of transfer gains (BRS points) across various 

frequencies, and it is not a power spectrum. Thus, the total spectral power in each frequency 

band is not calculated as a separate parameter. 
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(a)                                                                                         (b) 

Figure 2.13: TF: (a.c and b.c) coherence (or MSC) and (a.d and b.d) BRS spectrum as well as (b.c) phase spectrum 

of two subjects. Both subjects are categorized as POST-MI patients. MSC – magnitude squared coherence [95], 

[96] 

.  

(a)                                                                                  (b) 

Figure 2.14: TF: (a.b and b) coherence and (a.d and b) BRS spectrum and (a.c) phase spectrum of two healthy 

subjects; (b) subject is healthy 57-year-old woman. [96], [148] 

As can be seen in Fig. 2.13, regarding interpretation, the POST-MI patient (b) in the LF band 

displays both low BRS gain and very low coherence in contrast to another POST-MI patient (a) 

who has low BRS but higher coherence.  

Interestingly, as can be seen in Fig. 2.14, the healthy subject (a) has normal BRS with high 

coherence, while a healthy woman (b) - probably due to her age - has mainly higher coherence 

(> 0.5), but low BRS. Also, the shape of the phase spectrums between the healthy subject in 

Fig. 2.14(a) and POST- MI subject in Fig 2.13(b) – whose data display a more unstable phase 

– differs as well. The coherence and phase spectrums offer supplementary insights to BRS; 

hence they were also visualized beside the BRS spectrum in this thesis.   

b 

b 
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More recently, researchers studying the ANS would rather focus on real-time dynamics which 

go beyond traditional FFT-based methods [60]. Of late, non-stationary signal processing 

methods are increasingly recognized as more applicable for biomedical signals and are also 

recommended to be used even in the ‘steady-state’ conditions. [62], [63], [149] Therefore, 

visualizing BRS with an additional time dimension seems important to capture its changes over 

time. This approach is also recommended by literature sources since it has been shown that 

BRS behavior varies continuously during the day, in various body positions and in a range of 

activities as explained in Chapter 1.3. [33] 

For this reason, the Short Time Fourier Transform (STFT) algorithm was also included in this 

thesis for its simplicity and ease of implementation compared to other time-frequency methods.  

However, it must be noted that the STFT- based TF method has not been utilized in any BRS 

studies to date, making this thesis the first work known to do so. 

Finally, Fig. 2.15 illustrates an example of BRS time-frequency visualizations conducted using 

the wavelet transform. 

 

Figure 2.15: BRS behavior in a healthy individual across three experimental phases: supine, HUT, supine (red 

dashed lines indicate timings of different experimental stages) [60] 
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2.5.2 Computational background of FFT-based approaches 

The computational background of FFT-based methods incorporated into this thesis is presented 

here.  

2.5.2.1 Welch method  

The Welch technique utilizes the FFT algorithm to estimate the power spectra of signals (static 

spectra). [150] Unlike the regular periodogram method, this approach segments the signal 

length into sections of varying sizes (segment or window size), applies a certain window shape 

to them (window type), allows overlap between adjacent segments (overlap percentage) and 

computes modified periodograms for these sections. Finally, it averages computed PSDs to 

generate a single mean PSD for the entire signal length. Consequently, the resulting PSD 

exhibits a smoother appearance due to the reduced non-stationarities in the shorter segment 

sizes compared to the whole signal length. This segmentation also proves advantageous when 

working with devices with limited storage, as it processes shorter signal sections. The 

parameters relevant for the Welch spectral analysis are: 

• Segment size (FFT size) 

• Window size (fixed length) 

• Zero padding: it is applied if FFT size is longer than the window size 

• Window type 

• Overlap percentage between windows 

2.5.2.2 Short-time Fourier Transform  

The STFT method involves computing the PSDs of a signal over time. It achieves this objective 

by segmenting the signal into short segments (segment size), applying a window function 

(window type) to each segment, sliding this window by a specified number of data points (hop 

size), and repeating the process iteratively. Similar to the Welch method, the STFT method 

captures signal behavior over time and frequencies, storing the resulting PSDs as columns in a 

time-frequency matrix.  

Unlike Welch, however, there is no averaging of PSDs, only preserving individual PSDs for 

each time instance. 

Key parameters for STFT spectral analysis include: 

• Segment size (FFT size) 

• Window size (fixed length) 

• Window type 

• Overlap percentage between windows 

However, an inherent challenge to STFT is the time-frequency resolution tradeoff, often called 

the ‘Heisenberg uncertainty principle’. [151], [152] This tradeoff dictates that, as the window 

size increases, frequency resolution improves at the expense of time resolution, and vice versa. 

Optimal solutions vary across applications, demanding a balance between time and frequency 

resolutions tailored to specific needs. 
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2.5.3 Coherence evaluation and visualization 

To estimate coherence the threshold influence on BRS results, Jira et al. [29] applied various 

coherence estimation alternatives and concluded that they do not influence individual BRS 

values significantly. [28] However, in the pursuit of better understanding of the mechanisms 

and internal dynamics of the ANS, it seems reasonable to represent visually the coherence 

behavior between RRI and SBP signals, even if the coherence threshold is not integrated into 

the estimation of BRS values.  

For example, while the main focus of this article was not on BRS, but rather on two other 

signals: diastolic pressure versus muscle sympathetic burst amplitude, the observed coherence 

behavior across time and frequency has provided significant additional insights into the 

dynamics of the ANS system (Fig. 2.16): “Conversely, the subject on the right panel had weak 

coherence, not because his diastolic pressure and muscle sympathetic nerve activity were 

uncoordinated, but because his strong coherence came and went and shifted over a range of 

frequencies […] Thus, in resting humans, autonomic coordination is not qualitative, present or 

absent, significant or insignificant, or above or below squared coherence values of 0.50, but is 

quantitative and is based on the probability that strong coherence will persist over time at more 

or less constant frequencies.” [153] 

 

Figure 66: Greater and more consistent coherence over time and frequency observed in the subject on the left, 

compared to the subject on the right. (a) 2D visualization: Coherence behavior (y-axis) over frequency (x-axis); 

(b) 3D visualization: Coherence over time in seconds (y-axis) and frequency in Hz (x-axis); strength of the 

coherence is emphasized by colored shapes (z-axis). [153] 

For this reason, coherence should be included as a separate parameter to potentially improve 

the understanding of ANS behavior. 

2.5.4 Phase evaluation and visualization 

Regarding phase interpretation, various scientists assume that a 'negative phase' points to an 

SBP signal leading RRI signal changes, indicating a baroreflex function. [15], [60], [72], [153] 

The phase could be visualized in the LF and the HF frequency band separately.  

The literature also indicates that the LF band phase is more frequently negative overall. [15] 

However, it is important to note that this effect occurs primarily during 'steady-state' conditions. 

[60], [153] 

(a) 

(b) 
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In contrast, literature sources also note a more frequent change in signs of the phase in the HF 

band, suggesting that, in this frequency range, RRI may often precede SBP changes. [153] 

Additionally, there is a suggestion that this behavior of the HF band phase could also be an age-

dependent phenomenon, with aging potentially leading to a more positive HF phase. [37] 

Finally, Pitzalis et al. [154] proposed to include phase variations between RRI and SBP in both 

frequency bands since this approach might offer further insights into cardiovascular rhythm 

control. Given these considerations, it seems reasonable to explore and visualize the phase 

variations within both the HF and LF bands.  



51 
 

3 Practical part 

3.1 Spectral analysis in Python: Step by step implementation 

In the context of BRS computation, the spectral analysis is constituted by simultaneous spectral 

analysis of both RRI and SBP time series before BRS is computed. According to literature 

sources, both signals are first processed in the same way before the BRS calculation takes place, 

and they must be time-synchronized with each other. [49] 

A short summary of steps included in the analysis performed within this thesis would highlight 

three phases:  

(1) Data collection 

(2) Data preprocessing 

(3) Spectral analysis of RRI and SBP signals and BRS computation consisting of: 

a. Computation of PSDs of RRI and SBP separately 

b. Computation of CSD: coherence and phase between RRI and SBP 

c. TF computation: BRS values and BRS spectrum 

3.1.1 Data collection and data characteristics 

In the context of this thesis, CNSystems Medizintechnik GmbH supplied three representative 

patient datasets necessary for developing BRS visualizations. Notably, these datasets are 

valuable as they cover a spectrum of BRS values: high BRS from patient CU066, medium BRS 

from patient CU076, and low BRS from patient CU045.  

Each dataset, provided in a distinct xls-file, consists of three informative columns. The first 

column records the temporal duration of measurements in seconds. The second column contains 

the mean values of RRI (ms), while the third column contains mean SBP values (mmHg). These 

measurements were taken during three experimental stages: 

a. Baseline values: These were recorded while the subjects were resting and breathing 

spontaneously. 

b. Stress conditions: Two of the datasets (CU045 and CU076) underwent mental stress 

induction through mental arithmetic, whereas another dataset (CU066) involved a cold 

pressor test, performed by putting a hand in ice water. The stress stage was intended to 

evoke increased sympathetic and diminished parasympathetic activity of the ANS, 

resulting in an expected increase in heart rate and SBP. 

c. Recovery period: This phase encompassed deep breathing at a fixed rate of six breaths 

per minute (bpm) (at 0.1 Hz). 

The patients were assessed while seated (sitting position for all three stages), with their hands 

resting comfortably on a table in front of them. Blood pressure was noninvasively measured 

using a CNAP finger sensor (CNAP® Monitor 500, CNSystems Medizintechnik GmbH, Graz, 

Austria), which was placed on the subject's right hand (index and middle fingers). Intervention 

markers were placed on each device to enable post-hoc synchronization of the data sets. 
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Considering the inherent physiological responses linked to each experimental stage, it was 

anticipated that there would not only be variations in RRI and SBP values but also consequential 

fluctuations in BRS values throughout the measurement process. However, this experimental 

protocol was not specifically designed to provoke significant BRS changes. 

Additionally, while the device Task Force Monitor (TFM, CNSystems Medizintechnik GmbH, 

Graz, Austria) computed absolute BRS values using the sequence method exclusively during 

the baseline period (first experimental stage), these values served as a reference for the 

subsequent implementation of the spectral method. As per the data derived from TFM, the range 

of BRS values included a low of 3 ms/mmHg for CU045, a medium of 11.3 ms/mmHg for 

CU076, and the highest being 26.9 ms/mmHg for CU066.  

Nevertheless, despite the low BRS value of 3 ms/mmHg potentially indicating a pathological 

condition, it is noteworthy that all three subjects were confirmed to be in good health. Moreover, 

it is essential to underline that other personal and clinical information of the patients (e.g. age, 

gender) was kept confidential to ensure anonymity. 

Table 3.1 outlines the record length characteristics for each patient individually, while Table 

3.2 offers time stamps (start and end) for each experimental stage in seconds. 

Patient data Record length 

(sec) 

Record 

length (min) 

Baseline period 

length (sec) 

Stress period 

length (sec) 

Recovery 

period 

length (sec) 

CU045 818.39 13.64 301.77 182.07 300.68 

CU076 814.42 13.57 299.89 180.43 300.32 

CU066 822.81 13.71 299.53 181.80 304.04 

Table 3.1: Record length characteristics for all patients (CU045, CU076, CU066) during each experimental 

stage: baseline, stress, recovery 

Patient data Time stamps for baseline 

period (sec) 

Time stamps for stress 

period (sec) 

Time stamps for 

recovery period (sec) 

CU045 384.35 – 686.12 719.37 - 901.44 902.06 - 1202.74 

CU076 454.36 – 754.25 787.45 - 967.88 968.46 - 1268.78 

CU066 612.09 - 911.62 948.05 - 1129.85 1130.86 - 1434.9 

Table 3.2: Time stamps (start - end) of each experimental stage for patients: CU045, CU076, CU066 

3.1.2 Data preprocessing 

Data preprocessing procedures diverge between the FFT and STFT approaches. The FFT 

approach requires stationary time series as input, unlike the STFT approach, where the 

stationarity is assumed in short segment lengths. 

Hence, a brief outline of the preprocessing steps is presented in Fig. 3.1 with further elaboration 

provided below to explain each step in more detail. 
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        FFT         STFT 

 

Figure 3.1: Data preprocessing steps for FFT versus STFT-based analysis 

3.1.2.1 Visual data inspection 

In most instances in the literature, a careful visual inspection of both RRI and SBP signals is 

deemed mandatory and was performed in this thesis.  Particularly, the check of the RRI time 

series for irregular heartbeats or missing beats and other artefacts is essential. [149]   

3.1.2.2 Correction or removal of data artifacts 

Following a careful visual inspection, no editing was deemed necessary in this case. 

3.1.2.2.1. Welch: Signal segmentation into ’stationary’ phases 

The notion and definition of 'stationarity' present a complex issue in the literature. [155] 

Fulfilling the requirement of record length stationarity for the FFT approach in physiological 

signals proves challenging, given the numerous unknown physiological states of uncertain 

origin embedded in each recording, applicable to both RRI and SBP signals. Therefore, as a 

practical compromise, it is assumed that stationarity is more likely to be approximated in shorter 

recordings than longer ones. [149] 

In the literature on BRS, many studies assumed a stationary condition of signals preceding 

spectral analysis, especially when individuals maintained a consistent body posture for some 

time, thereby inferring signal stationarity. [156] In this context, stationarity in each 'steady-

state' condition implies that the signal remains free from unexpected transient changes (e.g. 

subject movements) or artefacts (e.g. ectopic beats, missing beats, damping) that could have a 

significant impact on spectral analysis. [72], [149] 
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Therefore, the signals in this thesis were solely segmented into three assumed stationary phases: 

Baseline, Stress, Recovery - according to time stamps given previously.  

3.1.2.3 Sampling frequency determination   

Given the irregular sampling of the beat-to-beat RRI and SBP time series provided at a natural 

HR, and recognizing the FFT algorithm's reliance on uniformly spaced samples for reliable 

results, the necessity for equidistant resampling and interpolation of signals became apparent. 

In general, the literature recommends interpolating and resampling data by using equal 

sampling rates before signal processing, mitigating potential biases in inter-individual and inter-

task comparisons between different subjects. [157] This thesis adopted this approach, ensuring 

for signal interpolation a sufficiently high sampling frequency to prevent the aliasing effect. 

This approach safeguards that the Nyquist frequency, defining the spectrum's upper limit 

remains outside the relevant frequency range (0.04 – 0.4 Hz) for BRS spectral analysis. 

Therefore, to identify the suitable uniform sampling frequency for all three datasets, the mean 

sample rate of individual signals was first determined for each subject separately by using (6) 

below. 

Mean sample rate =  
Maximum sample rate + Minimum sample rate

2
(6) 

The determination of a uniform sampling frequency for all subjects relied upon the selection of 

the time series for a subject with the highest mean sample rate, adhering to the condition that 

the sampling frequency should be at least twice the mean sample rate or even twice the 

maximum sample rate, to be on a safe side. Both of these conditions were fulfilled in this case.   

Table 3.3 presents details regarding sample rate calculations for each subject, whereas Table 

3.4 offers information on signal length after resampling. 

Patient data Maximum sample 

rate (sec) 

Maximum 

sample rate 

(Hz) 

Minimum sample 

rate (sec) 

Mean sample 

rate (sec) 

Mean sample 

rate (Hz) 

CU045 0.53 1.887 0.73 0.655 1.527 

CU076 0.5 2.000 0.8 0.79 1.266 

CU066 0.68 1.470 1.31 0.995 1.005 

Table 3.3: Mean sample rate computed for each subject: CU045, CU076, CU066 

Consequently, the sampling frequency for spectral analysis was set at fs = 4 Hz (with a sampling 

period T = 0.25 seconds). 

Typically, a sampling frequency in the range of 2-5 Hz is also considered an appropriate choice 

for the HRV spectral estimates. [149] 

Patient data Sampling frequency 

(Hz) 

Original signal length 

(samples) 

Interpolated signal 

length (samples) 

CU045 4 1234 3271 

CU076 4 1138 3255 

CU066 4 882 3289 

Table 3.4: Comparison of original and interpolated whole signal lengths at sampling frequency of 4 Hz 

3.1.2.4 Interpolation of SBP and RRI signals  

Following the sampling frequency choice, both RRI and SBP signals commonly undergo 

different interpolation and detrending processes in the literature. The rationale for using 
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different interpolation methods in BRS studies was not further elaborated. However, Kuusela 

[149] reported that the choice of interpolation methods for RRI time series in HRV spectral 

analysis has no impact on the results. Therefore, in this thesis, linear interpolation was selected. 

The function ‘Interpolation’ was manually implemented.  

This function takes as input a signal (RRI and SBP series), its corresponding time values and 

the desired sampling frequency (fs). It uses ‘linear’ interpolation (interp1d function from 

‘NumPy’, but this could be changed to ‘cubic spline’ etc.) to estimate the signal values at 

regularly spaced intervals based on the given time values.  

3.1.2.5 Detrending of SBP and RRI signals 

Linear trends were removed following established literature practices (Appendix B). The 

scipy.signal.detrend function from the Python’s package ‘Scipy’ is used for detrending a 

signal, which involves removing trends or baseline variations from the data.  

rri_interpolated_detrended = signal.detrend(data, axis=-1, type='linear', bp=0, 

overwrite_data=False) 

Function 1: Detrending function  

The most relevant parameters of the Function 1 selected for this thesis were: 

data: The input signal or array:  Interpolated RRI and SBP time series 

Type = ‘linear’: Specifies the type of detrending to be applied. It can be 'linear' (default) or 

'constant'. The 'linear' option removes a linear trend, while 'constant' removes only the mean. 

3.1.2.6 Frequency resolution determination 

In the context of investigating the BRS spectrum within the 0.04-0.4 Hz frequency band, 

employing the frequency resolution smaller than 0.04 Hz was selected as an appropriate choice 

for the FFT-based anaylsis. 

In Python, three parameters play a critical role in defining both the frequency and ‘actual’ time 

resolution:  

• FFT size or segment size (nfft) 

• Window size (nperseg) 

• Sampling frequency (fs) 

The FFT algorithm performs most efficiently when the number of samples in the segment size 

used for the analysis is a power of 2. However, it is worth noting that this is not a strict 

requirement, especially when applying the STFT method.   

The frequency resolution is computed by using (7) and depends on the number of samples in a 

given window or segment size. The window size or FFT size parameters should be set 

appropriately to attain the desired frequency resolution and the ‘actual’ time resolution at the 

same time.  

fres =  
fs

nfft
 or fres =  

fs

nperseg
(7) 
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tres (actual) =  
nfft

fs
 or tres(actual) =  

nperseg

fs

(8) 

Therefore, the 'actual’ time resolution, as in (8), remains approximately equal to the chosen 

window size in seconds. [35] 

3.1.2.6.1. ‘Actual’ vs ‘Quasi’ time resolution 

However, in STFT applications, it is important to distinguish between ‘actual’ time resolution 

and 'quasi' time resolution, wherein the ‘quasi’ time resolution (tres) is determined by using (9). 

tres =
(nperseg − noverlap)

fs
 or tres =

hop size

fs

(9) 

Overall, the ‘overlap’ (noverlap) parameter dictates the number of points to overlap between 

windows and is determined by subtracting a chosen hop size from the fixed window size, as in 

(10), thus, it primarily depends on the chosen hop size. 

noverlap = nperseg − hop size (10) 

The 'quasi' time resolution is primarily influenced by the selected hop size. Altering the 

‘overlap’ parameter (noverlap) per se has no impact on the 'actual' time/frequency resolution 

tradeoff. 

 ‘Quasi’ time resolution solely determines the number of BRS points computed for a specific 

frequency resolution by introducing a certain number of interpolated points. In general, more 

BRS values are computed when the hop size is smaller.  

In summary, the number of computed BRS values when applying various hop-sizes remains 

unaffected by ‘actual’ chosen time-frequency resolutions. 

3.1.2.6.2. Welch: Frequency resolution 

The Table in Appendix B shows the most common frequency resolutions employed for RRI 

and SBP signals, namely 0.00781 Hz, 0.00195 Hz and 0.015 Hz, yet these studies lack 

explanations for that selection.  

However, recent sources suggest Mayer waves, affecting RRI and SBP oscillations in the LF 

band in humans, could begin even around 0.03 Hz, implying a cycle duration of about 33.33 

seconds.[158] Additionally, coherence calculations via the Welch method require at least three 

nonoverlapping segments, suggesting a desired frequency resolution close to 0.01 Hz 

(1/(3*33.33)) for the TF analysis. [159] 

For this reason, in this thesis, frequency resolutions of 0.008 Hz (with zero padding) and 0.015 

Hz (no zero padding) were applied for the BRS computation and visualization (Table 3.5), with 

window sizes and overlap parameters chosen as powers of two for efficient FFT processing. 
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Frequency 

resolution 

(Hz) 

FFT size 

(samples) 

Window size 

(samples) 

Overlap (samples) Zero padding 

performed 

0.015 256 256 128 No 

0.008 512 256 128 Yes 

Table 3.5: Welch method - Parameter settings: FFT size, window size, overlap, zero padding 

3.1.2.6.3. STFT: Time-frequency resolution tradeoff 

There is a gap in BRS studies regarding the optimal tradeoff between the time and frequency 

resolution for STFT-based BRS estimation via the TF method. However, as discussed earlier, 

BRS is known for its frequency-dependent and quasi-periodic nature, presenting constant 

fluctuations in various conditions [33], [60]. Thus, the goal of time-dependent BRS estimation 

was to ensure a generation of an adequate number of BRS values (adjusting hop size parameter) 

without sacrificing RRI/SBP signal frequency resolution (adjusting window size parameter) in 

the LF band.  

For instance, Martinmaki et al. [160] recommend that the segment length for spectral analysis 

of HRV should be at least five times the duration of the period of the slowest frequency being 

analyzed. Thus, to meet this guideline, a 125-second time window was chosen (5*1/0.04 Hz), 

resulting in a frequency resolution of 0.008 Hz for the LF band.  On the other hand, the study 

by Eckberg et al. [33], employed a frequency resolution of 0.033 Hz for their BRS calculations 

in the LF band with a hop size of 2 seconds; they did not rely on HRV guidelines.  

For this reason, the thesis evaluated four different frequency resolutions (0.008 Hz, 0.011 Hz, 

0.17 Hz and 0.33 Hz) with diverse ‘quasi’ time resolutions (hop sizes) to examine and compare 

both visual and estimated BRS results in the LF band. (Table 3.6)  

Frequency 

resolution 

(Hz) 

Actual time 

resolution 

(sec) 

Window 

size 

(samples) 

Hop sizes tested 

(sec) 

Zero padding 

performed 

0.008 125 600 2/5/15/30/60 No 

0.011 90 360 2/5/15/30 No 

0.017 60 240 2/5/15/30 No 

0.033 30 120 2 No 

Table 3.6: STFT method - Parameter settings: window size, hop size, overlap, zero padding 

3.1.2.6.4. Window type selection 

Another parameter that can be easily adjusted in Python, although one that does not have a 

direct impact on frequency or time resolution, is window type.  

According to literature sources (see Appendix B) the Hanning window (‘hann’), used with a 

50% overlap, is frequently chosen in studies that employ the Welch algorithm. Thus, this 

preference was also followed in the thesis. 

In the context of the STFT, despite literature emphasizing that changing window types for HRV 

spectral analysis yields little to no difference in spectral estimates, various window types were 

still employed in this thesis, specifically Hanning, Hamming, Triangular, Blackman and Parzen 

windows. [149] This approach was taken to test if different window types made an impact on 

generated BRS values in the LF band. 
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3.1.3 Computing PSD of RRI and SBP 

3.1.3.1 Welch 

For this purpose, the Python function ‘signal.welch’ from the package ‘Scipy’ was used to 

estimate the PSD in ms²/Hz for RRI and in mmHg²/Hz for SBP using the Welch method already 

incorporated.  

f, Pxx = scipy.signal.welch(input signal, 

fs=4, window='hann', nperseg=128, noverlap=256, nfft=512, detrend=‘False', return_onesi

ded=True, scaling='density', axis=-1, average='mean') 

Function 2: Welch PSD computation 

Function 2 returns an array of sample frequencies (f) and PSD of the input signal (Pxx). 

This function processes an input signal - measurements of a time series such as the interpolated 

signal of RRI and SBP with real values. The function requires additional parameters such as 

the sampling frequency of the signal (fs), the type of window applied to the signal (window), 

the window size (nperseg), and the number of points (samples) to overlap between adjacent 

windows (noverlap).  

Optional input parameters include the FFT length (nfft), which should be specified when the 

FFT size is different from the window size. This parameter is applied when the zero padding 

for each data segment is preferred.  

In this context, default values were retained for the list of following parameters:  

• window = ‘hann’: As per literature suggestions (see Appendix B) 

• return_onesided: As the input data is real-valued, the resulting spectrum is presented 

in a one-sided manner, excluding negative frequencies.  

• scaling = ‘density’: The PSD is calculated and the results of Pxx are scaled to unit²/Hz. 

• average = ‘mean’: The parameter selects which method to use to average the 

periodograms. The alternative option is ‘median’. 

The following parameters – nperseg (window size), noverlap (overlap), nfft (FFT size) - were 

set according to Table 3.6. 

3.1.3.2 STFT  

For this purpose, the Python function ‘signal.stft’ from the package ‘Scipy’ was first applied 

to estimate the STFT coefficients, time and frequencies for RRI and SBP signals.  

f, t, Zxx = signal.stft (input_signal), fs=4, window= window_type, nperseg = window_size, 

noverlap = overlap_percentage, nfft = FFT_size, 

detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-

1, scaling='spectrum’) 

Function 3: STFT computation 

Function 3 returns: 
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Zxx: STFT of the input signal (RRI and SBP). The function returns a matrix containing 

complex values that represent STFT coefficients. 

f: An array representing sample frequencies 

t: An array representing segment times 

Afterward, the PSDs of both signals were calculated by multiplying STFT coefficients of one 

signal with conjugated STFT of the same signal, as in (11). 

psdrri = np. multiply(rristft, np. conj(rristft)) (11) 

3.1.4 Computing CSD between SBP and RRI 

3.1.4.1 Welch 

For this purpose, the Python function ‘signal.csd’ from the package ‘Scipy’ was used to 

estimate the CSD in ms*mmHg/Hz using the Welch method already incorporated.  

f, Pxy = 

scipy.signal.csd(sbp_signal, rri_signal, fs=4.0, window='hann', nperseg=256, noverlap=128, 

nfft=512, detrend=False', return_onesided=True, scaling='density', axis=-1, average='mean') 

Function 4: Welch CSD computation 

Function 4 returns:  

• f: An array of sample frequencies 

• Pxy: A CSD of input signals RRI and SBP 

 

All parameters mirror those described in the scipy.signal.welch function, maintaining identical 

settings. The sole distinction lies in this function's ability to handle two input signals, RRI and 

SBP.  

3.1.4.2 STFT 

The CSD between both signals was calculated by multiplying STFT coefficients of SBP signal 

with conjugated STFT of the RRI signal, as in (12).  

csdsbp,rri = np. multiply(sbpstft, np. conj(rristft)) (12) 

3.1.5 Coherence computation 

3.1.5.1 Welch 

For this purpose, the Python function ‘scipy.signal.coherence’ from the package ‘Scipy’ was 

used to estimate the coherence (range 0 - 1) using the Welch method already incorporated.  

f, Cxy = 

scipy.signal.coherence(sbp_signal, rri_signal, fs=4, window='hann', nperseg=256, noverlap=

128, nfft=512, detrend=False, axis=-1) 

Function 5: Welch coherence computation 
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Function 5 returns: 

• f: An array of sample frequencies 

• Cxy: A magnitude squared coherence of input signals RRI and SBP 

 

All parameters mirror those described in the scipy.signal.csd function, maintaining identical 

settings. 

  

3.1.5.2 STFT 

The magnitude squared coherence involved dividing the squared cross-spectrum of RRI and 

SBP by the product of the individual auto-spectrums, as in (13). [60], [153] 

cohstft = abs(csdsbp,rri) ∗∗ 2/abs(np. multiply(psdsbp, psdrri)    (13) 

3.1.6 Phase computation 

The phase angle was computed as the angle from the complex valued cross-spectrum between 

SBP and RRI for both STFT and Welch methods (Function 6). [153]  

Phase = numpy.angle(CSD(sbp,rri), deg = True) 

Function 6: Phase computation 

Function 6 returns angle in degrees in the range -180° and +180°. 

3.1.7 Transfer function computation 

The BRS gain (modulus) at each frequency point was computed as in (14). [60] 

BRS gain(magnitude) =  
abs(csdsbp,rri)

abs(psdsbp)
 (14) 

3.1.8 BRS value estimation and visualization 

3.1.8.1 Welch 

The BRS value was estimated only in the LF band by using (15).  

BRS value =  mean (Σ BRS gains [LF band frequency indices]) (15) 

The coherence threshold could be adjusted if necessary but was set at 0.5 in this case. Finally, 

the BRS value in the LF band was visualized with and without taking the coherence criterion 

into consideration. (see Chapter 3.3.3.3) 

3.1.8.2 STFT 

The BRS values for each time instance were estimated only in the LF band according to (15) 

as well. However, the coherence threshold was not included in the determination of BRS values. 

(see Chapter 3.4.3.2) 
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3.2 BRS visualization alternatives 

This section delineates the BRS visualization alternatives, individually for both the Welch and 

STFT-based approaches. Generally, BRS visualizations should include the BRS spectrum, 

coherence, phase and BRS values in the LF band.  

3.2.1 Welch method: 2D and 3D visualizations 

BRS spectrum: 

• 2D plot: BRS spectrum with coherence spectrum: The BRS spectrum (0.04 – 0.4 Hz) 

accompanied with the coherence spectrum was plotted and the transfer gain points for 

all three experimental stages (Baseline, Stress, Recovery) were included and marked 

separately on the spectrum.  

• 3D line plot: The BRS spectrum (0.04 – 0.4 Hz) for each experimental stage was plotted 

separately, but all stages were plotted together in one 3D line plot with marked transfer 

gain points included in the analysis.  

Phase spectrum: 

• 2D plot: Phase spectrum with coherence spectrum: The phase spectrum over 

frequency (0.04-0.4 Hz) accompanied with the coherence spectrum was plotted.   

BRS values: 

• 2D plot: Single BRS value in the LF band per experimental stage was visualized 

including and excluding the coherence criterion for BRS computation. 

3.2.2 STFT: 2D and 3D visualizations 

BRS spectrum:  

The LH and HF bands (0.04-0.4 Hz) were plotted together, excluding a coherence threshold 

application: 

• 3D contour plot:  Original (non-normalized) BRS Spectrogram  

• 3D surface plot and 3D contour plot: Normalized BRS spectrogram 

Normalized BRS spectrogram (discussed in Chapter 3.4.2), was introduced to address BRS 

visualization challenges connected to the non-normalized spectrogram. To solve this, the 

normalization was implemented, which incorporates defined BRS ranges outlined in Chapter 

1.4 from the study done by Suarez-Roca et al. [44] 

This normalization technique facilitated improved visual comparisons of BRS gains over time 

and frequencies. Consequently, the color bar was segmented to depict distinct ranges: severe 

dysfunctional BRS (0-3 ms/mmHg), moderate dysfunctional BRS (3-6 ms/mmHg), and normal 

BRS (above 6 ms/mmHg). Additional color-segments were also introduced above 6 ms/mmHg 

to better visualize BRS variations above this value. 
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Phase spectrum: 

• 3D contour plot: Phase spectrogram (0.04-0.4 Hz) excluding coherence application 

• 3D contour plot: Phase spectrogram (0.04-0.4 Hz), while keeping only regions 

portraying the negative phase since the baroreflex function is more connected to 

negative phase angles in the LF band (see Chapter 2.5.4) 

BRS values: 

• 2D plot: Mean BRS values in the LF band were visualized over time. This plot encompasses 

the entire BRS behavior across all three experimental stages, including the brief pauses 

between stages. The objective was to observe the continuous evolution of the BRS index 

throughout the entire signal duration. 

Finally, the coherence spectrogram could not be visualized due to issues addressed in Chapter 

3.4.3.2. 
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3.3 Results 

Results were divided into few sections: 

• Data collection  

o Original SBP and RRI signals (see Appendix D) 

o Preprocessed SBP and RRI signals (see Appendix E) 

o STFT: Time-Frequency resolution tradeoff (see Chapter 3.3.1) 

o STFT: Window type effect on BRS values (see Chapter 3.3.2) 

• Spectral analysis: 

o Welch: PSD of RRI/SBP – 2D visualization (see Appendix F)  

o Welch: Coherence, phase, BRS spectrum and BRS values with different 

frequency resolutions (see Chapter 3.3.3) 

o STFT:  PSD of RRI/SBP – 3D visualizations (see Appendix G) 

o STFT: BRS spectrogram, phase spectrograms and BRS values with different 

quasi time (overlaps) and frequency resolutions (see Chapters 3.3.4)  

• Results comparison between Welch, STFT-based and sequence methods (see Chapter 

3.3.5) 

3.3.1 STFT: Time-Frequency resolution tradeoff 

In an attempt to identify a suitable tradeoff between ‘actual’ time and frequency resolutions 

tables 3.7 - 3.9 were created to present variations in BRS values (mean ± SD) and their relative 

standard deviation (RSD) in the LF band under different tradeoff settings. Different hop sizes 

were also tested while kept fixed for different frequency resolutions in each table section for 

purposes of easier comparison.  

The Hanning window type was kept fixed as well. Tested frequency resolutions and hop sizes 

were taken from Table 3.6.  
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Frequency 

resolution 

(Hz) 

Hop 

size 

(sec) 

BRS 

values per 

stage 

(Baseline: 

: Stress: 

Recovery) 

Baseline 

BRS 

Mean ± SD 

Baseline 

BRS 

RSD (%) 

Stress BRS 

Mean ± SD 

Stress 

BRS 

RSD 

(%) 

Recovery 

BRS 

Mean ± SD 

Recovery 

RSD (%) 

0.008  60 6:3:6 11.49±1.83 15.89 12.31±1.60 13.03 17.3 ± 5.20 29.98 

 

0.008  30 11:6:11 12.15±2.19 18.05 13.82±2.58 18.65 17.35±5.22 30.08 

0.011  30 11:6:11 12.68±2.32 18.28 12.69±3.39 26.73 16.75±4.54 27.11 

0.017  30 11:6:11 13.16±3.07 23.35 12.53±5.27 42.13 16.59±6.33 38.18 

 

0.008  15 21:12:21 12.21±1.94 15.88 13.40±2.53 18.91 17.02±4.76 27.95 

0.011  15 21:12:21 12.34±2.06 16.71 11.93±3.09 25.91 15.94±4.19 26.30 

0.017  15 21:12:21 10.50±1.21 11.52 12.08±4.37 36.16 20.11±14.36 71.38 

0.033  15 21:12:21 13.17±3.42 26.00 12.02±5.18 43.12 16.80±3.86 22.96 

 

0.008  5 61:36:61 12.56±2.34 18.60 12.94±2.70 12.01 17.88±7.88 20.88 

0.011  5 61:36:61 12.82±3.28 25.61 11.97±3.67 30.63 16.06±4.10 25.50 

0.017  5 61:36:61 12.96±2.76 21.30 12.01±3.73 31.04 18.72±9.24 49.35 

0.033  5 61:36:61 13.65±6.93 50.77 11.88±7.24 60.92 18.18±3.51 19.30 

 

0.008  2 151:90:150 12.64±2.52 19.91 12.97±2.69 11.96 17.81±7.30 20.77 

0.011  2 151:90:150 12.96±4.05 31.27 12.15±4.42 36.36 16.11±4.17 25.88 

0.017  2 151:90:150 13.12±3.38 25.79 12.18±4.22 34.66 19.05±14.91 78.30 

0.033  2 151:90:150 13.24±5.78 43.67 11.56±6.35 54.94 18.08±3.48 19.27 

Table 3.7: Subject CU076: Impact of different frequency resolutions and equal hop sizes on BRS values in the LF 

band  

Frequency 

resolution 

(Hz) 

Hop size 

(sec) 

BRS 

values per 

stage 

(Baseline: 

: Stress: 

Recovery) 

Baseline 

BRS 

Mean± SD 

Baseline 

BRS RSD 

(%) 

Stress 

BRS 

Mean±SD 

Stress 

BRS 

RSD 

(%) 

Recovery 

BRS 

Mean±SD 

Recovery 

RSD (%) 

0.008  60 6:3:6 4.49±1.32 29.30 3.39±0.26 7.58 4.46±0.76 17.15 

 

0.008  30 11:6:11 4.49±1.19 26.50 3.68±0.54 14.63 4.42±0.75 16.92 

0.011  30 11:6:11 4.70±1.25 26.67 3.80±0.60 15.96 4.78±1.36 28.54 

0.017  30 11:6:11 5.15±1.63 31.76 3.44±0.74 21.68 4.52±2.96 65.59 

 

0.008  15 21:12:21 4.60±1.39 30.30 3.51±0.51 14.51 4.65±0.76 16.44 

0.011 15 21:12:21 4.79±1.22 25.49 3.55±0.56 15.82 5.00±1.27 25.48 

0.017  15 21:12:21 4.83±1.46 30.21 3.39±0.65 19.26 4.80±2.18 45.34 

0.033  15 21:12:21 4.84±1.68 34.80 3.73±1.15 30.80 4.25±1.20 28.30 

 

0.008  5 61:36:61 4.72±1.73 36.72 3.63±0.68 18.79 4.70±0.88 18.79 

0.011  5 61:36:61 4.82±1.43 29.72 3.48±0.56 16.23 4.92±1.13 22.93 

0.017  5 61:36:61 4.81±1.27 26.39 3.41±0.59 17.23 4.86±1.61 33.17 

0.033  5 61:36:61 4.95±2.09 42.35 3.54±1.22 34.34 4.13±0.92 22.20 

 

0.008 2 151:90:150 4.70±1.64 34.85 3.57±0.57 15.92 4.80±1.47 30.56 

0.011  2 151:90:150 4.81±1.43 29.73 3.52±0.68 19.40 4.94±1.12 22.59 

0.017  2 151:90:150 4.81±1.27 26.39 3.41±0.59 17.23 4.86±1.61 33.17 

0.033 2 151:90:150 5.01 ±2.43 48.55 3.38±0.96 28.59 4.21±1.15 27.32 

Table 3.8: Subject CU045: Impact of different frequency resolutions and equal hop sizes on BRS values in the LF 

band  
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Frequency 

resolution 

(Hz) 

Hop 

size 

(sec) 

BRS 

values per 

stage 

(Baseline: 

: Stress: 

Recovery) 

Baseline 

BRS 

Mean ± SD 

Baseline 

BRS 

RSD (%) 

Stress BRS 

Mean ± SD 

Stress 

BRS 

RSD 

(%) 

Recovery 

BRS 

Mean ± SD 

Recovery 

RSD (%) 

0.008 60 6:3:6 42.46±7.44 17.52 37.68±9.83 26.10 30.19±2.10 6.95 

 

0.008  30 11:6:11 49.71±19.32 38.87 37.30±7.26 19.48 28.95±2.09 7.22 

0.011  30 11:6:11 45.22±14.88 32.90 42.51±11.95 28.11 30.94±4.50 14.56 

0.017 30 11:6:11 45.19±14.56 32.22 36.11± 8.42 23.32 31.25±5.65 18.07 

 

0.008 15 21:12:21 45.66±15.43 33.80 37.45±7.02 18.75 29.39±2.28 7.75 

0.011 15 21:12:21 47.83±23.64 49.42 38.96±13.00 33.36 33.44±12.98 38.81 

0.017 15 21:12:21 50.93±28.32 55.60 34.27±7.48 21.81 31.41±4.13 13.15 

0.033 15 21:12:21 39.96±20.46 51.20 29.66±8.67 29.21 33.01±3.45 10.45 

 

0.008  5 61:36:61 44.64±12.64 28.32 39.55±10.42 26.35 31.19±12.24 39.25 

0.011  5 61:36:61 45.58±17.76 38.97 37.87±10.55 27.87 31.88±8.66 27.15 

0.017  5 61:36:61 51.55±27.71 53.76 36.71±13.79 37.57 33.32±8.41 25.25 

0.033  5 61:36:61 39.76±16.46 41.40 34.01±15.43 45.38 32.82±3.13 9.52 

 

0.008  2 151:91:152 44.77±13.54 30.24 39.65±10.99 27.71 29.92±4.17 13.93 

0.011  2 151:91:152 49.38±50.91 103.09 37.83±10.93 28.89 31.39±5.91 18.83 

0.017  2 151:91:152 51.16±27.98 54.68 37.08±15.68 42.29 33.06±7.12 21.53 

0.033  2 151:91:152 40.58±18.10 44.61 34.11±17.32 50.78 32.96±3.46 10.48 

Table 3.9: Subject CU066: Impact of different frequency resolutions and equal hop sizes on BRS values in the LF 

band  

3.3.2 Window type effect on BRS values  

Table 3.10 was generated to offer more detailed insights on the impact of various window types 

on mean BRS values in the LF band across each experimental stage of the subject CU066. The 

BRS results (mean ± SD, as well as RSD) were computed for various frequency resolutions and 

hop sizes. Another table with results for the subject CU045 can be found in Appendix I.   
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Window 

type 

Frequency 

resolution 

(Hz) 

Quasi time 

resolution 

(sec) 

Baseline 

BRS 

(ms/mmHg) 

Mean ± SD 

Baseline 

BRS 

RSD (%) 

Stress BRS 

(ms/mmHg) 

Mean ± SD 

Stress 

BRS 

RSD 

(%) 

Recovery 

BRS 

(ms/mmHg) 

Mean ± SD 

Recovery 

BRS 

RSD (%) 

Hanning 0.008 

 

60 42.46±7.44 17.52 37.68±9.83 26.08 30.19±2.10 6.95 

Hamming 0.008 

 

60 40.15±5.29 13.17 

 

37.19±8.53 22.94 30.68 ±2.91 9.48 

Triangular 0.008 

 

60 39.04±5.84 14.95 43.37±15.53 35.80 31.06±2.46 7.92 

Blackman 0.008 

 

60 48.19±22.07 45.80 36.16±7.61 21.04 30.25±2.32 7.67 

Parzen 0.008 

 

60 49.48±36.39 73.54 37.42±16.62 44.41 32.06±5.52 17.22 

 

Hanning 0.008 

 

30 46.61±18.31 39.28 39.53±8.36 21.15 30.36±2.63 8.66 

Hamming 0.008 

 

30 45.05±14.08 31.25 38.51±7.01 18.20 29.56±2.58 8.73 

Triangular 0.008 

 

30 45.44±13.98 30.77 40.29±11.41 28.32 29.99±2.20 7.34 

Blackman 0.008 

 

30 50.61±22.54 44.54 37.76±6.59 17.45 29.38±2.12 7.22 

Parzen 0.008 

 

30 46.61±18.31 39.28 39.53±8.36 21.15 30.36±2.63 8.66 

 

Hanning 0.011 

 

30 45.22±14.88 32.90 42.51±11.95 28.11 30.94±4.50 14.54 

Hamming 0.011 

 

30 44.53±11.89 26.70 49.20±27.42 55.73 30.41±3.45 11.34 

Triangular 0.011 

 

30 52.81±32.58 61.69 39.38±4.81 12.21 31.02±4.43 14.28 

Blackman 0.011 

 

30 45.55±18.35 40.28 38.31±4.28 11.17 35.80±18.00 50.28 

Parzen 0.011 

 

30 42.94±12.53 29.18 38.33±6.26 16.33 31.60±6.66 21.44 

 

Hanning 0.008 

 

15 45.66±15.43 33.79 37.45± 7.02 18.74 29.39±2.28 7.76 

Hamming 0.008 

 

15 43.34±11.47  26.46 38.08±6.77 17.78 29.79±2.38 7.99 

Triangular 0.008 

 

15 43.00±11.34 26.37 44.16±21.76 49.27 30.47±4.07 13.36 

Blackman 0.008 

 

15 46.34±18.25 39.38 38.88±8.88 22.84 30.94±5.78 18.68 

Parzen 0.008 

 

15 44.72±15.80 35.33 38.43±9.78 25.45 30.96±4.76 15.37 

 

Hanning 0.011 

 

15 47.83±23.64 49.42 38.96±13.00 33.37 33.44±12.98 38.82 

Hamming 0.011 

 

15 47.15±20.85 44.22 42.27±21.67 51.27 33.44±12.56 37.56 

Triangular 0.011 

 

15 48.56±25.68 52.88 37.23±8.03 21.57 30.69±4.19 13.65 

Blackman 0.011 

 

15 55.27±48.34 87.46 35.33±8.22 23.27 33.15±13.44 40.54 

Parzen 0.011 

 

15 48.64±26.52 54.52 35.10±8.36 23.82 31.09±5.12 16.47 

 

Hanning 0.008 

 

5 44.64±12.64 28.31 39.55± 10.42 26.35 31.19±12.24 39.24 

Hamming 0.008 

 

5 42.56±10.54 24.77 40.47 ± 11.91 29.43 33.00±22.54 68.30 

Triangular 0.008 

 

5 43.80±12.83 29.29 39.59±14.05 35.49 30.48±3.59 11.78 

Blackman 0.008 

 

5 45.02±14.84 32.96 39.76±10.96 27.56 30.41±4.59 15.09 

Parzen 0.008 

 

5 44.85±16.04 35.76 37.95±8.94 23.56 

 

30.92±4.37 14.14 
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Hanning 0.011 

 

5 45.58±17.76 38.96 37.87±10.55 27.86 31.88± 8.66 27.16 

Hamming 0.011 

 

5 47.60±23.45 49.26 39.11±14.60 37.33 32.21±9.26 28.75 

Triangular 0.011 

 

5 47.21±20.55 43.53 37.28±8.38 22.48 30.72±3.98 12.96 

Blackman 0.011 

 

5 48.78±31.23 64.02 38.12±18.20 47.74 34.91±19.72 56.49 

Parzen 0.011 

 

5 47.10±21.58 45.81 38.37±18.28 47.64 32.10±5.65 17.60 

Table 3.10: Effect of various window sizes on mean BRS values in the LF band per stage of subject CU066  

3.3.3 Welch method: 2D and 3D visualizations 

This section illustrates appearance of the 2D and 3D BRS visualizations by the Welch method.  

3.3.3.1 2D: BRS, phase, coherence spectrum 

Fig. 3.2 is an example of a 2D visualization which depicts BRS, coherence and phase spectra 

of subject CU045 (low BRS) across experimental stages.  

 

 

 

Figure 3.2: (a,b,c) BRS and coherence inc. (d,e,f) phase spectrums of subject CU045 for three different 

experimental stages: baseline (a, d), stress (b, e), recovery (c, f). Frequency resolution is set to 0.008 Hz; the x-

axis represents frequency in Hz, y-axis indicates BRS gains in ms/mmHg or phase in degrees (red line); the 

mirrored y-axis represents coherence values between 0 and 1, with the dashed horizontal line indicating the applied 

coherence threshold (0.5). Colored circles on each BRS spectrum highlight transfer gains included in BRS value 

computation, as they exceeded the coherence threshold 

Fig. 3.3 portrays differences in coherence and BRS gains between three subjects during the 

baseline stage, while Fig. 3.4 portrays the differences in phase during the recovery stage. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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                             (a)                                                   (b)        (c)       
Figure 3.3: 2D: BRS (inc. red dots) and coherence spectra (green lines) via the Welch method during the baseline 

stage of subjects (a) CU045, (b) CU076, (c) CU066; fres = 0.015 Hz 

 

                             (a)                                                   (b)        (c)       
Figure 3.4: 2D: Phase (red lines) and coherence spectrums (blue lines) during the recovery stage (paced breathing 

at 0.1 Hz) via the Welch method of subjects: (a) CU045, (b) CU076, (c) CU066; fres = 0.015 Hz 

3.3.3.2 3D: BRS spectrum 

Fig. 3.5 portrays examples of 3D line plot visualizations by the Welch method for three subjects.  

 

                             (a)                                                   (b)        (c)       
Figure 3.5: 3D: BRS spectra via the Welch method of subjects: (a) CU045, (b) CU076, (c) CU066. Frequency 

resolution set to 0.008 Hz; the x-axis represents three experimental stages, the y-axis represents frequency in Hz, 

and the z-axis represents BRS gains in ms/mmHg 

3.3.3.3 2D: BRS values 

In Fig. 3.6, BRS values in the LF band were visualized for each experimental stage with (red) 

and without (blue) taking into consideration the coherence threshold (> 0.5).  
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                                     (a)                                                    (b)         

Figure 3.6: BRS values in the LF band per experimental stage computed by the Welch method for subject CU076. 

Computations with (a) zero padding and (b) without zero padding. Frequency resolutions set: (a) 0.008 Hz, (b) 

0.015 Hz 

3.3.4 STFT: 3D visualizations 

This section illustrates appearance of the STFT-based 3D BRS visualizations.  

Fig. 3.7 depicts non-normalized BRS spectrogram of the subject CU076 (medium BRS). 

 

Figure 3.7: Non-normalized BRS spectrogram of subject CU076; frequency resolution of 0.011 Hz and quasi time 

resolution of 15 seconds; the x-axis denotes time in seconds, the y-axis represents frequency in Hz, the color bar 

indicates ranges of transfer function gains (BRS gains in ms/mmHg); dashed vertical lines denote transitions 

between experimental stages (order: baseline starts at the beginning of the plot, short adaptive period, stress, 

recovery), while the dashed horizontal line signifies the boundary between the LF and HF band; spectral parameter 

settings are detailed in the upper right corner 

3.3.4.1 Normalized BRS 3D Surface plot  

Fig. 3.8 depicts an alternative visualization of the BRS spectrum – a normalized 3D surface plot 

- of subject CU076. 
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Figure 3.8: Normalized BRS 3D surface plot of subject CU076 with frequency resolution of 0.011 Hz and quasi 

time resolution of 15 seconds.; the x-axis denotes time in seconds, the y-axis represents frequency in Hz, the color 

bar indicates the transfer function gains ranges (BRS gains in ms/mmHg) calculated at various time points and 

frequencies 

3.3.4.2 Normalized BRS Spectrogram 

Fig. 3.9 depicts normalized BRS spectrograms (contour plots) of the subject CU076 with 

different frequency resolutions taken from Table 3.6 (Chapter 3.1.2.6.3). 

       

                       (a)                                                 (b)                                                 (c) 

  

           (d) 
Figure 3.9: Normalized BRS spectrograms of subject CU076 with different frequency resolutions; frequency 

resolutions of (a) 0.008 Hz, (b) 0.011 Hz, (c) 0.017 Hz, (d) 0.033 Hz and quasi time resolution of 15 seconds; x-

axis denotes time in seconds, y-axis represents frequency in Hz, the color bar indicates normalized ranges of 

transfer function gains (BRS gains in ms/mmHg); dashed vertical lines denote transitions between experimental 

stages (baseline, adaptive period, stress, recovery), while the horizontal line (0.15 Hz) signifies the boundary 

between the LF and HF band  

Fig. 3.10 depicts normalized BRS spectrograms of the three subjects. 

 

                       (a)                                                 (b)                                                 (c) 
Figure 3.10: BRS spectrograms of subjects: (a) CU045, (b) CU076, (c) CU066 at frequency resolution of 0.011 

Hz 

3.3.4.3 Phase spectrogram 

Fig. 3.11 portrays phase (contour plots) spectrograms and the normalized BRS spectrogram 

focusing solely on the negative phase of subject CU076. Additionally, Fig. 3.12 portrays phase 

spectrograms of subjects CU066 and CU045 and their respective normalized BRS spectrograms 
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including only negative phases - for simplification purposes, described here as negative phase 

spectrograms.  

 

                       (a)                                                 (b)                                                 (c) 
Figure 3.11: Phase spectrograms (excluding coherence threshold application) of subject CU076: (a) including 

positive and negative phases, (b) only highlighting the negative phase, (c) normalized BRS spectrogram including 

only the negative phase. Frequency resolution set to 0.011 Hz, quasi-time resolution to 15 seconds. Phase values 

are color-coded based on the degree scale presented in the color bar, spanning from -180 to 180 degrees 

  

 

Figure 3.12: Negative phase and normalized BRS spectrograms of subjects: (a,c) CU066, (b,d) CU045  

3.3.4.4 STFT: 2D visualization: BRS values 

Fig. 3.13 illustrates an example of a 2D visualization of BRS values in the LF band over time 

across different experimental stages of the subject CU076. The frequency resolution (fres) is 

kept fixed while the hop sizes (quasi time resolution - tres) vary. 

 

                          (a)                                                 (b)                                                (c) 

(a) 

(b) 

(c) 

(d) 
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Figure 3.13: BRS values over time of subject CU076 with various hop sizes: (a) 30 sec, (b) 15 sec, (c) 5 sec. The 

red dashed lines indicate time stamps between different experimental stages (order: baseline, adaptive period, 

stress, recovery) 

3.3.5 Comparison of BRS results: Welch, STFT, Sequence method 

Fig. 3.14-3.16 were created to compare mean BRS values (LF band) and trends across different 

experimental stages (baseline, stress, recovery) of all patients between the Welch (fres: 0.008 

Hz) (with and without taking coherence criterion into consideration), STFT (excluding 

coherence criterion) with frequency resolutions of 0.008 Hz and 0.011 Hz and the sequence 

method (BRS evaluated only during the baseline stage).  

 

Figure 3.14: BRS values across different methods and experimental stages of subject CU045 

 

Figure 3.15: BRS values across different methods and experimental stages of subject CU076 
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Figure 3.16: BRS values across different methods and experimental stages of subject CU066 
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3.4 Discussion 

In short, the primary goal of the practical part of this thesis was to represent visually the BRS 

parameter using spectral methods, in particular focusing on FFT-based techniques such as the 

Welch periodogram and the STFT-based approach. 

The most significant points were addressed in the subsequent sections. 

3.4.1 Welch method: 2D and 3D visualizations 

The difference in frequency resolutions of 0.008 Hz and 0.015 Hz has minimal effect on BRS 

values (LF band) per stage. (Fig 3.6) Both options are acceptable for visualization purposes. 

The trends of BRS values also appear similar across experimental stages for both frequency 

resolution options as well. 

Visually, the differences in spectrum shapes between these two frequency resolutions also 

appear minimal (see Appendix H), since the zero padding mainly servers to smooth the 

spectrum.  

In general, 2D visualizations of the BRS spectrum, coherence and phase (Fig. 3.2-3.4), as well 

as BRS value per experimental stage (Fig 3.6) are very valuable. However, the 3D visualization 

– experimental stages plotted together (Fig. 3.5) – does not provide any additional benefit in 

comparison to 2D visualizations.   

3.4.2 STFT: 2D and 3D visualizations 

A 3D visualization – non-normalized BRS spectrogram (Fig. 3.7) - is an ineffective method to 

visualize BRS gains due to the high contrast being present in BRS gains (0-700+ ms/mmHg), 

making it difficult to discern low BRS gains amid high random peaks. It is especially 

challenging to do so in the LF band. Therefore, to address this limitation, the normalized 

spectrogram (Fig. 3.8 – 3.10) was introduced in this thesis, offering enhanced color-coded 

information on BRS gain ranges and changes over time. 

However, the utility of this normalized spectrogram is reduced by the absence of comparative 

BRS studies and the presence of very high gains in certain regions (100-1000 ms/mmHg). This 

is particularly visible in a 3D surface plot (Fig. 3.8), which also appears as an ineffective tool 

for BRS visualization. Potentially, these peaks could be mitigated if coherence were to be 

calculated (see Chapter 3.4.3.2), and only areas with high coherence were visualized in the 

spectrogram. It is plausible that high random peaks may occur more frequently in areas with 

low coherence and higher noise as suggested by Pinna et al. [96], although this hypothesis 

remains unverified.  

Nevertheless, despite random peaks, normalized spectrograms appear to depict BRS gain 

variations effectively across different areas and their temporal and frequency dynamics. For 

instance, the spectrogram of the subject CU066 (Fig. 3.10) showcases heightened BRS gains 

represented by a diverse array of colors, while subject CU045’s spectrogram predominantly 

displays lower BRS gains, facilitating clear differentiation in BRS strength between these two 

individuals. Additionally, adjusting the color-coded values represented in a color bar - by 
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adding new ranges of BRS values or modifying colors - may be performed by the user 

depending on the specific focus of interest. 

Additionally, another potential BRS visualization would be to display BRS gains only in those 

areas where the phase is negative (Fig. 3.11(b), 3.12(a-b)). This may be an interesting 

visualization option since only areas considered relevant for baroreflex activity are more 

enhanced this way. However, this approach to BRS estimation has yet to be fully developed, 

but the LF band phase behavior of the three subjects confirms the literature findings which state 

that the phase is known to be more negative in this frequency region. [15], [161] 

Ultimately, the visualization of the normalized BRS and phase spectrogram along with 2D 

visualization of BRS values over time in the LF band (Fig. 3.13) allow fuller understanding of 

BRS fluctuations.  

3.4.2.1 STFT: Time-Frequency resolution tradeoff 

The optimal frequency-time resolution primarily depends on the segment length (window size) 

while the number of computed BRS values remains determined solely by the hop size 

parameter. (Fig. 3.13) 

However, tables 3.7-3.9 highlight the inconclusiveness of selecting a single optimal solution 

for this tradeoff while taking various hop sizes (or overlaps) into consideration. Each patient 

demonstrates certain outliers (random peaks) in different hop size and frequency resolutions 

combinations, characterized by a notably high relative standard deviation (RSD > 40 % - 

threshold arbitrarily chosen), thus, the data is more scattered around the mean and potentially 

considered less reliable, therefore, this suggests a lack of a universal solution across all subjects.  

Higher RSD appears more associated with inferior frequency resolutions (> 0.011 Hz) rather 

than higher ones, particularly for subjects with higher BRS values (CU066 and CU076). 

Moreover, Chao-Ecija et al. [61] already observed the issues related to using excessively small 

window lengths for STFT-based BRS, since they compromise frequency resolution and 

potentially lead to erroneous peaks or difficulty isolating the frequency band of interest.  

Even though these random outliers in time-frequency estimations significantly influence the 

RSD value, the mean BRS values of subjects in all combinations remain relatively unaffected, 

as confirmed by Eckberg et al. [33] in their study of BRS variability and different window size 

effects.  

Furthermore, Eckberg et al. [33] also note the major constant fluctuations of BRS values in 

subjects, who could have the ratio of maximum to minimum BRS values between 4 and 35 in 

different individuals even under same experimental conditions, e.g. in a supine position in this 

case.  This phenomenon additionally complicates the interpretation of the BRS variability. 

Moreover, the potential inclusion of spectral BRS variation (RSD) as a separate diagnostic 

parameter remains an open question and this domain requires further research since there is no 

clinical literature on this topic.  

Alternatively, if there is an interest in presenting the normalized BRS spectrogram, a frequency 

resolution of 0.011 Hz demonstrates greater effectiveness. (Fig. 3.9(b)) From a qualitative 

standpoint, lower frequency resolutions hinder the effective visualization of BRS spectrograms. 
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Therefore, for visualization purposes, especially concerning the BRS spectrogram as well as 

the phase spectrogram, higher frequency resolutions are recommended. 

As mentioned previously, Eckberg et al. [33] also concluded that baroreflex oscillations appear 

to be organized around the frequency of 0.01 Hz (every 90 seconds); longer recordings which 

include more cycles would be recommended for more reliable BRS estimations.  

3.4.2.2 STFT: Window type effects 

To assess the impact of different window types on BRS values in the LF band, tests were 

performed on two subjects, CU045 and CU066, representing the highest and lowest BRS values 

in the dataset, respectively (Table 3.10, Appendix I).  

The analysis revealed that subject CU066 demonstrates greater variability in BRS values, with 

the RSD fluctuating more significantly depending on the window type used, even when 

frequency resolution and hop size parameters remain constant.  

Conversely, subject CU045 exhibits less variation in RSD under the same conditions, indicating 

that the choice of window type has a smaller impact on this subject’s BRS values.  

Outliers were observed for both subjects in some instances, with RSD exceeding 50%, based 

on an arbitrarily set threshold. 

These findings suggest that, similar to the frequency/time resolution trade-off, the effect of 

window type on BRS values varies between subjects and depends and also varies with different 

frequency resolutions and hop sizes as well. Thus, the impact of window type appears to be 

subject-specific. 

Given these observations, the Hanning window could be recommended for visualization 

purposes, as its use aligns with its application in the Welch method. This alignment may allow 

more consistent comparisons between the two methods and support standardization efforts. 

Notably, there is a lack of literature addressing the impact of window types on BRS values. 

In summary, window type emerges as an insignificant parameter in the spectral analysis of 

BRS. 

3.4.3 Difference between BRS and coherence 

An essential inquiry to discuss is the distinction between coherence and BRS, given their 

seemingly similar calculation formulas, as in (3) and (4)  – in particular to respond to the 

question if coherence can serve as a substitute for BRS? 

The short answer is no. Coherence and BRS gain do complement each other and offer distinct 

information. Coherence delineates frequencies where RRI and SBP exhibit linear correlation, 

quantifying the extent of this linearity. Hence, coherence serves to indicate whether the signals 

are affected by excessive noise or nonlinearities. On the other hand, the BRS gain at a given 

frequency (inc. estimated BRS value) quantifies the efficiency of the autoregulatory system, 

which is the response of RRI on the magnitude of SBP oscillations in a particular subject. [162] 
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For example, examining Fig.3.3 reveals that the subject with the highest BRS (CU066) also 

exhibited the highest coherence value in the LF band. However, all patients exhibited coherence 

values above 0.5, which is considered normal, despite significant variations in their BRS gains. 

From a clinical perspective, the patient with low BRS (CU045) is the primary concern, as he 

may be at greater risk of mortality. Therefore, the minor discrepancies in coherence values 

among patients may not carry significant enough clinical implications, but low BRS values do. 

Additionally, another question worth discussing is: Does low coherence necessarily mean low 

BRS?  

While it seems that low coherence consistently corresponds to low BRS (Fig. 2.13(b)), the 

reverse is not always true—low BRS does not always imply low coherence (Fig. 2.13(a) and 

Fig 2.14(b)). In some cases, low BRS may simply be an age-related phenomenon, as elaborated 

in Chapter 1.3. However, there is no evidence in the literature that coherence is age-related as 

well. Nevertheless, it's worth mentioning that low BRS coupled with low coherence might 

indicate a more pathological situation than low BRS with higher coherence in certain patients. 

It is known that low coherence, due to pathological characteristics and low SNR present in RRI 

and SBP, for example, is often present in diabetic, CHF and POST-MI patients (see Chapter 

2.3.4)) and it embodies two aspects of abnormal ANS functioning, the impaired baroreflex-HR 

control system and/or often depressed BPV. [95], [163] One approach to address this low 

coherence, suggested by Swenne et al. [148], involves inducing higher SBP and RRI 

oscillations with different maneuvers, such as for example through deep breathing at 0.1 Hz, 

since this approach should increase coherence between signals. [7] The effect of this approach 

is clear from Fig 3.4(a) (versus Fig 3.3(a)), where, during the recovery phase, the patient CU045 

illustrates a notable increase in coherence values compared to his baseline phase. However, 

despite this coherence improvement, the BRS gains still remain low. 

In summary, coherence alone proves insufficient in characterizing the strength of BRS but it 

does support the BRS estimation. 

3.4.3.1 Pros and cons of using the coherence criterion 

The literature suggests that the arbitrarily set coherence criterion of > 0.5 should be discarded 

due to its tendency to introduce a positive bias in BRS values. [95], [148] This bias may not 

affect normal BRS values significantly (since the baroreflex is already functioning). It could, 

however, pose a concern for individuals with low BRS where inclusion of the coherence 

criterion could cause BRS to appear higher than it really is. [148] Consequently, the coherence 

criterion appears unnecessary for low BRS cases where this bias should be avoided.  

However, the coherence criterion is useful for reliable phase estimation. (see Chapter 3.4.3.3)  

3.4.3.2 STFT: Issue with coherence computation 

There is an issue with coherence estimation when employing the STFT algorithm. When 

applying (13), the result consistently yields 1 across all times and frequencies. Thus, the 

coherence was not computed nor visualized while using this algorithm. [164], [165] This issue 

is already known in the literature (not BRS-related) but this topic lies outside the scope of this 

thesis.  
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One potential solution to calculate BRS more reliably, while excluding coherence estimation, 

would be to extend the recording duration, thereby enabling the calculation of BRS with a 

greater number of gain points. Research suggests that a longer recording duration enhances the 

accuracy of BRS estimations without taking into account the coherence estimation. [33], [148]  

Alternatively, the user could apply a different time-frequency algorithm to obtain the coherence, 

e.g. the wavelet transforms. [60], [61] 

3.4.3.3 Coherence criterion and phase 

A notable challenge arises with low coherence (< 0.5) or a missing coherence evaluation, in the 

(relatively unreliable) calculation of phase. This means that the trustworthiness of phase 

estimation when coherence falls below 0.5 remains uncertain. 

For example, according to the Welch method (Fig 3.2(a,d)), subject CU045 demonstrates 

coherence above 0.5 in the LF band. Compared to two other subjects, CU045 exhibits a notably 

more negative phase, potentially indicating a slower baroreflex response. Interestingly, when 

observing the phase spectrogram (Fig. 3.12(b), 3.12(a) and Fig 3.11(b)) without considering the 

coherence threshold, CU045's negative phase again appears more negative compared to the 

other two subjects. This suggests potentially parallel results in phase estimations of both the 

Welch and STFT methods. However, it is important to note that due to the small sample size, 

definitive conclusions cannot be drawn in this case.  

Nevertheless, it may be useful to visualize the (negative) phase using the STFT method, even 

in instances when coherence cannot be calculated.  

3.4.4 Results comparison: Sequence, Welch, STFT method 

Fig. 3.14 - 3.16 demonstrate that the sequence method consistently yielded slightly lower mean 

BRS values across all three subjects compared to the spectral methods in the LF band. The only 

exception was the subject CU066, whose BRS value computed via the Welch method (while 

excluding coherence threshold) was slightly lower than the BRS result obtained by the sequence 

method.  (evaluated and compared only in the baseline stage) 

Moreover, despite the expected differences in BRS values between various methods, all BRS 

values of each individual stayed within a typical range, i.e., either high, medium or low, 

depending on the individual.  

On the other hand, the BRS trends across experimental stages when employing Welch and 

STFT methods varied, which made direct comparisons impossible. Finally, given the variations 

regarding the behavior of mean BRS values throughout different experimental protocol stages, 

the correct approach to determining a preferred algorithm is still an open question. 

3.4.5 Welch versus STFT algorithm 

This section outlines the advantages and disadvantages of BRS computations and visualizations 

associated with the Welch and STFT algorithms. (Table 3.11 and 3.12)   
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3.4.5.1 BRS Computation 

Welch method STFT method 

Pros Cons Pros Cons 

• Easy to implement 

• BRS spectrum could 

be computed 

• Coherence 

estimation possible 

• Reliable phase 

estimation possible 

• More robust against 

noise due to 

averaging procedure 

of PSD 

• More literature 

available 

 

 

• Stationary signals 

required as input: 

higher signal 

processing effort  

• Time component 

missing 

• Requires ‘steady-

state’ body positions  

• Single experimental 

stage processed at a 

time 

• Fixed window 

length 

• Slower if segment 

size (FFT) not 

power of 2 (longer 

processing time) 

• Only available in 

post-processing 

• Not recommended 

for ANS research 

• Minimum 3 minutes 

long recording 

needed per 

experimental stage 

 

 

 

 

 

 

• Easy to implement 

• Non-stationary 

signals as input 

• Time component 

included 

• Able to follow many 

experimental stages 

at once 

• BRS spectrogram 

and phase could be 

computed 

• Recommended for 

ANS research 

(particularly if 

coherence and 

reliable phase could 

be included) 

• In principle 

available in quasi 

real-time, with a 

time delay of a 

window size and 

also in post-

processing 

 

• No coherence 

calculation possible 

without smoothing 

procedures or 

repeated trials 

• No reliable phase 

estimation possible 

without including 

coherence 

computation 

• Slower if segment 

size (FFT) not 

power of 2 (longer 

processing time) 

• Fixed window 

length 

• Susceptible to noise 

in signals 

• Clinical literature 

missing at this time 

• Recommended: 

Longer recording for 

better BRS 

estimations without 

including coherence 

estimations  

 

 

 

Table 3.11: Pros and cons of Welch and STFT algorithms for the BRS computation 
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3.4.5.2 BRS Visualization 

Welch method STFT method 

Pros Cons Pros Cons 

• 2D: Shape of BRS 

spectrum easier to 

interpret: more 

literature on this 

topic 

• 2D: Phase 

visualization in LF 

and HF bands over 

frequency (VLF 

band could be also 

included) 

• 2D: Coherence 

visualization in LF 

and HF bands over 

frequency (VLF 

band could be also 

included) 

• 2D: BRS spectrum 

in LF and HF bands 

over frequency 

(VLF band could be 

also included)  

• 2D: BRS value 

visualization 

including or 

excluding coherence 

threshold application 

per experimental 

stage 

 

• Only single BRS 

value for each 

experimental stage 

generated 

• 3D:  Useful only if 

more than one 

experimental stage 

should be observed 

at the same time for 

easier visual 

comparison, 

otherwise, no real 

need to be used 

• 3D: Normalized 

BRS spectrogram 

visualization 

possible in LF, HF 

and VLF bands 

which portrays BRS 

gain range changes 

across time and 

frequencies 

simultaneously   

• 3D: Negative phase 

spectrogram 

visualization 

possible (more 

reliable in subjects 

with higher 

coherence between 

signals) 

• 3D: Phase 

spectrogram 

visualization 

possible in LF, and 

HF bands (inc. VLF) 

(both with positive 

and negative phases) 

• 2D: Presents 

variation of BRS 

values over time (LF 

band is more 

clinically relevant, 

but HF and VLF 

bands could be 

included as well if 

necessary) 

• No coherence 

spectrogram 

visualization 

• 3D: High random 

peaks present in the 

BRS spectrogram 

• 3D: Phase 

visualization 

possible but not 

fully reliable due to 

missing coherence 

evaluation 

 

Table 3.12: Pros and cons of Welch and STFT algorithms for the BRS visualizations 

3.4.5.3 Parameter settings suggestions for medical devices  

Here is a short summary of recommendations for parameter settings concerning the Welch and 

STFT methods, which could enhance the user experience when integrated into medical devices. 

(Table 3.13) The settings are divided into “fixed” parameters and “free to adjust” that could be 

freely adapted by users with a goal of simplifying BRS estimation.  
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Parameter settings 

Welch method STFT method 

Fixed Free to adjust Fixed Free to adjust 

• Hanning window 

• 50% overlap 

• Frequency 

resolution (set 

window or FFT size) 

Recommended: 

0.015 Hz or 0.008 

Hz 

• Coherence 

threshold: 0-1 

Recommended: Not 

to set below 0.25 

and above 0.75 to 

avoid extremes in 

calculations 

• Choice to include or 

exclude coherence 

from BRS 

calculations 

• Choice to include or 

exclude 

visualization of the 

BRS value in HF or 

VLF band 

• LF, HF, and VLF 

band limits 

•  Hanning window 

(recommended) 

• Frequency/time 

resolution (set 

window size) 

• Hop size (set 

overlap): controls 

number of produced 

BRS values (e.g. 

recommended hop 

sizes between 5 and 

15 seconds for 0.011 

Hz frequency 

resolution) 

• Colors or BRS 

ranges above 6 

ms/mmHg in BRS 

spectrogram to 

observe gain 

variations better 

• LF, HF and VLF 

band limits 

• Window type 

(optional) 

• Choice to include or 

exclude 

visualization of BRS 

values in HF or VLF 

band 

 

Table 3.13: Parameter settings: Fixed and freely adjustable for Welch and STFT algorithms  

3.4.5.4 Ad hoc and online monitoring applications 

In general, medical devices have the capability to compute the BRS parameter either in post-

processing (ad hoc – offline modes) or ‘quasi’ real-time (online) modes. It should be noted that 

there is no BRS literature available to date on this topic of quasi real-time modes.  

Ad hoc applications are valuable for conducting more detailed BRS examinations and in-depth 

data analysis when patient histories are retained. Online BRS estimation, on the other hand, 

would be more suitable for shorter appointments with clinicians, as it would enable quasi real-

time BRS measurement. Consequently, advantages and disadvantages of both of these 

alternatives have been proposed for both approaches. (Table 3.14)  

Furthermore, prior to the BRS estimation, it is crucial to acquire RRI and SBP time series and 

conduct automated signal preprocessing whenever feasible. This preprocessing entails 

identifying and/or correcting (if possible) issues such as arrhythmias, ectopic beats, or missing 

beats, as their presence can affect the accuracy of BRS estimations. [149] Subsequently, based 

on these results, a decision must be made regarding whether the measurement process could 

proceed or not. 
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Following this initial step, signal time-synchronization between SBP and RRI should be 

achieved, followed by the automatic calculation of sampling frequency based on beat-to-beat 

RRI and SBP. Additionally, linear or cubic spline interpolation and linear detrending should be 

applied as necessary. 

Spectral BRS in medical devices 

Offline (post-processing) Online (quasi real-time) monitoring 

Advantages Disadvantages Advantages Disadvantages 

• Frequency and time-

frequency domain 

(Welch STFT, 

wavelet etc) possible 

• Welch: Coherence 

visualization 

possible in steady 

state conditions 

• Welch: Reliable 

phase computation 

possible (coherence 

> 0.5) in steady state 

conditions 

• STFT, wavelet: 

Good for ANS 

research: different 

experimental stages 

analysis followed at 

once, longer 

recording times 

possible 

• Wavelet: Reliable 

phase and coherence 

able to be computed 

in a single trial 

• Clinical literature 

available 

• Could be a better 

option if more 

complex signal 

editing is required  

 

• Longer time 

required to process 

BRS results (pre- 

and post-processing) 

• Longer recording 

needed for Welch 

estimate than for 

STFT/wavelet 

• More storage space 

required  

• Wavelet: More 

complex to compute 

than STFT and 

Welch 

• Time-frequency 

domain possible 

(e.g. STFT delayed 

with a window size, 

AR model - used on 

Task Force Monitor 

(CNSystems 

Medizintechnik 

GmbH, Graz, 

Austria) 

• Immediate results 

could be computed 

• BRS values and 

spectrum, coherence 

and phase spectrum 

could be computed 

line by line and 

visualized 

simultaneously 

• Good for ANS 

research: different 

experimental stages 

analysis followed at 

once 

 

 

• No clinical literature 

available to date 

• Online artefact 

removal is necessary 

prior to online BRS 

calculation 

 

 

Table 3.14: Advantages and disadvantages of postprocessing and online spectral BRS estimations for medical 

devices 

3.5 Conclusions 

The objective outlined in Chapter 1.8 of this thesis was successfully achieved.  

In summary, this thesis was divided into two main phases: a literature review phase and a 

practical phase. 

The literature review phase involved an extensive literature search followed by a thorough 

analysis, focusing on specific medical applications and pathological states where the BRS index 

is valuable. It appears from this comprehensive literature review that the three main clinical 

benefits of the BRS index are its roles in outcome prediction, risk stratification and diagnosis 
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of certain diseases which are related to the cardiovascular system, such as CHF, POST-MI state, 

diabetes mellitus and hypertension. 

In general, among modern algorithms described, sequence method-based BRS estimations were 

identified as the most frequently referenced in the literature and, thus, more often used in 

clinical practice when compared to BRS spectral estimations, of which the transfer function 

method and the alpha coefficient were most commonly employed.  

On the other hand, spectral estimations of BRS, despite being less common, hold significant 

potential since they are able to track BRS changes simultaneously across time and frequency 

domains. Therefore, the strengths and weaknesses of the sequence and spectral methods were 

presented and discussed, as the ‘best’ algorithm for the BRS computation does not yet exist. 

Generally, the sequence method follows the BRS as a time-variant parameter and applies 

sequences (minimum of 3 beats) of consecutive RRI-SBP changes to compute the BRS slope 

(BRS value). Spectral methods, on the other hand, focus on smaller beat-to-beat changes of RRI 

and SBP signals to compute the BRS; therefore, these methods cannot be used interchangeably 

even if their results may appear to be consistent with each other. Additionally, sequence 

methods are easier to compute than spectral methods and the BRS slope easier to interpret. They 

can separate BRS values determined from positive or negative SBP changes - by computing 

‘up’ and ‘down’ sequences - which spectral methods cannot do. BEI is also used as a 

supplementary, potentially clinically useful parameter in some cases, as it expresses the 

engagement rate of baroreflex during specific recording times.   

However, the sequence method includes many algorithm variations due to different parameter 

settings employed in studies (i.e. varied sequence length, different values for minimal threshold 

requirement to detect changes in RRI and SBP signals, threshold for correlation coefficient 

between SBP and RRI (generally set to be high) and employing lags of 0 or 1 beats). For this 

reason, direct comparison between different studies was not possible. 

Spectral methods, in contrast, differentiate the BRS changes in the LF and HF bands, and 

require more signal processing steps before the spectral analysis takes place, but offer additional 

information on autonomic system control by computing the coherence and phase between SBP 

and RRI. Furthermore, spectral methods require shorter recording times than the sequence 

method and compute more BRS gains for each recording. In some cases, it can happen that 

sequences cannot be found due to strict threshold criteria; yet the spectral methods also include 

noise in their calculations.  

Finally, this thesis has shown that measurement of BRS in various pathological conditions may 

benefit from using different algorithms and optimizing parameter/threshold settings to fit 

specific applications since the BRS studies generally did not provide reasons why one algorithm 

or threshold employed in their studies performed better than the other in different clinical 

applications. 

The practical phase of this thesis involved implementing the spectral method - Transfer function 

- for BRS computation and visualization, and comparing two FFT-based spectral 

decomposition techniques: the Welch method (frequency domain) and, (for the first time) in 
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transfer function-based BRS studies, an STFT algorithm (time-frequency domain). The 

strengths and weaknesses of these approaches were also clarified.  

Additionally, the effects of different spectral parameters on mean BRS values in the LF band 

(the clinically relevant frequency range) for both algorithms were tested and discussed. In 

summary, the thesis identified key spectral parameters related to the TF method: the sampling 

frequency, window size, and FFT size, which are crucial for setting desired time/frequency 

resolutions. For the STFT algorithm, the overlap parameter is particularly important, since it 

controls the number of estimated BRS points. Furthermore, the thesis also demonstrated that 

the variability of spectral BRS values over time (reflected in RSD) is significantly influenced 

by different time/frequency resolutions and overlap parameter settings. Therefore, caution is 

advised when interpreting these results. Mean BRS values (i.e., time-averaged) in the LF band, 

in contrast, were shown to be largely unaffected by different parameter settings. Even more 

precisely, the differences in mean BRS results are more pronounced in higher BRS values than 

in the lower ranges.  

Subsequently, spectral BRS visualizations in 2D and 3D, including phase and coherence 

visualizations - which could be useful in ANS research, despite the complex interactions of RRI 

and SBP signals in ANS dynamics - were presented and analyzed for their respective 

advantages and disadvantages. However, it should be noted that the clinical role of coherence 

in BRS dynamics is not yet fully researched and understood. Thus, regarding BRS spectrum 

visualization via the TF method, it was shown that 2D is a preferred option for the Welch 

method while, as introduced in this thesis, the normalized 3D BRS spectrogram appears to be 

a good choice when an STFT algorithm is applied. However, since the behavior of spectral BRS 

values over time and the BRS time-frequency spectra are not yet incorporated into the clinical 

literature, their potential future application at this time remains inconclusive. Nevertheless, 

suggestions were also provided for optimal spectral BRS parameter settings and visualization 

options in frequency and time-frequency domains.  

Finally, the advantages and disadvantages regarding BRS incorporation into medical devices 

were described in the context of quasi-real-time or offline-mode parameter.  

In summary, in addition to the literature review and practical work completed which led to the 

new insights and conclusions, this thesis also indicates the value of potential further work which 

could be done related to the goal of improving the quality of BRS research and simplifying its 

potential transition into routine clinical practice.  

To pursue this objective, larger and more focused BRS studies, the use of standardized 

experimental protocols and agreement on BRS-related frequency bands would be necessary to 

support the development of optimal algorithms for specific medical conditions as well as to 

determine suitable parameter and threshold settings for each application. 
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Appendix A: BRS measurement protocol recommendations in 

different pathological states  

Recommendations regarding the BRS measurement protocol related to various pathological 

states when applying different BRS algorithms are listed below: 

1. CHF 

Sequence method: 

The body position of a patient during measurement was most often supine [84], [110] or at a 

passive tilt of 70°; both are effective positions for BEI estimation. [108] 

Signal recording times varied between 5 minutes [111] and 30 minutes [110], but longer 

recordings are preferred as they allow more time to find valid sequences and produce less biased 

BRS value. [111] 

In all studies analyzed, the breathing pattern was spontaneous. 

Thresholds applied 

In articles that contained the relevant information, the lag 0 between the SBP change and RRI 

fluctuation was most frequently used for calculation. [102], [110] Moreover, this lag was also 

confirmed as the lag which produced the greatest number of sequences and the highest BRS 

value in CHF patients. [84] The reason for this choice was to select a quick vagal branch of the 

baroreflex. [102] In reality, the optimal time delay may differ between subjects and subject 

groups, leading to the observation that one single lag may not be equally well suited for all 

subjects. [107] The optimal choice for other thresholds may also differ between healthy 

individuals and those suffering from illness. [84] 

However, according to Davies et al. [84], BRS value is not significantly affected by the lag 

choice, and neither is it materially affected by the correlation coefficient requirement. For this 

reason, it is generally suggested to use the lag that produces the highest number of sequences.  

The correlation coefficient criterion should be disregarded. [84] 

Nevertheless, when it comes to changing the thresholds for minimal RRI and SBP change, it 

must be understood that this alteration has a significant effect on both the BRS value and the 

number of sequences found in the recording. [84] For instance, when the threshold for the RRI 

change is set at a high level, while at the same time the BP change threshold is set at a low level, 

the bias towards choosing higher BRS values exists. This maneuver can lead to the search for 

a specific type of sequence which is rare to find in CHF patients. Hence, the resulting BRS 

value may represent an artefact rather than the real BRS. [84] 

WBA-TF method: 

The body position of a patient during measurement was always supine, [102], [115], [123], 

which is also regarded as the preferred position by different sources. [102]  

Signal recording times varied, and recordings shorter than 3 minutes were excluded. [121] 

In all studies analyzed, the breathing was controlled outside of the LF band (> 0.15 Hz). [121]  
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All recordings included for BRS measurement had an ectopic rate below 5%. [123] 

2. Hypertension 

Sequence method: 

The body position of a patient during measurement was most often supine, and this position 

was recommended for clinical use (instead of standing). [124] 

In all studies analyzed, the breathing pattern was spontaneous and the lag of 1 beat was most 

often applied. [30], [101] 

Alpha coefficient method: 

The body position of a patient during the measurement was most often supine. This position 

was preferred to a standing position to identify and compare more easily hypertension to 

normotension. [125] More artefacts are found during the standing position measurements than 

in the supine position, which affect the BRS result. [124] 

The breathing rate for BRS measurement was spontaneous [20], [124] or kept solely within the 

HF band (> 0.15 Hz). [125] 

The recording time of signals varied between 5 [101] and 20 minutes [20].  

3. Diabetes 

Sequence method: 

The body position of a patient during the measurement was most often supine. [127], [131] 

However, also standing [127], [131] or 70° passive tilt were used to stimulate BP regulation 

and heart rate increase. [91] 

Signal recording times varied between 3 and 60 minutes. In all studies analyzed, the breathing 

pattern was spontaneous. [91], [103] 

Javorka et al. suggested that, since lower synchronization between RRI and SBP might be a 

sign of diabetes, BRS measurement in diabetics should not be limited only to BRS gain, but 

also should include time delay and synchronization/similarity analyses of SBP and RRI. [26] 

Thresholds applied 

The lag of 1 beat between the SBP change and the following RRI fluctuation was mostly used 

for calculation in articles that contained this information. [26], [91] 

Alpha coefficient method: 

The body position of a patient during the measurement was most often supine [126], [131] but 

also was recorded in a standing position in one study. [131] Breathing was controlled at 0.25 

Hz [131] or allowed to be spontaneous. [78], [126] However, it was noted that breathing rates 

below 9 bpm increases the complexity in the interpretation of power spectral curves [131] and 

should be avoided.  
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4. Post – MI 

Sequence method: 

The body position of a patient during the measurement was always supine and the breathing 

pattern was spontaneous. [32], [83], [109] 

Signal recording times varied between 8 [32] and 60 minutes, [83] with longer recordings 

preferred as they allow more time to find valid sequences and produce less biased BRS value. 

[32] 

Alpha coefficient method: 

The body position of a patient during the measurement was supine. [32] 

The breathing rate for BRS measurement was spontaneous and paced which improved the 

reliability, but only for the aHF index. [32]  The recording times of signals varied between 8 

[67] and 30 minutes. [109]  

Original TF method: 

The body position of a patient during the measurement was supine. [32], [41], [95], [132] The 

breathing rate for BRS measurement was paced (> 0.2 Hz) to avoid respiration influence on the 

LF band. [95] The recording time of signals was 8 minutes[32] 

WBA-TF method: 

The body position of a patient during the measurement was supine. [32] The breathing rate for 

BRS measurement was paced (> 0.2 Hz) to avoid respiration influence on the LF band. [32] 

The recording time of signals was 8 minutes. [32] 
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Appendix B: Parameter settings for spectral TF analysis of BRS 

in the literature 

Table B.1(A-C) provides an overview of the various parameter settings utilized in the literature 

when implementing the FFT-based transfer function (TF) method and BRS visualization 

techniques. Only papers (regardless of BRS medical benefit) that disclosed the relevant 

information are referenced here, noting that many articles did not include this data or contained 

incomplete data.  

References FFT method Record 

length 

Sampling 

frequency 

(Hz) 

Interpolation 

type 

Detrending 

method 

Segment duration  

(points/samples/sec) 

Wang 2012 [94] Welch  256 sec – 

zero 

padded 

(1024 data 

points) 

4  cubic spline linear 512 samples 

Akimoto 2011 

[166] 

Welch  Minimum 

10 min 

2  linear linear 256 points 

Shin 2011 [118] Welch 5 min 4 unknown unknown 100 sec (400 samples) 

Tiinanen 2008 

[49] 

Welch 5 min 2 and 5  - - 1024 points 

Ward 2006[88] Welch sleep 1 cubic spline linear 512 samples 

Carrasco- Sosa 

2005 [15] 

Welch 5 min 4 cubic spline unknown - 

Badra 2001 

[153] 

Periodogram ca. 5 min  5 linear unknown 60 sec (300 samples) 

Wang 2000 

[167] 

Welch 5 min 4 cubic spline linear 256 seconds (1024 points) 

divided into 3x512 

samples 

Watkins 1996 

[168] 

Welch 5 min 4 unknown unknown 60 sec (256 points) which 

included 240 sample 

points with zero padding 

Monti 2002 

[169] 

Periodogram sleep - - - 128 sec (256 FFT size)  

Ziegler 

2001[127] 

Periodogram unknown 10  not performed - 102.4 sec (1024 FFT) 

Robbe 1987 

[56] 

- 4.5 min - - - - 

Fisher 2009 

[52] 

Welch 5 min 2 linear - - 

Dawson 1999 

[37] 

Periodogram 5 min 0.5 sec = 2 third order 

polynomial 

- 512 samples 

Honzikova et 

al. aproach 

      

Svacinova 2013 

[34] 

Not clear 42 min  10 cubic spline linear 3 min = 180 sec 

Javorka 2011 

[26] 

Not clear 60 min 4 linear linear 256 samples 

Zavodna 2006 

[170] 

Not clear 5 min 250 msec = 

4  

linear least squares 

approximation 

method 

240 samples 

WBA-TF 

approach 

      

Pinna 2002 [95] Blackman-

Tukey 

10 min - linear  linear - 

Bonyhay 2013 

[171] 

Blackman-

Tukey 

7 min 3  - - 341 seconds (1024 

samples) 

Table B.1A: Transfer function method: Different spectral parameters employed in the literature 

  



103 
 

 

References Window type Window 

length 

Overlap  

(% or sec) 

Smoothing Filters Time 

resolution 

(sec) 

Frequency 

resolution  

(Hz) 

Wang 2012 Hanning - 50 % - - - 0.0078125 

Akimoto 2011 Hamming - 50 % - - -  

0.0078125 

Shin 2011 Hanning - 50 seconds 

(50%) 

- - - 0.01 

Tiinanen 2008 

(lower value) 

- - 50 % - LMS -  

0.001953125 

and 

0.0048828125 

Ward 2006 - - 50 % - - - 0.001953125 

Carrasco- Sosa 

2005 

Hanning 32 sec 

zero 

padded to 

64 sec 

16 sec 

(50%) 

- - - - 

Badra 2001 Hanning 60 sec Step 1 sec 

(sliding 

window) 

triangular 

smoothing 

window 

low-pass filter 

(cut-off 

frequency 

0.50 Hz) 

- - 

Wang 2000 Hanning - 50 % - - - 0.0078125 

Watkins 1996 Hanning - 50 % - - - 0.01666666666 

Monti 2002 Hamming - 50% 4-point 

rectangular 

moving 

average 

- 64 0.0156  

Ziegler 2001 Rectangular - - - - - - 

Robbe 1987 - - - - - - 0.01 (LF band) 

Fisher 2009 - - - - - - - 

Dawson 1999 - - - 13-point 

triangular 

window 

low pass filter  - - 

Honzikova et 

al. approach 

       

Svacinova 

2013 

- - no overlap - - - - 

Javorka 2011 Hanning - 90 % - - - - 

Zavodna 2006 Hanning - - - - - - 

WBA-TF 

approach 

       

Pinna 2002 Parzen 0.03 Hz 

bandwidth 

- - - -  

Bonyhay 2013 Parzen - - - - - - 

Table B.1B: Transfer function method: Different spectral parameters employed in the literature 
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References BRS value 

estimation 

(Gain) 

Coherence 

criterion 

Phase 

computed 

BRS spectrum 

visualization 

LF range 

limits (Hz) 

HF range limits 

(Hz) 

Wang 2012 yes >0.5 yes - 0.05-0.15 - 

Akimoto 2011 yes - no - 0.05-0.20 0.20-0.30 

Shin 2011 yes >0.5 yes 2D → BRS over 

frequency, 

phase, 

coherence 

0.04-0.15 0.20-0.30 

Tiinanen 2008 

(lower value) 

yes >0.5 no - 0.04 – 0.15 - 

Ward 2006 yes >0.5 (if coherence 

lower, lower the 

threshold) 

no 2D → BRS over 

time 

0.07-0.14 0.14-0.45 

Carrasco- Sosa 

2005 

yes >0.5 yes - 0.04-0.15 0.15-0.4 

Badra 2001 yes >0.5 (absolute and 

partial coherence) 

yes 2D → BRS over 

time, absolute 

coherence and 

partial 

coherence, 

phase over 

frequency 

0.05-0.15 - 

Wang 2000 yes  >0.5 no 2D → BRS over 

frequency and 

coherence 

0.07-0.14  0.15-0.35 

Watkins 1996 yes >0.5 no 2D → BRS over 

frequency and 

coherence 

0.070 - 0.129 - 

Monti 2002 yes >0.5 no - 0.05– 

0.13 

- 

Ziegler 2001 yes >0.5 no - 0.049 - 0.137 within the 0.068 

Hz 

bandwidth 

centered at the 

respiratory peak 

Robbe 1987 yes >0.5 (arbitrary) no 2D → BRS over 

frequency and 

coherence 

0.07-0.14 not relevant 

Fisher 2009 yes yes yes - 0.04-0.15 0.15-0.4 

Dawson 1999 yes >0.5 yes 2D → BRS over 

frequency, 

phase over 

frequency 

0.05 - 0.15 0.15-0.35 

Honzikova et al.       

Svacinova 2013 yes >0.5 No - 0.06-0.12 - 

Javorka 2011 yes >0.5 No - 0.04-0.15 - 

Zavodna 2006 yes >0.5 No - 0.05-0.15 - 

WBA-TF 

approach 

      

Pinna 2002 yes >0.5 (criticized) No 2D → BRS over 

frequency, 

coherence & 

Interval of 

confidence 

0.04-0.15 - 

Bonyhay 2013 yes >0.5 No 2D →BRS over 

frequency + SD 

0.04-0.15 - 

Table B.1C: Transfer function method: Different spectral parameters employed in the literature 
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Appendix C: AR model versus FFT: Spectrum shape differences  

In general, spectral characteristics differ between the FFT-based and AR model approaches.  

The spectrum produced by the FFT-based method encompasses the entire signal variance, 

which may yield specific spectral peaks as well as broadband powers lacking distinct peaks 

across various frequencies. [172]   

In contrast, the AR approach yields more distinct spectral peaks due to the selective model 

order, as segments of the signal inconsistent with the model are excluded from the analysis. As 

a result, expertise is necessary in selecting the appropriate AR model for a given dataset, as 

incorrect choices can lead to inaccurate results. [172]  

However, Parati et al. [172] also indicated that within BPV and HRV lie not just rhythmic 

oscillations, but also nonrhythmic fluctuations. They noted that these fluctuations were not 

clearly defined peaks in the spectrum; instead, they manifest as powers distributed across a 

broad frequency range. Moreover, these nonrhythmic fluctuations are also relevant in 

cardiovascular control mechanisms.  

It is also worth noting that, under specific circumstances, both the AR and FFT-based methods 

can yield comparable spectral shapes. (Fig. C.1) 

 

 

Figure C.1: Spectral shape similarities between the AR modeling and the FFT  [172] 
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Appendix D: Data collection and characteristics 

In Fig. D.1 – D.3 (A-B) the original SBP and RRI time series are represented for each subject 

identified as CU045, CU076 and CU066 separately. Green dashed vertical lines divide the three 

experimental stages (baseline, stress, recovery), with the short time period between them 

representing the adaptive phase. Notably, the adaptive period between stress and recovery in all 

subjects is missing and the adaptive period between the baseline and stress stages is relatively 

brief in each subject's recording. 

 

Figure D.1A: Original RRI time series of subject CU076 

 

Figure D.1B: Original RRI time series of subject CU076 

 

Figure D.2A: Original RRI time series of subject CU066 
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Figure D.2B: Original SBP time series of subject CU066 

 

Figure D.3A: Original RRI time series of subject CU045 

 

Figure D.3B: Original SBP time series of subject CU045 
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Table D.1 provides summarized data statistics for all subjects, represented individually by 

experimental stage: 

Patient data 

Baseline 

RRI 

Mean + SD  

(ms) 

og 

SBP 

Mean + SD 

(mmHg) 

og 

RRI CV 

og 

RRI 

Mean + SD 

(ms) 

int 

SBP 

Mean + SD 

(mmHg) 

int 

RRI CV 

int 

CU045 687.42 ± 20.15 117.22±6.06 0.029 688.01+19.85 117.22±5.95  0.029 

CU076 747.95 ± 55.71 105.26±6.36 0.074 751.68±56.08 105.50±6.38 0.075 

CU066 918.80 ± 86.66 94.62±2.42 0.094 925.07 ± 80.88 94.71 ± 2.22 0.087 

Stress  

CU045 604.98 ± 25.56 143.08±6.86 0.042 606.02±25.21 143.24±6.73 0.042 

CU076 595.44 ± 54.43 122.39±5.92 0.091 600.15±55.42 122.70±5.86 0.092 

CU066 977.62 ± 84.23 97.53±3.12 0.086 983.38±78.34 97.67±3.01 0.080 

Recovery  

CU045 683.40±42.16 119.39±10.48 0.061 685.94±41.54 119.62±10.32 0.060 

CU076 788.29±109.06 110.55±6.54 0.138 802.27±107.00 111.03±6.40 0.133 

CU066 918.57±187.11 92.18±5.95 0.203 951.12±180.43 93.04±5.91 0.190 

Table D.1: Data statistics (mean ± SD) of subjects CU045, CU076, CU066 outlined across baseline, stress, and 

recovery stages. Values presented for both the original (‘og’) and interpolated (‘int’) RRI and SBP time series. 

Coefficient of variation (CV) was included for the RRI signal 
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Appendix E: Data preprocessing steps 

Fig. E.1 - E.2 present interpolated (resampled at 4 Hz) and linearly detrended RRI and SBP 

time series of subject CU076. 

 

Figure E.1: Interpolated (resampled at 4 Hz) and linearly detrended RRI signal of subject CU076 

 

Figure E.2: Interpolated (resampled at 4 Hz) and linearly detrended SBP signal of subject CU076 
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Appendix F: Welch: 2D and 3D PSD spectrums 

In Fig. F.1 – F.4 the PSD of RRI and SBP signals are presented for subjects CU066 and CU045 

across experimental stages. The x-axis denotes frequency in Hz, while the y-axis indicates PSD 

in ms²/Hz or mmHg²/Hz. Notably, the frequency resolution varies among the figures. Detailed 

information regarding the applied parameter settings can be found in the caption accompanying 

each figure. 

 
         (a)                                                  (b)   

Figure F.1: (a) The PSD of RRI and (b) SBP by Welch method of subject CU066 for each experimental stage: 

baseline (purple), stress (red), recovery (green). Frequency resolution set to 0.015 Hz, Hanning window (256 

samples) applied with 50% overlap with no zero padding 

 
         (a)                                                  (b)   

Figure F.2: (a) The PSD of RRI and (b) SBP by Welch method of subject CU066 for each experimental stage: 

baseline (purple), stress (red), recovery (green). Frequency resolution set to 0.008 Hz. Hanning window (256 

samples) applied with 50% overlap with additional zero padding (FFT size is 512 samples) 
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         (a)                                                  (b)   

Figure F.3: (a) The PSD of RRI and (b) SBP by the Welch method of subject CU045 for each experimental stage: 

baseline (purple), stress (red), recovery (green). Frequency resolution is 0.015 Hz. Hanning window (256 samples) 

applied with 50% overlap with no zero padding 

 
         (a)                                                  (b)   

Figure F.4: (a) The PSD of RRI and (b) SBP by the Welch method of subject CU045 for each experimental stage: 

baseline (purple), stress (red), recovery (green). Frequency resolution is 0.008 Hz. Hanning window (256 samples) 

applied with 50% overlap with additional zero padding (FFT size is 512 samples)  
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Appendix G: STFT: 3D PSD spectrum 

The PSD of RRI and SBP computed by STFT-based method for subject CU045 are presented 

in Fig. G.1 with two different visualization alternatives, as spectrograms or 3D surface plots.  

Parameter settings for each visualization are written below each figure (tres – ‘quasi’ time 

resolution, fres – frequency resolution, window – window type).  

 

 

Figure G.1: The PSD of RRI (a,b) and SBP (c,d) by the STFT-based method of subject CU045 with a frequency 

resolution of 0.008 Hz; (a,b) 3D spectrograms, (c,d) 3D surface plots 

Additionally, Fig. G.2 shows the effect of other two frequency resolutions (0.011 and 0.033 Hz) 

on the spectrogram visualization of subject CU045. 

  

(a) 

(b) 

(c) 

(d) 
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Figure G.2: The PSD of RRI (a,c) and SBP (b,d) by the STFT-based method of subject CU045 with different 

frequency resolutions: (a,b) 0.011, (c,d) 0.033 Hz  

  

(a) 

(c) 

(b) 

(d) 
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Appendix H: Welch: 2D BRS, coherence and phase spectrums 

In Fig. H.1 and H.2. 2D plots depict the BRS and phase spectrum, both including coherence 

spectrums as well, of subject CU066 across three experimental stages.  

In each figure, performing zero padding results in a frequency resolution of 0.008 Hz, whereas 

not performing zero padding yields a resolution of 0.015 Hz. 

 

 

 

Figure H.1: 2D: BRS, coherence and phase spectrums by the Welch method of subject CU066 for three different 

experimental stages: (A,D) baseline, (B,E) stress, (C,F) recovery; frequency resolution at 0.015 Hz of x-axis 

represents frequency in Hz, y-axis indicates BRS values in ms/mmHg (A, B, C) or the phase (D, E, F) in degrees. 

The mirrored y-axis represents coherence values between 0 and 1, with the middle (green or red) dashed line 

portraying the applied coherence threshold (0.5). Colored circles on each BRS spectrum highlight transfer gains 

included in BRS computation, as they exceed the coherence threshold 

A 

B 

C 

D 

E 

F 
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Figure H.2: 2D: BRS, coherence and phase spectrums by the Welch method of subject CU066 for three different 

experimental stages: (A,D) baseline, (B,E) stress, (C,F) recovery; frequency resolution at 0.015 Hz of x-axis 

represents frequency in Hz, y-axis indicates BRS values in ms/mmHg (A,B,C) or the phase (D,E,F) in degrees. 

The mirrored y-axis represents coherence values between 0 and 1, with the middle (green or red) dashed line 

portraying the applied coherence threshold (0.5). Colored circles on each BRS spectrum highlight transfer gains 

included in BRS computation, as they exceed the coherence threshold  

A 

B 

C 

D 

E 

F 
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Appendix I: Window type effects on BRS 

Window type effects on mean BRS values of subject CU045 with frequency resolutions (0.008 Hz and 

0.011) Hz and different hop sizes during three experimental stages (baseline, stress, recovery) are 

provided in Table I.1. 

Window 

type 

Frequency 

resolution 

(Hz) 

Quasi time 

resolution 

(sec) 

Baseline 

BRS 

(ms/mmHg) 

Mean ± SD 

Baseline 

BRS 

RSD (%) 

Stress BRS 

(ms/mmHg) 

Mean ± SD 

Stress 

BRS 

RSD 

(%) 

Recovery 

BRS 

(ms/mmHg) 

Mean ± SD 

Recovery 

BRS 

RSD (%) 

Hanning 0.008 

 

60 4.49 ±1.32 29.30 3.39±0.26 7.58 4.46± 0.76 17.15 

Hamming 0.008 

 

60 4.49±1.33 29.52 3.23±0.29 9.01 4.51±0.63 13.92 

Triangular 0.008 

 

60 4.38± 1.19 27.23 3.26±0.44 13.38 4.26±0.49 11.47 

Blackman 0.008 

 

60 5.07±1.36 26.89 3.32±0.22 6.61 4.65±1.25 26.85 

Parzen 0.008 

 

60 5.21±1.46 27.94 3.25±0.21 6.60 4.72±1.50 31.84 

 

Hanning 0.008 

 

30 4.49±1.19 26.49 3.68±0.54 14.63 4.42±0.75 16.92 

Hamming 0.008 

 

30 4.50±1.22 27.10 3.53±0.56 15.78 4.86±1.25 25.60 

Triangular 0.008 

 

30 4.44±1.17 26.43 3.41±0.50 14.80 4.75±1.16 24.33 

Blackman 0.008 

 

30 4.73±1.22 25.70 3.55±0.48 13.62 4.51±1.05 23.39 

Parzen 0.008 

 

30 4.78±1.29 27.08 3.46±0.45 13.06 4.57±1.23 26.96 

 

Hanning 0.011 

 

30 4.70±1.25 26.67 3.80±0.61 15.96 4.78± 1.36 28.54 

Hamming 0.011 

 

30 4.80±1.32 27.61 3.84±0.63 16.33 4.71±1.37 29.03 

Triangular 0.011 

 

30 4.93±1.43 28.99 3.67±0.37 10.18 4.32±0.86 19.85 

Blackman 0.011 

 

30 4.93±1.43 28.96 3.56±0.42 11.94 4.41±1.21 27.53 
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Parzen 0.011 

 

30 5.16±1.62 31.47 3.50±0.45 12.74 4.23±1.12 26.62 

 

Hanning 0.008 

 

15 4.60±1.39 30.30 3.51±0.51 14.51 4.65±0.76 16.44 

Hamming 0.008 

 

15 4.62±1.43 31.01 3.49±0.50 14.28 4.82±1.02 21.10 

Triangular 0.008 

 

15 4.56±1.40 30.78 3.38±0.43 12.85 4.74±0.94 19.87 

Blackman 0.008 

 

15 5.35±3.71 69.37 3.56±0.56 15.73 4.86±1.20 24.67 

Parzen 0.008 

 

15 4.91±1.56 31.76 3.54±0.53 14.83 4.98±1.30 26.04 

 

Hanning 0.011 

 

15 4.79±1.22 25.49 3.55±0.56 15.82 5.00±1.27 25.48 

Hamming 0.011 

 

15 4.94±1.70 34.47 3.86±1.11 28.68 4.85±1.28 26.74 

Triangular 0.011 

 

15 4.82±1.43 29.74 3.47±0.40 11.67 4.59±0.87 19.05 

Blackman 0.011 

 

15 4.77±1.20 25.26 3.46±0.41 11.89 4.79±1.00 20.99 

Parzen 0.011 

 

15 4.82±1.34 27.74 3.46±0.42 12.23 4.65± 1.10 23.69 

 

Hanning 0.008 

 

5 4.72±1.73 36.72 3.63±0.68 18.79 4.70±0.88 18.79 

Hamming 0.008 

 

5 4.67±1.51 32.32 3.52±0.56 15.98 4.74±0.91 19.09 

Triangular 0.008 

 

5 4.62±1.46 31.56 3.62±1.25 34.58 4.70±0.95 20.18 

Blackman 0.008 

 

5 5.01±2.63 52.57 3.55±0.50 14.07 4.84±1.07 22.16 

Parzen 0.008 

 

5 4.81±1.53 31.77 3.53±0.52 14.87 5.37±2.86 53.26 

 

Hanning 0.011 

 

5 4.82±1.43 29.72 3.48±0.56 16.23 4.92±1.13 22.93 
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Hamming 0.011 

 

5 5.10±2.02 39.67 3.65±0.86 23.50 4.76±1.10 23.14 

Triangular 0.011 

 

5 5.00±1.96 39.22 3.92±2.58 65.79 4.67±1.16 24.86 

Blackman 0.011 

 

5 4.79±1.22 25.38 3.46±0.48 13.89 4.92±1.01 20.58 

Parzen 0.011 

 

5 4.86±1.27 26.18 3.47±0.52 15.08 5.27±4.25 80.63 

Table I.1: Window type effects on mean BRS values in the LF band per stage of subject CU045. (RSD: relative 

standard deviation, SD: standard deviation) 

 


