
Gerda Langer, B.Sc.

Physics-Informed Neural Networks
for Applications in Quantum Chemistry

and Thermodynamics

MASTER’S THESIS
to achieve the university degree of

Master of Science

Master’s degree programme: Physics

submitted to

Graz University of Technology

Supervisor
Assoc. Prof. Mag. DI DDr. Andreas Hauser

Institute of Experimental Physics

Co-Supervisor
DI Dr.techn. Thomas Hirsch

Institute of Software Technology

Graz, September 2024

Abstract

Physics-informed neural networks have pushed the boundaries of previously available
methods by merging the strengths of purely analytical and purely data-driven methods.
This hybrid technique boasts a wide array of applications, ranging from solving intricate
mathematical problems to generating accurate weather forecasts. Within this work,
we examined the potential of physics-informed neural networks in two topical research
domains: the optimization of geothermal energy systems by the accurate prediction
of borehole fluid outlet temperatures and the leveraging of potential energy predictions
based on inexpensive models approximating the results of costly density functional theory
calculations.

Heat pumps coupled to geothermal energy storage systems are highly energy efficient
and have the potential to remarkably reduce the energy consumption of heating and
cooling processes in buildings. However, to allow for optimal control of the heat pump,
precise predictions of the temperature of the fluid leaving the borehole heat exchanger
are required. Unfortunately, modeling the behavior of coupled boreholes in a borehole
field is a highly complex task, demanding significant computational power. To address
this issue, we aimed to create a powerful, yet computationally feasible physics-informed
neural network that enhances the predictive capabilities of purely data-driven methods.
For the implementation of our approach, we employ real-world data from a borehole field,
connected to a heat pump system, in order to train a type of neural network specifically
tailored for time series data. We extend our model by additional physics-based loss terms
incorporated in the overall loss function to improve the model’s predictive accuracy.
Three benchmark methods are tested, revealing that adding simple physical constraints
to the loss function, indeed, helps to improve the prediction accuracy of our model.
For the one-week forecast, the mean absolute error decreases from 0.60 °C to 0.53 °C
through including the physical constraints, while for the two-week forecast, the mean
absolute error decreases from 0.73 °C to 0.71 °C. Moreover, we compare our model to a
complex, computationally intensive theoretical model, which outperforms our approach
only slightly.

In the second part of this work, concerned with approximating Density Functional
Theory calculations by physics-informed neural networks, we focus on Pt-Ni nanoclus-
ters due to their significant role in catalysis and their status as well-studied systems by
numerous research groups.
We start with inexpensive global geometry optimizations to explore the potential energy
surface and calculate the corresponding energies with a cost-effective potential-based
method. The most promising structures are then selected for Density Functional Theory
calculations, which provide reference data for the training of our models.
For the physics-informed neural network in this approach, we employ a different ansatz

3

compared to our study on boreholes. Beginning with the purely theoretical, so-called
embedded atom model, we incrementally replace terms in the corresponding equations
with neural network expressions, thereby increasing the flexibility of the model. To ensure
that fundamental physical laws are still respected, we add physical constraints to the loss
function, attempting to guide the model’s convergence in the right direction. Five differ-
ent models are tested: a refitted version of the embedded atom model; a physics-informed
network replacing the embedding function of the network with appropriate constraints in
the loss function; a physics-informed neural network to replace the pair density function
with its corresponding constraint; a model replacing both the embedding function and the
pair density function by neural network expressions under incorporation of physics-based
constraints in the loss function; and finally, a model replacing both embedding function
and pair density function by neural network expressions but without the physics-based
constraints. For the evaluation, we compare our five models against a purely theoretical
embedding atom model with fixed parameter values taken from a standard table.
Our study reveals that replacing the embedding function in the embedded atom model
can significantly increase the accuracy of the predictions. While the purely theoretical
model yields a root mean squared error on our test set of 830.2 eV/atom for the energies,
respectively 336.2 eV/Å for the forces, the physics-informed neural network achieves an
error of 59.9 eV/atom for the energies and 212.1 eV/Å for the forces.

4

Kurzfassung

Physikbasierte neuronale Netzwerke haben die Grenzen bisheriger Methoden erweitert,
indem sie die Stärken sowohl analytischer als auch datenbasierter Modelle vereinen. Diese
hybriden Ansätze ermöglichen es, herausfordernde Probleme in unterschiedlichsten Berei-
chen zu lösen, von der Lösung komplexer mathematischer Gleichungen bis hin zu Wetter-
vorhersagen. Im Zuge dieser Arbeit werden die Fähigkeiten physikbasierter neuronaler
Netzwerke in zwei zukunftsweisenden Forschungsfeldern untersucht: der Optimierung
von Erdwärmepumpen durch präzisere Vorhersagen der Temperatur des aus dem Erd-
wärmetauscher austretenden Fluids, und der Verbesserung der Genauigkeit kostengün-
stiger Modelle zur Vorhersage der Energien von Pt-Ni Nanoclustern, die ansonsten kost-
spielige Berechnungen mittels Dichtefunktionaltheorie erfordern.

Erdwärmepumpen sind effiziente und umweltfreundliche Systeme zur Heiz- und Kühl-
technik, jedoch sind für ihre optimale Leistung möglichst genaue Vorhersagen über die
Temperaturentwicklung in den Erdwärmetauschern erforderlich. Dies war bislang nur
mit komplizierten, rechenaufwändigen Modellen möglich, da das Verhalten der Erd-
wärmetauscher von einer Vielzahl an Einflussfaktoren abhängt. Das Ziel dieser Arbeit ist
es daher, mithilfe physikbasierter neuronaler Netzwerke ein hybrides Modell zu entwick-
eln, das präzise Vorhersagefähigkeiten bereitstellt, ohne dabei übermäßige Rechenkosten
zu verursachen.
Für die Implementierung unserer Methode werden Daten einer realen Erdwärmepumpe
verwendet, um unser Modell, das auf einem speziellen neuronalen Netzwerk für Zeitreihen-
Daten basiert, zu trainieren. Physikalische Zusammenhänge werden durch mathemati-
sche Gleichungen dargestellt und in die Kostenfunktion des Modells integriert.
Zusätzlich werden drei verschiedene Referenzmodelle getestet, um die Leistung unserer
Methode zu evaluieren. Es stellt sich heraus, dass wir durch die Integration einfacher
physikalischer Bedingungen tatsächlich die Vorhersagefähigkeiten des Modells steigern
und die durchschnittlichen absoluten Fehler von 0.60 °C auf 0.53 °C für 1-Wochen-
Vorhersagen, und von 0.73 °C auf 0.70 °C für 2-Wochen-Vorhersagen reduzieren können.
Darüber hinaus vergleichen wir unsere Ergebnisse mit einem ausgefeilten, rein theoreti-
schen Modell und stellen fest, dass unsere Methode nicht wesentlich schlechter als dieses
abschneidet, jedoch deutlich weniger Rechenressourcen erfordert.

Der zweite Teil der Arbeit widmet sich der Approximierung von Dichtefunktionaltheo-
rie-Kalkulationen für Pt-Ni Nanocluster mithilfe von physikbasierten neuronalen Netz-
werken. Pt-Ni Nanocluster spielen aufgrund ihrer hohen Reaktionsfähigkeit eine zen-
trale Rolle in Katalyse-Prozessen. Zudem wurden sie bereits von einer Vielzahl von
Forschungsgruppen analysiert, wodurch wertvolle Referenzergebnisse zur Verfügung ste-
hen. Der Ausgangspunkt dieser Arbeit sind globale Struktur-Optimierungen, wobei die
zugehörigen Energien mithilfe einer kostengünstigen, potentialbasierten Methode berech-

5

net werden. Die vielversprechendsten Strukturen werden anschließend ausgewählt, um
mittels Dichtefunktionaltheorie Referenzdaten zu berechnen, die die Basis für das Trai-
ning unserer physikbasierten Modelle bilden. Für die Implementierung unseres physik-
basierten Netzwerkes beginnen wir mit einem rein theoretischen, sogenannten eingebet-
teten Atommodell und ersetzen sukzessive Teile der Gleichung durch neuronale Netz-
werke. Damit fundamentale physikalische Gesetzmäßigkeiten eingehalten werden, wer-
den zusätzlich physikbasierte Bedingungen in die Kostenfunktion der Modelle eingebun-
den, die das Konvergenzverhalten in die richtige Richtung lenken sollen. Insgesamt wer-
den fünf verschiedene Modelle getestet: Ein adaptiertes theoretisches Modell mit va-
riablen Parametern, die an die Referenzdaten angepasst werden; ein physikbasiertes neu-
ronales Netzwerk, bei dem die Embedding-Funktion durch ein neuronales Netzwerk mit
entsprechenden zusätzlichen Bedingungen ersetzt wird; ein physikbasiertes neuronales
Netzwerk, bei dem die paarweise Elektronendichte-Funktion durch ein neuronales Netz-
werk mit zugehörigen Bedingungen in der Kostenfunktion ersetzt wird; ein Modell, bei
dem sowohl die Embedding- als auch die paarweise Dichtefunktion durch neuronale Netz-
werke mit entsprechenden physikalischen Bedingungen ersetzt werden; sowie abschließend
ein Modell, bei dem sowohl die Embedding- als auch die paarweise Dichtefunktion durch
neuronale Netzwerke ersetzt wird, allerdings ohne die Integration zusätzlicher Bedingun-
gen in die Kostenfunktion.
Die Ergebnisse dieser Arbeit zeigen, dass das Modell, bei dem die Embedding Funktion
durch neuronale Netze ersetzt wird, in der Lage ist, die Genauigkeit der Vorhersagen des
rein theoretischen Modells deutlich zu übertreffen. Während das rein analytische Modell
mit Parametern aus der Standardtabelle mittlere Fehler von 830.2 eV/Atom bzw. 336.2
eV/Å für die Energien bzw. Kräfte liefert, können mit dem physikbasierten Netzwerk die
Fehler auf 59.9 eV/Atom für die Energien und 212.1 eV/Å für die Kräfte reduziert werden.

6

Contents

1. Introduction 13

2. Background 15
2.1. Physics-Informed Neural Networks (PINNs) 15

2.1.1. Neural Networks . 15
2.1.2. Integrating Physics . 18
2.1.3. General Formulation of PINNs . 19
2.1.4. Time Series Forecasting . 20
2.1.5. Evaluation Metrics . 22

2.2. Fundamentals of Thermal Energy Storages 24
2.2.1. Thermodynamics . 24
2.2.2. Heat Pumps . 26
2.2.3. Ground Source Heat Pumps . 27

2.3. Quantum Chemistry . 33
2.3.1. Schrödinger Equation and Born-Oppenheimer Approximation . . . 33
2.3.2. Geometry Optimization . 34
2.3.3. DFT Basics . 35
2.3.4. DFT Improvements / Exchange-Correlation Functionals 38
2.3.5. Basis Sets, Plane-Waves, Pseudopotentials 40
2.3.6. Computational Tools for Electronic Structure Calculations 41

3. PINNs for Borehole Heat Exchangers 43
3.1. Experimental Setup . 43

3.1.1. Dataset Description . 43
3.1.2. Theoretical Model of the System 45
3.1.3. Dataset Analysis and Preprocessing 45

3.2. Implementation . 50
3.2.1. Implementation of the Baseline Methods: Constant and Linear Model 51
3.2.2. Implementation of a Standard Autoregressive LSTM 51
3.2.3. Implementation of the Custom Loss 51
3.2.4. Hyperparameter Tuning . 54
3.2.5. Evaluation Method . 55

3.3. Theoretical Reference Model . 56
3.3.1. Long-term: g-function Model . 56
3.3.2. Short-term: B2G Model . 57

3.4. Results . 60

7

3.5. Discussion . 69
3.5.1. Limitations and Future Work . 70

4. PINNs for Pt-Ni Nanoclusters 73
4.1. Pt-Ni Nanoclusters . 73
4.2. Neural Networks for PES Calculations . 73

4.2.1. Embedded Atom Model (EAM) Potentials 74
4.2.2. SMATB Potentials . 75

4.3. Implementation . 75
4.3.1. Global Geometry Optimization . 76
4.3.2. Sampling Procedure . 76
4.3.3. Training Set Selection . 77
4.3.4. DFT Training Data Generation . 77
4.3.5. Refitted SMATB Model for Approximations of DFT Calculations . 79
4.3.6. PINNs for Approximating DFT Calculations 79
4.3.7. Evaluation Method . 83

4.4. Results . 84
4.5. Discussion . 84

5. Conclusion 87

A. Appendix A 89

Bibliography 91

8

List of Figures

2.1. Schematic visualization of a multilayer perceptron [16] 16
2.2. Schematic representation of a PINN [24] 20
2.3. Incorporation of temporal information in RNN models, taken from [27] . . 21
2.4. Iterative (a) and direct (b) multi-step forecasting methods, taken from [27] 22
2.5. Comparison of different cross-validation techniques 23
2.6. pV-Diagrams of the ideal (reversed) Carnot Cycle, taken from [35] 27
2.7. Ground-source heat pump schematic, taken from [36] 27
2.8. Schematic of borehole field with three borehole heat exchangers, taken

from [39] . 28
2.9. Schematic of common BHE designs, taken from [40] 29
2.10. Schematic of heat step functions and step pulses, taken from [40] 31
2.11. 5s-orbital of Ag with all-electron, small-core, or large-corre effective core

potential. Image taken from [44]. 42

3.1. Schematic of the GSHP of the employed dataset from Ruiz-Calvo et al. [9] 44
3.2. Temperature sensor measurements in borehole 6, at various depths 46
3.3. Results of setting Tout equal to Tin for non-operating states longer than 3

hours . 48
3.4. Inlet- and outlet temperatures of the whole time span 49
3.5. Plot of calculated Q̇heat . 54
3.6. Plot of calculated k = 1

Rtotal
·A . 54

3.7. (a) 2D model and (b) 3D model of the thermal network model for the
analyzed dataset[38] . 58

3.8. Comparison of prediction results (mean R2 scores and standard deviations
represented as error-bars) with and without missing value imputation for
the standard ARLSTM (without custom loss) and the baseline models . . 60

3.9. Mean MAE scores over the 5 folds for experiment (1), with standard de-
viations represented as error bars . 64

3.10. Mean MAE scores over the 5 folds for experiment (2), with standard de-
viations represented as error bars . 64

3.11. Exemplary prediction plots for experiment (1) - Part 1 65
3.11. Exemplary prediction plots for experiment (1) - Part 2 66
3.12. Exemplary prediction plots for experiment (2) - Part 1 67
3.12. Exemplary prediction plots for experiment (2) - Part 2 68

4.1. Sampling results for 55-atom clusters . 78
4.2. Logarithmic loss curve of the PINN for the embedding function over epochs 85

9

List of Tables

3.1. Original feature set . 46
3.2. Extended feature set for physics-based loss 47
3.3. Encoded DateTime features . 49
3.4. Hyperparameter space for hyperparameter tuning. For parameter defini-

tions refer to section 3.2 . 55
3.5. Split sizes for experiment 1, i.e. number of windows (each of total width

= look-back window + prediction horizon = 2 weeks) for the subsets in
the different folds . 56

3.6. Split sizes for experiment 2, i.e. number of windows (each of total width
= look-back window + prediction horizon = 4 weeks) for the subsets in
the different folds . 56

3.7. Standard settings for assessment of missing value Imputation 60
3.8. R2 scores for missing value imputation . 61
3.9. Fixed parameters for hyperparameter tuning of experiment (1) 61
3.10. Fixed parameters for hyperparameter tuning of experiment (2) 62
3.11. Parameters used for the final evaluation of experiment (1) 62
3.12. Parameters used for the final evaluation of experiment (2) 63

4.1. SMATB parameters for Pt-Ni, taken from [70] 76
4.2. Hyperparameters used for refitting the SMATB parameters 80
4.3. Hyperparameter space used for grid search of PINN for embedding function 81
4.4. Hyperparameter space used for grid search of PINN for pair density function 82
4.5. Hyperparameter space used for grid search of PINN for both embedding

and pair density function . 82
4.6. Hyperparameter space used for grid search of PINN for both embedding

and pair density function without additional physical constraints 83
4.7. Results for the validation (val.) set and test set for employing PINNs for

approximated DFT calculations with the RMSE values for the energies
E in meV/atom and the forces F in meV/Å. The results of the SMATB
approach with the parameters from the standard table are taken from the
study of R. Meyer [60]. 84

11

1. Introduction

Modeling and predicting the behavior of complex systems using classical analytical re-
lations often face severe challenges, introduced through issues such as missing boundary
conditions, noise, and other sources of uncertainty. Over the past decades, machine learn-
ing has undergone tremendous progress, leveraging observational data to address prob-
lems that were previously deemed unsolvable. Despite this progress, machine learning
methods often fail to generate physically consistent predictions, as extrapolation or ob-
servational biases result in inadequate generalization [1]. To overcome these limitations,
the family of physics-informed neural networks (PINNs) has recently been introduced.
PINNs allow for the integration of mathematical expressions of physical laws into ma-
chine learning frameworks, thereby effectively merging observational data with analytical
relations to combine their strengths while mitigating their weaknesses.
Nowadays, PINNs have applications in a wide range of domains, spanning from clas-
sical problems such as solving the Navier-Stokes equations [2], over predicting weather
patterns [3], to modeling financial market behavior [4]. Within this thesis, we will ap-
ply PINNs to two cutting-edge research topics: Potential Energy Surface calculations
for Pt-Ni nanoclusters and temperature output predictions for thermal energy storage
systems.

Thermal energy storage systems connected with heat pumps are highly promising
facilities, in terms of decreasing the energy consumption of buildings. The main benefits
of geothermal energy systems such as borehole heat exchangers pertain to their ability
to provide a renewable source of energy. By using only a small amount of electric energy
to extract or transfer energy to the ground, they provide efficient heating and cooling
for buildings, while producing minimal greenhouse gas emissions. Given that buildings
account for approximately 40% of global CO2 emissions [5], they play a crucial role in
combating global warming. The importance of reducing CO2 emissions is emphasized by
the fact that by May 2024, a complete year had elapsed during which each month has set a
new record for the highest monthly global surface temperature (for the respective month)
[6]. One of the main requirements for efficiently operating borehole heat exchangers
is to have precise knowledge of the output temperature of the fluid. [7]. Improved
accuracy in the output temperature predictions allows for better control of the system and
greater energy savings. To determine the borehole outlet temperature, either analytical
or numerical methods can be used. While numerical models are able to yield more
accurate predictions, they also entail high computational efforts, thereby decreasing their
utility in practical settings. On the other hand, purely analytical models typically rely
on numerous assumptions, which reduces their prediction accuracy [8]. The aim of this
work is to address these issues by using a combination of numerical (machine learning)
and analytical (physical) methods, in order to create a model that yields satisfactory

13

prediction performance while requiring only limited computational resources. To this
end, we employ a type of PINN, specifically tailored for the realm of temperature output
prediction for a borehole heat exchanger. In particular, we utilize a large dataset [9] of
a real-world borehole system, in addition to domain knowledge and physical principles,
to train a long-short-term memory (neural network type) on this temperature prediction
task. Then, a detailed evaluation is performed, using diverse metrics and the results of
a complex prediction model, developed by Ruiz-Calvo et al. [10] as reference. Through
this methodology, we aim to find out whether PINNs improve the predictive accuracy
and operational efficiency of borehole heat exchange systems.)

In the second part of this thesis we focus on molecular structure calculations for Pt-Ni
nanoclusters. Alloy nanoclusters are particularly interesting heterogeneous metal-based
catalysts, owing to their high reaction activity, robustness against pollution, and fine-
tuning capabilities [11]. Since the performance of a catalyst strongly depends on its
geometric structure, it is essential to investigate and accurately predict the most stable
configurations and electronic properties of these nanoclusters before comparing their
actual performance in catalytic reactions. While density functional theory (DFT) offers a
well-suited approach for small aggregates, these calculations become infeasible for larger
systems due to the exponential increase of the complexity with increasing number of
electrons. Therefore, suggest a novel approach, combining purely physics-based models
with neural network expressions, in order to achieve a powerful PINN that accurately
captures the complex patterns of the atomic interactions while significantly reducing
the computational requirements. In particular, we gradually replace parts of the purely
physics-based model by small neural networks obeying additional physical constraints.
The models are fitted to costly DFT predictions and evaluated by means of the root
mean squared error (RMSE) for the model predictions on the testing data. Furthermore,
we benchmark our models against the original, physical model to provide a thorough
assessment of their predictive capabilities.

This thesis is structured as follows: After a brief recap of the theoretical foundations
required to understand the methods employed in this work, we will progress to the ex-
ploration of the topic of thermal energy storage systems with its practical applications of
borehole heat exchangers and heat pumps. Subsequently, we will delve into the quantum
chemistry part which is concerned with approximating DFT calculations for potential
energy surfaces of Pt-Ni nanoclusters, before we ultimately reach the final conclusion of
our studies on PINNs for different applications.

14

2. Background

This chapter is dedicated to the theoretical foundations of this work. It is vital to obtain
an in-depth understanding of the theory and concepts, in order to grasp the applied
methods in a practical experiment setting. The chapter starts with a basic introduction
to physics-informed machine learning, combining the latest advancements in computer
science with fundamental physical laws. Then, the thermodynamic equations required
to roughly model thermal energy storage will be explained. These insights will be nec-
essary to integrate physical relations into the neural network-based predictions for such
systems. Thereafter, we will delve into quantum chemistry, giving a brief introduction
to Density Functional Theory (DFT), in particular Kohn-Sham DFT with generalized
gradient approximation methods, followed by a brief introduction to computational tools
for electronic structure calculations.

2.1. Physics-Informed Neural Networks (PINNs)

Deep learning techniques have developed rapidly over the last decade. However, training
these algorithms typically requires significant amounts of data and computation time.
Physics-informed machine learning aims to embed additional physical information to
neural networks or other kernel-based regression networks to achieve enhanced accuracy
even with limited training data, reduced training (computation) time, and better general-
ization of the algorithm [1]. The subsequent section starts with a general introduction to
deep learning, specifically focusing on neural networks, followed by an exploration of the
integration of physics such as partial differential equations (PDEs) into deep neural net-
work expressions. Finally, we will introduce physics-informed neural networks (PINNs)
specifically tailored for computational chemistry.

2.1.1. Neural Networks

The term "deep learning" (DL) refers to a subset of machine learning techniques where
algorithms accumulate knowledge due to analysis of large amounts of data [12]. DL
algorithms comprise numerous components, such as linear algebra, probability theory,
calculus, optimization, programming, signal processing, and high-performance comput-
ing. As the techniques applied originally derive from neural networks (NNs), the attribute
"deep" characterizes models of long compositions, i.e. number of layers [13]. (Artificial)
neural networks are inspired by the biological architecture of the brain. They were first
introduced in 1943 [14] in the form of a simplified computational model of neurons in
animal brains. An advancement of this first concept was introduced by Frank Rosenblatt
with the Perceptron, and then extended to the Multilayer Perceptron [15].

15

Figure 2.1.: Schematic visualization of a multilayer perceptron [16]

Multilayer Perceptron

A multilayer perceptron consists of a total number of L + 1 layers indexed with l, each
containing a number of artificial neurons, denoted as kl, or as n in the input layer l = 0.
These neurons, also referred to as units ulk, account for mathematical operations given
as weighted sum of their inputs in addition to a bias term b, which is then transformed
by a non-linear activation function σ. Each neuron in a layer li is connected to each
neuron in the prior layer li−1, with i ranging from 1 . . . L. The connections between the
individual neurons are weighted by factors wli . Thus, the output of the k-th neuron in
layer l is given as [16]:

ulk = σ
(kl−1∑

j=1

wl
k,ju

l−1
j + blk

)
. (2.1)

The layers from i = 1...L − 1 are called hidden layers. We can rewrite the equation in
compact matrix form by dropping the subscripts:

ul = σ(Wlul−1 + bl) (2.2)

Among the most commonly used activation functions σ are the logistic (sigmoid) function,
the hyperbolic tangent, and the rectified linear unit [16]. A visual representation of a
multilayer perceptron is given in Figure 2.1.

Multilayer perceptrons (MLPs) represent the most traditional architecture of deep
learning methods. It is also known as fully-connected neural network [17]. An MLP with
more than one hidden layer is called deep neural network (DNN). The main advantage of
neural networks is their ability to represent any bounded continuous function, given only a
single hidden layer and a finite number of neurons (universal approximation theorem [18]).
Hence, the goal of applying neural networks to some input data is to find the parameters

16

(i.e. weights, biases) required for the representation of the input. To this end, automatic
differentiation (AD) or its generalization for deep learning, called "backpropagation", is
commonly employed to obtain the derivatives of the outputs of the network with respect
to its inputs [16]. The backpropagation training algorithm starts with feeding the input
(training) instances to the neurons of the first hidden layers, which compute the output
according to Eq. 2.1 and pass it to the neurons of the next layer. This is repeated
for every neuron in each consecutive layer. Consequently, this process is called forward
pass. The network output can then be compared to the true output (provided by the
labeled training instances), in order to compute to which extent each neuron of the last
hidden layer contributed to the mismatch between the true and the predicted output
(loss). The algorithm then proceeds to the previous layer and computes how much each
of those neurons contributed to the error. This process is known as reverse pass. Finally,
a gradient descent step is performed, which adapts the weights and biases of the network
to decrease the loss. This whole process is also referred to as backpropagation algorithm.
MLPs can be used for both regression and classification. In the case of a classification
task, each output corresponds to one class. By applying a softmax function to the
neurons of the output layer, each output neuron yields an estimated probability for its
corresponding class [15]. The softmax function transforms the raw output scores (logits)
into probabilities by applying:

softmax(zi) =
ezi∑n
j=1 e

zi
. (2.3)

Recurrent Neural Networks

Recurrent neural networks (RNNs) are a special type of neural network with a modified
architecture compared to the standard MLP, resulting in a different way of passing in-
formation through the network. In contrast to an MLP, the RNN incorporates cycles,
allowing for a transmission of information back into itself. Thus, not only the current
input Xt but also previous inputs X0, X1, . . . , Xt−1 can be considered. The architecture
of RNNs makes them particularly suitable for the detection of patterns in sequential
data, such as text, or numerical time series. To correctly backpropagate the loss (re-
verse pass) in time, RNNs employ a slightly adapted backpropagation algorithm, known
as backpropagation through time (BPTT). However, RNNs frequently face the problem
of vanishing gradients, which arise in long sequences with small values of in the ma-
trix multiplications through the layers of the network. The vanishing gradient problem
occurs during backpropagation when the gradients of the loss function with respect to
the network’s weights become progressively smaller as they are propagated backward
through the layers of the network. This happens because, in RNNs, the same weights
are used repeatedly across time steps, and when these weights are involved in a series of
multiplications, especially if they are less than one, the gradients shrink exponentially.
This diminishes the influence of states that happened far before the current time step,
thereby making it difficult for the network to learn long-term dependencies. Conversely,
very large values in the matrix multiplications can lead to exploding gradients, producing
excessively large weights for earlier time steps [19].

17

Long-short-term memory

In 1997, Hochreiter & Schmidhuber [20] introduced Long-short-term memory (LSTM)
units, aiming to overcome the vanishing gradient problem by storing additional infor-
mation outside the traditional neural network in special gated cells [19]. These cells
use multiplicative gate units that control the information flow by learning when to open
and close in order to determine what data enters and exits the memory cell(s). The
memory cells comprise a recurrently self-connected linear unit, which is also referred to
as "constant error carousel". These carousels address the vanishing gradient problem by
maintaining consistent local error propagation unless new signals (inputs) arrive. This al-
lows the LSTM to selectively discard or retain information, according to what is required
[21].

A more detailed explanation of LSTMs, specifically applied for time series forecasting,
is provided in subsection 2.1.4.

2.1.2. Integrating Physics

Neural networks that solely rely on data often run into the problem of achieving reason-
able performance at fitting observations, but fail at generalizations due to extrapolation
biases. In addition, they typically struggle in tasks with few or noisy training data.
Physics-informed learning is a promising approach, aimed at leveraging the performance
of ML algorithms by integrating domain knowledge and fundamental physical laws into
data-driven models [2, 1]. To embed physics into a learning algorithm, there are currently
three pathways, directing the output toward physically consistent solutions:

• Observational biases: Introducing an observational bias refers to using data that
already embody the underlying physics so that algorithms trained on this data
automatically capture the functions and operators reflecting the physical structure
in the data. This type of method represents the simplest way of introducing a
physics-informed bias [1].

• Inductive biases: Inductive biases, on the contrary, pertain to specific NN architec-
tures, tailored in a way that predictions are guaranteed to satisfy certain physical
constraints, typically given as mathematical equations. The most prominent NN
architecture with an inductive bias is represented by convolutional neural networks
(CNNs) [22]. These networks are predominantly used in computer vision, as they
preserve invariances across groups of symmetries and distributed pattern repre-
sentations, which are inherent to natural images. Further examples of inductive
biases include graph neural networks, kernel methods (e.g. Gaussian processes),
and equivariant networks [1].

• Learning biases: In place of enforcing prior knowledge through a specific architec-
ture, learning biases are employed through penalty terms in the loss function of
conventional NN architectures. This way, the physical constraints are enforced as
soft constraints. The learning algorithm ought to simultaneously fit the training
data and fulfill a given set of physical equations, e.g. conservation of mass and

18

momentum. While due to the soft manner of the implemented constraints, the
underlying laws are, in general, only approximately satisfied, these soft constraints
at the same time enable substantial versatility, so that diverse biases can be intro-
duced. Strictly speaking, physics-informed neural networks (PINNs), which were
first introduced by Raissi et al.[23] in 2019, are traditional neural networks, with
modified loss functions, thus the physical foundations are solely reflected in the
training process of the method, but not in the architecture.

These three ways of incorporating physical laws into data-driven ML algorithms can also
be combined, yielding a large variety of hybrid approaches [1].

2.1.3. General Formulation of PINNs

To obtain a general formulation of PINNs in the strict sense (i.e. based on learning
biases), we assume that the underlying physical laws we aim to include in our MLP as
additional knowledge, are given in form of a parameterized partial differential equation
(PDE):

f(x, t, û, ∂xû, ∂tû, . . . , λ) = 0, x ∈ Ω, t ∈ [0, T]

û(x, t0) = g0(x), x ∈ Ω,

û(x, t) = gΓ(t), x ∈ ∂Ω, t ∈ [0, T].

(2.4)

t denotes the time, x ∈ Rd the spatial coordinate, and f accounts for the residual of the
PDE, containing the differential operators and the parameters λ. The solution of the
PDE is given as û(x, t) with the initial/boundary conditions denoted as g0(x), and gΓ(t),
respectively. Ω is the spacial domain and ∂Ω the boundary. The boundary conditions
can be of either type: Dirichlet, Neumann, or mixed [24].

Given space and time coordinates x, t as inputs, the PINN aims to approximate the
solution of the PDE by simultaneously learning both the parameters of the network
(weights, biases) and the parameters of the PDE. To this end, the objective (loss function)
is transferred into an optimization problem of the following form:

L = ω1LPDE + ω2Ldata + ω3LIC + ω4LBC , (2.5)

where ωi are coefficients allowing for a weighting of the individual loss terms, LPDE

represents a penalty for the residuals of the PDE, Ldata gives the loss due to the mismatch
between model predictions (outputs) and the true values, and LIC respectively LBC
account for the initial and boundary conditions. Typically, the mean square error is
used to compute the individual loss terms. To minimize the loss function by iteratively
updating the parameters, ADAM [25] optimizer is most commonly used. A schematic of
a general PINN is shown in Figure 2.2.

In this illustration, the a neural network with inputs given by space x and time t
coordinates is employed to solve for û. The model uses automatic differentiation (AD)
to calculate the derivatives of û with respect to the inputs. These derivatives are further
used to calculate the residuals of the physics-based loss terms. The PINN is thereby
able to simultaneously learn the weights and biases of the neural network, as well as the
unknown parameters of the PDE [24].

19

Figure 2.2.: Schematic representation of a PINN [24]

2.1.4. Time Series Forecasting

The term time series pertains to a time-ordered sequence of values. I.e., a univariate
time series X, where the value at each time step ti is given by a single real number, can
be expressed as:

X = [x1, x2, . . . , xT], (2.6)

with T denoting the total number of time steps. Naturally, a multivariate time series is
a time-ordered sequence of vectors, each containing M real numbers.

X = [X1, X2, . . . , XM], (2.7)

which can also be considered as M univariate time series with Xi ∈ RT [26]. In time
series forecasting, the aim is to predict the future values of a target yt at time t. One-step
forecast models can then be expressed as:

ŷt+1 = f(yt−k:t,xt−k:t, s), (2.8)

where f(.) is the learned prediction function, ŷt+1 represents the forecast output of
the model, yt−k:t = {yt−k, . . . , yt} are past observations of the target, and xt−k:t =
{xt−k, . . . ,xt} represent the past external inputs over a look-back window k. In addition,
s accounts for static metadata [27]. In neural networks for time series tasks, predictive
relationships are learned by extracting relevant historical information through a series of
nonlinear layers. These layers encode the information into a latent variable zt. Thus,
the forecast function can be expressed as:

f(yt−k:t,xt−k:t, s) = gdec(zt), (2.9)

with
zt = genc(yt−k:t,xt−k:t, s), (2.10)

20

where genc(.) and gdec(.) represent encoder, respectively decoder functions, whose exact
type depends on the chosen network architecture [27]. For RNN models such as the
LSTM, the temporal information is encoded by a recurrent layer that contains the tem-
poral information of the past (look-back window). For each future output prediction at
time step t, the model is provided with the external input data xt and the information
of the past. A visualization is given in Figure 2.3.

Figure 2.3.: Incorporation of temporal information in RNN models, taken from [27]

RNN cells are characterized by an internal memory state that captures previous (his-
torical) information. At each new time step, this memory state ztis recursively updated
in the way:

zt = ν(zt−1, yt,xt, s), (2.11)

with ν(.) being the learned memory update function. Therefore, a simple RNN variant
for time series forecasting can be expressed as:

yt+1 = γy(Wyzt + by), (2.12)

with
zt = γz(Wz1zt−1 +Wz2yt +Wz3xt +Wz4s+ bz). (2.13)

Here, W and b denote the weights and biases, and γy(.), γz(.) represent the activation
functions. As mentioned in subsubsection 2.1.1, basic variants of RNNs typically struggle
at learning long-range dependencies because of the infinite look-back window that leads
to exploding or vanishing gradients. Therefore, the more sophisticated RNN variant of
LSTM was developed to overcome this issue by using cell states ct that store long-term
information, regulated by a set of specialized gates, including the input gate, forget
gate, and output gate. The goal of the input gate is to control the amount of new
information that enters the cell state, while the forget gate determines which portion of
past information is discarded, and the output gate governs the influence of the cell state
on the current output. Mathematically, these gates can be expressed as:

input gate: it = σ(Wi1zt−1 +Wi2yt +Wi3xt +Wi4s+ bi)

output gate: ot = σ(Wo1zt−1 +Wo2yt +Wo3xt +Wo4s+ bo

forget gate: ft = σ(Wf1zt−1 +Wf2yt +Wf3xt +Wf4s+ bf ,

(2.14)

21

where σ(.) is the sigmoid activation function and zt−1 represents the hidden state of the
LSTM, given as:

zt = ot ⊙ tanh(ct), (2.15)

with ⊙ being the element-wise product. The cell state ct can be expressed as [27]:

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc1zt−1 +Wc2xt +Wc4s+ bc). (2.16)

Forecasting future targets that are continuous corresponds to a regression task. Thus,
for one-step forecast models, the most common loss function is given by the mean square
error loss

LMSE =
1

T

T∑
t=1

(yt − ŷt)
2. (2.17)

The one-step forecasting models discussed so far, can straightforwardly be extended to
multi-step forecasts of the form:

ŷt+τ = f(yt−k:t,xt−k:t,ut−k:t+τ , s, τ), (2.18)

where τ ∈ {1, . . . , τmax} denotes the discrete prediction (forecast) horizon, xt are external
inputs that are only available for historical time steps, and ut are external inputs that
are given for future time steps, such as date- and time- information. Multi-step forecast-
ing methods can be divided into recursive (also called iterative) approaches and direct
approaches. Recursive methods usually employ autoregressive architectures, which gen-
erate forecasts by recursively feeding target samples into subsequent future time steps.
In contrast, direct methods use all provided inputs (including past and a priori inputs)
simultaneously and produce a fixed-length output vector according to the desired pre-
diction horizon. A visualization of these two different methods is provided in Figure 2.4
[27].

Figure 2.4.: Iterative (a) and direct (b) multi-step forecasting methods, taken from [27]

2.1.5. Evaluation Metrics

To evaluate the results of a time series forecast with continuous targets, which equals a
regression task, several performance metrics can be considered. Some of the most widely

22

used metrics for regression are:

Mean Absolute Error (MAE): MAE =
1

T

T∑
t=1

|yt − ŷt|

Root Mean Squared Error (RMSE): RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2

Coefficient of determination (R2 score): R2 = 1− SSres

SStot
,

(2.19)

where SSres =
∑T

t=1(yt − ŷt)
2 is the sum of squared residuals and SStot =

∑T
t=1 =

(yt − ȳ)2 is the total sum of squares with ȳ being the mean of the target data yt.
Due to the inherent correlation of time series data, it is vital to avoid information

leakages during the evaluation procedure. Thus, different methods of time series cross-
validation have been developed, such as blocked cross-validation and time series split
cross-validation [28]. Time series split cross-validation is based on the property that the
validation set is always ahead of the training set so that the model does not predict the
past. Therefore, in each iteration, the corresponding time series split (fold) is divided into
a training, and a validation set. If hyperparameter tuning is performed (on the validation
set), the individual splits can also be divided into the three subsets training, validation
and testing set in each iteration. Furthermore, in each subsequent iteration, the previous
validation (and testing) set, become part of the training set, and the following sequence is
selected as validation set. Thus, the training set size increase in each subsequent iteration
(fold). A visualization of this method is given in Figure 2.5a. Another approach is blocked
time series cross-validation, where it is ensured that each fold has the same size. To this
end, the time series splits are shifted across the entire sequence as sliding windows, where
again, for each iteration the split is divided into training and validation (and potentially
testing) set [28]. A schematic is given in Figure 2.5b.

(a) Schematic of time series split cross-
validation, taken from [28]

(b) Schematic of blocked time series cross-
validation, taken from [28]

Figure 2.5.: Comparison of different cross-validation techniques

23

2.2. Fundamentals of Thermal Energy Storages

Thermal energy storage refers to systems that store energy through cooling or heating a
certain storage medium. The aim is to enable using the stored thermal energy for heating
or cooling purposes at a later time when there is a demand for it [29]. It was estimated
that through more extensive usage of heat and cold storage systems, roughly 1.4 million
GWh energy and 400 Mt CO2 emissions per year could be saved in Europe [30]. Thermal
energy storage ranges from water tank storage over chemical phase-change storage up to
underground storage [29]. Underground storage systems offer the advantage that they
accommodate substantial volume under confined surface areas and are therefore a widely
used technique. The key concept of underground storage is to make use of the ground,
comprising soil, rocks, clay, etc., as a storage medium. Among the most prominent types
of underground thermal energy storage systems are source heat pumps, which will be
explained in the following section.

2.2.1. Thermodynamics

The most important principles of Thermodynamics can be summarized by three fun-
damental laws: The so-called zeroth law, which defines a system to be in a thermal
equilibrium if the temperature is the same throughout the system and it is equal to the
temperature of its surroundings. The first law of thermodynamics, which is essentially
just a formulation of the law of conservation of energy, can be written as:

∆U = Q−W, (2.20)

where Q is the heat supplied or extracted from the system, W is the work done on or
by the system, and ∆U represents the change in internal energy. The second law of
thermodynamics defines the direction of heat flow, in particular, it states that heat can
spontaneously only flow from a reservoir of higher temperature to lower temperature [31].
With these fundamental laws being given, one can already calculate the heat transferred
from one equilibrium state to another. Nevertheless, to calculate the rate of heat transfer
or variation of the temperature with time and space, additional equations are needed:
the laws of heat transfer. These laws extend the basics of thermodynamics by fluid flow
and rate equations.
Heat transfer can be divided into the three different modes conduction, convection, and
radiation. Conduction is a process where the energy of the particles in a substance (can
be either liquid, solid, or gaseous) is transferred from the higher energetic particles to
their less energetic neighbors. For solids, this happens in the form of lattice vibrations
and/or free electrons, while in gases and liquids, the energy is transferred through the
collisions of molecules. The main equation for the conduction process is Fourier’s law,
which states that "The rate of heat flow by conduction in a given direction is proportional
to the area normal to the direction of heat flow and to the gradient of temperature in
that direction." [32] For the example of heat flux in x-direction Q̇x, this translates to

Q̇x = −kA
dT

dx
, (2.21)

24

where k is a proportionality constant, also called thermal conductivity, A is the cross-
sectional surface area of the material the heat is transferred through, and dT

dx is the
temperature differential in transfer direction. More generally, the heat conduction equa-
tion is given as:

∂T (x, t)

∂t
= a∆T (x, t), (2.22)

where a is the conductivity of the material [33].
Convection, on the other hand, describes the heat transfer that occurs when a fluid
flows over a surface that has a different temperature than itself. In addition, convection
also takes place when two fluids with different temperatures are mixed. The governing
equation the heat flux Q̇ for convection is given by Newton’s law of cooling:

Q̇ = hA(Ts − Tf), (2.23)

where h is the heat transfer coefficient for convection, Tf is the fluid temperature, Ts is
the surface temperature and A represents the surface area that is exposed to the fluid.

Thermal radiation describes the radiation that is emitted at a wavelength between
λ = 0.1µm - 100µm. The main equation for radiation energy flux Eb emitted from an
ideal emitter (black body) is given by Stefan-Boltzmann’s law:

Eb = σT 4, (2.24)

where σ = 5.6697 · 10−8 W/m²K is known as the Stefan-Boltzmann constant and T
represents the temperature of the radiating body [32].

In order to analyze thermal processes, it is often helpful to establish an energy balance
that accounts for all parts of energy that enter or exit the investigated system. The
general energy balance, as introduced by the first law of thermodynamics Equation 2.20,
can be reformulated for rates in steady-state open systems by:∑

out

(ṁÊ)out −
∑
in

(ṁÊ)in = Q̇− Ẇ , (2.25)

where ṁ gives the mass flow rate of a stream, Ê corresponds to the energy per mass,
Q̇ is the rate of heat transferred into the system or generated within the system and
Ẇ is the work done on a system per time. The process of heating or cooling a material
without exhibiting a phase change is called sensible heating (or cooling). For systems with
negligible change in potential energies and without external work, the energy balance can
then be reformulated as:∑

out

(
ṁc̄p(T − Tref)

)
out

−
∑
in

(
ṁc̄p(T − Tref)

)
in
= Q̇, (2.26)

with c̄p is the specific heat capacity of the material averaged between the reference
temperature Tref and the corresponding temperature of the output/input stream T [34].

25

For a single inlet and outlet stream, such as given in a pipe system of a borehole heat
exchanger, the reference temperatures cancel out and the equation simplifies to

Q̇ = cpṁ|Tout − Tin|, (2.27)

where cp is the specific heat capacity of the material at constant pressure for a given
temperature of the system, Tout is the outlet temperature, Tin the inlet temperature, and
Q̇ the heat extracted from the system.

2.2.2. Heat Pumps

Heat pumps are devices that transfer heat from reservoirs of low temperature to reservoirs
of higher temperature. In accordance with the second law of thermodynamics, this
process cannot happen spontaneously but requires input of external work. The main
goal of a heat pump is to maintain a heated space at a certain temperature, which
can be achieved by absorbing heat from a material such as water or air. This divides
heat pumps into two different types: water-to-water and water-to-air heat pumps. The
performance measure of heat pumps is called coefficient of performance, which can be
expressed as

COPHP =
QH

Win
=

1

1−QL/QH
, (2.28)

where Win gives the net input of work QH is the magnitude of heat transferred to the
warm environment at high temperature TH , and QL is the amount of heat extracted
from the region at low temperature TL.
A fundamental principle of thermodynamics is the Carnot Principle, which states that
there is no heat engine operating between two heat reservoirs that is more efficient than
a reversible Carnot heat engine. A Carnot heat engine is a heat engine operating on
the Carnot cycle, which is composed of two isothermal (constant temperature) and two
adiabatic (no heat exchange) processes. A diagram visualizing the Carnot cycle is given
in Figure 2.6a. A Carnot heat pump is the reverse of a Carnot heat engine (compare
Figure 2.6b). In the first sub-process of the Carnot heat pump cycle, heat QL is ab-
sorbed from a reservoir of low temperature TL, then the working medium is adiabatically
compressed such that its temperature increases to TH . In the next step, the heat QH is
released to the warmer environment, and finally, the medium is adiabatically expanded
until its temperature reaches the initial low temperature TL again. For the ideal Carnot
heat pump, the COP can be expressed as:

COPHP, Carnot =
1

1− TL/TH
, (2.29)

which defines an upper limit for any real heat pump system, operating between reservoirs
of temperature TL and TH [35].

26

(a) Carnot Cycle (b) Reversed Carnot Cycle

Figure 2.6.: pV-Diagrams of the ideal (reversed) Carnot Cycle, taken from [35]

2.2.3. Ground Source Heat Pumps

Ground source heat pumps (GSHP) are highly energy-efficient heating and cooling sys-
tems. In winter, they make use of the heat stored in the ground, while in summer they
harness the cooler temperatures of the ground as a sink for excess heat. This heat transfer
process is accomplished by borehole heat exchangers (BHEs), which are the underground
system that allows the GSHP to exchange heat with the ground.

Figure 2.7.: Ground-source heat pump schematic, taken from [36]

The most common type of borehole heat exchanger systems is the vertical borehole

27

Figure 2.8.: Schematic of borehole field with three borehole heat exchangers, taken from
[39]

field. These fields comprise a number of vertically aligned BHEs, each of which consists
of a hole drilled in the ground at a depth of 30 to 100 meters [37]. Further, every hole
typically contains one, or sometimes more, U-tubes [38]. The resulting space between
the tubes and the borehole wall is usually backfilled or grouted. The heat-carrying liquid
inside the tubes is typically water (with antifreeze additives) that circulates between the
ground and the heat pump [39]. A schematic of such a vertical borehole field is given in
Figure 2.8.

Different BHE Designs

The most common type of borehole heat exchangers is given by U-pipe BHEs, as pre-
sented in Figure 2.8. For this design, both the upward and downward flow yield contribu-
tions to the heat exchange between the water in the tubes and the surrounding ground.

28

Figure 2.9.: Schematic of common BHE designs, taken from [40]

There are both single U-pipe as well as double U-pipe BHE types, with the single version
being more common [40].
Apart from U-pies, also concentric pipe designs exist where one straight pipe is located in
a second, bigger pipe. This BHE design features heat exchange only from either upward
or downward pipe. Often, the inner pipe is insulated to avoid disturbances. Another
common BHE type is represented by coaxial pipes, which can be designed with or with-
out outer tube, thereby featuring either closed or open flow circuits. A schematic of these
different BHE designs is given in Fig. Figure 2.9 [40].

Thermodynamic Modeling of Ground Heat Transfer

In order to make predictions on the thermal output of the BHEs, several assumptions
need to be made, to simplify the complex heat transfer phenomena. In essence, the heat
flow from the ground can be calculated by multiplying the geothermal gradient with the
thermal conductivity of the ground. The thermal conductivity highly depends on the
type of rock material in the ground; quartz-rich rocks, for instance, have a high thermal
conductivity, whereas rocks rich in clay have low thermal conductivity.
The overall heat transfer in a BHE is composed of two parts. One of them is the heat
conduction outside the borehole, i.e. the transfer of the heat from the ground to the
borehole. Several models have been developed to simulate this thermodynamic process,
among the most prominent ones is Eskilson’s Model [41]. This model is mainly concerned
with relating the heat extraction rate with the temperature of the circulating fluid in the
U-tube. Eskilson starts by analyzing the thermal process of a single borehole, before

29

investigating the interaction between the several boreholes of the borehole field. To
describe these interactions and the overall thermal performance of the borehole field,
he introduces the so-called g-functions, which are dimensionless time response factors.
Eskilson developed a numerical model for variable configuration of boreholes and used
superposition to derive the thermal influence of multiple boreholes. In addition, an
analytical approach is used to solve for the heat transfer process along the borehole. The
assumptions made by Eskilson’s model include: annual mean air temperature equals
the ground surface temperature, the ground material is homogeneous, the top section
of the borehole is thermally insulated, and the borehole temperature is constant along
the borehole depth. Under these assumptions, the heat conduction equation given in
Equation 2.22 for a single borehole can be derived by means of the Laplacian of the
scalar temperature function T (x, y, z, t)

∆T =
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
(2.30)

as
1

a

∂T

∂t
=

∂2T

∂x2
+

∂2T

∂y2
+

∂T 2

∂z2
, (2.31)

where a corresponds to the thermal conductivity, T is the temperature, t gives the time,
and x, y, z are cartesian coordinates. In cylindrical coordinates, this corresponds to the
form:

1

a

∂T

∂t
=

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2
(2.32)

with the cylindrical coordinates in radial and vertical direction r and z. The boundary
conditions are given as:

T (r, 0, t) = To

T (r, z, 0) = To

T (r,∞, t) = To

∂T

∂r
(0, z, t) = 0,

(2.33)

where To is the ground surface temperature. When modeling heat extraction or rejection
as step function Q(t), the temperature response can be determined using a single step
pulse, with the final solution obtained by summing over the corresponding step pulse
responses over time. A schematic of this calculation is given in Figure 2.10. By converting
the step-wise temperature responses to dimensionless response factors (g-functions), the
borehole temperature Tb(t) can be calculated as [40]:

Tb(t) = To +
n∑

i=1

Qi −Qi−1

2πk
g
(tn − ti−1

ts
,
rb
H

)
, (2.34)

where rb is the borehole radius, Qi is the thermal load extracted or injected at time
step i, k is the thermal conductivity of the surrounding material and H is the active

30

Figure 2.10.: Schematic of heat step functions and step pulses, taken from [40]

borehole length, i.e. the vertical length of the borehole that is effectively involved in the
heat exchange process. A basic time-scale 5r2b

α was introduced, below which heat transfer
rates are considered very imprecise.

The second part, contributing to the overall heat transfer in a BHE is given by the
heat transfer inside the borehole. The goal of modeling this process is to determine the
temperature of the circulating fluid at the inlet and outlet of the borehole, in correspon-
dence with the borehole wall temperature, the thermal resistance, and the heat flow. A
commonly used approach for this aim is the two-dimensional thermal resistance model
derived by Hellstöm [42]. In this model, the fluid temperature is obtained by summing
over the two individual temperature responses to the heat fluxes per unit length, q1, q2.
By assuming constant borehole wall temperature Tb along the depth of the borehole, the
fluid temperatures Tf1, Tf2 for upward and downward pipes in a U-tube can be calculated
as:

Tf1 − Tb = R11q1 +R12q2

Tf2 − Tb = R12q1 +R22q2,
(2.35)

with R11 and R22 being the thermal resistances between the fluid and the borehole
wall, and R12 being the resistance between the two pipes of the U-tube. The thermal
resistances are calculated as the inverse of the thermal conductivities. Since the model
incorporates some simplifications, such as neglecting heat transmission on the axial flow
of the circulating fluid, there is in fact no distinction between upward and downward
pipe. Therefore, one can set Tf1 = Tf2 = Tf and q1 = q2, which leads to the thermal
resistance between borehole and fluid of

Rb2 =
R11 +R12

2
. (2.36)

31

With this being given, the temperature of the fluid at the borehole outlet can be obtained.
It should be noted, however, that actually the temperature of the fluid in the upward
pipe differs from the temperature in the downward pipe, thus, introducing an inaccuracy
to the model [40].

32

2.3. Quantum Chemistry

Quantum chemistry is an interdisciplinary field that deals with the application of quan-
tum mechanics to problems in chemistry. It aims to investigate the electronic structure of
atoms and molecules in order to provide insights into their properties such as bonding, re-
activity, and interaction. Through the emergence of advanced computational possibilities
and the development of new methods for molecular calculations such as density functional
theory (DFT), quantum chemistry not only enhances our theoretical knowledge but also
paves the way for advancements in various applications, ranging from materials science
and nanotechnology to renewable energy solutions and pharmaceutical research [43].

2.3.1. Schrödinger Equation and Born-Oppenheimer Approximation

The total (non-relativistic) time-independent Schrödinger equation for a many-particle
system is given as:

HtotΨtot = EΨtot,

Htot = −
∑
i

ℏ2

2me
∇2

i −
∑
a

ℏ2

2ma
∇2

a −
∑
a,i

Zae2

4πϵ0|ri −Ra
|

+
∑
i<j

e2

4πϵ0|ri − rj |
+
∑
a<b

ZaZbe2

4πϵ0|Ra −Rb|
,

(2.37)

where electrons are denoted with subscript i and nuclei with subscript a, and Za is the
number of protons in nucleus a. The total Hamiltonian can be rewritten in short form
as:

Htot = Te +Tn +Vne +Vee +Vnn. (2.38)
In the Born-Oppenheimer approximation, the positions of the nuclei are assumed to be
fixed. This is a reasonable approximation since the nuclei are much heavier than the
electrons, thus, the movement of the electrons happens on another time scale than the
movement of the nuclei. Thus, the electronic part of the Schrödinger equation can be
expressed as:

HelecΦm(r,R) = (Te + V (r,R))Φm(r,R) = WmΦm(r,R), (2.39)

where V (r,R) is the potential energy operator and Wm is the energy eigenvalue of the
electronic wave function Φm(r,R). The electronic coordinates are denoted as r and the
nuclear positions as R. The total solution of the Schrödinger equation can be expanded
in electronic coordinates by

Ψtot(R, r) =
∞∑

m=0

χm(R)Φm(r,R), (2.40)

where χm(R) represents the nuclear wave function. Inserting the expression into the
Schrödinger equation yields(

Te +Tn +V(r,R)
) ∞∑

m=0

χm(R)Φm(r,R) = E
∞∑

m=0

χm(R)Φm(r,R) (2.41)

33

After some algebra (for more in-depth explanation see [44]), we obtain:[
Tn +Wl(R)− E

]
χl(R) =

∑
m

Λlmχm(R), (2.42)

where Λlm represents the coupling term between electrons and nuclei. Since the Born-
Oppenheimer approximation assumes that nuclear and electronic motion are decoupled,
we set Λlm = 0 and rewrite the nuclear part of the Schrödinger equation as:[

Tn +Wl(R)− E
]
χn(R) = 0. (2.43)

Therefore, the total wave function can be expressed as product of nuclear and electronic
wave functions:

Ψlv(r,R) = Φl(r,R)χv(R). (2.44)

A requirement for the Born-Oppenheimer Approximation to be valid is:

| ⟨χls|Λlm |χml′⟩ |
|Els − Ems′ |

≪ 1. (2.45)

Within the Born-Oppenheimer approximation, the nuclei can be considered to move in
a potential energy surface (PES), created by the electronic configuration of the system.
The energy of the many-electron system can be calculated as:

E =
⟨Ψ|Helec |Ψ⟩

⟨Ψ|Ψ⟩
. (2.46)

The structure of a molecule, with respect to its bond lengths and bond angles is given
by the structure that minimizes this expression [45, 44, 46].

2.3.2. Geometry Optimization

A central component of energy calculation is the initial geometry optimization, i.e. search
of the structure that minimizes the energy of the investigated system. For this purpose,
several methods of low-energy structure search for nano-particles have been developed.
A concise overview is given in [47]. The standard method for geometry optimization
in molecules is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [48], which is
based on a pseudo-Newton method. For structure optimization on complicated PES
with numerous local minima, however, the Basin-hopping algorithm is a more suitable
approach. In this method, the shape of the PES is altered, while local minima are retained
exactly in the transformed PES. The transformation is conducted by calculating local
minima for every point in the configuration space:

Ẽ(X) = min{E(X)}. (2.47)

This procedure would correspond to transformation into a staircase function for a 2D
representation. Then, for the optimization, the sampling is carried out through move-
upon atom coordinates, with a starting configuration S and a destination configuration

34

D. Each individual move can be either refused or accepted, in accordance with the
standard Metropolis algorithm:

p =

{
1, if ẼD ≤ ẼS odd
e−(ẼD−ẼS)/KBT , if ẼD > ẼS

, (2.48)

with p representing the probability that the move is accepted and T representing the
fictitious temperature of the system. A more in-depth discussion, and explanation of the
different types of moves is presented in [47].

2.3.3. DFT Basics

Hohenberg and Kohn [49] proved in 1964 that the energy of the electronic ground state is
completely determined by the electron density ρ. This means that the electron density of
a system uniquely defines its energy. An intuitive proof for this was formulated by E.B.
Wilson, who claimed that (i) the integral over the electron density yields the number of
electrons, (ii) the position of the nuclei are given by the cusps in the electron density, and
(iii) the heights of the cusps determine the nuclear charges [44]. The basic idea of DFT is
thus to express the energy of an electronic system as a functional of the electron density,
E[ρ]. This bears the advantage of DFT that the energy expression is only dependent
on three spatial coordinates. i.e. independent of the number of electrons. In contrast,
wave-function-based approaches for an N -electron system depend on 4N variables, three
spatial and one spin coordinate for each electron [44].

Orbital-Free DFT

Early attempts of DFT used orbital-free expressions and divided the total energy func-
tional of the electronic system into three parts: attractive potential energy between nuclei
and electrons Ene[ρ], repulsive potential energy between electrons Eee[ρ], and the kinetic
energy of the electrons T [ρ]. The electron-electron interaction term can be further di-
vided into Coulomb part J [ρ] and exchange part K[ρ]. The functionals for the Coulomb
part and the nuclei-electron interaction can be straightforwardly defined as:

Ene[ρ] = −
Nnuclei∑

a

∫
Za(Ra)ρ(r)

|Ra − r|
dr, (2.49)

J [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′. (2.50)

However, the remaining functionals can not be defined as easily. Early attempts were
based on the assumption of the uniform electron gas, which yields somewhat correct re-
sults for metals, but deviates strongly from the behavior in molecules. The corresponding

35

functionals are given as

TTF [ρ] = CF

∫
ρ5/3(r)dr

KD[ρ] = −Cx

∫
ρ4/3(r)dr

CF =
3

10
(3π2)2/3

Cx =
3

4
(
3

π
)1/3,

(2.51)

with the subscripts TF denoting the Thomas-Fermi-theory and D Dirac’s theory [44].

Kohn-Sham DFT

In Kohn-Sham DFT, orbitals are reintroduced to overcome the poor representation of the
kinetic energy term in orbital-free approaches. The idea is to split the most problematic
functional of the kinetic energy into one part that can be calculated exactly and another
part representing a small correction term. Due to the reintroduction of orbitals, the
complexity is increased to 3N variables and electron-electron interaction re-emerges.
The Hamiltonian is assumed to have the form:

Hλ = T+Vext(λ) + λVee, (2.52)

with 0 ≤ λ ≤ 1 defining the influence of the electron-electron interaction Vee. Thus, for
λ = 1, the external potential Vext equals Vne. For λ = 0, the system is assumed to have
no electron-electron interaction, so that the exact solution of the Schrödinger equation
is given by a Slater determinant of molecular orbitals. For values of λ between 0 and
1, the external potential Vext(λ) needs to be adjusted in a way that the electron density
remains the same. For the λ = 0 case of non-interacting electrons, the exact kinetic
energy can be expressed as:

TS =

Nelec∑
i=1

⟨ϕi| −
1

2
∇2 |φi⟩ , (2.53)

with ϕi denoting the i-th molecular orbital. This expression for the kinetic energy, which
actually only holds for non-interacting electrons, is now also used for λ > 0, i.e. for real
systems including electron-electron interactions. Therefore, the expression for the kinetic
energy in Kohn-Sham DFT is again just an approximation, but it represents a significant
enhancement over the Thomas-Fermi formula used in Equation 2.51.

Using the equation for the kinetic energy in Equation 2.53 is justified by the fact that
exact kinetic energy can also be obtained from the natural orbitals (NO) that arise from

36

the exact density matrix:

T [ρexact] =
∞∑
i=1

⟨ϕNO
i | − 1

2
∇2 |ϕNO

i ⟩

ρexact =
∞∑
i=1

ni|ϕNO
j |2

Nelec =
∞∑
i=1

ni,

(2.54)

where the ni represents the number of electrons in the spin orbitals (between 0 and).
To express the exact electron density, infinitely many NO are needed, where the first
Nelec orbitals will have ni ≈ 1 and the following ones ni ≈ 0. Hence, the approximated
electron density can be expressed by means of a set of auxiliary one-electron orbitals [44]:

ρapprox =

Nelec∑
i=1

|ϕi|2 (2.55)

Under the assumption of non-interacting electrons to justify the use of Equation 2.53,
the total DFT energy can then be expressed as:

EDFT[ρ] = TS [ρ] + Ene[ρ] + J [ρ] + Exc[ρ], (2.56)

which automatically determines the expression of the exchange-correlation functional Exc
as some type of correction term, by setting EDFT equal to the exact energy, yielding

Exc[ρ] = (T [ρ]− TS [ρ])︸ ︷︷ ︸
kinetic correlation energy

+ (Eee[ρ]− J [ρ])︸ ︷︷ ︸
exchange-correlation energy

. (2.57)

Often, the exchange and correlation energies are also written in terms of the energy per
particle:

Exc[ρ] = Ex[ρ] + Ec[ρ] =

∫
ρ(r)ϵx[ρ(r)]dr +

∫
ρ(r)ϵc[ρ(r)]dr. (2.58)

The only part that needs to be derived in Kohn-Sham DFT is an approximation for
the exchange-correlation energy Exc, while for orbital-free DFT expressions for kinetic
energy, exchange- and correlation contributions need to be determined [44].

Kohn and Sham inferred that a system of N interacting electrons can be expressed by
means of N non-interacting electrons moving in an external potential:{

−ℏ2∇2

2m
+ vext(r)

}
ϕi(r) = ϵiϕi(r), (2.59)

where ϕi are the one-electron orbitals (also known as Kohn-Sham orbitals) and ϵi are
the corresponding eigenvalues, i.e. the associated energies of these one-electron orbitals.
Since the density ρ(r) is required for the calculation of the external potential vext, and

37

the density, in turn, depends on the external potential, this potential needs to be found
in a self-consistent manner. That is, an initial guess for ρ(r) is made to construct the
potential, thereafter, the resulting Kohn-Sham equations are solved to find an updated
ρ(r), which is then used to calculate the new potential. This procedure is iterated until
convergence is reached. This self-consistent loop is the key element in any DFT code
[50].

2.3.4. DFT Improvements / Exchange-Correlation Functionals

Various DFT methods have been developed to date, typically differing only in the choice
of the functional expressing the exchange-correlation energy. Since these exchange-
correlation functionals are mostly empirical, there is no theoretically sound order of the
different methods. However, a heuristic characterization, considering the fundamental
variables used, has been established and is known as Jacob’s ladder. For each step up
the ladder, an improvement in the accuracy is at least hoped to be achieved.
The first step on Jacob’s ladder is given by the Local Density Approximation. This
method treats the density locally as a uniform electron gas, such that the density is a
slowly varying function. The exchange energy is then given by:

ELDA
x [ρ] = −Cx

∫
ρ4/3(r)dr,

ϵLDA
x = −Cxρ

1/3

(2.60)

which provides an upper bound to the exchange-correlation functional [44].

Ex[ρ] ≥ Exc[ρ] ≥ 2.273ELDA
x [ρ]. (2.61)

The correlation energy part of a uniform electron gas does not have a simple analytical
form but is typically obtained for with Monte Carlo methods.
On the next step of Jacob’s ladder generalized gradient approximation (GGA) methods.
These methods include not only the density ρ, but also its gradient ∇ρ as variable for
the formulation of the functional. Among the most popular GGA exchange functionals
for the exchange energy is:

ϵB88
x = ϵLDA

x +∇ϵB88
x

∇ϵB88
x = −βρ1/3

x2

1 + 6βx sinh−1(x)

x =
|∇ρ|
ρ4/3

,

(2.62)

where β is a parameter, defined by fitting the equations to known data. Various GGA
functionals have been derived for the correlation energy, with one of the most common

38

functionals represented by LYP [51]:

ϵLYP
c = −4a

ραρβ

ρ2(1 + dρ−1/3)
−

ραρβ
18 ab ω

{
144(22/3)CF (ρ

8/3
α + ρ

8/3
β) + (47− 7δ)|∇ρ|2

− (45− δ)(|∇ρα|2 + |∇ρβ|2) + 2ρ−1(11− δ)(ρα|∇ρα|2 + ρβ|∇ρβ|2)

+
2

3
ρ2(|∇ρα|2 + |∇ρβ|2 − |∇ρ|2)− (ρ2α|∇ρβ|2 + ρ2β|∇ρα|2)

}
,

(2.63)
with

ω =
e−cp−1/3

ρ14/3(1 + dρ−1/3)
(2.64)

and

δ = cρ−1/3 +
dρ−1/3

1 + dρ−1/3
. (2.65)

The parameters a, b, c, d are fitted to the data for a helium atom. By combining the LYP
correlation functional with the B88 exchange functional, BLYP acronyms are obtained.
Perdew, Burker, and Ernzerhof have introduced the PBE functional [52], which can be
considered a refinement, based on removing spurious oscillations in the first-order Taylor-
like expansion of the exchange-correlation energy density around the uniform electron gas
model. The exchange part of the functional is given as:

ϵPBE
x = ϵLDA

x F (x)

F (x))1 + a− a

1 + bx2

x =
|∇ρ|
ρ4/3

.

(2.66)

The correlation term is analogously represented as an enhancement factor added to the
LSDA functional, with t being linked to x through yet another spin-polarization function.

ϵPBE
c = ϵLDA

c +H(t)

H(t) = cf3
3 ln

[
1 + dt2

(
1 +At2

1 +At2 +A2t4

)]
A = d

[
exp

(
−ϵLDA

c

cf3
3

)
− 1

]−1

f3(ζ) =
1

2

[
(1 + ζ)2/3 + (1− ζ)2/3

]
t =

[
2(3π2)1/3f3

]−1
x.

(2.67)

For this functional, the parameters a, b, c, d are not fitted to data, but derived from
certain conditions [44].

39

2.3.5. Basis Sets, Plane-Waves, Pseudopotentials

Basis sets are used to express unknown functions, such as molecular orbitals or electronic
wavefunctions. If the expansion of the unknown functions is carried out with a complete
basis set, this yields an exact representation of the unknown function. However, a com-
plete basis set requires an infinite number of functions and is therefore intractable for
actual calculations. The two most commonly used types of basis functions in electronic
structure theory are Slater Type Orbitals (STOs)

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ζr (2.68)

where N is a normalization constant, Yl,m are the spherical harmonics; and Gaussian
Type Orbitals (GTOs):

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r2n−2−le−ξr2 . (2.69)

Instead of modeling atomic orbitals (GTOs or STOs) with basis functions, plane wave
basis functions aim to directly model the full system. For instance, to model extended
systems such as an infinitely repeated unit cell with periodic boundary conditions, it is
a more natural choice to employ functions with infinite range. In metals, the behavior of
the valence electrons closely resembles the behavior of free electrons. Therefore, solutions
to the Schrödinger equations for a free electron can be used as ansatz for basis functions:

ϕ(x) = Aeikx +Be−ikx

ϕ(x) = A cos(kx) +B sin(kx),
(2.70)

with the energy

E =
1

2
k2. (2.71)

In infinite systems, the energy difference between consecutive orbitals vanishes, thereby
leading to a blending of the discrete molecular orbitals into bands. Electrons residing
in these bands are described using orbitals that are expressed in terms of a plane-wave
basis, which can be represented as:

χk(r) = eik·r, (2.72)

where k is the wave vector that takes the same role as ξ in a GTO. The allowed values
of k are defined by the unit cell translational vector t with k · t = 2πm and m being a
positive integer [44].
From a chemical bonding perspective, core electrons do not significantly contribute to the
interactions in a system. However, it is vital to include a large enough number of basis
functions in order to describe their orbitals sufficiently well, as otherwise, the orbitals of
the valence electrons will be inaccurately represented due to a lack of electron-electron
repulsion. This problem can be addressed by modeling the core electrons with pseudopo-
tentials (also called effective core potentials). These pseudopotentials are designed by

40

first, creating a reasonable all-electron wave function (e.g. with DFT calculations), then
replacing the orbitals of the valence electrons by nodeless pseudo-orbitals. These orbitals
behave correctly in the outer region, but do not capture the true behavior near the core
due to the missing nodal structure. Thus, as a next step, the core electrons are replaced
by parameterized analytical functions (e.g. Gaussian functions) of the nuclear-electron
distance. Finally, the parameters of the created potentials are fitted in a way that the
wave functions found as solutions of the Schrödinger equation yield pseudo-orbitals that
match the all-electron valence orbitals. Traditionally, molecular systems were modeled
using Gauss-type basis sets, whereas extended periodic systems were described by plane
waves. Consequently, also the corresponding pseudopotentials vary for these systems,
i.e. when Gaussian functions are used for the description of valence electrons, they are
naturally also used for the description of the core electrons. Apart from replacing all elec-
trons except for the valence electrons by pseudopotentials, one can also include orbitals of
the next-lower orbital under the valence orbital for explicit treatment. For example, for
silver (Ag) atom, one may choose a ’large-core’ or a ’small-core’ pseudopotential, which
are given as follows (remaining electrons are bold and replaced electrons italic) [44]:

• Large-core pseudopotential (11 electrons explicitly considered):
(1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6 (4d)10 (5s)1

• Small-core pseudopotential (19 electrons explicitly considered):
(1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6 (4d)10 (5s)1

• All-electron potential (47 electrons explicitly considered):
(1s)2 (2s)2(2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6 (4d)10 (5s)1

This yields the orbital shapes represented in Figure 2.11

2.3.6. Computational Tools for Electronic Structure Calculations

Computational tools play a pivotal role in calculating the electronic structure and chemi-
cal properties of materials. Therefore, a number of software packages has been developed
for computational quantum chemistry. The core working principle that they share is to
solve the Schrödinger equation for electronic systems, using different methods and ap-
proximations. Within this work, we will use Quantum Espresso for the DFT calculations
to obtain the total energy E(x) of the given structure and the gradient ∇xE of it. "Quan-
tum Espresso is an integrated suite of Open-Source computer codes for electronic-structure
calculations and materials modeling at the nanoscale. It is based on density-functional
theory, plane waves, and pseudopotentials" [53]. It is, therefore, well suited for calcu-
lations of clusters with periodic boundary conditions and bonding properties typically
present in nanoclusters.

Assuming that the DFT calculations are carried out for solids exhibiting discrete trans-
lational invariance, the Bloch theorem can be used, which leads to the advantages that
the Hamiltonian is diagonal in k and the calculations can be restricted to one single

41

Figure 2.11.: 5s-orbital of Ag with all-electron, small-core, or large-corre effective core
potential. Image taken from [44].

unit cell. With the Bloch basis, using uk(r) lattice-periodic functions and k as the wave
vector of the first Brillouin zone, Equation 2.59 can be rewritten as:(

− ℏ2

2m
(
1

i
∆+ k)2 + vext(r)

)
uk(r) = ϵkuk(r), (2.73)

which defines the dispersion relation ϵk. From this equation, it is evident that we simply
need to solve a single-particle equation for various values of k, since the Hamiltonian
is diagonal in k. I.e., for each k, we obtain a set of ϵi(k), which corresponds to the
dispersion relation. Rather than directly solving the second order differential equation
Equation 2.73, the wave function uk(r) can be expanded in terms of a linear combination
of basis functions, which yields a linear system of equations. The number of basis func-
tions (plane waves) included in the expansion is determined in Quantum Espresso by a
cutoff energy. This ideal cutoff depends on the element(s) and the size of the unit cell
and can be found by running calculations with different cutoff energies to check when
the resulting total energy converges. By using pseudopotentials, the number of necessary
plane waves in the basis set can be significantly reduced [50].

42

3. PINNs for Borehole Heat Exchangers

The aim of this work is to create physics-informed machine learning models, i.e. a physics-
informed LSTM (PI-LSTM) that enables the prediction of the temperature output of a
borehole heat exchanger, with a prediction horizon of 1 or 2 weeks, given a look-back
window of 7 - 14 days. Most of the BHE models introduced in previous studies [9, 10,
38] are based on simulations of long-term responses. The few models concerned with
the prediction of short-term behavior typically rely on finite element methods, which
go along with considerable computational efforts. In our study, we try to establish a
model that is able to accurately predict short- and mid-range behavior of the system at
manageable computational costs.

This chapter explores the equations governing the heat transfer process in Section 3.1.2,
before delving into the practical implementation of a BHE system in a real-world use-
case. Its corresponding data will be examined in Section 3.1, followed by sections about
the subsequent steps: Preprocessing, establishment of a baseline, and implementation of
the proposed physics-informed model. After the presentation of the results in Section
3.4, the chapter will conclude with a concise discussion of our findings.

3.1. Experimental Setup

The most important requirement for the implementation of our proposed PI-LSTM is a
realistic dataset, since the aim of this work is to establish a solid prediction approach
for real-world operating systems. In addition, a large number of data points (i.e. a long
enough time span) is necessary to enable concise validation for both heating (winter) and
cooling (summer) periods. The following sections will introduce the employed dataset
and explain the conducted preprocessing steps to obtain a suitable training set.

3.1.1. Dataset Description

We opted for a dataset of a ground-source heat pump system located at an office building
at the Universitat Politècnica de València, which was extensively studied by Ruiz-Calvo
et al. [9]. The dataset spans an operation period of 11 years and has previously been
used for validation of several purely theoretical models [10, 38, 54].
The operation of the system started in February 2005 and ought to provide both heating
and cooling to several rooms with a total area of roughly 250 m2. A schematic of the
GSHP installation is given in Figure 3.1. The whole system mainly consists of two
hydraulic loops: an internal (building) loop connecting the individual fan coil units
distributed over the rooms; and an external (ground) loop coupling the GHE to the heat
pump. An electronic controller determines the operational state of the heat pump, by

43

Figure 3.1.: Schematic of the GSHP of the employed dataset from Ruiz-Calvo et al. [9]

switching its compressor on or off, depending on the temperature of the internal loop’s
return water. The specific type of the GSHP in usage is called a "reversible water-to-
water heat pump". Initially, it was constructed as a single-stage (on/off) heat pump
using propane R290 as refrigerant, featuring a nominal cooling capacity of 14.7 kW and
a nominal heating capacity of 17 kW. In May 2011 the initial heat pump was replaced by
a new water-to-water reversible heat pump, using the refrigerant R410A. In addition, by
utilizing water-reversing valves the new heat pump’s design allows it to operate reversibly
on both the refrigerant and the secondary fluid loops. This feature enables continuous
operation in counter-current conditions, thereby enhancing energy efficiency. The new
nominal cooling capacity was 15.4 kW and the new nominal heating capacity was 18 kW.
For improved adaption of the heat pump’s capacity to the thermal load, two in tandem
working compressors were included. [9]

The borehole field consists of N = 6 boreholes, aligned in a balanced 2x3 grid, each
with a depth of D = 50 m, separated at distance s = 3 m from each other, and connected
in parallel. The diameter of each borehole is given as dbh = 150 mm, and each borehole
contains one polyethylene U-tube with an internal diameter of dtube = 25.4 mm and a
distance of stube = 70 mm separating upward and downward pipe. The space between the
tubes and the borehole wall is filled with sand and sealed with a layer of bentonite on top
of it, to prevent intrusion of pollutants. A laboratory analysis on soil samples was carried
out to estimate the thermal properties of the ground, yielding a thermal conductivity
κ = 1.43 W/m and a volumetric heat capacity Csoil = 2.25 MJ/m3K. However, these
values contain an uncertainty of around 20% due to inherent inhomogenities in the soil.
In addition, the upper part of the soil is expected to exhibit higher thermal conductivity
due to the saturation of the ground with water, given that the phreatic water level is

44

approximately 3.5 m. The sensors installed to enable optimal system operation include:
temperature sensors, mass flow meter, and power meter. There are two temperature
sensors for each borehole, measuring the inlet and outlet temperature of the water. In
addition, in some of the boreholes, there are temperature sensors installed at different
depths to measure the ground temperature at the midpoint between two pipes of the
U-tube [9].

3.1.2. Theoretical Model of the System

The general underlying Thermodynamics of the heat exchange in the boreholes can be
given by the following simplified energy balance.

Q̇heat(t) = Q̇ground(t)

ṁ(t) · cp · |Tout(t)− Tin(t)| =
1

Rtotal
·A · |Tbw(t)−

Tin(t) + Tout(t)

2
|,

(3.1)

where Q̇heat represents the heat transferred to or from the heat exchanger, A represents
the area over which the heat transfer takes place, and Q̇ground is the heat extracted from
the ground. The fluid inlet and outlet temperatures are denoted as Tin, respectively
Tout, the specific heat capacity of the fluid is cp, and Rtotal represents the total thermal
resistance of the system. Under the simplification of a steady-state assumption, at one
step of time t, the heat fluxes must equal. Due to the lack of additional parameters in the
dataset, a constant thermal resistance Rtotal of the surrounding materials was assumed.
This neglects the fact that the thermal resistance of the grout and the ground may vary
with both time and depth. Furthermore, an average temperature of the fluid was assumed
(perfect mixing), and the effects of external influences, such as the neighboring boreholes
were neglected in Equation 3.1.

3.1.3. Dataset Analysis and Preprocessing

The dataset provided by Ruiz et. al [9] consists of three different subsets: system data,
borehole data, and reference data. The system data contains parameters of the overall
GSHP systems, such as mass flow rates and inlet-/outlet temperatures of both internal
and external circuits, and electric power consumption of the heat pump. The borehole
data contains measures from all sensors installed within the BHE, that is, the inlet and
outlet temperature of each individual borehole, as well as the temperature in one of
the six boreholes at different depths. A visualization of the original temperature sensor
measurements for the borehole wall temperature of borehole 6 at different depths is given
in Figure 3.2.

Apparently, there are many unrealistic measurements in the data, as it can be assumed
that the ground at 0 - 50 m depth does not reach temperatures of neither +90 nor −20 ◦C.
Furthermore, the reference data contains information about the operational state of the
system as well as a Boolean column ’Representative data’, indicating whether the values
of the corresponding row (DateTime) could contain reliable values.

45

Figure 3.2.: Temperature sensor measurements in borehole 6, at various depths

To achieve results that closely resemble real-world scenarios, we opted to incorporate
only features in our model that are typically accessible in practical settings. These
features (sensor points) are given in Table 3.1.

Abbreviation Unit Explanation

Tin, EC °C Temperature of the water at the inlet of the
BHE (EC for external circuit of the heat
pump)

Tout, EC °C Temperature of the water at the outlet of the
BHE

ṁEC kg/h Mass flow rate in the external circuit
DateTime - Cyclic encoded to multiple features, as ex-

plained in subsection 3.1.3

Table 3.1.: Original feature set

In order to implement a physically motivated loss into the ML algorithms, the borehole
temperature are required as an additional feature. This is more than what is typically
given in a BHE installation, but it turns out to be highly problematic to add meaningful
equations without this parameter. To create the feature Tbw, we used that the temper-
atures at the borehole wall for different depths were available in the dataset for at least
one of the six boreholes, and assumed that this temperature would be the same for each
of the boreholes in the borehole field. Due to the assumption for a continuous borehole
wall temperature, which is valid for a high enough mass flow rate according to Eskilson

46

(as explained in Sec. 3.1.2), we can calculate the average temperature of the borehole
wall Tbw(t) at a time step t as follows:

Tbw(t) =
1

L

7∑
i=1

liTbw, i(t), (3.2)

where li represents the influence length segment of the corresponding temperature Ti of
the sensor located at that point. The temperature sensors are located at equally spaced
depths. The first one placed at -2.5 m, corresponds to the start of the active borehole
length, and the last one placed at -47.5 m corresponds to the end of the active borehole
length. All the features of this extended feature set are listed in Table 3.2.

Abbreviation Unit Explanation

Tin, EC °C Temperature of the water at the inlet of the
BHE (EC for the external circuit of the heat
pump)

Tout, EC °C Temperature of the water at the outlet of the
BHE

ṁEC kg/h Mass flow rate in the external circuit
Tbw °C Temperature of the borehole wall
DateTime - Cyclic encoded to multiple features

Table 3.2.: Extended feature set for physics-based loss

Merging the datasets, resampling over 60-minute intervals, and removing non-represen-
tative data yields our preliminary dataset. As a next step, fundamental knowledge about
the system is used to preprocess the dataset. First, all temperature values of the fluid
(Tout, Tin) outside the range [-30°C, 100 °C] are set to nan. Then, mass flow rates below
0 are replaced with nan entries, since the flow in the pipes cannot go backward. In
addition, for periods when the system is not working longer than 3 hours (e.g. weekends,
and night-time), the outlet temperature is set equal to the inlet temperature, because
there is no need to predict the temperature for the system if it is not in operational mode.
To indicate this inferred operational status of the pump, we add a binary feature called
"pump status", which will also be used for the evaluation (compare subsection 3.2.5).
The operating hours of the systems are (theoretically) defined from 7 am to 9 pm during
5 days of the week. An exemplary visualization of this slightly artificial modification of
output temperatures is represented in Figure 3.3.

Plotting the inlet and outlet temperatures of the whole dataset over time discloses the
large number of nan values, which mostly result from the exclusion of non-representative
data and physically non-realistic data records. A visualization is given in Fig. 3.4.

As a next step, the DateTime features, originally given in the format ’YYYY-mm-dd
HH:MM:SS’, need to be cyclically encoded. The idea is to extract as much meaningful
information from the feature as possible, that can be effectively interpreted by the ML

47

(a) Original Tout

(b) Tout after modification

Figure 3.3.: Results of setting Tout equal to Tin for non-operating states longer than 3
hours

48

Figure 3.4.: Inlet- and outlet temperatures of the whole time span

models. For example, even though the time step from ’2010-12-31 23:59:59’ to ’2011-
01-01 00:00:00’ may be very close to each other, which implies that the corresponding
values of this time step are likely to be similar, the numbers at this time step change
significantly. Therefore, ML models will assume larger changes from one timestamp
to the next one in this case. To avoid this, cyclic encoding uses sine and cosine values,
effectively representing smooth transitions of consecutive DateTime entries. The encoded
DateTime features used for this work are given in Table 3.3.

Table 3.3.: Encoded DateTime features

Original Parameter Encoded Parameter

DateTime sin(day of year)
DateTime cos(day of year)
DateTime cos(hour of day)
DateTime cos(hour of day)
DateTime Day of week (0-6)
DateTime Is Weekday (0,1)
DateTime Year

Finally, the features are scaled to standardized intervals of [0, 1] in order to avoid
features with larger magnitudes predominating the learning behavior of the ML models.

49

To this end, the scaling (min-max normalization [55]) presented in Equation 3.3 is carried
out for each feature in each fold individually. To rule out any information leakages, only
the training data is used for fitting the scalers.

xscaled =
x− xmin

xmax − xmin
. (3.3)

For the regression models based on a certain look-back width l and a pre-defined
prediction horizon of length p, it is necessary to generate windows from the original data
frame. Each window has a total width w, given as w = l + p. The goal is to train a
regression model so as to predict Tout for the next p time steps (hours), given the input
parameters of the prior l hours and the future inputs Tin and ṁ, defined by the control
regime. Since the implemented ML models are not inherently able to deal with nan
values in the data, there are two options:

(i) Discard all windows containing nan entries:
This means that for each window of size = total width w× k features if any of the
cell entries contains a nan value, the whole window is discarded from the dataset.
Apparently, this leads to significantly downsized datasets, which could be a problem
for achieving successful training of the models.

(ii) Impute nan entries as an additional preprocessing step:
We implement an imputation procedure where first, an additional help feature is
created to indicate whether more than x = 48 consecutive (w.r.t time) entries of
the data were nan values. If so, we do not perform an imputation because the time
span is just too long to impute meaningful values. If the number of consecutive
nans was smaller x, we perform the imputation by training a small neural network
with (200, 100, 50) hidden layer sizes on the remaining features with a 90/10 train-
test-split, using the scikit-learn MLP Regressor package. We add a new binary
feature ’Is Imputed’ indicating whether a value of the corresponding row (time
step) was imputed, and use this feature to calculate corrected MAE scores for the
final evaluation (details are given in subsection 3.2.5).

After trying both options in a preliminary regression experiment, it was revealed that
imputation leads to a noticeable performance increase. Thus, missing value imputation
will be included in the preprocessing pipeline for the remaining experiments. A compar-
ison of the preliminary experiment results with and without imputation is given in Fig.
3.8.

3.2. Implementation

For the implementation of our Machine Learning model in combination with additional
Physical information, we opt for an Autoregressive LSTM as our central approach. In
addition, we implement two simple baseline models to compare our approach to and get
an impression of the complexity of the tackled task. In essence, we will perform two
experiments:

50

(1) Lookback width of 1 week l = 7 days = 168h and prediction horizon of p =
7 days = 168h

(2) Lookback width of 1 week l = 14 days = 168h and prediction horizon of p =
14 days = 168h

3.2.1. Implementation of the Baseline Methods: Constant and Linear
Model

The constant baseline model simply predicts a constant value over the entire prediction
horizon. This constant value is given by the last target temperature in the input sequence,
i.e.

ŷcb
t+τ = yt−1, (3.4)

where the superscript "cb" denotes "constant baseline". The linear baseline model uses
the input sequence (look-back data) to predict the entire output sequence (prediction
horizon) for the target feature directly in one step. It was created with the TensorFlow
[56] library. The model is trained with the Adam optimizer, using a batch size of 16,
20 maximal epochs for training in the hyperparameter tuning process, and 50 maximal
epochs for training in the test loop. The hyperparameters tuned by grid search are
the learning rate and the patience for early stopping. More details are provided in
subsection 3.2.4.

3.2.2. Implementation of a Standard Autoregressive LSTM

The central model used in this thesis for forecasting the borehole output temperatures
is an autoregressive LSTM model, that iteratively forecasts one time step ahead. The
model architecture comprises an LSTM cell encapsulated within an RNN layer, and a
dense layer with a kernel regularizer (l2 = 0.01) that transforms the LSTM output into
predictions. The chosen architecture allows for a warm-up phase, where the LSTM state
is initialized by the input sequence to generate a first prediction, and a prediction phase,
where the model concatenates the previous prediction with external features and uses
them to produce the next prediction. The prediction phase continues iteratively until the
desired number of output predictions (prediction horizon) has been reached. The model
is strained using the Adam optimizer, MSE loss, a batch size of 16 and a maximum of 20
epochs for hyperparameter tuning. For the final evaluation on the test set a maximum
of 50 epochs is used. The hyperparameters are: learning rate, patience (for the early
stopping mechanism), and the number of LSTM units (compare subsection 3.2.4).

3.2.3. Implementation of the Custom Loss

To incorporate additional information we have about the given data, such as domain
knowledge and fundamental thermodynamics principles, the traditional loss function is
extended by both a constraint-loss and a physics-loss term:

L = wdataLdata + wphysLphys + wconstLconstraints, (3.5)

51

where the weights wdata, wphys, wconst are hyperparameters specifying the influence of the
individual loss terms.

Data Loss

The data loss is calculated as the mean squared error between the model outputs for
Tmodel
out and the true (experimental) values from the data T true

out .

Ldata =
1

N

N∑
i=1

(Tmodel
out,i − T true

out,i)
2 (3.6)

Constraint Loss

The constraints are given in the form of statistical knowledge about the system. From
the given training data, it can be inferred that the variation of the temperature Tout from
one time step to the next typically lies within a certain range. In other words, there are
usually no big jumps in consecutive values. To make use of this information, the mean µ
and standard deviation σ of these consecutive temperature differences can be calculated
as:

µ(∆T) =
1

N

N∑
i

(∆Tout,i) =
1

N

N∑
i

(Tout,i − Tout,i-1)

σ(∆T) =

√√√√ 1

N

N∑
i

(∆Tout,i − µ(∆Tout))2.

(3.7)

To only penalize rather strong deviations from the usual behavior, we opted for an
acceptance range defined as:

I∆T
acc = [0, µ(∆Tout) + 2σ(∆Tout)]. (3.8)

In addition, we make use of physical domain knowledge. In particular, we know that the
output fluid (water) of the pipes will always have a temperature Tout between 10 and 40
°C. This can be formulated with an acceptance interval

ITout
acc = [Tout,min, Tout,max] = [10, 40], (3.9)

leading to a total constraint loss of the form

Lconstraints =
1

M

M∑
j

a · |∆Tout,j|+
1

P

P∑
p

b · |Tout,p − Tout,min|+
1

Q

Q∑
q

b · |Tout,q − Tout,max|,

for ∆Tout,j /∈ Iacc, for Tout,p < Tout,min, for Tout,q > Tout,max
(3.10)

with a and b as tuneable hyperparameters.

52

Physics Loss

Regarding the physics loss, we are strongly restricted in our choice of equations due to the
small number of parameters and sensor points given. Based only on the mass flow rate
ṁ(t), the temperature input Tin(t), the constructed average borehole wall temperature
Tbw(t), and the encoded date- and time-features apart from some constant parameters
of the system, it is impossible to implement a PDE describing the heat transfer over
time and/or space. Therefore, the only possibility to incorporate Thermodynamics was
using the simplified steady-state energy balance presented in Equation 3.1. Using this
equation, the physics loss can be formulated as

Lphys =
1

K

K∑
k=1

{
Q̇heat,k(t)− Q̇ground,k(t)

}
=

1

K

K∑
k=1

{
ṁ · cp · |Tmodel

out,k (t)− Tin,k(t)| −
1

Rtotal
·A ·

∣∣∣Tbw,k(t)−
Tin,k(t) + Tmodel

out,k (t)

2

∣∣∣},
(3.11)

where k ∈ K are the samples (time steps) where the heat exchanger is operating, indi-
cated by ṁ(t) > 1 with 1 as a threshold to account for the noise of the mass flow meter
sensor. To ensure that the physical loss from the energy balance yields meaningful results
for the given dataset, a pre-check was performed where the loss was calculated for the
true target values Tout(t) of the dataset. To increase model performance by improving
generalization and avoiding over-fitting, the incorporated Physical relations should be
able to (at least somewhat) resemble the measured temperature output of the BHE. To
this end, the heat fluxes Q̇heat and Q̇ground calculated from the experimental data are
plotted over time. Under ideal conditions, these two values should match. The results
of this experiment are presented below in Figure 3.5. It was found that the heat fluxes
differed significantly, indicating that the equation does not capture the behavior of the
boreholes at all. After careful inspection of the calculation, no error could be detected.
As a next step, we wanted to rule out that the parameter k = 1

Rtotal
, obtained from the

dataset, was incorrect. Therefore, we calculated k from Eq. 3.1 with the experimental
data and plotted it over the given time span (compare Figure 3.6). As can be observed
from the graph, the value of k fluctuates strongly over time. This indicates that the en-
ergy balance equation cannot be fulfilled for any constant values of Rtotal and A. Since all
other parameters in the equation were directly taken from the dataset at hand, it needs
to be concluded that the steady-state energy balance, with the numerous simplifications
and assumptions we had to make due to the limited availability of parameters/sensor
values, is clearly not able to model the thermal behavior of the boreholes with sufficient
precision. Hence, using the aspired physics loss cannot yield an increase in the ML model
performance and will not be used in subsequent experiments.

53

Figure 3.5.: Plot of calculated Q̇heat

Figure 3.6.: Plot of calculated k = 1
Rtotal

·A

3.2.4. Hyperparameter Tuning

A suitable choice of the hyperparameters for our model is the key to achieving satisfac-
tory performance. Therefore, we decided to carry out hyperparameter tuning to make
the most of the model’s learning capabilities. Since the performance is also reliant on
sufficient training data, we choose to perform the hyperparameter tuning on data sets as
large as possible, while still ensuring that there is no information leakage with time-series
cross-validation. In particular, for each fold of the cross-validation, we split the fold into

54

training-, validation, and testing sets and used the training- and validation sets for the
hyperparameter tuning process. To not completely overburden the necessary computa-
tional resources, we opt for a grid search on a limited hyperparameter space, as given in
Table 3.4. For the linear baseline model, only the hyperparameters ’learning rate’ and
’patience’ are relevant, while for the constant baseline model, the hyperparameters have
no influence at all since there is essentially no learning taking place. The test set is held
out during this process and only used for the final evaluation with the best parameters
found from the hyperparameter tuning.

Hyperparameter Parameter Space

learning rate 0.0005, 0.0002
patience 4, 8
wdata 0.5, 0.8, 1.0
wconst 0.5, 0.2, 0.0

a 50, 300
b 0.1, 0.5

LSTM units 100, 150

Table 3.4.: Hyperparameter space for hyperparameter tuning. For parameter definitions
refer to section 3.2

3.2.5. Evaluation Method

To avoid information leakage and increase the reliability of the results, we perform a 5-fold
time series cross-validation. In addition, the data is split into train-, validation- and test-
set with split sizes according to Table 3.5 and Table 3.6. The slightly varying sizes of the
validation set over the different folds arise due to the fact that we dropped overlapping
windows (and the overlaps vary since many windows were discarded even before the
splitting due to missing values). First, the hyperparameter tuning is performed, where
we train the models on the training data and evaluate them on the validation data. Then,
the hyperparameters for which the individual model performed best (averaged across all
folds) are selected for the final evaluation cycle, where the models are trained on both
training data and validation data, and evaluated on the until-that-point hold-out test
set.
We opt for MAE as an overall evaluation metric, as it provides a clear and reliable
measure of errors, ensuring consistency across all forecasting windows, thereby offering a
straightforward interpretation that aligns well with the nature of our data. To account
for values where we set Tin = Tout due to the pump not being in operational mode,
we also calculate corrected MAE-Scores, where we assign zero weight to the predictions
where the pump status is off. In addition, also for the originally missing value that we
imputed, we set the weights to zero for the corrected scores.
For further evaluation, we additionally compare the results of our approach to the purely
theoretical model from Ruiz et al. [10] introduced in Section 3.3.

55

Fold Train set Validation set Test set Total set

1 12185 776 1111 14072
2 13296 776 1111 15183
3 14205 978 1111 16294
4 15202 1092 1111 17405
5 16626 779 1111 18516

Table 3.5.: Split sizes for experiment 1, i.e. number of windows (each of total width
= look-back window + prediction horizon = 2 weeks) for the subsets in the
different folds

Fold Train set Validation set Test set Total set

1 6299 195 866 7360
2 6808 552 866 8226
3 7672 554 866 9092
4 8226 866 866 9958
5 9717 241 866 10824

Table 3.6.: Split sizes for experiment 2, i.e. number of windows (each of total width
= look-back window + prediction horizon = 4 weeks) for the subsets in the
different folds

3.3. Theoretical Reference Model

The authors of our investigated dataset developed an extensive, purely theoretical model[10]
to describe the behavior of the BHE at the site in Valencia. The results of this physical
model will be used as a reference to compare our proposed Physics-informed LSTM to.
According to Ruiz-Calvo et. al [10], the theoretical model of the behavior of the BHE
system can be decoupled into long-term and short-term responses. For the long-term
part, Eskilson 1987 [41] proposed a so-called g-function model, which has undergone nu-
merous validation and is widely applied. For the short-term response, a thermal network
approach is used, which has already been proven[38] to achieve good simulation results
for the investigated BHE dataset from Universitat Politècnica de València.

3.3.1. Long-term: g-function Model

The g-function model is a numerical method for BHE response calculations, based on
a finite differences algorithm, and relates the change in the borehole wall temperature
Tbw(t) over time to the initial undisturbed ground temperature Tg, given a constant
heat extraction/injection rate (heat flow) q̇. The function depends on the geometrical
properties of the borehole field, expressed as ratios: rb

H , B
H , I

H , where rb is the borehole
radius, B the spacing between two neighboring boreholes, I is the inactive upper part of

56

the boreholes and H represents the active borehole length. In addition, the g-function is
a function of a non-dimensional ratio t/ts, with ts being the characteristic time ts =

H2

9α ,
and α representing the thermal diffusivity. Then, the relation is given as

Tbw(t)− Tg =
q̇

2πk
· g
(t

ts
,
rb
H

,
B

H
,
I

H

)
, (3.12)

with k specifying the thermal conductivity of the ground [10]. The boundary conditions
for Eq. 3.12 can either be formulated for (i) a constant heat load per unit length segment
of the borehole, or for (ii) a uniform temperature along the borehole wall. As also
investigated by Eskilson[57], for boreholes connected in parallel with sufficiently large
mass flow rate, the boundary condition (ii) will be approached. The formulation of the
g-function requires inputs in the form of constant load steps q̇i, thus, a discretization
of the continuous real-world thermal load into constant load blocks is necessary. One
thermal load block q̇n is calculated as the sum over all preceding load steps (differences
between two consecutive thermal load blocks q̇i − q̇i−1), thus

q̇n =
n∑

i=1

(q̇i − q̇i−1) (3.13)

According to [10], the g-function evaluated at a specific time-step can then be rewritten
as:

g
(t

ts
,
rb
H

,
B

H
,
I

H

)
|t=ti = g

(
ln
(t− ti

ts

))
(3.14)

and the borehole wall temperature, representing the cumulative responses to the individ-
ual load steps until the current time step is calculated as:

Tbw(t) = Tg +

n∑
i=1

q̇i − q̇i−1

2πk
· g
(
ln
(t− ti

ts

))
(3.15)

For the coupled model, the authors used the output of the g-function model to calculate
the reset temperature for the ground and grout nodes, which is then implemented as the
initial start temperature for the B2G model for each day. The reset time corresponds to
the operation start time of the system on a working day.

3.3.2. Short-term: B2G Model

The short-term model, introduced as "Borehole-to-Ground (B2G) Model"[58, 59] is ex-
clusively concerned with the local heat transfer, taking place between the borehole, the
fluid, and the part of the ground directly surrounding the borehole. The B2G model
builds upon the so-called "thermal network approach", which describes the heat ex-
change by representing the borehole and surrounding ground as a series of temperature
nodes, connected by thermal resistances. The higher the required accuracy of the ther-
mal network model, the more temperature nodes are required, thereby vastly increasing
the complexity of the approach. To reduce the computational costs, but retain a high

57

accuracy, the B2G model was introduced to reproduce the short-term response of a single
U-tube BHE for the water temperature throughout the pipe. After vertically discretiz-
ing the borehole, thermal networks are introduced to account for the radial heat transfer
at each temperature node. At each node depth, a total of five thermal capacitances
and six thermal resistances are considered for the investigated system[38]. In particular,
heat conduction in vertical direction is neglected, while the thermal properties of pipes,
ground, and grout are considered. An illustration of the thermal network is presented
below in Fig. 3.7, where two distinct capacitance nodes are given for the grout depending
on the location of the pipes, and the U-tube is modeled by two distinct nodes for upward
and downward fluid flow.

Figure 3.7.: (a) 2D model and (b) 3D model of the thermal network model for the ana-
lyzed dataset[38]

The energy balance for all nodes can then be written (in transient state) as[10, 38]:

∂T1(z)

∂t
= −v

∂T1(z)

∂z
− 1

Cf

(T1(z)− Tb1(2)

Rb1
+

T1(z)− T2(z)

Rpp

)
∂T2(z)

∂t
= −v

∂T2(z)

∂z
− 1

Cf

(T2(z)− Tb2(2)

Rb2
+

T1(z)− T2(z)

Rpp

)
Cb1

∂Tb1(z)

∂t
=

T1(z)− Tb1(z)

Rb1
+

Tb1(z)− Tb2(z)

Rbb
− Tb1(z)− Tg(z)

Rg

Cb2
∂Tb2(z)

∂t
=

T2(z)− Tb2(z)

Rb2
+

Tb1(z)− Tb2(z)

Rbb
− Tb2(z)− Tg(z)

Rg

Cg
∂Tg(z)

∂t
=

Tb1(z)− Tg(z)

Rg
+

Tb2(z)− Tg(z)

Rg
,

(3.16)

where the parameters are calculated using the boreholes’ geometry and the thermophys-

58

ical properties of the ground, grout, fluid, and pipes (for adopted values, refer to [10]).
In Equation 3.16, T1(z) and T2(z), respectively, represent the temperature of the fluid
in the upward (1) and downward (2) pipe, Tg is the temperature of the ground, Cg is
the thermal capacitance of the ground for a given penetration depth Dpg, Cf represents
the capacitance of the fluid and Cb1 = Cb2 the capacitance of the borehole node. The
temperatures at the borehole node position are given by Tb1 respectively Tb2, and the
thermal resistances are: Rpp for pipe-to-pipe, Rbb for borehole-to-borehole, Rg for the
ground and Rb1 respectively Rb2 for the boreholes.

59

3.4. Results

Missing Value Imputation

As a first check in order to estimate whether imputation of missing values is useful for
the given dataset, we ran the experiment with the standard settings given in Table 3.7
once with and once without imputation. The results of this evaluation are illustrated
below in Figures 3.8a and 3.8b.

Table 3.7.: Standard settings for assessment of missing value Imputation

Parameter Value

Look-back width 7 days = 168 h
Prediction horizon 7 days = 168 h

Max epochs 50
Learning rate 0.0002

Early stopping criterion Validation loss
Patience 4

Min. delta 0.0001
Start date 2005-02-01 00:00:00
End date 2015-16-26 23:00:00

Custom loss False
Cross-validation folds 5

Min. Training size 0.7·total dataset size

(a) Results without imputation (b) Results with imputation

Figure 3.8.: Comparison of prediction results (mean R2 scores and standard deviations
represented as error-bars) with and without missing value imputation for the
standard ARLSTM (without custom loss) and the baseline models

It can be observed that performing the imputation as an additional preprocessing step
increases the performance of the ARLSTM. Therefore, the subsequent experiments were
all carried out with missing value imputation enabled.

60

Table 3.8.: R2 scores for missing value imputation

Target Parameter Input Parameters R2 score

Pump status (on/off) DateTime-features 0.39
Inlet temperature Tin (°C) DateTime-features, pump-status 0.72
Mass flow rate ṁ (kg/h) DateTime-features, pump-status, Tin, 0.68

Outlet temperature Tout (°C) DateTime-features, pump-status, Tin, ṁ 0.86

The imputation increased the total number of available windows n (i.e. windows
without any nan values) from

nwithout imputation = 6467

to
nwith imputation = 18516,

which explains the significant improvement of the performance of the regression models.

Hyperparameter Tuning

Experiment (1) with look-back l = 1 week and prediction horizon p = 1 week is per-
formed with the following fixed parameters in Table 3.9, in addition to the variable
hyperparameters shown in Table 3.4. Similarly, for experiment (2) we use the fixed pa-
rameters represented in Table 3.10, in addition to the grid search hyperparameters listed
in Table 3.4.

Table 3.9.: Fixed parameters for hyperparameter tuning of experiment (1)

Parameter Value

Look-back width 7 days = 168 h
Prediction horizon 7 days = 168 h

Max epochs 20
Early stopping criterion Validation loss

Min. delta 0.0001
Start date 2005-02-01 00:00:00
End date 2015-16-26 23:00:00

Cross-validation folds 5
Min. Training size 0.7·total dataset size

The best hyperparameters found for each model are then used for the final evaluation
on the test set. The corresponding values of the hyperparameters can thus be found in
Table 3.11 for experiment (1) and in Table 3.12 for experiment (2).

61

Table 3.10.: Fixed parameters for hyperparameter tuning of experiment (2)

Parameter Value

Look-back width 14 days = 336 h
Prediction horizon 7 days = 336 h

Max epochs 20
Early stopping criterion Validation loss

Min. delta 0.0001
Start date 2005-02-01 00:00:00
End date 2015-16-26 23:00:00

Cross-validation folds 5
Min. Training size 0.6·total dataset size

Test Run for Final Evaluation

The physics loss is not implemented since we assumed a very poor performance due to
the strong deviation between Qheat and Qground (compare Figure 3.5). The parameters
used for the final evaluation loop are given below in Tables 3.11 and 3.12.

Table 3.11.: Parameters used for the final evaluation of experiment (1)

Parameter Value

Look-back width 7 days = 168 h
Prediction horizon 7 days = 168 h

Max epochs 50
Early stopping criterion Validation loss

Start date 2005-02-01 00:00:00
End date 2015-16-26 23:00:00

Cross-validation folds 5
Min. Training size 0.7·total dataset

Learning Rate 0.0005 (same for lin. Baseline)
Patience 8 (4 for lin. Baseline)
wdata 0.8
wconst 0.2

a 300
b 0.5

LSTM units 150

In addition, we also intended to determine how the implementation of the constraint
loss is affecting the overall performance. Therefore, we carry out the final evaluation
run for the ARLSTM also with wdata = 1.0 and accordingly wconst = 0.0. The best
hyperparameters found for only data loss are a learning rate of 5 · 10−4 and a patience

62

Table 3.12.: Parameters used for the final evaluation of experiment (2)

Parameter Value

Look-back width 14 days = 336 h
Prediction horizon 7 days = 336 h

Max epochs 50
Early stopping criterion Validation loss

Start date 2005-02-01 00:00:00
End date 2015-16-26 23:00:00

Cross-validation folds 5
Min. Training size 0.6·total dataset

Learning Rate 0.0002 (0.0005 for lin. Baseline)
Patience 8 (same for lin. Baseline)
wdata 0.8
wconst 0.2

a 300
b 0.5

LSTM units 100

set to 4 for experiment (1) and a learning rate of 5 · 10−4 with a patience set to 8
for experiment (2). The results of the final evaluation on the test set, using the best
hyperparameters found for each model, are summarized below in Figures 3.9 and 3.10.

To gain further insights into the prediction power of our model, we randomly pick some
windows from the test set and plot the model predictions over time. Some representative
examples are shown below in Figures 3.11 and 3.12.

63

Figure 3.9.: Mean MAE scores over the 5 folds for experiment (1), with standard devia-
tions represented as error bars

Figure 3.10.: Mean MAE scores over the 5 folds for experiment (2), with standard devi-
ations represented as error bars

64

(a) Forecast of ARLSTM with custom loss

(b) Forecast of ARLSTM model without custom loss

Figure 3.11.: Exemplary prediction plots for experiment (1) - Part 1

65

(c) Forecast of constant baseline model

(d) Forecast of linear baseline model

Figure 3.11.: Exemplary prediction plots for experiment (1) - Part 2

66

(a) Forecast of ARLSTM with custom loss

(b) Forecast of ARLSTM model without custom loss

Figure 3.12.: Exemplary prediction plots for experiment (2) - Part 1

67

(c) Forecast of constant baseline model

(d) Forecast of linear baseline model

Figure 3.12.: Exemplary prediction plots for experiment (2) - Part 2

68

3.5. Discussion

The results of the pre-experiment of forecasting with and without missing value impu-
tation revealed that imputation drastically increases model performance. This can be
attributed to the fact that due to the imputation significantly more windows could be
used for the training of the models. In particular, the total number of windows that were
used increased from 6467 to 18516. Thus, even though the R2 scores of the imputed
values itself, given in Table 3.8, do not ideally resemble the true (missing) data, the
performance greatly benefits from the increased number of available training windows.

We emphasize once again that the loss-term Lphys containing physical equations was
not implemented in the code, used model evaluation, as it was anticipated that it would
only deteriorate the performance. Our initial expectation was that Q̇heat(t) ≈ Q̇ground(t),
ensuring that the loss term would vanish for correct predictions of Tout(t) from our
model (compare Equation 3.11). However, due to the strong deviation between Qheat
and Qground at essentially every time step, as shown in Figure 3.5, we must infer that the
simple steady-state energy balance equation does not capture the true behavior of the
borehole. Hence, in the final script, only physical constraints were incorporated in the
loss function.

The main evaluation metric we considered is the corrected MAE, which was calculated
by rescaling the prediction results back to the original ranges and setting the weights of
imputed time steps to zero. From the results of the 1-week forecast with the ARLSTM,
represented in Figure 3.9, it is evident that the corrected MAE for the ARLSTM with
physics-informed loss is 0.7°C lower than the MAE for the ARLSTM without custom loss.
The corrected MAE for the constant baseline is 1.43 °C and for the linear baseline 1.21 °C,
which effectively illustrates that the errors progressively decrease with increasing model
complexity. Furthermore, the prediction plots in Figure 3.11 exemplarily illustrate the
goodness-of-fit of the different models. Comparing plots (a) and (b), it can be observed
that the ARLSTM without custom loss tends to overshoot, while the predictions of the
ARLSTM with the physics-informed loss more closely align with the true target values.
This may be due to the fact that the custom loss contains a penalty term for large ∆Tout
values for consecutive time-steps. In addition, from plot (d) it can be inferred that
the linear model is too simple to capture the complex patterns of the borehole output
temperature.

The corrected MAE values for the ARLSTM in experiment (2), as represented in
Figure 3.10, are somewhat higher than for experiment (1). This aligns well with our
expectations since the autoregressive design of the model results in predictions hat deviate
further from the true values, the more time steps we move away from the last true Tout(t =
0) value that the model received as input. The corrected MAE for the ARLSTM with
custom loss is slightly better (0.71 °C) than the corrected MAE for the ARLSTM without
custom loss (0.73 °C). Surprisingly, the corrected MAE results for the baseline methods
demonstrate a slight improvement for experiment (2) over experiment (1). Comparing
subfigures (a) and (b) of the prediction plots shown in Figure 3.12 nicely demonstrates
again, that the ARLSTM with custom loss effectively prevents overshooting and large
∆Tout values, while at the same time, it also leads to decreased ability of the model to

69

capture strong variations.
For their purely theoretical reference model, Ruiz-Calvo et al. [10] calculated the daily

average temperatures for their evaluation method, and then averaged over these daily
values for each month, yielding a deviation of roughly ∆Tout = 0.1 °C between their
model output and the true values. In accordance with this procedure, we also calculated
the daily Tout averages for each day of our windows, corresponding to 7 or 14 daily values,
before averaging them to get a mean predicted outlet temperature and a mean true outlet
temperature for each window. Contrary to their study, we did not just use one single
time window for our research, but considered the whole 11-year time range of the dataset
instead. Thus, we have multiple windows for both forecast scenarios. To ensure a fair
comparison, we calculate ∆T for each window and then average over the windows and
the folds to get a single value for each of our models, yielding:

ARLSTM with custom loss: ∆Tout,1week = 0.35°C
ARLSTM without custom loss: ∆Tout,1week = 0.37°C

ARLSTM with custom loss: ∆Tout,2weeks = 0.51°C
ARLSTM without custom loss: ∆Tout,2weeks = 0.48°C

(3.17)

We have to point out that our approach included smaller forecasting windows than the
reference model, but the results indicate that our proposed model could indeed achieve
results comparable to those of the complex theoretical reference model. Especially, since
our dataset extends over 11 years and not just one specific month, we consider the
predictive capabilities of our proposed ARLSTM as sufficient. Note, however, that the
averaging procedure may skew the results. Nevertheless, we had to follow this evaluation
methodology to allow for at least some kind of comparison with the results of our reference
model.

3.5.1. Limitations and Future Work

A key challenge of the analysis of our models’ performances was to find a meaningful
metric that captures the strengths and weaknesses of the predictive capabilities of our
models. Initially, we aimed to use R2 scores as overall evaluation metrics, which is
also the reason for the preliminary imputation check being evaluated with this metric.
However, this score leads to non-trivial issues regarding the averaging procedure. Since
our dataset is given in the form of multiple, mostly overlapping windows of specific sizes,
the R2 scores calculated for each window may vary significantly due to slight shifts in
the window positions. This inconsistency complicates the process of averaging the scores,
as it yields completely different results for either calculating the score for each window
separately and then averaging the scores over the windows, or concatenating all the ytrue
and ypred values and calculate the R2 score just once for each fold. In addition, averaging
over the folds again could skew the results. From this follows that an R2 score does not
necessarily provide a consistent measure of the overall model performance. Therefore,
we decided to consider MAE as our overall metric instead, which does not depend on the
averaging procedure.

70

Regarding the imputations, in future work, further experiments with different impu-
tation strategies may be conducted, such as defining a larger or smaller minimum length
of consecutive nan entries for imputation (x), using a more sophisticated neural network,
or a completely different approach. Since the imputation had such a large influence on
the model’s performance, this may yield valuable insights.

Another compelling research question involves the examination of performance changes
for different training sizes, i.e., the number of windows used in the training set. In other
words, one could investigate how many windows are required for the model to converge
and to achieve satisfactory results.

71

4. PINNs for Pt-Ni Nanoclusters

In this part of the thesis we aim to establish a physics-informed neural network model
that provides DFT energy predictions for Pt-Ni clusters with diameters in the nanometer
regime. We start with a brief overview of the properties of metallic nanoclusters and
their relevance in chemistry, before introducing neural network-based models for PES
calculations. Finally, we delve into the practical implementation (section 4.3) of our
proposed PINNs and the selected evaluation methods. Then, after presenting the results
in section 4.4, we conclude the chapter with a comprehensive discussion of our findings.

4.1. Pt-Ni Nanoclusters

Nanoclusters are finite-sized quantum systems, occupying the middle ground between
metallic few-atom systems (of molecular character) and the bulk. For small molecules,
typically DFT methods are employed, and provide a fairly accurate description of the
system. For large systems of e.g. 102 − 103 atoms, however, DFT calculations are no
longer feasible due to unfortunate scaling with system size. Therefore, other models based
on several approximations must be applied to explore the complicated PES structure [60].

We opt for Pt-Ni clusters as our point of interest because for multiple reasons: To
begin with, extensive previous studies are available for these systems in various mixing
conditions, thereby offering a reasonable basis for comparison with our approach [61, 62,
63]. Furthermore, Pt-Ni alloys belong to the most important metal-based catalysts, ow-
ing to their high reaction activity, robustness against pollution and fine-tuning possibili-
ties. Particularly for oxygen reduction reactions, specific structures of Pt-Ni nanoclusters
exhibit some of the highest reaction activities ever observed [64]. In addition, Pt-Ni nan-
oclusters display interesting structural properties, since the geometrical arrangement of
the atoms strongly deviates from the expected behavior. While one anticipate that the
Ni atoms are pushed towards the surface because Ni has lower surface energy and Pt has
higher cohesive energy, in fact the behavior is significantly affected by influences from
the cluster size, composition, and temperature of the system. This makes predictions via
many-body potentials rather difficult to realize [60].

4.2. Neural Networks for PES Calculations

Numerous ML methods have been established to determine the PES of many-particle
systems. Most commonly, they aim to learn energy-structure relationships directly from
a data set of points calculated via expensive computational chemistry methods at a suf-
ficiently high level of theory. For sensible results, it is vital that these approximations

73

fulfill at least some of the most important properties of the exact PES, such as invari-
ance with respect to transformations (rotation, translation, permutations), smoothness
of the energy surface, or the capability to generalize to systems of varying size. In order
to encode invariance into machine learning models, several approaches have been sug-
gested. Most applications in computational chemistry require exact reproduction of the
invariance. This can be vividly illustrated by the example of a molecular dynamics simu-
lation, where employing a model that lacks translational and rotational invariance would
yield varying energy predictions as the molecule propagates in time. This contradicts the
conservation of energy and is therefore not a viable approach. A suitable method that
reproduces exact invariance is to create a transformation-invariant representation of the
input data. This representation can either be achieved in a preprocessing step, or as an
integrated part of the model (e.g. by convolutional neural networks). A simple prepro-
cessing approach to represent molecular geometries in an invariant way is to express the
input features in terms of bond distances, bond angles, or dihedral angles [60].
To obtain the total energy E of the PES, many commonly-used ML models sum over N
atomic energy contributions ϵi

E =
N∑
i=1

ϵi, (4.1)

which effortlessly incorporates the desired ability to generalize over systems of varying
size. This approach supposes that the atomic energies can be expressed as functions
of (a feature vector of) their local environment, which is justified by the principle of
nearsightedness in quantum chemistry. The local environment of an atom i is determined
by a cutoff radius Rcut, and the interatomic feature vectors Rij vanish at the cutoff radius
to avoid discontinuities.

4.2.1. Embedded Atom Model (EAM) Potentials

In the embedded atom model (EAM), which is a common choice for mixed-metal clusters,
the atomic contributions to the total energy of the PES are given as

Ei =
1

2

N∑
j ̸=i

ϕαβ(rij) + Fα

(
N∑
j ̸=i

ραβ(rij)

)
, (4.2)

where the first term represents the pair interactions between atoms i and j with ϕαβ(rij)
representing a repulsive pair potential, Fα is a so-called embedding function that accounts
for the energetic cost of placing an atom in the electron density local electron density
around atom i, and ραβ(rij) is the pair-wise electron density function. α and β denote
the element type of the corresponding atoms i and b [60]. Further extensions of this
original approach, which only depends on pair-wise distances, are given by the inclusion
of angular dependencies (modified embedded atom model [65]), or the incorporation of
polarization effects [66]. Within this thesis, however, we will base our model on physically
motivated EAM potentials given as functions of the pair-wise absolute distances between
the atoms rij , and then successively replace one or more of the three terms in Equation 4.2
by neural network (NN) expressions

74

(i) Embedding Function: Fα(ρtotal) = NNF (ρtotal)

(ii) Pair-wise electron density: ραβ(rij) = NNρ(rij)

(iii) Pair Potential: ϕαβ = NNϕ(rij)

where we expressed the total electron density as

ρtotal =
N∑
j ̸=i

ραβ(rij). (4.3)

4.2.2. SMATB Potentials

A well-known type of EAM potential is the second-moment approximation to tight bind-
ing (SMATB) [67] potential. For this potential, the embedding function is

Fα(ρ) = −√
ρ, (4.4)

hence, it does not incorporate any atom-specific parameters. Further, the pair potential
is given as

ϕαβ(rij) = Aαβe
−pαβ

(
rij

r
αβ
0

−1
)
, (4.5)

and the pair-wise electron density is given as

ραβ(rij) =

(
ξαβe

−pαβ
(

rij

r
αβ
0

−1
))2

. (4.6)

For the SMATB model in our specific system, experimental values for the equilibrium
distances of the nearest neighbors in the bulk lattice can be used [68], [69]:

r0 = 2.77Å for Pt-Pt,

r0 = 2.49Å for Ni-Ni, and

r0 = 2.63Å for Pt-Ni.

To avoid excessive computational costs, the pair-wise interactions are cut off at a distance
bαβ . To ensure a smooth fade-out of the interactions to zero over an interval [aαβ, bαβ]
a fifth-order polynomial is used, in accordance with [60]. The remaining parameters are
taken from a standard table from Cheng et al. [70], as presented in Table 4.1.

4.3. Implementation

The overall objective of this part of the thesis is to approximate DFT calculations for
the energy E(x⃗) and the gradient of the energy ∇E(x⃗) of Pt-Ni nanoclusters of different
sizes (number of atoms) and structures with physics-informed neural networks. For this
purpose, in the first step, a global geometry optimization (subsection 4.3.1) needs to be

75

Table 4.1.: SMATB parameters for Pt-Ni, taken from [70]

α β A (eV) ξ (eV) p (eV) q (eV)

Pt Pt 0.1602 2.1855 13.00 3.13
Pt Ni 0.1346 2.3338 14.838 3.036
Ni Ni 0.0845 1.405 11.73 1.93

performed, followed by an optional sampling procedure (subsection 4.3.2) to eventually
obtain a suitable training set (see subsection 4.3.3). Then, DFT calculations can be
carried out for the training data to generate our reference data, following the description
in subsection 4.3.4. Subsequently, as a first model the EAM method with SMATB
potentials are employed, but with the parameter values refitted to the DFT data. The
implementation details are provided in subsection 4.3.5. Finally, parts of the physics-
based model are replaced by neural network expressions to establish efficient models
for the prediction of the energies and forces of the cluster geometries. Our approach is
explained in subsection 4.3.6.

4.3.1. Global Geometry Optimization

The starting point of this study is an inexpensive global geometry optimization, executed
to pre-select cluster geometries for three different sizes (38, 55, 147 atoms) and varying
compositions of Pt and Ni. We employ a type of basin hopping algorithm, suggested by
Rossi and Ferrando [47] and evaluate the corresponding energies and forces with SMATB
potentials. Mixture ratios of roughly 1:3, 1:1 and 1-element-impurities are chosen for each
cluster size. The starting geometries for the N = 38 clusters are truncated octahedra,
while for the N = 55 and N = 47 clusters, they are icosahedra. The optimization starts
with Pt and Ni atoms randomly distributed throughout the structure (random mixing).
For each 1:1 mixture, in addition, a so-called "janus" configuration is used as starting
configuration for the optimization runs. In this configuration, the clusters are basically
unmixed and consist of two halves, containing only Pt and Ni atoms, respectively [60].

4.3.2. Sampling Procedure

Typically, the initial dataset comprises a large number of cluster geometries, specified
by the atomic positions. From this large dataset, it is often required to sample for each
cluster size a number of n data points that serves as the base for our DFT calculations.
The value of n should be chosen as a reasonable trade-off between computational re-
source requirements for the DFT calculations and sufficient samples to train the neural
networks. To obtain a suitable training set, it is vital to ensure that the sub-sampled
data points contain all major geometry types. To this end, a sampling strategy similar to
Roncaglia & Ferrando [71] can be employed, where first a descriptor of the original data
is created in the form of a Coulomb matrix, from which the eigenvalues can be calculated.
The eigenvalues can then be used as input for a k-medoids clustering algorithm (with

76

the sklearn-implementation). To save computational resources, some preprocessing steps
should be applied prior to the clustering, given by: standard-scaling, PCA dimension-
ality reduction to 50 components, and t-SNE dimensionality reduction to 2 components
(motivated by visualization purposes). It is obvious to define k = n for the k-medoids
algorithm and take the data points representing the cluster centers (medoids) as a new
sub-set for the subsequent calculations. The results of this sampling technique applied
to an exemplary dataset of 55-atom Pt-Ni clusters, are represented in Figure 4.1.

4.3.3. Training Set Selection

In our specific case, the initial dataset generated with the global optimization in subsec-
tion 4.3.1 contains a total of 1463 cluster geometries, out of which we use the 110 data
points that correspond to the geometries with the lowest energies (5 for each composition)
as test set, and split the remaining data points into 90% training and 10% validation
set. Since we do not have an extensive initial dataset for this study, we refrain from
applying the sampling method introduced in subsection 4.3.2 but use all available data
points instead. This dataset serves as a basis for the creation of the purely physics-driven
EAM model with SMATB potentials, our proposed variations of PINNs, and the DFT
data we use as reference, i.e. to fit our models.

4.3.4. DFT Training Data Generation

To generate DFT data from the globally optimized geometries of the initial data set, the
software package Quantum Espresso[53] is used. We configure a supercell as a cube with
edge length of 45 bohr and run the unrestricted DFT calculations using a combination
of PBE functionals and ultrasoft pseudopotentials. The wave function cutoff is set to 40
Ry and the density cutoff to 400 Ry. In addition, the Gamma point is used for sampling
the Brillouin zone, and a smearing method introduced by Methfessel and Paxton [72] is
applied with a value of 0.002 Ry.

To carry out the DFT calculations, an input file with the above specified parameters
is created and submitted the to quantum espresso package. An example of such an input
file is in Appendix A). Since the DFT calculations provide the total energy of all valence
electrons EDFT

tot , whereas the SMATB method only predicts the bonding energy of the
cluster ESMATB

bond , we need to conduct additional DFT calculations for the isolated atoms
in order to obtain the reference DFT bonding energy EDFT

ref as follows [60]:

EDFT
ref = EDFT

tot −NPtE
DFT
Pt −NNiE

DFT
Ni . (4.7)

In addition, we also use the DFT predictions for the atomic forces in order to increase
the number of data points.

77

(a) All data points after preprocessing

(b) Selected samples with K-medoids after preprocessing

Figure 4.1.: Sampling results for 55-atom clusters

78

4.3.5. Refitted SMATB Model for Approximations of DFT Calculations

The refitted SMATB model will be constructed in a way that it yields two outputs: the
atomic energies Emodel

k and the components l of the atomic forces Fmodel
kl . These outputs

are given as:

Emodel
k =

∑
i

Emodel
k,i

Fmodel
k = −∇Emodel

k ,

(4.8)

where the index k represents the sample and i gives the index of the atom of the corre-
sponding cluster sample.

Instead of using the parameter from Table 4.1, we refit them to the reference DFT
data (Equation 4.7) in order to add more flexibility to the model. To this end, we use
the loss function

L = we
1

M

M∑
k

1

Nk
(Emodel

k − EDFT
k)2 + wf

1

M

M∑
k

1

3Nk

3Nk∑
l

(Fmodel
kl − FDFT

kl)2 + λ

Nk∑
k

w2
k,

(4.9)
where we and wf are weighting factors that determine the influence of the mean squared
errors of the energies respectively forces, and the last term represents a l2-regularization
term applied to the model’s weights and specified by the hyperparameter λ. To simplify
the implementation, we multiply the pair density ραβ and the pair potential ϕαβ by a
cutoff function, instead of fitting a fifth-order polynomial for fading out the long-range
interactions [60].

fαβ
cut(r) =


1, for r ≤ aαβ

1− 10r̂3 + 15r̂4 − 6r̂5, for aαβ < r < bαβ

0, for r ≥ bαβ,

(4.10)

where r̂ = r−aαβ

bαβ−aαβ is the scaled distance. The model is implemented using the Tensor-
Flow [56] library with the hyperparameters listed in Table 4.2.

4.3.6. PINNs for Approximating DFT Calculations

In contrast to the PINN we implemented for the borehole output prediction in chapter 3,
we will now set up the approach from the other direction: Starting from the purely
physics-based model of the Pt-Ni nanocluster PES in form of the SMATB method, we
will gradually replace terms of the Equation 4.2 by neural network expressions.

PINN for Embedding Function

The first part in Equation 4.2 we aim to replace is the embedding function. To do
so, we create a small TensorFlow neural network with tanh activation functions and l2
regularizer. The inputs is given by the density function ρ. The network then outputs

79

Hyperparameter values

optimizer Adam
learning rate 0.001
max. epochs 500

early stopping patience 20
batch size 20

wf 1
we 1
λ 0

Table 4.2.: Hyperparameters used for refitting the SMATB parameters

the embedding for this specific density. To ensure that the physical constraint for the
embedding

Fα(ρ = 0) = 0 (4.11)

is fulfilled, we add this constraint as an additional term to the loss function, yielding:

L = we
1

M

M∑
k

1

Nk
(Emodel

k − EDFT
k)2 + wf

1

M

M∑
k

1

3Nk

3Nk∑
l

(Fmodel
kl − FDFT

kl)2

+wb
1

M

M∑
k

(Fα
k (0))

2 + λ

Nk∑
k

w2
k

(4.12)

where Fα
k (0) is the embedding function at a density of zero, and wb is a weighting factor

for the influence of the embedding constraint. The remaining terms of Equation 4.2
are left unchanged from the SMATB refit model introduced in subsection 4.3.5 to allow
for maximal flexibility. To optimize the model performance, we implement a small grid
search to tune the hyperparameter b. The best values for the hidden layer sizes and
regularization parameter λ were taken from [60]. The total hyperparameter space is
given below in Table 4.3. The results of the fitted model for the best hyperparameter
found are presented in Table 4.7.

PINN for Pair Density Function

In this section, we replace the pair density function in Equation 4.9 by a neural network.
Again, we implement the networks separately for the two atom types in the clusters and
use tanh activation functions, l2 regularization. The pair-wise distances rij serve as input
for the network, which outputs the pair density ραβ(rij). To account for fundamental
physical properties, we ensure that

ραβ(rij) ≥ 0, (4.13)

80

Hyperparameter values

optimizer Adam
learning rate 0.001
max. epochs 500

early stopping patience 20
batch size 20

wf 1
we 1
wb [10, 45, 100]
λ 10−5

hidden layers sizes [15, 15]

Table 4.3.: Hyperparameter space used for grid search of PINN for embedding function

by adding this constraint to the loss function through a step-function, and weight the
term with the parameter wc:

L = we
1

M

M∑
k

1

Nk
(Emodel

k − EDFT
k)2 + wf

1

M

M∑
k

1

3Nk

3Nk∑
l

(Fmodel
kl − FDFT

kl)2

+wc
1

M

M∑
k

ρpenalty,k + λ

Nk∑
k

w2
k,

(4.14)

where

ρpenalty,k =

{
|ραβ(rij)|, for ραβ(rij) < 0

0, else.
(4.15)

To optimize the results, we perform a small grid search on the hyperparameter wc. The
best values for the hidden layer sizes and regularization parameter λ were taken from [60].
The corresponding hyperparameter space for all employed parameters is given below in
Table 4.4.

The results of the best hyperparameters found from applying the fitted model to the
test set, are presented in Table 4.7.

PINN for both embedding function and pair density function

Now we replace both the embedding function and the pair density function by neural
network expressions and add the corresponding physical constraints to the loss function,
yielding:

L = we
1

M

M∑
k

1

Nk
(Emodel

k − EDFT
k)2 + wf

1

M

M∑
k

1

3Nk

3Nk∑
l

(Fmodel
kl − FDFT

kl)2

+wb
1

M

M∑
k

(Fα
k (0))

2 + wc
1

M

M∑
k

ρpenalty,k + λ

Nk∑
k

w2
k.

(4.16)

81

Hyperparameter values

optimizer Adam
learning rate 0.001
max. epochs 500

early stopping patience 20
batch size 20

wf 1
we 1
wc [500, 10000, 20000]
λ 10−6

hidden layer sizes [15, 15, 15]

Table 4.4.: Hyperparameter space used for grid search of PINN for pair density function

Again, we perform a small grid search to tune the hyperparameters wb and wc. The best
values for the hidden layer sizes and regularization parameter λ were taken from [60].
The overall hyperparameter space is represented in Table 4.5. The corresponding results

Hyperparameter values

optimizer Adam
learning rate 0.001
max. epochs 500

early stopping patience 20
batch size 20

wf 1
we 1
wb [10, 45, 100]
wc [500, 20000, 50000]
λ 10−6

hidden layer sizes [20, 20, 20]

Table 4.5.: Hyperparameter space used for grid search of PINN for both embedding and
pair density function

are represented in Table 4.7.

NNs without constraints for both Embedding Function and Pair Density Function

To get a feeling for the influence of the physical constraints on the performance of the
PINNs, we also implement the model where we replace both the embedding function and
the pair density function without the additional constraint terms in the loss function, i.e.

82

L = we
1

M

M∑
k

1

Nk
(Emodel

k − EDFT
k)2 + wf

1

M

M∑
k

1

3Nk

3Nk∑
l

(Fmodel
kl − FDFT

kl)2 + λ

Nk∑
k

w2
k.

(4.17)
We perform the same grid search as for the model introduced in subsubsection 4.3.6,

and use the hyperparameters given in Table 4.6. The results for applying the model with

Hyperparameter values

optimizer Adam
learning rate 0.001
max. epochs 500
batch size 20

wf 1
we 1
λ 10−6

hidden layer sizes [20, 20, 20]

Table 4.6.: Hyperparameter space used for grid search of PINN for both embedding and
pair density function without additional physical constraints

the best hyperparameters to the test set are represented in Table 4.7.

4.3.7. Evaluation Method

To evaluate and compare the performance of our employed models, we use RMSE as
our overall metric. We split the data into 90% training set and 10% validation set, in
addition to our test set which contains 110 samples, as defined in subsection 4.3.3. After
creating and fitting the models according to section 4.3, we apply them to the test set and
calculate the corresponding evaluation metric, i.e. RMSE. The results of our evaluation
are presented in section 4.4.

83

4.4. Results

In the Table 4.7 below we present the results of applying our models to the test data.
The best hyperparameters found from our small grid search are:

• b = 100, for the embedding PINN with constraint

• c = 20000, for the pair density PINN with constraint, and

• b = 100, c = 500 for the PINN replacing both embedding and density function with
constraints.

Table 4.7.: Results for the validation (val.) set and test set for employing PINNs for
approximated DFT calculations with the RMSE values for the energies E in
meV/atom and the forces F in meV/Å. The results of the SMATB approach
with the parameters from the standard table are taken from the study of R.
Meyer [60].

Model Val. Set E Val. Set F Test Set E Test Set F

SMATB 844.6 336.6 830.2 336.2
SMATB refit 43.3 197.3 68.7 211.8

PINN for Fα(ρ) 43.1 198.5 59.9 212.1
PINN for ραβ(rij) 77.0 293.0 115.6 277.8

PINN for Fα(ρ) and ραβ(rij) 76.4 212.3 96.9 211.9
NN for Fα(ρ) and ραβ(rij) 150.1 327.4 215.4 277.7

An exemplary loss curve for the PINN for the embedding function is given in Figure 4.2
and a discussion is provided in section 4.5.

4.5. Discussion

The results in Table 4.7 show that a simple refit of the parameters of the SMATB
potential to DFT data already yields a drastic decrease in the root mean squared errors.
In particular, the RMSE on the test set shrinks from 839.2 meV/atom to 68.7 meV/atom
for the energies and from 336.2 meV/Å to 211.8 meV/Å for the forces. By employing
a PINN for the embedding function of the SMATB model, the errors on the test set
can be further reduced to 59.5 meV/atom for the energies, but slightly increase to 212.1
meV/Å for the forces. The PINN for the pair density function, however, does not yield
better results than the simple SMATB refit. The root mean squared errors for this
model are 115.6 meV/atom for the energies and 277.8 meV/Å for the forces. The model
where both the embedding and density function are replaced by PINNs performs better,
with an RMSE for the energies of 96.9 eV/atom and 211.9 meV/Å for the forces, but
still worse than the SMATB refit model. This could be expected since the model is a

84

Figure 4.2.: Logarithmic loss curve of the PINN for the embedding function over epochs

mix of the PINN for embedding, which outperforms the SMATB refit, and the PINN
for the pair density, which performed significantly worse than the SMATB refit model.
Finally, the neural network that replaces both the embedding function and pair density
function without physical constraints performs worse than all the other models except
for the standard SMATB model. This verifies our assumption that physical constraints
are advantageous in terms of guiding the model toward physically consistent solutions.

The root mean squared errors on the validation set show similar tendencies as the
errors on the test set. What stands out though, is that even though the SMATB refit
yields very similar results on the validation set as the PINN for the embedding function,
it performs significantly worse than the PINN for the energies of the test set.

By observing the exemplary plot of the loss curve (see Figure 4.2), one can see that
the overall convergence behavior of the model looks as expected, with all loss terms
continuously decreasing over time, even though there are some slight fluctuations in the
combined energy and constraints loss towards greater epoch numbers. Furthermore, the
graph shows a little "shoulder" in the forces loss term after approximately 2-5 epochs.
This behavior is caused by the fact that we started the training of the model from already
relaxed, pre-optimized structures. Therefore, the network tends to predict forces near
zero at the beginning of the optimization to minimize the RMSE values. However, to
further decrease the energy loss, the forces need to be adjusted, which temporarily causes
a slight increase in the forces loss term, before it eventually trends back towards lower
values.

85

5. Conclusion

Within the course of this thesis, we examined the capabilities of physics-informed neural
networks in the realm of two different practical applications. Our overarching goal was
to investigate whether these hybrid approaches, merging the rigor of physically moti-
vated models with the flexibility of data-driven methods, can leverage the performance
of conventional techniques.

In the context of borehole output predictions for optimizing the energy efficiency of
ground-source heat pumps, we found that, indeed, adding simple physical constraints to
the loss function of a data-driven model can enhance its predictive capabilities and de-
crease the mean absolute error from 0.60 °C to 0.53 °C for a one-week-forecast, and from
0.73 °C to 0.70 °C for a two-week-forecast. Furthermore, our study indicates that the per-
formance of our model is not drastically below the performance of a highly sophisticated
and computationally costly theoretical reference model.

Our study on PINNs for PES calculations of Pt-Ni nanoclusters revealed that resource-
intensive DFT calculations can be fairly well approximated by inexpensive models if parts
of the models are replaced by neural network expressions with additional physics-based
constraints. We found a model derived from the SMATB approach with replacement of
the embedding function by a neural network with additional physics-based constraints
to work best, achieving a RMSE on the test of 59.9 eV/atom for the energies and 212.1
meV/Å for the forces, while, in comparison, the purely theoretical embedded atom model
approach deviated by 830.2 eV/atom and 336.2 meV/Å, respectively, from the reference
DFT data. This illustrates that costly DFT calculations can indeed be approximated to
a large extent by comparatively efficient PINNs.

To conclude, this work demonstrated that PINNs have great potential to enhance the
accuracy and efficiency of complex predictive models across different fields. By effec-
tively integrating physics-based constraints into data-driven neural networks, we showed
that PINNs can boost the efficiency of ground-source heat pumps through improved pre-
dictions of the temporal behavior of borehole heat exhangers, and are also capable of
predicting energy-structure relationships for Pt-Ni nanoclusters. These findings suggest
that PINNs can be considered a powerful tool that provides a reasonable trade-off be-
tween computational costs and high prediction accuracy. Future research might explore
further applications of PINNs, potentially leading to breakthroughs in other areas where
high computational demands are currently limiting the use of sophisticated modeling
techniques.

87

A. Appendix A

This appendix presents an exemplary input file for DFT calculations with Quantum
Espresso.

&CONTROL
calculation = ’scf’,
tprnfor = .true.,
prefix = ’Pt19Ni19_test01’,
disk_io = ’none’,
pseudo_dir = ’/home/lv71054/rmeyer/pseudo/’,
outdir = ’/home/lv71054/rmeyer/.tempdir/PtNi/dataset/Pt19Ni19_test01/’

/
&SYSTEM

ibrav = 1,
celldm(1) = 45.0
nat = 38,
ntyp = 2,
ecutwfc = 40.D0,
ecutrho = 400.D0,
occupations = ’smearing’,
smearing = ’mp’,
degauss = 0.002,
nspin = 2,
starting_magnetization(1) = 0.9,
starting_magnetization(2) = 0.3

/
&ELECTRONS

electron_maxstep = 300,
diago_david_ndim = 2,
mixing_mode = ’local-TF’,
mixing_beta = 0.1D0,

/

ATOMIC_SPECIES
Ni 58.6934 Ni.pbe-n-rrkjus_psl.0.1.UPF
Pt 195.084 Pt.pbe-n-rrkjus_psl.0.1.UPF
ATOMIC_POSITIONS {angstrom}
Pt 18.5419389 -20.0481783 -19.5678484

89

Pt 19.9690325 -16.9903804 -15.7368394
Pt 21.6533501 -21.7260545 -15.1146977
Pt 21.4736331 -17.7653048 -13.6356758
Pt 20.1973837 -18.9904737 -11.601925
Pt 23.0747711 -19.3002012 -15.2527828
Pt 16.6919253 -22.6688926 -15.7489602
Pt 19.6065356 -20.9316546 -13.4255888
Pt 19.9012611 -17.7027332 -19.6271091
Pt 18.2850412 -15.9248275 -13.9171296
Pt 16.3876942 -15.4445854 -15.8436709
Pt 16.5949444 -19.0852304 -17.6700514
Pt 14.9827023 -17.8751922 -15.7051634
Pt 21.6291543 -18.4056732 -17.5059157
Pt 16.4493167 -19.1114463 -13.7045833
Pt 17.5901473 -17.4864246 -11.8325365
Pt 18.0881059 -20.2256873 -15.5759128
Pt 20.0743198 -21.1030889 -17.3606414
Pt 18.1623707 -16.4151497 -17.8117333
Ni 21.9983837 -20.1762757 -13.0903954
Ni 22.5803522 -20.7492639 -17.2699952
Ni 15.5397239 -20.3925831 -15.7322527
Ni 18.9580418 -18.4411802 -13.769106
Ni 21.061672 -19.9655018 -19.4146474
Ni 20.5558862 -19.4726069 -15.3879423
Ni 17.4982907 -17.7085383 -15.6545589
Ni 20.7158194 -16.0241846 -17.934607
Ni 15.880008 -16.6465609 -13.630308
Ni 19.2150329 -22.5171468 -15.4023497
Ni 17.1419162 -21.5592387 -13.5723639
Ni 17.3553141 -17.8258643 -19.7500602
Ni 15.6446752 -16.7472481 -17.8846826
Ni 19.1087911 -18.7487205 -17.4438413
Ni 22.5347459 -16.8472984 -15.7435016
Ni 17.8894115 -19.9880939 -11.77642
Ni 19.9154132 -16.5219471 -12.0719328
Ni 17.5575582 -21.4710212 -17.7559988
Ni 18.8282576 -14.7134492 -16.0739665
K_POINTS Gamma

90

Bibliography

[1] G. E. Karniadakis et al. Physics-informed machine learning. June 2021. doi: 10.
1038/s42254-021-00314-5.

[2] S. Cuomo et al. “Scientific Machine Learning Through Physics–Informed Neural
Networks: Where we are and What’s Next”. In: Journal of Scientific Computing 92
(Sept. 2022). issn: 15737691. doi: 10.1007/s10915-022-01939-z.

[3] K. Kashinath et al. Physics-informed machine learning: Case studies for weather
and climate modelling. Apr. 2021. doi: 10.1098/rsta.2020.0093.

[4] Y. Bai, T. Chaolu, and S. Bilige. “The application of improved physics-informed
neural network (IPINN) method in finance”. In: Nonlinear Dynamics 107.4 (Mar.
2022), pp. 3655–3667. issn: 1573269X. doi: 10.1007/s11071-021-07146-z.

[5] P. Nejat et al. A global review of energy consumption, CO2 emissions and policy
in the residential sector (with an overview of the top ten CO2 emitting countries).
2015. doi: 10.1016/j.rser.2014.11.066.

[6] S. Younger. NASA Analysis Confirms a Year of Monthly Temperature Records.
June 2024. url: https://www.nasa.gov/earth/nasa-analysis-confirms-a-
year-of-monthly-temperature-records/.

[7] S. Javed. “Thermal modelling and evaluation of borehole heat transfer”. PhD thesis.
Göteborg: Chalmers University of Technology, 2012. isbn: 9789173856232.

[8] N. Ahmed et al. Optimal design, operational controls, and data-driven machine
learning in sustainable borehole heat exchanger coupled heat pumps: Key imple-
mentation challenges and advancement opportunities. June 2023. doi: 10.1016/j.
esd.2023.04.004.

[9] F. Ruiz-Calvo et al. “Reference data sets for validating and analyzing GSHP sys-
tems based on an eleven-year operation period”. In: Geothermics 64 (Nov. 2016),
pp. 538–550. issn: 03756505. doi: 10.1016/j.geothermics.2016.08.004.

[10] F. Ruiz-Calvo et al. “Coupling short-term (B2G model) and long-term (g-function)
models for ground source heat exchanger simulation in TRNSYS. Application in a
real installation”. In: Applied Thermal Engineering 102 (June 2016), pp. 720–732.
issn: 13594311. doi: 10.1016/j.applthermaleng.2016.03.127.

[11] H. Zhen et al. “Physically Compatible Machine Learning Study on the Pt-Ni Nan-
oclusters”. In: Journal of Physical Chemistry Letters 12.5 (Feb. 2021), pp. 1573–
1580. issn: 19487185. doi: 10.1021/acs.jpclett.0c03600.

91

https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1007/s11071-021-07146-z
https://doi.org/10.1016/j.rser.2014.11.066
https://www.nasa.gov/earth/nasa-analysis-confirms-a-year-of-monthly-temperature-records/
https://www.nasa.gov/earth/nasa-analysis-confirms-a-year-of-monthly-temperature-records/
https://doi.org/10.1016/j.esd.2023.04.004
https://doi.org/10.1016/j.esd.2023.04.004
https://doi.org/10.1016/j.geothermics.2016.08.004
https://doi.org/10.1016/j.applthermaleng.2016.03.127
https://doi.org/10.1021/acs.jpclett.0c03600

[12] J. P. Mueller and L. Massaron. Deep Learning for Dummies. For Dummies, 2019.
url: https://learning.oreilly.com/library/view/deep- learning- for/
9781119543046/c01.xhtml#h2-1.

[13] F. Fleuret. The Little Book of Deep Learning. Université de Genève, 2023.

[14] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 115–133.

[15] A. Géron. Neural Netwroks and Deep Learning. O’Reilly Media, Inc., 2018. url:
https : / / learning . oreilly . com / library / view / neural - networks - and /
9781492037354/ch01.html#idm139624972225600.

[16] U. bin Waheed et al. “PINNeik: Eikonal solution using physics-informed neural
networks”. In: Computers and Geosciences 155 (Oct. 2021). issn: 00983004. doi:
10.1016/j.cageo.2021.104833.

[17] H. Ismail Fawaz et al. “Deep learning for time series classification: a review”.
In: Data Mining and Knowledge Discovery 33.4 (July 2019), pp. 917–963. issn:
1573756X. doi: 10.1007/s10618-019-00619-1.

[18] G. V. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals and Systems 2 (1989), pp. 303–314. url: https:
//api.semanticscholar.org/CorpusID:3958369.

[19] R. M. Schmidt. “Recurrent Neural Networks (RNNs): A gentle Introduction and
Overview”. In: (Nov. 2019). url: http://arxiv.org/abs/1912.05911.

[20] S. Hochreiter and J. Schmidhuber. “LONG SHORT-TERM MEMORY”. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[21] F. A. Gers, J. Schmidhuber, and F. Cummins. “Learning to Forget: Continual
Prediction with LSTM”. In: doi: 10.1049/cp:19991218.

[22] S. Mallat. Understanding deep convolutional networks. Apr. 2016. doi: 10.1098/
rsta.2015.0203.

[23] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations”. In: Journal of Computational Physics 378
(Feb. 2019), pp. 686–707. issn: 10902716. doi: 10.1016/j.jcp.2018.10.045.

[24] S. Cai et al. Physics-informed neural networks (PINNs) for fluid mechanics: a
review. Dec. 2021. doi: 10.1007/s10409-021-01148-1.

[25] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: (Dec.
2014). url: http://arxiv.org/abs/1412.6980.

[26] H. Ismail Fawaz et al. “Deep learning for time series classification: a review”.
In: Data Mining and Knowledge Discovery 33.4 (July 2019), pp. 917–963. issn:
1573756X. doi: 10.1007/s10618-019-00619-1.

[27] B. Lim and S. Zohren. Time-series forecasting with deep learning: A survey. Apr.
2021. doi: 10.1098/rsta.2020.0209.

92

https://learning.oreilly.com/library/view/deep-learning-for/9781119543046/c01.xhtml#h2-1
https://learning.oreilly.com/library/view/deep-learning-for/9781119543046/c01.xhtml#h2-1
https://learning.oreilly.com/library/view/neural-networks-and/9781492037354/ch01.html#idm139624972225600
https://learning.oreilly.com/library/view/neural-networks-and/9781492037354/ch01.html#idm139624972225600
https://doi.org/10.1016/j.cageo.2021.104833
https://doi.org/10.1007/s10618-019-00619-1
https://api.semanticscholar.org/CorpusID:3958369
https://api.semanticscholar.org/CorpusID:3958369
http://arxiv.org/abs/1912.05911
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/s10409-021-01148-1
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1098/rsta.2020.0209

[28] S. Shrivastava. Cross Validation in Time Series. https://medium.com/@soumyachess1496/cross-
validation-in-time-series-566ae4981ce4. 2023. url: https://medium.com/@soumyachess1496/
cross-validation-in-time-series-566ae4981ce4.

[29] I. Sarbu and C. Sebarchievici. A comprehensive review of thermal energy storage.
Jan. 2018. doi: 10.3390/su10010191.

[30] Thermal Energy Storage- Technology Brief. Tech. rep. International Renewable En-
ergy Agency, 2013. url: https :/ / www .irena . org/- /media /Files / IRENA /
Agency/Publication/2013/IRENA-ETSAP-Tech-Brief-E17-Thermal-Energy-
Storage.pdf.

[31] S. C. Gupta. Thermodynamics. Pearson Education Canada, 2005. isbn: 9788131717950.
url: https://books.google.at/books?id=QNSv4chQWoYC.

[32] M. Thirumaleshwar. Fundamentals of Heat and Mass Transfer. Always learning.
Pearson Education, 2009. isbn: 9788177585193. url: https://books.google.at/
books?id=b2238B-AsqcC.

[33] Wikipedia. Wärmeleitungsgleichung – Wikipedia, Die freie Enzyklopädie. 2023. url:
https://de.wikipedia.org/wiki/W%C3%A4rmeleitungsgleichung.

[34] Colorado State University. Energy Balances. url: https://www.engr.colostate.
edu/CBE101/topics/energy_balances.html.

[35] Y. A. Çengel and M. A. Boles. Thermodynamics: An Engineering Approach. 5th ed.
McGraw-Hill Education, 2006.

[36] M. Climo et al. “The rise and rise of geothermal heat pumps in New Zealand.” In:
New Zealand Geothermal Workshop 2012. Auckland, Nov. 2012.

[37] G. Alva, Y. Lin, and G. Fang. An overview of thermal energy storage systems. Feb.
2018. doi: 10.1016/j.energy.2017.12.037.

[38] M. De Rosa et al. “Borehole modelling: A comparison between a steady-state model
and a novel dynamic model in a real ON/OFF GSHP operation”. In: Journal of
Physics: Conference Series. Vol. 547. 1. Institute of Physics Publishing, 2014. doi:
10.1088/1742-6596/547/1/012008.

[39] Y. Guo et al. “Considering buried depth for vertical borehole heat exchangers in
a borehole field with groundwater flow—An extended solution”. In: Energy and
Buildings 235 (Mar. 2021). issn: 03787788. doi: 10 . 1016 / j . enbuild . 2021 .
110722.

[40] K. S. Lee. Underground Thermal Energy Storage. Vol. 75. Springer Verlag, 2013.
isbn: 9781447142720. doi: 10.1007/978-1-4471-4273-7.

[41] P. Eskilson. “Thermal Analysis of Heat Extraction Boreholes”. PhD thesis. Lund,
Sweden: University of Lund, 1987.

[42] G. Hellström. “Ground heat storage : thermal analyses of duct storage systems”.
English. PhD thesis. Mathematical Physics, 1991. isbn: 91-628-0290-9.

93

https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://doi.org/10.3390/su10010191
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA-ETSAP-Tech-Brief-E17-Thermal-Energy-Storage.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA-ETSAP-Tech-Brief-E17-Thermal-Energy-Storage.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA-ETSAP-Tech-Brief-E17-Thermal-Energy-Storage.pdf
https://books.google.at/books?id=QNSv4chQWoYC
https://books.google.at/books?id=b2238B-AsqcC
https://books.google.at/books?id=b2238B-AsqcC
https://de.wikipedia.org/wiki/W%C3%A4rmeleitungsgleichung
https://www.engr.colostate.edu/CBE101/topics/energy_balances.html
https://www.engr.colostate.edu/CBE101/topics/energy_balances.html
https://doi.org/10.1016/j.energy.2017.12.037
https://doi.org/10.1088/1742-6596/547/1/012008
https://doi.org/10.1016/j.enbuild.2021.110722
https://doi.org/10.1016/j.enbuild.2021.110722
https://doi.org/10.1007/978-1-4471-4273-7

[43] I. N. Levine. Quantum Chemistry. Pearson, 2013. isbn: ISBN-13: 9780321918185.
url: www.pearsonhighered.com/advchemistry..

[44] F. Jensen. Introduction to Computational Chemistry Second Edition. John Wiley
& Sons, Ltd, 2007.

[45] P. Hadley. Lecture Notes Solid State Physics. url: https://lampz.tugraz.at/
~hadley/ss1/molecules/hamiltonian.php.

[46] A. Hauser. Lecture Notes Modelling of Molecular Systems. Graz, 2024.

[47] G. Rossi and R. Ferrando. “Searching for low-energy structures of nanoparticles: A
comparison of different methods and algorithms”. In: Journal of Physics Condensed
Matter 21.8 (2009). issn: 1361648X. doi: 10.1088/0953-8984/21/8/084208.

[48] R. Fletcher. Practical Methods of Optimization. 2nd. New York: John Wiley &
Sons, 1987. isbn: 978-0-471-91547-8.

[49] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Physical Review
136.3B (1964). doi: https://doi.org/10.1103/PhysRev.136.B864.

[50] S. Di Cataldo. A quick introduction to Quantum Espresso. Tech. rep. Graz Univer-
sity of Technology, Sept. 2019. url: https://youtu.be/1AH2pkijDPg.

[51] C. Lee, W. Yang, and R. G. Parr. “Development of the Colic-Salvetti correlation-
energy formula into a functional of the electron density”. In: Physical review. B,
Condensed matter 37.2 (1988), pp. 785–789. doi: 10.1103/physrevb.37.785.

[52] J. P. Perdew, K. Burke, and M. Ernzerhof. “Generalized Gradient Approximation
Made Simple”. In: Physical Review Letters 77.18 (1996), pp. 3865–3868. doi: 10.
1103/PhysRevLett.77.3865.

[53] P. Giannozzi et al. “QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials”. In: Journal of Physics: Condensed
Matter 21.39 (2009), 395502 (19pp). url: http://www.quantum-espresso.org.

[54] P. Monzó et al. Experimental Validation of a Numerical Model for the Thermal
Response of a Borehole Field. Tech. rep.

[55] G. Ciaburro, V. K. Ayyadevara, and A. Perrier. Hands-On Machine Learning on
Google Cloud Platform. Packt Publishing, Apr. 2018.

[56] M. Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: 12th
Symposium on Operating Systems Design and Implementation. 2016, pp. 265–283.

[57] P. Eskilson. “Superposition borehole model”. In: Manual for computer code (1986).

[58] M. De Rosa et al. “A novel TRNSYS type for short-term borehole heat exchanger
simulation: B2G model”. In: Energy Conversion and Management 100 (Aug. 2015),
pp. 347–357. issn: 01968904. doi: 10.1016/j.enconman.2015.05.021.

[59] F. Ruiz-Calvo et al. “Experimental validation of a short-term Borehole-to-Ground
(B2G) dynamic model”. In: Applied Energy 140 (Feb. 2015), pp. 210–223. issn:
03062619. doi: 10.1016/j.apenergy.2014.12.002.

94

www.pearsonhighered.com/advchemistry.
https://lampz.tugraz.at/~hadley/ss1/molecules/hamiltonian.php
https://lampz.tugraz.at/~hadley/ss1/molecules/hamiltonian.php
https://doi.org/10.1088/0953-8984/21/8/084208
https://doi.org/https://doi.org/10.1103/PhysRev.136.B864
https://youtu.be/1AH2pkijDPg
https://doi.org/10.1103/physrevb.37.785
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
http://www.quantum-espresso.org
https://doi.org/10.1016/j.enconman.2015.05.021
https://doi.org/10.1016/j.apenergy.2014.12.002

[60] R. Meyer. “Machine Learning in Computational Chemistry”. PhD thesis. 2021.

[61] R. Ferrando, J. Jellinek, and R. L. Johnston. “Nanoalloys: From theory to appli-
cations of alloy clusters and nanoparticles”. In: Chemical Reviews 108.3 (2008),
pp. 845–910. issn: 00092665. doi: 10.1021/cr040090g.

[62] G. Wang et al. “Monte Carlo simulations of segregation in Pt-Ni catalyst nanopar-
ticles”. In: Journal of Chemical Physics 122.2 (2005). issn: 00219606. doi: 10.
1063/1.1828033.

[63] C. Di Paola and F. Baletto. “Oxygen adsorption on small PtNi nanoalloys”. In:
Physical Chemistry Chemical Physics. Vol. 13. 17. May 2011, pp. 7701–7707. doi:
10.1039/c0cp01662d.

[64] V. R. Stamenkovic et al. “Improved oxygen reduction activity on Pt3Ni(111) via
increased surface site availability”. In: Science 315.5811 (Jan. 2007), pp. 493–497.
issn: 00368075. doi: 10.1126/science.1135941.

[65] M. I. Baskes, J. S. Nelson, and A. F. Wright. “Semiempirical modified embedded-
atom potentials for silicon and germanium”. In: Phys. Rev. B 40.9 (Sept. 1989),
pp. 6085–6100. doi: 10.1103/PhysRevB.40.6085. url: https://link.aps.org/
doi/10.1103/PhysRevB.40.6085.

[66] H. Bhattarai, K. E. Newman, and J. D. Gezelter. “Polarizable Potentials For Met-
als: The Density Readjusting Embedded Atom Method (DR-EAM)”. In: (Mar.
2019). doi: 10.1103/PhysRevB.99.094106. url: http://arxiv.org/abs/1904.
00263%20http://dx.doi.org/10.1103/PhysRevB.99.094106.

[67] D. Tomanek, A. A. Aligia, and C. A. Balseiro. “Calculation of elastic strain and elec-
tronic effects on surface segregation”. In: Physical Review B 32.8 (1985), pp. 5051–
5056.

[68] M. W. Finnis and J. E. Sinclair. “A simple empirical N-body potential for transi-
tion metals”. In: Philosophical Magazine A 50.1 (1984), pp. 45–55. doi: 10.1080/
01418618408244210. url: https://doi.org/10.1080/01418618408244210.

[69] C. Kittel. Introduction to Solid State Physics Charles Kittel. 2005. isbn: 978-1-119-
45416-8.

[70] D. Cheng, S. Yuan, and R. Ferrando. “Structure, chemical ordering and thermal
stability of Pt-Ni alloy nanoclusters”. In: Journal of physics. Condensed matter :
an Institute of Physics journal 25 (Aug. 2013), p. 355008. doi: 10.1088/0953-
8984/25/35/355008.

[71] C. Roncaglia and R. Ferrando. “Machine Learning Assisted Clustering of Nanopar-
ticle Structures”. In: Journal of Chemical Information and Modeling 63.2 (Jan.
2023), pp. 459–473. issn: 1549960X. doi: 10.1021/acs.jcim.2c01203.

[72] M. Methfessel and A. T. Paxton. “High-precision sampling for Brillouin-zone in-
tegration in metals”. In: Phys. Rev. B 40.6 (Aug. 1989), pp. 3616–3621. doi: 10.
1103/PhysRevB.40.3616. url: https://link.aps.org/doi/10.1103/PhysRevB.
40.3616.

95

https://doi.org/10.1021/cr040090g
https://doi.org/10.1063/1.1828033
https://doi.org/10.1063/1.1828033
https://doi.org/10.1039/c0cp01662d
https://doi.org/10.1126/science.1135941
https://doi.org/10.1103/PhysRevB.40.6085
https://link.aps.org/doi/10.1103/PhysRevB.40.6085
https://link.aps.org/doi/10.1103/PhysRevB.40.6085
https://doi.org/10.1103/PhysRevB.99.094106
http://arxiv.org/abs/1904.00263%20http://dx.doi.org/10.1103/PhysRevB.99.094106
http://arxiv.org/abs/1904.00263%20http://dx.doi.org/10.1103/PhysRevB.99.094106
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1088/0953-8984/25/35/355008
https://doi.org/10.1088/0953-8984/25/35/355008
https://doi.org/10.1021/acs.jcim.2c01203
https://doi.org/10.1103/PhysRevB.40.3616
https://doi.org/10.1103/PhysRevB.40.3616
https://link.aps.org/doi/10.1103/PhysRevB.40.3616
https://link.aps.org/doi/10.1103/PhysRevB.40.3616

	Introduction
	Background
	Physics-Informed Neural Networks (PINNs)
	Neural Networks
	Integrating Physics
	General Formulation of PINNs
	Time Series Forecasting
	Evaluation Metrics

	Fundamentals of Thermal Energy Storages
	Thermodynamics
	Heat Pumps
	Ground Source Heat Pumps

	Quantum Chemistry
	Schrödinger Equation and Born-Oppenheimer Approximation
	Geometry Optimization
	DFT Basics
	DFT Improvements / Exchange-Correlation Functionals
	Basis Sets, Plane-Waves, Pseudopotentials
	Computational Tools for Electronic Structure Calculations

	PINNs for Borehole Heat Exchangers
	Experimental Setup
	Dataset Description
	Theoretical Model of the System
	Dataset Analysis and Preprocessing

	Implementation
	Implementation of the Baseline Methods: Constant and Linear Model
	Implementation of a Standard Autoregressive LSTM
	Implementation of the Custom Loss
	Hyperparameter Tuning
	Evaluation Method

	Theoretical Reference Model
	Long-term: g-function Model
	Short-term: B2G Model

	Results
	Discussion
	Limitations and Future Work

	PINNs for Pt-Ni Nanoclusters
	Pt-Ni Nanoclusters
	Neural Networks for PES Calculations
	Embedded Atom Model (EAM) Potentials
	SMATB Potentials

	Implementation
	Global Geometry Optimization
	Sampling Procedure
	Training Set Selection
	DFT Training Data Generation
	Refitted SMATB Model for Approximations of DFT Calculations
	PINNs for Approximating DFT Calculations
	Evaluation Method

	Results
	Discussion

	Conclusion
	Appendix A
	Bibliography

