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Abstract

In this master’s thesis, the influence of unknown starting phases of wide-
band chirp-train signals on time-delay estimation is investigated for a single
transmitter and a single receiver. This influence is examined for the additive
white Gaussian noise (AWGN) scenario and also for a dense multipath
(DM) environment. The fundamental performance limits for these cases are
derived using the Cramér-Rao Lower bound (CRLB) and compared against
different estimators using simulations. The estimators include the maximum
likelihood (ML) estimator for the AWGN case and an algorithm that aims
to find the first path when multiple paths are present. Since the chirp-train
signals are very long and therefore have to be processed on a host computer,
a chirp compression algorithm is presented that drastically reduces the
bandwidth requirements between the receiver and the host computer. This
is implemented for a field-programmable gate array (FPGA). Simulations
show a significant accuracy decrease if a long chirp signal is split into mul-
tiple subchirps. This loss of accuracy is maximum in the AWGN case and
minimum if there is significant energy of the DM present in the received
signal. Doubling the number of subchirps for the AWGN case, when the
bandwidth stays the same, leads to a four times larger CRLB of the time
delay estimation and a 6.02 dB decrease of the effective signal-to-noise (SNR)
ratio.

v





Kurzfassung

In dieser Masterarbeit wird der Einfluss unbekannter Startphasen von Breit-
band Chirp-Train-Signalen auf die Zeitverzögerungsschätzung für einen
einzelnen Sender und einen einzelnen Empfänger analysiert. Dieser Einfluss
wird sowohl für das Szenario des additiven weißen Gaußschen Rauschens
(AWGN) als auch für einen Dense Multipath (DM) untersucht. Die unte-
ren Schranken der Genauigkeiten der Zeitverzögerungsschätzung werden
in diesen Fällen mithilfe der Cramér-Rao Lower Bound (CRLB) herge-
leitet und anhand von Simulationen mit verschiedenen Schätzern vergli-
chen. Die Schätzmethoden umfassen den Maximum-Likelihood-Schätzer
(ML) für den AWGN-Fall sowie einen Algorithmus zur Schätzung des
ersten Pfades, wenn mehrere Pfade vorliegen, wie im DM-Szenario. Auf-
grund der erheblichen Länge der Chirp-Train-Signale wird ein Chirp-
Kompressionsalgorithmus präsentiert, der die Bandbreitenanforderungen
zwischen dem Empfänger und dem Host-Computer erheblich minimiert
welcher auf einem Field-Programmable Gate Array (FPGA) implementiert
wird. Wenn ein langes Chirp-Signal in mehrere Subchirps aufgeteilt wird,
resultiert dies in einem deutlichen Genauigkeitsverlust, wie durch Simu-
lationen bestätigt wurde. Im AWGN-Fall ist der Genauigkeitsverlust am
größten und wenn das empfangene Signal eine signifikante Energie im
DM aufweist ist dieser am geringsten. Die Verdoppelung der Anzahl der
Subchirps im AWGN-Fall führt bei gleicher Bandbreite zu einer viermal
größeren CRLB der Zeitverzögerungsschätzung und zu einer Verringerung
des effektiven Signal-Rausch-Verhältnisses (SNR) um 6,02 dB.
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1 Introduction

The estimation of the time delay is the basis for accurate positioning in wire-
less networks and many other areas of signal processing. In positioning, the
distances from the receiver node to given transmitter nodes are calculated
by estimating the propagation delays of the transmitted signals and then
converting them to distances using the speed of electromagnetic waves [1].
The position can then be calculated by using the multilateration principle
which requires at least three distances. The best-known positioning system
is perhaps the Global Positioning System (GPS). Indoor positioning is an
alternative to GPS for environments where it is not effective, such as en-
closed spaces, and is essential for indoor navigation and location awareness
of autonomous drones and IoT devices. Indoor positioning usually needs
to be more accurate than GPS, but this is often difficult due to multipath
propagation, for example, caused by obstacles. Time delay estimation is also
crucial for estimating distances in radar applications.

The bandwidth of the transmitted signals plays a major role in time delay
estimation. Chirp signals are a popular and inexpensive method to generate
signals with a desired bandwidth, which is why they can be used for
this purpose. These chirps can be generated for example by direct digital
synthesis (DDS) [2] or by manipulating registers of a radio chip as done
in [3]. In the second case, the radio chip supports a bandwidth of up to 80
MHz which, if utilized, allows a much more accurate time delay estimation
than narrowband signals. Due to the limitation of some radio chips that
a chirp can cover a limited bandwidth only, a chirp-train signal must be
generated to utilize the full bandwidth. A chirp train or stepped chirp is a
coherent sequence of different chirp signals which are called subchirps. The
concept of a chirp-train generation for increasing the time delay accuracy
has already been shown in [4]. However, the approach from [3] introduces
unknown start phases for each subchirp.
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1 Introduction

Because of that and due to the large amount of data the chirp train causes,
more complicated algorithms are required for estimating the time delay and
larger memories are needed. Usually, the memory on the receiver chips is
not sufficient, therefore the samples have to be sent to the host computer as
soon as they are received.

For the estimation of the time delay, a lower bound is usually defined on the
accuracy. This allows an evaluation of the accuracy of different estimators
since the closer this accuracy is to the bound, the better the estimator is.
The influence of an unknown start phase of a signal on the theoretical
lower bound for the time delay estimation given by the Cramér-Rao Lower
bound (CRLB) is a well-known result [5]. This refers to the Additive white
Gaussian noise (AWGN) case when there is a single line of sight component
(LOS) only. Furthermore, this analysis has been extended for the Dense
Multipath (DM) case in [6] where several differently scaled and time-delayed
components arrive at the receiver and interfere with each other.

This work aims to extend these concepts for the case of a chirp-train signal
where all start phases are unknown and to derive a theoretical lower bound
given by the CRLB. This allows a better understanding of how much the
time delay estimate is affected by unknown start phases of the subchirps.
A key question is how the time delay estimation is affected when a chirp-
train signal with unknown start phases is used instead of one single chirp
with the same total bandwidth. Furthermore, estimation methods for the
AWGN and the DM cases are presented. For the validation of the CRLB
and the analysis under which conditions the estimators reach the CRLB
and which estimator can perform best, simulations are created. Due to the
high bandwidth and the resulting transmission difficulties from the receiver
to the host computer, a chirp compression algorithm is described. The
implementation details of this algorithm are shown for a software-defined
radio (SDR) as the receiver, which is equipped with a field-programmable
gate array (FPGA) for real-time signal processing.
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This thesis has the following structure:

2. Theory: Mathematical methods that are used throughout the thesis
are introduced.

3. Signal Model: The chirp-train signal model and the received signal
models for the AWGN and the DM cases are defined.

4. FPGA Implementation of the Chirp Compression Algorithm: The
used FPGA is described, the chirp compression algorithm is explained
and implementation details on the FPGA are shown.

5. Cramér–Rao Lower Bound for Time Delay Estimation: In this chapter,
the CRLBs for the AWGN and the DM cases are derived for chirp-train
signals.

6. Time Delay Estimation and Algorithms: Time delay estimation algo-
rithms for the AWGN and the DM cases are described in this chapter.

7. Simulations: Simulations of the CRLBs and the estimation methods
are carried out.

8. Conclusion
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2 Theory

2.1 Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) is the theoretical lower bound for
the variance of unbiased estimators and therefore it can be used for perfor-
mance evaluations. If an unbiased estimator achieves the CRLB it is called a
minimum variance unbiased (MVU) estimator [5]. For a probability density
function (PDF) p(x; θ) where x ∈ CM is the data vector of length M and
θ ∈ RK is the unknown parameter vector with K parameters, the regularity
condition is defined as

E

[
∂ ln p(x; θ)

∂θ

]
= 0 . (2.1)

If this regularity condition holds, the element of the i-th row and j-th column
of the Fisher information matrix (FIM) can be calculated as

[I(θ)]ij = −E
[∂2 ln p(x; θ)

∂θi∂θj

]
for 0 ≤ i, j ≤ K− 1 . (2.2)

The CRLB for the i-th parameter is then given by

var(θ̂i) ≥ [I−1(θ)]ii , (2.3)

which means that the CRLB of a parameter is bounded by the corresponding
element of the inverse FIM [5]. For the complex Gaussian case with

x ∼ CN (µ(θ), C(θ)) , (2.4)
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2 Theory

where µ(θ) ∈ CM is the mean vector and C(θ) ∈ CM×M is the covariance
matrix, the element of the i-th row and j-th column of the FIM can be
calculated as [5]

[I(θ)]ij = 2 Re

{(
∂µ(θ)

∂θi

)H

C−1(θ)
∂µ(θ)

∂θj

}

+ tr

[
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

]
. (2.5)

For the AWGN case with covariance matrix C(θ) = σ2IM, where IM is the
M-dimensional identity matrix, Equation (2.5) can be simplified to

[I(θ)]ij =
2
σ2 Re

{(
∂µ(θ)

∂θi

)H ∂µ(θ)

∂θj

}
. (2.6)
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2.2 Maximum Likelihood Estimation for the Gaussian Case

2.2 Maximum Likelihood Estimation for the
Gaussian Case

The maximum likelihood (ML) estimator is a popular approach to obtain
parameter estimates for nonlinear models since it provides a cost function
for which an optimum with respect to the parameters can be found. For
linear models, the ML estimate is equal to the MVU and even for nonlinear
models it often is asymptotically efficient [5].

First of all a Gaussian distributed random vector is considered

r = µ(θ) + w , (2.7)

with a parameter vector θ ∈ RK, a mean vector µ(θ) and a covariance
matrix Cw that is independent of θ. The PDF is written as

p(r; θ) ∝ exp
(
−1

2
(r−µ(θ))H C−1

w (r−µ(θ))

)
. (2.8)

The optimum with respect to the parameter vector θ can be found as

θ̂ = arg max
θ

{p(r; θ)} (2.9a)

= arg max
θ

{ln p(r; θ)} (2.9b)

= arg min
θ

{
(r−µ(θ))H C−1

w (r−µ(θ))
}

. (2.9c)

When the model is a linear one with respect to the parameter vector θ i.e.

µ(θ) = Aθ , (2.10)

with a known matrix A ∈ CM×K, the minimization of Equation (2.9c)
is achieved by using the Gauss-Markov Theorem [5]. This leads to the
parameter estimate

θ̂ =
(

AHC−1A
)−1

AHC−1r , (2.11)

7



2 Theory

which is an MVU estimator for this scenario. For the AWGN case with the
covariance matrix C = σ2IM, Equation (2.11) simplifies to

θ̂ =
(

AHA
)−1

AHr . (2.12)

2.3 Discrete Fourier Transformation Matrix

Similar to [7] a unitary discrete Fourier transformation (DFT) matrix is
defined as

W =
[
w−M

2
, w−M

2 +1 , . . . , w M
2 −1

]T
, (2.13)

with the vector entries

wk =
1√
M

[
exp

(
− j2π

M
k0
)

, exp
(
− j2π

M
k1
)

,

. . . , exp
(
− j2π

M
k (M− 1)

)]
, (2.14)

where M is the total length of the signal and the index k ranges M
2 ≤ k ≤

M
2 − 1. It should be noted that the inverse of W can be calculated as

W H = W−1 . (2.15)
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3 Signal Model

In this chapter, the mathematical model of the transmitted chirp train signal
is defined. Furthermore, the received signal models for the additive white
Gaussian noise (AWGN) channel and the dense multipath (DM) propagation
channel are defined when there is one receiver and one transmitter.

0 0.5 1 1.5 2 2.5 3 3.5 4
−40

−30

−20
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20
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f
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H
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Figure 3.1: Example of a spectrogram of a baseband chirp train signal.

Figure 3.1 shows a spectrogram of a chirp train signal with eight subchirps.
In this case, each subchirp has a different starting frequency. The length and
the chirp rate of each subchirp are the same.
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3 Signal Model

3.1 Chirp Train Signal

The instantaneous frequency of the i-th subchirp with the starting frequency
fi and the chirp rate c is expressed as

fi(t) = ct + fi , (3.1)

where the index ranges 0 ≤ i < P and P is the amount of subchirps. The
instantaneous phase of the i-th subchirp is the integral of the instantaneous
frequency plus a starting phase ϕi:

ϕi(t) = ϕi + 2π
∫ t

0
f (t)dt (3.2a)

= ϕi + 2π
∫ t

0
(ct + fi)dt (3.2b)

= ϕi + 2π

(
ct2

2
+ fit

)
. (3.2c)

The i-th chirp signal is written as

si(t) = exp(jϕi(t)) (3.3a)

= exp
(

jϕi + j2π

(
ct2

2
+ fit

))
. (3.3b)

A corresponding sampled version of si(t) can be expressed as

si[n] = si(nTs) = exp(jϕi[n]) (3.4a)

= exp
(

jϕi + j2π

(
c (nTs)2

2
+ finTs

))
, (3.4b)

where the sample index ranges 0 ≤ n < Nc, Nc is the length of each subchirp
and Ts is the sampling period. Substituting with the sampling frequency
normalized chirp rate m = cTs leads to

si[n] = exp
(

jϕi + j2πTs

(
mn2

2
+ fin

))
(3.5a)

= exp
(

j2πTs

(
mn2

2
+ fin

))
exp(jϕi) (3.5b)

= xi[n]pi , (3.5c)

10



3.1 Chirp Train Signal

where

xi[n] = exp
(

j2πTs

(
mn2

2
+ fin

))
, (3.6)

is the i-th subchirp signal without an initial phase shift and

pi = exp(jϕi) , (3.7)

is the i-th initial phase shift term.

For the representation of the chirp train a vector notation is used. First of
all, the chirp signal xi[n] is written in the vector form

xi =
[
01×iNc , xi[0], xi[1], . . . , xi[Nc − 1], 01×(L+Nc(P−i−1))

]T
, (3.8)

where 01×iNc and 01×(L+Nc(P−i−1)) are 1 × iNc and 1 × (L + Nc(P − i −
1)) dimensional zero vectors which are used for padding the individual
subchirps such that

x =
P−1

∑
i=0

xi . (3.9)

Additionally, L zeros are appended to provide space for the time-shifting
operation which is used later in this chapter. The vector form which contains
all phase-shifted subchirps is given by

s = Xp , (3.10)

where

X = [x0, x1, . . . , xP−1] , (3.11)

is the stacked representation of the individual vectors from Equation (3.8)
and

p = [p0, p1, . . . , pP−1]
T , (3.12)

11



3 Signal Model

is the vector which contains all phase terms. Furthermore, the matrix rep-
resentation of the chirp train vector s where the i-th column contains the
phase shifted subchirp xi pi is defined as

S = X diag(p) , (3.13)

where the diagonal matrix diag(p) has the diagonal entries

[diag(p)]ii = pi . (3.14)

The time derivative of the i-th subchirp can be expressed as

ẋi(t) =
d
dt

exp
(

j2π

(
ct2

2
+ fit

))
(3.15a)

= j2π(ct + fi) exp
(

j2π

(
ct2

2
+ fit

))
(3.15b)

= j2π(ct + fi)xi(t) . (3.15c)

Sampling the time derivative signal ẋi(t) leads to

ẋi[n] = ẋi(t)|nTs (3.16a)
= j2π(mn + fi)xi[n] . (3.16b)

A similar representation as in Equation (3.10) can be found

ṡ = Ẋp , (3.17)

using the time derivative matrix

Ẋ = [ẋ0, ẋ1, . . . , ẋP−1] , (3.18)

with the entries of the time derivative vector as

ẋi =
[
01xiNc , ẋi[0], ẋi[1], . . . , ẋi[Nc − 1], 01x(L+Nc(P−i−1))

]T
, (3.19)

such that the time derivative vector ẋ is written as

ẋ =
P−1

∑
i=0

ẋi . (3.20)

Similar to Equation (3.13) the matrix representation of the derivative chirp
train vector ṡ is defined as

Ṡ = Ẋ diag(p) . (3.21)

12



3.2 AWGN Channel

3.2 AWGN Channel

In environments where only a LOS component is present the received signal
is a time-delayed and scaled version of the transmitted one. Furthermore,
additive white Gaussian noise is added. The channel impulse response is
written as

h(t) = αδ(t− τ) , (3.22)

with the LOS channel coefficient α ∈ C and time delay τ ∈ R. The received
signal is expressed as

r(t) = h(t) ∗ s(t) + w(t) (3.23)
= αs(t− τ) + w(t) , (3.24)

where w(t) is complex Gaussian noise with power spectral density N0.
Sampling with a sampling period of Ts gives

r[n] = αs(nTs − τ) + w[n] . (3.25)

It is assumed that the signal is band-limited between − fs/2 and fs/2 and
therefore, w[n] ∼ CN (0, N0 fs) . A compact vector notation is achieved by
combining Equations (3.10) and (3.25) similar to [7, 8]:

r = αW HP (τ)W Xp + w , (3.26)

where

P (τ) = diag
([

ej 2π
M kτ fs

]M
2 −1

k=−M
2

)
, (3.27)

is a diagonal matrix, the total length M = N + L of the zero-padded chirp-
train signal is assumed to be even and N = PNc is the chirp-train length.
The operator diag

(
[ f (k)]k1

k=k0

)
indicates that the diagonal entries range

from f (k0), f (k0 + 1) to f (k1) and f : Z→ C is an arbitrary function.

In Equation (3.26) the signal is transformed into the frequency domain using
the unitary DFT matrix W from Equation (2.13), then multiplied with a
linear phase matrix P (τ) for the time delay and finally transformed back

13



3 Signal Model

using the inverse of the DFT matrix W−1 = W H. The signal model assumes
that the phases for each subchirp are known and therefore p is known.

A second signal model is defined where the phases for all subchirps are
unknown. Since the phase vector p already accounts for phase shifts of the
signal, the LOS channel coefficient α simplifies to |α|. Therefore, the received
signal can be written as

r = |α|W HP (τ)W Xp + w . (3.28)

3.3 Dense Multipath

In real-world environments, the transmitted signal arrives due to multiple
propagation paths as a sum of time-delayed and scaled versions at the
receiver [9]. Multipath propagation happens because

• Reflection,
• Diffraction and
• Scattering

cause a superposition of the transmitted waves. Furthermore, the multipath
propagation changes with different obstacles and positions of the receiver
in space. The time shift of the carrier signal leads to a phase shift of the
signal at the receiver, which is modeled by channel coefficients that are
complex-valued in general.

The high time resolution and the resulting high bandwidth of ultra wide-
band (UWB) signals allow that multipath components can be resolved [1].
This happens because the length of the compressed received signal after
the matched filtering is smaller than the time delay between the individual
components of the channel impulse response. In this section, the focus is
on signals with a much smaller bandwidth where the length of the com-
pressed received signal is much larger and the multipath components are
not separable anymore. Similar to [6, 10], the received signal is described
as

r(t) = αs(t− τ) + (s ∗ ν)(t) + w(t) . (3.29)
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3.3 Dense Multipath

The first term in Equation (3.29) is the deterministic LOS component which
is similar to Equation (3.25) in the AWGN case and the second term describes
the dense multipath (DM) process where ν(t) ∈ C is a stochastic process
that models the multipath components. An advantage of modeling the
multipath components as a stochastic process is that it does not only apply
to a specific realization of the process such as presented in [8].

The stochastic process ν(t) is described using the power delay profile Sν(t−
τ) and the uncorrelated scattering assumption [11] where

E[ν(t2)ν
∗(t1)] = Sν(t1 − τ)δ(t2 − t1) , (3.30)

which means that the process is uncorrelated when t1 ̸= t2 and therefore
ν(t) ∼ CN (0, Sν(t− τ)) . Under the assumption that the sampling frequency
fs is larger than the bandwidth of the transmitted signal and the DM process,
Equation (3.29) can be time discretized as

r[n] = αs(nTs − τ) + Ts(s ∗ v)[n] + w[n] . (3.31)

Similar to Equation (3.26), Equation (3.31) is put into vector notation for
compactness:

r = αW HP (τ)W s + TsS̄ν + w (3.32a)

= αW HP (τ)W s + n ∈ CM , (3.32b)

where M = N + L is the amount of the received samples, L is the length of
the DM process, ν is a realization of the DM process, n is the sum of the
two processes,

S̄ = [s̄0, s̄1, . . . , s̄M−1]
T ∈ CMxL , (3.33)

is the convolution matrix [11, 12] with entries

s̄i = [s[i], s[i− 1], . . . , s[i− L + 1]] . (3.34)

where s[i] = 0 for i < 0.

Similar to Equation (3.28) a second signal model, where the phase vector p
is unknown and the LOS channel coefficient α simplifies to |α|, is defined
as

r = |α|W HP (τ)W s + n . (3.35)
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3 Signal Model

It is well known that the addition of two zero-mean Gaussian random
vectors leads to another zero-mean Gaussian random vector with a different
covariance matrix. Therefore, the noise vector is distributed as

n ∼ CN (0, Cn) , (3.36)

with the covariance matrix Cn being defined as

Cn = E[(TsS̄ν + w)(TsS̄ν + w)H] (3.37a)

= T2
s SE[ννH]S̄H + E[wwH] + 2Ts Re

S̄ E[νwH]︸ ︷︷ ︸
0

 (3.37b)

= T2
s S̄CνS̄H +

N0

Ts
IM , (3.37c)

with the M-dimensional identity matrix IM. The covariance matrix of the
DM process which contains the PDP Sν(t) is defined as

Cν = diag
([

Sν(kTs − τ)
]L−1

k=0

)
, (3.38)

where L is the length of the process noise ν. It should be noted that Equation
(3.37b) simplifies to Equation (3.37c) due to the random vectors ν and w
being uncorrelated.

A double-exponential PDP is used similarly to [11]:

Sν(t− τ) =

{
Ω1

(
1− exp

(
− t−τ

γr

))
exp

(
− t−τ

γd

)
, if t ≥ τ

0, otherwise ,
(3.39)

where Ω1 is an energy normalization factor. When the PDP and the LOS
components are normalized, Ω1 describes the energy ratio of the LOS and
the PDP. The parameters γr and γd specify how fast the double exponential
function rises and decays.
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3.3 Dense Multipath
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Figure 3.2: Example of a double exponential PDP with γr = 5 ns and γd = 20 ns similar to
[11]. A sample rate of 80 MHz and an oversampling factor of 10 has been used.

Figure 3.2 shows an example of a double-exponential PDP including the
power of a single realization of the impulse response of the DM process
together with the power of the LOS component. Furthermore, the PDP has
been normalized such that a discrete convolution with the signal leads to a
ten times higher energy in the DM components than in the LOS component.
It can be seen that for this case the LOS component is not the strongest
one.
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3 Signal Model

The average energy of the DM components can be obtained as

E
[ M−1

∑
n=0
|Ts(s ∗ ν)[n]|2

]
= T2

s

M−1

∑
n=0

E
[
|

∞

∑
k=0

s[n− k]ν[k]|2
]

(3.40a)

= T2
s

M−1

∑
n=0

E
[ ∞

∑
k1=0

s∗[n− k1]ν
∗[k1]

∞

∑
k2=0

s[n− k2]ν[k2]
]

(3.40b)

= T2
s

M−1

∑
n=0

∞

∑
k1=0

∞

∑
k2=0

s∗[n− k1]s[n− k2]E
[
ν∗[k1]ν[k2]

]
(3.40c)

= T2
s

M−1

∑
n=0

∞

∑
k=0
|s[n− k]|2Sν[k] (3.40d)

= T2
s

M−1

∑
n=0

(ps ∗ Sν)[n] , (3.40e)

where ps[n] = |s[n]|2 is the signal power at the sample index n. It should
be noted that Equation (3.40c) simplifies to Equation (3.40d) because of
the uncorrelated scattering assumption from Equation (3.30). Due to the
squaring of the magnitude, the summation indices k1 and k2 are used in
Equation (3.40b) instead of the index k in Equation (3.40a),

When a chirp train signal model is used

|ps[n]|2 = 1 for 0 ≤ n ≤ N − 1 , (3.41)

and the assumption is used that N is much larger than L such that M ≈ N
Equation (3.40e) can be approximated:

E
[ M−1

∑
n=0
|Ts(s ∗ ν)[n]|2

]
≈ T2

s N
∞

∑
k=0

Sν[k] . (3.42)

Similar to [13] the Rician K-factor is defined as

KLOS =
|α|2 ∑N−1

n=0 |s[n]|2

E
[
|Ts(s ∗ ν)[n]|2

] (3.43a)

=
|α|2N

T2
s ∑M−1

n=0 (ps ∗ Sν)[n]
, (3.43b)
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3.3 Dense Multipath

which gives the average ratio between the received energy present in the
LOS component and the DM. Using the above assumptions for the chirp
train signal and the approximation from Equation (3.42), Equation (3.43b)
can be simplified to

KLOS =
|α|2

T2
s ∑∞

k=0 Sν[k]
(3.44a)

=
|α|2

TsΩ1
, (3.44b)

with the energy normalization factor of the PDP

Ω1 =
∞

∑
k=0

Sν[k]Ts . (3.45)
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4 FPGA Implementation of the
Chirp Compression Algorithm

4.1 Overview

As seen in [3], it is possible to generate a signal bandwidth up to 80 MHz
which is centered at 2.4 Ghz using a Texas Instruments CC2510 transceiver
chip. This approach allows to generate wideband signals using narrow-
band transmitters which is essential for a low-cost and accurate time delay
estimation and positioning. The CC2510 transceiver chip consists of a phase-
locked loop (PLL) based frequency synthesizer which can be programmed
to generate frequency chirp signals for a specific bandwidth. In [3] this is
done by setting the registers:

• CHANSPC (8 bit) which specifies the chirp steepness.
• FREQ (24 bit) which specifies the start frequency of the chirp.
• CHAN which is incremented or decremented continuously to achieve

the frequency ramp.

However, a chirp can only cover a bandwidth of up to 12 MHz [13]. To
achieve larger bandwidths, a chirp train signal has to be generated. Since
the phase values of the locked PLL are unknown, each subchirp has an
unknown start phase.

Using this chirp train signal model, time delay estimation is more com-
plicated. Dedicated algorithms are needed which require the full received
signal. This can be problematic since the transmission speed is limited by the
bus interface between the SDR and the host. In this chapter, an alternative
to [13, 14] is presented.
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4 FPGA Implementation of the Chirp Compression Algorithm

This chapter focuses on the implementation details of a chirp compression
algorithm which is implemented on an FPGA such that real-time processing
for the required signal bandwidth is guaranteed.

Host FX3 . . . TX module

chirp generator

RX module. . .

AD9361

. . .

. . .

Cyclone V

RF out

RF in

parameters

parameters

chirp train signal

decimated rx

chirp train signal

chirp train signal

rx samples

trigger

Figure 4.1: Gateware implementation where AD9361 is the RF transceiver and Cyclone V
is the FPGA.

Figure 4.1 shows the FPGA implementation which is described in this
chapter. It can be seen that the generated chirp-train signal is used inside the
RX module. This is required for the downconversion of the received signal.
Subsequently, the decimation takes place and the resulting bandwidth to
the host is reduced. In addition, the chirp compression process is initiated
by a trigger event, and rough synchronization is assumed. It is also possible
to transmit the generated chirp-train signal.

22



4.2 Introduction to the SDR

4.2 Introduction to the SDR

The bladeRF 2.0 micro xA4 SDR is used for the implementation of the chirp
compression algorithm. It supports a bandwidth of up to 61.44 MHz on
each of the two transmitting and receiving channels at a quantization of
12 bit. The ISM band is covered as the frequency ranges from 47 MHz to 6
GHz. It should be noted that the bandwidth of the SDR already covers 77%
of the required bandwidth of 80 MHz. For full coverage, the SDR needs to
receive two times with different carrier frequencies.

Figure 4.2: BladeRF 2.0 micro xA4 block diagram [15].

As shown in Figure 4.2, the received samples first pass the Analog Devices
AD9361 transceiver and then are processed by an Altera Cyclone V FPGA.
The processed samples are pushed onto a first in first out (FIFO) buffer. The
same holds for the transmitted samples but in the reverse direction.

The Cypress FX3 processor is connected to the FIFO buffers using the GPIF
interface. When samples are received using the libbladeRF library, the FX3
pops the samples from the FIFO buffer and sends them to the host over the
Universal Serial Bus (USB) 3.0. Transmitted samples are first sent to the FX3
and then pushed onto the FIFO.
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4 FPGA Implementation of the Chirp Compression Algorithm

The USB 3.0 interface limits the transfer speed to about 400-500 MByte/s
for raw data transfers [16]. When receiving at both channels and operating
the SDR at the maximum sampling frequency of 61.44 MHz, the required
transfer speed would already be at 491.52 MByte/s. Additional margins
have to be considered since the raw data transfer rate of USB 3.0 has a
strong variability depending on the devices and cables.

4.3 Chirp Train Parametrization

The chirp train signal generated with the CC2510 in [3] consists of multiple
subchirps. In addition to the signal model from Equation (3.3b), each sub-
chirp also consists of a pre-continuous wave (pre-CW) and a post-continuous
wave (post-CW), which can be used to find the frequency offset error caused
by the non-ideal PLL. The duration of the pre-CW, linear frequency chirp,
post-CW, and pause is the same in each case. However, the start frequencies
can be different. The amount of subchirps also has to be specified.
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Figure 4.3: Example of a spectrogram of a baseband chirp train signal with additional
pre-CW, post-CW, and pauses between the subchirps.
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4.4 Chirp Compression Algorithm

Each subchirp in Figure 4.3 consists of

• a pre-CW with an arbitrary start frequency,
• a linear frequency chirp with a fixed chirp rate and the start frequency

of the pre-CW,
• a post-CW with a frequency corresponding to the end frequency of

the linear frequency chirp and a
• a pause where the signal is zero.

4.4 Chirp Compression Algorithm

The goal of the chirp compression algorithm is to reduce the effective
bandwidth of the signal. An intuitive approach to reducing the bandwidth
is to multiply the signal, whose frequency is linearly increasing over time,
with a carrier that is linearly decreasing. First of all, a time-delayed version
of Equation (3.3b) is considered:

r(t) = x(t− τ) = exp(2π jϕ(t− τ)) (4.1a)

= exp
(

2π j
(

k(t− τ)2

2
+ f0(t− τ)

))
(4.1b)

= x(t) exp
(

2π j
(

k
2

(
τ2 − 2tτ

)
− f0τ

))
. (4.1c)

Sampling the received signal r(t) leads to

r[n] = r(nTs) = x[n] exp
(

2π j
(

k
2

(
τ2 − 2nTsτ

)
− f0τ

))
(4.2a)

= r(nTs) = x[n] exp
(

2π j
(

m
2Ts

(
τ2 − 2nTsτ

)
− f0τ

))
. (4.2b)
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4 FPGA Implementation of the Chirp Compression Algorithm

Multiplication with the complex conjugate of the sampled template chirp
signal x[n] results in

y[n] = r[n]x∗[n] (4.3a)

= exp
(

2π j
(

m
2Ts

(
τ2 − 2nTsτ

)
− f0τ

))
(4.3b)

= exp(−2π jmnτ) exp
(

2π j
(

m
2Ts

τ2 − f0τ

))
. (4.3c)

The resulting signal of this downconversion is a complex sinusoidal signal
consisting of a phase and a frequency that depend on the time delay and
the chirp rate. This approach can be extended to a chirp train signal since
its shape is also known by the receiver.

The downconversion process leads to a much smaller bandwidth of the
signal. Therefore, the signal can be filtered and downsampled, which results
in a reduced sampling rate at the host.

In summary, this means that the FPGA needs to generate the chirp train
signal, multiply its conjugate with the received signal, and decimate the
result to reduce the sampling rate.
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4.4 Chirp Compression Algorithm
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Figure 4.4: Example of a spectrogram of a received chirp train signal and the complex
conjugate of the template signal.
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Figure 4.5: Spectrogram of a downconverted chirp train signal with m = 1000 Hz/s and
τ = 1000Ts which leads to sinusoidal components with a frequency of −1 MHz.
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4 FPGA Implementation of the Chirp Compression Algorithm

Figure 4.4 shows the spectrogram of the complex conjugate of the chirp
train signal and also a time-delayed version of the chirp train signal, which
corresponds to the received signal. Figure 4.5 illustrates the time domain
multiplication of these signals. It can be seen that the pre-CWs and the post-
CWs are downconverted to 0 Hz since they do not have a frequency slope.
The actual chirp components are downconverted to −1 MHz, allowing
additional downsampling to reduce the sampling rate.

4.5 Gateware Implementation

The host configures the chirp train parameters and chooses the trigger event.
After the trigger event, the chirp compression starts, and the decimated
signal is sent to the host. The transmission of a chirp train signal is also
possible in receive mode. Figure 4.1 illustrates the implementation.

4.5.1 Trigger Events

Chirp train generation and the chirp decimation process start when a trigger
event occurs. The host selects one of the following trigger events:

• GPIO trigger: When a specific input pin is set to high.
• Power threshold trigger: When the instantaneous power is above a

specific threshold for some time.
• Software trigger: The host sets a gateware register.

4.5.2 Fixed Point Numbers

The gateware does not support a floating point unit by default. An efficient
alternative is to use fixed point numbers. Furthermore, the bladeRF already
uses signed Q11 numbers for the I and Q samples, which is why this number
representation is used. Another advantage of fixed point numbers is that
multiplications and other arithmetic operations are efficient to compute
since their implementation is the same as for integer operations.
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4.5 Gateware Implementation

4.5.3 Computation of the Chirp Train Signal

Direct Digital Synthesis (DDS) similar to [2] is used to compute the chirp
signal. In this approach, the function values of the complex sinusoid are
stored in a lookup table (LUT). Additionally, the phase which provides the
input of the LUT needs to be calculated. A state machine is used to generate
the chirp train signal including the pre-CW and post-CW.

LUTPhase accumulator
Φ[n]

exp(jΦ[n])

Figure 4.6: Computation of the chirp signal using DDS.

Lookup Table

For an efficient implementation, only a quarter period of a cosine function
is stored in a table. The other part of the function is evaluated by negation
and using the symmetric property of the function. Furthermore, the sine
function is obtained by the phase shift property.

29



4 FPGA Implementation of the Chirp Compression Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

Lookup table entry

Q
ua

nt
iz

ed
fu

nc
ti

on
va

lu
e

Figure 4.7: Example of a cosine LUT.

Figure 4.7 shows an example of a cosine LUT. The table length specifies
the time resolution and the table entry size is the amplitude quantization
of the cosine. The index of the table is obtained by normalizing the phase
accumulator, multiplying it with the table size, and rounding it towards the
closest integer.
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4.5 Gateware Implementation
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Figure 4.8: Effective number of bits for a cosine LUT.

From Figure 4.8 it can be observed that the table size has a large impact
on the effective number of bits (ENOB) of the cosine. It can also be seen
that rounding of the phase accumulator needs approximately one bit less in
table size to achieve the same ENOB as for the floor case. To reach a good
compromise of the LUT size and the ENOB in the gateware implementation,
a table size of 12 bit is used together with a quantization of 12 bit and
rounding.
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4 FPGA Implementation of the Chirp Compression Algorithm

Phase Calculation

It is possible to calculate the phase directly using single-cycle multiplication
blocks, however, this approach is not resource-friendly. An efficient and
accurate implementation of the phase calculation is achieved by trapezoidal
integration as

Φ[n] = Φ0 + 2π
∫ nTs

0
f (t)dt (4.4a)

= Φ0 + 2π
n

∑
i=1

f [i] + f [i− 1]
2

Ts (4.4b)

= Φ[n− 1] + 2πTs
f [n] + f [n− 1]

2
. (4.4c)

A recursive relation for the phase can be obtained by

Φ[n] = Φ[n− 1] + 2πTs
mn + f0 + m(n− 1) + f0

2
(4.5a)

= Φ[n− 1] + 2πTs
mn + f0 + m(n− 1) + f0

2
(4.5b)

= Φ[n− 1] + 2πTs
2mn + 2 f0 −m

2
. (4.5c)

This allows an efficient FPGA implementation since the current phase
value depends on the previous one, a constant term, and an increment.
The following Figure shows the gateware implementation and is based on
[17].

incrementTsm

Ts f0 − Tsm
2

accumulator

Figure 4.9: Computation of the phase for the chirp signal.
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4.5 Gateware Implementation

In Figure 4.9 a 2π normalized increment and accumulator register is used.
To calculate the chirp signal, the output of the accumulator register is
directly fed into the LUT. In the gateware implementation, the registers are
defined as unsigned Q48 fixed point numbers. An overflow is possible and
tolerated due to the 2π periodicity of the sinusoids.

4.5.4 Downconversion and Downsampling Stages

The downconversion is achieved by the multiplication of the received signal
with the generated chirp train signal. The complex multiplication is im-
plemented using additions and multiplications. The downconverted chirp
train signal has to be filtered and downsampled to achieve a sampling rate
reduction. Half-band filters are generated using the Intel Quartus Prime
IP core generation tool. Each block decimates the signal by a factor of two.
Higher decimation is achieved by cascading these decimation blocks. This
process is done for both RX channels.

4.5.5 Communication with the Host

Chirp train parameters are stored in a config file at the host. These pa-
rameters need to be sent to the gateware. Since the usual transmission of
signals from the host is not required, the values are injected into the TX
data stream using a type–value scheme with fixed bit sizes. Internally, one
sample consists of 24 bit, which means that larger values are split into
smaller ones for the transmission. Chirp parameters are therefore stored
in registers which are a multiple of 24 bit. After the configuration process,
the host sends a flag to the gateware indicating that all parameters are set.
When a trigger event occurs, a magic value including an internal timestamp
is sent to the host indicating the start of the decimated signal. After the
chirp decimation process is finished and the signal is sent to the host, a
magic value indicating the end of the signal is appended to the RX data.
This is possible for both RX channels.
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4 FPGA Implementation of the Chirp Compression Algorithm

Description Name Bit-size

Amount zero samples before chirp T0 24
Amount pre-CW samples T1 24

Amount actual chirp samples T2 24
Amount post-CW samples T3 24

Amount pause samples TP 24
Chirp frequency increment DF 48

Amount subchirps AMOUNT_CHIRPS 24
List of start frequencies FREQ_VEC 12x48

Table 4.1: Chirp parameter gateware registers

Table 4.1 shows the chirp parameters that are stored inside registers of the
FPGA. Additional configuration parameters are:

• TRIGGER_MODE: Specifies the trigger mode (zero for GPIO trigger
and one for the power threshold trigger).

• CHIRP_TX_ENABLED: Additionally transmit the chirp train signal
after the trigger happens.

• DOWNSAMPLING_STAGE: Selects a downsampling stage (between
0 and 8). Each downsampling stage halves the sampling rate.

• CARRIER_FREQ: The carrier frequency of the SDR.
• RX_GAIN: The gain of the received signals.
• TX_GAIN: The gain of the transmitted signal.
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5 Cramér–Rao Lower Bound for
Time Delay Estimation

5.1 AWGN Case where only the Time Delay is
Unknown

For the AWGN case from Equation (3.26), when the LOS channel coefficient
and all start phases of the chirp-train signal are known, the unknown
parameter is

θ = τ . (5.1)

The time-delay error bound is given by [5] as

[I−1(θ)]11 =
σ2

w
2|α|2∥ṡ∥2 (5.2)

=
σ2

w
2|α|2∥ẋ∥2 . (5.3)

Equation (5.2) is simplified to Equation (5.3) using the vector norm simplifi-
cation of the time derivative chirp train vector where

∥ṡ∥2 = ∥ẋ∥2 , (5.4)

which means that the signal energy of the time derivative chirp train vector
is invariant of initial phase shifts of the chirp-train signal. It should also be
noted that the same holds for the energy of the chirp train vector i.e.

∥s∥2 = ∥x∥2 . (5.5)
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Similar to [6] the mean-square bandwidth is defined as

β2 =
∥ẋ∥2

4π2∥x∥2 , (5.6)

and the signal-to-noise ratio is defined as

SNR =
|α|2∥x∥2

σ2
w

. (5.7)

Using these definitions, the time-delay error bound from Equation (5.3) is
rewritten as

[I−1(θ)]11 =
(

8π2β2SNR
)−1

. (5.8)

Equation (5.8) shows that the CRLB is inversely proportional to the mean-
square bandwidth β2 and the SNR. It should be noted that if the sampling
period Ts is small enough such that a sum is approximated by an integral,
the mean-square bandwidth from Equation (5.6) can be written similar to
[5] as

β2 =
Ts∥ẋ∥2

Ts4π2∥x∥2 (5.9a)

=

∫ ∞

−∞
F2|X̄(F)|2dF∫ ∞

−∞
|X̄(F)|2dF

(5.9b)

=

∫ f s/2

− f s/2
F2|X̄(F)|2dF∫ f s/2

− f s/2
|X̄(F)|2dF

, (5.9c)

where X̄(F) is the Fourier transform of the chirp-train signal in the time do-
main for a frequency F. The simplification from Equation (5.9b) to Equation
(5.9c) is possible since the chirp-train signal is band-limited between − fs/2
and fs/2.
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5.2 AWGN Case where only the first Phase is Unknown

5.2 AWGN Case where only the first Phase is
Unknown

The signal model from Equation (3.26) is used and it is assumed that the
initial phases of the chirp-train signal are known. Hence, the phase vector
p is treated to be known. The estimation parameters are shown in the
parameter vector

θ = [τ, |α|, arg(α)]T . (5.10)

Using the mean of Equation (3.26) with

µ(θ) = αW HP (τ)W Xp ∈ CM , (5.11)

the FIM entry for the time delay τ is calculated using Equation (2.6):

[I(θ)]11 =
2

σ2
w

Re

{(
∂µ(θ)

∂τ

)H ∂µ(θ)

∂τ

}
(5.12a)

=
2

σ2
w

Re
{
|α|2sHW HD2W s

}
(5.12b)

=
2|α|2

σ2
w
∥DW s∥2 (5.12c)

=
2|α|2

σ2
w
∥W HDW s∥2 (5.12d)

=
2|α|2

σ2
w
∥ṡ∥2 , (5.12e)

where

D =
2π j fs

M
diag

([
−M

2
, . . . ,

M
2
− 1
])

, (5.13)

is the frequency domain time derivative matrix for the sampling frequency
fs. Therefore, Equation (5.12d) can be written as

ṡ = W HDW s , (5.14)
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5 Cramér–Rao Lower Bound for Time Delay Estimation

where ṡ is the time domain derivative vector of the chirp-train signal
according to Equation (3.17). In Equation (5.12e) it can be seen that the
information for the time delay τ is proportional to the energy of the time
derivative chirp-train signal. Moreover, Equation (5.12c) has a similar form
as the numerator from Equation (5.9c). These terms are in fact the same,
except of a scaling factor if Ts is small enough. This is evident as Equation
(5.12e) can be rewritten as a scaled version of the numerator of Equation
(5.9c).

For the magnitude |α| of the LOS channel coefficient the FIM entry evaluates
to

[I(θ)]22 =
2

σ2
w

Re

{(
∂µ(θ)

∂|α|

)H ∂µ(θ)

∂|α|

}
(5.15a)

=
2

σ2
w
∥s∥2 , (5.15b)

where ∥s∥2 corresponds to the signal energy of the chirp-train signal. The
FIM entry for the phase arg(α) of the LOS channel coefficient is

[I(θ)]33 =
2

σ2
w

Re

{(
∂µ(θ)

∂ arg(α)

)H ∂µ(θ)

∂ arg(α)

}
(5.16a)

=
2|α|2

σ2
w
∥s∥2 . (5.16b)

Equations (5.15b) and (5.16b) show that the information for the magnitude
and the phase of the LOS channel coefficient is proportional to the signal
energy of the chirp train. For the time delay τ and the magnitude |α| of the
LOS channel coefficient the corresponding FIM entry evaluates to

[I(θ)]12 =
2

σ2
w

Re

{(
∂µ(θ)

∂τ

)H ∂µ(θ)

∂|α|

}
(5.17a)

= −2|α|
σ2

w
Re
{

sHW HDW s
}

(5.17b)

= −2|α|
σ2

w
Re
{

sHṡ
}

. (5.17c)
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5.2 AWGN Case where only the first Phase is Unknown

The simplification from Equation (5.17b) to Equation (5.17c) is possible
using the time derivative property from Equation (5.14). For the time delay
τ and the phase arg(α) of the LOS channel coefficient the corresponding
FIM entry is calculated as

[I(θ)]13 =
2

σ2
w

Re

{(
∂µ(θ)

∂τ

)H ∂µ(θ)

∂ arg(α)

}
(5.18a)

= −2|α|2
σ2

w
Re
{

jsHW HDW s
}

(5.18b)

=
2|α|2

σ2
w

Im
{

sHṡ
}

. (5.18c)

The time derivative property from Equation (5.14) is again used for simpli-
fying Equation (5.18b) to Equation (5.18c). The FIM entry for the magnitude
|α| and the phase arg(α) of the LOS channel coefficient evaluates to

[I(θ)]23 =
2

σ2
w

Re

{(
∂µ(θ)

∂|α|

)H ∂µ(θ)

∂ arg(α)

}
(5.19a)

=
2|α|
σ2

w
Re
{

jsHs
}

(5.19b)

= 0 . (5.19c)

The time-delay error bound is the bound of interest and therefore, the
element in the first column and first row of the inverse FIM has to be
calculated. Similar to [12] this can be achieved by writing the FIM in the
form

I(θ) = 2
σ2

w

[
F G

GT H

]
, (5.20)

and computing the corresponding matrix element of the inverse FIM using
the Schur complement as

[I−1(θ)]11 =
σ2

w
2
(F−GH−1GT)−1 . (5.21)
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5 Cramér–Rao Lower Bound for Time Delay Estimation

The scalar F ∈ R and the row vector G ∈ R1×2 can be obtained by structur-
ing the FIM entries as

F = |α|2∥ṡ∥2 , (5.22)

G =
[
−|α|Re

{
sHṡ

}
, |α|2 Im

{
sHṡ

}]
, (5.23)

The matrix H ∈ R2×2 is written as

H = ∥s∥2
[

1 0
0 |α|2

]
. (5.24)

Therefore, the time-delay error bound from Equation (5.21) can be written
as

[I−1(θ)]11 =
σ2

w
2

(
|α|2∥ṡ∥2 − |α|

2

∥s∥2 Re
{

sHṡ
}2
− |α|

2

∥s∥2 Im
{

sHṡ
}2
)−1

(5.25a)

=
σ2

w
2|α|2

(
∥ṡ∥2 − |s

Hṡ|2
∥s∥2

)−1

(5.25b)

=
σ2

w
2|α|2

(
∥ẋ∥2 − Im

{
xHẋ

}2

∥x∥2

)−1

. (5.25c)

Equation (5.25b) simplifies to Equation (5.25c) since the vector norms do
not depend on the phase shifts as it can be seen in Equation (5.4). Another
simplification was made using Equation (3.16b) where

|xHẋ|2 = Im
{

xHẋ
}2

. (5.26)

Using the definition of the mean-square bandwidth β2 from Equation (5.6)
and an additional definition of the signal-to-interference-plus-noise ratio
which in this case is defined as

SINRI =
|α|2

(
∥x∥2 − Im

{
xHẋ

}2/∥ẋ∥2
)

σ2
w

, (5.27)
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5.3 AWGN Case where all Phases are Unknown

Equation (5.25c) can be written as

[I−1(θ)]11 =
(

8π2β2SINRI

)−1
. (5.28)

In contrast to the time-delay error bound from Equation (5.28), where all
phases are known, the time-delay error bound for this case is reduced.
This happens because of the subtractive term in Equation (5.27). The term
describes the diminished information caused by the phase estimation.

An alternative representation of the time-delay error bound is found by
using the SNR instead of SINRI, but including the information loss of the
additional estimation parameters in the root-mean-square (RMS) bandwidth.
This can be seen in Appendix A in Equation (A.7d) where the time-delay
error bound is given as

[I−1(θ)]11 =
(

8π2 SNR β̃2
)−1

. (5.29)

It can be seen from Equation (A.12f), that the reduced RMS bandwidth
β̃ for a chirp signal is the same as the RMS bandwidth β for the case
of a frequency-symmetric chirp signal. Furthermore, for the case of a
frequency-symmetric chirp, the RMS bandwidth reduction is zero since
the information-loss term vanishes, as seen in Equation (A.2c).

5.3 AWGN Case where all Phases are Unknown

The signal model from Equation (3.28) is used where the mean is written
as

µ(θ) = |α|W HP (τ)W Xp ∈ CM , (5.30)

and the parameter vector is defined as

θ = [τ, |α|, ϕ]T . (5.31)
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5 Cramér–Rao Lower Bound for Time Delay Estimation

In this case, the individual phases of the chirp-train signal model are
unknown. The FIM element for the time delay τ is similar to Equation
(5.12e) and written as

[I(θ)]11 =
2

σ2
w

Re

{(
∂µ(θ)

∂τ

)H ∂µ(θ)

∂τ

}
(5.32a)

=
2|α|2

σ2
w
∥ṡ∥2 . (5.32b)

It can be seen that the whole derivative chirp train contains information
about the time delay τ. For the magnitude |α| of the LOS channel coefficient
the FIM entry evaluates to

[I(θ)]22 =
2

σ2
w

Re

{(
∂µ(θ)

∂|α|

)H ∂µ(θ)

∂|α|

}
(5.33a)

=
2

σ2
w
∥s∥2 , (5.33b)

(5.33c)

which means that the information for the magnitude is proportional to the
energy of the whole chirp-train signal. For the phases ϕ of the chirp-train
signal the corresponding FIM element evaluates to

[I(θ)]33 =
2

σ2
w

Re

{(
∂µ(θ)

∂ϕ

)H ∂µ(θ)

∂ϕ

}
(5.34a)

=
2|α|2

σ2
w

Re
{

diag(p)HXHX diag(p)
}

(5.34b)

=
2|α|2

σ2
w

Re
{

SHS
}

. (5.34c)

Equation (5.34b) is simplified to Equation (5.34c) using the matrix S from
Equation (3.13) which contains the phase-shifted chirps in each column.
It can be seen that information for the i-th phase is contained in the i-th
subchirp only. The FIM element for the time delay τ and the magnitude |α|
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5.3 AWGN Case where all Phases are Unknown

of the LOS channel coefficient is calculated as

[I(θ)]12 =
2

σ2
w

Re

{(
∂µ(θ)

∂τ

)H ∂µ(θ)

∂|α|

}
(5.35a)

= −2|α|
σ2

w
Re
{

pHXHW HDW Xp
}

(5.35b)

= −2|α|
σ2

w
Re
{

sHṡ
}

. (5.35c)

Equation (5.35b) simplifies to Equation (5.35c) using the identity from
Equation (5.14). For the time delay τ and the phases ϕ of the chirp train-
signal model, the corresponding FIM element calculates to

[I(θ)]13 =
2

σ2
w

Re

{(
∂µ(θ)

∂τ

)H ∂µ(θ)

∂ϕ

}
(5.36a)

= −2|α|2
σ2

w
Re
{

jpHXHW HDW X diag(p)
}

(5.36b)

= −2|α|2
σ2

w
Re
{

jpHXHW HDW S
}

(5.36c)

=
2|α|2

σ2
w

Im
{

sHṠ
}

. (5.36d)

Equation (5.36c) simplifies to Equation (5.36d) due to

Ṡ = W HDW S , (5.37)

where the matrix Ṡ, which is defined in Equation (3.21) contains the time
derivatives of the phase-shifted chirps in each column. For the magnitude
|α| of the LOS channel coefficient and the phases ϕ of the chirp-train signal
model the FIM entry is calculated as

[I(θ)]23 =
2

σ2
w

Re

{(
∂µ(θ)

∂|α|

)H ∂µ(θ)

∂ϕ

}
(5.38a)

=
2|α|
σ2

w
Re
{

jpHXHX diag(p)
}

(5.38b)

= −2|α|
σ2

w
Im
{

sHS
}

. (5.38c)
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5 Cramér–Rao Lower Bound for Time Delay Estimation

The FIM is again written in the form of Equation (5.20) with

F = |α|2∥ṡ∥2 ∈ R, (5.39)

G =
[
−|α|Re

{
sHṡ

}
, |α|2 Im

{
sHṠ

}]
∈ R1×(P+1) , (5.40)

and

H =

[
∥s∥2 −|α| Im

{
sHS

}
−|α| Im

{
sHS

}T |α|2 Re
{

SHS
}] ∈ R(P+1)×(P+1) . (5.41)

The time delay bound is again calculated as

[I−1(θ)]11 =
σ2

w
2
(F−GH−1GT)−1 (5.42a)

=
σ2

w
2
(|α|2∥ṡ∥2 −GH−1GT)−1 , (5.42b)

where

GH−1GT =

[ −|α|Re
{

sHṡ
}

|α|2 Im
{

sHṠ
} ]T[ ∥s∥2 −a Im

{
sHS

}
−|α| Im

{
sHS

}T |α|2 Re
{

SHS
} ]−1

[ −|α|Re
{

sHṡ
}

|α|2 Im
{

sHṠ
} ] . (5.43)

Using the property

Im
{

sHS
}
= 0 , (5.44)

Equation (5.43) simplifies to

GH−1GT =

[−|α|Re
{

sHṡ
}

|α|2 Im
{

sHṠ
}]T [∥s∥2 0

0 |α|2 Re
{

SHS
}]−1

[ −|α|sHṡ
|α|2 Im

{
sHṠ

}] (5.45a)

=|α|2 Re
{

sHṡ
}2

+ |α|2 Im
{

sHṠ
}

Re
{

SHS
}

Im
{

sHṠ
}T

.

(5.45b)
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5.3 AWGN Case where all Phases are Unknown

Due to the property from Equation (3.16b) it can be seen that the multiplica-
tion of the chirp train with the time derivative of the chirp train is imaginary
i.e.

Re
{

sHṡ
}2

= 0 . (5.46)

Since the columns of the chirp train matrix S are orthogonal with

Re
{

SHS
}
= diag

([
∥si∥2

]P−1

i=0

)
, (5.47)

and due to

Im
{

sHṠ
}
= Im

{
pHXHẊ diag(p)

}
(5.48)

=
[
Im
{

sH
0 ṡ0

}
, . . . , Im

{
sH

P−1ṡP−1

}]
, (5.49)

Equation (5.45b) simplifies to

GH−1GT =|α|2
P−1

∑
i=0

Im
{

sH
i ṡi
}2

∥si∥2 . (5.50)

Inserting Equation (5.50) into Equation (5.42b) leads to

[I−1(θ)]11 =
σ2

w
2|α|2

(
∥ṡ∥2 −

P−1

∑
i=0

Im
{

sH
i ṡi
}2

∥si∥2

)−1

(5.51a)

=
σ2

w
2|α|2

(
∥ẋ∥2 −

P−1

∑
i=0

Im
{

xH
i ẋi

}2

∥xi∥2

)−1

. (5.51b)

The definition of the mean-square bandwidth β2 from Equation (5.6) is used
again. The SINR in this case calculates to

SINRII =
|α|2
σ2

w

(
∥x∥2 − ∥x∥

2

∥ẋ∥2

P−1

∑
i=0

Im
{

xH
i ẋi

}2

∥xi∥2

)
. (5.52)

Therefore, Equation (5.51b) can be written as

[I−1(θ)]11 =
(

8π2β2SINRII

)−1
. (5.53)
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5 Cramér–Rao Lower Bound for Time Delay Estimation

The SINR from Equation (5.52) which considers that all phases of the chirp
train are unknown, is different from the SINR from Equation (5.27) when
only the initial phase is unknown. This happens due to the additional phase
estimation parameters.

In Appendix A, the time-delay error bound from Equation (5.51b) is simpli-
fied for a chirp-train signal which is given as

[I−1(θ)]11 =
12P2

8π2 SNR B2 , (5.54)

where B = mN is the absolute bandwidth a single chirp of length N and
the linear chirp rate m would achieve. It can be seen that the result is inde-
pendent of the start frequencies of the individual subchirps. Furthermore,
increasing the length of the subchirps does not result in a lower CRLB as
long as the total bandwidth remains the same. Doubling the number of
subchirps P, when the bandwidth i.e. B stays the same, leads to a 6.02 dB
decrease of the SINRII and a four times larger bound.

Similar to the previous section, an alternative representation of the time-
delay error bound is found by using the SNR instead of SINRII, but consider-
ing the information loss using the reduced RMS bandwidth. The alternative
representation of the time-delay error bound is given by Equation (A.7d)
as

[I−1(θ)]11 =
(

8π2 SNR β̃2
)−1

. (5.55)

As seen in Equation (A.12f), the reduced RMS bandwidth β̃ for a chirp train-
signal with arbitrary starting frequencies is the same as the RMS bandwidth
β for the case of a chirp-train signal where each subchirp is symmetric in
the frequency domain. Using Equation (A.2c) it can be observed that for the
frequency-symmetric chirp case the information-loss term vanishes, which
means that the RMS bandwidth reduction is zero.
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5.4 DM Case where only the First Phase is
Unknown

In the case of a DM process with a single unknown phase caused by the
LOS component the signal model from Equation (3.32b) is used with the
unknown parameter vector

θ = [τ, |α|, arg(α)]T . (5.56)

Using the results from [6] the time-delay error bound is written as

[I−1(θ)]11 =

(
2
|α|2
σ2

w

(
∥ṡ∥2

H −
|⟨ṡ, s⟩H|2
∥s∥2

H

)
+ tr[•]

)−1

, (5.57)

where

tr[•] = tr
[
C−1

n
∂Cn

∂τ
C−1

n
∂Cn

∂τ

]
, (5.58)

and

⟨a, b⟩H = σ2
wbHC−1

n,−τa , (5.59)

is the defined inner product in the Hilbert space H according to [6]. Fur-
thermore,

C−1
n,−τ = E

[(
W HP (−τ)W n

) (
W HP (−τ)W n

)H
]−1

(5.60a)

= W HP (−τ)W C−1
n W HP H(−τ)W (5.60b)

= W HP H(τ)W C−1
n W HP (τ)W . (5.60c)

is the covariance matrix of the −τ shifted noise vector n. Since the PDP
was already shifted by τ it means that C−1

n,−τ is the covariance matrix of the
zero-shifted DM process including AWGN. An alternative representation
of Equation (5.57) can be found by multiplying the first term with the
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5 Cramér–Rao Lower Bound for Time Delay Estimation

mean-square bandwidth β2 from Equation (5.6) which evaluates to

[I−1(θ)]11 =

(
2

β2

β2
|α|2
σ2

w

(
∥ṡ∥2

H −
|⟨ṡ, s⟩H|2
∥s∥2

H

)
+ tr[•]

)−1

(5.61)

=

(
8π2β2 |α|2∥s∥2

σ2
w

(
∥ṡ∥2

H
∥ṡ∥2 −

|⟨ṡ, s⟩H|2
∥ṡ∥2∥s∥2

H

)
+ tr[•]

)−1

(5.62)

=
(

8π2β2SINRIII + tr[•]
)−1

, (5.63)

where

SINRIII =
|α|2∥s∥2

σ2
w

(
∥ṡ∥2

H
∥ṡ∥2 −

|⟨ṡ, s⟩H|2
∥ṡ∥2∥s∥2

H

)
, (5.64)

is the AWGN equivalent SINR. It is assumed that the additional time delay
information tr[•], which is mainly caused by the increased received signal
length due to the convolution of the chirp-train signal with the DM, is
negligibly small for high SNR values in comparison to the first term in
Equation (5.63) [6].
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5.5 DM Case Where all Phases are Unknown

Finally, a DM process where all phases of the train signal are unknown is
considered according to Equation (3.35). The unknown parameter vector
is

θ = [τ, |α|, ϕ]T , (5.65)

and the mean is the same as in Equation (5.30). Using Equation (2.5) the
FIM can be calculated. As the noise vector n already has unknown phases
due to the DM and the AWGN, it is assumed that the covariance matrix Cn
does not depend on the phases ϕ. The FIM element for the time delay τ is:

[I(θ)]11 = 2 Re

{(
∂µ(θ)

∂τ

)H

C−1
n

∂µ(θ)

∂τ

}
+ tr[•] (5.66a)

= 2 Re
{
|α|2sHW HDHW C−1

n,−τW HDW s
}
+ tr[•] (5.66b)

= 2 Re
{
|α|2sHC−1

n,−τs
}
+ tr[•] (5.66c)

= 2|α|2ṡHC−1
n,−τṡ + tr[•] (5.66d)

=
2|α|2

σ2
w
∥ṡ∥2

H + tr[•] . (5.66e)

Equation (5.66d) is rewritten to Equation (5.66e) due to the definition of the
inner product in the Hilbert space from Equation (5.59). Equation (5.66b)
exploits the time shifting property of the covariance matrix from Equation
(5.60c) and the time derivative property from Equation (5.14). From Equation
(5.66e) it can be seen that the information for the time delay is provided
by the signal energy of the time derivative chirp-train signal in the Hilbert
space H. For the magnitude |α| of the LOS channel coefficient the FIM
element evaluates to

[I(θ)]22 = 2 Re

{(
∂µ(θ)

∂|α|

)H

C−1
n

∂µ(θ)

∂|α|

}
(5.67a)

= 2sHC−1
n,−τs (5.67b)

=
2

σ2
w
∥s∥2

H . (5.67c)
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The signal energy in the Hilbert spaceH is responsible for the information of
the magnitude. For the phases ϕ of the train signal model the corresponding
FIM entry is calculated as

[I(θ)]33 = 2 Re

{(
∂µ(θ)

∂ϕ

)H

C−1
n

∂µ(θ)

∂ϕ

}
(5.68a)

= 2|α|2 Re
{

diag(p)HXHC−1
n,−τX diag(p)

}
(5.68b)

= 2|α|2 Re
{

SHC−1
n,−τS

}
(5.68c)

=
2|α|2

σ2
w

Re{⟨S, S⟩H} . (5.68d)

Equation (5.68b) simplifies to Equation (5.68c) using the matrix S from
Equation (3.13). The information of the i-th phase is provided by the signal
energy of the i-th subchirp in the Hilbert space H. For the time delay τ and
the magnitude |α| of the LOS channel coefficient the corresponding FIM
element evaluates to

[I(θ)]12 = 2 Re

{(
∂µ(θ)

∂τ

)H

C−1
n

∂µ(θ)

∂|α|

}
(5.69a)

= −2|α|Re
{

sHW HDHW C−1
n,−τs

}
(5.69b)

= −2|α|Re
{

ṡHC−1
n,−τs

}
(5.69c)

= −2|α|
σ2

w
Re{⟨s, ṡ⟩H} . (5.69d)

In Equation (5.69b) the time derivative property from Equation (5.14) is
again exploited. For the time delay τ and the phases ϕ of the train signal
model the FIM entry calculates to

[I(θ)]13 = 2 Re

{(
∂µ(θ)

∂τ

)H

C−1
n

∂µ(θ)

∂ϕ

}
(5.70a)

= 2|α|2 Im
{

ṡHC−1
n,−τS

}
(5.70b)

=
2|α|2

σ2
w

Im{⟨S, ṡ⟩H} . (5.70c)
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For the magnitude |α| of the LOS channel coefficient and the phases ϕ of
the train signal model the FIM element is written as

[I(θ)]23 = 2 Re

{(
∂µ(θ)

∂|α|

)H ∂µ(θ)

∂ϕ

}
(5.71a)

= −2|α| Im
{

sHC−1
n,−τS

}
(5.71b)

= −2|α|
σ2

w
Im{⟨S, s⟩H} . (5.71c)

The time-delay error bound is again calculated using the Schur complement
similar to Equation (5.21) as

[I−1(θ)]11 =

(
2
|α|2
σ2

w

(
F−GH−1GT

))−1

(5.72)

with

F = |α|2∥ṡ∥2
H +

σ2
w

2|α|2 tr[•] ∈ R , (5.73)

G = [−Re{⟨s, ṡ⟩H}, |α| Im{⟨S, ṡ⟩H}] ∈ R1×(P+1)) , (5.74)

and

H =

[ ∥s∥2
H −|α| Im{⟨S, s⟩H}

−|α| Im{⟨S, s⟩H}T |α|2 Re{⟨S, S⟩H}

]
∈ R(P+1)×(P+1) . (5.75)

Therefore, Equation (5.72) is rewritten as

[I−1(θ)]11 =

(
2
|α|2
σ2

w

(
∥ṡ∥2

H −GH−1GT
)
+ tr[•]

)−1

. (5.76)

It can be seen that the time-delay error bound from Equation (5.76) has a
similar structure as Equation (5.57) except the different subtractive term
which accounts for the unknown phases ϕ of the chirp-train signal. It should
be noted that the time-delay error bound in general depends on those phase
shifts.
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5 Cramér–Rao Lower Bound for Time Delay Estimation

Similar to Equation (5.63) an alternative representation can be found by
multiplying and dividing the first term with the mean-square bandwidth
β2 from Equation (5.6) which evaluates to

[I−1(θ)]11 =

(
2

β2

β2
|α|2
σ2

w

(
∥ṡ∥2

H −GH−1G
)
+ tr[•]

)−1

(5.77)

=

(
8π2β2 |α|2∥s∥2

σ2
w

(
∥ṡ∥2

H
∥ṡ∥2 −

1
∥ṡ∥2 GH−1GT

)
+ tr[•]

)−1

(5.78)

=
(

8π2β2SINRIV + tr[•]
)−1

, (5.79)

where

SINRIV =
|α|2∥s∥2

σ2
w

(
∥ṡ∥2

H
∥ṡ∥2 −

1
∥ṡ∥2 GH−1GT

)
, (5.80)

is the AWGN equivalent SINR for the DM case where all phases of the
chirp-train signal are unknown.
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6 Time Delay Estimation and
Algorithms

6.1 Maximum Likelihood Time Delay Estimation
for the AWGN Case

The maximum likelihood estimator is used for the signal model from Equa-
tion (3.28) to find the unknown parameters for the AWGN case. The cost
function is defined as

J(τ̃, |α̃|, p̃) = ∥r− |α̃|W HP (τ̃)W Xp̃∥2 (6.1a)

= ∥r∥2 + |α̃|2∥s̃τ̃,p̃∥2 − 2|α̃|Re
{

s̃H
τ̃,p̃r

}
(6.1b)

= ∥r∥2 + |α̃|2∥x∥2 − 2|α̃|Re
{

s̃H
τ̃,p̃r

}
, (6.1c)

where

s̃τ̃,p̃ = W HP (τ̃)W Xp̃ , (6.2)

is the by τ̃ delayed and phase shifted template chirp train signal. For
some τ̃ the cost function can be minimized by inserting W HP (τ̃)W X into
Equation (2.12) which leads to

|α̂|p̂ = (XHX)−1(W HP (τ̃)W X)Hr (6.3)

=
1

Nc
(W HP (τ̃)W X)Hr . (6.4)

The phases ϕ̂ of the chirp train signal are calculated as

ϕ̂ = arg
((

W HP (τ̃)W X
)H

r

)
. (6.5)
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Therefore, the individual phases ϕi can be calculated as

ϕ̂i = arg

(
Nc−1

∑
n=0

x∗i (nTs − τ̃)r[iNc + n]

)
. (6.6)

The ML magnitude estimate |α̂| of the LOS channel coefficient can be
obtained by multiplying the phase vector estimate p̂H with Equation (6.4).
This leads to the amplitude estimate

|α̂| = 1
N

ŝτ̃,p̂ r . (6.7)

The ML estimate for the time delay τ can be found by minimizing the cost
function from Equation (6.1b) as

τ̂ = arg min
τ̃,|α̃|,ϕ̃

{J(τ̃, |α̃|, p̃)} (6.8)

= arg min
τ̃,|α̃|,ϕ̃

{
∥r− |α̃|s̃τ̃,p̃∥2

}
(6.9)

= arg min
τ̃

{
min
|α̃|,ϕ̃

{
∥r− |α̃|s̃τ̃,p̃∥2

}}
. (6.10)

It should be noted that the joint minimization can be split into an inner and
an outer minimization. The inner minimization is achieved by calculating
the phase estimates ϕ̂ and the amplitude estimate |α̂| according to Equations
(6.5) and (6.7) for each τ̃.

A second Maximum Likelihood estimator can be found when considering a
downconverted signal. First of all a unitary transformation matrix for the
downconversion is defined as

U H = diag

([
−j2π

(
mn2

2
+ f0n

)]M−1

n=0

)
. (6.11)

In contrast to Section (4.4) only one large chirp is used for the downconver-
sion instead of the template chirp train. Equation (6.10) can be modified as
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6.2 Time Delay Estimation for the DM Case

τ̂ = arg min
τ̃

{
min
|α̃|,ϕ̃

{
∥r− |α̃|s̃τ̃,p̃∥2

}}
(6.12a)

= arg min
τ̃

{
min
|α̃|,ϕ̃

{
∥U H (r− |α̃|s̃τ̃,p̃)∥2

}}
(6.12b)

= arg min
τ̃

{
min
|α̃|,ϕ̃

{
∥rd − |α̃|s̃d,τ̃,p̃∥2

}}
, (6.12c)

where

rd = U Hr , (6.13)

is the downconverted received signal and

s̃d,τ̃,p̃ = U Hs̃τ̃,p̃ , (6.14)

is the downconverted, time delayed and phase shifted template chirp train
signal. It can be seen that the estimation of the time delay is the same as the
estimation of the frequencies of the downconverted signal.

6.2 Time Delay Estimation for the DM Case

As it can be seen from Figure 3.2 the largest peak of the individual multipath
components (including the LOS component) does not necessarily correspond
to the LOS component which leads to a decreased performance of the
AWGN ML estimator. By rewriting Equation (3.31) the received signal in
the DM case can be expressed as a sum of multiple time delayed and scaled
components where

r[n] = αs(nTs − τ) + Ts(s ∗ v)[n] + w[n] (6.15)

= αs(nTs − τ) + Ts

L−1

∑
k=0

s[n− k]v[k] + w[n] . (6.16)
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6 Time Delay Estimation and Algorithms

Similar to [18] an algorithm which tries to find the first component by
iteratively estimating and subtracting the individual components, which are
shown in Equation (6.16), is presented in the following listing.

Algorithm 1 Search and subtract
Input received signal r, chirp train matrix X , power threshold,

max components
Output min(delays)

procedure
delays← [] ▷ Initializes a list for the delays
components← 0 ▷ In the beginning there are zero components
r’← r ▷ Copies the received signal
repeat

τ̂ ← arg min
τ̃

{
min
|α̃|,ϕ̃

{
∥r′ − |α̃|s̃τ̃,p̃∥2}} ▷ Calculates ML estimate

r′ ← r′ − ŝH
τ̂,p̂rŝτ̂,p̂ ▷ Subtracts the projected component

signal power← ∥r′∥2/M ▷ Calculates the signal power from the
subtracted signal

delays[components]← τ̂ ▷ Adds the current time delay estimate
to the list

components← components + 1
until signal power < power threshold or components > max compo-

nents
end procedure

In Listing 1 it can be seen that the algorithm stops if the power level of the
subtracted signal r′ is below a specific threshold. This is due to the noise
floor caused by the AWGN. Furthermore, an error is introduced since the
individual projected components are estimated separately. The number of
spectral components is therefore used as an additional stopping condition. It
should be noted that the same algorithm can be used for the downconverted
signal and the time delay estimate from Equation (6.12c). This might result
in a better estimate since the downconversion of the multipath components
leaves complex sinusoidal signals similar to [19] with different frequencies
which are better separable.
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7 Simulations

In this chapter, the mean squared error (MSE) values of the different time
delay estimation methods from Chapter 6 are investigated using simulations.
The simulations are also performed for the CRLBs from Chapter 5 and
compared against the performance of the time delay estimation methods.
Furthermore, the influence of dividing one long chirp into several subchirps
with unknown start phases is analyzed. The signals cover the maximum
bandwidth of the CC2510 transceiver chips from Chapter 4 which is 80
MHz. The time delay estimates were found using a grid search with refining
for the respective cost functions.
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Figure 7.1: Spectrogram of a single chirp with a length of N = 480 samples, a sample rate
of fs = 80 MHz and a chirp rate of m = fs/N.
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Figure 7.2: Spectrogram of a chirp train with P = 4 subchirps, a total length of N = 480
samples, a sample rate of fs = 80 MHz, a chirp length of N/P and a chirp rate
of m = fs/N.

Figure 7.2 shows the division of a single longer chirp from Figure 7.1 into
four smaller chirps of equal length. Since the chirp rate m and the total
length N stays the same the bandwidth is also the same as for the single
chirp case from Figure 7.1. The following settings and definitions are used
in this chapter:

• A sample rate of fs = 80 MHz, an amount of N = 480 samples, and a
linear chirp rate of m = fs/N such that the chirp-train signal covers
the full bandwidth of 80 MHz.

• An amount of subchirps P ∈ {1, 2, 4, 8} which divides the long single
chirp into multiple subchirps with unknown phases.

• The SNR definition from Equation (5.7) is used and the magnitude |α|
of the LOS channel coefficient is set to one.

It should be noted that the CRLB in the DM case is calculated using the
inverse of a covariance matrix. This matrix is in turn calculated by chirp-
train signal oversampled by a factor of 10. Due to the long computing time
of the inverse of the covariance matrix, the chirp length is set to N = 480
samples. As it can be seen in Appendix A, the number of samples in the
AWGN case does not affect the time delay error bound anyway when the
bandwidth is fixed.
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7.1 AWGN Case

7.1 AWGN Case

In this section, the time delay error bounds for a different amount of
subchirps with unknown start phases from Equation (5.53) are compared
to the MSE values of the ML estimates from Section 6.1 for different SNR
values. For better comparability, the time delay error bound is converted to
the distance error bound by multiplying it with the speed of light.
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Figure 7.3: Distance error bounds and ML estimation accuracies for a different amount of
subchirps P with unknown start phases. A total of 1000 realizations are used
and the the search range of the time delay is limited to ±100 samples. The
regions are defined according to [20].
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Figure 7.4: Magnification of the threshold region from Figure 7.3.
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7.1 AWGN Case

Figure 7.3 shows that an increase in the amount of subchirps P leads to an
increased error bound. It can also be seen that doubling the number of sub-
chirps performs just as well as the non-doubled version with approximately
6 dB less SNR which matches with the 6.02 dB decrease in SINRII described
in Section 5.3. The different ML estimators converge to their error bounds
at an SNR of approximately 16 dB. Similar to [20] the following regions can
be observed for any amount of subchirps P:

• A-priori region when SNR < 5 dB: In this region, the signal is not
detectable within the noise floor. No information about the time delay
can be obtained since the MSE of the estimate is only bounded by the
a-priori knowledge of the time delay range and therefore is distributed
uniformly. This relates to a signal detection problem. The amount of
subchirps P has no influence.

• Threshold region when 5 dB < SNR < 16 dB: Smooth transition
between the a-priori region and the asymptotic region. The amount
of subchirps P only has a small impact on the MSE. However, the
threshold region is shifted further to the right with an increasing
amount of subchirps. This happens because the increase in the amount
of subchirps can be viewed as a decrease of the SINRII, which means
that a larger SNR is needed for achieving the same SINRII for the case
of a single chirp. It should be noted that the outlier in the threshold
region for a single subchirp, where the MSE is larger than for four
subchirps, was probably caused by the discrete grid search and could
be avoided by using other optimization algorithms. The magnified
version of the threshold region from Figure 7.3 is shown in Figure 7.4.

• Asymptotic region when 16 dB < SNR: The MSE of the MLE reaches
the error bound. Doubling the amount of subchirps P leads to a 6.02
dB decrease in SINRII and to a four times higher delay error bound as
for the non-doubled case.
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7.2 DM Case

For the analysis of the DM case the double-exponential PDP from Equation
(3.39) is used with the settings γr = 5 ns and γd = 20 ns similar to [11]
which corresponds to a typical indoor scenario. The energy normalization
factor Ω1 of the PDP is adjusted so that the Rician K-factor KLOS from
Equation (3.44b) has certain values. The time delay error bounds are again
converted to the distance error bound. Small KLOS values, for example, −5
dB, correspond to a larger energy of the DM components compared to the
LOS energy. Conversely, for large KLOS values, for example, 20 dB, there is
more energy in the LOS component than in the DM components.

−10 −5 0 5 10 15 20 25 30 35 40
10−2

10−1

100

101

KLOS (dB)

M
SE

(m
)

CRLB for P=1 ML for P=1
CRLB for P=2 ML for P=2
CRLB for P=4 ML for P=4
CRLB for P=8 ML for P=8

Figure 7.5: Comparison between the distance error bounds and the AWGN estimation
accuracies for a different amount of subchirps P with unknown start phases for
an SNR of 40 dB. A total of 1000 realizations are used and the the search range
of the time delay is limited to ±40 samples.
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7.2 DM Case

Figure 7.5 shows the different error bounds of the distance estimation and
the MSE values of the AWGN ML estimator for various Rician K-factors
and a different amount of subchirps P. An SNR of 40 dB is used. Similar
to Figure 7.3, a threshold region and an asymptotic region can be seen.
The asymptotic region is shifted to the right as the amount of subchirps
P is increased. The error bounds hardly differ at very low KLOS values.
This happens because the DM process already adds unknown phases on
the chirp-train signal and unknown start phases do not matter that much
anymore. The same behavior can be seen for the AWGN ML estimation
accuracies. As the energy of the PDP is increased, the DM process has less
influence on the phases of the received chirp-train signal, and the amount
of subchirps P becomes more significant. For KLOS values greater than 40
dB, the error bounds of the DM case converge to the error bounds of the
AWGN case.
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Figure 7.6: Comparison between SINRIV values for a different amount of subchirps P with
unknown start phases. A total of 1000 realizations are used. It should be noted
that both plots have a different scaling.
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Figure 7.7: Comparison between the distance error bounds, the AWGN estimation accura-
cies, and the estimation accuracies of the search and subtract algorithms for a
different amount of subchirps P with unknown start phases. An SNR of 40 dB
is used together with 1000 realizations. The maximum amount of subtracted
components for the search and subtract algorithm is set to 30, the power thresh-
old is set to 0.8 for the normal version, and to 0.3 for the downconverted one.
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7.2 DM Case

Figure 7.6 shows the comparison between the SINRIV values for a different
amount of subchirps P for SNR values of 20 dB and 40 dB. The SINRIV
values have been calculated according to Equation (5.80) for the case which
does not consider the trace from Equation (5.58) and for the case where this
is taken into account. When there is much energy in the DM components
(i.e. KLOS is small) for an SNR of 20 dB, the SINRIV values which consider
the trace term are much higher than the ones without it. For the case with
the SNR of 40 dB, the information gain caused by the trace term is much
smaller. This seems to be the case due to the additional energy caused
by the DM components and therefore a better detectability for lower SNR
values is given. If much energy is in the DM components (i.e. KLOS is small),
for both SNR cases the SINRIV values which consider the trace are almost
independent of the amount of subchirps P. In contrast, the number of
subchirps P matters more when there is little energy in the DM (i.e. KLOS
is large) since it approximates the AWGN case. As the energy of the DM
components is increased, the SINRIV values approach the SINRII values for
the corresponding amount of subchirps P.

In Figure 7.7 the search and subtract algorithm and the version for the
downconverted signal from Section 6.2 are compared to the AWGN ML
estimator and the distance error bound. The search and subtract algorithm
works hardly better than the AWGN ML estimator with multiple subchirps
whereas the search and subtract algorithm for the downconverted signal
leads to a significant improvement in accuracy in the threshold region for all
subchirp cases. This is because of the better separability of the components.
Furthermore, the search and subtract algorithms converge to the AWGN
ML estimation MSE at a KLOS of about 10 dB.

In [21] a pulse-compression technique is presented which enables an ac-
curate estimation of the unknown phase differences of the chirp-train sig-
nal by using frequency-overlapping subchirps. This is possible due to the
frequency-selective filtering done by the DM process, which adds the same
unknown phases for the frequency overlaps. This approach also utilizes
information from other receivers.
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It should be noted that this approach does not result in a significantly
better time-delay estimate in the case of a single transmitter and a single
receiver. This is evident from Figure 7.5, where the AWGN ML estimator
for a single unknown start phase does not perform significantly better than
the AWGN ML estimators for multiple unknown start phases when KLOS
is low. As KLOS increases, the time delay estimation is more accurate when
using the phase estimates instead of phase differences estimates since it will
converge to the AWGN case and the AWGN ML estimator is asymptotically
efficient.
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8 Conclusion

This thesis helps to better understand the problem of introducing multiple
unknown start phases for chirp-train signals which are used for time-
delay estimation. The theoretical lower bound was derived for time-delay
estimation for a chirp-train signal with unknown start phases for the AWGN
and the dense multipath (DM) cases. This generalizes the concepts of the
single unknown phase cases from the literature. One key finding is that the
AWGN equivalent SNR is decreased by 6.02 dB when the number of chirps
is doubled, under the assumption that the total bandwidth is fixed and there
is no energy in the DM components. It leads to a four-times larger CRLB for
the time-delay estimation. As the energy of the DM components increases,
the differences in the CRLB for different amounts of subchirps become
smaller. This happens because the DM process also causes unknown phases
and the effect of the additional unknown start phases of the chirp-train
signal is thereby reduced.

It has been shown that the information decrease due to additional estimation
parameters can be viewed as a decrease in the effective SINR. Alternatively,
the loss of information due to the additional estimation parameters can be
viewed as a reduction in root-mean-square (RMS) bandwidth. The reduced
RMS bandwidth of a chirp-train signal with arbitrary starting frequencies is
the same as the RMS bandwidth for the case of a chirp-train signal where
each subchirp is symmetric in the frequency domain. When frequency-
symmetric subchirps are considered, the information loss is zero and the
reduced RMS bandwidth is equal to the RMS bandwidth.
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8 Conclusion

In simulations, it was shown that the AWGN ML estimator is asymptotically
efficient for the AWGN case when the SNR is large enough. Similarly, for the
DM case, the AWGN estimator asymptotically reaches the CRLB for compar-
atively low energies in the DM components. In addition, improvements have
been made in the threshold region for the DM case using the search-and
subtract-algorithm. Because of the better separability of the components,
these improvements were even more significant when using this algorithm
on the downconverted signal.

Furthermore, FPGA implementation details were shown for a chirp compres-
sion algorithm, which drastically reduces the required bandwidth between
the receiver and the host computer. For this purpose, the chirp-train signal
was generated on an FPGA using direct digital synthesis (DDS). The com-
plex conjugate of the signal was multiplied with the received chirp-train
signal for downconversion, and finally, the result was decimated using
filtering and downsampling stages.
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Appendix A

CRLB simplification for the AWGN
case

The CRLB from Equation (5.51b), which considers the AWGN case when
all phases of the chirp train signal are unknown, can be simplified. This is
done using Equation (3.16b) where the time derivative chirp train vector
∥ẋ∥2 simplifies to

∥ẋ∥2 = 4π2
P−1

∑
i=0

Nc−1

∑
n=0

(mn + fi)
2 (A.1a)

= 4π2
P−1

∑
i=0

Nc−1

∑
n=0

m2n2 + 2mn fi + f 2
i (A.1b)

= 4π2
P−1

∑
i=0

m2

6
Nc(Nc − 1)(2Nc − 1) + mNc(Nc − 1) fi + Nc f 2

i (A.1c)

= 4π2

(
m2

6
PNc(Nc − 1)(2Nc − 1) + mNc(Nc − 1)

P−1

∑
i=0

fi

+Nc

P−1

∑
i=0

f 2
i

)
, (A.1d)
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and the simplification for the subtractive term of the CRLB is

P−1

∑
i=0

Im
{

xH
i ẋi

}2

∥xi∥2 =
1

Nc

P−1

∑
i=0

Im
{

xH
i ẋi

}2
(A.2a)

=
4π2

Nc

P−1

∑
i=0

(
Nc−1

∑
n=0

mn + fi

)2

(A.2b)

=
4π2

Nc

P−1

∑
i=0

(m
2

Nc(Nc − 1) + fiNc

)2
(A.2c)

= 4π2

(
m2

4
PNc(Nc − 1)2 + mNc(Nc − 1)

P−1

∑
i=0

fi

+Nc

P−1

∑
i=0

f 2
i

)
. (A.2d)

Equations (A.1d) and (A.2d) are inserted into Equation (5.51b) as

[I−1(θ)]11 =
σ2

w
2|α|2

(
∥ẋ∥2 −

P−1

∑
i=0

Im
{

xH
i ẋi

}2

∥xi∥2

)−1

(A.3a)

=
σ2

w
2|α|24π2

(
m2

6
PNc(Nc − 1)(2Nc − 1)− m2

4
PNc(Nc − 1)2

)−1

(A.3b)

=
σ2

w
2|α|24π2

(
1

12
m2PNc(N2

c − 1)
)−1

(A.3c)

=
3σ2

w
2π2|α|2m2PNc(N2

c − 1)
. (A.3d)

Using the definition of the SNR with

SNR =
|α|2∥x∥2

σ2
w

, (A.4)

Equation (A.3d) simplifies to

[I−1(θ)]11 =
3

2π2 SNR m2(N2
c − 1)

. (A.5)
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Since the length of a subchirp Nc is typically long i.e.

N2
c − 1 ≈ N2

c , (A.6)

Equation (A.5) can be approximated as

[I−1(θ)]11 =
3

2π2 SNR m2N2
c

(A.7a)

=
3P2

2π2 SNR B2 (A.7b)

=
12P2

8π2 SNR B2 (A.7c)

=
(

8π2 SNR β̃2
)−1

, (A.7d)

where

B = mN , (A.8)

is the absolute bandwidth a single chirp of length N and the linear chirp
rate m would achieve,

Bc =
B
P

, (A.9)

is the bandwidth a subchirp achieves and

β̃ =
Bc√
12

, (A.10)

is the reduced root-mean-square (RMS) bandwidth. Based on simulations, it
can be determined that the reduced RMS bandwidth β̃ is equal to the RMS
bandwidth β for a chirp-train signal where each subchirp is symmetric in
the frequency domain i.e. the start frequency of the i-th subchirp is

fi = −
mNc

2
0 ≤ i < P . (A.11)
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To verify this statement, the mean-square bandwidth β2 is calculated for
this case by inserting Equation (A.1d) into Equation (5.6) as

β2 =
∥ẋ∥2

4π2∥x∥2 (A.12a)

=
1

NcP

(
m2PN3

c
3

+ mN2
c

P−1

∑
i=0

fi + Nc

P−1

∑
i=0

f 2
i

)
(A.12b)

=
1

NcP

(
m2PN3

c
3

− m2PN3
c

2
+

m2PN3
c

4

)
(A.12c)

=
m2N2

c
12

(A.12d)

=
B2

12P
(A.12e)

=
B2

c
12

, (A.12f)

which is in fact equal to the reduced mean-square bandwidth β̃2. It should
be noted that the simplification from Equation (A.6) was also used for this
derivation.

74



Bibliography

[1] Davide Dardari et al. “Ranging With Ultrawide Bandwidth Signals
in Multipath Environments.” In: Proceedings of the IEEE 97.2 (2009),
pp. 404–426. doi: 10.1109/JPROC.2008.2008846 (cit. on pp. 1, 14).

[2] Heein Yang et al. “Implementation of DDS chirp signal generator on
FPGA.” In: 2014 International Conference on Information and Communica-
tion Technology Convergence (ICTC). 2014, pp. 956–959. doi: 10.1109/
ICTC.2014.6983343 (cit. on pp. 1, 29).

[3] Daniel Neunteufel et al. “Coherent Chirp Generation by Narrowband
Transceiver Chips for ToF Indoor Localization.” In: GLOBECOM 2020
- 2020 IEEE Global Communications Conference. 2020, pp. 1–6. doi: 10.
1109/GLOBECOM42002.2020.9348025 (cit. on pp. 1, 21, 24).

[4] F. McGroary and K. Lindell. “A stepped chirp technique for range
resolution enhancement.” In: NTC ’91 - National Telesystems Conference
Proceedings. 1991, pp. 121–126. doi: 10.1109/NTC.1991.147999 (cit. on
p. 1).

[5] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory.
Prentice Hall, 1997 (cit. on pp. 2, 5–7, 35, 36).

[6] Klaus Witrisal et al. “Bandwidth Scaling and Diversity Gain for Rang-
ing and Positioning in Dense Multipath Channels.” In: IEEE Wireless
Communications Letters 5.4 (2016), pp. 396–399. doi: 10.1109/LWC.2016.
2569087 (cit. on pp. 2, 14, 36, 47, 48).

[7] José A. del Peral-Rosado et al. “Joint channel and time delay estimation
for LTE positioning reference signals.” In: 2012 6th ESA Workshop on
Satellite Navigation Technologies (Navitec 2012) & European Workshop
on GNSS Signals and Signal Processing. 2012, pp. 1–8. doi: 10.1109/
NAVITEC.2012.6423094 (cit. on pp. 8, 13).

75

https://doi.org/10.1109/JPROC.2008.2008846
https://doi.org/10.1109/ICTC.2014.6983343
https://doi.org/10.1109/ICTC.2014.6983343
https://doi.org/10.1109/GLOBECOM42002.2020.9348025
https://doi.org/10.1109/GLOBECOM42002.2020.9348025
https://doi.org/10.1109/NTC.1991.147999
https://doi.org/10.1109/LWC.2016.2569087
https://doi.org/10.1109/LWC.2016.2569087
https://doi.org/10.1109/NAVITEC.2012.6423094
https://doi.org/10.1109/NAVITEC.2012.6423094


Bibliography

[8] Dehan Luan. Fundamental Performance Limits on Time of Arrival Estima-
tion Accuracy with 5G Radio Access. Master’s thesis. Available at http://
www.diva-portal.org/smash/get/diva2:1182120/FULLTEXT01.pdf.
2017 (cit. on pp. 13, 15).

[9] Samira Boualleg and Brahim Haraoubia. “Influence of multipath radio
propagation on wideband channel transmission.” In: International
Multi-Conference on Systems, Signals & Devices. 2012, pp. 1–6. doi:
10.1109/SSD.2012.6197993 (cit. on p. 14).

[10] Erik Leitinger et al. “Evaluation of Position-Related Information in
Multipath Components for Indoor Positioning.” In: IEEE Journal on
Selected Areas in Communications 33.11 (2015), pp. 2313–2328. doi: 10.
1109/JSAC.2015.2430520 (cit. on p. 14).

[11] Andreas Fuchs and Klaus Witrisal. “Time-of-Arrival Estimation for
Positioning in Bandwidth-Limited Dense Multipath Channels.” In:
2022 IEEE 23rd International Workshop on Signal Processing Advances
in Wireless Communication (SPAWC). 2022, pp. 1–5. doi: 10.1109/
SPAWC51304.2022.9833995 (cit. on pp. 15–17, 62).

[12] Thomas Wilding et al. “Accuracy Bounds for Array-Based Positioning
in Dense Multipath Channels.” In: Sensors 18 (Dec. 2018), p. 4249. doi:
10.3390/s18124249 (cit. on pp. 15, 39).

[13] Daniel Neunteufel. “Indoor positioning of low-cost narrowband IoT
nodes.” PhD thesis. Technische Universität Wien, 2022. doi: 10.34726/
hss.2023.57001 (cit. on pp. 18, 21).

[14] Daniel Neunteufel, Stefan Grebien, and Holger Arthaber. “Indoor
Positioning of Low-Cost Narrowband IoT Nodes: Evaluation of a
TDoA Approach in a Retail Environment.” In: Sensors 22.7 (2022).
issn: 1424-8220. doi: 10.3390/s22072663. url: https://www.mdpi.
com/1424-8220/22/7/2663 (cit. on p. 21).

[15] Nuand. bladeRF 2.0 micro block diagram. July 2023. url: https://www.
nuand.com/product/bladerf-xa4/ (cit. on p. 23).

[16] C.K. Adithya Rangan et al. “Data Rate Based Performance Analysis
and Optimization of Bulk OUT Transactions in USB 3.0 SuperSpeed
Protocol.” In: 2018 Second International Conference on Advances in Elec-

76

http://www.diva-portal.org/smash/get/diva2:1182120/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1182120/FULLTEXT01.pdf
https://doi.org/10.1109/SSD.2012.6197993
https://doi.org/10.1109/JSAC.2015.2430520
https://doi.org/10.1109/JSAC.2015.2430520
https://doi.org/10.1109/SPAWC51304.2022.9833995
https://doi.org/10.1109/SPAWC51304.2022.9833995
https://doi.org/10.3390/s18124249
https://doi.org/10.34726/hss.2023.57001
https://doi.org/10.34726/hss.2023.57001
https://doi.org/10.3390/s22072663
https://www.mdpi.com/1424-8220/22/7/2663
https://www.mdpi.com/1424-8220/22/7/2663
https://www.nuand.com/product/bladerf-xa4/
https://www.nuand.com/product/bladerf-xa4/


Bibliography

tronics, Computers and Communications (ICAECC). 2018, pp. 1–6. doi:
10.1109/ICAECC.2018.8479467 (cit. on p. 24).

[17] Jan Kunz and Petr Beneš. “VERSATILE CHIRP SINE GENERATOR
ON FIXED-POINT FPGA.” In: Acta Polytechnica 60.6 (Dec. 2020),
pp. 462–468. doi: 10.14311/AP.2020.60.0462. url: https://ojs.
cvut.cz/ojs/index.php/ap/article/view/6049 (cit. on p. 32).

[18] Chiara Falsi et al. “Time of Arrival Estimation for UWB Localizers in
Realistic Environments.” In: EURASIP Journal on Advances in Signal
Processing 2006 (Dec. 2006). doi: 10.1155/ASP/2006/32082 (cit. on
p. 56).

[19] P.M. Djuric and S.M. Kay. “Parameter estimation of chirp signals.”
In: IEEE Transactions on Acoustics, Speech, and Signal Processing 38.12
(1990), pp. 2118–2126. doi: 10.1109/29.61538 (cit. on p. 56).

[20] Achraf Mallat et al. “Statistics of the MLE and Approximate Upper
and Lower Bounds–Part II: Threshold Computation and Optimal Pulse
Design for TOA Estimation.” In: IEEE Transactions on Signal Processing
62.21 (Nov. 2014), pp. 5677–5689. doi: 10.1109/tsp.2014.2355776.
url: https://doi.org/10.1109%2Ftsp.2014.2355776 (cit. on pp. 59,
61).

[21] Daniel Neunteufel, Andreas Fuchs, and Holger Arthaber. “ToF-based
Indoor Positioning for Low-power IoT Nodes.” In: 2020 54th Asilomar
Conference on Signals, Systems, and Computers. 2020, pp. 641–645. doi:
10.1109/IEEECONF51394.2020.9443431 (cit. on p. 65).

77

https://doi.org/10.1109/ICAECC.2018.8479467
https://doi.org/10.14311/AP.2020.60.0462
https://ojs.cvut.cz/ojs/index.php/ap/article/view/6049
https://ojs.cvut.cz/ojs/index.php/ap/article/view/6049
https://doi.org/10.1155/ASP/2006/32082
https://doi.org/10.1109/29.61538
https://doi.org/10.1109/tsp.2014.2355776
https://doi.org/10.1109%2Ftsp.2014.2355776
https://doi.org/10.1109/IEEECONF51394.2020.9443431

	Abstract
	Introduction
	Theory
	Cramér-Rao Lower Bound
	Maximum Likelihood Estimation for the Gaussian Case
	Discrete Fourier Transformation Matrix

	Signal Model
	Chirp Train Signal
	AWGN Channel
	Dense Multipath

	FPGA Implementation of the Chirp Compression Algorithm
	Overview
	Introduction to the SDR
	Chirp Train Parametrization
	Chirp Compression Algorithm
	Gateware Implementation
	Trigger Events
	Fixed Point Numbers
	Computation of the Chirp Train Signal
	Downconversion and Downsampling Stages
	Communication with the Host


	Cramér–Rao Lower Bound for Time Delay Estimation
	AWGN Case where only the Time Delay is Unknown
	AWGN Case where only the first Phase is Unknown
	AWGN Case where all Phases are Unknown
	DM Case where only the First Phase is Unknown
	DM Case Where all Phases are Unknown

	Time Delay Estimation and Algorithms
	Maximum Likelihood Time Delay Estimation for the AWGN Case
	Time Delay Estimation for the DM Case

	Simulations
	AWGN Case
	DM Case

	Conclusion
	CRLB simplification for the AWGN case
	Bibliography

		2023-09-07T03:47:40+0200
	Signature Box
	Andreas Feiersinger
	Signature




