
Alexander WOLFBAUER, BSc

Security Analysis of Student Developed
Learning Applications

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Priv.-Doz. Dipl.-Ing. Dr.techn. Martin Ebner

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Frank Kappe

Co-Supervisor

Dipl.-Ing. Dr.techn. Josef Wachtler BSc

Graz, September 2023

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Acknowledgments

I would like to extend my heartfelt gratitude to my supervisors, Priv.-
Doz. Dipl.-Ing. Dr. techn. Martin Ebner, for enabling me to undertake this
master’s thesis. I am also deeply appreciative of the guidance and support
provided by Dipl.-Ing. Dr.techn. Josef Wachtler BSc, who played a crucial
role, particularly in the practical aspects of this work.

I want to express my sincerest appreciation to my mother, whose unwaver-
ing support has been instrumental throughout my academic journey. Her
encouragement and belief in me have been invaluable, and I am immensely
grateful for her contribution to my completion of this master’s thesis.

Finally, I extend my thanks to all those who have contributed to my growth
and learning during this endeavor.

iv

Abstract

This thesis provides a comprehensive security analysis of the "TU Graz
Learning Lab" project, a suite of learning applications developed by stu-
dents of "Graz University of Technology" for primary pupils and classes.
In light of the fact that the project processes children’s data, it is governed
by the stringent regulations of the "General Data Protection Regulation".
This study applies a static code analysis using "PhpMetrics" and a dynamic
vulnerability scan using "Open Web Application Security Project Zed At-
tack Proxy", which exposed high code complexity, outdated dependencies,
and numerous security vulnerabilities. These issues underline a significant
deficiency in the implemented software development processes, leading to
critical maintainability issues and a lack of coding standards.

Furthermore, an application of the "Open Web Application Security Project
Application Security Verification Standard" highlighted a failure in over half
of the "Level 1" requirements, indicating an absence of secure software de-
velopment cycles and security requirements. An attempted implementation
of "OAuth 2.0", conducted as a case study, further elucidated the impact
of these issues on development. The endeavor was halted due to problems
stemming from dependency management, data storage, and complexity
in managing legacy issues, reinforcing the necessity for a secure software
development cycle.

This research emphasizes the indispensability of such a cycle, particularly
in student-led projects marked by high personnel turnover, affirming the
integral role of secure software development practices in ensuring project
maintainability and data security.

v

Abstrakt

Diese Arbeit bietet eine umfassende Sicherheitsanalyse des Projekts "TU
Graz Learning Lab", einer Sammlung von Lernanwendungen, die von
Studierenden der "Technischen Universität Graz" für Grundschulkinder und
-klassen entwickelt wurden. Da das Projekt Daten von Kindern verarbeitet,
unterliegt es den strengen Vorschriften der "Datenschutz-Grundverordnung".

In dieser Arbeit wird eine statische Codeanalyse mit "PhpMetrics" und ein
dynamischer Sicherheitsscan mit "Open Web Application Security Project
Zed Attack Proxy" durchgeführt, die eine hohe Codekomplexität, veral-
tete Abhängigkeiten und zahlreiche Sicherheitslücken aufdeckten. Diese
Probleme zeigen ein erhebliches Defizit in den implementierten Softwareen-
twicklungsprozessen, was zu kritischen Wartungsproblemen und einem
Fehlen von Programmierstandards führt.

Darüber hinaus zeigte die Anwendung des "Open Web Application Secu-
rity Project Application Security Verification Standard" ein Versäumnis in
über der Hälfte der "Level 1" Anforderungen, was auf das Fehlen sicherer
Softwareentwicklungszyklen und Sicherheitsanforderungen hinweist. Eine
versuchte Implementierung von "OAuth 2.0", die als Fallstudie durchgeführt
wurde, verdeutlichte weiterhin die Auswirkungen dieser Probleme auf die
Entwicklung. Das Unterfangen wurde aufgrund von Problemen, die sich aus
"Depndency Managment", sicherer Datenverarbeitung und der Komplexität
bei der Bewältigung von Altlasten im Code ergaben, gestoppt, was die
Notwendigkeit eines sicheren Softwareentwicklungszyklus unterstreicht.

Diese Forschung zeigt die Unverzichtbarkeit eines sicheren Softwareentwick-
lungszyklus, insbesondere bei von Studierenden geleiteten Projekten mit
einer hohen Personalrotation, und bestätigt die zentrale Rolle sicherer Soft-
wareentwicklungspraktiken bei der Sicherstellung der Projektwartbarkeit
und Datensicherheit.

vi

Contents

Abstract v

1 Introduction 1
1.1 TU Graz Learning Lab . 2

1.1.1 Applications . 2

1.1.2 System Architecture . 4

1.2 Problem Statement . 7

1.3 Research Questions . 8

1.4 Hypotheses . 8

1.5 Methodology . 8

2 Related Work 10
2.1 Security Standards in Web and Learning Applications 10

2.1.1 OWASP Foundation . 11

2.1.2 OAuth 2.0 . 11

2.1.3 1EdTech . 12

2.2 Security Analysis of Software Applications 12

2.2.1 OWASP Web Security Testing 13

2.2.2 Open Source Frameworks 13

3 Security Analysis 14
3.1 Security Analysis Tools and Techniques 14

3.2 Application Scanning and Testing 15

3.2.1 Scope . 16

3.2.2 Static Analysis . 16

3.2.3 Dynamic Analysis . 20

3.2.4 Manual Review . 24

3.3 Vulnerability Analysis . 26

3.3.1 Maintainability . 26

vii

Contents

3.3.2 Dependencies . 28

3.3.3 OWASP ZAP . 28

3.3.4 Interim Summary . 36

3.4 Comparison with Security Standards 37

3.5 Interpretation of Results in the Student Development Context 38

4 Security Implications in Protocol Implementation: A Case Study
of OAuth 2.0 and TU Graz Learning Lab 40
4.1 Introduction to Protocol Implementation and Security 40

4.2 OAuth2: An Overview . 41

4.2.1 Authorization Code Flow 43

4.2.2 OpenIDConnect . 45

4.3 Attempted Implementation of OAuth 2.0 45

4.3.1 Provision . 46

4.3.2 Dependency Management 48

4.3.3 Artifacts from Zend Framework to Laminas Migration 49

4.3.4 laminas-api-tools . 49

4.3.5 OAuth 2.0 Storage on Server-Side 51

4.3.6 Setup of laminas-cli for Secure Database Initialization 52

4.3.7 Transformation of SOAP API to RPC/REST via laminas-
api-tools Admin UI . 52

4.3.8 Problems encountered with Secure Token storage on
Client-side . 53

4.3.9 Actual Implementation Flow 54

4.4 Linking Implementation Flaws to Security Analysis 55

4.4.1 Manual Dependency Management 56

4.4.2 Complex Codebase . 56

4.4.3 Lack of Automated Testing 56

4.4.4 Insufficient Secure Storage Mechanisms 57

4.4.5 Lack of Security Policy 57

4.5 Lessons Learned and Recommendations 57

4.5.1 Implementation of a Software Development Process . 58

4.5.2 Data Management and Monitoring 59

4.5.3 Dependency Management 59

viii

Contents

5 Discussion 61
5.1 Interpretation of Findings . 61

5.1.1 Hypotheses . 61

5.1.2 Research Questions . 62

5.2 Comparison with Existing Literature 65

5.3 Impact of Student-Developed Context 66

6 Outlook 67
6.1 Student Context: Key Findings 67

6.2 Mitigating Security Vulnerabilities 68

6.3 OAuth 2.0 in TU Graz Learning Lab 69

6.4 Security Education & Practice 70

6.5 Future Security Planning . 70

6.6 Future of the TU Graz Learning Lab 71

6.6.1 Refactor . 71

6.6.2 Rewrite . 72

7 Conclusion 73

Bibliography 75

ix

List of Figures

3.1 Failed Authorization on baseurl/manager 25

3.2 Security Advisory Composer Audit 26

3.3 OWASP Application Security Verification Standard 4.0 Levels 38

4.1 Authentication over OpenIDConnect based on OAuth 2.0 and
HTTPS . 42

4.2 Authorization Code Flow . 44

4.3 Configuration of provisioned Infrastructure 47

4.4 Path of the composer configuration files 48

4.5 Configuration files of the imported modules 48

x

List of Tables

1.1 Applications and Authors . 6

3.1 PhpMetrics Number of Classes and Lines of Code 17

3.2 PhpMetrics Cyclomatic Complexity 18

3.3 PhpMetrics Violations . 19

3.4 Applications and Dependencies 20

3.5 Application Risk Level Count 22

3.6 OWASP ZAP Scan Results . 23

3.7 ASVS Level 1 Requirements Status 37

xi

List of Acronyms

AI Artificial intelligence
API Application Programming Interface
CI/CD Continuous Integration/Continuous Delivery
CSP Content Security Policy
CSRF Cross-Site Request Forgery
GDPR General Data Protection Regulation
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaC Infrastructure as Code
IETF Internet Engineering Task Force
JS Java Script
JWT JSON Web Token
LDAP Lightweight Directory Access Protocol
LTI Learning Tools Interoperability
MIME Multipurpose Internet Mail Extensions
ORM Object-Relational Mapping
OWASP Open Web Application Security Project
OWASP ASVS Open Web Application Security Project Application Secu-

rity Verification Standard
OWASP ZAP Open Web Application Security Project Zed Attack Proxy
REST Representational State Transfer
RPC Remote Procedure Call
SQL Structured Query Language
TLS Transport Layer Security
TU Graz Graz University of Technology
URL Uniform Resource Locator
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations

xii

XSS Cross Site Scripting
ZID Zentraler Informatikdienst

xiii

1 Introduction

The "TU Graz Learning Lab" is an educational platform developed by
Graz University of Technology (TU Graz) students aimed at primary school
pupils, providing various web-based applications to aid in mathematics and
literacy learning, while also enabling progress tracking. The platform not
only facilitates educational progress but also collects data for research, en-
suring data is aggregated and anonymized for the enhancement of teaching
in Austrian institutions. The platform’s infrastructure relies on the "Lami-
nas" framework, with individual applications developed as part of academic
theses, all emphasizing user management, data security, and role-based
access controls.

The "TU Graz Learning Lab" handles sensitive data from children, primarily
under 14, which is stringently regulated under European GDPR law, es-
pecially when it concerns health or mental progress. Given the platform’s
lengthy development phase and transitions like moving from the "Zend
Framework" to "Laminas," there are concerns about system clarity and
potential vulnerabilities. The current "SOAP" Application Programming
Interface (API) protocol for logins is considered outdated and not efficient,
as it requires separate logins for each application, suggesting a need for
more modern solutions.

This master’s thesis seeks to evaluate the security of web learning appli-
cations developed by TU Graz students, identify the origins of potential
vulnerabilities, and suggest future preventive measures. Given the project’s
extended development timeline and the diverse security proficiency of the
student developers, it’s hypothesized that there are likely security gaps
present. The predominant vulnerabilities are believed to stem from a lack of
security knowledge and inadequate secure development practices, with a
recommendation to transition from the "SOAP" interface to the "OAuth 2.0"
protocol for improvements.

1

1 Introduction

The methodology for this research involves practical and experimental
analysis to deeply understand the project and its context. A security analysis
will be conducted, followed by a practical implementation of "OAuth 2.0"
to identify design flaws and vulnerabilities. Based on this comprehensive
assessment, recommendations will be formulated to enhance the security of
student-developed projects.

1.1 TU Graz Learning Lab

"TU Graz Learning Lab" is a collection of different learning web applications,
which were developed by TU Graz students (Technische Universität Graz,
2023f). The target group consists of primary schools. The idea is to provide
an educational platform for schools and school classes, which not only
allows pupils to make progress in mathematics and literacy, but also allows
them and their teachers to track their development in basic school skills.

In addition, the information collected from the applications is used for
research purposes. These research studies do not aim to present personal
data. Once the results are obtained, the data is aggregated and anonymized.
The scientific findings aim to significantly contribute to the improvement
of teaching in Austrian educational institutions and the dissemination of
knowledge among children (Technische Universität Graz, 2023i).

1.1.1 Applications

As stated before, the "TU Graz Learning Lab" consists of multiple different
learning applications. The main site is responsible for the user manage-
ment and for combining information from the individual applications for
teachers and administrators, which are separate roles in the ranking system,
Section 1.1.2 will explain. It also links to the separate web applications,
which are categorized as "Math Apps"1 and "Speach [sic!] Apps"2. At the

1https://schule.learninglab.tugraz.at/math visited on 05/30/2023

2https://schule.learninglab.tugraz.at/speach visited on 05/30/2023

2

https://schule.learninglab.tugraz.at/math
https://schule.learninglab.tugraz.at/speach

1 Introduction

time of creating this master’s thesis, "TU Graz Learning Lab" provided the
following applications:

"Math Apps":

1. "1×1 Trainer" (Technische Universität Graz, 2023a) : A ten times table
multiplication trainer, including account-based progress tracking and
a time-limited speed game.

2. "Mathe-Multi-Trainer" (Technische Universität Graz, 2023g): A multi-
digit multiplication trainer with adaptive difficulty and account-based
statistics to track the progress.

3. "Divisiontrainer" (Technische Universität Graz, 2023c): An educational
tool for learning and practicing long divisions with adaptive difficulty
and personalized feedback.

4. "Plus-Minus-Trainer" (Technische Universität Graz, 2023h): A trainer
for pupils to practice addition and subtraction with self-adjustable
difficulty parameters.

5. "Junior Plus-Minus-Trainer" (Technische Universität Graz, 2023e): Also
a trainer for learning addition and subtraction, but in a simpler and
more playful form than the Plus-Minus-Trainer. Additionally, it is
possible to compare the progress with other pupils in the "Highscore"
section.

"Speach [sic!] Apps":

1. "Buchstabenpost" (Technische Universität Graz, 2023b): An account-
based learning application that tracks progress and allows teachers
to create fill-in-the-blank tasks where a word is missing from a given
sentence or question and the student must choose the correct word
from a word list.

2. "IDeRBlog Exercises" (Technische Universität Graz, 2023d): A collection
of different applications for learning spelling and grammar.

3. "Lesetrainer" (Technische Universität Graz, 2023b): A collection of
three educational tools for assessing reading literacy, including speed
reading tests, text comprehension tests and reading comprehension
tests, the results of which are stored account-based for teachers.

The project also includes several other applications that are not addressed in
this paper. This is either because these applications are no longer available

3

1 Introduction

on the live version, or they are not designed as web applications.

1.1.2 System Architecture

All previous applications were not developed at the same time, due to the
fact that they are the result of scientific work. The first application was the
"Mathe-Multi-Trainer", the theoretical work of which was published in 2012

(Steyrer, 2012). Therefore, all other projects were based on it and evolved
over time. This led to an emerging project design (Proenca, Moura, and
Hoek, 2010), which has been manually adapted several times. To understand
this work, it is necessary to have an overview of the structure of the project
as it is now.

Overall System Design

All applications are based on the "Laminas"3 framework, which was for-
merly known as the "Zend Framework"4. Due to the fact that the "Zend
Framework" migrated to "Laminas" in 2020, most of the applications were
developed in the former framework and then migrated to "Laminas".

"Laminas" is an open source "PHP" framework that provides a collection of
components and tools for building web applications. The main components
of "Laminas" are as follows:

1. "MVC" provides a structured approach of developing web applications
through the Model-View-Controller architectural pattern.

2. "Mezzio" is a middleware microframework that handles routing, error
handling and dependency injection containers, through the "PSR-7"5

and "PSR-15"6 specifications.
3. "API Tools" is a framework for creating and documenting API.

3https://getlaminas.org/ visited on 05/30/2023

4https://framework.zend.com visited on 05/30/2023

5https://www.php-fig.org/psr/psr-7/ visited on 05/30/2023

6https://www.php-fig.org/psr/psr-15/ visited on 05/30/2023

4

https://getlaminas.org/
https://framework.zend.com
https://www.php-fig.org/psr/psr-7/
https://www.php-fig.org/psr/psr-15/

1 Introduction

All three components are used to varying degrees in the applications and
form the basis of the project.

As noted in Section 1.1.1, the main page is not only responsible for linking
to the other applications, but also for managing the general user data. There-
fore, it is internally called "UserManager". Furthermore, the "UserManager"
also provides an API and distributes all necessary information to the other
applications. This is achieved over the "SOAP 1.2"7 protocol.

Development and Documentation

Each of the web applications is the result of a Bachelor’s or Master’s thesis,
as can be seen in Table 1.1. The applications themselves were primarily
developed by the same students who wrote the corresponding academic
papers. Revisions and maintenance were carried out either by other students
as part of their academic work, or by academic staff.

Operationally, the development runs over a configured "Vagrant Box" cur-
rently running "Debian 10" and "PHP 7.3". "Vagrant"8 is a utility for manag-
ing the lifecycle of virtual machines, isolating dependencies and providing
a consistent development environment. The codebase is hosted on a private
"GitLab" repository, the instance of which runs on the servers of TU Graz.

Students developed their own applications and adapted them to work with
the existing framework. No modern software development process is used.
Once they have completed their applications, their project will be merged
under the supervision of research staff.

Documentation is provided within the "Git" repository, mostly through the
bachelor’s and master’s thesis. Additionally, most of the applications also
have an operating documentation and a user manual, mainly for the teaching
personnel. The following table links the applications and the theoretical
work of the students:

7https://www.w3.org/TR/soap12/ visited on 05/30/2023

8https://www.vagrantup.com/ visited on 05/30/2023

5

https://www.w3.org/TR/soap12/
https://www.vagrantup.com/

1 Introduction

App Author
1x1 Trainer Kraja, 2016

Buchstabenpost Schellander, 2022 (Revision)
Divisiontrainer Geier, 2015

IDeRBlog Exercises Burazer, 2019

Junior Plus-Minus-Trainer Zöhrer, 2022 (Revision)
Lesetrainer Koch, 2020 (Revision)
Mathe-Multi-Trainer Steyrer, 2012

Plus-Minus-Trainer Neuhold, 2013

UserManager Wachtler, 2017

Table 1.1: Applications and Authors

Security and Data Management

Before looking at the authentication process, this thesis will describe the
authorization handling. The following three roles are used to differentiate
users:

1. "Student"
2. "Teacher"
3. "Admin"

"Students" have the ability to create their own accounts by registering
directly from the main page. Additionally, "Teachers" or "Administrators"
can create whole classes and distribute the credentials to their pupils or to
the teacher. Authorization for all applications is handled by a role-based
access control provided by "laminas-permissions-acl"9.

As stated in the previous sections, the "UserManager" is responsible for the
user data. It allows users to register, login and change their user information.
All this information is stored in the "UserManager’s" "MySQL" database.
However, it does not directly handle the login for all other applications.
Due to the system design, all other applications have their own "MySQL"
database to store the necessary information for the application, such as
tasks for the "Student". Furthermore, the applications store user specific

9https://docs.laminas.dev/laminas-permissions-acl/ visited on 05/30/2023

6

https://docs.laminas.dev/laminas-permissions-acl/

1 Introduction

data like the username again to enable the tracking of account based infor-
mation within their applications. All transfer of this data is handled over
the "SOAP" API. So each application has its own login form and requests
the authentication over the API via the username and the hashed password.
At the first login of a new user, the application also requests the information
needed to initialize the user from the "UserManager" API. Most applications
track the session in an "HTTP-only" cookie and store it in a stateful way,
some applications use the same session ID, others create a new one after a
successful login.

1.2 Problem Statement

The "TU Graz Learning Lab" provides services that process data from pupils,
most of whom are under the age of 14. The processing of children’s data
has a particularly sensitive position in Austrian law. Additionally, children’s
learning data can provide information about their mental progress and
even about their mental health. Health data, including data which reveal
information about one’s (mental) health status, is especially protected by the
European law. (Article 4(15) General Data Protection Regulation (GDPR))

As a result of the relatively long development period in the context of web
applications, the migration from the "Zend Framework" to "Laminas" and
the emerging system design, the project is in a state of obscurity. Therefore,
the evaluation of the applications from a security perspective is critical to
ensure secure data processing.

Moreover, the "SOAP" API protocol does not provide a good solution for
the login process. It is necessary to log in separately for each application,
although the login credentials are the same. Also, "SOAP1.2" is no longer
the "Simple Object Access Protocol", like it was when it was established in
2004. Modern solutions may be better suited for the specific use case of the
"TU Graz Leaning Lab" (Belqasmi et al., 2012).

7

1 Introduction

1.3 Research Questions

This master’s thesis will aim to answer the following research questions:

1. How secure are web learning applications, which were developed
by TU Graz students within their bachelor or master thesis, from an
information technical point of view?

2. Which security flaws happened, how can they be fixed, and why have
students implemented their learning applications insecurely?

3. Which mitigation actions could be taken to avoid security vulnerabili-
ties in student developed learning applications within their studies in
the future?

1.4 Hypotheses

Considering the context, the evolution and the current state of the "TU Graz
Learning Lab", following hypothesis can be formulated:

1. Due to long-term development, mostly conducted from students with
different levels of security awareness and the fact that no active security
audit was ever conducted, it is likely to find security vulnerabilities in
the applications.

2. These vulnerabilities appear primarily due to insufficient security
knowledge among student developers and the lack of a secure software
development cycle, rather than intentional negligence.

3. The current architectural setup, with the "SOAP" based interface for
the applications, can be improved through the introduction of the
"OAuth 2.0" protocol.

1.5 Methodology

The methodology of this scientific work will certainly be dominated by prac-
tical and experimental analysis. Firstly, the project needs to be understood

8

1 Introduction

in its context, in order to be able to recognize factual connections later on.
Secondly, a security analysis will be conducted to gain a deep insight into
the project and its security flaws and vulnerabilities.

Then design flaws and security vulnerabilities will be analyzed using the
practical implementation of "OAuth 2.0" in the project. This case study
and the combination with the actual security analysis should then give a
clear picture of the security state of the projects and their background in
the context of the student-developed projects. Based on these findings, a
recommendation can be made for student-developed projects to increase
security.

9

2 Related Work

This chapter provides an overview of the work within which this thesis is
situated. Whereas security analysis in web applications, student developed
applications and learning applications are separate well researched topics,
there is hardly any literature on the effects of these topics in combination.
Therefore, this thesis is embedded in the following subjects.

2.1 Security Standards in Web and Learning
Applications

Web applications are under a constant threat from a variety of security risks,
due to their continuous exposure to the Internet and vast amount of data
being used online (Yadav et al., 2018). As a result, security standards play an
indispensable role in modern web development. These guidelines provide
methods for developing and maintaining secure applications (Scarfone,
Benigni, and Grance, 2009).

Further, the implementation of security protocols is a critical aspect and
is often addressed by security standards at all levels. Protocols provide
a standardized way to manage authorized access to resources and create
interfaces to enable secure data exchange. When implemented correctly,
they can not only help prevent security vulnerabilities, but also improve the
functionality and modularity of applications (Gerodimos et al., 2023).

Additionally, learning applications often deal with sensitive data, in the
context of minors they have an increased responsibility. This responsibility
must be addressed by implementing security standards and secure protocols.
Ensuring secure data exchange, authorization and privacy in combination

10

2 Related Work

with standards can significantly increase the security of learning applications
and thereby promote trust and safety (Aldabbagh et al., 2021).

2.1.1 OWASP Foundation

Open Web Application Security Project (OWASP) is a non-profit founda-
tion, that works to improve the security of software. Its primary goal is to
enable organizations to conceive, develop, acquire, operate, and maintain
applications securely. All OWASP Foundation projects are open source and
community driven. With over 250 local chapters worldwide and tens of
thousands of members, it provides industry-leading education and training
conferences (OWASP Foundation, 2023).

One of the most widely used OWASP tools is the "OWASP Top Ten", a
regularly updated standard awareness document. It describes the ten most
critical security risks to web applications. It is globally recognized by devel-
opers as the first step towards more secure coding and starts the process
of ensuring that web applications minimize their risks, when implemented
(OWASP Foundation, 2021b).

Further, OWASP provides the Open Web Application Security Project Appli-
cation Security Verification Standard (OWASP ASVS), which is a framework
for security-related activities that are involved during the software develop-
ment cycle and is used to establish a level of confidence in the security of
web applications. It has several levels, and even the lowest level includes
not only the requirements of the OWASP Top Ten, but also includes addi-
tional security checks. The requirements have been developed as a metric
to determine the level of trust that can be placed in web applications, as a
guide for security control developers, and as a procurement to provide a
contractual basis (OWASP Foundation, 2021a).

2.1.2 OAuth 2.0

"OAuth 2.0" is an industry-standard protocol for authorization, created and
maintained by the Internet Engineering Task Force (IETF). It is used as an

11

2 Related Work

open source standard for access delegation or allowing applications to access
their information from third parties without providing their credentials. The
simplicity while providing standardized authorization flows makes it to a
widely used and adapted protocol (Internet Engineering Task Force (IETF),
2023).

2.1.3 1EdTech

"1Edtech", formerly known as the "IMS Global Learning Consortium", is
the world’s leading member-based non-profit community partnership of
educational technical organizations. Therefore, it provides open standards
and innovation for learning environments. The "1EdTech" Learning Tools
Interoperability (LTI) 1.3 standard is used to streamline and standardize
the exchange of data between learning tools, digital resources, and student
information systems (1EdTech, 2021).

The LTI "Core Specification", specifies a framework for interoperability
between learning applications. This is based on "OAuth 2.0" for secure API
calls, providing a standardized way to authorize requests and ensuring
secure data transfer between integrated systems. This enhances the security
and functionality of a project that adapts to this standard (IMS Global
Learning Consortium, 2019).

2.2 Security Analysis of Software Applications

Software systems have moved from an artistic phase based on highly skilled
craftsmen to an industrial phase where quality is controlled by introducing
structural workflows. Security analysis is a process of evaluating the secu-
rity features and workflows of an application against predefined security
standards. These features include testing, evaluating, and mitigating risks
associated with vulnerabilities (Ricca and Tonella, 2001).

Further, the utilization of open source frameworks in web applications
provides pre-written code for common functionality. This reduces project
time and complexity. However, choosing a well-maintained and secure

12

2 Related Work

framework is critical, as vulnerabilities in the framework can affect the
security of the entire project (Walden, Stuckman, and Scandariato, 2014).

2.2.1 OWASP Web Security Testing

Open Web Application Security Project Zed Attack Proxy (OWASP ZAP)
is a security tool, which is actively managed by the OWASP Foundation
and therefore maintained by hundreds of international volunteers. It not
only provides security testing capabilities, but can also be used to automate
security checks in the development cycle. Although OWASP ZAP is superior
to other tools, it is still not perfect and manual evaluation is required
(Makino and Klyuev, 2015).

2.2.2 Open Source Frameworks

In the realm of open source frameworks, "Laminas", previously known as
the "Zend Framework", is a renowned open source PHP framework for
web applications. Since this project is community-driven, its development
process is transparent, which ensures prompt resolution of security issues.
The Linux Foundation maintains it (Linux Foundation, 2023).

13

3 Security Analysis

Security analysis in the context of web applications is a process to evaluate
and improve the security of their services. As written in Section 1.2, the "TU
Graz Learning Lab" processes data of pupils, mostly under 14 years old,
which is particularly worthy of protection. Furthermore, security breaches
can cause irreparable damage to the reputation of the organization, in this
case, TU Graz (M., Haddad, and A., 2009).

Additionally, security is not a final product and should not be dealt as
such. It is a process that must be present throughout the entire project and
software development life cycle (Teodoro and Serrao, 2011).

3.1 Security Analysis Tools and Techniques

To get a general overview of the project, at first a code analysis with "Ph-
pMetrics v2.8.2" is conducted. "PhpMetrics"1 is an open source static code
analysis tool for "PHP", providing software quality metrics about the ap-
plications. The tool shows insights into the maintainability, complexity of
the project and the degree of coupling between the objects. Additionally, it
provides information about the dependencies. Whereas all these parameters
are not directly related to a security analysis, they provide the foundation
for secure software development and therefore have a huge indirect impact
on software security (Mcgraw, 2004).

With this information in mind, OWASP ZAP version 2.12.02 is used to start
the actual security analysis. OWASP ZAP is an open source web application

1https://PhpMetrics.org/ visited on 07/04/2023

2https://www.zaproxy.org/ visited on 07/04/2023

14

https://PhpMetrics.org/
https://www.zaproxy.org/

3 Security Analysis

security scanner, which provides several tools for static and dynamic security
analysis. Further, it allows testing the application in different contexts.

At this stage, each web application is tested independently, aligning with the
system design of the "TU Graz Learning Lab" as described in Section 1.1.1,
where each application operates autonomously. Therefore, the results have
to be combined in order to be able to make statements about the whole
project. This is done using the OWASP ASVS version 4.0.3.

OWASP ASVS3 is an open source framework that helps to build secure web
applications. It is basically a collection of security requirements and tests
that can be used to define what level of security an application has and what
level it needs. OWASP (2021) defines the following three levels of security:

Level 1 ("First steps, automated, or whole of portfolio view") is meant as a
basic level that every application should strive for.

Level 2 ("Most applications") is meant for applications that use sensitive
data.

Level 3 ("High value, high assurance, or high safety") is the highest level of
security and reserved for applications in the military, critical infras-
tructure or safety.

This thesis will concentrate on the "Level 1" requirements. "Level 1" is the
foundation for all other higher levels and although the "TU Graz Learning
Lab" deals with sensitive data, it makes sense to concentrate on the lowest
requirements and if they are fulfilled the next higher level can be analyzed.

3.2 Application Scanning and Testing

This section will describe methodology and the main results of the analysis
performed. This is achieved by first defining the scope of the security
analysis and then dividing the analysis into the static part, the dynamic part
and the manual part. As described in the previous section, the main tools
used for the analysis were "PhpMetrics" and OWASP ZAP.

3https://owasp.org/www-project-application-security-verification-standard/
visited on 07/04/2023

15

https://owasp.org/www-project-application-security-verification-standard/

3 Security Analysis

3.2.1 Scope

When testing the application, it is set up locally on a "Vagrant" box. There-
fore, the scope of the application does not include the actual infrastructure
of the live version, with one exception, which will be discussed in the fol-
lowing paragraph. The testing approach can be seen as a gray box testing
analysis, which is well suited for web applications. Gray box testing for
web applications merges methodologies from white box testing, in which
a tester has access to all resources of an application, and black box testing,
where a tester accesses the system no differently than a regular user. This
approach allows testing the project effectively by combining insights from
the project’s application’s structure and codebase with a user’s perspective
(Acharya, Pandya, and Department, 2012).

The live version of "TU Graz Learning Lab"4 is tested for Transport Layer
Security (TLS) configurations via the tool "SSL Labs v2.1.10"5 from "Qualys",
as this information is required to apply "Level 1" OWASP ASVS. Therefore,
the scope of the analysis stretches from the configuration of the provisioned
infrastructure, to the TLS configuration of the live version to the actual
codebase.

3.2.2 Static Analysis

As described in the previous section, "PhpMetrics" is used for the first part
of the static analysis. In addition, OWASP ZAP also provides static analysis
tools. For simplicity, and due to the fact that OWASP ZAP uses static tools
during dynamic scan, the entire analysis of OWASP ZAP is included in the
dynamic part of the security analysis.

General Code Quality and Testability

Each application is individually tested with "PhpMetrics", after which all
the information is consolidated. The results offer a comprehensive overview

4https://schule.learninglab.tugraz.at/ visited on 07/04/2023

5https://geocerts.ssllabs.com/ visited on 07/04/2023

16

https://schule.learninglab.tugraz.at/
https://geocerts.ssllabs.com/

3 Security Analysis

of the project, enabling an evaluation of its overall state.

Table 3.1 shows the lines of code and the number of classes each application
has. While the individual applications have relatively small codebases, all
applications together have a moderate size with 796 classes and 70863 lines
of code in the context of web applications. This metrics alone does not have
any significance, but the information should be kept in mind for the next
points dealing with maintainability.

Application Classes Lines of Code
Buchstabenpost 35 2679

Divisionstrainer 72 4473

EinmalEins 79 10855

IderBlogExercises 188 12825

JuniorPlusMinus 82 4761

Lesetrainer 65 7089

Multiplikationstrainer 63 8346

PlusMinus 111 10447

UserManager 101 9388

TOTAL 796 70863

Table 3.1: PhpMetrics Number of Classes and Lines of Code

Further, "PhpMetrics" also provides the cyclomatic complexity of the project.
The cyclomatic complexity can be used to evaluate the testability and the
maintainability of the project. This is done by estimating the potential
number of independent paths through the code (Gill and Kemerer, 1991).
This number can then be used to evaluate maintainability and testability
with the following threshold value (Martin, 2009):

1-10: Low Complexity, is code which is easy to understand, it has a typically
linear control flow.

11-20: Moderate complexity, is code that has some branching, but is still
manageable.

21-50: High complexity, indicates code that has a more complex structure.
It may require additional attention through good understanding and
testing.

17

3 Security Analysis

>50: Untestable complexity, indicates code that is very challenging to
understand and nearly impossible to test.

Especially automated tests play an extremely important role in developing
web applications (Zandstra, 2016). Some applications like the "UserManager"
and the "Buchstabenpost" contain "PHP" unit tests, but these are basically
scattered. Additionally, they are not automated and the coverage is so low,
that they play no role in the actual development and can therefore be ne-
glected. The only exception is the "SOAP" API, which would have sufficient
tests for a secure software development in an automated environment. The
consequences of this are visible in the actual security analysis later.

Table 3.2 shows the number of classes categorized by the previously de-
scribed cyclomatic complexity thresholds of each individual application.
As described in Section 1.1.1, the functionality of the applications is not
so complex that such a high complexity is justified, mostly for the most
important classes of the project. This is one reason why the project lacks
automated testing, which in turn makes it challenging to implement tests
retrospectively (Belonozkin and Rybanov, 2016).

Application #Moderate #High #Untestable
Buchstabenpost 4 5 0

Divisionstrainer 8 6 0

EinmalEins 9 6 6

IderBlogExercises 25 11 0

JuniorPlusMinus 6 1 1

Lesetrainer 7 7 1

Multiplikationstrainer 0 2 4

PlusMinus 20 10 0

UserManager 16 8 2

TOTAL 95 56 14

Table 3.2: PhpMetrics Cyclomatic Complexity

Furthermore, "PhpMetrics" tests the applications for violations. Violations
are categorized as follows:

18

3 Security Analysis

Information are non-critical findings, that include unused variables, code
deduplication, inefficient constructs and general improvement of the
code.

Warnings are potential issues, that are triggered by complexity thresholds,
code style violations or security vulnerabilities.

Errors are critical findings, that represent issues that violate coding standard
or best practice. They require immediate attention.

Table 3.3 shows the results for the tested applications of "TU Graz Learning
Lab". The total number of 294 Violations, consisting of 34 Information, 149

Warnings and 111 Errors, indicates poor software quality and confirms the
project’s state of obscurity, which was described in Section 1.2.

Application Information Warnings Errors Σ
Buchstabenpost 1 6 7 14

Divisionstrainer 0 8 5 13

EinmalEins 10 25 19 54

IderBlogExercises 1 32 12 45

JuniorPlusMinus 2 5 17 24

Lesetrainer 5 15 12 32

Multiplikationstrainer 6 17 10 33

PlusMinus 2 21 8 31

UserManager 7 20 21 48

TOTAL 34 149 111 294

Table 3.3: PhpMetrics Violations

Dependencies

Keeping the dependencies of the project up to date is very important for
security. Outdated modules not only impact the maintainability of the
project, but can also reveal information about the general security of the
web application. Additionally, dependencies between security requirements
may cause additional vulnerabilities (Wang et al., 2022).

Table 3.4 presents the number of each application’s direct dependencies,
excluding transitive ones, and indicates how many require an upgrade. All

19

3 Security Analysis

applications collectively use 42 different modules. Thus, the total number
in the table includes dependencies that are counted more than once. This
approach was deliberately chosen as the process of updating might be
similar across applications, yet the extent of a dependency’s integration into
a project can vary. Additionally, not all dependencies across applications
are outdated from the same version. In general, the analysis reveals that
there is no system in place to ensure comprehensive project updating or to
guarantee that all application dependencies are of the same version.

Application #Modules #Need Upgrade
1x1 Trainer 9 9

Buchstabenpost 27 24

Divisiontrainer 9 9

IDeRBlog Exercises 13 13

Junior Plus-Minus-Trainer 18 17

Lesetrainer 25 22

Mathe-Multi-Trainer 12 12

Plus-Minus-Trainer 12 12

UserManager 22 20

TOTAL 147 138

Table 3.4: Applications and Dependencies

3.2.3 Dynamic Analysis

The dynamic analysis is done with OWASP ZAP. The following workflow
is performed for each application:

1. Define scope and context: Given that each application has its own
authentication process, they must be tested individually. For this
purpose, the scope must be defined to ensure that the dynamic test
focuses solely on the respective application, without involving others.
Furthermore, the testing process needs to be designed in such a way
that it understands how to perform login procedures and ascertain
authentication status.

20

3 Security Analysis

2. Spider: The traditional spider process creates a map of Uniform Re-
source Locator (URL) routes within the application. It achieves this by
starting at an initial point and recursively following the links present
in the application.

3. Ajax Spider: This extends the URL map from the previous step, but
not merely through link following. The Ajax Spider generates links
dynamically via a real browser, ensuring broader coverage. This is
particularly important because modern applications often rely on
"Asynchronous JavaScript" and Extensible Markup Language (XML),
elements that are difficult to detect with a traditional spider.

4. Active Scan: Once all the routes have been identified, OWASP ZAP
then can use them to perform an active scan, attempting various
attacks to find potential vulnerabilities. The active scan is performed
within different contexts, implying that it is run multiple times to
ensure all routes associated with different roles are thoroughly tested.

Then OWASP ZAP documents the vulnerabilities found along with the
request and associated parameters. It also categorizes them and assigns a
risk level. The following risk level exists:

1. Informational
2. Low Risk
3. Medium Risk
4. High Risk

OWASP defines the risk level as a combination of the likelihood of a vul-
nerability being exploited and the impact of what could happen. That is,
the higher the likelihood and impact, the higher the risk level, and vice
versa.6

OWASP ZAP is able to find 22 different categories of potential vulnerabili-
ties or security flaws in all applications together. Table 3.5 shows how many
categories with the corresponding risks were found per application. All
applications revealed potential vulnerabilities at the low and medium risk
levels. However, high-level alerts were only found in "IderBlogExercises",
"JuniorPlusMinus", and "PlusMinus".

6https://owasp.org/www-community/OWASP_Risk_Rating_Methodology visited on
07/10/2023

21

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3 Security Analysis

Application Informational Low Medium High Σ
Buchstabenpost 3 5 2 0 10

Divisionstrainer 3 6 5 0 14

EinmalEins 3 5 4 0 12

IderBlogExercises 3 7 5 1 16

JuniorPlusMinus 3 5 6 2 16

Lesetrainer 3 6 3 0 12

Multiplikationstrainer 4 6 4 0 14

PlusMinus 4 7 8 1 20

UserManager 4 5 4 0 13

Table 3.5: Application Risk Level Count

Table 3.6 presents all categories of potential vulnerabilities found, as well
as the number of corresponding requests that triggered them across all
applications. Four instances of "Cross Site Scripting (Reflected)" were identi-
fied, wherein Java Script (JS) can be executed through a URL, along with
one instance of a potential "SQL Injection". Both are classified as high-risk
vulnerabilities. Additionally, numerous medium-risk alerts were detected,
such as "Content Security Policy (CSP) Header Not Set" and "Absence of
Anti-CSRF Tokens". The low-risk alerts mostly include information that a
potential attacker could utilize.

22

3 Security Analysis

Alerts Risk Level Total
Cross Site Scripting (Reflected) High 4

SQL Injection High 1

Absence of Anti-CSRF Tokens Medium 142

Application Error Disclosure Medium 2

Buffer Overflow Medium 15

Content Security Policy (CSP) Header
Not Set

Medium 2094

Missing Anti-clickjacking Header Medium 84

Vulnerable JS Library Medium 11

Parameter Tampering Medium 7

XSLT Injection Medium 3

.htaccess Information Leak Medium 4

Application Error Disclosure Low 10

Cookie No HttpOnly Flag Low 52

Cookie without SameSite Attribute Low 77

Server Leaks Version Information
via “Server” HTTP Response Header
Field

Low 2342

Timestamp Disclosure - Unix Low 8430

X-Content-Type-Options Header Miss-
ing

Low 251

Big Redirect Detected (Potential Sen-
sitive Information Leak)

Low 93

Information Disclosure - Suspicious
Comments

Informational 186

Modern Web Application Informational 101

User Agent Fuzzer Informational 1574

User Controllable HTML Element At-
tribute (Potential XSS)

Informational 162

Table 3.6: OWASP ZAP Scan Results

The presence of numerous potential vulnerabilities indicates that the applica-
tion does not adhere to best security practices in most aspects. Additionally,
the findings of the dynamic analysis correspond with previously discovered

23

3 Security Analysis

flaws in the static analysis, which highlighted a general lack of software
quality. Indeed, this convergence is expected, given that sound security prin-
ciples are based on the foundation of good software development processes.
The absence of such processes further exacerbates the issues.

Remarkably, the "SOAP" API did not trigger any OWASP ZAP errors, indi-
cating its security from a dynamic testing standpoint. This outcome may
be attributable to thorough testing. The "SOAP" API represents the most
crucial component of the project, serving as the interface for all applications
and managing the authentication process.

Additionally, the quality of the TLS connection is also dynamically tested.
This is why the live page is tested via "Qualys SSL Labs". The test did not
find any serious vulnerabilities, moreover the configuration follows best
practices and therefore can be considered secure.

3.2.4 Manual Review

The manual review is carried out in conjunction with the static and the
dynamic review. Firstly, OWASP ZAP provides a so-called "HUD" which
allows intersecting requests directly in the browser and to apply various
attacks or fuzzing while browsing. In general, it is very easy to put the
applications into "Internal Server Errors", which means that the server is in
an undefined state or throws an exception.

This can usually be done by either deleting or modifying parameters or
cookies directly in the requests. Further, it shows that the authorization
process is severely broken, some applications do not log out when the
session ID is deleted, or it is at least possible at the front end to view admin
or teacher content.

Additionally, certain routes such as "baseurl/manager" check only for user
login status and not for authorization. This implies that a logged-in user,
regardless of their role, can add arbitrary users to arbitrary school classes,
as evidenced in Screenshot 3.1. Whereas teachers should only be able to add
students to their class and only admins should have full access to all classes.
However, the primary focus of the manual review lies in the vulnerabilities

24

3 Security Analysis

already discovered, most of which could be confirmed. The outcome is
a security report for each application, the details of which are primarily
described in the dynamic analysis.

Figure 3.1: Failed Authorization on baseurl/manager

Furthermore, OWASP ASVS is used to check if the "TU GRAZ Learning
Lab" reaches its security "Level 1". It has many requirements that cannot be
checked automatically. Therefore, it is necessary to look at each constraint
manually and check if it is fulfilled or if it is possible to find a negative
example in the reports or manually in the project.

In the context of out-of-date dependencies, the tool "Composer" offers the
audit functionality, where it is possible to discover modules with potential
security vulnerabilities. Especially in the "Cross Site Scripting (Reflected)"
vulnerabilities, it was also possible to find the cause in an outdated module,
as the Screenshot 3.2 shows. This shows that the vulnerability could have
been mitigated, when the application would have been updated.

25

3 Security Analysis

Figure 3.2: Security Advisory Composer Audit

3.3 Vulnerability Analysis

This section presents the identified vulnerabilities and analyzes their impli-
cations. Firstly, the issues related to code quality and maintainability are
discussed. Then, the problems associated with dependency management are
examined. This is followed by a discussion of the dynamic analysis results.
Lastly, this section synthesizes all these issues in an attempt to uncover the
root cause of the identified vulnerabilities.

3.3.1 Maintainability

As described in Section 3.2.2 the project has 95 classes of moderate complex-
ity, 56 classes of high complexity and 14 classes of untestable complexity.
High cyclomatic complexity indicates the tendency for escalated testing and
general maintenance issues. Therefore, a refactoring of the existing codebase
is required to improve at least the 14 classes with untestable complexity.
Furthermore, a refactoring of the high complexity classes will also provide
an improvement for the maintainability of the project.

After that, it makes sense to write tests for the improved classes and intro-
duce an automated workflow for the software development process. This
can be achieved by introducing a test-driven development. Test-driven de-
velopment involves writing a test case for a new feature before the actual
implementation of the feature. Once the feature is implemented, it’s im-
mediately tested using the predefined test case (Jureczko and Mlynarski,
2010).

26

3 Security Analysis

Further tests for the whole project must be written to a sufficient extent to
have a significant impact on the development cycle. This is an integral factor
for the preservation of the code quality, therefor for the maintainability
of the whole project and consequently for the security of the "TU Graz
Learning Lab".

Equally important is the introduction of an automated static analysis tool,
such as a linter (Acar et al., 2017). "PhpMetrics" found 294 violations, which
indicates serious concerns within the code, that has again consequences on
maintainability and security. This grievance must be remedied in order to
enable a proper workflow in the project.

Refactoring of the project can be used to introduce a proper software devel-
opment cycle. This includes code reviews and a maintained documentation,
in addition to the previously mentioned automated tests and static analysis
tool.

This process will require considerable effort, hence the necessity to prioritize
the problems. The following list offers a prioritized approach to resolving
these issues:

1. Introduction of a secure software development cycle with code reviews.
This can improve the quality of the subsequent work.

2. Refactoring of untestable classes.
3. Massive extension of the existing "PHP" unit tests to achieve sufficient

code coverage.
4. Introduction of an automated testing process, to ensure proper testing

within the previously established software development cycle.
5. Correction of "PhpMetrics" violations and an integration of an auto-

mated linter.
6. Continuous refactoring of the remaining high-risk classes to align the

structure of the various applications.

This process must be documented to ensure that the project can proceed
independently of the current development personnel.

27

3 Security Analysis

3.3.2 Dependencies

As seen in Section 3.2.2 the analysis reveals a conspicuous absence of a
system that guarantees a consistent and updated state of the project’s
dependencies. Outdated modules not only impact maintainability problems,
but are also a direct indicator of the overall security state of web applications
(Manjunath, 2018).

While the "TU Graz Learning Lab" uses "Composer" as a dependency man-
ager, the system consists of nine separate applications, making management
potentially confusing. Each application requires individual maintenance
and updates, which can be time-consuming due to the manual work needed
to gain an overview of the entire project. Consequently, the applications are
not consistently updated.

Given that the applications are developed with the assistance of "GitLab",
one option is to use "GitLab Dependency Scanning"7 to automate the pro-
cess. This tool can scan the dependencies of the applications for known
vulnerabilities and facilitate their fixing as soon as they become publicly
known.

3.3.3 OWASP ZAP

This section describes the vulnerability categories found, analyzes their
causes, and provides a mitigation strategy. As described in Section 3.2.3, 22

categories of different risk levels were found in numerous instances. Due to
the enormous number of over 15,000 alerts, the order of remediation must
be prioritized.

Furthermore, it makes sense to start fixing the problems only after the main-
tainability and dependency problems described in the previous sections
have been solved. On the one hand, the introduced software development
cycle can improve the code of the fixed vulnerabilities, mitigate new vul-
nerabilities during implementation, and on the other hand, the upgrade
process will fix many of the existing vulnerabilities.

7https://docs.gitlab.com/ee/user/application_security/dependency_
scanning/ visited on 08/02/2023

28

https://docs.gitlab.com/ee/user/application_security/dependency_scanning/
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/

3 Security Analysis

Despite the vast amount of individual vulnerabilities, this thesis discusses
the common themes and evident trends, which are visible through the actual
OWASP ZAP reports. The following description of the categories can be
seen as a prioritization by the risk level of the vulnerabilities found.

Cross Site Scripting (Reflected)

Risk Level: High

Total Instances: 4

"Reflected Cross Site Scripting (XSS)" is a vulnerability where malicious
scripts are injected into a trusted website. In the reflected context, the script
is embedded in an URL, which is then sent to the victim. When the user
clicks on the link, the script is executed in their browser, reflecting the
exploit from the web server. The script can then access sensitive information
on the browser. For example, in our case, the hashed password can be
accessed as it is stored in local memory (KirstenS et al., 2023).

The prevention of XSS involves strategies like input validation, output en-
coding, and the implementation of a Content Security Policy (CSP) through
headers to mitigate the impact of such attacks. Additionally, it should be
noted that some outdated "Laminas" modules carry known security vulner-
abilities related to XSS.

SQL Injection

Risk Level: High

Total Instances: 1

"Structured Query Language (SQL) injection" is a technique that manipu-
lates SQL queries through user input, potentially leading to unauthorized
data access and manipulation. Although Laminas uses Object-Relational
Mapping (ORM), this does not entirely eliminate the risk of SQL injections.
Hence, there’s a need to ensure that user input is appropriately validated.8

8https://www.zaproxy.org/docs/alerts/40018/ visited on 07/15/2023

29

https://www.zaproxy.org/docs/alerts/40018/

3 Security Analysis

Absence of Anti-CSRF Tokens

Risk Level: Medium

Total Instances: 142

Implementation of anti-Cross-Site Request Forgery (CSRF) Tokens mitigates
CSRF attacks, which trick victims into sending a malicious request using
their authenticated identity. This is achieved by providing each session with
unique and unpredictable tokens that are included in each state-changing
request.9

In this context, the "Laminas-Form" module provides an element for exactly
this problem, and it must be used to mitigate this kind of attack. XSS attacks
can bypass CSRF protection.10

Application Error Disclosure

Risk Level: 2 Medium, 10 Low

Total Instances: 12

"Application Error Disclosure" pertains to the unintentional disclosure of
sensitive information through error messages. Such disclosure can give
an attacker a valuable insight into the structure of the project or provide
general information, that can be used for an exploit. 11

In the case of "TU Graz Learning Lab", the two medium-risk alerts disclose
paths within the project that can be used to gain information about its
structure. The low-risk alerts do not provide direct path information, but
information can also be gathered via error codes. These errors mainly occur
due to unhandled exceptions or the absence of custom error pages, with the
details typically stored in server-side logs.

9https://www.zaproxy.org/docs/alerts/10202/ visited on 07/15/2023

10https://docs.laminas.dev/laminas-form/ visited on 07/15/2023

11https://www.zaproxy.org/docs/alerts/90022/ visited on 07/15/2023

30

https://www.zaproxy.org/docs/alerts/10202/
https://docs.laminas.dev/laminas-form/
https://www.zaproxy.org/docs/alerts/90022/

3 Security Analysis

Buffer Overflow

Risk Level: Medium

Total Instances: 15

"Buffer Overflow" errors occur when a program writes more data to a buffer
than it can accommodate. In the worst case, it may allow an attacker to
execute arbitrary code on the server side by overwriting the memory spaces
of the background processes. While "PHP" is generally not vulnerable to
buffer overflows due to its high-level nature, such errors can still trigger
consequential damage. For example, they may cause service unavailability
through denial-of-service attacks. 12

To mitigate this type of error, a proper validation and sanitation of the
parameters is necessary. Additionally, it is necessary to be aware how the
parameters are used in the whole context. Implementing a secure coding
standard can help to avoid such vulnerabilities.

Content Security Policy (CSP) Header Not Set

Risk Level: Medium

Total Instances: 2094

Content Security Policy (CSP) is a security feature that helps detect and
mitigate certain types of attacks, including XSS and data injection attacks.
This is achieved by adding a layer directly into the Hypertext Transfer
Protocol (HTTP) headers in a standardized manner. Consequently, it be-
comes possible to declare whitelisted sources of content that the browser is
permitted to load and execute on the page.13

To mitigate the absence of CSP headers a policy must be defined and then
this can be implemented in a secure coding standard. Further, automated
tests can be implemented to spot the absence during development without
manual review. This policy must be regularly updated.

12https://www.zaproxy.org/docs/alerts/30001/ visited on 07/15/2023

13https://www.zaproxy.org/docs/alerts/10038-1/ visited on 07/15/2023

31

https://www.zaproxy.org/docs/alerts/30001/
https://www.zaproxy.org/docs/alerts/10038-1/

3 Security Analysis

Missing Anti-clickjacking Header

Risk Level: Medium

Total Instances: 84

The "Anti-clickjacking Header" is a similar security feature to the CSP policy
header. However, it protects against clickjacking, also known as a UI redress
attack. In this attack, a malicious site tricks the user into clicking on a hidden
element by overlaying it. The user believes they are performing actions on
the malicious site when, in fact, the interactions are being executed on the
legitimate site below.14

This can be mitigated by implementing an "X-Frame-Option" header in the
web applications and setting it to either "SAMEORIGIN" or "DENY". In
Laminas this can be configured via the "laminas-http" module.15 It should
also be included in the security policy.

Vulnerable JS Library

Risk Level: Medium

Total Instances: 11

Known vulnerable JS libraries, potentially allow an attacker to exploit the
vulnerability and harm the web application. In the context of "TU Graz
Learning Lab" this happens because of outdated dependencies. Therefore,
this warning will be fixed after the update process of the project. As written
in Section 3.3.2 an automated dependency system would have mitigated it
or at least it would be known.16

14https://www.zaproxy.org/docs/alerts/10020-1/ visited on 07/15/2023

15https://docs.laminas.dev/laminas-http/headers/ visited on 07/15/2023

16https://www.zaproxy.org/docs/alerts/10003/ visited on 07/15/2023

32

https://www.zaproxy.org/docs/alerts/10020-1/
https://docs.laminas.dev/laminas-http/headers/
https://www.zaproxy.org/docs/alerts/10003/

3 Security Analysis

XSLT Injection

Risk Level: Medium

Total Instances: 3

While Extensible Stylesheet Language Transformations (XSLT) is not used
directly in the project, the warning indicates that there may be other chain
trigger configuration issues that cause this error. In general, XSLT injection
is an attack that allows an attacker to manipulate data processed by a XSLT
engine. In the worst case, an attacker could execute arbitrary code through
specially crafted input.17

To mitigate this type of error, proper validation and sanitization of the
parameters is required. Since this is not the first time this problem has
occurred, it must be included in the security policy so that all user input is
properly validated.

.htaccess Information Leak

Risk Level: Medium

Total Instances: 4

The ".htaccess" file is typically used in the configuration of the "Apache"
web server. This file can contain valuable information for an attacker. So
this error has nothing to do with the "PHP" framework itself, but with the
permissions of the file on the web server. This file should only be accessible
from the server side. To mitigate this vulnerability, the file’s permissions
must be checked, especially on the production site.18

17https://www.zaproxy.org/docs/alerts/90017/ visited on 07/15/2023

18https://www.zaproxy.org/docs/alerts/40032/ visited on 07/15/2023

33

https://www.zaproxy.org/docs/alerts/90017/
https://www.zaproxy.org/docs/alerts/40032/

3 Security Analysis

Cookie No HttpOnly Flag

Risk Level: Low

Total Instances: 52

The "HTTP-only" flag in a cookie ensures that the cookie cannot be accessed
by a client-side script. This reduces the damage from XSS attacks. If the
flag is not present, it is possible for JavaScript to access the cookie, and the
information can be transferred or even the session hijacked. 19

In the context of the "TU Graz Learning Lab" even some of the session ID
cookies are not set to "HTTP-only" in all cases. Therefore, it must be ensured
that the relevant cookies are always set to "HTTP-only". This fact must also
be included in the security policy documentation.

Cookie without SameSite Attribute

Risk Level: Low

Total Instances: 77

The "SameSite" attribute in a cookie ensures that the cookie cannot be set
as a result of a cross-site request. This reduces the damage from CSRF
attacks. Without it, cookies can be accessed and sent by third-party sites.
This can potentially lead to information leakage or make the application
more vulnerable to CSRF or timing attacks. 20

Again, to mitigate this vulnerability, it is necessary to ensure that every
relevant cookie has the "SameSite" attribute. To ensure this, it is necessary
to include this fact in the security policy documentation and to think about
it during code reviews.

19https://www.zaproxy.org/docs/alerts/10010/ visited on 07/15/2023

20https://www.zaproxy.org/docs/alerts/10054/ visited on 07/15/2023

34

https://www.zaproxy.org/docs/alerts/10010/
https://www.zaproxy.org/docs/alerts/10054/

3 Security Analysis

Server Leaks Version Information via “Server” HTTP Response Header
Field

Risk Level: Low

Total Instances: 2342

The HTTP response header "Server" contains information about the server
and the program being used. This can reveal information, which can be
abused by an attacker and is a form of information leakage. 21

In the context of "TU Graz Learning Lab" all found instances provide infor-
mation about the specific version of the web server "Apache" and the name
of the operating system "Debian". This can be mitigated by configuration of
the web server.

Timestamp Disclosure - Unix

Risk Level: Low

Total Instances: 8430

Timestamp disclosure is also a form of information leakage. Unix times-
tamps in web applications can be aggregated to reveal exploitable patterns.
Therefore, the exposure of system-specific data must be minimized. This is
another point that needs to be addressed in the security policy documenta-
tion.22

X-Content-Type-Options Header Missing

Risk Level: Low

Total Instances: 251

The "X-Content-Type-Options: nosniff" HTTP response header protects the
browser from Multipurpose Internet Mail Extensions (MIME) sniffing. While

21https://www.zaproxy.org/docs/alerts/10036-2/ visited on 07/15/2023

22https://www.zaproxy.org/docs/alerts/10096// visited on 07/15/2023

35

https://www.zaproxy.org/docs/alerts/10036-2/
https://www.zaproxy.org/docs/alerts/10096//

3 Security Analysis

MIME was originally designed for email, it is used on the Web to indicate
the type of files being transferred. If an "X-Content-Type-Options" header is
set to "nosniff", the browser does not interpret the response and therefore
cannot be interpreted as a different type, leading to vulnerabilities.23

To mitigate this vulnerability, it is necessary to include this header in server
responses. This must also be documented in the software security policy
and tested regularly.

Big Redirect Detected (Potential Sensitive Information Leak)

Risk Level: Low

Total Instances: 93

This error is thrown because of non-empty bodies in redirect responses. In
the context of the "TU Graz Learning" lab, no information leakage is found,
but for best practice, redirect responses should have almost no content. This
bug needs to be included in the project’s software security policy.24

3.3.4 Interim Summary

As seen in this section, the maintainability problems, the dependency issues
and the actual security flaws are strongly interconnected. Maintainability
issues not only slow down the development, they also provide a direct risk
to the security of the project. The problem is amplified by the dependency
issues, as outdated dependencies are not only affecting maintainability, but
also bring in known vulnerabilities that attackers can exploit.

The introduction of a secure software development cycle, including code
reviews, automated testing and frequent dependency updates, can mitigate
the problems. In addition, an automated dependency management system
and a well documented environment, including a security policy, can ad-
dress the challenges. Further, a continuous review and improvement process,

23https://www.zaproxy.org/docs/alerts/10021/ visited on 07/15/2023

24https://www.zaproxy.org/docs/alerts/10044/ visited on 07/15/2023

36

https://www.zaproxy.org/docs/alerts/10021/
https://www.zaproxy.org/docs/alerts/10044/

3 Security Analysis

following best practices and coding standards, including static and dynamic
analysis through Continuous Integration/Continuous Delivery (CI/CD),
will ensure a more secure and maintainable application.

3.4 Comparison with Security Standards

With all the information from the security analysis and the vulnerability anal-
ysis, it is possible to benchmark the security status of the "TU Graz Learning
Lab" with the OWASP ASVS "Level 1" requirements as stated in Section 3.1.
The Table 3.7 shows the result of the comparison. The OWASP ASVS "Level
1" has a total of 128 requirements. Of these, the project satisfies 45, fails
to meet 68, and 15 are requirements for which it is irrelevant to comment,
as they were not implemented in the project, such as, for instance, an
Lightweight Directory Access Protocol (LDAP) authentication.

Status #ASVS Level 1 Requirements
Fulfilled 45

Not Fulfilled 68

Not Implemented 15

TOTAL 128

Table 3.7: ASVS Level 1 Requirements Status

The fact that over half of the "Level 1" requirements aren’t met indicates
significant security gaps that need to be addressed. "Level 1" is the minimum
standard that all web applications should fulfill, according to OWASP ASVS.
This outcome is not surprising, given the lack of structure at every level
observed so far, which exacerbates the issues. In OWASP, 2021, Figure 3.3
presents the various levels of application security verification and provides
an explanation as to why numerous requirements often remain unmet. Al-
most none of the "Level 1" requirements shown in the picture are fulfilled.

37

3 Security Analysis

Figure 3.3: OWASP Application Security Verification Standard 4.0 Levels

Moreover, the "Level 1" requirements do not encompass automated testing or
a secure software development cycle, both of which are suggested solutions
for the project’s structural problems. Considering the sensitive data handled
by the "TU Graz Learning Lab", it should aim to meet the OWASP ASVS
Level 2 standards in the long run. Given that these requirements are essential,
it is particularly crucial in a student development context to implement
them as soon as possible, as will be discussed in the following section.

3.5 Interpretation of Results in the Student
Development Context

The security analysis gives a significant insight into the project "TU Graz
Learning Lab". The analysis reveals serious challenges and characteristics
that have an enormous impact on the development and security of the appli-
cations. As stated before, the project has grown continuously over a decade,
without any serious project management nor any software development
cycle.

The actual implementation can be seen as "cowboy coding" with a "hands-
off" development process, which refers to a development process where
once a part is finished, it is passed on to the next developer and the original
author has no further involvement with it. Unfortunately, this is difficult to
prevent in a student environment (Włodarski, Poniszewska-Marańda, and
Falleri, 2022).

38

3 Security Analysis

Undergraduate and graduate students typically participate in such a project
for a short period of time, usually a semester or an academic year. Further-
more, there is a transient nature in student involvement, the experience in
web development can vary enormously due to the fact that especially in
bachelor classes there are few practical web application development tasks
and so it depends on the student’s specific background how experienced
they are.

All of this exacerbates existing problems with code maintainability and
documentation, which are critical parts of a secure software development
cycle. The findings from the analysis, with high cyclomatic complexity in
the codebase and a lack of comprehensive automated testing, are further
indications that confirm these problems.

Therefore, maintainability is extremely important in a student-developed
context. With high staff turnover, the code must be sufficiently under-
standable to new developers. While many students primarily develop their
standalone applications and use the "SOAP" interface for integration, code
is often borrowed from other applications, which can introduce the same
problems into the new applications.

In addition, the scientific staff, who are usually not involved in the project
for very long, must be able to learn in a reasonable amount of time and
maintain the project without too much effort. High complexity, insufficient
testing, and lack of proper documentation create significant barriers for
new developers. This also leads to the inconsistent update pattern for
dependencies and all the vulnerabilities discovered by security analysis.

To mitigate these risks, a secure software development lifecycle must be
implemented. This includes comprehensive documentation, including a
secure development policy and coding standard for maintainable coding
practices, automated testing, and dependency management. Therefore, a
planned development process can also improve the usability of the project
and make it less likely to fail (Germain and Robillard, 2005).

Further, iterative methodologies like agile practices can also improve the
development in a student context enormously (Wang et al., 2022). Future
work could explore how these practices can be implemented in the student
context.

39

4 Security Implications in Protocol
Implementation: A Case Study
of OAuth 2.0 and TU Graz
Learning Lab

After the security analysis, this part of the thesis shows how the found
issues influence an actual development. Therefore, none of the mentioned
mitigation strategies are applied to see how the issues affect development
in a practical environment.

This chapter describes an attempted implementation of "OAuth 2.0" to re-
place the "SOAP" API of the "TU Graz Learning Lab". The first subsections
explain what is important when implementing a protocol in web applica-
tions and give a general overview of "OAuth 2.0" and how it can be used
for authorization and authentication in web applications.

Afterward, this thesis documents the implementation step by step and
analyzes it in the context of system design, dependency management and
student developed applications. Finally, a connection to the previous chapter
will be drawn.

4.1 Introduction to Protocol Implementation and
Security

Introducing a new protocol implementation into an existing application
entails numerous key considerations that should be addressed. Particularly

40

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

in web applications, gaining a complete understanding of the system and
the implications of new components within the overall context can be
challenging. Furthermore, in software projects, there is often a discrepancy in
the level of attention given to security and functionality (Rowe, Baskerville,
and Wolff, 2012).

Implementing a protocol into an existing project in web development need
a clear structure and a plan how to achieve the goal. Therefore, following
steps can be considered:

1. Understanding the Protocol: The protocol must be understood in the
context of the entire system.

2. Security: The implementation of the protocol must improve the secu-
rity and not introduce new vulnerabilities.

3. Interoperability: The protocol must work seamlessly with the existing
components, and it must be easy to implement new components with
it.

4. Error Handling: Implementation of a robust error handling is essential
for future arising issues.

5. Testing: Rigorous testing is crucial to assure the protocol’s function-
ality and to secure maintainability following future adaptations and
modifications.

6. Maintenance and Documentation: The protocol implementation must
be readily maintainable and comprehensively documented for future
developers.

7. Compliance: The protocol must be implemented in a way that assures
following best practices and up-to-date standards.

8. Updates and Evolution: Plans for future updates or extensions must
be kept in mind.

4.2 OAuth2: An Overview

"The OAuth 2.0 authorization framework enables a third-party
application to obtain limited access to an HTTP service, either
on behalf of a resource owner by orchestrating an approval
interaction between the resource owner and the HTTP service,

41

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

or by allowing the third-party application to obtain access on its
own behalf. This specification replaces and obsoletes the OAuth
1.0 protocol described in RFC 5849." Hardt (2012)

Therefor, "OAuth 2.0" is an authorization protocol that allows applications
to obtain delegated access to HTTP services by issuing access tokens. It
depends on a secure channel in the context of web application based on
Hypertext Transfer Protocol Secure (HTTPS). The provided confidentiality
by HTTPS enables the non-disclosure of unauthorized individuals through
encryption and the integrity of HTTPS ensures, that no data is tampered
with or altered through source legitimation.

"OAuth 2.0" lacks built-in mechanisms for authenticating users on client
applications. "OpenIDConnect" fills this gap by adding an authentication
layer on top of it. This structure can be seen in the Figure 4.1 where "OAuth
2.0" handles the authorization and "OpenIDConnect" is responsible for the
authentication.

OpenIDConnect

OAuth2

HTTPS

Figure 4.1: Authentication over OpenIDConnect based on OAuth 2.0 and HTTPS

To understand the protocol and its benefits in the context of "TU Graz
Learning Lab" the next subsections will describe the "Authorization Code
Flow" of "OAuth 2.0" and the "OpenIDConnect" layer above it.

42

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.2.1 Authorization Code Flow

The "Authorization Code Flow" is a "grant type", respectively a way to
obtain an access token, in "OAuth 2.0". This is achieved by redirecting the
user from the requested application to the authentication server. Due to
this structure, this flow is the best choice for "TU Graz Learning Lab". As
described in the Section 1.1.2 each application has its own login form and
this can be unified through one login at the authentication server via the
"Authentication Code Flow".

The following Figure 4.2 explains the process, whereby the "User" is often de-
noted as "Resource Owner", the "Application" as "Client", the "OAuth2Server"
as "Authorization Server" and the "API" as "Resource Server" (Bucher and
Christensen, 2019):

43

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

User Application OAuth2Server

User OAuth2Server

Application OAuth2Server

Application OAuth2Server

Application API

requests

authorization code request

redirect to login

autheticates

authorization code

request access tokenrequest access token
validates

access token

access token

user data

Figure 4.2: Authorization Code Flow

1. The user requests the application and gets redirected by the application
to the "OAuth 2.0" server. The application must be registered at the
"OAuth 2.0" server initially with an ID and a secret, which gets sent
and checked. Additionally, a redirect URL is also stored or sent from
the application to the "OAuth 2.0" server and used to redirect the user
back to the application, once the user is authenticated.

2. The user is redirected to the login form from the "OAuth 2.0" server,
in our case the "UserManagers" login page, to authenticate. If the user
is already authenticated, this step is skipped, due to the session based
login, that already exists.

44

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

3. Then the "OAuth 2.0" server sends the authorization code directly to
the application using the stored redirect URL.

4. The application can use this code to request an access token. Therefore,
the server validates the code and sends the token to the application,
which stores it.

5. The application can use this token to access protected resources on the
API.

4.2.2 OpenIDConnect

After the client has requested the access token, the "OpenIDConnect" ex-
tension comes into play. Since "Oauth 2.0" has not a standardized way for
authentication, through "OpenIDConnect" sends an additional ID token
in the request. This ID token is a JSON Web Token (JWT), that contains
user information in a standardized way. This ensures compatibility and
is especially important, when the user visits an application the first time,
so that a new entry with his information can be created in the respective
database of the application.

4.3 Attempted Implementation of OAuth 2.0

As stated in the previous section and in combination with the introduction,
"OAuth 2.0" and its mechanism for authentication with "OpenIDConnect"
can be a good alternative to the current authentication over the "SOAP"
protocol. The following subsection describes the attempted implementation
and its problems. This is achieved by a journal like structure, so that all
issues can be addressed and interpreted in their context. Given that not
only the applications were developed by students, but this document is also
authored by a student, this approach enables an insightful examination of
workflow through self-reflection.

Additionally, it should be noted that the sequence of the following sections
does not align with the actual progression during implementation. Given
the inadequate documentation, insufficient maintenance, and suboptimal

45

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

system design, many insights were only gained when progress was ob-
structed at a certain point, necessitating a return to previous steps to rectify
issues. Rather than adhering rigidly to the chronological order of issue
discovery, this thesis organizes them in a manner that provides a more
coherent understanding of the implementation process.

4.3.1 Provision

Due to infrastructural reasons from Zentraler Informatikdienst (ZID) , which
is responsible for hosting the applications on the servers of TU Graz, it is
necessary to update the server operating system of the applications from
"Debian 10" to "Debian 11" and "PHP 7.3" to "7.4". During the development
process, the decision was made to upgrade to Debian 12 and PHP 8.1,
as detailed in the subsequent section. In addition, when introducing new
components in web applications, it is best practice to update the project
beforehand.

This is important not only for security reasons, such as mitigating outdated
components with known vulnerabilities, but also for maintainability. The
setup of the project is based on a script-driven development environment.
Therefore, the following files play a role in the setup of the Vagrant Box and
must be adapted when upgrading to new components. Figure 4.3 shows the
structure.

46

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

/webapps
/vagrant

/config
/shell

build__einmaleins.sh
custom_php.sh
final.sh
setup__buchstabenpost21.sh
setup__divisionstrainer.sh
setup__einmaleins.sh
setup__iderblogexercises.sh
setup__junior_plus_minus.sh
setup__lesetrainer.sh
setup__multiplikationstrainer.sh
setup__plus_minus_trainer.sh
setup__portal_usermanager.sh
setup__schoolappsconfig.sh

install.sh
Vagrantfile

Figure 4.3: Configuration of provisioned Infrastructure

This structure relies on the Infrastructure as Code (IaC) methodology. Specif-
ically, these files manage the provisioning and configuration of the provi-
sioned infrastructure. IaC in combination with "Vagrant" allows the project
to be set up relatively quickly and additional projects with different environ-
mental prerequisites can be integrated simply. Unfortunately, no additional
tools are used to develop and maintain the structure. Therefore, every de-
pendency had to be identified manually, and the prerequisites needed for
the applications to run had to be researched individually (Rahman, Farhana,
and Williams, 2020).

Additionally, some repositories need to be manually added to secure the
correct version of the required dependency. During development, numerous
problems were encountered with modules no longer supporting "PHP 7.4".
Consequently, the decision was made to upgrade to "PHP 8.1".

47

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.3.2 Dependency Management

"Composer" is a dependency management tool for "PHP". Due to the fact,
that all applications have their own dependencies, each application has
its own "composer.json" file, which must be updated. The following file is
necessary for updating the respective application, as Table 4.4 shows.

/webapps
/<application>

/src
/<application>

composer.json

Figure 4.4: Path of the composer configuration files

Most "Composer" modules are built using the Dependency Injection design
pattern and are automatically loaded into applications on demand. For
this to happen, these plugins must be configured in the following files, as
Table 4.5 shows:

/webapps
/<application>

/src
/<application>

/config
/autoload

/{,*.}{global,local}.php
<application>.config.php

/module
/config

/module.config.php

Figure 4.5: Configuration files of the imported modules

48

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.3.3 Artifacts from Zend Framework to Laminas Migration

As mentioned in the Introduction 1.1.2 "Zend Technologies" decided to
discontinue the "Zend Framework" in 2019 and the open source community
decided to continue the project under the new name "Laminas". During the
rebranding, not only the name was changed, but also the structure and the
modules were adapted, so that a migration was necessary. This migration
process stretched over a longer period of time. Unfortunately, the "TU Graz
Learning Lab" applications did not complete this process completely, so the
project is still in a state between the two frameworks.

So to be able to install a new module, it was necessary to migrate the main
project from "Zend Framework" to "Laminas". This was done under the
instruction of the official migration guide.1 Additionally, multiple modules
like "laminas-api-tools" also needed specific migrations. Noticing the need
to migrate a module is a matter of checking the documentation, and it
is not clear until errors occur while using an application. "Composer’s"
information about plugins is limited to deprecate only. This means that
"Composer" cannot indicate missing migration in "Laminas".

4.3.4 laminas-api-tools

As commonly known in information security and shown by many counterex-
amples, it is not a good idea to implement new security relevant libraries on
your own (Tobias, 2020). Therefore, the best practice is to find good main-
tained libraries and modules which, not only simplify the implementation
but also make it possible to work with a secure and maintained module in
the application.

Fortunately, "Laminas", in paritucalar "laminas-api-tools" provides many
modules for this use case. After integrating and configuring "laminas-api-
tools" the following modules made sense to integrate into the "TU Graz
Learning Lab" on the "Usermanager" application to enable authorization
and authentication via "OAuth 2.0":

1https://docs.laminas.dev/migration/ visited on 06/13/2023

49

https://docs.laminas.dev/migration/

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

1. "api-tools-mvc-auth"2 handles the authentication and authorization
part in an API. In the context of "OAuth 2.0" this module handles the
authentication request from the client and returns the access token.

2. "api-tools-admin"3 provides an administration platform for creating,
managing and versioning Representational State Transfer (REST) and
Remote Procedure Call (RPC) services through a web based Graphical
User Interface (GUI), so-called "Laminas API Tools Admin UI".

3. "api-tools-oauth2"4 provides an "OAuth 2.0" server, based on "oauth2-
server-php" 5 library by Brent Shaffer, including all grant types, scopes,
"OpenIDConnect" and JWT bearer assertions. It also includes storage
adapters to handle tokens, clients and users. In addition, it handles
validation, scope checking, and token lifecycle.

4. "api-tools-documentation"6 is used for creating and managing the API
documentation. This is crucial for client implementation, as it helps
understand how to interact with the API.

5. "api-tools-documentation-swagger"7 extends the "api-tools-
documentation", generates human and machine-readable documenta-
tion and allows the automatic generation of documentation.

These five modules create a foundation for "OAuth 2.0" authorization and
authentication in the "UserManager" application. While "api-tools-mvc-auth"
and "api-tools-oauth2" are responsible for the technical implementation, the
other three allow for easy implementation and maintenance of the "OAuth
2.0" secured API. This gives the project the maintainability and modularity
it needs.

2https://api-tools.getlaminas.org/documentation/modules/
api-tools-mvc-auth visited on 06/14/2023

3https://api-tools.getlaminas.org/documentation/modules/api-tools-admin
visited on 06/14/2023

4https://api-tools.getlaminas.org/documentation/modules/api-tools-oauth2
visited on 06/14/2023

5https://github.com/bshaffer/oauth2-server-php visited on 06/14/2023

6https://api-tools.getlaminas.org/documentation/modules/
api-tools-documentation visited on 06/14/2023

7https://api-tools.getlaminas.org/documentation/modules/
api-tools-documentation-swagger visited on 06/14/2023

50

https://api-tools.getlaminas.org/documentation/modules/api-tools-mvc-auth
https://api-tools.getlaminas.org/documentation/modules/api-tools-mvc-auth
https://api-tools.getlaminas.org/documentation/modules/api-tools-admin
https://api-tools.getlaminas.org/documentation/modules/api-tools-oauth2
https://github.com/bshaffer/oauth2-server-php
https://api-tools.getlaminas.org/documentation/modules/api-tools-documentation
https://api-tools.getlaminas.org/documentation/modules/api-tools-documentation
https://api-tools.getlaminas.org/documentation/modules/api-tools-documentation-swagger
https://api-tools.getlaminas.org/documentation/modules/api-tools-documentation-swagger

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.3.5 OAuth 2.0 Storage on Server-Side

As stated previously, "OAuth 2.0" requires some information, like keys, user
IDs and tokens. These need to be stored securely. The "api-tools-oauth2"
module comes with storage adapters that provide an interface for this.

As for now, most of the database structure in the "UserManager" gets
build using two SQL files, which are executed during the provisioning
process. They also populate the required data. Nowadays, creating tables
for the "api-tools-oauth2" module using basic SQL commands has many
disadvantages:

1. Data Handling and Manipulation: When using raw SQL object con-
versations have to be done manually.

2. Complexity: Handling data management through SQL files, which in
the case of the "UserManager" have more than 10000 lines, complicates
schema migrations and data validation.

3. Security: When using raw SQL it is mandatory to protect against
SQL injection and other security vulnerabilities, by using prepared
statements or parameterized queries.

Fortunately, the "doctrine" module is also integrated in the "UserMan-
ager", but with the deprecated "YAML" notation. "Doctrine" is a ORM tool
for "PHP", that provides an interface for mapping and interacting with a
database. Therefore, as it is now, all database manipulation, except the initial
setup, is done through doctrine.

However, as mentioned above, it would be best practice to use doctrine
for initial setup and data insertion as well. This can be done using the
"apiskeletons-oauth2-doctrine" module8, which comes with a mapping for
the "api-tools-oauth2" module. Inserting the data into the database will be
discussed in the next session.

8https://apiskeletons-oauth2-doctrine.readthedocs.io visited on 06/14/2023

51

https://apiskeletons-oauth2-doctrine.readthedocs.io

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.3.6 Setup of laminas-cli for Secure Database Initialization

As stated in the previous section, a mechanism for secure storage of the client
data, especially for the keys, is still missing. For that, the module "laminas-
cli"9 fulfills the requirements. This plugin allows executing predefined
commands in the "UserManager" from the command line.

Therefore, it is possible to encrypt the client secret using the "bcrypt" hashing
algorithm provided by "api-tools-oauth2", and store it in the database using
"doctrine". "Bcrypt" uses a salt and performs a series of iterations of a key
derivation function, which makes it computationally expensive, thereby
offering greater resistance to bruteforce and dictionary attacks, compared to
alternatives such as "SHA256". This process ensures secure key storage in
an object-oriented manner, which enhances maintainability. Furthermore,
this approach can be used to generate dummy entries for future testing,
thereby eliminating the need for the "SQL" files.

4.3.7 Transformation of SOAP API to RPC/REST via
laminas-api-tools Admin UI

As written in the Problem Statement, Section 1.2, "SOAP" no longer meets
the needs of the project. Additionally, it is not part of the "Laminas API
Tools" collection, but of the "Laminas MVC" modules, which makes protect-
ing it via the "api-tools-oauth2" complicated and harder to maintain.

Due to the integration of "api-tools-admin", it is now possible to create
"PHP" classes for the API through the "admin UI", eliminating the need
to alter any configuration files for routing and protecting the API. The
structure of the "SOAP" API aligns more with RPC, meaning the function
signature can be easily adapted. For REST, however, it is more sensible to
configure the entities and the corresponding database structure so that data
manipulation can be done directly through REST. Due to the complexity
and the fact that all databases of the client applications would need to be
adapted, it was decided to initially transfer the "SOAP" structure to RPC.

9https://docs.laminas.dev/laminas-cli/ visited on 06/14/2023

52

https://docs.laminas.dev/laminas-cli/

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

After successful implementation, all necessary adaptations can then be made
to integrate REST.

4.3.8 Problems encountered with Secure Token storage on
Client-side

As highlighted in the introduction in Section 1.1.2, every application has
its own database and is relatively independent. The data management
ensures that each application has its own database and gets the required
user information from the API at the first login to the application and then
stores it in its own database.

Therefore, it’s not only the server that needs secure storage for the token,
but the client must also store the token securely. Given that "OAuth 2.0" in
the context of "TU Graz Learning Lab" is solely used for server-to-server
communication, it’s unnecessary to send the token to the user, or to store
it on the user’s side, like it would be in storing it in local storage or in
a cookie. This can mitigate attacks such as "Cross-Site Request Forgery",
"Session Sidejacking", and "Cookie Theft".

To reuse the existing Session based Login for every application, the idea
is to store the tokens in the session storage securely. Thus, the already
implemented module "laminas-authentication"10 can be reused. Firstly, this
approach is implemented into the "Divisiontrainer", where the following
problem arises.

Whenever a user is authenticated and attempts to access the super global
$_SESSION variable, the application times out after executing an "exec"
command, leaving no error messages or traceable notes in the logs. It is
emphasized, that the exec command is used in the "laminas-http"11 module,
which is responsible for the HTTP request. In the background, "laminas-
http" build the request to a "curl" command and the executes it via "exec".

To debug this issue, the same form of authentication and token storage in the
session was implemented in the "PlusMinus", where the issue manifested

10https://docs.laminas.dev/laminas-cli/ visited on 07/23/2023

11https://docs.laminas.dev/laminas-http/request/ visited on 07/23/2023

53

https://docs.laminas.dev/laminas-cli/
https://docs.laminas.dev/laminas-http/request/

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

itself in the same way. After intercepting the traffic between the application
and the "OAuth 2.0" server with a proxy, it is seen that no requests are
sent in this context. So this indicates that the problem indeed lies in the
codebase.

Further research showed, that although the $_SESSION variable is used mul-
tiple times in all applications, there can exist problems with the "laminas-
session" module.12. This module is not directly used by the "Division-
strainer", but has a transitive dependency that is not mentioned in the
documentation. This happens through the transitive dependency to the
"laminas-cache"13 module, which is indeed a requirement in development
environments.

Moreover, the "laminas-cache" module needs a migration to version 3.0,
which was not performed till now, due to the fact, that as noted in Sec-
tion 3.3.2, it is not possible to know that a migration is required without
looking at the module documentation.14 The migration requires the imple-
mentation of new satellite packages.

After this realization, it was decided to consider the implementation of
"OAuth 2.0" under the circumstances of the not adapted software develop-
ment process as a failure. Not only because the time resources of this work
were more than exhausted, but also for the reason that it is not possible
to make statements about the success in the future. Since this is not the
first problem of its kind, but the main task of the actual implementation
was to find and fix such bugs, this example shows the importance of a
well-maintained and up-to-date software development cycle.

4.3.9 Actual Implementation Flow

When beginning the implementation phase of the project, it was decided to
update the infrastructure as described in the Section 4.3.1. Due to the lack of
testing in the "TU Graz Learning Lab" and the fact that introducing tests for

12https://docs.laminas.dev/laminas-session/storage/ visited on 07/23/2023

13https://docs.laminas.dev/laminas-cache/ visited on 07/23/2023

14https://docs.laminas.dev/laminas-cache/v3/migration/to-version-3/ visited
on 07/23/2023

54

https://docs.laminas.dev/laminas-session/storage/
https://docs.laminas.dev/laminas-cache/
https://docs.laminas.dev/laminas-cache/v3/migration/to-version-3/

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

all applications would have exceeded the scope of the work, it was decided
to update and install modules as needed and to correct errors when they
occur in manual testing after implementation of the components needed for
the "OAuth 2.0" authentication flow. Furthermore, this represents the actual
coding practice as it has been carried out in the history of development.

This led to a so-called "cowboy coding" implementation flow, which is
an approach where there is little to no planning, automated testing or
formal procedures. Whereas "cowboy coding" can have advantages such
as faster, more flexible and easier development, it only makes sense in an
experimental development environment. Maintainability and quality issues
make it unsuitable for actual software projects that are also intended for
end users (Kropp and Meier, 2015).

Thus, the previous subsections do not reflect the actual order of implemen-
tation, but rather can be seen as running back and forth to the already
processed sections, as already described in Section 4.3. This workflow func-
tions moderately well when updating the "UserManager", but as soon as
more than one application comes into play, the process becomes confusing
and the effects of the changes become difficult to comprehend, as seen in
the last subsection.

4.4 Linking Implementation Flaws to Security
Analysis

When examining the security flaws discovered during the implementation,
of the "OAuth 2.0" protocol, several correlations emerge. Therefore, this sec-
tion will link the security vulnerabilities and design flaws from the security
analysis to the issues encountered. Some vulnerabilities from the test reports
and the manual review were also noticed during the implementation, but
as long as they did not hinder implementation, they will not be mentioned,
as this does not provide any additional information.

55

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.4.1 Manual Dependency Management

The first major challenge was to update the operating system and "PHP".
After that, the deprecated and incompatible modules of the "UserManager"
had to be updated and additional migrations from "Zend Framework" to
"Laminas" were necessary. The incomplete migration revealed a lack of
maintenance and proper documentation, issues highlighted in the security
analysis. As mentioned above, this only becomes apparent when, for exam-
ple, the integration of a module does not work, during manual testing and
by researching the module’s documentation.

4.4.2 Complex Codebase

The high cyclomatic complexity of some classes had direct impacts on un-
derstanding the interplay of different components, including dependencies.
Therefore, this can make manual dependency management error-prone,
potentially leading to issues, as seen during the attempted implementation
of "OAuth 2.0". Additionally, this increases the time required for such pro-
cesses. Furthermore, the relatively complex configuration of the deployed
infrastructure complicates the process with ten different .sh files, as seen
during the implementation phase.

4.4.3 Lack of Automated Testing

Further, automated testing is critical during dependency updates and, more
importantly, during framework migrations. Without testing, it is virtually
impossible for a new developer to verify the correct migration of the project,
or even the implementation and configuration of existing or new modules.
On the long run, this not only introduces functional bugs, but can also cause
unnoticed security vulnerabilities.

56

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.4.4 Insufficient Secure Storage Mechanisms

Although not directly mentioned in the security analysis, the lack of suffi-
cient storage mechanisms is also a major problem in the "TU Graz Learning
Lab". Not only are security-relevant parameters such as the session ID stored
without any visible security patterns, but also the complexity and workflow
of the database initialization could have been reduced by implementing a
secure development policy. Besides the complexity of the database initial-
ization, the resulting two-track system of SQL files and "doctrine" is also
not best practice and should be simplified, as mentioned in the security
analysis.

4.4.5 Lack of Security Policy

Thus, the authentication of the "UserManager" is not following best security
practices either, due to the fact that it uses "Sha256", with a salt for password
hashing. "Sha256" is not the ideal algorithm for this use case, because of its
fast and efficient nature, whereas in password hashing a computationally
expensive hash function should be used, to mitigate dictionary attacks
(Naiakshina et al., 2017). Although an attempt was made to address this
issue during the implementation of "bycrypt", the migration of the old
database would be a major concern. This could also have been mitigated by
implementing a secure software development policy and is also seen in the
security analysis.

4.5 Lessons Learned and Recommendations

The case study of the implementation of "OAuth 2.0" in the "TU Graz
Learning Lab" showed by its failure major challenges in the project and gives
insights how not to develop software. In particular, the lack of maintenance
and modern development practices make a successful development of secure
web applications unattainable. The following lessons have been learned from
this experience:

57

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.5.1 Implementation of a Software Development Process

As noted earlier, the challenges encountered during implementation under-
scored the indispensability of a software development process. As described
in the security analysis, an iterative approach is best suited to the student
development context. This ensures that the work can be broken down into
smaller, more manageable iterations or sprints. It also ensures that smaller
parts of the implementation can be used for further development even if
a whole part of the project fails, rather than losing all the progress in the
event of a failure.

Besides that, security can be taken into account at ever stage. The goal is
to catch and resolve security issues as early as possible, when they are
typically easier to fix. This requires an additional expense in resources,
but the potential cost of not taking security seriously can be much higher.
This would lead to an iterative, secure software development cycle, slightly
adapted to the small team structure of the "TU Graz Learning Lab", which
often consists of only one student and the project owner, or academic staff
(Daud, 2010):

1. Planning: The developer, in consultation with the staff, plans the work
to be done.

2. Design and Implementation: The developer designs and implements
the portion of the application. The work must comply with the es-
tablished security policy and should be checked with static analysis
tools.

3. Testing: Each iteration should include extensive testing, including
security testing. This includes automated tests that pass before the
next step.

4. Review: Before merging into the main project, the project owner or
scientific staff reviews the implementation.

5. Continuous monitoring and maintenance: Even in an iterative model,
continuous monitoring and maintenance is required. Manual effort
can be minimized by using automated processes such as dependency
scanners and regular automated testing.

58

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

4.5.2 Data Management and Monitoring

Secure, maintainable, and efficient data management is critical, especially
when storing sensitive data. While all the applications process children’s
data, requiring strict data protection and privacy measures, the project itself
suffers from significant weaknesses in key and data management. Combined
with outdated modules and missing migrations, the secure implementation
of new secure data storage is not guaranteed. Furthermore, it is necessary
to ensure that actual data breaches are detected in order to comply with the
legal requirements of the GDPR in the event of a data leak. Therefore, the
following steps are necessary to address these issues:

1. Data Classification: First, existing data must be classified based on
sensitivity. Data that allows conclusions to be drawn about mental
health and learning progress must be classified as highly sensitive and
should be subject to strict access controls.

2. Data storage and handling: The project must ensure that sensitive data
is processed and stored according to the latest best practices. This
includes using the latest modules and storing sensitive data using the
latest encryption methods.

3. Access controls: Strict and effective access control mechanisms must be
implemented to ensure that only authorized individuals have access
to sensitive data. A consistent process must be documented for all
applications.

4. Error Tracking Tools: Ensure that potential data breaches are detected
and responded to in accordance with regulatory requirements.

5. Security Policy: A comprehensive security policy must be documented
to ensure that all important security aspects are considered at every
stage of development.

4.5.3 Dependency Management

The failure of the attempted "OAuth 2.0" implementation revealed the
importance of a robust dependency management system. Without up-to
date dependencies, it is extremely challenging to develop secure and reliable
software. As a result, the following lessons were learned:

59

4 Security Implications in Protocol Implementation: A Case Study of OAuth 2.0
and TU Graz Learning Lab

1. Automated updates: The use of automated dependency management
tools can facilitate regular checking of dependencies and ensure that
the project is using the latest versions of modules.

2. Adequate testing: Testing is an essential dependency for updating
modules. Without testing, it is impossible to guarantee that an update
will not introduce functional and security problems. Therefore, test-
driven development must be implemented in the secure software
development cycle.

3. Maintainability: All dependencies must be reviewed regularly to re-
place unmaintained modules and remove unused ones, thereby in-
creasing maintainability and simplifying workflow.

60

5 Discussion

The last two sections provided a technical view of the security of the "TU
Graz Learning Lab". First, a security analysis was performed, and then a
case study of a practical implementation of a security-related protocol was
attempted. This researched information can not only provide a valuable
insight into the "TU Graz Learning Lab", but also information for other
small university projects with a similar structure can be discussed.

5.1 Interpretation of Findings

The hypothesis and research questions are used and answered to interpret
the findings of this thesis.

5.1.1 Hypotheses
1. Due to long-term development, mostly conducted from students with

different levels of security awareness and the fact that no active security
audit was ever conducted, it is likely to find security vulnerabilities in
the applications.

As can be seen from the analysis and the case study, the number of vulnera-
bilities found definitely exceeded expectations. The lack of security-related
analysis in the project has not only allowed many vulnerabilities to persist
unnoticed, but also meant that security-related processes were never imple-
mented in the project. The evolving project design over such a long period
of development in a production environment is not an appropriate process
for developing secure software. This allows vulnerabilities to accumulate,
whether introduced by experienced or inexperienced student developers.

61

5 Discussion

2. These vulnerabilities are primarily due to insufficient security knowl-
edge among student developers and the lack of a secure software
development cycle, rather than intentional negligence.

This hypothesis is partially correct. While the lack of a secure development
cycle has certainly led to security vulnerabilities, the students’ lack of
security awareness contributed at most to their failure to implement security
processes on their own initiative. The relatively short time that the student
developers spent on this project makes it practically impossible to think of
all the areas that play a role in software development.

This leads to functional dominated programming where security is no
longer consciously integrated. Mitigating these problems can only be done
externally, with specific policies and documentation that force the developer
to consider security at every stage. This would ensure a secure software
development cycle.

3. The current architectural setup, with the "SOAP" based interface for
the applications, can be improved through the introduction of the
"OAuth 2.0" protocol.

This hypothesis cannot be conclusively resolved in this thesis, but there
are numerous indications suggesting potential improvement. As observed
in the case study, the implementation of "OAuth 2.0" prompts developers
to scrutinize processes within the project. In order to implement "OAuth
2.0", secure key distribution is essential and issues like insecure session
storage become evident. Moreover, a secure implementation of this protocol
is unattainable without addressing existing problems, as illustrated by the
case study. Thus, at least from a security perspective, it can be indirectly
posited that a correct implementation of "OAuth 2.0" would improve the
architecture simply by virtue of its introduction.

5.1.2 Research Questions
1. How secure are web learning applications, which were developed

by TU Graz students within their bachelor or master thesis, from an
information technical point of view?

62

5 Discussion

The security of the "TU Graz Learning Lab", which was developed by
TU Graz students, is at high risk on all levels, as shown in the security anal-
ysis and in the case study. From the numerous errors starting with the static
analysis, which shows that the codebase of the project has serious structural
issues, to the large amount of vulnerabilities found in OWASP ZAP, which
mostly indicate missing configuration and not performed out updates, to
the OWASP ASVS requirements, where more than half were not fulfilled, to
the manual security issues discovered and during the attempted implemen-
tation of the "OAuth 2.0" protocol. All these areas show that this learning
applications developed by TU Graz students are not secure.

2. Which security flaws happened, how can they be fixed, and why have
students implemented their learning applications insecurely?

The following security flaws were found and build the base for all other
found vulnerabilities:

• Lack of Secure Development Life Cycle: Firstly the complex codebase,
with no coding standard and with high alerts in the static analysis in-
dicates the lack of a general software development cycle. The absence
of security policies lead to misconfigurations in security relevant parts
of the project. These are the reasons why vulnerabilities like "Con-
tent Security Policy (CSP) Header Not Set" and "Cross-Site Request
Forgery" were discovered, and in fact this point can be associated with
all flaws.

• Insufficient Data Management: The structure of the database, the ini-
tialization via SQL dumps in combination with outdated "doctrine" no-
tations, show that no active plan for data management was conducted.
Furthermore, the security flaws in authorization, session management
and secure storage mechanisms further confirm this point. Again,
this is just a consequence of the lack of a security policy or a secure
software development cycle.

• Outdated Modules: Dependencies not only cause problems in the
maintainability of the project, but also have a direct impact on security
vulnerabilities such as the XSS vulnerabilities. Again, this is related to
the secure software development cycle, which includes a strategy for
keeping modules up-to-date.

63

5 Discussion

• Inadequate Testing and Monitoring: Test-driven development not only
ensures functionality and its verifiability when reviewing the newly
developed code, but is also essential for further modifications and
extensions of the code base. Without it, it is virtually impossible to es-
timate the impact of changes and updates because they are based only
on manual testing. Furthermore, the lack of continuous monitoring,
including regular static and dynamic testing of the codebase, allows
vulnerabilities to persist undetected, and even allows attackers to grab
data undetected.

The reason for the security flaws can certainly be attributed to the lack of
essential software development processes. In combination with the emerging
system design, students did not see the real problems and only focused on
functionality. Since the effort to maintain such projects is constantly growing,
even the scientific staff cannot guarantee the security of the implementation
without errors during the reviews.

Fixing the security flaws at this stage will now cost an immense amount of
effort. Basically, the whole project needs to be refactored and, more impor-
tantly, secure software development processes need to be implemented so
that such flaws are less likely to occur in the future. Therefore, it is essential
to implement a secure software development cycle and start refactoring and
fixing the vulnerabilities, guided by the prioritized results of the security
analysis.

3. Which mitigation actions could be taken to avoid security vulnerabili-
ties in student developed learning applications within their studies in
the future?

In the future, it will be essential for students to introduce software devel-
opment processes from the very beginning of a project. Security must be
an issue that is considered at every stage of the development process. The
earlier security and design flaws are discovered, the easier they are to fix.

Furthermore, for projects like the "TU Graz Learning Lab", which will
continue over a long period of time, it is essential to implement a secure
product lifecycle. All requirements must be clear at every stage of the project,
and project owners must ensure that all necessary tasks are performed on
an ongoing basis. This is especially important for web applications, which

64

5 Discussion

are constantly available over the Internet and require regular maintenance.
As noted in Chapter 3, security is not a final product, but must be present
throughout the product life cycle.

5.2 Comparison with Existing Literature

As stated in Chapter 2, there exists hardly any scientific literature, which
brings student development into the context of a security analysis.

The scientific paper by Licorish et al. (2022), entitled "Understanding stu-
dents’ software development projects: Effort, performance, satisfaction, skills
and their relation to the adequacy of outcomes developed" examines practi-
cal software development courses, often team-based. While this paper does
not research actual real-world software development courses, it is possible
to compare the general findings of the paper with this thesis. The biggest
problem found in the paper is a lack of technical skills. This indicates that
not only TU Graz students, have potential for improvement on technical
skills, but also students from other universities. This is not surprising, since
computer science-related studies offer a very broad spectrum and it is not
possible to master technical skills from all areas. This makes it all the more
important to give developers guidance on what is important, especially
in areas like security, where a bad implementation not only jeopardizes a
grade in a subject, but also has consequences for the whole project and, in
our case, for the privacy of minors. Furthermore, this work also finds a need
to catch up in project management. This also confirms the importance of
development processes in student-developed applications.

Furthermore, Missiroli, Russo, and Ciancarini (2017) published the scientific
paper entitled "Agile for millennials: a comparative study", which compares
the two software methodologies "Scrum" and "Waterfall" for millennial high
school students. The results of the paper show no significant preference
of these two, but the recommendation is to use at least one of them in a
software development life cycle. The lack of a software development life
cycle can also be seen in this thesis.

65

5 Discussion

The paper titled "Implementation of a Security Strengthening System to
Mitigate Vulnerabilities in Academic Web Applications" from Márquez et al.
(2023) uses virtually the same OWASP ZAP tools as used in this thesis to
find vulnerabilities in academic web applications. The results show that a
workflow using OWASP ZAP can reduce vulnerabilities in academic web
applications.

5.3 Impact of Student-Developed Context

This thesis shows that, especially in the context of student development, it
is not possible to create secure web applications without sufficient security
assurance processes. Students, like all humans, will never be error free.
Especially in the student context, where lack of technical skills, high staff
turnover and insufficient independent process management can lead to
insecure applications, it is all the more important to implement a secure
software development cycle from the very beginning.

Moreover, this shows that other student-developed web applications than
the "TU Graz Learning Lab", which also do not use development cycles, are
very likely to have security vulnerabilities. Especially if the projects exist for
a similar length of time. This could be a topic for further research.

66

6 Outlook

The analysis of the "TU Graz Learning Lab" is performed on a real-world
student-developed project, and it has shown that student-developed web
applications have a significant potential for security flaws and vulnera-
bilities. While this thesis provides a deep insight into the project and the
development practices, it cannot provide all the answers to the questions
arising from the security analysis and from the case study. Therefore, this
chapter addresses the areas where further research is needed to improve
the security of the "TU Graz Learning Lab".

6.1 Student Context: Key Findings

The codebase of the "TU Graz Learning Lab" has serious maintainability
problems due to high complexity in relation to the actual functionality. This
is due to a lack of development structure and processes that ensure the
implementation of secure code. The hands-off development, which has been
practiced for years because students usually spend only a short time on the
project, has led to the lack of these processes. In addition, these processes
were not as widespread at the start of the project as they are today, and
are best implemented, when introduced at the beginning of a software
development project.

In addition, the lack of test-driven development resulted in insufficient
test cases needed to ensure the maintainability of the project with accept-
able resources. This, in turn, resulted in poorly updated module depen-
dencies, which led to maintainability issues and security vulnerabilities.
Consequently, the codebase became harder to manage and troubleshoot,

67

6 Outlook

exacerbating security concerns and creating an environment conducive to
the emergence and persistence of unnoticed vulnerabilities.

The absence of a robust security policy became a significant problem, lead-
ing to the existence of multiple potential attack vectors within the system.
This neglect is further evidenced by the flawed authorization mechanisms
and insecure session management that is present in the applications. Addi-
tionally, the disregard for secure data management is evident in the weak
data storage security practices implemented.

6.2 Mitigating Security Vulnerabilities

The key findings identified in the "TU Graz Learning Lab" provide nu-
merous areas ripe for further research. Addressing these issues requires a
holistic approach that encompasses various facets of secure software devel-
opment. These aspects can be explored during implementation in a student
development environment, providing valuable insights for projects with
severely limited human resources.

Future studies could explore the impact of implementing a secure software
development lifecycle in a student development context. Therefore, the
proposed workflow described in Section 4.5.1 can be used as a starting point.
These studies can then observe how peer review and code audit practices
affect code quality and provide insights into their effectiveness and ways to
optimize them for the student development context.

Another fertile ground for investigation is the role of test-driven develop-
ment in student-developed applications. The impact on overall code quality,
dependency update cycle, functional bugs and security vulnerabilities can be
observed and analyzed. This can potentially lead to the development of new
test-driven development processes specifically adapted to student projects.
Furthermore, the latest research on Artificial intelligence (AI) generated unit
tests can also be considered (Fontes et al., 2023).

The development and implementation of security policies in student devel-
opment environments is also an area worthy of investigation. A variety of
security policies can be explored that affect the development of authorization

68

6 Outlook

mechanisms, session management, and secure data storage. Understand-
ing the common pitfalls can help to create new security policies and best
practices in the student development context.

Each of these areas is not only necessary to achieve an acceptable security
state of the "TU Graz Learning Lab", but can also contribute to how software
development is taught and practiced in educational settings. Ongoing efforts
and regular re-evaluation of these issues are necessary to evolve security
practices in the context of the applications developed by students.

6.3 OAuth 2.0 in TU Graz Learning Lab

The case study of this thesis shows that the implementation of application
level security protocols in student-developed learning applications, which
have complex legacy issues and outdated dependencies, leads to significant
functional and security flaws. It also outlines existing problems during
development. Therefore, the attempted implementation provides a rich
source of insights and lessons learned for future studies in the area of secure
authorization and authentication protocol implementation in the "TU Graz
Learning Lab" and other similar projects.

Future studies could look at how implementing "OAuth 2.0" in a project
with resolved legacy issues can affect overall security, and in particular how
this affects authorization mechanisms. Furthermore, the implementation of
"OpenIDConnect" for authentication is also a big topic of potential research,
as this thesis could only address it due to the failed implementation. In
addition, the implementation of the "LTI Core Specification" can also be used
to gain knowledge about the authentication of applications in an educational
setting, as this topic could also only be mentioned by this thesis.

In conclusion, this potential research could solve significant problems in
the applications of "TU Graz Learning Lab". Furthermore, it can help to
introduce the latest best practices in learning applications, such as standard-
ized authentication methods, which provide a more secure workflow and
allow the application to be more modular and connect to other standardized

69

6 Outlook

educational applications. In general, this research can provide benefits to a
broader field of secure software development in an educational setting.

6.4 Security Education & Practice

The state of the "TU Graz Learning Lab" shows that current education
and practice need significant improvement, especially in the areas of soft-
ware engineering techniques. Further research can explore effective ways
to teach secure coding practices among students. Therefore, the current
pedagogical methods need to be reviewed in the context of TU Graz. Then
the effectiveness of the different methods can be evaluated.

As described in Section 5.3, the responsibility for security in student soft-
ware development projects does not lie solely with the developers. The
case of the "TU Graz Learning Lab" illustrates the potential security risks
associated with the loosely structured, hands-off development approaches
commonly used in student projects. Examining how different software de-
velopment methodologies and practices can help identify effective strategies
for mitigating security risks in student projects. The human factor is often
the weakest link in the security chain, and further study can help identify
methods to foster a security-conscious culture among students.

By addressing these areas, future research can help shape security education
and practice. Continuous efforts and regular re-evaluation of this topic
are necessary to keep up with the ever-changing security risks in web
applications, especially in the context of student-developed applications.
This can not only ensure a more secure "TU Graz Learning Lab" project, but
also influence student-developed applications in general.

6.5 Future Security Planning

Security planning, especially in the context of student-led projects, needs to
be an integral part of the software development life cycle from the beginning.
Therefore, security requirements must be defined in a comprehensive and

70

6 Outlook

integrated manner before the first line of code is written. This must include
secure coding practices and automated security checks via CI/CD. The
focus is on instilling an appreciation for security and providing practical
tools and strategies in an educational context. This we will certainly lead to
a more secure project than the current "TU Graz Learning Lab" and thus
improve software security in general.

6.6 Future of the TU Graz Learning Lab

In light of the extensive security issues, structural challenges, and depen-
dency management concerns identified in the "TU Graz Learning Lab,"
determining an optimal course of action to address and further develop the
project is essential. The two main strategies under consideration are: Refac-
toring the current code or undertaking a comprehensive rewrite (Fairbanks,
2019).

6.6.1 Refactor

Refactoring primarily emphasizes incremental improvements without chang-
ing the system’s fundamental behavior. Its chief objective is to enhance the
code’s structure and maintainability. As discussed in this thesis, the "TU
Graz Learning Lab" exhibits numerous challenges related to its structure
and maintainability, primarily stemming from inadequate software develop-
ment processes. Consequently, a refactoring effort should encompass not
just the codebase’s restructuring but also the establishment of a rigorous
software development cycle, incorporating all the sub-areas highlighted
in the security analysis and case study. Given the project’s vast structural
issues, lack of adequate testing, and dependency management problems,
estimating the required effort accurately is challenging, with the expectation
of it being considerable.

71

6 Outlook

6.6.2 Rewrite

Conversely, a rewrite entails a total system overhaul from scratch. This
approach is typically favored when the current structure presents significant
constraints, or when the foundational domain model no longer resonates
with contemporary needs. The "TU Graz Learning Lab" is encumbered by
severe legacy issues. Addressing these concerns would be unnecessary in
a rewrite, allowing for the planning and integration of a secure software
development lifecycle from inception. This could mitigate the majority of
identified challenges. However, given the project’s moderate size, exceeding
77,000 lines of code, a rewrite may prove more time-intensive than a refactor.
This is especially true if a streamlined implementation method accommo-
dating the project’s moderate functional complexity isn’t identified.

72

7 Conclusion

The "TU Graz Learning Lab" project, comprised of various learning applica-
tions developed by TU Graz students, caters to primary pupils and classes.
Given that the project involves data processing of children, it falls under
the stringent protection of the GDPR. This thesis conducted an in-depth
security analysis of the project, exposing various critical security issues and
areas for improvement.

The static code analysis using "PhpMetrics" provided a comprehensive
overview of the project’s security landscape, revealing a high complexity
of the code and outdated dependencies. The lack of an established system
for maintaining up-to-date dependencies, or even ensuring consistent ver-
sions, was detected. This issue, stemming from non-implemented software
development processes, led to serious maintainability issues, as evidenced
by the large number of errors in "PhpMetrics". Additionally, the analysis
highlighted a notable absence of coding standards.

The dynamic analysis conducted with OWASP ZAP uncovered numerous
categories of vulnerabilities. These issues were linked to the outdated mod-
ules, lack of security policy, and insufficient testing. As the root cause of
these problems lies in the absence of a secure software development cy-
cle, implementing such a cycle, alongside refactoring the project’s complex
structure and rectifying the discovered flaws, is required for mitigation.

Further, the application of the OWASP ASVS indicated that over half of
the "Level 1" requirements failed in "TU Graz Learning Lab". This result
underlines the findings from the security analysis, emphasizing the lack
of processes for secure software development cycles and security require-
ments.

73

7 Conclusion

The latter part of this thesis encompassed an attempt to implement "OAuth
2.0" in the existing setup without addressing the issues found in the se-
curity analysis, aiming to examine the influence of these issues on actual
development. The endeavor was ultimately halted due to problems with
the update process of the provisioned infrastructure, issues with data man-
agement in databases and session storage, all of which were caused by the
dependency problems. The hurdles encountered in this implementation
case study, notably with dependency management, data storage, and deal-
ing with complexity and legacy issues, echoed the issues identified in the
security analysis.

In sum, this work emphasizes that the implementation of a secure software
development cycle is indispensable for a project like the "TU Graz Learning
Lab", especially in a student-led context with high personnel rotation. It
calls for the integration of secure software development practices into the
education system, emphasizing their vital role in project maintainability
and data security.

74

Bibliography

1EdTech (2021). 1EdTech Security Framework. url: https://www.imsglobal.
org/1edtech-security-framework (visited on 05/24/2023) (cit. on p. 12).

Acar, Yasemin et al. (Sept. 2017). “Developers Need Support, Too: A Survey
of Security Advice for Software Developers.” In: 2017 IEEE Cybersecurity
Development (SecDev). 2017 IEEE Cybersecurity Development (SecDev).
Cambridge, MA, USA: IEEE, pp. 22–26. isbn: 978-1-5386-3467-7. doi: 10.
1109/SecDev.2017.17. url: http://ieeexplore.ieee.org/document/
8077802/ (visited on 08/01/2023) (cit. on p. 27).

Acharya, Shivani, Vidhi Pandya, and I T Department (2012). “Bridge between
Black Box and White Box – Gray Box Testing Technique.” In: International
Journal of Electronics and Computer Science Engineering 2.1, pp. 175–185.
issn: 2277-1956 (cit. on p. 16).

Aldabbagh, Ghadah et al. (June 8, 2021). “Secure Data Exchange in M-
Learning Platform using Adaptive Tunicate Slime-Mold-Based Hybrid
Optimal Elliptic Curve Cryptography.” In: Applied Sciences 11.12, p. 5316.
issn: 2076-3417. doi: 10.3390/app11125316. url: https://www.mdpi.com/
2076-3417/11/12/5316 (visited on 07/25/2023) (cit. on p. 11).

Belonozkin, Anton Valerevic and Aleksandr Aleksandrovic Rybanov (2016).
“Proverka Kacestva Programmnogo Koda S Pomosju PHPMetrics [Quality
Control of Software Code with PHPMetrics].” In: NovaInfo. Ru 4.47, pp. 8–
14 (cit. on p. 18).

Belqasmi, Fatna et al. (2012). “SOAP-Based vs. RESTful Web Services: A
Case Study for Multimedia Conferencing.” In: IEEE Internet Computing
16.4, pp. 54–63. doi: 10.1109/MIC.2012.62 (cit. on p. 7).

Bucher, Patrick P and Christopher J Christensen (2019). “Computer Sci-
ence Hot Topics: OAuth 2.” Hochschule Luzern. url: https : / / raw .
githubusercontent.com/patrickbucher/inf-stud-hslu/master/infkol/
thesis/paper.pdf (visited on 08/01/2023) (cit. on p. 43).

75

https://www.imsglobal.org/1edtech-security-framework
https://www.imsglobal.org/1edtech-security-framework
https://doi.org/10.1109/SecDev.2017.17
https://doi.org/10.1109/SecDev.2017.17
http://ieeexplore.ieee.org/document/8077802/
http://ieeexplore.ieee.org/document/8077802/
https://doi.org/10.3390/app11125316
https://www.mdpi.com/2076-3417/11/12/5316
https://www.mdpi.com/2076-3417/11/12/5316
https://doi.org/10.1109/MIC.2012.62
https://raw.githubusercontent.com/patrickbucher/inf-stud-hslu/master/infkol/thesis/paper.pdf
https://raw.githubusercontent.com/patrickbucher/inf-stud-hslu/master/infkol/thesis/paper.pdf
https://raw.githubusercontent.com/patrickbucher/inf-stud-hslu/master/infkol/thesis/paper.pdf

Bibliography

Burazer, Marko (Sept. 2019). “Implementation of Interactive Learning Ob-
jects for German Language Acquisition in Primary School based on Learn-
ing Analytics Measurements.” Co-Supervisor: Dipl.-Ing. Ebner Markus.
Master’s Thesis. Graz, Austria: Graz University of Technology (cit. on
p. 6).

Daud, Malik Imran (July 2010). “Secure Software Development Model: A
Guide for Secure Software Life Cycle.” In: Lecture Notes in Engineering and
Computer Science 2180 (cit. on p. 58).

Fairbanks, George (Mar. 2019). “Ignore, Refactor, or Rewrite.” In: IEEE
Software 36.2, pp. 133–136. issn: 0740-7459, 1937-4194. doi: 10.1109/MS.
2018.2880662. url: https://ieeexplore.ieee.org/document/8648269/
(visited on 08/24/2023) (cit. on p. 71).

Fontes, Afonso et al. (July 2023). “Automated Support for Unit Test Gen-
eration.” In: Optimising the Software Development Process with Artificial
Intelligence. London: Springer, pp. 179–219. isbn: 978-981-19-9947-5. doi:
10.1007/978-981-19-9948-2_7 (cit. on p. 68).

Geier, Gerald (June 2015). “Adaptives Informationssystem zur Erlernung
mehrstelliger Division.” Master’s Thesis. Graz, Austria: Technische Uni-
versität Graz (cit. on p. 6).

Germain, Éric and Pierre N. Robillard (Feb. 2005). “Engineering-based
processes and agile methodologies for software development: a com-
parative case study.” In: Journal of Systems and Software 75.1, pp. 17–
27. issn: 01641212. doi: 10 . 1016 / j . jss . 2004 . 02 . 022. url: https :
//linkinghub.elsevier.com/retrieve/pii/S016412120400038X (vis-
ited on 07/18/2023) (cit. on p. 39).

Gerodimos, Apostolos et al. (2023). “IoT: Communication protocols and
security threats.” In: Internet of Things and Cyber-Physical Systems 3, pp. 1–
13. issn: 26673452. doi: 10.1016/j.iotcps.2022.12.003. url: https://
linkinghub.elsevier.com/retrieve/pii/S2667345222000293 (visited
on 07/25/2023) (cit. on p. 10).

Gill, G.K. and C.F. Kemerer (Dec. 1991). “Cyclomatic complexity density
and software maintenance productivity.” In: IEEE Transactions on Software
Engineering 17.12. Conference Name: IEEE Transactions on Software Engi-
neering, pp. 1284–1288. issn: 1939-3520. doi: 10.1109/32.106988 (cit. on
p. 17).

76

https://doi.org/10.1109/MS.2018.2880662
https://doi.org/10.1109/MS.2018.2880662
https://ieeexplore.ieee.org/document/8648269/
https://doi.org/10.1007/978-981-19-9948-2_7
https://doi.org/10.1016/j.jss.2004.02.022
https://linkinghub.elsevier.com/retrieve/pii/S016412120400038X
https://linkinghub.elsevier.com/retrieve/pii/S016412120400038X
https://doi.org/10.1016/j.iotcps.2022.12.003
https://linkinghub.elsevier.com/retrieve/pii/S2667345222000293
https://linkinghub.elsevier.com/retrieve/pii/S2667345222000293
https://doi.org/10.1109/32.106988

Bibliography

Hardt, Dick (Oct. 2012). The OAuth 2.0 Authorization Framework. RFC 6749.
doi: 10.17487/RFC6749. url: https://www.rfc- editor.org/info/
rfc6749 (cit. on p. 42).

IMS Global Learning Consortium (2019). Learning Tools Interoperability Core
Specification 1.3. url: https://www.imsglobal.org/spec/lti/v1p3/
(visited on 07/26/2023) (cit. on p. 12).

Internet Engineering Task Force (IETF) (2023). OAuth 2.0 — OAuth. url:
https://oauth.net/2/ (visited on 07/25/2023) (cit. on p. 12).

Jureczko, Marian and Michal Mlynarski (2010). “Automated acceptance
testing tools for web applications using Test-Driven Development.” In:
PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review) 86.9, pp. 198–202.
issn: 0033-2097 (cit. on p. 26).

KirstenS et al. (2023). Cross Site Scripting (XSS). url: https://owasp.org/
www-community/attacks/xss/ (visited on 07/15/2023) (cit. on p. 29).

Koch, Christoph (Mar. 2020). “Overhaul of the Lesetrainer’s Website and
API.” Institute of Interactive Systems and Data Science. Head: Univ.-Prof.
Dipl-Inf. Dr. Stefanie Lindstaedt. Bachelor’s Thesis. Graz, Austria: Graz
University of Technology (cit. on p. 6).

Kraja, Eltion (Nov. 2016). “Die Multiplikationstabelle als innovative Learning-
Analytics-Applikation.” Master’s Thesis. Graz, Austria: Technische Uni-
versität Graz (cit. on p. 6).

Kropp, Martin and Andreas Meier (2015). “Swiss Agile Study 2014.” In:
Publisher: FHNW and ZHAW. issn: 2296-2476. doi: 10.13140/RG.2.
1.3372.3045. url: http://rgdoi.net/10.13140/RG.2.1.3372.3045
(visited on 06/16/2023) (cit. on p. 55).

Licorish, Sherlock A. et al. (Apr. 2022). “Understanding students’ soft-
ware development projects: Effort, performance, satisfaction, skills and
their relation to the adequacy of outcomes developed.” In: Journal of Sys-
tems and Software 186, p. 111156. issn: 01641212. doi: 10.1016/j.jss.
2021.111156. url: https://linkinghub.elsevier.com/retrieve/pii/
S0164121221002466 (visited on 07/24/2023) (cit. on p. 65).

Linux Foundation (2023). Laminas Project. url: https://getlaminas.org/
(visited on 07/26/2023) (cit. on p. 13).

M., Brunil D. Romero, Hisham M. Haddad, and Jorge E. Molero A. (Sept.
2009). “A Methodological Tool for Asset Identification in Web Applica-
tions: Security Risk Assessment.” In: 2009 Fourth International Conference
on Software Engineering Advances. 2009 Fourth International Conference on

77

https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.imsglobal.org/spec/lti/v1p3/
https://oauth.net/2/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://doi.org/10.13140/RG.2.1.3372.3045
https://doi.org/10.13140/RG.2.1.3372.3045
http://rgdoi.net/10.13140/RG.2.1.3372.3045
https://doi.org/10.1016/j.jss.2021.111156
https://doi.org/10.1016/j.jss.2021.111156
https://linkinghub.elsevier.com/retrieve/pii/S0164121221002466
https://linkinghub.elsevier.com/retrieve/pii/S0164121221002466
https://getlaminas.org/

Bibliography

Software Engineering Advances, pp. 413–418. doi: 10.1109/ICSEA.2009.
66 (cit. on p. 14).

Makino, Yuma and Vitaly Klyuev (Sept. 2015). “Evaluation of web vulner-
ability scanners.” In: 2015 IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applica-
tions. Warsaw, Poland: IEEE, pp. 399–402. isbn: 978-1-4673-8359-2. doi:
10.1109/IDAACS.2015.7340766. url: http://ieeexplore.ieee.org/
document/7340766/ (visited on 07/26/2023) (cit. on p. 13).

Manjunath, M (Aug. 22, 2018). How Secure Are Your JavaScript Open-Source
Dependencies? Code Envato Tuts+. url: https://code.tutsplus.com/
articles/how-secure-are-your-javascript-open-source-dependencies--
cms-31685 (visited on 05/24/2023) (cit. on p. 28).

Márquez, Ing Jimmy Fernando Ramírez et al. (Apr. 30, 2023). “Imple-
mentation of a Security Strengthening System to Mitigate Vulnerabil-
ities in Academic Web Applications.” In: Journal of Survey in Fisheries
Sciences 10.3. Number: 3S, pp. 5447–5456. issn: 2368-7487. url: http:
//sifisheriessciences.com/journal/index.php/journal/article/
view/1837 (visited on 05/24/2023) (cit. on p. 66).

Martin, Robert C. (2009). Clean Code: A Handbook of Agile Software Crafts-
manship. Upper Saddle River, NJ: Pearson Education Inc. isbn: 978-0-13-
235088-4 (cit. on p. 17).

Mcgraw, G. (Mar. 2004). “Software security.” In: IEEE Security & Privacy Mag-
azine 2.2, pp. 80–83. issn: 1540-7993. doi: 10.1109/MSECP.2004.1281254.
url: http : / / ieeexplore . ieee . org / document / 1281254/ (visited on
07/31/2023) (cit. on p. 14).

Missiroli, Marcello, Daniel Russo, and Paolo Ciancarini (May 2017). “Agile
for Millennials: A Comparative Study.” In: 2017 IEEE/ACM 1st Interna-
tional Workshop on Software Engineering Curricula for Millennials (SECM).
2017 IEEE/ACM 1st International Workshop on Software Engineering
Curricula for Millennials (SECM). Buenos Aires, Argentina: IEEE, pp. 47–
53. isbn: 978-1-5386-2795-2. doi: 10 . 1109 / SECM . 2017 . 7. url: http :
//ieeexplore.ieee.org/document/7964622/ (visited on 07/18/2023)
(cit. on p. 65).

Naiakshina, Alena et al. (Oct. 30, 2017). “Why Do Developers Get Password
Storage Wrong? A Qualitative Usability Study.” In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 311–328. doi: 10.1145/3133956.3134082. arXiv: 1708.08759[cs].

78

https://doi.org/10.1109/ICSEA.2009.66
https://doi.org/10.1109/ICSEA.2009.66
https://doi.org/10.1109/IDAACS.2015.7340766
http://ieeexplore.ieee.org/document/7340766/
http://ieeexplore.ieee.org/document/7340766/
https://code.tutsplus.com/articles/how-secure-are-your-javascript-open-source-dependencies--cms-31685
https://code.tutsplus.com/articles/how-secure-are-your-javascript-open-source-dependencies--cms-31685
https://code.tutsplus.com/articles/how-secure-are-your-javascript-open-source-dependencies--cms-31685
http://sifisheriessciences.com/journal/index.php/journal/article/view/1837
http://sifisheriessciences.com/journal/index.php/journal/article/view/1837
http://sifisheriessciences.com/journal/index.php/journal/article/view/1837
https://doi.org/10.1109/MSECP.2004.1281254
http://ieeexplore.ieee.org/document/1281254/
https://doi.org/10.1109/SECM.2017.7
http://ieeexplore.ieee.org/document/7964622/
http://ieeexplore.ieee.org/document/7964622/
https://doi.org/10.1145/3133956.3134082
https://arxiv.org/abs/1708.08759 [cs]

Bibliography

url: http://arxiv.org/abs/1708.08759 (visited on 07/20/2023) (cit. on
p. 57).

Neuhold, Benedikt (July 2013). “Adaptives Informationssystem zur Erler-
nung mehrstelliger Addition und Subtraktion.” Institutsleiter: Univ.-Prof.
Dipl.-Ing. Dr.techn. Frank Kappe. Diplomarbeit. Graz, Austria: Technische
Universität Graz (cit. on p. 6).

OWASP (2021). Application Security Verification Standard 4.3. Version 4.3. url:
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%
20Application % 20Security % 20Verification % 20Standard % 204 . 0 . 3 -
en.pdf (visited on 07/04/2023) (cit. on pp. 15, 37).

OWASP Foundation (2021a). OWASP Application Security Verification Stan-
dard. url: https://owasp.org/www-project-application-security-
verification-standard/ (visited on 07/25/2023) (cit. on p. 11).

OWASP Foundation (2021b). OWASP Top Ten. url: https://owasp.org/www-
project-top-ten/ (visited on 07/25/2023) (cit. on p. 11).

OWASP Foundation (2023). About the OWASP Foundation | OWASP Foun-
dation. url: https://owasp.org/about/ (visited on 07/25/2023) (cit. on
p. 11).

Proenca, Tiago, Nilmax Teones Moura, and André van der Hoek (2010).
“On the Use of Emerging Design as a Basis for Knowledge Collabora-
tion.” In: New Frontiers in Artificial Intelligence. Ed. by Kumiyo Nakakoji,
Yohei Murakami, and Elin McCready. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 124–134. isbn: 978-3-642-14888-0 (cit. on p. 4).

Rahman, Akond, Effat Farhana, and Laurie Williams (Sept. 2020). “The ’as
Code’ Activities: Development Anti-patterns for Infrastructure as Code.”
In: Empirical Software Engineering 25.5, pp. 3430–3467. issn: 1382-3256,
1573-7616. doi: 10.1007/s10664-020-09841-8. arXiv: 2006.00177[cs].
url: http://arxiv.org/abs/2006.00177 (visited on 06/06/2023) (cit. on
p. 47).

Ricca, F. and P. Tonella (May 2001). “Analysis and testing of Web appli-
cations.” In: Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001. Proceedings of the 23rd International Conference
on Software Engineering. ICSE 2001. ISSN: 0270-5257, pp. 25–34. doi:
10.1109/ICSE.2001.919078 (cit. on p. 12).

Rowe, Frantz, Richard Baskerville, and Francois-Charles Wolff (2012). “Func-
tionality vs. Security in IS: Tradeoff or Equilibrium?” In: Proceedings of

79

http://arxiv.org/abs/1708.08759
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/about/
https://doi.org/10.1007/s10664-020-09841-8
https://arxiv.org/abs/2006.00177 [cs]
http://arxiv.org/abs/2006.00177
https://doi.org/10.1109/ICSE.2001.919078

Bibliography

the Thirty-Third International Conference on Information Systems. Orlando,
Florida, USA (cit. on p. 41).

Scarfone, Karen, Daniel Benigni, and Timothy Grance (June 15, 2009). “Cyber
Security Standards.” en. In: Wiley Handbook of Science and Technology for
Homeland Security. Hoboken, NJ: John Wiley & Sons, Inc. url: https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152153 (cit. on
p. 10).

Schellander, Stefan (Mar. 2022). “Neuentwicklung der Webapp „Buchstaben-
post“.” Bachelor’s Thesis. Graz, Austria: Technische Universität Graz (cit.
on p. 6).

Steyrer, Michael (Aug. 2012). “Adaptives Informationssystem für Mathe-
matische Lernanwendungen.” German. Master’s thesis. Technische Uni-
versität Graz. url: https://diglib.tugraz.at/download.php?id=
576a76e493e80&location=browse (cit. on pp. 4, 6).

Technische Universität Graz (2023a). 1×1 Trainer. url: https://schule.
learninglab.tugraz.at/einmaleins/ (visited on 05/30/2023) (cit. on
p. 3).

Technische Universität Graz (2023b). Buchstabenpost. url: https://schule.
learninglab.tugraz.at/buchstabenpost/ (visited on 05/30/2023) (cit.
on p. 3).

Technische Universität Graz (2023c). Divisiontrainer. url: https://schule.
learninglab.tugraz.at/divisionstrainer/ (visited on 05/30/2023)
(cit. on p. 3).

Technische Universität Graz (2023d). IDeRBlog Exercises. url: https://
schule.learninglab.tugraz.at/iderblogexercises/ (visited on 05/30/2023)
(cit. on p. 3).

Technische Universität Graz (2023e). Junior Plus-Minus-Trainer. url: https://
schule.learninglab.tugraz.at/juniorplusminus/ (visited on 05/30/2023)
(cit. on p. 3).

Technische Universität Graz (2023f). Learning Lab. url: http://schule.
learninglab.tugraz.at/ (visited on 05/30/2023) (cit. on p. 2).

Technische Universität Graz (2023g). Mathe-Multi-Trainer. url: https://
schule.learninglab.tugraz.at/multitrainer/ (visited on 05/30/2023)
(cit. on p. 3).

Technische Universität Graz (2023h). Plus-Minus-Trainer. url: https://
schule.learninglab.tugraz.at/plusminus/ (visited on 05/30/2023)
(cit. on p. 3).

80

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152153
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152153
https://diglib.tugraz.at/download.php?id=576a76e493e80&location=browse
https://diglib.tugraz.at/download.php?id=576a76e493e80&location=browse
https://schule.learninglab.tugraz.at/einmaleins/
https://schule.learninglab.tugraz.at/einmaleins/
https://schule.learninglab.tugraz.at/buchstabenpost/
https://schule.learninglab.tugraz.at/buchstabenpost/
https://schule.learninglab.tugraz.at/divisionstrainer/
https://schule.learninglab.tugraz.at/divisionstrainer/
https://schule.learninglab.tugraz.at/iderblogexercises/
https://schule.learninglab.tugraz.at/iderblogexercises/
https://schule.learninglab.tugraz.at/juniorplusminus/
https://schule.learninglab.tugraz.at/juniorplusminus/
http://schule.learninglab.tugraz.at/
http://schule.learninglab.tugraz.at/
https://schule.learninglab.tugraz.at/multitrainer/
https://schule.learninglab.tugraz.at/multitrainer/
https://schule.learninglab.tugraz.at/plusminus/
https://schule.learninglab.tugraz.at/plusminus/

Bibliography

Technische Universität Graz (2023i). Privacy Declaration. url: https : / /
schule.learninglab.tugraz.at/privacy (visited on 05/30/2023) (cit.
on p. 2).

Teodoro, Nuno and Carlos Serrao (June 2011). “Web application security: Im-
proving critical web-based applications quality through in-depth security
analysis.” In: 2011 International Conference on Information Society. London:
IEEE, pp. 457–462. isbn: 978-1-61284-148-9. doi: 10.1109/i-Society18435.
2011.5978496. url: https://ieeexplore.ieee.org/document/5978496/
(visited on 06/20/2023) (cit. on p. 14).

Tobias, Eric (Nov. 3, 2020). Zerologon: Why You Should Never “Roll Your Own”
Cryptography. Ubiq. url: https://www.ubiqsecurity.com/never-roll-
your-own-cryptography/ (visited on 06/14/2023) (cit. on p. 49).

Walden, James, Jeff Stuckman, and Riccardo Scandariato (Nov. 2014). “Pre-
dicting Vulnerable Components: Software Metrics vs Text Mining.” In:
2014 IEEE 25th International Symposium on Software Reliability Engineering.
Naples, Italy: IEEE, pp. 23–33. isbn: 978-1-4799-6033-0. doi: 10.1109/
ISSRE.2014.32. url: http://ieeexplore.ieee.org/document/6982351/
(visited on 07/26/2023) (cit. on p. 13).

Wang, Wentao et al. (May 2022). “Detecting Software Security Vulnerabilities
Via Requirements Dependency Analysis.” In: IEEE Transactions on Software
Engineering 48.5. Conference Name: IEEE Transactions on Software Engi-
neering, pp. 1665–1675. issn: 1939-3520. doi: 10.1109/TSE.2020.3030745
(cit. on pp. 19, 39).

Włodarski, Rafal, Aneta Poniszewska-Marańda, and Jean-Remy Falleri (Apr.
2022). “Impact of software development processes on the outcomes of
student computing projects: A tale of two universities.” In: Information and
Software Technology 144, p. 106787. issn: 09505849. doi: 10.1016/j.infsof.
2021.106787. url: https://linkinghub.elsevier.com/retrieve/pii/
S0950584921002287 (visited on 08/01/2023) (cit. on p. 38).

Yadav, Divyani et al. (Dec. 2018). “Vulnerabilities and Security of Web Appli-
cations.” In: 2018 4th International Conference on Computing Communication
and Automation (ICCCA). 2018 4th International Conference on Comput-
ing Communication and Automation (ICCCA). Greater Noida, India:
IEEE, pp. 1–5. isbn: 978-1-5386-6947-1. doi: 10.1109/CCAA.2018.8777558.
url: https://ieeexplore.ieee.org/document/8777558/ (visited on
07/25/2023) (cit. on p. 10).

81

https://schule.learninglab.tugraz.at/privacy
https://schule.learninglab.tugraz.at/privacy
https://doi.org/10.1109/i-Society18435.2011.5978496
https://doi.org/10.1109/i-Society18435.2011.5978496
https://ieeexplore.ieee.org/document/5978496/
https://www.ubiqsecurity.com/never-roll-your-own-cryptography/
https://www.ubiqsecurity.com/never-roll-your-own-cryptography/
https://doi.org/10.1109/ISSRE.2014.32
https://doi.org/10.1109/ISSRE.2014.32
http://ieeexplore.ieee.org/document/6982351/
https://doi.org/10.1109/TSE.2020.3030745
https://doi.org/10.1016/j.infsof.2021.106787
https://doi.org/10.1016/j.infsof.2021.106787
https://linkinghub.elsevier.com/retrieve/pii/S0950584921002287
https://linkinghub.elsevier.com/retrieve/pii/S0950584921002287
https://doi.org/10.1109/CCAA.2018.8777558
https://ieeexplore.ieee.org/document/8777558/

Bibliography

Zandstra, Matt (2016). “Testing with PHPUnit.” In: PHP Objects, Patterns, and
Practice. Berkeley, CA: Apress, pp. 435–464. isbn: 978-1-4842-1996-6. doi:
10.1007/978-1-4842-1996-6_18. url: https://doi.org/10.1007/978-
1-4842-1996-6_18 (cit. on p. 18).

82

https://doi.org/10.1007/978-1-4842-1996-6_18
https://doi.org/10.1007/978-1-4842-1996-6_18
https://doi.org/10.1007/978-1-4842-1996-6_18

	Abstract
	Introduction
	TU Graz Learning Lab
	Applications
	System Architecture

	Problem Statement
	Research Questions
	Hypotheses
	Methodology

	Related Work
	Security Standards in Web and Learning Applications
	OWASP Foundation
	OAuth 2.0
	1EdTech

	Security Analysis of Software Applications
	OWASP Web Security Testing
	Open Source Frameworks

	Security Analysis
	Security Analysis Tools and Techniques
	Application Scanning and Testing
	Scope
	Static Analysis
	Dynamic Analysis
	Manual Review

	Vulnerability Analysis
	Maintainability
	Dependencies
	OWASP ZAP
	Interim Summary

	Comparison with Security Standards
	Interpretation of Results in the Student Development Context

	Security Implications in Protocol Implementation: A Case Study of OAuth 2.0 and TU Graz Learning Lab
	Introduction to Protocol Implementation and Security
	OAuth2: An Overview
	Authorization Code Flow
	OpenIDConnect

	Attempted Implementation of OAuth 2.0
	Provision
	Dependency Management
	Artifacts from Zend Framework to Laminas Migration
	laminas-api-tools
	OAuth 2.0 Storage on Server-Side
	Setup of laminas-cli for Secure Database Initialization
	Transformation of SOAP API to RPC/REST via laminas-api-tools Admin UI
	Problems encountered with Secure Token storage on Client-side
	Actual Implementation Flow

	Linking Implementation Flaws to Security Analysis
	Manual Dependency Management
	Complex Codebase
	Lack of Automated Testing
	Insufficient Secure Storage Mechanisms
	Lack of Security Policy

	Lessons Learned and Recommendations
	Implementation of a Software Development Process
	Data Management and Monitoring
	Dependency Management

	Discussion
	Interpretation of Findings
	Hypotheses
	Research Questions

	Comparison with Existing Literature
	Impact of Student-Developed Context

	Outlook
	Student Context: Key Findings
	Mitigating Security Vulnerabilities
	OAuth 2.0 in TU Graz Learning Lab
	Security Education & Practice
	Future Security Planning
	Future of the TU Graz Learning Lab
	Refactor
	Rewrite

	Conclusion
	Bibliography

