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A B S T R A C T

In recent years, the field of symmetric cryptography has seen a significant
growth of research efforts focused on tailored cryptographic primitives that
address the particular needs of modern protocols such as multi-party compu-
tation (MPC), (fully) homomorphic encryption (FHE), and zero-knowledge
proofs of knowledge (ZKP). Especially zero-knowledge proof systems have
recently attracted a tremendous amount of attention from, both, academia
and industry. This is due to several promising applications in verifiable
computation, identity protection (also known as self-sovereign identity), and
user authentication.

Primitives tailored for MPC-, FHE-, or ZKP-protocols are commonly ref-
ered to as arithmetization-friendly primitives (AFPs). The particular design
goals of AFPs require them to admit an efficient (i.e., concise, simple, low-
degree) representation as a system of polynomial constraints. This efficient
representation not only promotes arithmetization-friendliness, but, at the
same time, it also makes AFPs potentially vulnerable to algebraic cryptanaly-
sis. As a consequence, developing new techniques in algebraic cryptanalysis,
and establishing a well-founded understanding of the performance thereof,
have become important research directions in recent years. The present thesis
discusses our research contributions in these directions. In particular, the
thesis is based on the following scientific publications.

[ACG+19] We cryptanalyze the block cipher Jarvis and the hash function
Friday using Gröbner basis techniques. Our analysis invalidates the
security claims for all full-round instances made by the designers and
indicates that a substantially higher number of rounds were necessary
to restore full security.

[CGG+22] We develop novel theoretic upper bounds on the algebraic de-
gree in substitution-permutation networks. The algebraic degree is an
important indicator for the complexity of several means of cryptanaly-
sis, such as higher-order differential distinguishers and interpolation
analysis.

[GKL+22] Arithmetization-friendly hash functions aim to be efficient with
respect to SNARK (e.g., R1CS or Plonk constraints) or STARK (e.g., AIR
constraints) cost metrics. This has proven to be a competing design goal
with plain performance. With our new design Reinforced Concrete
we aim to overcome this shortcoming and propose a hash function
that targets efficiency in both domains, plain performance and proving
performance.

[HLL+22] Most often, equation systems modelling an AFP exhibit a par-
ticular structure. Dedicated Gröbner basis algorithms that are able
to exploit this structure have great potential to improve the security
analysis of AFPs and, thus, are of independent interest. We take a first
step towards dedicated Gröbner basis algorithms and devise a new al-
gorithm that performs particularly well for overdetermined, quadratic
equation systems.
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Part I

A L G E B R A I C P R I M I T I V E S I N S Y M M E T R I C
C RY P T O G R A P H Y



1
I N T R O D U C T I O N

In recent years, the field of symmetric cryptography has seen a significant
growth of research efforts focused on cryptographic primitives that address
the particular needs of modern protocols such as multi-party computa-
tion (MPC), (fully) homomorphic encryption (FHE), and zero-knowledge
proofs of knowledge (ZKP). The literature calls these primitives1 domain-
specific and distinguishes them from traditional2 primitives. As an example
of traditional design goals, the standardization processes for the Advanced
Encryption Standard (AES) and the Secure Hash Standard 3 (SHA-3) called
for symmetric-key primitives that, among other requirements, are optimized
for software and hardware implementations. In contrast, domain-specific
primitives aim to optimize different cost metrics.

A usual design strategy for FHE-friendly primitives is to minimize the
multiplicative depth of the arithmetic circuit representing them.3 MPC-
friendly primitives typically aim to minimize the number of non-linear oper-
ations. ZKP-friendly primitives aim for a concise (polynomial) description
in terms of operations over their native domain.4 In a faithful approxi-
mation, the common trait that all of these primitives share is the “simple”
algebraic structure of their building blocks. In case of (keyed or unkeyed)
cryptographic permutations, this translates to algebraically “simple” round
functions. The term “simple”, for example, may refer to a round func-
tion based on low-degree polynomial functions such as the cubing function
x 7→ x3. Another example is the inverse fuction x 7→ x−1, that maps every
field element to its (multiplicative) inverse, and that can be expressed via the
low-degree polynomial relation5 x2 · y = x. The simple algebraic structure of
domain-specific primitives is also the reason why they may be susceptible
to algebraic cryptanalysis. As a consequence, the increasing popularity of
algebraic designs in symmetric cryptography has led to a renewed interest
in algebraic cryptanalysis. We will touch upon this topic again in Section 1.2.

The focus of this thesis lies on ZKP-friendly primitives. For reasons
we shall motivate in Section 1.1, the literature calls these primitives also
arithmetization-friendly6 primitives (AFPs). In this document, we adopt the
latter denomination.

1.1 Zero-Knowledge Proofs of Knowledge

In, both, academia and industry, zero-knowledge proofs (of knowledge)
have recently attracted a tremendous amount of attention. Research on
practically efficient proof systems is a rapidly evolving research area with

1 Together with primitives specialized for other domains, such as lightweight cryptography.
2 Here, “traditional” refers to a timespan from standardizing the Data Encryption Standard (DES)

and onwards.
3 An important exception are Torus-based FHE protocols [CGG+20], where the depth is not the

foremost concern.
4 There are noteworthy exceptions. Recent proposals for ZKP-friendly permutations [GKL+22;

GKL+23; SLS+23] utilize complex, high-degree building blocks that do not admit a concise
polynomial description over the native domain. These building blocks are implemented using
lookup tables.

5 If x ̸= 0, this simplifies to x · y = 1.
6 Sometimes also arithmetization-oriented or circuit-friendly.

2



1.1 zero-knowledge proofs of knowledge 3

several promising applications such as verifiable computation7, identity
protection (also known as “self-sovereign identity”), and user authentication.
Informally speaking and omitting technical details, the rationale behind a
zero-knowledge proof is as follows.

“A prover convinces a verifier that a given statement is valid,
without revealing any information beyond the validity of the
statement itself.”

The prover is the party intending to prove a claim, while the verifier is
responsible for validating the claim. The following discussion elaborates
on this informal rationale. Our discussion will be brief, and intentionally
imprecise from a mathematical point of view. Furthermore, we use the terms
“statement”, “claim”, “assertion” interchangeably. Part of our discussion is
guided by the exposition of the same topic in the textbook [Gol01].

What is a statement? In the context of our motivational discussion, a
computational statement may be regarded as an instance of a computational
problem in a certain complexity class, usually NP. For representational
purposes, it is advantageous to choose complete problems [Gol08, Section
2.3.5]. Examples of such problems relevant for proof systems are

• the NP-complete problem describing satisfiability of arithmetic circuits
[BCG+14a; BCG+14b; BCI+13; Gro16],

• the NP-complete problem describing constraint satisfaction of rank-1
constraint systems (RC1S) [BCR+19],

• the NP-complete problem describing constraint satisfaction of quadratic
arithmetic programs (QAP) [GGP+13], or

• the NEXP-complete problem describing constraint satisfaction of per-
muted algebraic intermediate representations (PAIR) [BBH+18b].

What is a proof? The notion of “proof” has a rather specific (i.e., technical)
meaning in the context of (zero-knowledge) proof systems. To motivate this
notion, let us briefly intuit how mathematical proofs establish the validity of
a statement. A mathematical proof may be viewed as a deductive argument,
i.e., its nature is a logical one. It consists of a sequence of propositions,
beginning with the premises and ending with the claimed statement. Each
proposition in this sequence is either self-evident (i.e., an axiom, a commonly
agreed postulate that doesn’t require proof; it is taken to be true) or derived
from a previous statement via established inference rules (that, again, have
a self-evident character). In this sense, a mathematical proof is static (i.e.,
monologic). Besides sharing a (written account of the) proof, there is no
further element of interaction between a prover and a verifier.

In contrast, the notion of “proof” as in “(zero-knowledge) proof system”
carries the connotation of a discourse (in the sense of conversation, argu-
ment, questioning, examination or interrogation) and may be viewed as a
discursive argument. A proof in this sense consists of exchanged messages
between two parties, the prover and a verifier. The prover provides answers
to (random and challenging) questions from a verifier in order to prove the
validity of an assertion. If the prover’s answers are convincing, the verifier

7 Also refered to as computational integrity in [BBH+18b].



1.1 zero-knowledge proofs of knowledge 4

is persuaded and deems the assertion to be true. This persuasive8 notion
implicitly contains a likelihood for error. This means, its nature is, in princi-
pal, an interactive (i.e., dialogic, rhetorical and persuasive) one. For a more
comprehensive discussion, we refer to the textbook [Gol01, Section 4.1].

Adopting a more technical speech, and in a reliable simplification, the
term “proof” as in “proof system” refers to a concept known as succinct
non-interactive argument of knowledge. Here, succinct means, the proof is
(much) smaller than the assertion itself (and can be verified quickly). An
interactive argument is an interactive protocol between a computationally
bounded (deterministic) prover and a computationally bounded probabilistic
verifier that satisfies the following properties.

1. (Perfect) Completeness. True assertions are always accepted by the veri-
fier.

2. (Computational) Soundness. Wrong assertions are rejected by the verifier
with overwhelming probability (as long as the computational power of
the potentially cheating prover is bounded).

Completeness expresses the prover’s ability to convince a verifier of true
assertions. Perfect completeness means, there is always a way to convince
the verifier of true assertions, without error. Soundness captures the verifier’s
ability to recognize wrong assertions (with negligible error probability).
Computational soundness says that a verifier’s verdict is sound (with negligible
error probability) as long as the computational power of the potentially
cheating prover is bounded.9 An interactive argument of knowledge is an
interactive argument with the additional property of knowledge-soundness. We
do not motivate this property, but refer to the comprehensive manuscript
[Tha22]. A public-coin interactive argument, is an interactive argument where
the random choices of the verifier are publicly known. Any public-coin
interactive argument may be compiled into a non-interactive argument in the
random oracle model using the Fiat-Shamir transform [FS86; CCH+19].

Two important classes of “proofs” are SNARKs [PHG+13; Gro16; GWC19;
BCR+19; COS20]10 and STARKs [BBH+18b].

What is Zero-Knowledge? The notion of zero-knowledge pertains to the
idea that the proof of a statement should yield no information (i.e., no knowl-
edge) beyond the validity of the statement itself.11 Within the framework
of proof systems, the term “knowledge” relates to computational difficulty.
We consider a gain of knowledge as an increase in our computational abilities.
Meaning, if after interacting with a prover we can efficiently solve a compu-
tational problem that we couldn’t solve before, we perceive this as a gain

8 The term “persuasive” is meant as a contrast to “logical”. It alludes to the notion of “persuasion”
as in “proof by persuasion”. Here, the prover (e.g., a proponent, or defendant) interactively
delivers convincing points and evidence in favor of an assertion to the verifier (e.g., an opponent,
or plaintiff).

9 This sentence deserves a comment. Technically speaking, there is a dedicated meaning of the
term “proof” as in “proof system”. If the prover is given unbounded computational power and
above soundness requirement is assserted for such unbounded provers, the literature speaks of
a proof system. This is why argument systems are also called computationally sound proof systems.
Especially in practical contexts, the assumption of computationally bounded provers is often
made implicitly. This leads to the habit of (tacitly) using the terms “argument” and “proof”
synonymously. However, formally, these are different notions.

10 The references cited are not intended to be exhaustive or representative of the entire domain of
SNARKs.

11 The term “information” should be understood in a colloquial manner. In the context of
information theory, “information” has a rather concrete meaning. This meaning is different
from what we want to emphasize here.



1.1 zero-knowledge proofs of knowledge 5

of knowledge.12 In contrast, if whatever we can efficiently compute after
interacting with a prover is what we could efficiently compute beforehand
(i.e., by ourselves, without any interaction), we acknowledge that we have
not gained any knowledge. With a slight shift of perspective, we may say
(the interaction with) the prover revealed zero knowledge.

This line of thought leads to the simulation paradigm. We do not elaborate
further on this topic. For more information we refer to the excellent textbook
[Gol01].

Arithmetization Modern argument systems transform computational state-
ments into an algebraic form, e.g., Groth’16 [Gro16] or Pinocchio [PHG+13]
uses R1CS, while STARKs [BBH+18b] use (P)AIRs. We briefly motivate this
transformation, commonly known as arithmetization. Arithmetization refers
to the reduction (or transformation, translation, representation, compilation)
of a computational statement (such as “I know the preimage to a given hash
value.”) into a structured algebraic statement. The term algebraic conveys the
conventional meaning, i.e., polynomial. In the context of our motivational ex-
position, it is accurate enough to think of an algebraic statement as a system of
polynomial equations (or constraints) over a finite field. The term structured
alludes to the fact, that the final equation system exhibits a specific structure
that follows from a predefined format. In the following considerations, we
discuss three popular arithmetization formats. If not stated otherwise, let F

denote a finite field.

Rank-1 Constraint System (R1CS) A common arithmetization format in
modern SNARKs13 are rank-1 constraint systems (R1CS). As an intermediate
step in the arithmetization process, a computation (i.e., an arithmetic circuit)
is translated into a R1CS. A R1CS over a field F is an equation system with
m constraints (i.e., equations) over F in n variables x1, . . . , xn, where the
constraints have the form

∀i ∈ {1, . . . , m} :

(
n

∑
j=1

Ai,jxj

)
·
(

n

∑
j=1

Bi,jxj

)
=

n

∑
j=1

Ci,jxj.

Here, all Ai,j, Bi,j, and Ci,j are coefficients in F. If

γ =


γ1,1 γ1,2 . . . γ1,n
γ2,1 γ2,2 . . . γ2,n

...
...

. . .
...

γm,1 γm,2 . . . γm,n

 , for γ ∈ {A, B, C},

denotes the corresponding matrix of coefficients, then the short notation for
a R1CS is

(A · x)⊙ (B · x) = C · x.

Here, the operator · denotes ordinary matrix-vector-multiplication, ⊙ de-
notes the Hadamard-product (i.e., element-wise multiplication), and x =
(x1, . . . , xn)t is the vector of variables.

Plonk Constraint System Plonk [GWC19] uses Plonk gates14 over F, which
are constraints (i.e., equations) over F in the variables x, y, z of the form

qL · x + qR · y + qO · z + qM · xy + qC = 0.
12 E.g., after interacting we know the prime factorization of a large integer.
13 E.g., in Groth’16 [Gro16], or Pinocchio [PHG+13]
14 Also called Plonk (gate) constraints.



1.1 zero-knowledge proofs of knowledge 6

The constants qL, qR, qO, qM, qC ∈ F are also called selectors. Let

Qα =

qα1
...

qαm

 , for α ∈ {L, R, O, M, C},

denote the corresponding vector of selectors in Fm. Then, a system of m Plonk
gates in the 3m variables x1, . . . , xm, y1, . . . , ym, z1, . . . , zm can be expressed
as

QL ⊙ x + QR ⊙ y + QO ⊙ z + QM ⊙ (x⊙ y) + QC = 0.

Here, ⊙ denotes the Hadamard-product (i.e., element-wise multiplication)
and, for β ∈ {x, y, z}, the vector β = (β1, . . . , βm)t denotes the accompanying
vector of variables. For relating variables to each other, Plonk uses copy
constraints (also known as equality constraints). Let

h := (hi)i∈{1,...,3m} := (x1, . . . , xm, y1, . . . , ym, z1, . . . , zm)

denote the 3m-tuple containing all 3m variables. Furthermore, let σ be a
permutation of {1, . . . , 3m} such that σ(i) = j captures the relation hi = hj,
i.e.,

σ(i) = j⇐⇒ hi = hj.

In other words, if some variables are equal (i.e., copied), then σ permutes
the indices of these variables. The indices of uncopied variables are left
untouched by σ. Plonk expresses equality constraints as

3m

∏
i=1

(hi + ir + s) =
3m

∏
i=1

(hi + σ(i)r + s),

for uniformly at random chosen r, s ∈ F, see [GWC19, Claim A.1].

Algebraic Intermediate Representation (AIR) As part of the arithmetiza-
tion process, STARKs represents computations as a sequence of computation
states connected via transition functions. This representation is called alge-
braic intermediate representation (AIR).15 Basically, an AIR consists of

• an execution trace T of a certain size m× w, for m, w ∈N,

• polynomial transition constraints in 2w variables, and

• boundary constraints.

At any time step i ∈ {1, . . . , m}, the state of a computation is determined
by the content of w registers taking values from F. Thus, the execution trace16

T is an m × w matrix over F, where rows are indexed by time steps and
columns are index by registers. In other words, the i-th row represents
the state of a computation at time step i and the j-th column tracks the
content of register j over time. Polynomial transition constraints specify the
transition relations between any two consecutive states. These constraints
are satisfied if and only if state i is correctly related to state i + 1. Stated
differently, transition constraints relate to consecutive rows in T with each
other. Each constraint, thus, is a multivariate polynomial equation over F

in 2w variables. In total, all transition constraints are satisfied if and only if

15 It resembles register machines [Rob20].
16 Sometimes also called algebraic execution trace (AET).
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the whole execution trace T is valid. For efficiency reasons, it is desirable to
keep the degree of the transition constraints low. Boundary constraints simply
enforce the values of some (or all) registers in the initial state, the final state,
or in an arbitrary state. Boundary constraints, thus, can be represented by
tuples of field elements in F.

1.2 Arithmetization-Friendly Primitives and their Cryptanal-
ysis

The main characteristics that distinguish arithmetization-friendly primitives
from traditional ones are

1. their native domain, and

2. their concise description in terms of polynomial constraints.

To comment on 1., we remark that AFPs aim to be efficient not only
over binary extension fields Fn

2 but also over large prime fields Fp of odd
characteristic (or extensions thereof). Working with large prime fields is
motivated by the fact that many modern SNARKS rely on elliptic-curve
based primitives, such as elliptic curve pairings [EMJ17], that directly work
over these prime fields.17 For 2., it is insightful to keep in mind the different
arithmetization techniques outlined in Section 1.1. Generally speaking, for
all of these arithmetization techniques, the performance of AFPs inside proof
systems benefits from a concise and low-degree polynomial representation
of the primitive.18

In the following discussion, we present a brief overview of the state-of-
the-art in designing and analyzing arithmetization-friendly cryptographic
primitives. Arguably, the first arithmetization-friendly primitive is MiMC,
a block cipher and a corresponding sponge-based hash function published
in 2016 [AGR+16].19 As an attempt to address the performance bottleneck
of traditional ciphers in SNARK applications, the designers of MiMC aimed
to minimize the total number of multiplications20 of an arithmetic circuit
representing the permutation. Since its inception in 2016, MiMC has attracted
a considerable amount of cryptanalysis from the research community [Bon19;
ACG+19; LP19; EGL+20; BGL20; CHW+22; BBL+22; BCP23].

The MPC-oriented block cipher LowMC, published in 2015 [ARS+15a],
preceeded MiMC and pursued similar design goals. However, the design
of LowMC explored an (extreme) trade-off between non-linear and linear
operations, trying to shift a large part of the cryptographically relevant work
to linear operations. This approach is motivated by another cost metric that
considers the cost of linear operations negligible compared to the cost of
non-linear ones. Considering linear operations, essentially, as “free” does not
necessarily translate to arithmetization-friendliness in the sense as outlined
in Section 1.1. Hence, we do not include LowMC in our listing of AFPs.

17 E.g., Plonk [GWC19] builds upon the the pairing-based KZG polynomial commitment scheme
[KZG10].

18 Here, the same remark as in Footnote 4 applies.
19 A possible objection to counting MiMC as the first AFP could be the elliptic curve based

Pedersen hash function [BHH+22, Section 5.4.1.7]. Pedersen hash is a collision-resistant hash
function based on the hardness of the Discrete Logarithm Problem on the JubJub curve [BHH+22,
Section 5.4.9.3].

20 This cost metric is also known as the multiplicative complexity.
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The block cipher Jarvis and the corresponding hash function Friday21,
published in 2018 [AD18], aimed to be specifically efficient in STARK
[BBH+18b] applications. Standard primitives, such as AES, SHA-2 and
SHA-3, have turned out to be inefficient in these applications. This created
the need for tailored cryptographic primitives. Jarvis and Friday aimed
to address this need. Our independent cryptanalysis [ACG+19], however,
invalidated the security claims of the designers, leading to the first successful
Gröbner basis analysis of a block cipher. As a consequence, the authors
of [AD18] abandoned their initial design strategy of Jarvis and Friday, and
devised the follow-up designs Vision (defined over Fm

2n ) and Rescue (defined
over Fm

p , for p prime and m a natural number) [AAB+20]. Both, Vision
and Rescue, instantiate sponge-based hash functions with the same names.
Related cryptanalysis can be found in [BCL+20; BGL20; BCD+20b]. A version
of Rescue that is optimized for the prime field Fp with p = 264 − 232 + 1 is
suggested in [AKM+22; SAD20].

The year 2019 saw the publication of two other AFPs, GMiMC [AGP+19]
and Poseidon [GKK+19; GKR+21]. The GMiMC permutation is a generalized
Feistel-variant of MiMC, constructed from a range of (balanced and unbal-
anced) Feistel networks. The Poseidon permutation is based on the Hades de-
sign strategy[GLR+20], a substitution-permutation network (SPN) that uses,
both, full S-box layers and partial ones. In other words, Poseidon uses an un-
even distribution of S-boxes. The S-box functions in Poseidon are low-degree
polynomial power maps.22 For that reason, Poseidon can be regarded as an
SPN-variant of MiMC. Both permutations, GMiMC and Poseidon, instantiate
a hash function (with the same name) using the sponge-construction. For
cryptanalysis of GMiMC, we refer to [Bon19; RAS21; BCD+20b; CHW+22].
Due to its efficiency in the target use cases and the fast adoption in industry
[GKR+21, Section 3], Poseidon has received much cryptanalytic attention
[BCD+20b; BCD+20a; KR21; BBL+22; ABM23]. For completeness, we men-
tion two other designs related to Poseidon. Neptune[GOP+22] is a variant of
Poseidon that explores the use of generalized Lai-Massey functions as S-box
functions. Poseidon2 [GKS23] is an updated variant of Poseidon that takes
into account the findings of previous cryptanalysis.

In 2021, the permutation and sponge-based hash function Grendel [Sze21]
was proposed in attempt to leverage the Legendre symbol as a building
block for the non-linear layer in cryptographic permutations. Soon after the
publication of Grendel, the authors of [GKR+22] found a preimage attack on
the Grendel hash function, and, hence, invalidated the security claims made
in [Sze21].

The year of 2022 marked the publication of Reinforced Concrete [GKL+22],
a permutation and sponge-based hash function that leverage lookup tables
for fast native performance. At the same time, Reinforced Concrete targets
efficiency in proof systems with support for lookup arguments.23 Achieving
efficiency in both domains, native performance and proof system perfor-
mance, is important in applications where the same hash function is used to
build a Merkle tree and to prove an opening of the Merkle tree.24

21 The block cipher Jarvis is turned into a compression function using the Miyaguchi-Preneel
mode of operation. The resulting compression function is then employed in a Merkle-Damgård-
construction to produce the hash function Friday.

22 Of the form x 7→ xα, for α ∈N, α ≥ 3.
23 E.g., Plonkup [PFM+22], a version of Plonk [GWC19] that integrates the ideas of Plookup

[GW20].
24 As is, e.g., the case in the Fractal recursive protocol [COS20].
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In addition to Reinforced Concrete, two other AFPs were published in
2022: Anemoi [BBC+23] and Griffin [GHR+23]. The designers of Anemoi
propose a novel S-box construction called Flystel that exploits the CCZ-
equivalence of a low-degree function with a high-degree one. In essence, the
CCZ-equivalence of these functions allows, both, a high degree evaluation
and a low degree verification of the S-box function. Using CCZ-equivalence
as a means to achieve arithmetization-friendliness generalizes the approach
taken in [AAB+20]. The authors of [AAB+20] make the following observation
for a permutation F of Fm

q , m ∈ N, m ≥ 1. If F has a high degree, whereas
F−1 possesses a low degree, then verifying the high-degree statement y =
F(x) is equivalent to verifying the low-degree statement F−1(y) = x, for
any given x, y ∈ Fm

q . In other words, a permutation may use high-degree
round functions for security and, at the same time, admit a low-degree
representation for efficient verification. The authors of [BBC+23] present a
more general instantiation of this approach. Let F, G : Fm

q −→ Fm
q be two

CCZ-equivalent functions. Then, there exists an affine permutation25

L :
(

Fm
q

)2
→
(

Fm
q

)2

(x, y) 7→ (LL(x, y),LR(x, y))

such that
L(ΓF) = {L(x, F(x)) : x ∈ Fq} = ΓG.

Here, Γ f = {(x, f (x)) : x ∈ Fq} denotes the graph of f ∈ {F, G}. Due to the
CCZ-equivalence of F and G, it holds for x, y ∈ Fq

y = F(x)⇐⇒ (x, y) ∈ ΓF ⇐⇒ L(x, y) ∈ L(ΓF) = ΓG

⇐⇒ LR(x, y) = G(LL(x, y)).

In other words, if F is of high degree and G is of low-degree, the relation
y = F(x) can be verified by the low-degree relation LR(x, y) = G(LL(x, y)).
We remark, verifying a statement via “inverse equivalence”, i.e., via the
equivalence

y = F(x)⇐⇒ F−1(y) = x

is a special case of verifying a statement via CCZ-equivalence

y = F(x)⇐⇒ LR(x, y) = G(LL(x, y))

of two functions F, G. Indeed, any permutation F is CCZ-equivalent to its
inverse F−1 via the mapping L(x, y) := (y, x). Hence, compared to “inverse
equivalence”, CCZ-equivalence offers a more general possibility to verify a
high-degree evaluation via an equivalent low-degree relation. Regarding the
targeted use cases, the Anemoi permutation instantiates compression and
sponge-based hash functions that aim to be efficient in, both, SNARK and
STARK applications.

The Griffin permutation employs a novel construction for the non-linear
part in their round function. This novel construction combines a modified
Feistel network called Horst with, both, low-degree and high-degree power
maps into a single non-linear function. The authors of [GHR+23] propose two
modes of operation for the Griffin permutation: a compression function with
feed-forward and subsequent truncation, and the sponge mode of operation.
Griffin targets efficiency in, both, SNARK and STARK applications.

25 In its most general form, an affine permutation L of (Fm
q )

2 has the form L(x, y) = M · (x, y)t +

(a, b)t, for a, b ∈ Fm
q and M a non-singular 2m× 2m matrix over Fq.
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Recent addings to the family of AFPs are: Monolith [GKL+23], Arion and
ArionHash [RST23], Tip5 [SLS+23] (see [Sal23] for two additional instantia-
tions called Tip4 and Tip4’), and XHash8, XHash12 [AKM23].

Let There Be Order To shed light on the current “zoo” of AFPs, we discuss
and identify major design trends, and conclude with a first classification
of AFPs. We advise the reader to take this (and any) classification with a
grain of salt, as the whole area of arithmetization-friendly hashing is a very
dynamic field of research at the moment. This means, design trends evolve
quickly and it might be too early for a reliable classification without being
too assertive when devising suitable categories.

The following classification suggests three different categories (similar,
but different, to the classifications found in [RST23, Section 1], [SLS+23,
Section 1]), [AD20, Section 1]. We only mention hash functions, without the
underlying permutations.

• Generation I. MiMC, GMiMC, Poseidon, Poseidon2, Neptune

• Generation II. Friday, Vision, Rescue, Rescue-Prime, XHash8/12, Arion-
Hash, Griffin, Grendel, Anemoi

• Generation III. ReinforcedConcrete, Monolith, Tip5, Tip4/4’

In the first generation, we consider designs that only use low-degree
round functions in their permutation. This includes permutations based on,
both, Feistel-networks and SPNs, and an uneven distribution of S-Boxes as in
Poseidon. Designs in this category usually show a fast plain performance due
to the low-degree of their round function. The downside is that permutations
with low-degree round functions require a high number of rounds to prevent
algebraic cryptanalysis.

The second generation consists of designs that use low-degree and high-
degree components in their round functions. The specific trait of this category
is the insight that verification of a computation needn’t be done directly,
but can also be achieved indirectly (or non-procedurally, as the authors of
[AAB+20, Section 3.1] call it). An example is the verification of the high-
degree inverse function x 7→ xq−2 on Fq. Although the statement y = xq−2 is
of high degree, it can be verified by the low-degree statement26 x2 · y = x.
Due to the high-degree building blocks in the round functions, permutations
in this category tend to be slow when evaluated plainly. However, in general,
much fewer rounds are needed to resist algebraic cryptanalysis compared to
Generation-I designs.

With the third generation we capture designs that leverage lookup tables
for fast plain evaluation and target efficiency in, both, plain evaluation and
zero-knowledge proving performance. Designs in this category use lookup
tables to implement complex, high-degree round functions in an efficient
manner. As a result, utilizing lookup tables for implementing complex round
functions tends to further reduce the number of rounds to resist (algebraic)
cryptanalysis compared to Generation-II designs. We remark, Generation-III
designs primarily target proof systems that support lookup arguments in
their arithmetization step.

Concluding Remarks The particular design goals of AFPs require them
to admit an efficient (i.e., simple, low-degree) representation as a system

26 It holds xq = x, for all x ∈ Fq.
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of polynomial constraints. This efficient representation not only benefits
the arithmetization in proof systems, but, at the same time, also makes
AFPs potentially vulnerable to algebraic cryptanalysis. For example, MiMC
exhibits a particularly slow growth of the algebraic degree, as observed in
[BCP23] and exploited in [EGL+20]. Another example is our cryptanalysis of
Jarvis and Friday in [ACG+19]. More recently, the authors of [ABM23] claim
to have found some caveats in the security analysis of non-standard instances
of Poseidon. The emergence of AFPs, thus, has led to a renewed interest in
algebraic cryptanalysis. As a consequence, developing new techniques in
algebraic cryptanalysis and establishing a well-founded understanding of the
performance thereof have become important research directions in the last
years. We present our contributions in this direction in the next section.27

1.3 Our Contributions

Below, we give an overview of the scientific articles forming the foundation of
this thesis. Besides a brief motivation for each article, we provide a summary
of the author’s original contribution to the joint work.

I Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich,
Reinhard Lüftenegger, Christian Rechberger, and Markus Schofnegger.
“Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MAR-
VELlous and MiMC.” in: Advances in Cryptology - ASIACRYPT 2019. Ed.
by Steven D. Galbraith and Shiho Moriai. Vol. 11923. Lecture Notes in
Computer Science. Springer, 2019, pp. 371–397. doi: 10.1007/978-3-030-
34618-8_13

In [ACG+19], we cryptanalyze the block cipher Jarvis and hash function
Friday using Gröbner basis techniques. Jarvis and Friday aimed to be
efficient in STARK applications and, hence, were constructed from build-
ing blocks that admit a low-degree and simple polynomial representation.
We show that the particular combination of the building blocks in Jarvis
leads to a successful Gröbner basis analysis of, both, Jarvis and Friday.
Our analysis invalidates the security claims for all full-round instances
made by the designers and indicates that a substantially higher number
of rounds were necessary to restore full security. The author devised
the algebraic models and implemented Gröbner basis experiments on toy
versions of Jarvis and Friday. Furthermore, the author was involved in the
development of the ideas underpinning the algebraic cryptanalysis and
wrote the majority of the article [ACG+19].

II Carlos Cid, Lorenzo Grassi, Aldo Gunsing, Reinhard Lüftenegger, Chris-
tian Rechberger, and Markus Schofnegger. “Influence of the Linear Layer
on the Algebraic Degree in SP-Networks.” In: IACR Transactions on Sym-
metric Cryptology 2022.1 (2022), pp. 110–137. doi: 10.46586/tosc.v2022.
i1.110-137

Most cryptographic permutations iterate a simple round function many
times to construct a cryptograpically secure permutation. For designs
defined over Fn

2 , the degree of the n-variate polynomial representation
over F2 is an important indicator for the complexity of several means of
cryptanalysis, such as higher-order differential distinguishers and interpo-
lation analysis. The literature calls this degree also the algebraic degree.

27 All contributions list author names in alphabetical order; see https://www.ams.org/profession/
leaders/CultureStatement04.pdf.

https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.46586/tosc.v2022.i1.110-137
https://doi.org/10.46586/tosc.v2022.i1.110-137
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf
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Establishing explicit and exact formulae for the algebraic degree as the
number of rounds increases is, in general, a difficult task. Hence, obtaining
estimates and working with (tight) upper bounds on the algebraic degree is
an important research direction. In [CGG+22], we develop novel theoretic
upper bounds on the algebraic degree in SPNs. As a key contribution,
we show how the (word-level) degree of the affine part of the round func-
tion influences the growth of the algebraic degree. For low-degree round
functions, our new bound provides considerably tighter estimates than the
best known theoretic bounds in [BCC11]. The author contributed the main
idea behind the bound on the algebraic degree and developed most of the
underlying proofs. Furthermore, the author supervised the practical tests
and wrote the majority of the article [CGG+22].

III Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian
Rechberger, Markus Schofnegger, and Roman Walch. “Reinforced Con-
crete: A Fast Hash Function for Verifiable Computation.” In: SIGSAC
Computer and Communications Security - CCS 2022. Ed. by Heng Yin, Ange-
los Stavrou, Cas Cremers, and Elaine Shi. ACM, 2022, pp. 1323–1335. doi:
10.1145/3548606.3560686

Arithmetization-friendly hash functions aim to be efficient with respect to
SNARK (e.g., R1CS or Plonk constraints) or STARK (e.g., AIR constraints)
cost metrics. This has proven to be a competing design goal with plain per-
formance. Arithmetization-friendly hash functions tend to be slow when
evaluated plainly,28 and, vice versa, more “traditional” hash functions29

with fast plain performance have revealed themselves to show poor perfor-
mance inside zero-knowledge proof systems. With Reinforced Concrete
we aim to overcome this shortcoming and propose a hash function that
targets efficiency in both domains, plain performance and proving perfor-
mance. Most notably, Reinforced Concrete leverages lookup tables for an
efficient implementation of algebraically complex transformations of large
prime field elements. This approach primarily targets proof systems which
offer lookup gates in their underlying arithmetization (e.g., Plonkup). The
author was responsible for the algebraic analysis of Reinforced Concrete.
This included experiments on toy instances of Reinforced Concrete using
interpolation and Gröbner basis techniques. Furthermore, the author made
significant contributions to proving the completeness and soundness of
the table constraints, and he devised the proof for the bijectivity of the Bar
function.

IV Manuel Hauke, Lukas Lamster, Reinhard Lüftenegger, and Christian Rech-
berger. “A Signature-Based Gröbner Basis Algorithm with Tail-Reduced
Reductors (M5GB).” in: IACR Cryptology ePrint Archive (2022), p. 987. url:
https://eprint.iacr.org/2022/987

Gröbner basis cryptanalysis has received much attention in the last years
from the research community in symmetric cryptography. This is moti-
vated by the fact that Gröbner bases play a key role in the security analysis
of “algebraic” cryptographic primitives that aim to be efficient in MPC-,
FHE-, or ZKP-applications (see Section 1.2 for an overview about ZKP-
friendly designs). For these “algebraic” designs, Gröbner basis techniques
are an important means to assess and argue for their security. Most of-
ten, equation systems modelling a given cryptographic primitive do not

28 We refer to our classification at the end of Section 1.2 for a more nuanced discussion of this
point.

29 E.g., SHA2/SHA3 or Blake2b/s.

https://doi.org/10.1145/3548606.3560686
https://eprint.iacr.org/2022/987
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behave like random systems and exhibit a particular structure (e.g., a
multi-homogeneous structure [MS87; LLB03; MM07]). Dedicated Gröbner
basis algorithms that are able to exploit this structure have great potential
to improve the security analysis of “algebraic” primitives and, thus, are of
independent interest. In [HLL+22], we take a first step towards dedicated
Gröbner basis algorithms. We devise a new Gröbner basis algorithm that
performs particularly well for overdetermined, quadratic equation systems.
Our new algorithm is called M5GB and merges ideas from state-of-the-art
signature-based Gröbner basis algorithms (such as F5 [Fau02]) with the
efficient reduction routine of M4GB [MS17]. The author developed the idea
behind M5GB together with Manuel Hauke and made significant contribu-
tions to the algorithmical formulation of M5GB. Furthermore, the author
supervised the implementation of M5GB, aided in proving termination and
correctness and wrote most of the article [HLL+22].
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3
S E C U R I T Y E S S E N T I A L S O F C RY P T O G R A P H I C
P E R M U TAT I O N S A N D B L O C K C I P H E R S

In this thesis, we focus on the security of two important classes of cryp-
tographic primitives: cryptographic permutations and block ciphers. To
be more precise, we emphasize block ciphers since we employ the same
design principles known from block cipher design to construct cryptographic
permutations.1

The use of cryptographic permutations gained popularity during the
SHA-3 competition [Sha]. In particular, the selection of the permutation-
based Keccak sponge-function [Dwo15; BDP+11] as the new SHA-3 standard
popularized the sponge construction within the cryptographic community.
The sponge construction [GJM+11; BDP+11] is a very versatile construction
and is nowadays widely used to, e.g., construct hash functions based on
cryptographic permutations.

Definition 1. Let M be a finite set. A cryptographic permutation of M is a
bijective function

P :M−→M,

such that P (and, if necessary, its inverse P−1) is efficiently2 computable.

Sometimes we call a cryptographic permutation also an unkeyed per-
mutation to distinguish it from a keyed permutation, i.e., a block cipher.
Unlike for block ciphers with their pseudo-random permutation claim (see
Section 3.2), a formal security notion for cryptographic permutations is
harder to formulate. After all, a cryptographic permutation admits trivial
distinguishers since it is a fixed, known permutation.3 Hence, the authors of
[GJM+11, Section 8.1.4] use the notion of structural distinguishers to set them
apart from trivial distinguishers. Structural distinguishers include linear and
differential distinguishers, integral distinguishers, higher-order differential
distinguishers, and distinguishers based on any non-random property in
the polynomial representation of a cryptographic permutation. For a more
detailed treatment of the security of cryptographic permutations we refer to
[GJM+11, Section 8.2].

An important problem for assessing the security of cryptographic permu-
tations is the Constrained Input Constrained Output Problem (CICO Problem)
[GJM+11, Section 8.2.4]. For a cryptographic permutation it should not be
possible to solve the CICO Problem faster than any generic means [GJM+11,
Section 8.2.4].

Definition 2 (CICO Problem). Let M be a finite set and let X ,Y ⊆ M be
two subsets ofM. The CICO Problem for a cryptographic permutation P of
M is phrased as:

Find x ∈ X and y ∈ Y such that y = P(x).
1 Indeed, cryptographic permutations are typically constructed as fixed-key block ciphers. This

means, the construction of cryptographic permutations boils down to the iteration of simple
(and well-chosen) round functions.

2 Here, the same remark as in Footnote 4 applies.
3 For a given input-output pair (x, y) ∈ M2 of a cryptographic permutation P, it is trivial to

check whether y = P(x) and, thus, to distinguish P from a random permutation.

16
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For the rest of this section, we establish the following convention. We
say an element s is randomly chosen from a finite set S, if s is sampled from
S according to a uniform distribution. In other words, each element in S is
equally likely and is assigned the probability |S|−1.

3.1 Block Ciphers

Block ciphers are a fundamental cryptographic primitive and, at the same
time, a building block for other cryptographic primitives, such as compression
functions, hash functions, pseudo-random number generators, message authentica-
tion codes, and stream ciphers.

Informally speaking, a block cipher is a function which takes as input
a secret key and a plaintext (or message) of fixed length, and outputs a
ciphertext (or encrypted message) of the same length. Knowing the secret
key, it is easy to recover the plaintext from the ciphertext. There are two
immediate security goals a block cipher should address.

• Without the secret key k it should be (computationally) infeasible to
learn anything about the plaintext.

• Additionally, given a set of plaintext-ciphertext-pairs it should be (com-
putationally) infeasible to recover (part of) the secret key from these
pairs.

In short, a block cipher protects the confidentiality of, both, the plaintext
encrypted with a secret key, and the secret key itself. The following definition
captures the notion of a block cipher more formally.

Definition 3. Let M and K be finite sets. A block cipher is a family of
permutations ofM

E(M,K) := {Ek :M−→M, k ∈ K, Ek a permutation},

parametrized by k ∈ K, such that Ek and E−1
k are efficiently4 computable for

all k ∈ K. Here, E−1
k is the (compositional) inverse of Ek, i.e., it holds

Ek ◦ E−1
k = E−1

k ◦ Ek = IdM, for all k ∈ K.

Furthermore, we use the following denominations.

• An instance Ek ∈ E(M,K), for k ∈ K, is commonly called a block
cipher as well.5

• Instead of block cipher we also use the term keyed cryptographic permu-
tation.

• The setM is called the message space, and K is called the key space.

• The number log2(|M|) is called the block size or state size.

• The number log2(|K|) is called the key size or size of the keyspace.

4 “Efficiently” in this context means, given k ∈ K and m ∈ M it is easy compute Ek(m), and
E−1

k (m), respectively. Since K,M are fixed finite sets, any notion of efficiency in terms of
asymptotic complexity is not fruitful here. We deliberately do not give a precise definition of
“easy” and hope, the reader will understand what is meant here.

5 We believe, this causes no confusion, as any concrete block cipher Ek is understood to be a
member of a family permutations parametrized by some set K.
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• Let c = Ek(p). The message p is called plaintext, and the encrypted
message c is called ciphertext.

If the sets M and K are clear from the context, we also just write E
instead of E(M,K). We emphasize, Definition 3 does not say anything about
what properties a “good” block cipher should have. The family E(M,K)
could be a single permutation, e.g., the identity onM, that is repeated |K|
times. Of course, we do not regard such a block cipher as a “good” one. We
shall see later in Section 3.2 what properties we require from a block cipher
to consider it “good”, i.e., secure.

The block size determines the (theoretical) number of all possible permu-
tations that a block cipher might cover. The key size determines the number
of permutations that are actually covered. It is interesting to ask, how large
the key size would have to be, to cover all possible permutations ofM. The
number of permutations ofM is |M|!. According to Stirling’s formula, this
is approximated by

|M|! ≈
√

2π|M|
(
|M|

e

)|M|
, for |M| large.

Since √
2π|M|

(
|M|

e

)|M|
<

(
|M|

2

)|M|
, for |M| large,

with a key size of

log2(|K|) = |M| · log2(|M|/2),

bits, one could cover all permutations of M. For a typical block size of
log2(|M|) = 128 bits, this would imply an exorbitantly large key size, which
is far beyond any practical usability. In practice, much smaller key sizes
suffice, e.g.,

log2(|K|) = 256.

In this example, a block cipher family “only” covers at most 2256 different
permutations. However, this is more than enough to thwart any exhaustive
search of the key space K with current (and foreseeable) computing resources.
Nevertheless, it is a basic design principle of block ciphers that for a randomly
chosen key k ∈ K the permutation Ek should appear to be a randomly chosen
permutation from all permutations ofM. We discuss this aspect further in
the following section.

3.2 Security of Block Ciphers

When designing and analyzing symmetric cryptographic primitives, the liter-
ature commonly distinguishes between the roles of designer and cryptanalyst.
The designer proposes a cryptosystem, in conjunction with concrete security
claims. The cryptanalyst tries to “break” a cryptosystem, i.e., to invalidate
the stated security claims. Often, the cryptanalyst is seen as an adversary,
and, thus, is also called attacker. We adopt a more neutral diction, which is
why we use the term cryptanalyst, or short analyst, instead of adversary or
attacker.

When analyzing a block cipher E(M,K), it is customary to work with
the following assumptions.

• All keys in K are equally likely to be chosen.
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• For every k ∈ K, the cryptanalyst knows all details of Ek and E−1
k ,

except for the secret key k itself.

The second assumption is also known as Kerckhoff’s principle [Ker83a; Ker83b]
and its aim is to facilitate public analysis of a block cipher, while its security
rests entirely upon the secret key k. Open-sourcing the design6 of a block
cipher, i.e., considering it as public knowledge, reflects the assumption that
any cryptanalyst will gain full familiarity with the design anyway. By one
way or another, and no matter if kept secret. In addition, if everyone knows
the details of a block cipher and is free to assess its security, the confidence
in this block cipher increases.

When we speak of the power of the cryptanalyst we mean three types
of resources: time, data, and memory. Time and memory, in terms of
computational resources, are usually measured in a way that is agnostic to
the underlying hardware.7 “Data” refers to a set of plaintext-ciphertext-pairs
(p, c) ∈ M2, all encrypted under the same fixed, but unknown, key k ∈ K.
The usual model for collecting plaintext-ciphertext pairs is the following:
a cryptanalyst A interacts with an oracle OF for a function F : M −→ M,
such that A sends x ∈ M to OF and receives back F(x). The function F
either implements Ek or E−1

k for a fixed, but unknown, key k ∈ K. Only
the corresponding oracle is able to generate valid plaintext-ciphertext-pairs.
However, due to Kerckhoffs’s principle, A knows the whole family E and
may implement Ek′ or E−1

k′ , for any self-chosen key k′ ∈ K.
We call the amount of time, data, and memory a cryptanalyst requires

also the time, data and memory complexity. We emphasize, in contrast to
any asymptotic theory of computational complexity, in this context the term
“complexity” carries a rather concrete meaning. The cryptographic literature
knows the following commonly used meanings.

1. Time complexity. A measure for the time needed to carry out a certain
analysis. One time unit, usually, is one evaluation of Ek (or E−1

k ).
Another common time unit is one arithmetic operation overM.

2. Data complexity. The amount of plaintext-ciphertext pairs that are
necessary for a certain analysis. In other words, the number of queries
to an oracle of Ek (or E−1

k ). One unit is one plaintext-ciphertext pair.

3. Memory complexity. A measure for the memory needed to carry out a
certain analysis. Typically, one unit is one bit or, also, the bit-length of
an element inM, i.e., log2(|M|).

From a conceptual point of view, it is meaningful to classify the security of
block ciphers according to the goal of the cryptanalyst and the data access
that is granted to the cryptanalyst, i.e., the model of cryptanalysis.

Goals of Cryptanalysis We align ourselves with the classification in
[Knu94b; VTJ14] and formulate four basic goals for the cryptanalysis of
block ciphers. In the following, let Ek ∈ E(M,K) be an arbitrary block
cipher.

1. Key-Recovery. The cryptanalyst recovers the secret key k from a set of
ciphertexts, or pairs of plaintexts and corresponding ciphertexts.

6 “Design” in this context refers to the internal details of a block cipher, much like a construction
plan.

7 Implicitly, often a RAM model of computation is assumed.
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2. Global Deduction. The cryptanalyst constructs a function F that is
functionally equivalent8 to Ek or E−1

k , without knowing the secret-key k.

3. Local Deduction. Same goal as a global deduction, with the difference
that the functional equivalence is only valid on a subset of all possible
plaintexts or ciphertexts.

4. Distinguisher. The cryptanalyist can efficiently distinguish between two
black boxes; one contains the block cipher with a randomly chosen key,
while the other contains a randomly chosen permutation.

Models of Cryptanalysis Above goals of cryptanalysis may differ in the
data resources that they grant the cryptanalyst. The cryptographic literature
knows the following basic models (see, e.g., [VTJ14]).

1. Ciphertext-only analysis. The cryptanalyst only knows a set of ciphertexts,
but has no information about the corresponding plaintexts.

2. Known plaintext analysis. The cryptanalyst knows a set of plaintexts
p1, . . . , pl and corresponding ciphertexts c1, . . . , cl . But the cryptanalyst
has no control over the pairs of plaintexts and ciphertexts that are
available.

3. Chosen plaintext analysis. The cryptanalyst a priori chooses a set of
plaintexts p1, . . . , pl and obtains the corresponding ciphertexts c1, . . . , cl .

4. Adaptively chosen plaintext analysis. The cryptanalyst chooses a set of
plaintexts p1, . . . , pl interactively while receiving their corresponding
ciphertexts c1, . . . , cl . In other words, the cryptanalyst chooses p1,
obtains c1, then chooses p2, and obtains c2, and so forth.

5. (Adaptively) Chosen ciphertext analysis. Similar to a (adaptively) cho-
sen plaintext analysis, with the difference that the cryptanalyst may
(adaptively) choose ciphertexts.

Models 1. to 4. are listed in increasing strength, in the sense that the power
of the cryptanalyst increases. A successful analysis under model i− 1 is also
successful under model i. Seen from another perspective, if a block cipher
resists analysis under model i, it is also resistant against analysis under model
i− 1. The (adaptively) chosen ciphertext model in 5. is considered on a par
with the corresponding (adaptively) chosen plaintext model. Hence, a block
cipher that resists (adaptively) chosen plaintext and ciphertext cryptanalysis
provides the strongest security guarantee. In contrast, a cipher that only
resists ciphertext-only attacks provides the weakest security guarantee. From
a design perspective, it would be ideal to argue that a cipher is secure against
any form of (adaptively) chosen plaintext and ciphertext analysis, even if in
practice a cryptanalyst might never be that powerful. In practice, however,
the common approach in cryptanalysis is to find security arguments against
any known means of analysis.

Block Ciphers as Pseudo-Random Permutations Colloquially speaking,
the primary security notion of a block cipher E(M,K) is the following. The
family of |K| permutations should “statistically look like” the family of all
|M|! permutations ofM if the data and computing resources to distinguish
between the two of them are bounded. This means, for any computationally

8 Functional equivalence of two functions E and F means E(x) = F(x), for all x ∈ M.
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bounded procedure, a permutation parametrized by a randomly chosen key
k ∈ K should appear to be a randomly chosen permutation from the set of
all possible permutations. In our next considerations, we will motivate and
formalize this intuitive notion of “statistical likeness”. Eventually, this will
lead us to the fundamental concept of pseudo-random permutations (see
Definition 6 and Definition 7). At the heart of this concept lies the paradigm

“Two objects are viewed as equal if they cannot be told apart by
any efficient procedure.”

One vital thing to keep in mind is, when we talk about “statistical likeness”
of permutations, we are dealing with families of permutations rather than
individual permutations. To be even more precise, we are dealing with
distributions over families of permutations. When we talk about distributions,
in this context we mean discrete probability distributions over a finite domain
M. An important example is the uniform distribution overM that assigns
each element inM an equal probability of |M|−1. With above preparatory
remarks at hand, we formulate a first approximation of pseudo-random
permutations.

“A family of permutations on M is called pseudo-random if it
cannot be told apart from the family of all permutations onM
by any efficient probabilistic algorithm.”

An algorithm is called probabilistic if it can take random steps. A random
step is a random choice of several predetermined steps to take next, where
each step is equally likely. We call these choices the algorithm’s (internal)
randomness or (internal) coin tosses. Consequently, for each input the corre-
sponding output of a probabilistic algorithm is described by a probability
distribution, where the probability is taken over the algorithm’s randomness.
It remains to discuss what we mean by an “efficient” procedure.

When designing and analyzing block ciphers, we usually formulate secu-
rity with respect to a fixed security level and determine relevant parameters
of a block cipher accordingly. Hence, any asymptotic notion (e.g., proba-
bilistic polynomial time algorithms or negligible functions) might not be
the right tool to assess the security for concrete parameter values.9 As an
example, let P denote the set of all permutations onM. Instead of requiring
that no probabilistic polynomial-time algorithm can distinguish E from P
with non-negligible probability10, we demand that no algorithm running in
time at most t and making at most q queries can distinguish E and P with
probability better than ϵ.

In our presentation, we align ourselves with the discussion outlined in
[KL21, Section 3.1.1] and [MF21, Section 2.2.2], and adopt a concrete approach
to security that is formulated relative to a concrete security parameter λ.
The parameter λ upper bounds the resources, or complexities, we grant a
cryptanalyst, as well as the success probability of the cryptanalyst. Any
adequate notion of complexity should consider the time, data and memory
resources needed for cryptanalysis. A natural upper bound for the data
and memory complexity is the length |M| of the full codebook, i.e., the set
of all possible plaintext-ciphertext pairs. Whereas, a natural upper bound
for the time complexity is |K|, the time to try out all possible keys. The
concrete approach to security we are adopting and using to eventually define

9 Any block cipher E(M,K) is, theoretically, broken by an exhaustive key search in time |K| or a
dictionary analysis with |M| data and memory.

10 In theoretical cryptography, this is a canonical definition of a pseudo-random permutation.
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pseudo-random permutations originates with Bellare, Kilian, and Rogaway
[BKR94; BKR00] and builds upon the viewpoint of Luby and Rackoff [LR88].
Luby and Rackoff use the term “pseudo-random permutation” to denote a
permutation that is computationally indistinguishable from the family of all
functions. In contrast, Mihir, Bellare and Rogaway define pseudo-random
permutations as permutations that are computationally indistinguishable
from the family of all permutations, not the family of all functions. See also
[BKR98, Section 2.4] for a brief historical discussion and [BKR94, Section 1.2]
for a collection of other works which address the notion of concrete (or exact)
security prior to [BKR94].

We return to our clarification and explain what we mean by an “efficient”
procedure. Informally speaking and taking into account above concrete
approach to security, in this context we say:

“An ‘efficient’ procedure is any procedure that stays within the
predefined complexity limits for time, data, and memory.”

The following definitions formalize our discussion from above.

Definition 4. LetM and K be finite sets and let P := P(M) be the set of
all permutations ofM. Let

E := E(M,K) := {Ek :M−→M, k ∈ K, Ek a permutation},

be a block cipher. The (t, q)-pseudo-random (distinguishing) advantage of E is
defined as

AdvPRP
E (t, q) := max

At,q
|Prk←K(At,q(Ek) = 1)− Prπ←P (At,q(π) = 1)|.

Here, At,q(F) is a (computationally bounded) probabilistic algorithm that
takes as input an oracle OF for a function F :M−→M and that outputs a
bit b ∈ {0, 1}. At,q makes at most q oracle queries and runs in time at most t.

In Definition 4, the first probability is taken over the randomness of
At,q and randomly chosing k ∈ K, and the second probability is taken over
the randomness of At,q and randomly chosing π ∈ P . The PRP advantage
corresponds to the scenario of a chosen plaintext analysis. The scenario where
a cryptanalyst, additionally, has access to an oracle of E−1

k corresponds to a
chosen plaintext and ciphertext analysis. To cover this scenario, we introduce
the notion of strong PRP advantage.

Definition 5. LetM and K be finite sets and let P := P(M) be the set of
all permutations ofM. Let

E := E(M,K) := {Ek :M−→M, k ∈ K, Ek a permutation},

be a block cipher. The strong (t, q)-pseudo-random (distinguishing) advantage of
E is defined as

AdvsPRP
E (t, q) := max

At,q
|Prk←K(At,q(Ek, E−1

k ) = 1)

− Prπ←P (At,q(π, π−1) = 1)|.

Here, At,q is a (computationally bounded) probabilistic algorithm that takes
as input two oracles OF,OG for functions F, G :M−→M and that outputs
a bit b ∈ {0, 1}. At,q makes at most q oracle queries and runs in time at most
t.
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Definition 6 (Section 2.3, [BKR00]). A block cipher E is called a (t, q, ϵ)-
pseudo-random permutation (PRP) if the pseudo-random distinguishing
advantage AdvPRP

E (t, q) is smaller than ϵ.

The definition of a strong pseudo-random permutation is completely
analogous.

Definition 7. A block cipher E is called a strong (t, q, ϵ)-pseudo-random per-
mutation (sPRP) if the strong (t, q)-pseudo-random distinguishing advantage
AdvsPRP

E (t, q) is smaller than ϵ.

For which values of ϵ do we consider E secure, and for which not?
We presume to keep this point informal, because, in fact, it is the task of
dedicated cryptanalysis to find a (lower) bound on the advantage of a given
distinguishing algorithm. As a rule of thumb we state, if any distinguishing
algorithm At,q achieves a “high” advantage ϵ within the complexity limits
defined by q and t, then we consider this block cipher as broken. To get a
feel for the large values of t and the small values of ϵ, that are typical of
modern cryptosystems we refer to [KL21, Section 3.1.1]

The standard notion of security for block ciphers is the (strong) pseudo-
random permutation assumption introduced in Definition 6 (and Definition 7,
respectively). As a more colloquial notion of security, we formulate:

“A block cipher is considered secure if no cryptanalyst is able to
deduce any information about the plaintext, the ciphertext or the
secret key more efficiently than any generic means of analysis.”

In the following, we describe two important generic means for analyzing
block ciphers: exhaustive key search and dictionary analysis. A minimal
requirement for a secure block cipher, thus, would be: the key size should
be large enough to prevent exhaustive search of the key space and the block
size should be large enough to prevent dictionary attacks.

Exhaustive (Key) Search Let (p, c) be a known plaintext-ciphertext-pair
that has been encrypted under a fixed, but unknown, key k ∈ K. In short, we
have the relation Ek(p) = c. It takes |K| steps to exhaustively try all possible
keys in K and test whether a key k′ ∈ K satisfies the relation Ek′(c) = p. A
satisfying key k′ is considered a candidate for the correct key k. If E is a
pseudo-random permutation, we expect

|K|
|M|

satisfying keys k′, with the correct key k being one of them. Hence, if
|K| < |M| we expect a single satisfying key - the correct key k. If |K| >
|M|, we might need more than one plaintext-ciphertext pair to identify the
correct key among all candidate keys. Let us assume we have two known
plaintext-ciphertext-pairs (p1, c1), (p2, c2), both encrypted under the same
key k. Exhaustively trying all keys k′ ∈ K and testing whether Ek′(p1) = c1,
Ek′(p2) = c2 is satisfied, we expect to find

K
|M| · (|M| − 1)

satisfying keys k′. More generally, given l known plaintext-ciphertext-pairs
(p1, c1), . . ., (pl , cl), all encrypted under the same, fixed but unknown, key
k ∈ K, we expect that

|K|
|M| · (|M| − 1) · · · · · (|M| − l + 1)

≈ |K|
|M|l
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keys k′ ∈ K satisfy Ek′(p1) = c1, . . . , Ek′(pl) = cl . Hence, we expect that

log2(|K|)
log2(|M)|

plaintext-ciphertext pairs are enough to single out the correct key k.
If X is the random variable describing the number of random tries until

the correct key has been identified, the expected time complexity for an
exhaustive key search is given by11

|K|

∑
i=1

i · P(X = i) =
|K|

∑
i=1

i
|K| =

|K| · (|K|+ 1)
2 · |K| ≈ |K|

2
.

This means, on average it takes |K|/2 guesses until the correct key has been
identified. The memory requirement of exhaustive search is neglible and
only a few known plaintext-ciphertex pairs are needed.

Dictionary Analysis as Global Deduction Theoretically, a dictionary anal-
ysis may be assembled if we collect the ciphertexts of all |M| plaintexts and
store them in a table. This takes |M| memory and data, but negligible time.
Thereafter, we are able to encrypt (or decrypt) without any knowledge about
the secret key. Such a dictionary analysis is also the reason, why the state
size of a block cipher should not be too small.

Dictionary Analysis as Key Recovery Another form of (theoretical) dic-
tionary analysis is the following. We encrypt a fixed plaintext p under all
possible keys k′ ∈ K and store the corresponding ciphertexts Ek′(p) in a table.
Afterwards, we request the ciphertext c = Ek(p) of p under the unknown
key k ∈ K and check which table entries satisfy

Ek′(p) = Ek(p).

If E is a pseudo-random permutation, we expect to find

|K|
|M|

matching entries. The rest of the discussion is analogous to our discussion of
exhaustive key search. In particular, we expect that

log2(|K|)
log2(|M)|

chosen plaintext-ciphertext pairs suffice to single out the correct key. This
type of dictionary attack requires |K| time and memory, but only a few
chosen plaintext-ciphertext pairs. It is the reason why the key size of a block
cipher should not be too small.

The following listing summarizes the complexity requirements, in terms
of time, memory and data, of above generic means of analysis.

• Exhaustive (key) search. |K| (or |K|/2) time, negligible data (a few
known plaintext-ciphertext pairs), negligible memory.

11 For n = |K|, the probability to guess the correct key on the i-th attempt after i − 1 wrong
guesses (with discarding wrongly guessed keys) is n−1

n ·
n−2
n−1 · · ·

n−i+1
n−i+2 ·

1
n−i+1 = 1

n .
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• Dictionary analysis. |K| time, |K| memory, negligible data (only a few
plaintext-ciphertext pairs) in a key-recovery dictionary analysis. In a
dictionary analysis as global deduction, we require |M| memory and
data, and negligible time.

We conclude our discussion of generic block cipher cryptanalysis with some
further references. For the topic of time-memory tradeoffs we recommend
[Hel80; BPV98], for a discussion of the effective key-length of block ciphers
we refer to [HL14], and for general further reading we refer to [KR11; SSL15;
Ava16].



4
D I F F E R E N T F L AV O R S O F A L G E B R A I C C RY P TA N A LY S I S

The fact that most primitives in symmetric cryptography operate over finite
fields provides the starting point and the theoretical underpinning of algebraic
cryptanalysis.1 At its core, algebraic cryptanalysis exploits a fundamental
property of finite fields, namely, that all functions over finite fields can be
expressed as polynomial functions. We give an account of this property in
Proposition 1.

Proposition 1. Every map f : Fq → Fq on a finite field Fq can be uniquely
described as a univariate polynomial over Fq with maximum degree q− 1.

Proof. For existence, consider the polynomial

F(X) := ∑
a∈Fq

f (a)(1− (X− a)q−1). (1)

Or, alternatively, the polynomial

F(X) := ∑
a∈Fq

f (a) ∏
b∈Fq
b ̸=a

X− b
a− b

. (2)

For uniqueness, observe, if there are two polynomials F, G ∈ Fq[X1, . . . , Xn]
of degree at most q− 1 with

F(x) = f (x) = G(x), for all x ∈ Fq,

then F− G has q roots. Since a non-zero polynomial of degree at most q− 1
has at most q− 1 zeroes it follows F− G = 0 and thus, F = G.

An analogous result holds for multivariate functions over Fn
q , see the

following Proposition 2.

Proposition 2. Every map f : Fn
q → Fq can be uniquely described as a multivariate

polynomial over Fq in n variables with maximum degree q− 1 in each variable.

Proof. For existence, consider the polynomial

φ( f )(X1, . . . , Xn) := ∑
(a1,...,an)∈Fn

q

f (a1, . . . , an) ∏
1≤i≤n

(1− (Xi − ai)
q−1). (3)

Uniqueness follows from a cardinality argument: the two finite sets

S := Fq[X1, . . . , Xn]/(Xq
1 − X1, . . . , Xq

n − Xn)

and
R := { f : Fn

q → Fq}
1 It might be more precise to say “can be regarded to operate over finite fields”, since, e.g., the

set of bit strings of length n natively only carries the structure of a F2-vector space but can
be endowed with a field structure (coming from F2n ). For more details, see the remark after
Proposition 2.

26
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have the same cardinality qqn
. Furthermore, the map φ : R → S with

f 7→ φ( f ) is injective. Indeed, if for two functions f , g : Fn
q → Fq it holds

φ( f ) = φ(g), then by Eq. (3) and since ι : Fn
q → Fq

ι(x1, . . . , xn) := ∏
1≤i≤n

(1− (xi − ai)
q−1)

is the indicator function of {(a1, . . . , an)} this yields

f (a1, . . . , an) = g(a1, . . . , an), for all (a1, . . . , an) ∈ Fn
q ,

and consequently f = g. Since a function on a finite domain is injective if
and only if it is surjective, we conclude that φ is bijective.

As an immediate consequence of Proposition 1 we state the following
corollary.

Corollary 1. Let (x0, y0), . . . , (xd, yd) be a set of d+ 1 pairs of elements in Fq such
that xi ̸= xj for i ̸= j (which implies d ≤ q). Then there exists a unique polynomial
F ∈ Fq[X] with maximum degree d such that F(xi) = yi, for all i = 0, 1, . . . , d.

Almost all cryptographic primitives in symmetric cryptography operate
over finite fields or can be interpreted to work over finite fields. For ex-
ample, “binary primitives” that manipulate bit-strings of length n, are, in
fact, functions working over the n-fold cartesian product Fn

2 . The set Fn
2

naturally carries the structure of an F2-vector space and, furthermore, is
isomorphic (as vector space) to the finite field F2n with 2n elements. What is
more, the field structure of F2n carries over to Fn

2 , or, in other words, Fn
2 can

be endowed with the field structure of F2n . To see this, choose a vector space
basis {a1, . . . , an} ⊆ F2n of F2n and consider the bijective map

κ = κa1,...,an : Fn
2 −→ F2n , (x1, . . . , xn) 7→ x1a1 + . . . + xnan.

Then the multiplication on Fn
2 induced by κ

(x1, . . . , xn) · (y1, . . . , yn) := κ−1 (κ(x1, . . . , xn) · κ(y1, . . . , yn)) (4)

together with coordinate-wise addition of vectors gives Fn
2 the structure of a

field. Note that the second operator · in Eq. (4) denotes field multiplication
in F2n .

The preceding discussion is the reason, why we useM = Fq as native
domain for a block cipher E(M,K) in the rest of this section. There are dif-
ferent branches of algebraic cryptanalysis. Each branch exploits the fact that
functions over finite fields are, indeed, polynomial functions in a different
manner. We motivate the following methods of algebraic cryptanalysis:

• polynomial interpolation,

• higher-order differential distinguishers, and

• algebraic equation solving via Gröbner bases.

Other established means of cryptanalysis, considered as algebraic in the liter-
ature, include: the division property [Tod15] and its dual notion monomial
prediction [HSW+20], cube distinguishers [DS09], zero-sum and integral
distinguishers [DKR97; KR07; AM09], and linearization [KS99] including the
XL-family of algorithms [Cou02]. Each of these methods spans its own line
of research and is an important topic in its own regard. However, discussing
them more comprehensively lies beyond the scope of this thesis.
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4.1 Polynomial Interpolation

Polynomial interpolation (or interpolation cryptanalysis) as a means of alge-
braic cryptanalysis was introduced in 1997 by Thomas Jakobsen and Lars
Knudsen [JK97] to successfully analyze block ciphers proven to be secure
against linear and differential analysis. Further and more recent research
works can be found in [YG00; DLM+15; EGL+20; LP19; ZZD+21; RAS21].

The conceptual basis of interpolation cryptanalysis are Proposition 1,
Proposition 2, and Corollary 1. Interpolation cryptanalysis aims at construct-
ing the polynomial representing the encryption (or decryption) function
from a set of known or chosen plaintext-ciphertext-pairs. In addition, it
might also aim at recovering (part of) the secret-key. In general, an instance
of a block cipher Ek : Fq −→ Fq is considered secure against interpolation
cryptanalysis, if the polynomial representation2 of Ek in Fq[X]/⟨Xq − X⟩
given by

P(X) =
q−2

∑
i=1

aiXi ∈ Fq[X]/⟨Xq − X⟩,

has a degree close to the maximum degree q− 2 and a number of non-zero
coefficients close to q− 1.3

The rest of this section is devoted to a discussion of different approaches
to polynomial interpolation. In the following, let E : Fq −→ Fq be a fixed
function (e.g., an instance of a block cipher). Let

Ê(X) =
q−1

∑
i=0

aiXi ∈ Fq[X]/⟨Xq − X⟩

denote the (unique) polynomial representation of E over Fq. The aim of poly-
nomial interpolation is to recover the coefficient vector (a0, . . . , aq−1) from the
value vector (y0, . . . , yq−1), where yi := E(xi) and Fq = {x0, x1, . . . , xq−1}.

A textbook approach for interpolating E is to set up the equation system

yi = E(xi) = a0 + a1xi + · · · aq−1xq−1
i , 0 ≤ i ≤ q− 1,

of q linear equations over Fq in the q variables a0, a1, . . . , aq−1. Subsequently,
we solve the equation system for a0, a1, . . . , aq−1. In other words, we solve
the following matrix equation

y = V · a,

with y = (y0, . . . , yq−1)
t, a = (a0, . . . , aq−1)

t and

V =


1 x0 x2

0 . . . xq−1
0

1 x1 x2
1 . . . xq−1

1
...

...
...

...
1 xq−1 x2

q−1 . . . xq−1
q−1

 .

Inverting V recovers the coefficient vector a. Setting up above equation
system takes q data points4 (x0, y0), . . . , (xq−1, yq−1). The matrix V is also
called a Vandermonde matrix and inverting it can be done in

O (qω)

2 For a polynomial P ∈ Fq[X], the term polynomial representation of Ek refers to the property
P(x) = Ek(x), for all x ∈ Fq.

3 To see why a permutation polynomial of Fq, for q ≥ 3, has at most degree q− 2, consider the
fact that for α ∈ Fq, α ̸= 0, 1, the map x 7→ αx is a bijection of Fq. Hence, ∑x∈Fq x = ∑x∈Fq αx
and therefore (1− α)∑x∈Fq x = 0. This means, the coefficient of Xq−1 in Eq. (1) is 0.

4 I.e., q (known) plaintext-ciphertext-pairs in case E is an instance of a block cipher.
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field operations in Fq, where 2 ≤ ω ≤ 3 is the exponent of matrix multipli-
cation [GCL92, p.129]. A more general approach for interpolating E is to
choose any vector space basis

{α0(X), . . . , αq−1(X)}

for the q-dimensional Fq-vector space Fq[X]/⟨Xq − X⟩ and solve the follow-
ing system of equations

yi = E(xi) = a0α0(xi) + a1α1(xi) + · · · aq−1αq−1(xi), 0 ≤ i ≤ q− 1,

for a0, . . . , aq−1, and, again, Fq = {x0, . . . , xq−1}. Clearly, choosing the canon-
ical basis {1, X, . . . , Xq−1} coincides with the previous approach of construct-
ing the Vandermonde matrix. A well-known basis is the Lagrange basis
{L0(X), L1(X), . . . , Lq−1(X)}, with

Li(X) :=
d

∏
j=0
j ̸=i

X− xj

xi − xj
∈ Fq[X] /⟨Xq − X⟩.

Since Li(x) = 1, if x = xi, and Li(x) = 0, for x ̸= xi, the Lagrange basis leads
to the matrix equation

y = L · a,

with the particularly convenient q× q identity matrix

L =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

Another important basis is the Newton basis {N0(X), N1(X), . . . , Nq−1(X)}
with5

Ni(X) :=
i−1

∏
j=0

(X− xj) ∈ Fq[X] /⟨Xq − X⟩.

The property Ni(xk) = 0, for all k < i, leads to the matrix equation

y = N · a,

with the q× q triangular matrix

N =


1 0 0 . . . 0
1 (x1 − x0) 0 . . . 0
...

...
...

...
1 (xq−1 − x0) ∏1

j=0(xq−1 − xj) . . . ∏
q−2
j=0 (xq−1 − xj)

 .

Using either of these bases takes

O(q2)

field operations in Fq to recover a0, . . . , aq−1[GCL92, p.129] and data points
(or plaintext-ciphertext pairs).

5 For the empty product N0(X) we set N0(X) = 1.
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The most efficient approaches to polynomial interpolation rely on the
divide-and-conquer strategy of the Fast Fourier Transform (FFT) and, in case
of interpolating a data set of N points, lead to a complexity of

O(N log N)

field operations in Fq [GCL92, p.132]. In a nutshell, the FFT is a fast version
of the Discrete Fourier Transform (DFT) given by

FN
q → FN

q

(a0, . . . , aN−1) 7→ (â0, . . . , âN−1),

such that

âj =
N−1

∑
k=0

akϕjk, j = 0, 1, . . . , N − 1,

for a primitive N-th root of unity ϕ ∈ Fq. Stated differently, the DFT evaluates
the polynomial

Q(X) = a0 + a1X + · · ·+ aN−1XN−1

at the N points 1, ϕ, ϕ2, . . . , ϕN−1 and returns Q(1), Q(ϕ), . . . , Q(ϕN−1). We
do not discuss the many varieties of FFT-algorithms here, but refer to
[RKH10] for an overview of state-of-the-art algorithms. An FFT-based ap-
proach for interpolating Q, i.e., for recovering a0, . . . , aN−1, on the set of N-th
roots of unity 1, ϕ, ϕ2, . . . , ϕN−1 leads to the following matrix equation

y = VFFT · a,

with y = (E(1), E(ϕ1), . . . , E(ϕN−1))t, a = (a0, . . . , aN−1)
t and where VFFT

denotes the special Vandermonde matrix

VFFT =


1 1 1 . . . 1
1 ϕ1 ϕ2 . . . ϕN−1

...
...

...
...

1 ϕN−1 ϕ2(N−1) . . . ϕ(N−1)(N−1)

 .

The inverse matrix of VFFT is given by [GCL92, Theorem 4.2, p.130]

V−1
FFT =

1
n


1 1 1 . . . 1
1 ϕ−1 ϕ−2 . . . ϕ−(N−1)

...
...

...
...

1 ϕ−(N−1) ϕ−2(N−1) . . . ϕ−(N−1)(N−1)

 .

Hence, recovering (a0, . . . , aN−1) is a matter of applying the FFT with ϕ−1

and a subsequent scaling with the factor 1/n.
So far we have discussed univariate interpolation, i.e., recovering the

univariate polynomial representation of E : Fq −→ Fq in

Fq[X]/⟨Xq − X⟩.

However, if E : Ft
q −→ Ft

q is a multivariate or t-variate function, we obtain a
multivariate polynomial representation as a t-tuple of elements in

Fq[X1, . . . , Xt]/⟨Xq
1 − X1, . . . , Xq

t − Xt⟩.



4.2 higher-order differential distinguishers 31

For the special case q = 2, we speak of (vectorial) Boolean functions and the
corresponding multivariate polynomial representation of E : Fn

2 −→ Fn
2 as a

t-tuple of elements in

F2[X1, . . . , Xt]/⟨X2
1 − X1, . . . , X2

t − Xt⟩

is called Algebraic Normal Form (ANF) of E. We discuss the different poly-
nomial representations of (vectorial) Boolean functions and their use in
cryptanalysis in more detail in Chapter 8.

4.2 Higher-Order Differential Distinguishers

Higher-order differential distinguishers have been introduced in [Lai94] and
are distinguishers of block ciphers over binary extension fields Fn

2 with
low algebraic degree. Today, higher-order differential distinguishers are
well-established means of cryptanalysis. Some important and recent works
in this direction are [MSK98; BCC11; DRS20; EGL+20; CGG+22; BCP23;
LAW+23], with recent generalizations in [BCD+20a; GCR+21]. A higher-
order differential distinguisher may even allow the cryptanalyst to recover
the secret key, as demonstrated in [EGL+20].

It is well-known that almost all permutation polynomials of Fq have
degree q− 2 [KP02]. For q = 2n and in light of Fn

2
∼= F2n (as vector spaces),

this translates to the statement:

“Almost all bijective (vectorial) boolean functions Fn
2 −→ Fn

2 have
algebraic degree exactly n-1.”

Bijective (vectorial) boolean functions cannot have algebraic degree n (see
also Footnote 3). Arbitrary (vectorial) boolean functions may have algebraic
degree n. Based on the results in [Car10, p.295], [Bak19, Theorem 1], we
assert in a more general context:

“Almost all (vectorial) boolean functions Fn
2 −→ Fn

2 have algebraic
degree at least n-1.”

The basic idea behind higher-order differential distinguishers is the follow-
ing. If a substantial number of block cipher instances admit a polynomial
representation with algebraic less than n− 1, then this property may be used
to distinguish this block cipher from a random permutation. This, in turn,
violated the pseudo-random permutation claim of the block cipher. In what
follows, we discuss how higher-order differential distinguishers exploit this
idea.

Let ∆a f denote the derivative of a vectorial boolean function f : Fn
2 −→

Fn
2 at a point a ∈ Fn

2 defined by

(∆a f )(x) := f (x + a) + f (x). (5)

For i > 1 and F2-linearly independent6 points a1, . . . , ai ∈ Fn
2 , the i-th (order)

derivative ∆a1,...,ai f of f is defined recursively as

∆a1,...,ai f = ∆ai (∆a1,...,ai−1 f ).

The (first-order) derivative in Eq. (5) is also called a differential. The gener-
alization to higher-order derivatives, thus, lends its name to higher-order
differential distinguishers. Similar to ordinary calculus over the real numbers,
the derivative ∆a f satisfies [Lai94, p.3]

6 The concept of i-th order derivatives can also be defined for linearly dependent points a1, . . . , ai .
But then ∆a1 ,...,ai f = 0, which is of no interest.
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1. ∆a( f + g) = ∆a f + ∆ag (“homomorphic with respect to addition”).

2. For all x ∈ Fn
2 it holds ∆a( f · g)(x) = (∆a f )(x) · g(x) + f (x + a) ·

(∆ag)(x) (“almost Leibnitz”).

The next two lemmata are crucial for the application of higher-order
derivatives in algebraic cryptanalysis.

Lemma 1 ([Lai94], Proposition 2). Let f : Fn
2 −→ Fn

2 be a vectorial boolean
function and a ∈ Fn

2 . Then

deg(∆a f ) ≤ deg( f )− 1.

Lemma 2 ([Lai94], Proposition 3). Let f : Fn
2 −→ Fn

2 be a vectorial boolean
function, let a1, . . . , ai ∈ Fn

2 be F2-linearly independent and let

Si := Si(a1, . . . , ai) := {λ1a1 + · · ·+ λiai : λj ∈ F2}

be the set of all 2i linear combinations of a1, . . . , ai. Then it holds for all x ∈ Fn
2

(∆a1,...,ai f )(x) = ∑
s∈Si

f (x + s).

As immediate consequences of Lemma 1 and Lemma 2, respectively, we
formulate two corollaries.

Corollary 2. Let f : Fn
2 −→ Fn

2 be a vectorial boolean function and let a1, . . . , ai ∈
Fn

2 be F2-linearly independent. Then

deg(∆a1,...,ai f ) ≤ deg( f )− i.

Corollary 3. Let f : Fn
2 −→ Fn

2 be a vectorial boolean function with algebraic
degree δ and let a1, . . . , aδ+1 ∈ Fn

2 be a set of δ+ 1 F2-linearly independent elements.
Then

∆a1,...,aδ+1 f = 0.

In particular,
(∆a1,...,aδ+1 f )(x) = ∑

s∈Sδ+1

f (x + s) = 0,

for all x ∈ Fn
2 .

Stated differently, if f : Fn
2 −→ Fn

2 is a vectorial boolean function with
algebraic degree δ, then all the evaluations of f over any affine subspace
of Fn

2 of dimension δ + 1 sum to zero. I.e., for any F2-linearly independent
elements a1, . . . , aδ+1 ∈ Fn

2 with

Sδ+1 := {λ1a1 + · · ·+ λδ+1aδ+1 : λj ∈ F2},

and any λ ∈ Fn
2 we have

∑
s∈Sδ+1

f (λ + s) = 0.

If many, or all, instances of a block cipher E(Fn
2 ,K) have algebraic degree

strictly less than n− 1, a higher-order differential distinguisher A may exploit
this property in the following way. For an oracle OEk of a randomly chosen
instance Ek ∈ E and any vector subspace S ⊆ Fn

2 of dimension δ + 1, the
distinguisher A requests the ciphertexts {Ek(s) : s ∈ S} from OEk and checks
if

∑
s∈S

Ek(s) = 0.



4.3 gröbner basis analysis 33

For said block cipher instances, above sum is zero. With overwhelming
probability (see [KP02]), the same property does not hold for the ciphertexts
{π(s) : s ∈ S} retrieved from an oracle Oπ , where π is a randomly chosen
permutation from the family of all permutations of Fn

2 .
In practice, the problem of finding a higher-order differential distin-

guisher boils down to establishing (tight upper) bounds on the algebraic
degree of a block cipher, typically independent of the secret key k. Bounding
the algebraic degree is, in itself, a hard problem and an active area of research
in symmetric cryptography. We discuss this topic in more detail in Chapter 8.

4.3 Gröbner Basis Analysis

Independent of cryptography, Gröbner basis theory is an area of ongoing
research and continues to be actively developed. The use of Gröbner bases
in cryptography is due to their application in solving systems of polyno-
mial equations that arise in the security analysis of cryptographic primitives.
The authors of [CW09] attribute the first documented use of Gröbner bases
in symmetric cryptography to [SK98], as an improvement for the linear
cryptanalysis of DES. The adoption of Rijndael as the AES in 2002 [DR02b],
together with the simple algebraic structure of Rijndael, motivated a consid-
erable amount of research on algebraic cryptanalysis, and, in particular, on
Gröbner basis techniques. Some relevant research works from this time are
[CP02; Cou02; AFI+04; CL05; CMR06; BPW06]. The increasing popularity of
“algebraic” permutations and hash functions tailored for MPC-, FHE- and
ZKP-protocols has led to a renewed interest in Gröbner basis cryptanalysis
in the last decade. To the best of our knowledge, our research in [ACG+19]
marks the first successful Gröbner basis analysis of a block cipher and hash
function. Today, many MPC-, FHE-, or ZKP-friendly primitives also provide
arguments against algebraic cryptanalysis, including Gröbner basis analysis.
This applies notably to all AFPs discussed in Section 1.2.

We turn our attention to the general procedure of Gröbner basis crypt-
analysis. Conceptually, it consists of two steps.

1. Modelling a cryptographic primitive as a system of polynomial equa-
tions with unknown parameters as variables. A parameter of interest
might be the secret key of a block cipher, a solution to the CICO Prob-
lem of a permutation (see also Definition 2), or the preimage of a given
hash value.

2. Solving the system of polynomial equations using Gröbner basis tech-
niques.

We note that equation systems stemming from problems in symmetric
cryptography most often have a finite number of solutions. Hence, we
may assume that the equation system generates a zero-dimensional ideal. In
step 2., “solving” may have one of the following meanings: (a) finding exactly
one solution, (b) finding all solutions, or (c) finding that no solution exists.
The situation where there is no solution might arise in a so-called hybrid form
of Gröbner basis analysis [BFP09; BFP12]. The idea is to combine exhaustive
search with Gröbner basis computations: we fix some of the variables and,
subsequently, solve the remaining equation system. The remaining equation
system might be ill-conditioned, and, hence, might not admit any solution.
In practice, step 2. is usually a triad of computations.
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1. Computing a degrevlex Gröbner basis for the zero-dimensional input
system using an algorithm such as F4 [Fau99], or F5 [Fau02].

2. Convert the degrevlex Gröbner basis to a lex Gröbner basis using an
algorithm such as FGLM [FGL+93], or a probabilistic [FGH+14] or
sparse variant thereof [FM11a; FM17].

3. Factor the univariate polynomial in the lex Gröbner basis using any
polynomial factoring algorithm. Determine the solutions of the cor-
responding variable. If needed, back-subsitute any solution into the
other equations in the lex Gröbner basis to obtain a full solution of the
system.

Complexity of Gröbner Basis Computations Runtime complexities for
Gröbner basis algorithms are based on the runtime analysis of matrix-based
algorithms, like Lazard (see Algorithm 4) or MatrixF5 [BFS15]. Since the
homogeneous case admits an easier and more elegant treatment, the input
polynomials are often assumed to be homogeneous. Any system of polyno-
mials may be homogenized, however, at the cost of adding an extra variable.
Most often in (symmetric) cryptography, practically relevant polynomial
systems generate a zero-dimensional ideal. Hence, the literature commonly
uses the assumption of zero-dimensional ideals to estimate the runtime com-
plexity of Gröbner basis algorithms. We state a first estimate on the runtime
complexity of computing a d-Gröbner basis with Algorithm 4.

Theorem 1 ([BFS15], Proposition 1). Let F := { f1, . . . , fm} ⊆ F[X1, . . . , Xn] be
a set of m homogeneous polynomials in n variables generating the (not necessarily
zero-dimensional) ideal I := ⟨ f1, . . . , fm⟩. Computing a d–Gröbner basis of I with
Lazard (see Algorithm 4) requires

O
(

md ·
(

n + d− 1
d

)ω)
(6)

operations in F, where ω denotes the linear algebra exponent.

For the special case of regular (Definition 23) and semi-regular sequences7

(Definition 25) the F5 algorithm performs particularly well, as has been shown
in [Fau02, Corollary 3], [Bar04, Théorème 3.2.9 & 3.2.10]. Theorem 2 estimates
the runtime of a matrix-based version MatrixF5 [BFS15] of F5 under these
assumptions. For a more detailed estimate, we refer to the step-by-step
analysis of MatrixF5 in [BFS15, Section 3.2] and [Bar04, Section 3.4].

Theorem 2 ([BFS+05], Proposition 6). Let F := { f1, . . . , fm} ⊆ F[X1, . . . , Xn]
be a semi-regular sequence of m polynomials in n variables (i.e., m ≥ n). Then
there is no reduction to 0 in MatrixF5 for degrees smaller than ireg. Computing a
Gröbner basis with MatrixF5 [BFS15] of the ideal ⟨ f1, . . . , fm⟩ requires

O
((

n + ireg

ireg

)ω)
(7)

operations in F, where ω denotes the linear algebra exponent.

For zero-dimensional homogeneous ideals, the index of regularity ireg
is a definite termination criterion for Algorithm 4 such that the resulting

7 Semi-regular sequences are a generalization of regular sequences to overdetermined polynomial
systems, i.e., to systems with m polynomials in n variables, where m ≥ n. In particular,
semi-regular sequences generate zero-dimensional ideals.
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ireg–Gröbner basis is a Gröbner basis (see our discussion in Section 6.2.2
and also Proposition 15). The same remark holds true for MatrixF5 since
it follows the basic strategy of the Lazard algorithm. This means, a key
parameter for estimating the runtime of step 1. is the index of regularity
ireg. In general, determining the index of regularity ireg is a difficult task
and requires to compute a Gröbner basis. However, for special classes
of polynomial systems there are explicit formulae for ireg. For a regular
sequence f1, . . . , fn ∈ F[X1, . . . , Xn] generating a zero-dimensional ideal8 the
index of regularity is given by the Macaulay bound

ireg = 1 +
n

∑
i=1

(di − 1), (8)

where di = deg( fi). For semi-regular sequences f1, . . . , fm ∈ F[X1, . . . , Xn],
with m ≥ n, the index of regularity is the index of the first non-positive
coefficient in the Hilbert series

HSR/I(T) =
∏m

i=1(1− Tdi )

(1− T)n .

Complexity of FGLM The runtime complexity of the FGLM algorithm
[FGL+93] is

O
(

n · d3
I

)
, (9)

operations in F, where n is the number of variables in F[X1, . . . , Xn] and
dI := dimF(R/I) is the dimension of the quotient ring R/I as F-vector space.
For systems fulfilling the premises of the Shape Lemma (Theorem 13), dI is
equal to the degree of the unique univariate polynomial g in the reduced lex
Gröbner basis [KR00, Theorem 3.7.25]. Moreover, under these premises, dI is
also equal to the number of solutions of I in the algebraic closure of F [KR00,
Theorem 3.7.19]. To summarize, under the premises of the Shape Lemma,
we have

dI = |V(I)| = deg(g).

There exists also a sparse variant of the FGLM algorithm [FM11b]. It has a
runtime complexity of

O (dI(N1 + n log dI)) , (10)

where N1 is the number of nonzero entries of a multiplication matrix, which is
sparse even if the input system spanning I is dense. For ideals satisfying the
premises of the Shape Lemma (Theorem 13), the expected time of converting
a degrevlex Gröbner basis to a lex one using a probabilistic algorithm is
[FGH+14]

O (log dI(dω
I + ndI log(dI) log(log dI)))

arithmetic operations in F, where ω is the linear algebra constant 2 ≤ ω ≤
3. For generic sequences (see [FGH+14, Definition 5]), the complexity of
converting a degrevlex Gröbner basis to a lex one is

O
(√

6
nπ

d2+ n−1
n

I

)
(11)

arithmetic operations in F. Thus, the key parameter for estimating the
runtime of step 2. is dI .

8 This amounts to the square case of m = n equations.
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Complexity of Factoring Polynomials Polynomial factorization is a clas-
sical problem and for this purpose we may choose one of many factoring
algorithms [Ber71; CZ81; KS98; Gen07; KU11]. See also [Vas07, Section 6.7]
for a summary of classical factorization algorithms. For example, a fast
version [KS98] of the (probabilistic) Cantor-Zassenhaus algorithm [CZ81]
for factoring a univariate polynomial of degree D over Fq uses an expected
number of

O
(

D1.815
)

(12)

operations in Fq. In step 3., we factor the (unique) univariate polynomial in
the (minimal) lex Gröbner basis. Let us call this polynomial f . Hence, the
key parameter to estimate the runtime of this step is deg( f ). We may reduce
the cost of step 3. by performing steps 1. and 2. twice, for two different
boundary constraints (e.g., for two different plaintext-ciphertext pairs). If
X denotes the last lex variable of the input system, then we generate two
univariate polynomials, say f1(X) and f2(X). Let us assume X represents
the unknown parameter u. Then f1(u) = 0 = f2(u), or in other words, u is a
root of, both, f1 and f2. Hence

(X− u) | f1 and (X− u) | f2.

As a result, (X − u) | gcd( f1, f2). We hope, the cost of computing steps 1.
and 2. twice, together with the subsequent factorization of gcd( f1, f2), is
lower than directly factoring f . Computing the GCD of two polynomials
over Fq of degree at most D requires

O
(

D(log D)2
)

(13)

operations in Fq. See [AHU74, Theorem 7.4] for the O(D log D) complexity
of FFT-based polynomial multiplication and [AHU74, Theorem 8.18] for the
O(M(D) log D) complexity of computing polynomial GCDs. Here, M(D)
denotes the number of operations required to multiply two polynomials of
degree at most D.

Summary Let I := ⟨ f1, . . . , fm⟩ ⊆ R be a homogeneous zero-dimensional
ideal. We provide a quick reference for the key parameters determining the
runtime complexities of steps 1., 2., and 3..

1. Number of variables n and index of regularity ireg. The number of
polynomials m is, implicitly, considered by ireg.

2. Number of variables n and dimension dI = dimF(R/I) of R/I as
F-vector space.

3. Degree D of the unique univariate polynomial in a minimal lex Gröbner
basis of I.
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P R E L I M I N A R I E S

5.1 Notation and Basic Definitions

In this section we introduce our notation and provide a streamlined but
complete account of relevant definitions for the rest of Part II. Owing to a
concise presentation, we choose to present many definitions in a colloquial
manner and only use a formal definition environment to highlight the most
important definitions.

The set N denotes the set {0, 1, 2, . . .} of all natural numbers (we include
0). In the following, F denotes a field and F its algebraic closure. We write
Fq for the finite field with q elements. Central for us is the polynomial ring
F[X1, . . . , Xn] with n indeterminates (or variables) X1, . . . , Xn, n ∈ N \ {0},
which is why we occasionally use the shorthand notation

Xa := Xa1
1 · · ·X

an
n ,

for a := (a1, . . . , an) ∈Nn, and in particular X := X1 · · ·Xn, to write down a
product of variables in F[X1, . . . , Xn]. Whenever convenient, we succinctly
write

R := F[X1, . . . , Xn]

for the polynomial ring itself. The set Rm of m-tuples of polynomials in R is
a finitely generated free R-module with basis {e1, . . . , em}. The element

ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm

is called the i-th canonical basis vector of Rm which has the 1 in position i.
We use bold-face letters f to denote module elements in Rm. Any module
element h = (h1, . . . , hm) ∈ Rm can be uniquely written in the form

h = (h1, . . . , hm) =
m

∑
i=1

hi · ei.

In the context of polynomial rings, for us, a term is an expression of the form
Xa, whereas a monomial is a product of a constant and a term ca · Xa, with
ca ∈ F. We denote the set of all terms in F[X1, . . . , Xn] with T, i.e.,

T := {Xa ∈ R : a ∈Nn}.

For a polynomial
f = ∑

a∈Nn
ca · Xa ∈ R,

we write T( f ) := {Xa : ca ̸= 0} to denominate the set of terms in f . Some
authors call this set also the support of f . For a set of polynomials F ⊆
F[X1, . . . , Xn] we call

⟨F⟩ :=

{
l

∑
i=1

hi · fi : hi ∈ F[X1, . . . , Xn], fi ∈ F, l ∈N

}

the ideal generated by F. Note, ⟨F⟩ is indeed an ideal of R.

38
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Definition 8. A term order is a relation ≤ on the set of terms T which satisfies
the following properties:

1. ≤ is a total order on T.

2. ∀t ∈ T : 1 ≤ t.

3. ∀r, s, t ∈ T : r ≤ s⇒ r · t ≤ s · t.

It is also possible to define term orders on the set Nn since any term
Xa1

1 · · ·X
an
n can be identified with the exponent vector (a1, . . . , an). Multi-

plication of terms corresponds to addition of exponent vectors. In other
words, there is an order-preserving isomorphism (of abelian monoids)
π : (T, ·)→ (Nn,+)

π : Xa1
1 · · ·X

an
n 7→ (a1, . . . , an),

which allows us to define term orders on Nn and carry it over to T via π−1.
An equivalent definition would then read as follows:

1. ≤ is a total order on Nn.

2. ∀a ∈Nn : 0 ≤ a.

3. ∀r, s, t ∈Nn : r ≤ s⇒ r + t ≤ s + t.

For a total order ≤ on T (or Nn), properties 2. and 3. in above definitions
are equivalent to ≤ being a well-order on T (or Nn). In essence, this follows
from the proof of Dickson’s Lemmas, see for example [CLO15, p.73, Theorem
5].

Definition 9. A term order ≤ is called graded if terms of different degrees are
ordered according to their degrees, i.e., if for s, t ∈ T, with deg(s) ̸= deg(t),
it holds

s < t⇐⇒ deg(s) < deg(t).

We summarize some of the most important (strict) term orders in Defini-
tion 10.

Definition 10. Let Xa = Xa1
1 · · ·X

an
n and Xb = Xb1

1 · · ·X
bn
n be two terms in T.

We define . . .

1. . . . the lexicographic order <deglex as

Xa <lex Xb :⇐⇒ rightmost nonzero entry of the

vector difference b− a is positive.

2. . . . the degree lexicographic order <glex as

Xa <deglex Xb :⇐⇒deg(Xa) < deg(Xb) or

deg(Xa) = deg(Xb) and Xa <lex Xb.

3. . . . the degree reverse lexicographic order <degrevlex as

Xa <degrevlex Xb :⇐⇒deg(Xa) < deg(Xb) or deg(Xa) = deg(Xb)

and leftmost nonzero entry of the vector

difference b− a is negative.
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For each (strict) term order <, the associated (non-strict) term order ≤ is
given by the reflexive closure of <, i.e., by the relation

{(s, t) : s, t ∈ T, s < t} ∪ {(t, t) : t ∈ T}.

For a given term order ≤ on T, the leading term LT( f ) of a non-zero
polynomial f = ∑t∈T( f ) ct· ∈ R is defined as

LT( f ) := max
≤

T( f ),

and the leading coefficient LC( f ) is given by the associated coefficient of LT( f ).
The leading monomial LM( f ) of f is the product LC( f ) · LT( f ). We remark,
for the zero polynomial 0 leading term, leading monomial and leading
coefficient are not defined. For f = ∑t∈T( f ) ct · t ∈ R, we use the notation

Ct( f ) :=

{
ct if t ∈ T( f ),
0 otherwise.

to denote the coefficient of a given term t in f . In later sections we often
work with the “decapitated” part of a non-zero polynomial f ∈ R, i.e., the
part that remains when the leading monomial is subtracted. This is why we
call the polynomial

Tail( f ) := f − LC( f ) · LT( f ) = f − LM( f )

the tail of f . For F ⊆ R, the set

T(F) := {T( f ) : f ∈ F}

is the set of terms in F and

LT(F) := {LT(F) : f ∈ F, f ̸= 0}

is the set of leading terms in F. We say a term u divides a term t, if t is a term
multiple of u. In other words

u | t :⇐⇒ ∃v ∈ T : u · v = t.

If u ̸= 1 and u ̸= t we call u a proper divisor of t and say u divides t properly
or t is a proper multiple of u. Otherwise we call u a trivial divisor of t.

Definition 11. Let G ⊆ R \ {0}, g ∈ R \ {0} and f , h ∈ R. We say . . .

1. . . . f reduces to h modulo g if there exists a term t ∈ T( f ) such that
LT(g) | t and h = f − Ct( f ) · LC(g)−1 · ug, where u := t/LT(g). In
symbols, we write

f −→g h.

2. . . . f reduces to h modulo G in one step, if there exists an element g ∈ G
such that f −→g h. In symbols, we write f −→G h.

3. . . . f reduces to h modulo G in a finite number of steps if

f −→G h1 −→G h2 −→G · · · −→G hk = h,

for some k ∈N and h1, . . . , hk ∈ R. In symbols, we write f ∗−→G h.

4. . . . f is reducible by g or g reduces f if there exists a term t ∈ T( f ) such
that LT(g) | t.
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5. . . . f is reducible modulo G or f is G-reducible if there exists an element
g ∈ G and term t ∈ T( f ) such that LT(g) | t.

If g reduces f and u := t/LT(g), the element ug is called a reductor of f .
For the sake of a simple notation, we call any scalar multiple c · ug, c ∈ F,
a reductor as well. If t = LT( f ), we call the reduction step a top-reduction,
otherwise a tail-reduction and the corresponding reductors are called top-
reductor and tail-reductor, respectively. If a polynomial is not reducible (or
tail-reducible) modulo G, it is called irreducible (or tail-irreducible) modulo G.

Definition 12. Let f , f ′ ∈ F[X1, . . . , Xn] and let G ⊆ F[X1, . . . , Xn] \ {0} be
a set of non-zero polynomials. We call f ′ a normal form of f modulo G or a
G-normal form of f if f ∗−→G f ′ and f ′ is irreducible modulo G. We write

f mod G := { f ′ ∈ P : f ′ a normal form of f modulo G}

for the set of all normal forms of f modulo G.

Colloquially, we often speak of “reducing f modulo G”. In a more formal
way, this means we are computing a normal f ′ ∈ f mod G through a process
outlined in Algorithm 1. We note, every polynomial has at least one normal
form modulo G, see Theorem 5. The zero polynomial 0 is irreducible modulo
any set G (since T(0) = ∅) and thus the unique normal form of 0 is 0 itself.

5.2 A Pinch of Commutative Algebra

Lemma 3 ([CLO15], p.70, Lemma 2). Let A ⊆ T be a set of terms. For a term
t ∈ T it holds t ∈ ⟨A⟩ if and only if a | t, for some a ∈ A.

Lemma 4 (Dickson Lemma, [CLO15], p.52, Theorem 5). Let I := ⟨A⟩ be
a monomial ideal for some A ⊆ T. Then I is finitely generated, i.e., there exist
a1, . . . , ak ∈ A such that I = ⟨a1, . . . , ak⟩.

Theorem 3 (Hilbert Basis Theorem, [CLO15], p.77, Theorem 4). If a ring S
is noetherian, then S[X1, . . . , Xn] is noetherian. In particular, F[X1, . . . , Xn] is
noetherian. In other words, every ideal I ⊆ F[X1, . . . , Xn] is finitely generated.

Theorem 4 (Macaulay Basis Theorem, [KR00], p.62, Theorem 1.5.7). Let
R = F[X1, . . . , Xn] and let I ⊆ R be an ideal. Then the set

B := {t ∈ T : t /∈ ⟨LT(I)⟩}.

is an F-vector space basis for the quotient ring R/I.

Theorem 5 (Division with Remainder, [CLO15], p.64, Theorem 3). Let ≤
be a term order on T, and let G := {g1, . . . , gm} ⊆ R \ {0} be a set of non-zero
polynomials. Then every f ∈ R can be written as

f = q1g1 + · · · qmgm + r,

where qi, r ∈ R, and either r = 0 or no term in r is divisible by any element of
LT(g1) , . . . , LT(gm). In particular, f has at least one normal form modulo G, i.e.,
f mod G ̸= ∅

Algorithm 1 depicts a basic procedure for computing normal forms in
F[X1, . . . , Xn] and is also known as division with remainder or multivariate poly-
nomial division in F[X1, . . . , Xn]. Often, the textbook division-with-remainder-
algorithm presumes a fixed order when processing polynomials in F, but for
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Algorithm 1: Division with remainder in F[X1, . . . , Xn]

Input: Set of non-zero polynomials F := { f1, . . . , fm} ∈ R, a non-zero
polynomial p ∈ R and a term order ≤

Result: A normal form p′ ∈ p mod F and q1, . . . , qm ∈ R with
p = q1 f1 + · · · qm fm + p′

1 p′ ← p
2 q1 ← 0, . . . , qm ← 0
3 while ∃t ∈ T(p′) ∃1 ≤ i ≤ m : LT( fi) | t do
4 Select such t
5 Select such fi

6 u← LM(p′)
LM( fi)

7 p′ ← p′ − u · fi
8 qi ← qi + u
9 return p′, q1, . . . , qm

proving termination and correctness this order is irrelevant. A particularity
of Algorithm 1 is: in general, the resulting normal form is not unique and
depends on the choices made if there exists more than one reductor for a
given term. However, if the set F is a Gröbner basis of ⟨F⟩ (see Definition 13),
the resulting normal form is indeed unique. In fact, a unique normal form is
a characterizing property of Gröbner bases. Theorem 6 summarizes this fact.

Theorem 6 ([KR00], p.111, Theorem 2.4.1). Let G := { f1, . . . , fk} ⊆ R and
I := ⟨ f1, . . . , fk⟩. The following properties are equivalent:

1. ⟨LT(I)⟩ = ⟨LT( f1) , . . . , LT( fk)⟩.

2. Every f ∈ F[X1, . . . , Xn] has a unique normal form modulo G. In other
words, f mod G only contains a single element.

5.2.1 Basic Gröbner Basis Theory

Definition 13. Let ≤ be a term order on T and I ⊆ R an ideal. A set
G := { f1, . . . , fm} ⊆ R is called a Gröbner basis of I with respect to ≤ if

⟨LT( f1) , . . . , LT( fm)⟩ = ⟨LT(I)⟩.

Every Gröbner basis G assumes a certain term order and is to be under-
stood with respect to the ideal I := ⟨G⟩. Sometimes it is more convenient to
be sloppy and omit this term order, or the ideal ⟨G⟩, when we speak about
Gröbner bases. Thus, whenever we make a statement about a Gröbner basis
G without mentioning a concrete term order or ideal, the statement holds
true for any term order and is meant with respect to the ideal ⟨G⟩.

In Definition 13, the inclusion ⟨LT( f1) , . . . , LT( fm)⟩ ⊆ ⟨LT(I)⟩ is always
true. The non-trivial part is the reverse inclusion

⟨LT(I)⟩ ⊆ ⟨LT( f1) , . . . , LT( fm)⟩,

which is equivalent to

LT(I) ⊆ ⟨LT( f1) , . . . , LT( fm)⟩.

Using Lemma 3, we see that the last inclusion is, in turn, equivalent to

∀t ∈ LT(I) ∃1 ≤ i ≤ m : LT( fi) | t. (14)
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This means, we could define Gröbner bases also using the requirement in
(14). In another way of speaking, the requirement in (14) says that every
element in the ideal I is top-reducible modulo G = { f1, . . . , fm}.

Definition 14. A Gröbner basis G ⊆ R is called reduced if for every element
g ∈ G it holds LC(g) = 1 and g is irreducible modulo G \ {g}.

Definition 15. Let f , g ∈ R \ {0} be two non-zero polynomials. We call the
polynomial

S( f , g) :=
lcm(LT( f ) , LT(g))

LM( f )
· f − lcm(LT( f ) , LT(g))

LM(g)
· g

the S-polynomial of f and g.

Theorem 7 ([CLO15], p.78, Corollary 6). For every term order ≤ and every ideal
I ⊆ R, there exists a Gröbner basis of I with respect to ≤. Furthermore, if G is a
Gröbner basis of I, then I = ⟨G⟩.

It is natural to ask whether an ideal has more than one Gröbner basis (for
a given term order). In general, the answer to this question is yes. However,
the next theorem says that a reduced Gröbner basis of a given ideal is unique
(for a fixed term order).

Theorem 8 ([CLO15], p.93, Theorem 5). Let G, G′ ⊆ R be reduced Gröbner bases
with ⟨G⟩ = ⟨G′⟩, then G = G′.

The following proposition is just another view on the fact that non-
reduced Gröbner bases might contain redundant generators.

Proposition 3 ([CLO15], p.92, Lemma 3). Let G be a Gröbner basis of an ideal
I ⊆ R and f , g ∈ G, f ̸= g. If LT( f ) | LT(g), then G \ {g} is a Gröbner basis as
well.

Theorem 9 (Buchberger Criterion, [CLO15], p.86, Theorem 6). Let I ⊆ R be
an ideal. A subset G := {g1, . . . , gm} ⊆ I is a Gröbner basis of I if and only if for
all S-polynomials S(gi, gj), 1 ≤ i < j ≤ m, it holds S(gi, gj)

∗−→G 0.

The criteron in Theorem 9 suggests a first procedure for computing
Gröbner bases: starting with the set G = { f1, ..., fm}, the procedure calculates
all possible S-polynomials of elements in G, reduces them modulo G, and
adds any non-zero remainders to G. This is repeated by recalculating the
new S-polynomials, reducing them modulo G, and, again, adding any non-
zero remainder to G. Essentially, above procedure describes the Buchberger

algorithm (see Algorithm 2) for which a proof of termination was first
provided by Bruno Buchberger in [Buc65] (see [Buc06] for a translation to
English). We present a more detailed discussion of the Buchberger algorithm
in Section 6.1.

An important notion in the context of Gröbner basis computations are
syzygies. Simply puts, syzygies describe relations of polynomials f1, . . . , fm
that yield the zero-polynomial, i.e., relations of the form

h1 f1 + · · · hm fm = 0,

for certain h1, . . . , hm ∈ R. Syzygies play an important role when it comes
to detecting reductions to zero during a Gröbner basis computation (see
the discussion after Theorem 10). We describe criteria that use information
coming from syzygies for detecting reductions to zero in more detail in
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Section 6.5. In what follows, we introduce syzygies in a formal way. For an
ordered set of polynomials F := ( f1, . . . , fm) ∈ Rm we call the map

νF : Rm → R, (h1, . . . , hm) 7→
m

∑
i=1

hi · fi

the canonical R-module homomorphism with respect to F or the (canonical) eval-
uation homomorphism on Rm with respect to F. If the set F is known from the
context, we allow ourselves to omit the with-respect-to-F part and simply
write ν instead of νF.

Definition 16. For an m-tuple F := ( f1, . . . , fm) ∈ Rm, the kernel of the
evaluation homomorphism νF is called the syzygy module of F and is denoted
by Syz( f1, . . . , fm) or Syz(F). In symbols, we write

Syz(F) := Syz( f1, . . . , fm) := ker(νF) =

{
(h1, . . . , hm) ∈ Rm :

m

∑
i=1

hi fi = 0

}
.

An element (h1, . . . , hm) of Syz( f1, . . . , fm) is called a syzygy of ( f1, . . . , fm).

For any i, j ∈ {1, . . . , m}, the syzygy hj · ei − hi · ej is called a trivial syzygy
or Koszul syzygy or principal syzygy. A syzygy (h1, . . . , hm) of F = ( f1, . . . , fm)
is called homogeneous if for all i, j ∈ {1, . . . , m} with hi, hj ̸= 0 it holds

LT( fihi) = LT
(

f jhj
)

.

The module Syz(F) is, indeed, a R-module. In particular, it is a submodule
of Rm and, as such, it is a finitely generated R-module. A generating set
S ⊆ Syz(F) is called homogeneous if every s ∈ S is homogeneous. The
elements in S need not necessarily be homogeneous with respect to the same
leading term.

Proposition 4 ([CLO15], p.111, Proposition 5). Let R = F[X1, . . . , Xn] and let
( f1, . . . , fm) be an m-tuple of polynomials in R. The module

Syz(LT( f1) , . . . , LT( fm))

is generated (as R-module) by the set{
si,j : 1 ≤ i < j ≤ m

}
,

where

si,j :=
lcm(LT( fi) , LT

(
f j
)
)

LM( fi)
· ei −

lcm(LT( fi) , LT
(

f j
)
)

LM
(

f j
) · ej.

In other words, for every syzygy (h1, . . . , hm) ∈ Syz(LT( f1) , . . . , LT( fm)) there
exist hi,j ∈ R such that it can be written in the form

(h1, . . . , hm) = ∑
1≤i<j≤m

hi,j · si,j.

Moreover, the elements hi,j are unique.

The relevance of Proposition 4 becomes evident when we look at the
particular construction of S-polynomials: in fact, the word “S-polynomial”
is an abbreviation of “Syzygy-polynomial”. Comparing the definition of
S-polynomials in Definition 15 and the definition of the si,j in Proposition 4
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shows a very similar construction. This is, of course, no coincidence and for
F := ( f1, . . . , fm) we have the relation

νF(si,j) = S( fi, f j).

In light of this relation, we call νF(si,j) the S-polynomial corresponding to
si,j. Put another way, the set of all S-polynomials of F induces a particular
homogeneous generating set of Syz(LT( f1) , . . . , LT( fm)), namely the set of
all si,j. The interesting point here is, we can characterize Gröbner bases via
any homogeneous generating set of Syz(LT( f1) , . . . , LT( fm)).

Theorem 10 ([CLO15], p.111, Theorem 6). A basis F := { f1, . . . , fm} ⊆ R
for an ideal I is a Gröbner basis if and only if for every element s = (s1, . . . , sm)
in a homogeneous generating set of Syz(LT( f1) , . . . , LT( fm)) it holds νF(s) =

∑m
i=1 si fi

∗−→G 0.

The order of the basis elements f1, . . . , fm is not important in Theorem 10.
Hence, any order of f1, . . . , fm can be chosen in the evaluation homomor-
phism νF if, of course, this is also reflected by the corresponding order of
elements in (s1, . . . , sm).

An important observation in the context of Gröbner basis computations
is the following. During the execution of the Buchberger algorithm it might
happen that the reduction of an S-polynomial modulo the current basis G
results in the zero polynomial. This is referred to as a reduction to zero. Any
Gröbner basis algorithm leveraging Theorem 9 (or Theorem 10, respectively)
suffers from a particular inefficiency if no remedy is put in place: it might
happen that many S-polynomials reduce to zero, meaning, they do not
contribute to the final Gröbner basis. Thus, computing a reduction to zero is
in some sense “useless”.1 Any reduction to zero increases the computational
overhead, hence, it is desirable to avoid them as much as possible. In our next
considerations, we discuss possible remedies for these “useless” reductions to
zero. Definitely, it were desirable to have concrete criteria for detecting them
in advance, i.e., without having to carry out the actual reduction. Luckily,
such criteria exist. One of these criteria examines the leading terms of f and
g to predict when the S-polynomial S( f , g) reduces to zero. This criterion is
also known as Product Criterion or Buchberger’s First Criterion.

Proposition 5 ([CLO15], p.106, Proposition 4). Let G ⊆ F[X1, . . . , Xn] be a
finite set of polynomials. If for all f , g ∈ G it holds gcd(LT( f ) , LT(g)) = 1, then
S( f , g) ∗−→G 0.

In practice, Proposition 5, yields an efficient test if a set is already a
Gröbner basis. We emphasize this fact with the following corollary.

Corollary 4. A set G ⊆ F[X1, . . . , Xn] is a Gröbner basis if for all f , g ∈ G, f ̸= g
it holds gcd(LT( f ) , LT(g)) = 1.

There is a further way to decrease the number of redundant reductions of
S-polynomials which is theoretically deeper than Buchberger’s First Criterion.
The generating set S := {si,j : 1 ≤ i < j ≤ m} for Syz(LT( f1) , . . . , LT( fm))
is not necessarily linearly independent (as R-module), hence, if a subset
U ⊆ S is generating Syz(LT( f1) , . . . , LT( fm)) as well, we can work with U
instead of S during a Gröbner basis computation, see Theorem 10. The
following approach in Proposition 6 helps to detect whether a syzygy s ∈ S

1 A reduction to zero still carries some information but, still, the corresponding S-polynomial
does not contribute to the final Gröbner basis.



5.2 a pinch of commutative algebra 46

is redundant, or, more formally, whether s is a R-linear combination of other
syzygies. This has the consequence that the corresponding S-polynomial
of every such redundant syzygy does not have to be considered during the
computation of a Gröbner basis. Proposition 6 formalizes this fact and is also
called Chain Criterion or Buchberger’s Second Criterion. We prefer the syzygy-
formulation of the Chain Criterion in [CLO15, p.113, Proposition 8] but
remark that also other formulations exist, e.g., the one via t-representations
in [BW93, p. 223, Proposition 5.70].

Proposition 6 ([CLO15], p.113, Proposition 8). Let { f1, . . . , fm} be a set of
polynomials in F[X1, . . . , Xn] and let S := {si,j : 1 ≤ i < j ≤ m} be the generators
of Syz(LT( f1) , . . . , LT( fm)) from Proposition 4. If there exist 1 ≤ u < v < w ≤ m,
such that

1. LT( fw) | lcm(LT( fu) , LT( fv)),

2. su,w, sv,w ∈ S,

then S \ {su,v} is also a generating set of Syz(LT( f1) , . . . , LT( fm)).

Proposition 7 summarizes the different characterizing properties of Gröb-
ner basis discussed in this section.

Proposition 7. Let I ⊆ R be an ideal and let G := {g1, . . . , gm} be a set of
polynomials in R. The following properties are equivalent:

1. G is a Gröbner basis of I, i.e., ⟨LT(g1) , . . . , LT(gm)⟩ = ⟨LT(I)⟩.

2. Every f ∈ F[X1, . . . , Xn] has a unique normal form modulo G.

3. All S-polynomials S(gi, gj), 1 ≤ i < j ≤ m, reduce to zero modulo G.

4. For every syzygy s = (s1, . . . , sm) in a homogeneous generating set of
Syz(LT(g1) , . . . , LT(gm)) the corresponding polynomial νG(s) = ∑m

i=1 sigi
reduces to zero modulo G.

5.2.2 Algebraic Varieties

Definition 17. Let F ⊆ F[X1, . . . , Xn] be a set of polynomials. The set of
common zeroes (or the zero locus) in the algebraic closure F of polynomials
in F

V(F) := {(a1, . . . , an) ∈ F
n : f (a1, . . . , an) = 0, for all f ∈ F}

is called the variety of F. If only zeroes in F are of interest, then we call

VF(F) := {(a1, . . . , an) ∈ Fn : f (a1, . . . , an) = 0, for all f ∈ F}

the affine variety of F. Moreover, if F = { f1, . . . , fk} is a finite set, we also
write V( f1, . . . , fk) instead of V(F) and VF( f1, . . . , fk) instead of VF(F), re-
spectively.

The next proposition justifies why, in the process of solving systems of
algebraic equations, it is possible to work with the ideal generated by the
polynomials defining the equations rather than the polynomials themselves.
This “switch” from the generators of the ideal to the ideal itself lays the basis
for solving systems of algebraic equations through Gröbner bases: instead of
the original equation system, we may work with any equation system that
generates the same ideal.
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Proposition 8 ([CLO15], p.31, Proposition 4). Let F ⊆ F[X1, . . . , Xn] be a set of
polynomials. Then:

1. V(F) = V(⟨F⟩).

2. For F = Fq and F′ := F ∪ {Xq
i − Xi : 1 ≤ i ≤ n} it holds V(F′) = VFq(F).

Most often in (symmetric) cryptography we are dealing with equation
systems having a finite number of solutions. We summarize important
properties of such equation systems in Proposition 9.

Proposition 9 (Finiteness Criterion, [KR00], p.243, Proposition 3.7.1). Let
≤ be a term order on T and I ⊆ R = F[X1, . . . , Xn] be an ideal with zero locus
V(I) ⊆ F

n. The following conditions are equivalent:

1. V(I) is finite.

2. The F-vector space R/I is finite-dimensional.

3. The set T\LT(I) is finite.

4. For every i = 1, . . . , n, we have I ∩F[Xi] ̸= ∅.

5. For every i = 1, . . . , n, there exists a number ai ∈N such that Xai
i ∈ LT(I).

Definition 18. Let I ⊆ R be an ideal. We call I zero-dimensional if |V(I)| < ∞.

Proposition 10 ([KR00], p.245, Proposition 3.7.5). Let I ⊆ R = F[X1, . . . , Xn]
be a zero-dimensional ideal with generators f1, . . . , fk ∈ R. Then |V(I)| ≤
dimF(R/I). In other words, the system of equations

f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0

has at most dimF(R/I) solutions in F
n.

5.2.3 Gröbner Bases and Variable Elimination

The Elimination Theorem in Theorem 11 is central for solving systems of
polynomial equations using Gröbner bases and, together with the Extension
Theorem in Theorem 12, provides a theoretical underpinning for the solving
process itself. In essence, the Elimination Theorem allows us to derive a
partial solution2 of an equation system which, subsequently, can be extended
to a complete solution using the Extension Theorem.

Theorem 11 (Eliminiation Theorem, [CLO15], pp.122-123, Theorem 2). Let
I ⊆ F[X1, . . . , Xn] be an ideal and let G ⊆ I be a Gröbner basis of I with respect to
the lex term order, where X1 > X2 > · · · > Xn. Then for any k ∈ {0, 1, . . . , n− 1}
the set

Gk := G ∩F[Xk+1, . . . , Xn]

is a Gröbner basis of the k-th elimination ideal Ik := I ∩F[Xk+1, . . . , Xn].

Theorem 12 (Extension Theorem, [CLO05], p.27). Let F be algebraically closed,
I ⊆ F[X1, . . . , Xn] be an ideal and let Ik be the k− th elimination ideal. Then a
partial solution (ak+1, . . . , an) ∈ V(Ik) extends to a solution (ak, ak+1, . . . , an) ∈
V(Ik−1) if the leading coefficient polynomials of the elements of a lex Gröbner basis
of Ik−1 do not all vanish at (ak+1, . . . , an).

2 A partial solution only involves some coordinates of a complete solution.
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Directly from Theorem 11 we derive the following proposition about the
structure of the reduced lex Gröbner basis of a zero-dimensional ideal.

Proposition 11 ([CG20], Theorem 2.6). Let I ⊆ F[X1, . . . , Xn] be a zero-
dimensional ideal. Then the reduced lex Gröbner basis of I with X1 ≥lex · · · ≥lex Xn
has the following triangular form

g1,1(X1, . . . , Xn), . . . , g1,t1(X1, . . . , Xn),

g2,1(X2, . . . , Xn), . . . , g2,t2(X2, . . . , Xn),

. . .

gn−1,1(Xn−1, Xn), . . . , gn−1,tn−1(Xn−1, Xn),

gn,1(Xn),

where degXn
(gi,j) < deg(gn,1) for i ̸= n.

For zero-dimensional radical ideals in normal position there is an even
stronger result regarding the form of the reduced lex Gröbner basis.

Definition 19. Let I ⊆ F[X1, . . . , Xn] be a zero-dimensional ideal and let
i ∈ {1, . . . , n}. We say that I is in normal Xi–position if any two distinct zeroes
(a1, . . . , an), (b1, . . . , bn) ∈ V(I) satisfy ai ̸= bi.

Theorem 13 (Shape Lemma, [KR00], p.257, Theorem 3.7.25). Let F be a
perfect field and let I ⊆ F[X1, . . . , Xn] be a zero-dimensional and radical ideal
that is in normal Xn-position. Then the reduced lex Gröbner basis of I with
X1 ≥lex · · · ≥lex Xn is of the form

X1 − g1(Xn),

X2 − g2(Xn),

. . .

gn(Xn),

where deg(g1), . . . , deg(gn−1) < deg(gn).

Note, Theorem 13 assumes that the ideal I is in normal position with
respect to the last variable in lex order. The requirement of F being a perfect
field is definitely fulfilled if F is a finite field or the characteristic of F is zero.
Thus, for our particular focus on applications in symmetric cryptography,
this requirement is not a limitation since ideals coming from this domain
can be assumed to be defined over finite fields. For a large enough field F, a
certain linear change of variables allows us to bring any zero-dimensional
ideal I ⊆ F[X1, . . . , Xn] into normal position. We remark, the field F need
not be algebraically closed.

Proposition 12 ([KR00], p.255, Proposition 3.7.22). Let R = F[X1, . . . , Xn],
I ⊆ R a zero-dimensional ideal and let D := dimF(R/I). If F contains more than
(D

2 ) elements, there exists a tuple (c1, . . . , cn−1) ∈ Fn−1 such that

c1a1 + · · · cn−1an−1 + an ̸= c1b1 + · · · cn−1bn−1 + bn,

for all pairs of distinct zeroes (a1, . . . , an), (b1, . . . , bn) ∈ V(I). Consequently, the
linear change of coordinates given by

φ :

{
Xi 7→ Xi, i ∈ {1, . . . , n− 1},
Xn 7→ Xn − c1X1 − · · · − cn−1Xn−1,

transforms I into an ideal in normal Xn position.
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The linear change of coordinates φ (or in pure algebra lingo: the ring
homomorphism) described in Proposition 12 transforms the ideal I into the
ideal

J := ⟨ f (X1, . . . , Xn−1, Xn − c1X1 − · · · − cn−1Xn−1) : f ∈ I⟩

and has the inverse transformation

φ−1 :

{
Xi 7→ Xi, i ∈ {1, . . . , n− 1},
Xn 7→ Xn + c1X1 + · · · cn−1Xn−1.

Now it is easy to see that (a1, . . . , an) ∈ V(I) implies

(a1, . . . , an−1, an + c1a1 + · · · cn−1an−1) ∈ V(J)

and, furthermore, that (b1, . . . , bn) ∈ V(J) implies

(b1, . . . , bn−1, bn − c1b1 − · · · − cn−1bn−1) ∈ V(I).

In total, we conclude

V(J) = {(a1, . . . , an−1, an + c1a1 + · · · cn−1an−1) : (a1, . . . , an) ∈ V(I)},

or in other words, the transformation φ brings I indeed into normal Xn-
position.

The Shape Lemma, stated in Theorem 13, deserves a few more remarks.
Most often, ideals stemming from applications in symmetric cryptography
are zero-dimensional. Hence, the requirement of being zero-dimensional is
not a strong one from this point of view. That Theorem 13 requires I to be
in normal Xn-position is, per se, not a limitation either. As Proposition 12

tells us, any zero-dimensional ideal can be brought into normal position
via a linear transformation if the base field is large enough. This linear
change of coordinates is discussed further in [MH20]. The authors of [MH20]
present different approaches for bringing an ideal into normal position and
analyze their computational complexities. A similar remark applies to the
assumption of I being radical. In symmetric cryptography we usually work
over a finite field Fq and, thus, any ideal I may be made radical by adding
the field polynomials3

Xq
1 − X1, . . . , Xq

n − Xn

to the ideal I. The resulting ideal

Irad := I + ⟨Xq
1 − X1, . . . , Xq

n − Xn⟩ = ⟨I ∪ {Xq
1 − X1, . . . , Xq

n − Xn}⟩

is radical. The downside of adding the field polynomials is, however, that it
might be much harder to compute a Gröbner basis for Irad. This especially
applies to the case of large finite fields with cardinalities of, e.g., 2128. Finite
fields of this size are commonly used in symmetric cryptography and adding
field polynomials of such high degrees might render any Gröbner basis
computation prohibitively expensive. Only in case of small finite fields, or in
Gröbner basis computations where the intermediate degree exceeds the field
size, we might expect an advantage of adding the field polynomials to I.

3 Often also called field equations, due to the relation xq = x, for all x ∈ Fq.
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5.2.4 Homogeneous Ideals and Hilbert Series

The polynomial ring R is naturally a graded ring (in fact, a graded algebra).
Meaning, R can be written as a direct sum of additive subgroups

R =
⊕
d≥0

Rd,

such that Rm · Rn ⊆ Rm+n. The gradation is given by

Rd := { f ∈ R : for all t ∈ T( f ), deg(t) = d} ∪ {0}.

For d ∈N, we define

R≤d :=
d⊕

l=0

Rl .

Stated differently, R≤d is the set of all polynomials in R of degree at most d
(together with the zero polynomial). Let I ⊆ R be an ideal. For d ∈ N, we
denote the vector space of all homogeneous polynomials in I of degree d
with

Id := I ∩ Rd = { f ∈ I \ {0} : for all t ∈ T( f ), deg( f ) = d} ∪ {0},

and the vector space of all polynomials in I of degree at most d by

I≤d := I ∩ R≤d = { f ∈ I \ {0} : deg( f ) ≤ d} ∪ {0}.

Similarly, we denote the set of all terms in T of degree d ∈N by

Td := {t ∈ T : deg(t) = d},

and the set of all terms in R of degree at most d with

T≤d := {t ∈ T : deg(t) ≤ d}.

Definition 20. An ideal I ⊆ R is said to be homogeneous if there exist ho-
mogeneous polynomials f1, . . . , fm ∈ R (of not necessarily the same degree)
such that

I = ⟨ f1, . . . , fm⟩.

Lemma 5 ([Frö98], p.100, Lemma 2). An ideal I ⊆ R is homogeneous if and only
if for every f ∈ I it holds: every homogeneous component of f belongs to I. In other
words,

I =
⊕
d≥0

Id.

Corollary 5. Let I ⊆ R be a homogeneous ideal. Then

I≤d =
d⊕

l=0

Il .

Lemma 6. Let I ⊆ R be a homogeneous ideal and let d ∈ N such that Id = Rd.
Then

LT(I) ⊆ ⟨LT(I≤d)⟩.

Proof. We have Td := {t ∈ T : deg(t) = d} ⊆ Rd = Id. Hence,

LT(Il) ⊆ ⟨LT(Id)⟩, for all l ≥ d.
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Indeed, let f ∈ Il and t := LT( f ). Since f is homogeneous of degree l ≥ d,
we can write t = u · v, for u, v ∈ T and v ∈ Td. This gives us

v ∈ Td ⊆ Rd = Id.

Hence, v = LT(v) ∈ LT(Id), and therefore t ∈ ⟨LT(Id)⟩. Since I is homoge-
neous, it holds for all l ≥ 0

I≤l =
⊕
k≤l

Ik

This means, every g ∈ I≤l can be written as

g =
l

∑
k=1

gk, for gk ∈ Ik.

Thus, LT(g) = LT(gk), for some 1 ≤ k ≤ l. Therefore, LT(I≤l) ⊆
⋃

k≤l LT(Ik)
and consequently

LT(I≤l) ⊆ ⟨LT(I≤d)⟩, for all l ≥ 0. (15)

Now let f ∈ I. Then f ∈ I≤l , for some l ∈N. With the inclusion in (15), the
statement follows.

Proposition 13 ([Frö98], p.100, Lemma 4). Let I ⊆ R be a homogeneous ideal in
the graded ring

R =
⊕
d≥0

Rd

with gradation Rd := { f ∈ R : f homogeneous of degree d}. Then the quotient
ring R/I is a graded ring

R/I =
⊕
d≥0

(Rd + I) =
⊕
d≥0

Rd/Id (16)

with gradation Rd/Id := {r + Id : r ∈ Rd}.

Definition 21. Let I ⊆ R be a homogeneous ideal. The Hilbert function of R/I
is the function HFR/I : N→N with

HFR/I(d) := dimF(Rd/Id) = dimF(Rd)− dimF(Id).

The Hilbert series of R/I is the generating function of HFR/I , i.e., the formal
power series

HSR/I(T) := ∑
d≥0

HFR/I(d) · Td ∈ Z[[T]].

Theorem 14 ([Frö98], pp.130-131, Theorem 7 & Corollary 8). Let I be a
homogeneous ideal in F[X1, . . . , Xn]. Then

HSR/I(T) =
q(T)

(1− T)l ,

for some polynomial q ∈ Z[T] with q(0) = 1, q(1) ̸= 0 and some l ∈ N, l ≤ n.
Moreover,

• if l > 0, then HFR/I(d) = p(d) for a polynomial p ∈ Q[T] of degree l − 1,
and,

• if l = 0, then HFR/I(d) = 0,
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for large enough d. In particular, l is the Krull dimension of R/I, see also [Frö98,
Definition 10].

The condition q(1) ̸= 0 in Theorem 14 guarantees that q does not contain
the factor (1− T).

Definition 22. Let I ⊆ R be a homogeneous ideal. By Theorem 14, there
exists a unique polynomial p ∈ Q[T] and a number d′, such that for all d ≥ d′

it holds
HFR/I(d) = p(d).

We call p the Hilbert polynomial of R/I and denote it by HPR/I(T). The
number

ireg(I) := min{i ∈N : HFR/I(d) = HPR/I(d) for all d ≥ i}

is called the index of regularity of HFR/I or, simply, the index of regularity of I.
If I is clear from the context, we also just write ireg.

For zero-dimensional homogeneous ideals, the quotient ring R/I has a
finite vector space dimension, see Proposition 9. In this case, the Hilbert
series is, in fact, a finite sum, by Eq. (16). Proposition 14 gives an explicit
account of this fact.

Proposition 14. Let I ⊆ F[X1, . . . , Xn] be a zero-dimensional homogeneous ideal.
Then the Hilbert series HSR/I(T) is a polynomial.

Regular sequences play an important role when it comes to estimating the
complexity of computing a Gröbner basis. For regular sequences there exists
an explicit formula for the index of regularity, and thus, for the maximum
degree reached during a Gröbner basis computation using Algorithm 4,
see Section 6.2.2 and Section 4.3 for more details. Theorem 15 states some
important properties of regular sequences.

Definition 23. A set of m homogeneous polynomials f1, . . . , fm in R =
F[X1, . . . , Xn], for m ≤ n, is called a regular sequence if the following condi-
tions are satisfied.

1. R/⟨ f1, . . . , fm⟩ ̸= 0, i.e., ⟨ f1, . . . , fm⟩ ̸= R.

2. For all i ∈ {1, . . . , m} and all g ∈ R it holds, if g · fi = 0 in R/
⟨ f1, . . . , fi−1⟩, then g = 0 in R/⟨ f1, . . . , fi−1⟩.

Definition 24. A set of m (not necessarily homogeneous) polynomials
f1, . . . , fm in R = F[X1, . . . , Xn] is called a regular sequence if the homoge-
neous parts of highest degree f top

1 , . . . , f top
m form a regular sequence.

Theorem 15 ([KR05], p.203, Corollary 5.2.17). Let m, n ∈ N, m ≤ n and
let f1, . . . , fm ∈ F[X1, . . . , Xn] be homogeneous polynomials of degrees d1, . . . , dm
which generate the ideal I := ⟨ f1, . . . , fm⟩. Then the following conditions are
equivalent.

1. The sequence f1, . . . , fm is a regular sequence in F[X1, . . . , Xn].

2. For I = ⟨ f1, . . . , fm⟩ it holds

HSR/I(T) =
∏m

i=1(1− Tdi )

(1− T)n .
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3. For every permutation π(1), . . . , π(m) of the sequence 1, . . . , m, the sequence
fπ(1), . . . , fπ(m) is a regular sequence in F[X1, . . . , Xn].

In addition, the following properties hold.

4. The Krull dimension of F[X1, . . . , Xn]/⟨ f1, . . . , fm⟩ is n−m [Frö98, p.132,
Lemma 12].

5. For m = n, the sequence f1, . . . , fm is regular if and only if the Hilbert series
is a polynomial [BFS15, Proposition 4].

Proposition 15 ([Spa12], p.47, Corollary 1.66). Let I := ⟨ f1, . . . , fm⟩ ⊆ R be a
zero-dimensional homogeneous ideal and let di := deg( fi). Then

ireg(I) = 1 + deg(HSR/I).

If m = n, then

ireg(I) = 1 +
m

∑
i=1

(di − 1).

Moreover, for any monomial ordering, ireg bounds the degree of all polynomials in a
minimal homogeneous Gröbner basis of I.

The authors of [Bar04; BFS04] generalize the notion of regular sequences
to the overdefined case, i.e., to the case m ≥ n.

Definition 25 ([BFS+05], Definition 5). Let F := { f1, . . . , fm} be a set of m ho-
mogeneous polynomials in R = F[X1, . . . , Xn] generating a zero-dimensional
ideal I := ⟨ f1, . . . , fm⟩. Then F is called a semi-regular sequence if the following
conditions are satisfied.

1. R/⟨ f1, . . . , fm⟩ ̸= 0, i.e., ⟨ f1, . . . , fm⟩ ̸= R.

2. For all i ∈ {1, . . . , m} and all g ∈ R it holds, if g · fi = 0 in R/
⟨ f1, . . . , fi−1⟩ and deg(g · fi) < ireg(I), then g = 0 in R/⟨ f1, . . . , fi−1⟩.

Definition 26 ([BFS+05], Definition 5). A set of m (not necessarily homoge-
neous) polynomials f1, . . . , fm in R = F[X1, . . . , Xn] is called a semi-regular
sequence if the homogeneous parts of highest degree f top

1 , . . . , f top
m form a

semi-regular sequence.

Proposition 16 ([Bar04], Proposition 3.2.5). Let F := { f1, . . . , fm} be a set of m
homogeneous polynomials in R = F[X1, . . . , Xn], m ≥ n, with degrees d1, . . . , dm
which generate the ideal I := ⟨ f1, . . . , fm⟩.

1. The sequence F is a semi-regular sequence in R if and only if the Hilbert series
of I is

HSR/I(T) =
∏m

i=1(1− Tdi )

(1− T)n .

2. If f1, . . . , fm is a semi-regular sequence, then for every permutation π of
1, . . . , m, the sequence fπ(1), . . . , fπ(m) is also a semi-regular sequence.

3. If F is a semi-regular sequence, the index of regularity ireg(I) is the index of
the first non-positive coefficient in HSR/I(T).

For an overview and a more comprehensive treatment of different notions
of “degree of regularity” we refer to [BND+20; CG20].
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6.1 Buchberger Algorithm

The pioneering Buchberger algorithm is the first algorithm for computing
Gröbner bases and was devised by Bruno Buchberger in 1965 [Buc65]. To
motivate the Buchberger algorithm, let us discuss the reason why a set of
generators { f1, . . . , fm} ⊆ F[X1, . . . , Xn] might not be a Gröbner basis of the
ideal I := ⟨ f1, . . . , fm⟩. Stated differently, we discuss why the condition

⟨LT( f1) , . . . , LT( fm)⟩ = ⟨LT(I)⟩

might not be satisfied. In general, we are only guaranteed that

⟨LT( f1) , . . . , LT( fm)⟩ ⊆ LT(I) ,

but the reverse inclusion is not necessarily true. There might exist a combi-
nation q := h1 f1 + · · ·+ hm fm ∈ I, for hi ∈ F[X1, . . . , Xn], such that

LT(q) /∈ ⟨LT( f1) , . . . , LT( fm)⟩.

This means, ⟨LT(I)⟩ might be strictly larger than ⟨LT( f1) , . . . , LT( fm)⟩.

A Counterexample We give an example of a basis for an ideal that is
not a Gröbner basis. Let f1 := XY − 2Y and f2 := X2 − 2X − Y be two
polynomials in F[X, Y] and let I := ⟨ f1, f2⟩ denote the ideal generated by
f1, f2. Furthermore, let ≤ denote the graded reverse lexicographic order.
Then

X · f1 −Y · f2 = X · (XY− 2Y)−Y ·
(

X2 − 2X−Y
)
= Y2. (17)

It holds, Y2 ∈ I and thus LT
(
Y2) = Y2 ∈ LT(I). But

Y2 /∈ ⟨LT( f1) , LT( f2)⟩,

since neither LT( f1) = XY nor LT( f2) = X2 divides Y2, see Lemma 3. Hence

⟨LT(I)⟩ ⊈ ⟨LT( f1) , LT( f2)⟩,

and, thus, { f1, f2} is not a Gröbner basis of I. A minimum requirement for
finding a Gröbner basis of I is, thus, to extend { f1, f2} by Y2 = X · f1−Y · f2.
The intuition behind the kind of cancellation in Eq. (17) is the following.
Whenever a polynomial combination q = h1 f1 + h2 f2 results in a cancellation
of the leading terms LT(h1 f1), LT(h2 f2), the leading term of q might not be
an element of ⟨LT( f1) , LT( f2)⟩.

Gröbner Bases and Syzygies Putting above observations in a more gen-
eral context, for F := { f1, . . . , fm} ⊆ R, we are interested in those polyno-
mial combinations q = h1 f1 + · · ·+ hm fm that cancel all the leading terms

54
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LT(h1 f1) , . . . , LT(hm fm).1 In more technical terms, we are interested in the
syzygy module2

S := Syz(LT(F)) := Syz(LT( f1) , . . . , LT( fm)) .

The syzygy module S contains all possible m-tuples (h1, . . . , hm) ∈ Rm that
evaluate to the zero polynomial under the evaluation homomorphism νH for
H := {LT( f1) , . . . , LT( fm)}. This means, any (h1, . . . , hm) ∈ S satisfies

νH(h1, . . . , hm) = h1 · LT( f1) + · · ·+ hn · LT( fm) = 0.

In other words, S accounts for all possible cancellations between the LT( fi).
The crucial point here is, S is a finitely generated R-module, see Proposition 4.
Thus, any syzygy, i.e., any cancellation between the LT( fi), can be described
by a (finite) polynomial combination of generators of S . The last observation
already hints at a basic strategy for computing a Gröbner basis of the ideal
generated by F. For any generator b = (b1, . . . , bm) of S with

LT(νF(b)) = LT(b1 f1 + · · · bm fm) /∈ ⟨LT(F)⟩,

we add the element νF(b) to F. Subsequently, we recalculate a generating
set for the new syzygy module Syz(LT(F)) and repeat this process. It is to
Bruno Buchberger’s merit that he resolved the technicalities of this process
and established a proof of termination in [Buc65].

Buchberger’s Algorithm In [Buc65], Buchberger pioneered the first algo-
rithmic approach for computing Gröbner bases. This algorithm is now known
as the Buchberger algorithm. Buchberger chose the following generating set{

si,j : 1 ≤ i < j ≤ m
}

,

for Syz(LT( f1) , . . . , LT( fm)), see also Proposition 4, where

si,j :=
lcm(LT( fi) , LT

(
f j
)
)

LM( fi)
· ei −

lcm(LT( fi) , LT
(

f j
)
)

LM
(

f j
) · ej.

In Algorithm 2, we present the Buchberger algorithm, albeit without any
optimizations or improvements. For an improved version of Algorithm 2

that implements the Buchberger criteria for detecting unnecessary reductions
to zero (see Proposition 5 and Proposition 6) we refer the reader to the
well-known Gebauer-Möller installation [GM88].

6.2 Gröbner Bases via Macaulay Matrices

There is an intimate connection between linear algebra and Gröbner basis
theory, enabling us to compute Gröbner bases using matrix algebra. This
connection goes back to [GM86] and is fundamental for some of the most
important Gröbner basis algorithms, such as F4 [Fau99], see also Section 6.3,
or MatrixF5 [BFS15]. A first observation linking linear algebra and Gröbner
basis theory is the following. Every ideal I = ⟨ f1, . . . , fm⟩ ⊆ R is an infinite
F-vector space and the following (infinite) set

B := {t · fi : t ∈ T, 1 ≤ i ≤ m}.
1 If LT(q) = LT(hi · fi) = LT(hi) · LT( fi), for some i, it is evident that LT(q) ∈ ⟨LT(F)⟩, hence this

case is clear. The case LT(q) ̸= LT(hi fi), for all i ∈ {1, . . . , m}, is the interesting one.
2 For A := {h1, . . . , hm} ⊆ R, the syzygy module Syz(A) = {(q1, . . . , qm) ∈ Rm : ∑m

i=1 qihi = 0}
implicitly assumes a fixed order for the elements in A. The notation Syz(A) might hide this
order, however, we believe this causes no further confusion.
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Algorithm 2: Buchberger
Input: A set F := { f1, . . . , fm} of polynomials in R, a term order ≤
Result: A Gröbner basis G of the ideal generated by f1, . . . , fm

1 G ← { f1, . . . , fm}
2 B← {{i, j} : 1 ≤ i < j ≤ s}
3 while B ̸= ∅ do
4 Select b← {i, j} ∈ B // Some selection strategy
5 B← B \ {b}
6 r ← Reduce

(
S( fi, f j), G,≤

)
7 if r ̸= 0 then
8 t← |G|
9 ft+1 ← r

10 G ← G ∪ { ft+1}
11 B← B ∪ {{i, t + 1} : 1 ≤ i ≤ t}
12 return G

Algorithm 3: Reduce
Input: A polynomial p, a finite set F of non-zero polynomials, a term

order ≤
Result: A normal form p′ ∈ p mod F with respect to ≤

1 p′ ← p
2 while ∃ f ∈ F : LT( f ) | LT(p′) do
3 Select such f // Some selection strategy

4 p′ ← p′ − LC(p′) · LM(p′)
LM( f ) · f

5 return p′

generates I as vector space. Before we further explore this connection, let us
introduce two new concepts.

d-Gröbner Bases A d-Gröbner basis of I (with respect to some term order
≤) is a set G ⊆ I such that

LT(I≤d) ⊆ ⟨LT(G)⟩.

The importance of d-Gröbner bases will become clear soon, especially, once
we have arrived at Eq. (18). A generating set B for a vector space in R is
called staggered (or triangular) if no two distinct elements in B have the same
leading term. We call a generating set for I as F-vector space also a linear
basis of I.

Macaulay Matrices For a finite and nonempty set of polynomials F :=
{ f1, . . . , fm} in R, Λ := {1, 2, . . . , m} and Γ := Γ(m) := T(F) =

⋃
f∈F T( f ),

we call the matrix

Mac(F) : Λ× Γ→ F,

(i, t) 7→ Ct( fi),
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a Macaulay matrix or coefficient matrix of F. If M = (mi,t)i∈Λ, t∈Γ is a Macaulay
matrix, we call

pol(M) :=

{
∑
t∈Γ

mi,t · t : i ∈ Λ

}
\ {0}

the set of polynomials associated with M or the polynomial representation of M or,
simply, the polynomials of M. We define the contour of M to be

cont(M) := { f ∈ pol(M) : for all f ̸= g ∈ Pol(M), LT(g) ∤ LT( f )}.

Let M = (Mi)i∈Λ be a description of a Macaulay matrix in terms of its rows.
Then M is said to be in row echelon form (or triangular) if no two distinct rows
in M have the same leading term. Furthermore, M is said to be in reduced
row echelon form if M is in echelon form and for all i ∈ Λ with Mi ̸= 0 and
all s ∈ LT(M) \ {LT(Mi)} it holds

LC(Mi) = 1 and mi,s = 0.

Gröbner Bases and Linear Algebra With above definitions at hand, we
are ready to state the following proposition which lies at the heart of the
connection between linear algebra and Gröbner basis theory.

Proposition 17 ([GM86]). Let I ⊆ F[X1, . . . , Xn] be an ideal. If B is a staggered
generating set for I as vector space, the set

G := { f ∈ B : for all g ̸= f ∈ B, LT(g) ∤ LT( f )}

is a (minimal) Gröbner basis of I.

We can leverage Proposition 17 as follows. Let F := { f1, . . . , fm} generate
the ideal I and let M := Mac(B) denote the (infinite) Macaulay matrix of all
“shifts” of F

B = {t · fi : t ∈ T, 1 ≤ i ≤ m}.

If we brought M into reduced row echelon form, then this row echelon form
yielded the reduced Gröbner basis of I, with the understanding that all rows
whose leading terms are divisible by a leading term of another row are
discarded. From an algorithmic viewpoint, this observation does not provide
much help as B is, after all, infinite. Hence, it is only a constructive method
but not an algorithm. However, another important observation leads us to
the core principle of computing Gröbner bases through matrix algebra. For
any ideal I ⊆ R, the ascending sequence of ideals

⟨LT(I≤0)⟩ ⊆ ⟨LT(I≤1)⟩ ⊆ ⟨LT(I≤2)⟩ ⊆ . . .

eventually stabilizes (by the ascending chain condition, see [CLO15, p.80,
Theorem 7]), i.e., there exists a certain D ∈N such that

⟨LT(I≤0)⟩ ⊆ ⟨LT(I≤1)⟩ ⊆ . . . ⊆ ⟨LT(I≤D)⟩ = ⟨LT(I≤D+1)⟩ = . . . .

Without loss of generality, we assume D to be minimal with this property. It
follows

LT(I) =
⋃

d≥0

LT(I≤d) ⊆
⋃

d≥0

⟨LT(I≤d)⟩ =
D⋃

d=0

⟨LT(I≤d)⟩ = ⟨LT(I≤D)⟩,
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Hence
⟨LT(I)⟩ = ⟨LT(I≤D)⟩. (18)

By the argument in the proof of Theorem 3 in [CLO15, p.77, Theorem 4], we
also deduce

I = ⟨I≤D⟩.
The crucial point is: for large enough D ∈ N, a D–Gröbner basis G of an
ideal I is, in fact, a Gröbner basis of I since

⟨LT(I)⟩ = ⟨LT(I≤D)⟩ ⊆ ⟨LT(G)⟩.

In light of this observation, we may replace I in Proposition 17 with (the
finite-dimensional vector space) I≤d and, thereby, arrive at the following
proposition.

Proposition 18. Let I ⊆ F[X1, . . . , Xn] be an ideal and let d ∈ N. If B is a
staggered generating set for the vector space I≤d, the set

G := { f ∈ B : for all f ̸= g ∈ B, LT(g) ∤ LT( f )}

is a (minimal) d-Gröbner basis of I.

The premises in Proposition 18 deserve a comment. It is evident that a
staggered generating set for any vector space U in R with

U ⊇ I≤d

yields a d–Gröbner basis as well. We will use this observation in Section 6.2.1.

Matrix-Based Approaches for Computing Gröbner Bases Above consider-
ations only give an existential proof of D ∈N such that LT(I) = ⟨LT(I≤D)⟩,
but do not tell us how to find D. In our next considerations, we present
two approaches for devising a matrix-based Gröbner basis algorithm using
Proposition 18. Each approach tackles the problem of finding D in a differ-
ent manner. Both approaches have in common that they find a staggered
generating set for a vector space U ⊇ I≤D.

The first approach was initially proposed by Bruno Buchberger [Buc18]
and, later, further investigated by Manuela Wiesinger-Widi [WW11]. Buch-
berger does not directly use the vector space I≤D but, instead, works with
the vector space generated by all large enough “D-shifts”

T≤D · F = {t · f : t ∈ T≤D, f ∈ F}.

In particular, Wiesinger-Widi [WW11] proves how large D must be such that
T≤D · F yields a Gröbner basis of I = ⟨F⟩, see Proposition 19. Stated differ-
ently, Buchberger’s approach finds a staggered generating set for a vector
space U := spanF(T≤D · F) satisfying U ⊇ I≤D. We discuss Buchberger’s
approach in more detail in Section 6.2.1. The second approach was developed
by Daniel Lazard [Laz79; Laz83] and primarily targets homogeneous ideals.
The reason for targeting homogeneous ideals is due to the property that for
a homogeneous ideal I it holds

I =
⊕
d≥0

Id.

As a consequence, for any d ∈N we obtain

I≤d =
d⊕

j=1

Ij. (19)
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The equality in Eq. (19) suggests an efficient method for obtaining a gener-
ating set for I≤D: we simply join the generating sets for I0, . . . , ID. This fact
serves as the core principle behind Lazard’s approach, see Section 6.2.2 for a
more elaborate discussion.

In order to provide a quick reference, we summarize the relations between
the concepts in this introductory part in Table 1.

Generating set B Macaulay matrix Gröbner basis
for U ⊇ I≤D of B of I

staggered row echelon form minimal
(triangular) (triangular)

reduced row echelon form reduced

Table 1: Relation between properties of linear bases, Macaulay matrices and Gröbner
bases for an ideal I = ⟨ f1, . . . , fm⟩ ⊆ F[X1, . . . , Xn], and for D large enough such that
⟨LT(I≤D)⟩ = ⟨LT(I)⟩.

6.2.1 Buchberger’s Approach

Let F be a finite set of generators for an ideal I ⊆ F[X1, . . . , Xn]. Bruno
Buchberger [Buc18] describes a particular connection between linear algebra
and Gröbner basis theory. By transforming the Macaulay matrix of

T≤D · F = {t · f : t ∈ T≤D, f ∈ F},

into reduced row echelon form, we can extract the reduced Gröbner basis of
I from this reduced row echelon form if D is large enough. Let us assume
we already knew which D to choose. Then, Buchberger’s approach follows
these steps:

1. For a finite set of polynomials F ⊆ F[X1, . . . , Xn] and all term multiples

T≤D · F = {t · f : t ∈ T≤D, f ∈ F},

construct the Macaulay matrix of T≤D · F. The resulting matrix M =
(mi,t) has rows indexed by Λ ⊆ N and columns indexed by Γ =⋃

h∈T≤D ·F T(h) ⊆ T.

2. Apply Gaussian row operations to M until M is in reduced row echelon
form. Here, only the following row operations are allowed: (1st),
exchanging two rows, (2nd), multiplying a row with a constant in
F, and, (3rd), adding a constant multiple of one row to the constant
multiple of another one. The (3rd) operation is only allowed if the
resulting row only contains zeroes or has a smaller leading term than
the input rows. For more details on these row reductions see [WW11,
Sec. 2.2].

3. Extract cont(M). As a result, cont(M) is the reduced Gröbner basis of
⟨F⟩.

The main question to ask at this point is: how large does D have to be?
Proposition 19 provides an answer to this question.
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Proposition 19 ([WW11], Theorem 2.3.6). Let F ⊆ F[X1, . . . , Xn] and let
d := max{deg( f ) : f ∈ F}. If

D := 2
(

d2

2
+ d
)2n−1

+
n−1

∑
j=0

(md)2j

and M is the reduced row echelon form of the Macaulay matrix of T≤D · F, then
cont(M) is the reduced Gröbner basis of ⟨F⟩.

Buchberger’s approch is remarkably simple although, unfortunately, not
practical. One of the problems seems to be the bound in Proposition 19 since
it causes excessively large matrices. As Buchberger notes in [Buc18, §5], to
compute the reduced Gröbner basis for the ideal generated by

{XY2 − X, X2Y− X}

we needed to set up a Macaulay matrix of polynomials up to degree 155,
whereas a Gröbner basis computation based on the S-polynomial method,
as, e.g., in the Buchberger algorithm, does not exceed degree 4. Buchberger
[Buc18, §5] further states, in general, the S-polynomial method produces
polynomials of substantially lower degree and only very few of the rows in
the Macaulay matrix set up by Buchberger’s matrix approach. Despite its
inefficiency, Buchberger’s matrix approach may be considered as a theoret-
ical frame for other Gröbner basis algorithms leveraging linear algebra on
Macaulay matrices, including Algorithm 4, and state-of-the-art algorithms
such as F4 [Fau99], F5 [Fau02], and MatrixF5 [BFS15].

6.2.2 Lazard’s Approach for Homogeneous Ideals

In the introductory part of Section 6.2 we have discussed how the problem
of finding a Gröbner basis of an ideal I reduces to the problem of finding a
d–Gröbner basis of I if d is sufficiently large. According to Proposition 18,
finding a d–Gröbner basis of I, in turn, reduces to obtaining a staggered
generating set for I≤d. In the case of homogeneous ideals, we know an
efficient way to obtain a generating set for I≤d. We use the relation

I≤d =
d⊕

j=0

Ij,

find a staggered generating set for each Ij and, eventually, join the staggered
generatings sets for I0, . . . , Id to get a staggered generating set for I≤d. If
I := ⟨ f1, . . . , fm⟩, for homogeneous f1, . . . , fm ∈ R, then a generating set for
each Ij is given by

Bj := {t · fi : t ∈ T, i ∈ {1, . . . , m}, deg(t · fi) = j }.

With a generating set Bj for Ij at hand, the process of making Bj staggered
boils down to basic matrix algebra, i.e., Gaussian row reduction. These steps
are already a basic outline of the Lazard algorithm depicted in Algorithm 4.
The ideas behind Algorithm 4 are based on the observations in [Laz79; Laz83]
and [Giu84; Giu85].

It is clear from the discussion above that Algorithm 4 correctly computes
a d–Gröbner basis.3 Hence, at this point we may ask: at which d should we

3 The author of [Spa12, p.43, Theorem 1.61] also provides an explicit proof.
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Algorithm 4: Lazard
Input: A set F := { f1, . . . , fm} of homogeneous polynomials in R,

d ∈N, a term order ≤
Result: A d–Gröbner basis G of the ideal generated by F

1 G ← ∅
2 for j = 1, . . . , d do
3 Bj ← {t · fi : t ∈ T, i = 1, . . . , m, deg(t · fi) = j}
4 Mj ← Mac(Fj)

5 M′j ← reduced row echelon form of Mj

6 Gj ← cont(M′j)
7 G ← G ∪ Gj

8 return G

terminate the algorithm if our goal is to obtain a Gröbner basis? In other
words, how large does d have to be such that a d–Gröbner basis is, in fact, a
Gröbner basis? While it is difficult to provide a general answer for arbitrary
homogeneous ideals, in the case of zero-dimensional homogeneous ideals we
have a definitive bound on d. We develop the idead behind this bound in the
following considerations.

Bound on d for Zero-Dimensional Ideals Let I ⊆ R be a homogeneous
zero-dimensional ideal. The polynomial ring R is a graded F-algebra

R =
⊕
d≥0

Rd,

with gradation Rd = { f ∈ R : f homogeneous of degree d}. Since I is
homogeneous, we obtain for Id = I ∩ Rd that

R/I =
⊕
d≥0

Rd/Id,

according to Proposition 13. Here, Rd/Id is the quotient vector space given
by

Rd/Id = {r + Id : r ∈ Rd}.
By Proposition 9, we know that I is zero-dimensional if and only if dimF(R/
I) is finite, i.e., if and only if

dimF(R/I)
I homog.

= ∑
d≥0

dimF(Rd/Id) < ∞.

This is equivalent to the existence of a number d0 ∈N, such that

dimF(Rd/Id) = 0, ∀d ≥ d0,

which, in turn, is equivalent to

Id = Rd, ∀d ≥ d0.

If we take the minimal d0 with above property, we have d0 = ireg by definition
of ireg in Definition 22 and since I is zero-dimensional. Indeed, in this case
the Hilbert polynomial is the zero polynomial by Proposition 14 and ireg is
the smallest integer such that

dimF(Rd/Id) = HFR/I(d) = HPR/I(d) = 0, for all d ≥ ireg.



6.3 f4 algorithm 62

The crucial point is: using Lemma 6, we conclude that

LT(I) ⊆ LT(I≤d) .

This means, for zero-dimensional homogeneous ideals we have a definite
termination criterion for Algorithm 4 such that the resulting d–Gröbner basis
is, in fact, a Gröbner basis. We terminate Algorithm 4 once degree ireg has
been processed. In general, determining ireg is a hard problem in its own
regard. However, for special classes of polynomial systems, e.g., regular
and semi-regular sequences, there exist explicit formulae for ireg. We briefly
touch upon this topic in Section 4.3.

6.3 F4 Algorithm

One of the most efficient Gröbner basis algorithms to date is the F4 algorithm
devised by Jean-Charles Faugère [Fau99]. Conceptually, the F4 algorithm
is based on the S-polynomial method (see Theorem 9) but Faugère blends
it with techniques from linear algebra to achieve fast polynomial reduction.
The main idea is as follows: F4 reduces several S-polynomials at once by
translating polynomial reduction of S-polynomials into row reduction of
Macaulay matrices. This idea yields an efficient reduction routine and when
integrated with the Buchberger criteria for detecting reductions to zero (see
Proposition 5 and Proposition 6) the resulting algorithm achieves a high level
of efficiency.

Our intention is to illustrate the main idea of F4. Hence, we only describe
a version of F4 that does not implement the Buchberger criteria. For an
improved version of F4 that implements these criteria we refer to the original
article [Fau99, Sec. 2.4]. The basic outline of F4 is depicted in Algorithm 5. It
follows the same “Select, Reduce, Update” schema that also the Buchberger

algorithm employs. The main difference to the Buchberger algorithm is
two-fold: (1st), F4 selects a set of S-polynomials (see Line 4 in Algorithm 5)
instead of individual ones. (2nd), the reduction routine of F4 (see Line 6 in
Algorithm 5) reduces several S-polynomials at once instead of sequentially.
We depict the reduction routine of F4 in more detail in Algorithm 6. The
process of updating the set of S-polynomials in F4 is the same as in the
Buchberger algorithm.

The idea behind the efficient reduction routine in Algorithm 6 is the fact
that for f ∈ R and G := {g1, . . . , gk} ⊆ R any normal f ′ ∈ f mod G can be
written as

f ′ = f − ci1 · ti1 gi1 − · · · − cil · tin gil ,

for certain cik ∈ F, tik ∈ T, and gik ∈ G. In other words, f ′ is a linear
combination of suitable reductors ti1 gi1 , . . . , til gil and f . Here, tik gik is a
reductor of either a G-reducible term in T( f ) or a G-reducible term that has
been introduced by another tij gij in the course of the reduction process. The
salient point of Algorithm 6 is the following. In a symbolic preprocessing
phase (see Line 3 to Line 8), Algorithm 6 collects all G-reductors for several
S-polynomials at once and, subsequenty, brings the Macaulay matrix of

{S-polynomials} ∪ {collected reductors}
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Algorithm 5: F4
Input: A set F := { f1, . . . , fm} of polynomials in R, a term order ≤
Result: A Gröbner basis G for the ideal generated by f1, . . . , fm

1 G ← { f1, . . . , fm}
2 B← {{i, j} : 1 ≤ i < j ≤ s; }
3 while B ̸= ∅ do
4 Select non-empty subset B′ ⊆ B // Some selection strategy
5 B← B \ {B′}
6 R← ReduceF4(B′, G,≤)
7 for r ∈ R do
8 t← |G|
9 ft+1 ← r

10 G ← G ∪ { ft+1}
11 B← B ∪ {{i, t + 1} : 1 ≤ i ≤ t}
12 return G

into reduced row echelon form. More precisely, instead of using proper
S-polynomials, Algorithm 6 works with the left and right halves of S-
polynomials: for gi, gj ∈ G, gi ̸= gj, these are the polynomials{

lcm(LT(gi), LT(gj))

LM(gi)
· gi

}
∪
{

lcm(LT(gi), LT(gj))

LM(gj)
· gj

}
.

Then, Algorithm 6 brings the Macaulay matrix M := Mac(L) of

L = {left and right halves of S-polynomials} ∪ {collected reductors}

into reduced row echelon form M′. Now, all non-zero rows in M′ whose
leading terms are not in LT(L) are exactly the non-zero normal forms of the
selected S-polynomials.

In spirit, this technique is very similar to what we have discussed in
Proposition 18. Seen from the perspective of Proposition 18, we are interested
in a staggered generating set for the vector space spanned by L. Hence,
instead of completely row reducing M it would suffice to bring M into
triangular form, see also [CLO15, p. 575-576, Exercise 2, part (e)].

6.4 M4GB Algorithm

In 2017 Rusydi Makarim and Marc Stevens published the M4GB algorithm for
computing Gröbner bases [MS17]. Like the F4 algorithm, M4GB is based on
the S-polynomial method (see Theorem 9) and, thus, follows the canonical
“Select, Reduce, Update” schema laid forth by the Buchberger algorithm. The
main conceptual advantage of M4GB over the Buchberger algorithm is due to
the following two properties:

(a) M4GB performs reductions only with tail-reduced reductors, and,

(b) it maintains a list of already used (tail-reduced) reductors for future
use.

The benefit of these two properties are faster polynomial reductions because
(b) allows to reuse an already constructed (tail-reduced) reductor instead of
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Algorithm 6: ReduceF4
Input: A set B′ of pairs, current basis G and a term order ≤
Result: A set R of new basis elements

1 L←
{

lcm(LT( fi), LT( f j))

LM( fi)
· fi : {i, j} ∈ B′

}
2 done← LT(L)
3 while done ̸= T(L) do // Symbolic preprocessing
4 Select largest term t ∈ (T(L) \ done) with respect to ≤
5 done← done ∪ {t}
6 if ∃g ∈ G : LT(g) | t then
7 Select such g // Some selection strategy

8 L← L ∪
{

t
LM(g)

· g
}

9 M← Mac(L)
10 M′ ← reduced row echelon form of M
11 R′ ← pol(M′)
12 R← {r ∈ R′ : LT(r) /∈ LT(L)}
13 return R

re-constructing it again, while (a) ensures that during a reduction step no
new reducible terms are introduced.

Our discussion of M4GB aims at highlighting the main innovations. There-
fore, in our presentation, we presume to deviate from the original version
of M4GB as formulated in [MS17, Sec. 4] on the following points. These
deviations do not affect the termination nor correctness of the algorithm.
However, they allow for a clearer presentation of the core ideas. For any
efficient implementation of M4GB we refer to the considerations in [MS17, Sec.
4.1].

No Buchberger Criteria The original version of M4GB in [MS17] uses the
Gebauer-Möller implementation [GM88] of Buchberger’s product and chain
criterion (Proposition 5 and Proposition 6, respectively) to update the set of
S-polynomials and discard unnecessary S-polynomials. In contrast, our de-
scription of M4GB uses an update routine that does not implement these crite-
ria and that is very similar to the canonical update routine in the Buchberger

algorithm.

Lazy Update of Reductors M4GB carries out its computations on two sets L
and M. The set L contains the leading terms of elements in the intermediate
basis. The set M stores any reductor that has appeared during a run of M4GB.
In other words, the set M contains polynomials whose leading terms are in
L, or multiples of these polynomials. In the original version of M4GB, the pair
(L, M) is supposed to satisfy the following M4GB-invariant:

• L ⊆ LT(M).

• For all f , g ∈ M it holds LT( f ) = LT(g) ⇒ f = g. I.e., every leading
term in M is unique.

• Every f ∈ M is top-reducible by L.

• Every f ∈ M is tail-irreducible by L.
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Algorithm 7: ReduceRecursive
Input: A polynomial p, a finite set F of non-zero polynomials, a term

order ≤
Result: A normal form p′ ∈ p mod F with respect to ≤

1 p′ ← 0
2 for t ∈ T(p) do
3 if ∃ f ∈ F : LT( f ) | t then
4 Select f ∈ D // Some selection strategy

5 h← ReduceRecursive
(

t
LM( f ) · Tail( f ), F,≤

)
6 p′ ← p′ − Ct(p) · h
7 else
8 p′ ← p′ + Ct(p) · t
9 return p′

Whenever the set L is extended, M4GB updates the whole set M such that
(L, M) keeps satisfying the M4GB-invariant. These computations might be
time-consuming, which is why we describe a variant of M4GB that is sketched
in the performance section of [MS17, Sec. 4.1] and that updates elements in
M only on-demand. This means, only when an element m ∈ M is reused,
the algorithm checks if it needs to be tail-reduced with respect to the current
basis { f ∈ M : LT( f ) ∈ L}.4 Nevertheless, leading terms in M are still
unique. Above variant outputs the same result as the original M4GB algorithm,
albeit it is considered more performant due to time savings in the update
process of M. The authors of M4GB call this variant a lazy variant, whereas
we simply refer to this variant as M4GB.

We motivate the idea of using tail-reduced reductors as follows. Let
TG( f ) denote the set of G-reducible terms of some polynomial f ∈ R and
let G be the intermediate basis during a run of M4GB. Let us assume M4GB

reduces a term t in a polynomial p by an appropriate reductor m and m is
not tail-irreducible with respect to G. Then, the G-reducible terms in p−m
are given by

TG(p−m) = (TG(p) ∪ TG(m)) \ {t}

However, if m is tail-irreducible it holds TG(m) ⊆ {LT(m)} = {t}, and hence

TG(p−m) = TG(p) \ {t}.

The advantage is evident: by exclusively using tail-reduced reductors, only
terms in T(p) need to be reduced modulo G and no new reducible terms
are introduced in any reduction step. Based on this observation, we formu-
late a recursive routine for computing normal forms in Algorithm 7. This
recursive reduction routine serves as a conceptual framework for polynomial
reductions in M4GB.

Let us discuss why Algorithm 7 terminates. First of all, we argue that
the ReduceRecursive routine has a finite recursion depth. Whenever it calls
itself while processing a term t, all terms being processed in this recursive
call are strictly smaller than t. The last claim is evident as ReduceRecursive

invokes itself on Tail(q) of a polynomial q with LT(q) = t. Since there is
no infinite strictly decreasing sequence of terms (≤ is a well-ordering), the
recursion depth must be finite. Furthermore, for any polynomial input to

4 Colloquially, we also say m is tail-reduced with respect to L.
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ReduceRecursive, only finitely many terms are being processed. Hence,
Algorithm 7 eventually terminates.

In Algorithm 8 we present the main routine of M4GB. It follows the basic
“Select, Reduce, Update” schema of the Buchberger algorithm. The set L
contains the leading terms of elements in the intermediate basis and M
contains monic polynomials whose leading terms are in L or any other
monic reductor that has appeared during a run of M4GB. Leading terms in M
are unique, which is why we use the notation

M[t] := the unique polynomial f ∈ M with LT( f ) = t

to reference elements in M. In contrast to the Buchberger algorithm in
Algorithm 2, the set of pairs B contains pairs of leading terms instead of
pairs of indices. Lines 3 to 7 perform the necessary computations to guarantee
that all elements in M have unique leading terms. The update routine in M4GB

is very similar to the update routine of Algorithm 2, with the only difference
that in M4GB the (top-irreducible) intermediate basis G is referenced by the
pair (L, M).

Algorithm 9 describes the reduction of polynomials in M4GB. As discussed
at the beginning of this section, Algorithm 9 is based on the recursive
reduction routine outlined in Algorithm 7. Since the variant of M4GB that we
describe updates5 elements in M on demand, we require a method to decide
if an element m ∈ M needs to be tail-reduced or not. Although not explicitly
stated in [MS17], the authors implicitly use the concept of generations for this
purpose. The generation of a reductor m ∈ M is the cardinality |L| of the set
L at the time when m was added to M. Keeping track of the generation has
the following aim. Whenever m is reused during the execution of M4GB and
the generation of m is equal to the current generation, we know that m is
tail-irreducible with respect to the current L and it can be reused without
any further considerations. If the generation of m is strictly smaller than
the current generation, m needs to be updated, i.e., tail-reduced modulo
{ f ∈ M : LT( f ) ∈ L}.

6.5 Signature-Based Algorithms

Even with a version of the Buchberger algorithm that implements the Buch-
berger criteria (Proposition 5 and Proposition 6, respectively), many of the
S-polynomials might still reduce to zero. Hence, it is natural to ask if there is
a way to detect (some of) those reductions to zero which are not covered by
the Buchberger criteria. In the following, a change of perspective helps to es-
tablish even stronger criteria for detecting redundant reductions to zero. Let
f be a polynomial in the ideal I := ⟨ f1, . . . , fm⟩ generated by the polynomials
f1, . . . , fm ∈ R. Then f can be written as f = ∑m

i=1 pi fi, for some polynomials
p1, . . . , pm ∈ R (which are not necessarily unique). This means, on the one
hand we may consider f as polynomial. On the other hand, we may view f
as module element (p1, . . . , pm) ∈ Rm. We, thus, have the following dualism
for f ∈ I

f =
m

∑
i=1

pi fi ∈ I ←→ f = (p1, . . . , pm) ∈ Rm.

The idea behind adopting the module perspective is: it allows us to to keep
track of how the S-polynomials generated during a Gröbner basis compu-

5 Updating elements in M is conceptually different from updating the set of pairs B. Updating an
element m ∈ M means, tail-reducing it modulo the current set { f ∈ M : LT( f ) ∈ L}.
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Algorithm 8: M4GB
Input: A set F := { f1, . . . , fm} of polynomials in R, a term order ≤
Result: A Gröbner basis G of the ideal generated by f1, . . . , fm

1 L← {LT( f1)}
2 M← {LC( f1)

−1 · f1}
3 B← ∅
4 for i = 2 to m do
5 (M, r)← ReduceM4GB( fi, L, M,≤)
6 if r ̸= 0 then
7 (L, M, B)← UpdateM4GB(r, L, M, B)
8 while B ̸= ∅ do
9 Select b← {u, v} ∈ B // Some selection strategy

10 B← B \ {b}
11 s← S(M[u], M[v])
12 (M, r)← ReduceM4GB(s, L, M,≤)
13 if r ̸= 0 then
14 B← B ∪ {{u, LT(r)} : u ∈ L}
15 L← L ∪ {LT(r)}
16 M← M ∪ {LC(r)−1 · r}
17 return G := { f ∈ M : LT( f ) ∈ L}

tation depend on the original input polynomials. This is motivated by the
fact that any S-polynomial s produced during a Gröbner basis computation
(with, e.g., Algorithm 2) on input f1, . . . , fm has the form

s =
m

∑
i=1

si fi ∈ I ←→ s = (s1, . . . , sm) ∈ Rm.

With information derived from the vector (s1, . . . , sm) it is possible to predict
if an S-polynomial reduces to zero with respect to the current basis. But
before we discuss how to use the information coming from (s1, . . . , sm), we
need a few new definitions.

Definition 27. Let ≤ be a term order on T. The set

Tm := {tei : t ∈ T, i ∈ {1, ..., m}}

is called the set of module terms in Rm. Furthermore, a compatible term order
extension of ≤ to Tm is a total order ⪯ on Tm that satisfies

∀s, t ∈ T ∀i ∈ {1, ..., m} : s ≤ t⇒ sei ⪯ tei.

Definition 28. Let ⪯ be a compatible extension of a term order ≤ on T to Tm.
The module leading term of a non-zero module element g = ∑m

i=1 giei ∈ Rm is

MLT(g) := max
⪯
{LT(gi) ei : i ∈ {1, ..., m}}.

The module leading monomial of g is

MLM(g) := LC(gi) · LT(gi) ei,

where LT(gi) ei = MLT(g). For two module terms s, t ∈ Tm, we say s divides
t, in symbols s | t, if there exists a term u ∈ T such that u · s = t.
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Algorithm 9: ReduceM4GB
Input: A polynomial p ∈ P, a set of terms L, a set of monic reductors

M, a term order ≤
Result: A possibly extended set M, a normal form p′ modulo

{ f ∈ M : LT( f ) ∈ L}
1 p′ ← 0
2 for t ∈ T(p) do
3 if ∃m ∈ M : LT(m) = t then
4 m← M[t]
5 h← Tail(m)
6 if gen(m) < |L| then
7 M← M \ {m}
8 (M, h)← ReduceM4GB (h, L, M,≤)
9 m← t + h

10 gen(m)← |L|
11 M← M ∪ {m}
12 p′ ← p′ − Ct(p) · h
13 else if ∃u ∈ L : u | t then
14 Select such u // Some selection strategy
15 m← M[u]
16 v← t/u
17 (M, h)← ReduceM4GB (v · Tail(m), L, M,≤)
18 m← t + h
19 gen(m)← |L|
20 M← M ∪ {m}
21 p′ ← p′ − Ct(p) · h
22 else
23 p′ ← p′ + Ct(p) · t
24 return (M, p′)

Some important term order extensions are summarized in the following
definition.

Definition 29. Let ≤ be a term order on T, let s, t ∈ T be two terms, and let
i, j ∈ {1, ..., m}. For F := { f1, . . . , fm} ⊆ R we denote by ν = νF : Rm → R

h = (h1, . . . , hm) 7→
m

∑
i=1

hi fi

the canonical evaluation homomorphism on Rm with respect to F. We define
the following (strict) extensions ≺ of ≤ to Tm. In each case, the associated
(non-strict) order relation ⪯ is given by the reflexive closure of ≺

{(s, t) : s, t ∈ Tm, s ≺ t} ∪ {(t, t) : t ∈ Tm}.

1. The position over term order extension ⪯pot is given by

sei ≺pot tej :⇐⇒
{

i > j or
i = j, s < t.

2. The term over position order extension ⪯top is given by

sei ≺top tej :⇐⇒
{

s < t or
s = t, i > j.
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3. The weighted order extension ⪯w is given by

tei ≺w uej :⇐⇒
{

LT(ν(tei)) < LT(ν(uej)) or
LT(ν(tei)) = LT(ν(uej)), i > j.

Definition 30. Let f , g, h ∈ Rm, g ̸= 0, and let G ⊆ Rm \ {0} be a set of
non-zero module elements. Let F := { f1, . . . , fm} ⊆ Rm and let ν = νF be the
canonical evaluation homomorphism with respect to F. Furthermore, let ≤
be a term order on T and let ⪯ be a compatible order extension on Tm. We
say

1. . . . f is Sig-reducible by g if there exists a term t ∈ T(ν( f )) such that

(a) LT(ν(g)) | t,

(b) sig( f ) ⪰ sig(ug), for u = t/LT(ν(g)).

The element ug is called a Sig-reductor of f . If t = LT( f ), we say f is
Sig-top-reducible by g, otherwise Sig-tail-reducible. The reduction itself is
called Sig-top-reduction and Sig-tail-reduction, respectively.

2. . . . f is Sig-reducible modulo G if there exists some g ∈ G such that f is
Sig-reducible by g.

3. . . . f Sig-reduces to h modulo g in one step if f is Sig-reducible by g, with
reducible term t ∈ T(ν( f )), and if

h = f − Ct(ν( f )) · LC(ν(g))−1 · ug,

for u = t/LT(ν(g)). In symbols, we write

f −→g h.

4. . . . f Sig-reduces to h modulo G in one step if there exists an element
g ∈ G such that f −→g h. In symbols, we write f −→G h.

5. . . . f Sig-reduces to h modulo G (in a finite number of steps) if

f −→G h1 −→G h2 −→G · · · −→G hk = h,

for some k ∈N and h1, . . . , hk ∈ Rm. In symbols, we write f ∗−→G h.

6. . . . ug is a regular Sig-reductor if ug is a Sig-reductor of f and sig( f ) >
sig(ug). We call the corresponding reduction a regular Sig-reduction
and denote this by

f −→G,reg f − c · ug,

for a certain c ∈ F. We denote a finite number of regular Sig-reductions
of f to h by

f ∗−→G,reg h.

7. . . . ug is a singular Sig-reductor if ug is a Sig-reductor and if sig( f ) =
sig(ug). We call the corresponding reduction a singular reduction.

8. . . . f is (regular, singular) Sig-irreducible modulo G, if f is not (regular,
singular) Sig-reducible modulo G.

9. . . . f is Sig-top-irreducible modulo G if no g ∈ G Sig-reduces LT(ν( f )).
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10. . . . f is Sig-tail-irreducible modulo G if no g ∈ G Sig-reduces any term
in Tail(ν( f )).

11. . . . f ′ ∈ Rm is a Sig-normal form of f modulo G if f ∗−→G f ′ and f ′ is
Sig-irreducible modulo G. We write

f mod G := { f ′ ∈ Rm : f ′ is a Sig-normal form of f modulo G}

for the set of all Sig-normal forms of f modulo G.

12. . . . f ′ is a regular Sig-normal form of f modulo G if f ∗−→G,reg f ′ and f ′

is regular Sig-irreducible modulo G. We write

f modreg G := { f ′ ∈ Rm : f ′ is a regular

Sig-normal form of f modulo G}

for the set of all regular Sig-normal forms of f modulo G.

13. . . . f Sig-reduces to zero (in a finite number of steps) if there exists a syzygy
h ∈ Syz( f1, . . . , fm) such that f ∗−→G h. In symbols, we write

f ∗−→G 0.

This notation is justified by ν(h) = 0. Whenever f Sig-reduces to the
actual zero element 0 in Rm, we write f ∗−→G 0.

The following two definitions introduce the fundamental concept of
signatures in the context of Gröbner basis computations.

Definition 31. Let p ∈ Rm \ {0} and let ⪯ be a compatible extension of a
term order ≤ to Tm. The signature of p is defined as

sig(p) := MLT(p).

Definition 32. Let F = { f1, ..., fm} ⊆ R and I = ⟨F⟩. For a module term
s ∈ Tm, a set G ⊆ Rm is called a signature Gröbner basis (in short: Sig-Gröbner
basis) of I up to signature s if

∀p ∈ Rm : sig(p) ≺ s =⇒ p ∗−→G 0.

If G is a Sig-Gröbner basis for all possible signatures s ∈ Tm, we call G a
Sig-Gröbner basis of I. Whenever the ideal I is clear from the context, we just
say G is a Sig-Gröbner basis (up to s).

It is easy to see that Sig-Gröbner bases are, indeed, Gröbner bases. For
any element f ∈ Rm it holds

f ∗−→G 0 =⇒ ν( f ) ∗−→ν(G) 0,

where ν denotes the canonical evaluation homomorphism (with respect to a
certain finite set F ⊆ R). We summarize this fact in the following proposition.

Proposition 20. Let F ⊆ R be a finite set of polynomials and let I := ⟨F⟩. If
G ⊆ Rm is a Sig-Gröbner basis of I, then νF(G) is a Gröbner basis of I.

The conceptual basis of the signature-based Gröbner basis algorithms
presented in Algorithm 10 and Algorithm 12, respectively, is developed by
the next two results. Proposition 21 justifies why it suffices to only consider
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regular Sig-reductions(and regular S-vectors, respectively; see Definition 33)
when computing Sig-Gröbner bases. In short, regular Sig-reductions preserve
the signature during the reduction process and whenever an element f ∈
Rm would be singular Sig-reducible modulo a Sig-Gröbner basis up to
sig( f ), Proposition 21 tells us that f , in fact, Sig-reduces to zero. Moreover,
Theorem 16 states an analogous formulation of the S-polynomial criterion
(see Theorem 9) in the signature setting.

Proposition 21. Let G ⊆ Rm be a Sig-Gröbner basis up to signature s ∈ Rm

and let f ∈ Rm with sig( f ) = s. If f is singular Sig-reducible modulo G, then
f ∗−→G 0.

We recall that for f1, . . . , fm ∈ R the set{
si,j : 1 ≤ i < j ≤ m

}
,

where

si,j := S(ei, ej) :=
lcm(LT( fi) , LT

(
f j
)
)

LM( fi)
· ei −

lcm(LT( fi) , LT
(

f j
)
)

LM
(

f j
) · ej,

generates the R-module Syz(LT( f1) , . . . , LT( fm)). In reference to the concept
of S-polynomials (see Definition 15) we introduce the following definition.

Definition 33. Let f , g ∈ Rm and let ν = νF be the canonical evaluation
homomorphism with respect to a certain finite set F ⊆ R. We call

S( f , g) :=
lcm(LT(ν( f )) , LT(ν(g)))

LM(ν( f ))
· f − lcm(LT(ν( f )) , LT(ν(g)))

LM(ν(g))
· g,

the S-vector of f and g. An S-vector S( f , g) = cu · u f − cv · vg, for cu, cv ∈ F

and u, v ∈ T, is said to be regular if sig(u f ) ̸= sig(vg), and singular otherwise.

Theorem 16 ([ER13], Theorem 3). Let s ∈ Tm be a module term and let G ⊆ Rm

be a finite set of module elements. The set G is a signature Gröbner basis up to
signature s if and only if for any element p in

{S( f , g) : f , g ∈ G, S( f , g) regular} ∪ {e1, . . . , em}

with sig(p) ≺ s it holds p ∗−→G,reg 0.

We are now in the position, to state a first signature-based Gröbner basis
algorithm which builds upon the S-vector criterion discussed in Theorem 16.
Algorithm 10 is the equivalent of Algorithm 2 in the signature setting. We re-
mark, the vectors e1, . . . , em which are added to P at the beginning (in Line 2)
ensure that Algorithm 10 computes a Gröbner basis of I := ⟨ f1, . . . , fm⟩,
and not of some ideal that is strictly contained in I. Up to this point it
is not clear why Algorithm 10 provides any advantage over Algorithm 2.
Indeed, it is only the following two results that justify the overhead of using
Sig-reductions. In short, Proposition 22 and Proposition 23 provide criteria
for detecting unnecessary reductions to zero and thus promise a gain in
computational efficiency. We provide an improved version of Algorithm 10

that incorporates these criteria in Algorithm 12.

Proposition 22. Let f , g ∈ Rm and let G ⊆ Rm be a Sig-Gröbner basis up to
signature s. If f and g are regularly Sig-irreducible modulo G, then

sig( f ) = sig(g) = s =⇒ ν( f ) = c · ν(g),

for some c ∈ F.
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Algorithm 10: BasicSB
Input: Non-zero input polynomials F = { f1, ..., fm}, a term order ≤

on T, a compatible order extension ⪯ on Tm
Output: A Gröbner basis of the ideal generated by F

1 G ← ∅
2 P← {e1, . . . , em}
3 while P ̸= ∅
4 Select some f ∈ P with ⪯-minimal signature s = sig( f )
5 P← P \ { f}
6 f ′ ← ReduceSB( f , G,≤,⪯)
7 if ν( f ′) ̸= 0 then
8 P← P ∪ {S( f ′, g) : g ∈ G, S( f ′, g) regular}
9 G ← G ∪ { f ′}

10 return φ(G)

Algorithm 11: ReduceSB
Input: A module element f ∈ Rm, a finite set G of non-zero module

elements, a term order ≤ on T and a compatible order
extension ⪯ to Tm

Result: A regular Sig-normal form f ′ ∈ f modreg G with respect to ≤
and ⪯

1 f ′ ← f
2 while ∃g ∈ G : f ′ is regular Sig-reducible by g do
3 Select such g // Some selection strategy
4 u← t/LT(ν(g)), for some t ∈ T(ν( f )) with LT(ν(g)) | t
5 f ′ ← f ′ − Ct(ν( f ′)) · LC(ν(g))−1 · ug
6 return p′

Proposition 23. Let F := { f1, . . . , fm} ⊆ R and let G ⊆ Rm be a Sig-Gröbner
basis up to s. If there exists a syzygy h ∈ Syz( f1, . . . , fm) such that sig(h) | s,
then f ∗−→G 0, for all f ∈ Rm with sig( f ) = s.

In what follows, we explain how Proposition 22 and Proposition 23,
respectively, help to detect unnecessary reductions to zero. Let us assume
G ⊆ Rm is a Sig-Gröbner basis up to signature s ∈ Tm. Proposition 22 shows
that for any two regularly Sig-irreducible module elements f , g ∈ Rm it holds

sig( f ) = sig(g) = s =⇒ ν( f ) = c · ν(g) (20)

for some c ∈ F. Moreover, according to Proposition 23 we know if there
exists a syzygy h ∈ Syz( f1, . . . , fm) with sig(h) | s, then

∀ f ∈ Rm with sig( f ) = s : f ∗−→G 0. (21)

The latter observation in (21) is called the syzygy criterion, while the former
observation leads to the so-called concept of signature rewriting. In signature
rewriting, instead of an S-vector with signature s, we may regularly Sig-
reduce any module element with the same signature s to check whether
s contributes any new element to the final Gröbner basis. Gröbner basis
algorithms based on this approach are called rewrite algorithms [ER13] and
we motivate this approach further in Section 6.5.1. We can leverage the
observations in (20) and (21), respectively, in the following way:
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Algorithm 12: SB
Input: Non-zero input polynomials F = { f1, ..., fm}, a term order ≤

on T, a compatible order extension ⪯ on Tm,
Output: A (minimal) Gröbner basis of the ideal generated by F

1 H ← ∅
2 G ← ∅
3 P← {e1, . . . , em}
4 while P ̸= ∅
5 Select some f ∈ P with ⪯-minimal signature s = sig( f )
6 P← P \ {p ∈ P : sig(p) = s}
7 if s is not divisible by some h ∈ H then
8 f ′ ← ReduceSB( f , G,≤,⪯)
9 if ν( f ′) = 0 then

10 H ← H ∪ {s}
11 else
12 P← P ∪ {S( f ′, g) : g ∈ G, S( f ′, g) regular}
13 G ← G ∪ { f ′}
14 return φ(G)

• for a given signature s we need to regularly Sig-reduce only one S-
vector with signature s;

• if we know that the signature of f ∈ Rm is a multiple of the signa-
ture of a syzygy, we may skip the reduction of f entirely. This is
why a signature-based Gröbner basis algorithm keeps track of syzygy
signatures.

The result of strengthening Algorithm 10 with the criteria presented in
Proposition 22 and Proposition 23, respectively, leads to Algorithm 12. Like
BasicSB, the SB algorithm computes a (Sig-)Gröbner basis incrementally, in
the sense that it proceeds by increasing signature. Because of Proposition 22,
SB only Sig-reduces one module element for any given signature. Hence, all
elements in G have distinct signatures.

6.5.1 Signature Rewriting

The consequence of Proposition 22 is that for computing a Sig-Gröbner basis
through Algorithm 12, only one S-vector needs to be regular Sig-reduced
per signature s. The statement of Proposition 22 is even stronger: instead of
an S-vector with signature s, it is possible to regular Sig-reduce any module
element with signature s. For example, any element in

Cs := {u f : f ∈ G, u ∈ T, sig(u f ) = s}

is a valid candidate, even if for u f ∈ Cs the element f is not involved in any
S-vector. Now, the following question arises: which element in Cs is a good
choice? The authors of [EF17, Sec. 7.3] state the following heuristic. It is
desirable to choose an element that is “easier” to Sig-reduce than the other
elements in Cs. There are two canonical selections.

1. We choose an element u f ∈ Cs such that f has been added to G most
recently. Here, we hope that f is furthest Sig-reduced modulo G and
thus u f might be easier to handle in the subsequent computations.
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2. We choose an element u f ∈ Cs with minimal leading term, i.e., such
that LT(u f ) ≤ LT(vg), for all vg ∈ Cs. Here, we expect the fewest
Sig-reduction steps that need to be carried out.

To address the matter of choosing a “good” element in Cs, we introduce
the following definitions. In particular, the canonical rewriter, for a given
rewrite order, will be such a “good” element to choose.

Definition 34. Let G be the intermediate basis constructed during a run of
Algorithm 12. A rewrite order is a total order ⪯r on G. For s ∈ Tm, an element
f ∈ Rm is called the canonical rewriter of (signature) s with respect to G and ⪯r
if G = ∅ or if

f = max
⪯r
{ f ∈ G : there exists u ∈ T such that sig(u f ) = s}.

We often just say “the canonical rewriter of s”, because the set G and the
rewrite order ⪯r will be clear from the context. Concerning the notation, we
use the subscript r to distinguish a generic rewrite order ⪯r from a generic
module term order ⪯.

Definition 35. Let G be the set constructed during a run of Algorithm 12, let
≤ be a term order on T and let ⪯ be a compatible order extension to Tm.

1. At the time when some f ∈ Rm is added to G, we define num( f ) := |G|.
Then the relation

f ≺rat g :⇐⇒ num( f ) < num(g).

is called the number order on G.

2. The relation

f <rat g :⇐⇒
{

Sig( f )LT(g) < Sig(g)LT( f ) or
Sig( f )LT(g) = Sig(g)LT( f ), Sig( f ) < Sig(g).

is called the ratio order on G.

We write ⪯num and ⪯rat for the corresponding (non-strict) order relation
given by the reflexive closure of ≺num and ≺rat.

For any given signature s, the idea is to reduce the canonical rewriter of
s, i.e., the ⪯r-maximal element in Cs. Let us examine the intuition behind
this choice. For u f , vg ∈ Cs with f ⪯rat g, the ratio order ⪯rat inherits its
name from examining the (symbolic) ratios

sig(u f )
LT(u f )

⪯rat
sig(vg)
LT(vg)

.

Colloquially speaking, ⪯rat chooses the element in Cs with “largest ratio”.
The intuition behind examining these (symbolic) ratios is two-fold. Here,
a large ratio sig(vg) /LT(vg) either indicates a large signature sig(vg) or a
small leading term LT(vg), or both. In case of a large signature sig(vg), we
reason that g must have been added to G fairly recently and, thus, we expect
g to be almost Sig-reduced modulo the current basis G. In case of a small
leading term LT(vg), we expect that only a few Sig-reductions are necessary
until vg is regular Sig-irreducible modulo the current G. For the number
order, we have a similar intuition. Since Algorithm 12 adds elements to G in
strictly increasing signatures, it is evident that

num( f ) < num(g)⇐⇒ sig( f ) ≺ sig(g) ,
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and, thus, we expect that a higher number indicates fewer necessary Sig-
reductions modulo the current basis G. For the fact that both orders, ⪯num
and ⪯rat, are rewrite orders, and for a more general discussion of rewrite
orders we refer to [EF17, Sec. 7.3]. Adding the feature of signature rewriting
to Algorithm 12 is easy: we additionally parametrize Algorithm 12 by a
rewrite order ⪯r and substitute Line 5 with the following instruction.

Select some p ∈ P with ⪯-minimal signature s = sig(p) and
choose f ← vg ∈ Cs such that g is the canonical rewriter of s
with respect to G and ⪯r.

Concluding Remarks The field of signature-based Gröbner basis algo-
rithms is large and in the literature there are many variations or general-
isations of the seminal F5 algorithm [Fau02]. Our introductory treatment
of signature-based Gröbner basis algorithms only aims at presenting the
core ideas and enough background to motivate the basic principles behind
signature-based criteria for detecting redundant reductions to zero. In par-
ticular, there are several optimisations and improvements of Algorithm 12

which we have not discussed. These include the sig-poly-pair optimization,
a more elaborate use of Koszul syzygies or fast comparisons of signatures.
We refer to [RS12, Sec. 3] and [ER13, Sec. 5.1] for a discussion of these
improvements. Inherently, our introductory treatment cannot cover the many
intricacies of signature-based Gröbner basis algorithms, which is why for a
more detailed treatment we refer to the comprehensive survey article [EF17]
and the excellent textbook [CLO15, Chapter 10, §4]. Specifically, the concept
of rewrite bases, first published in [ER13] and further discussed in [EF17],
provides a unifying framework for many existing signature-based Gröbner
basis algorithms.

6.6 FGLM Algorithm

The FGLM algorithm plays a vital role in the context of solving systems
of polynomial equations via Gröbner bases. Since we use the elimination
property of lex Gröbner bases for polynomial system solving, computing
such a lex Gröbner basis is one of the key problems in the solving process
(see Theorem 11 and Section 4.3 for a more elaborate discussion). In practice,
it is considered more efficient to compute a Gröbner basis with respect to
a fast term order (e.g., degrevlex) and then change to a lex Gröbner basis
through a basis conversion algorithm. For a zero-dimensional ideal I, the
FGLM algorithm [FGL+93] converts a Gröbner basis G1 of I with respect to
a given term order ≤1 to the reduced Gröbner basis G2 of I with respect to
a new term order ≤2. The main reason behind the particular advantage of
converting G1 to G2 using the FGLM algorthm compared to directly computing
G2 is the following. Given G1, FGLM reduces the problem of computing G2 to
finding linear relations in R/⟨G1⟩ = R/I. In essence, computing G2 becomes
a problem of detecting linear (in)dependence. In this section, we motivate the
conceptual idea behind the FGLM algorithm, albeit without giving a formally
complete proof of termination and correctness. We refer to the original article
[FGL+93] (or the textbook [CLO05, Ch. 2, §3] in case ≤2=≤lex) for a full
proof of termination and correctness.

The FGLM algorithm, fundamentally, relies on two facts. For a zero-
dimensional ideal I . . .
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1. . . . the quotient ring

R/I = {[ f ]I : f ∈ R},

is a finite-dimensional F-vector space (see Proposition 9). Here, [ f ]I =
{g ∈ R : f − g ∈ I} = { f + i : i ∈ I} = f + I.

2. . . . and for a Gröbner basis G of I, with respect to a certain term order
≤, it holds

R/I ∼= R mod G

as F-vector spaces, where R mod G := { f mod G : f ∈ R}. In other
words, any Gröbner basis of I provides a canonical representation of
R/I.

In the following, we will prove 1. and 2. and, in particular, show that the set

{t ∈ T : t /∈ ⟨LT(G)⟩} . (22)

is a vector space basis of R/I. Let G := { f1, . . . , fk} denote a Gröbner basis
of I with respect to a given term order ≤. Then, any element f ∈ R can be
uniquely represented as

f = q1 f1 + · · ·+ qk fk + r,

with either r = 0 or no term in r is divisible by any element in LT(G).
Hence, the unique normal form r = f mod G can be regarded as a canonical
representative of the residue class [ f ]I , i.e.,

[ f ]I = [q1 f1 + · · ·+ qk fk + r]I = [r]I = [ f mod G]I .

Consequently, the set

B := {t ∈ T : t is not divisible by any element in LT(G)}

generates R/I as F-vector space.6 Due to Lemma 3 it holds

t ∈ ⟨LT(G)⟩ ⇐⇒ ∃s ∈ LT(G) : s | t.

Put differently, a term t ∈ T lies in B if and only if t lies in the complement
of ⟨LT(G)⟩. Therefore

B = {t ∈ T : t /∈ ⟨LT(G)⟩} .

We will show that B is finite and the elements in B are F-linearly independent
in R/I. By Proposition 9, the set B is finite: for every i = 1, . . . , n there exists
a number ai ∈ N such that Xai

i ∈ LT(G). Without loss of generality, let
a1, . . . , an be minimal with this property. Therefore

B ⊆ {Xe1
1 · · ·X

en
n : ei < ai for i = 1, . . . , n}.

As a next step, we show that the elements in B are F-linearly independent in
R/I. Indeed, assume

∑
t∈B

ct · [t]I = [0]I ,

and not all coefficients ct ∈ F are zero. It follows, p := ∑t∈B ct · t ̸= 0 and
p ∈ I. Hence, LT(p) ∈ ⟨LT(I)⟩ = ⟨LT(G)⟩, which is a contradiction to

6 Technically speaking, the canonical embedding of B in R/I given by {[t]I : t ∈ B} generates
R/I.
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LT(p) ∈ B. This concludes the proof that B is a vector space basis of R/I.
Moreover, the mapping

φ : R/I → R mod G,

[ f ]I 7→ f mod G

is well-defined and bijective. For well-definedness and injectivity, let [ f ]I , [g]I
bet two residuce classed in R/I. Then

[ f ]I = [g]I ⇐⇒ f − g ∈ I

⇐⇒ f − g = 0 mod G

⇐⇒ f mod G = g mod G

⇐⇒ φ([ f ]I) = φ([g]I).

We note, the second equivalence is, in general, only valid if G is a Gröbner
basis (more precisely, the direction “=⇒”). Surjectivity is clear, since for
f mod G ∈ R mod G it holds φ ([ f ]I) = f mod G. It remains to show that φ
is a homomorphism of vector spaces. Let λ ∈ F and f , g ∈ R. Then

φ(λ[ f ]I + [g]I) = φ([λ f + g]I) = (λ f + g) mod G

= λ( f mod G) + g mod G = λφ([ f ]I) + φ([g]I).

Letting B1 and B2 denote the basis of R/I with respect to ≤1 and ≤2 ,
respectively, we conclude

R/I = spanF(B1) = spanF(B2) ,

and
dimF(R/I) = |B1| = |B2|.

In general, the set B differs for different term orders. However, since B is a
basis for the quotient ring R/I, the number of elements in B does not change
under different term orders and, thus, is an invariant of the ideal I.

Conceptual Principle The conceptual principle behind FGLM is explained as
follows: the algorithm steps through terms in increasing ≤2-order and checks
if the current term is linearly dependent on the previous terms modulo G1.
If such a linear relation is found (it will be found since B1 is finite), this linear
relation yields an element of the eventual new Gröbner basis G2. In more
detail, let t denote the current term and t1, . . . , tm all the previous terms.
Then, for t1 < t2 < · · · < tm < t, we have

t linearly dependent on t1, . . . , tm modulo G1

⇐⇒ ∃c1, . . . , cm ∈ F, not all zero :
m

∑
i=1

ci · ti = t mod G1

⇐⇒ 0 ̸= t−
m

∑
i=1

ci · ti ∈ I = ⟨G1⟩.

As a consequence, all term multiples of the current term t can be skipped
in subsequent steps. If no linear relation modulo G1 is found, the current
term is linearly independent of all previous terms modulo G1 and, thus,
constitutes a basis element of B2. Whenever a term t is added to B2, all the
products t · Xi, for i = 1, . . . , n, are tested for linear dependence modulo G1
in subsequent steps. When FGLM terminates, G2 is a ≤2-Gröbner basis of I
and B2 is a vector space basis for R/I.
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To see why linear independence modulo G1 implies linear independence
modulo G2, let us assume that Algorithm 13 terminates and correctly com-
putes a ≤2-Gröbner basis G2. Then, since both G1 and G2 are Gröbner bases
of I, we have

R mod G1
∼= R/I ∼= R mod G2

and, hence, linear (in)dependence modulo G1 is equivalent to linear (in)de-
pendence modulo G2.

To summarize, the particular advantage of FGLM compared to directly com-
puting a Gröbner basis (using any generic algorithm, like, e.g., Buchberger
or F4) is the following. If we already have a Gröbner basis G1 of I with
respect to a term order ≤1, computing a Gröbner basis G2 of I with respect
to another term order ≤2 boils down to testing for linear (in)dependence
modulo G1. This concludes our discussion and we refer to Algorithm 13 for
our presentation of the FGLM algorithm.

Algorithm 13: FGLM [FGL+93]
Input: A Gröbner basis G1 of a zero-dimensional ideal I for a term

order ≤1, another term order ≤2
Result: A reduced Gröbner basis G2 of I with respect to ≤2

1 G2 ← ∅
2 S ← {1}
3 N ← {X1, . . . , Xn}
4 while N ̸= ∅ do
5 t← min≤2 N
6 N ← N\{t}
7 if t is a term multiple of some element in LT(G2) then
8 continue
9 if there exists a linear relation t = ∑s∈S cs · s mod G1 then

10 p← t−∑s∈S cs · s
11 G2 ← G2 ∪ {p}
12 else
13 S ← S ∪ {t}
14 N ← N ∪ {t · Xi : i = 1, . . . , n}
15 return G2
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Based on the peer-reviewed conference publication

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovra-
tovich, Reinhard Lüftenegger, Christian Rechberger, and Markus Scho-
fnegger. “Algebraic Cryptanalysis of STARK-Friendly Designs: Appli-
cation to MARVELlous and MiMC.” in: Advances in Cryptology - ASI-
ACRYPT 2019. Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11923.
Lecture Notes in Computer Science. Springer, 2019, pp. 371–397. doi:
10.1007/978-3-030-34618-8_13

Abstract The block cipher Jarvis and the hash function Friday, both
members of the MARVELlous family of cryptographic primitives, are among
the first proposed solutions to the problem of designing symmetric-key
algorithms suitable for transparent, post-quantum secure zero-knowledge
proof systems such as ZK-STARKs. In this paper we describe an algebraic
cryptanalysis of Jarvis and Friday and show that the proposed number of
rounds is not sufficient to provide adequate security. In Jarvis, the round
function is obtained by combining a finite field inversion, a full-degree
affine permutation polynomial and a key addition. Yet we show that even
though the high degree of the affine polynomial may prevent some algebraic
attacks (as claimed by the designers), the particular algebraic properties of
the round function make both Jarvis and Friday vulnerable to Gröbner
basis attacks. We also consider MiMC, a block cipher similar in structure
to Jarvis. However, this cipher proves to be resistant against our proposed
attack strategy. Still, our successful cryptanalysis of Jarvis and Friday does
illustrate that block cipher designs for “algebraic platforms” such as STARKs,
FHE or MPC may be particularly vulnerable to algebraic attacks.

Keywords Gröbner Basis, MARVELlous, Jarvis, Friday, MiMC, ZK-STARK,
Algebraic Cryptanalysis, Arithmetic Circuits

7.1 Introduction

Background. Whenever a computation on sensitive data is outsourced to
an untrusted machine, one has to ensure that the result is correct. Examples
are database updates, user authentications, and elections. The underlying
problem, formally called computational integrity, has been theoretically solved
since the 1990s with the emergence of the PCP theorem. But the perfor-
mance of actual implementations was too poor to handle any computation
of practical interest. Only recently a few proof systems have appeared
where the proving time is quasi-linear in the computation length (which is
typically represented as an arithmetic circuit), e.g. ZK-SNARKs [PHG+13],
Bulletproofs [BBB+18], and ZK-STARKs [BBH+18b]. While they all share the
overall structure, these proof systems differ in details such as the need of a
trusted setup, proof size, verifier scalability, and post-quantum resistance.
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The cryptographic protocols that make use of such systems for zero-
knowledge proofs often face the problem that whenever a hash function
is involved, the associated circuit is typically long and complex, and thus
the hash computation becomes a bottleneck in the proof. An example is
the Zerocash cryptocurrency protocol [BCG+14b]: in order to spend a coin
anonymously, one has to present a zero-knowledge proof that the coin is in
the set of all valid coins, represented by a Merkle tree with coins as leaves.
When a traditional hash function such as SHA-256 is used in the Merkle
tree, the proof generation takes almost a minute for 28-level trees such as in
Zcash [BHH+19], which represents a real obstacle to the widespread use of
privacy-oriented cryptocurrencies.

The demand for symmetric-key primitives addressing the needs of spe-
cific proof systems has been high, but only a few candidates have been
proposed so far: a hash function based on Pedersen commitments [BHH+19],
MPC-oriented LowMC [ARS+15b], and big-field MiMC [AGR+16; AGP+19].
Even worse, different ZK proof systems use distinct computation represen-
tations. Concretely, ZK-SNARKs prefer pairing-friendly curves over prime
scalar fields, Bulletproofs uses a fast curve over a scalar field, whereas ZK-
STARKs are most comfortable operating over binary fields. Hence, the issue
of different representations further limits the design space of ZK-friendly
primitives.

STARKs. ZK-STARKs [BBH+18b] is a novel proof system which, in contrast
to SNARKs, does not need a trusted setup phase and whose security relies
only on the existence of collision-resistant hash functions. The computation
is represented as an execution trace, with polynomial relations among the
trace elements. Concretely, the trace registers must be elements of some
large binary field, and the polynomials should have low degree. The proof
generation time is approximately1 O(S log S), where

S ≈ (Maximum polynomial degree× Trace length) .

The STARK paper came with a proposal to use Rijndael-based hash functions,
but as these have been shown to be insecure [KBN09], custom designs are
clearly needed.

Jarvis and Friday. Ashur and Dhooghe recently addressed this need with
the proposal of the block cipher Jarvis and the hash function Friday [AD18].
The primitives were immediately endorsed by the ZK-STARK authors2 as
possible solutions to reduce the STARK generation cost in many applications.
The new hash function was claimed to offer up to a 20-fold advantage over
Pedersen hashes and an advantage by a factor of 2.5 over MiMC-based hash
functions, regarding the STARK proof generation time [BS18].

Albeit similar in spirit to MiMC, Jarvis comes with novel design elements
in order to considerably reduce the number of rounds, while still aiming to
provide adequate security. In the original proposal several types of algebraic
attacks were initially ruled out, and security arguments from Rijndael/AES
were used to inform the choice of the number of rounds, leading to a
statement that attacks were expected to cover up to three rounds only. An
extra security margin was added, leading to a recommendation of 10 rounds

1 We omit optimisations related to the trace layout.
2 The ciphers were announced among high anticipation of the audience at the prime Ethereum

conference DevCon4, held in November 2018 [BS18].
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for the variant with an expected security of 128 bits. Variants with higher
claims of security were also specified.

Algebraic Attacks. This class of attacks aims to utilise the algebraic prop-
erties of a construction. One example is the Gröbner basis attack, which
proceeds by modelling the underlying primitive as a multivariate system
of equations which is then solved using off-the-shelf Gröbner basis algo-
rithms [Buc65; CLO15; Fau99; Fau02]. After some initial success against cer-
tain stream cipher constructions [Cou02; Cou03], algebraic attacks were also
considered against block ciphers [MR02; CB07], albeit with limited success.
Even approaches combining algebraic and statistical techniques [AC09] were
later shown not to outperform known cryptanalytic techniques [WSM+11].
As a result algebraic attacks are typically not considered a major concern
for new block ciphers. We note however that Gröbner basis methods have
proven fruitful for attacking a number of public-key schemes [FGO+13; AG11;
ACF+15; FPP14; FGP+15].

Contribution. In this paper we show that, while the overall design ap-
proach of Jarvis and Friday seems sound, the choice for the number of
rounds is not sufficient to offer adequate security. We do this by mount-
ing algebraic attacks on the full-round versions of the primitives with the
help of Gröbner bases. Our results show that designers of symmetric-key
constructions targeting “algebraic platforms” – such as STARKs, FHE and
MPC – must pay particular attention to the algebraic structure of their ci-
phers, and that algebraic attacks should receive renewed attention from the
cryptographic community.

Organisation. The remainder of this work is organised as follows. In
Section 7.2 we briefly describe the block cipher Jarvis and the hash function
Friday. Following, we discuss various algebraic attacks in Section 7.3,
including higher-order differential attacks, interpolation attacks, and in
particular attacks using Gröbner bases. In the following sections, we describe
our attacks, including key-recovery attacks on Jarvis in Section 7.4 and
preimage attacks on Friday in Section 7.5. In Section 7.6, we describe our
experimental results from running the attacks and discuss our findings.
Finally, in Section 7.7 we analyse the S-box layer of Jarvis and compare it to
the AES.

7.2 MARVELlous

MARVELlous [AD18] is a family of cryptographic primitives specifically
designed for STARK applications. It includes the block cipher Jarvis as well
as Friday, a hash function based on this block cipher. We briefly describe
the two primitives in this section.

As usual, we identify functions on F2n with elements in the quotient ring

R := F2n [X] /⟨X2n − X⟩.

Whenever it is clear from the context, we refer to the corresponding polyno-
mial representation in the above quotient ring when we speak of a function on
F2n and use the notation F(X), or just F, for the coset F(X) + ⟨X2n −X⟩ ∈ R.
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7.2.1 Jarvis

Jarvis is a family of block ciphers operating on a state and a key of n bits,
thus working entirely over the finite field F2n . The construction is based
on ideas used by the AES, most prominently the wide-trail design strategy,
which guarantees security against differential and linear (statistical) attacks.
However, where AES uses multiple small S-boxes in every round, Jarvis

applies a single nonlinear transformation to the whole state, essentially using
one large n-bit S-box. The S-box of Jarvis is defined as the generalised
inverse function S :F2n → F2n with

S(x) :=

{
x−1 x ̸= 0
0 x = 0,

which corresponds to the element

S(X) := X2n−2 ∈ R.

We note that this specific S-box makes the construction efficient in the STARK
setting, because verifying it uses only one quadratic constraint (note that the
equality 1

x = y is equivalent to the equality x · y = 1, and the constraint for
the full S-box can be written as x2 · y + x = 0). We refer to [BBH+18b; AD18]
for more details.

The linear layer of Jarvis is composed by evaluating a high-degree affine
polynomial

A(X) := L(X) + ĉ ∈ R,

where ĉ ∈ F2n is a constant and

L(X) :=
n−1

∑
i=0

l2i · X2i ∈ R

is a linearised permutation polynomial. Note that the set of all linearised
permutation polynomials in R forms a group under composition modulo
X2n − X, also known as the Betti-Mathieu group [LN96].

In Jarvis, the polynomial A is built from two affine monic permutation
polynomials B, C of degree 4, that is

B(X) := LB(X) + b0 := X4 + b2X2 + b1X + b0 ∈ R

and
C(X) := LC(X) + c0 := X4 + c2X2 + c1X + c0 ∈ R

satisfying the equation
A = C ◦ B−1.

The operator ◦ indicates composition modulo X2n − X and B−1 denotes the
compositional inverse of B (with respect to the operator ◦) given by

B−1(X) := LB
−1(X) + LB

−1(b0).

Here, LB
−1 denotes the inverse of LB under composition modulo X2n − X,

or in other words, the inverse of LB in the Betti-Mathieu group. We highlight
that the inverse B−1 shares the same affine structure with B, i.e. it is composed
of a linearised permutation polynomial LB

−1 and a constant term in F2n , but
has a much higher degree.

One round of Jarvis is shown in Figure 1. Additionally, a whitening key
k0 is applied before the first round.
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si si+1

ki

S B−1 C

Figure 1: One round of the Jarvis block cipher. For simplicity, the addition of the
whitening key is omitted.

Key Schedule

The key schedule of Jarvis shares similarities with the round function itself,
the main difference being that the affine transformations are omitted. In the
key schedule, the first key k0 is the master key and the next round key ki+1
is calculated by adding a round constant ci to the (generalised) inverse S(ki)
of the previous round key ki. One round of the key schedule is depicted in
Figure 2.

ki ki+1

ci

S

Figure 2: The key schedule used by the Jarvis block cipher.

The first round constant c0 is randomly selected from F2n , while subse-
quent round constants ci, 1 ≤ i ≤ r, are calculated using the relation

ci := a · ci−1 + b

for random elements a, b ∈ F2n .

Instantiations

The authors of [AD18] propose four instances of Jarvis-n, where n ∈
{128, 160, 192, 256}. For each of these instances the values c1, a, b, and
the polynomials B and C are specified. Table 2 presents the recommended
number of rounds r for each instance, where the claimed security level is
equal to the key size (and state size) n. We will use r ∈ N throughout this
paper to denote the number of rounds of a specific instance.

Instance n # of rounds r

Jarvis-128 128 10
Jarvis-160 160 11
Jarvis-192 192 12
Jarvis-256 256 14

Table 2: Instances of the Jarvis block cipher [AD18].

7.2.2 Friday

Friday is a hash function based on a Merkle-Damgård construction, where
the block cipher Jarvis is transformed into a compression function using
the Miyaguchi-Preneel scheme. In this scheme, a (padded) message block
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mi, 1 ≤ i ≤ t, serves as input m to a block cipher E(m, k) and the respective
previous hash value hi−1 serves as key k. The output of the block cipher is
then added to the sum of mi and hi−1, resulting in the new hash value hi.
The first hash value h0 is an initialization vector and taken to be the zero
element in F2n in the case of Friday. The final state ht is the output of the
hash function. The hash function Friday is thus defined by the following
iterative formula

h0 := IV := 0,

hi := E(mi, hi−1) + hi−1 + mi,

for 1 ≤ i ≤ t, as illustrated in Figure 3.

Jarvis

m1

h0 h1 . . . Jarvis

mt

ht−1 ht

Figure 3: The Friday hash function.

7.3 Overview of Algebraic Attacks on Jarvis and Friday

From an algebraic point of view, Jarvis offers security mainly by delivering
a high degree for its linear transformations and for the S-box. In the original
proposal, the authors analyse the security against various algebraic attack
vectors, such as higher-order differential attacks and interpolation attacks.

7.3.1 Higher-Order Differential Attacks

Higher-order differential attacks [Knu94a] can be regarded as algebraic
attacks that exploit the low algebraic degree of a nonlinear transformation.
If this degree is low enough, an attack using multiple plaintexts and their
corresponding ciphertexts can be mounted. In more detail, if the algebraic
degree of a Boolean function f is d, then when applying f to all elements of
an affine vector space V ⊕ c of dimension > d and taking the sum of these
values, the result is 0, i.e. ⊕

v∈V⊕c
v =

⊕
v∈V⊕c

f (v) = 0.

Finding such a distinguisher possibly allows the attacker to recover the secret
key.

However, higher-order differential attacks pose no threat to Jarvis. In-
deed, the algebraic degree of S(X) = X2n−2 is the Hamming weight of
2n − 2, which is equal to n− 1 and thus maximal (note that the S-box is a
permutation). This makes higher-order differential attacks and zero-sum
distinguishers infeasible after only one round of Jarvis.

7.3.2 Interpolation Attacks

Interpolation attacks were introduced in 1997 [JK97] and are another type of
algebraic attack where the attacker constructs the polynomial corresponding
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to the encryption (or decryption) function without knowing the secret key.
The basis of interpolation attacks is a consequence of the Fundamental
Theorem of Algebra: given d + 1 pairs (x0, y0), . . . , (xd, yd) of elements in a
certain field F, there is a unique polynomial P(X) ∈ F[X] of degree at most d
which satisfies

P(xi) = yi

for all 0 ≤ i ≤ d. To put it another way, the polynomial P(X) interpolates
the given pairs (xi, yi), which is why it deserves the denotation interpolation
polynomial. There are several approaches for calculating all the coefficients of
the interpolation polynomial. A classical technique is to choose Lagrange’s
basis (L0, L1, . . . , Ld), with

Li(X) :=
d

∏
j=0
j ̸=i

X− xj

xi − xj
∈ F[X] ,

as a basis for the F-vector space F[X] and read off the solution (p0, . . . , pd)
from the resulting system of equations

yi = P(xi) = p0L0(xi) + p1L1(xi) + . . . + pdLd(xi), 0 ≤ i ≤ d.

Lagrange’s basis leads to a complexity of O(d2) field operations and so does
Newton’s basis {N0, N1, . . . , Nd} with

Ni(X) :=
i−1

∏
j=0

(X− xj) ∈ F[X] .

A different approach uses the fact that polynomial interpolation can be
reduced to polynomial evaluation, as discussed by Horowitz [Hor72] and
Kung [Kun73], leading to a complexity of O(d log2 d) field operations. In
essence, this approach relies on the Fast Fourier Transform for polynomial
multiplication.

From the above complexity estimates, it is thus desirable that the poly-
nomial representation of the encryption function reaches a high degree and
forces all possible monomials to appear. In Jarvis, a high word-level degree
is already reached after only one round; additionally the polynomial expres-
sion of the encryption function is also dense after only two rounds. It follows
that interpolation attacks pose no threat to Jarvis.

7.3.3 Gröbner Basis Attacks

The first step in a Gröbner basis attack is to describe the primitive by a system
of polynomial equations. Subsequently, a Gröbner basis [Buc65; CLO15] for
the ideal defined by the corresponding polynomials is calculated and finally
used to solve for specified variables. In more detail, Gröbner basis attacks
consist of three phases:

1. Set up an equation system and compute a Gröbner basis (typically for
the degrevlex term order for performance reasons) using an algorithm
such as Buchberger’s algorithm [Buc65], F4 [Fau99], or F5 [Fau02].

2. Perform a change of term ordering for the computed Gröbner basis
(typically going from the degrevlex term order to the lex one, which fa-
cilitates computing elimination ideals and hence eliminating variables)
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using an algorithm such as FGLM [FGL+93]. Note that in our appli-
cations all systems of algebraic equations result in zero-dimensional
ideals, i.e. the systems have only finitely many solutions.

3. Solve the univariate equation for the last variable using a polynomial
factoring algorithm, and substitute into other equations to obtain the
full solution of the system.

Cost of Gröbner Basis Computation. For a generic system of ne polyno-
mial equations

F1(x1, . . . , xnv) = F2(x1, . . . , xnv) = · · · = Fne(x1, . . . , xnv) = 0

in nv variables x1, . . . , xnv , the complexity of computing a Gröbner ba-
sis [BFP12] is

CGB ∈ O
((

nv + Dreg

Dreg

)ω)
,

where 2 ≤ ω < 3 is the linear algebra exponent representing the complexity
of matrix multiplication and Dreg is the degree of regularity. The constants

hidden by O(·) are relatively small, which is why (
nv+Dreg

Dreg
)

ω
is typically used

directly. In general, computing the degree of regularity is a hard problem.
However, the degree of regularity for “regular sequences” [BFS+05] is given
by

Dreg = 1 +
ne

∑
i=1

(di − 1), (23)

where di is the degree of Fi. Regular sequences have ne = nv. More generally,
for “semi-regular sequences” (the generalisation of regular sequences to
ne > nv) the degree of regularity can be computed as the index of the first
non-positive coefficient in

H(z) =
1

(1− z)nv ×
ne

∏
i=1

(1− zdi ).

It is conjectured that most sequences are semi-regular [Frö85]. Indeed,
experimental evidence suggests random systems behave like semi-regular
systems with high probability. Hence, assuming our target systems of
equations behave like semi-regular sequences, i.e. they have no additional
structure, the complexity of computing a Gröbner basis depends on (a) the
number of equations ne, (b) the degrees d1, d2, . . . , dne of the equations, and
(c) the number of variables nv. Crucially, our experiments described later in
the paper indicate that the systems considered in this work do not behave
like regular sequences.

Cost of Gröbner Basis Conversion. The complexity of the FGLM algorithm
[FGL+93] is

CFGLM ∈ O
(

nv · deg(I)3
)

,

where deg(I) is called the degree of the ideal and defined as the dimen-
sion of the quotient ring F[X1, X2, . . . , Xn]/I as an F-vector space. For the
systems we are considering in this paper – which are expected to have a
unique solution in F – the dimension of R/I corresponds to the degree of
the unique univariate polynomial equation in the reduced Gröbner basis
with respect to the canonical lexicographic order [KR00, Theorem 3.7.25].
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Again, the hidden constants are small, permitting to use nv · deg(I)3 di-
rectly. A sparse variant of the algorithm also exists [FM11b] with complexity
O (deg(I)(N1 + nv log deg(I))), where N1 is the number of nonzero entries
of a multiplication matrix, which is sparse even if the input system spanning
I is dense. Thus, the key parameter to establish for estimating the cost of
this step is deg(I).

Cost of Factoring. Finally, we need to solve for the last variable using
the remaining univariate polynomial equation obtained by computing all
necessary elimination ideals. This can be done by using a factorisation algo-
rithm. For example, the complexity of a modified version of the Berlekamp
algorithm [Gen07] to factorise a polynomial P of degree D over F2n is

CSol ∈ O
(

D3n2 + Dn3
)

.

In our context, we can however reduce the cost of this step by performing
the first and second steps of the attack for two (or more) (plaintext, ciphertext)
pairs and then considering the GCD of the resulting univariate polynomials,
which are univariate in the secret key variable k0. Computing polynomial
GCDs is quasi-linear in the degree of the input polynomials. In particular,
we expect

CSol ∈ O
(

D(log(D))2
)

.

We will again drop the O(·) and use the expressions directly.

Our Algebraic Attacks on MARVELlous. All attacks on MARVELlous

presented in this paper are inherently Gröbner basis attacks which, on the
one hand, are based on the fact that the S-box S(X) = X2n−2 of Jarvis can
be regarded as the function S :F2n → F2n , where

S(x) = x−1

for all elements except the zero element in F2n . As a consequence, the relation

y = S(x) = x−1

can be rewritten as an equation of degree 2 in two variables, namely

x · y = 1,

which holds everywhere except for the zero element in F2n . We will use
this relation in our attacks, noting that x = 0 occurs with a negligibly small
probability for n ≥ 128.

On the other hand, we exploit the fact that the decomposition of the affine
polynomial A originates from two low-degree polynomials B and C. When
setting up the associated equations for Jarvis, we introduce intermediate
variables in such a way that the low degree of B and C comes into effect, and
then show that the particular combination of the inverse S-box S(X) = X2n−2

with the affine layer in Jarvis is vulnerable to Gröbner basis attacks.
Based on the above observations, we describe in the next sections:

• a key-recovery attack on reduced-round Jarvis and an optimised key-
recovery attack on full-round Jarvis;

• its extension to a (two-block) preimage attack on full-round Friday;

• a more efficient direct preimage attack on full-round Friday.
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7.4 Gröbner Basis Computation for Jarvis

We first describe a straightforward approach, followed by various optimisa-
tions which are necessary to extend the attack to all rounds.

7.4.1 Reduced-Round Jarvis

Let B, C ∈ R be the polynomials of the affine layer in Jarvis. Furthermore, in
round i of Jarvis let us denote the intermediate state between the application
of B−1 and C as xi, for 1 ≤ i ≤ r (see Figure 4).

si si+1

ki

S B−1 C
xi

Figure 4: Intermediate state xi in one round of the encryption path.

As a result, two consecutive rounds of Jarvis can be related by the
equation

(C(xi) + ki) · B(xi+1) = 1 (24)

for 1 ≤ i ≤ r − 1. As both polynomials B and C have degree 4, equation
(24) yields a system of r− 1 polynomial equations, each of degree 8, in the
variables x1, . . . , xr and k0, . . . , kr. To make the system dependent on the
plaintext p and the ciphertext c, we add the two equations

B(x1) · (p + k0) = 1, (25)

C(xr) = c + kr (26)

to this system. Additionally, two successive round keys are connected
through the equation

(ki+1 + ci) · ki = 1 (27)

for 0 ≤ i ≤ r− 1. In total, the above description of Jarvis amounts to 2 · r + 1
equations in 2 · r + 1 variables, namely:

• r− 1 equations of degree 8 (equation (24)),

• one equation of degree 5 (equation (25)),

• one equation of degree 4 (equation (26)),

• r equations of degree 2 (equation (27)),

in the 2 · r + 1 variables x1, . . . , xr and k0, . . . , kr. Since the number of equa-
tions is equal to the number of variables, we can estimate the complexity of
a Gröbner basis attack by using Equation (23). According to this estimate,
the computation of a Gröbner basis for the above system of equations is
prohibitively expensive for full-round Jarvis. For example, Equation (23)
predicts a complexity of ≈ 120 bits (when setting ω = 2.8) for computing a
Gröbner basis for r = 6. However, we note that we were able to compute
such a basis in practice (Section 7.6), which indicates that the above estimate
is too pessimistic.
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7.4.2 Optimisations for an Attack on Full-Round Jarvis

In order to optimise the computation from the previous section and extend it
to full-round Jarvis, we introduce two main improvements. First, we reduce
the number of variables and equations used for intermediate states. Secondly,
we relate all round keys to the master key, which helps to further reduce the
number of variables.

A More Efficient Description of Intermediate States

The main idea is to reduce the number of equations and variables for interme-
diate states at the expense of an increased degree in some of the remaining
equations. By relating a fixed intermediate state xi to the respective preceding
and succeeding intermediate states xi−1 and xi+1, we obtain the equations

B(xi) =
1

C(xi−1) + ki−1
, (28)

C(xi) =
1

B(xi+1)
+ ki (29)

for 2 ≤ i ≤ r− 1. Since both B and C are monic affine polynomials of degree
4, we claim that it is possible to find monic affine polynomials

D(X) := X4 + d2X2 + d1X + d0

and
E(X) := X4 + e2X2 + e1X + e0,

also of degree 4, such that
D(B) = E(C).

Indeed, comparing corresponding coefficients of D(B) and E(C) yields a
system of 5 linear equations in the 6 unknown coefficients d0, d1, d2, e0, e1, e2,
which can then be solved. We explain the construction of D and E in more
detail in Appendix 7.A.

From now on let us assume we have already found appropriate polyno-
mials D and E. After applying D and E to Equation (28) and Equation (29),
respectively, we equate the right-hand side parts of the resulting equations
and get

D
(

1
C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)
(30)

for 2 ≤ i ≤ r− 1. Eventually we obtain a system of polynomial equations of
degree 36 by clearing denominators in Equation (30).

The crucial point is that variables for every second intermediate state may
now be dropped out of the description of Jarvis. This is because we can
consider either only evenly indexed states or only odd ones, and by doing
so, we have essentially halved the number of equations and variables needed
to describe intermediate states. We note that in all optimised versions of our
attacks we only work with evenly indexed intermediate states, as this choice
allows for a more efficient description of Jarvis compared to working with
odd ones.

Finally we relate the plaintext p and the ciphertext c to the appropriate
intermediate state x2 and xr, respectively, and set

D
(

1
p + k0

)
= E

(
1

B(x2)
+ k1

)
, (31)

C(xr) + kr = c. (32)



7.4 gröbner basis computation for jarvis 91

Here, the degree of Equation (31) is 24, while Equation (32) has degree 4.

Remarks. It is worth pointing out that the above description uses several
implicit assumptions. First, it may happen that some intermediate states
become zero, with the consequence that our approach will not find a solu-
tion. However, this case only occurs with a negligibly small probability, in
particular when considering instances with n ≥ 128. If this event occurs
we can use another plaintext-ciphertext pair. Secondly, when we solve the
optimised system of equations (i.e. the system we obtain after applying D
and E), not all of the solutions we find for this system are guaranteed to be
valid solutions for the original system of equations. Lastly, Equation (32)
implicitly assumes an even number of rounds. If we wanted to attack an odd
number of rounds instead, this equation had to be adjusted accordingly.

Relating Round Keys to the Master Key

Two consecutive round keys in Jarvis are connected by the relation

ki+1 =
1
ki

+ ci

if ki ̸= 0, which is true with high probability for large state sizes n. As a
consequence, each round key is a rational function of the master key k0 of
degree 1, i.e.

ki+1 =
αi · k0 + βi
γi · k0 + δi

.

We provide the exact values for αi, βi, γi, and δi in Appendix 7.B. Expressing
ki as a rational function of k0 in Equation (30) and Equation (32) raises the
total degree of these equations to 40 and 5, respectively. On the other hand,
the degree of Equation (31) remains unchanged.

7.4.3 Complexity Estimates of Gröbner Basis Computation for Jarvis

Assuming the number of rounds r to be even, the aforementioned two
improvements yield

• r
2 − 1 equations of degree 40 (equation (30)),

• one equation of degree 24 (equation (31)),

• one equation of degree 5 (equation (32)),

in r
2 + 1 variables (the intermediate states x2, x4, . . . , xr and the master key

k0). Since the number of equations equals the number of variables, we may
calculate the degree of regularity using Equation (23), again assuming the
system behaves like a regular sequence.

Our results for the degree of regularity, and thus also for the complexity
of computing a Gröbner basis, are listed in Table 3. Note that we assume
ω = 2.8. However, this is possibly a pessimistic choice, as the regarded
systems are sparse. We therefore also give the complexities for ω = 2 in
parentheses.

These values show that we are able to compute Gröbner bases for, and
therefore successfully attack, all full-round versions of Jarvis. We note
that, even when pessimistically assuming that the memory complexity of a
Gröbner basis computation is asymptotically the same as its time complexity
(the memory complexity of any algorithm is bounded by its time complexity)
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r nv Dreg Complexity in bits

6 4 106 63 (45)
8 5 145 82 (58)
10 (Jarvis-128) 6 184 100 (72)
12 (Jarvis-192) 7 223 119 (85)
14 (Jarvis-256) 8 262 138 (98)

16 9 301 156 (112)
18 10 340 175 (125)
20 11 379 194 (138)

Table 3: Complexity estimates of Gröbner basis computations for r-round Jarvis.

and when considering the time-memory product (which is highly pessimistic
from an attacker’s point of view), our attacks against Jarvis-256 are still
valid.

7.5 Gröbner Basis Computation for Friday

In this section, we let F : F2n × F2n → F2n indicate the application of one
block of Friday.

7.5.1 Extending the Key-Recovery Attack on Jarvis to a Preimage Attack
on Friday

Using the same equations as for Jarvis described in Section 7.4, a preimage
attack on Friday may also be mounted. At its heart, the attack on Friday

with r rounds is an attack on Jarvis with r− 1 rounds.

Jarvis

m1

IV h1 Jarvis

m2

h2

Figure 5: Two blocks of Friday.

We work with two blocks of Friday, hence a message m is the concatena-
tion

m = m1 || m2

of two message blocks m1, m2 ∈ F2n . The output of the first block is denoted
by h1 and the known (final) hash value of the second block is denoted by h2.
The hash values h1 and h2 can be expressed as

h1 = F(m1, IV)

and
h2 = F(m2, h1).

The initialization vector IV is just the zero element in F2n . We refer to
Figure 5 for an illustration of the introduced notation.
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Our preimage attack proceeds as follows: in the first part, we use random
values m̂1 for the input to the first block to populate a table T1 in which
each entry contains a pair (m̂1, ĥ1), where ĥ1 denotes the corresponding
intermediate hash value

ĥ1 := F(m̂1, IV).

In the second part, we find pairs (m′2, h′1) with

F(m′2, h′1) = h2,

or in other words, pseudo preimages for the known hash value h2. To
find such a pseudo preimage, we fix the sum m2 + h1 to an arbitrary value
v0 ∈ F2n , i.e. we set

v0 := m2 + h1.

This has two effects:

1. In the second block, the value v1 entering the first round of Jarvis

is fixed and known until the application of the second round key.
Essentially, this means that one round of Jarvis can be skipped.

2. Since v0 = m2 + h1 is fixed and known, the final output v2 of Jarvis is
defined by

v2 := v0 + h2

and thus also known.

In the current scenario, the intermediate hash value h1 serves as master
key for the r round keys k1, k2, . . . , kr applied in the second block. Using v1
as plaintext and v2 as ciphertext, an attack on Jarvis with r− 1 rounds is
sufficient to reveal these round keys. Once one of the round keys is recovered,
we calculate the second part h′1 of a pseudo preimage (m′2, h′1) by applying
the inverse key schedule to the recovered key. Finally, we set

m′2 := h′1 + v0

and thereby obtain the remaining part of a pseudo preimage. How the
presented pseudo preimage attack on r-round Friday reduces to a key-
recovery attack on (r− 1)-round Jarvis is outlined in Figure 6.

Conceptually, we repeat the pseudo preimage attack many times (for
different values of v0) and store the resulting pairs (m′2, h′1) in a table T2. The
aim is to produce matching entries (m̂1, ĥ1) and (m′2, h′1) in T1 and T2 such
that

ĥ1 = h′1,

which implies

F(m′2, F(m̂1, IV)) = F(m′2, ĥ1) = F(m′2, h′1) = h2,

giving us the preimage (m̂1, m′2) we are looking for.

Remark. The (input, output) pairs (v1, v2) we use for the underlying key-
recovery attack on Jarvis are not proper pairs provided by, e.g., an encryption
oracle for Jarvis. Thus, it may happen that for some pairs (v1, v2) the key-
recovery attack does not succeed, i.e. there is no key h′1 which maps v1 to v2.
The probability for such an event is

Pfail =

(
2n − 1

2n

)2n

=

(
1− 1

2n

)2n

≈ lim
k→∞

(
1− 1

k

)k
=

1
e

for large n.
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m2

h1

h2

k1 kr

· · ·
v0 v1 v2

S B−1 C

Figure 6: Internals of the second block of Friday. The values v0, v1 and v2 are known.

7.5.2 Complexity of Generating Pseudo Preimages

The cost of generating pseudo preimages is not negligible. Hence, we cannot
afford to generate tables T1 and T2, each with 2

n
2 entries, and then look for

a collision. However, given the attack complexities for Jarvis in Table 3,
an attack on 9-round Jarvis has a complexity of around 83 bits (assuming
ω = 2.8). Considering Jarvis-128, for example, this means we can generate
up to 245 pseudo preimages.

Let us assume we calculate 210 pseudo preimages (m̂1, m′1) and 2
n
2 inter-

mediate pairs (m̂1, ĥ1), in both cases for Friday instantiated with Jarvis-128.
This leaves us with a table T1 containing 2

n
2 (m̂1, ĥ1) pairs and a table T2

containing 210 (m′2, h′1) pairs.
Assuming that all hash values in T1 are pairwise distinct and that also all

hash values in T2 are pairwise distinct, the probability that we find at least
one hash collision between a pair in T1 and a pair in T2 is

P = 1−
|T2|−1

∏
i=0

(
1− |T1|

2128 − i

)
, (33)

which is, unfortunately, too low for |T1| = 2
n
2 . However, we can increase this

probability by generating more entries for T1. Targeting a total complexity
of, e.g., ≈ 120 bits, we can generate 2118 such entries. Note that the number
of expected collisions in a table of m random n-bit entries is

Nc = m− 2n + 2n ·
(

2n − 1
2n

)m
.

Therefore, the expected number of unique values in such a table is

Nu =

(
1− Nc

m

)
·m = m− Nc = 2n − 2n ·

(
2n − 1

2n

)m
.

We want that Nu ≥ 2118, and by simple computation it turns out that 2119

hash evaluations are sufficient with high probability. Using these values in
Equation (33) yields a success probability of around 63 percent.

7.5.3 Direct Preimage Attack on Friday

The preimage attack we present in this section works with one block of
Friday, as shown in Figure 7.

The description of the intermediate states x1, . . . , xr yields the same sys-
tem of equations as before; however, in contrast to the optimised attack on
Jarvis described in Section 7.4.2, in the current preimage attack on Friday
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Jarvis

m1

h0

h1

Figure 7: Preimage attack on Friday using one message block.

the master key k0 and thus all subsequent round keys k1, . . . , kr are known.
As an effect, we do not need to express round keys as a rational function of
k0 anymore. For the sake of completeness, we give Equation (30) once more
and note that the degree now decreases to 32 (from formerly 40). It holds
that

D
(

1
C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)
for 2 ≤ i ≤ r− 1. Moreover, an additional equation is needed to describe
the structure of the Miyaguchi-Preneel compression function (see Figure 6),
namely

B(x1) · (C(xr) + kr + h1) = 1.

Again, we assume an even number of rounds r and work with intermediate
states x2, x4, . . . , xr, which is why we need to apply the transformations D
and E to cancel out the state x1 in the above equation. Thus, eventually we
have

D
(

1
C(xr) + kr + h1

)
= E

(
1

B(x2)
+ k1

)
. (34)

Here, h1 denotes the hash value for which we want to find a preimage m′1
such that

F(m′1, h0) = h1.

To obtain m′1 we solve for the intermediate state xr and calculate

m′1 := C(xr) + kr + h1 + h0.

The value h0 = k0 can be regarded as the initialisation vector and is the zero
element in F2n . The above attack results in:

• r
2 − 1 equations of degree 32 coming from Equations (30) when consid-
ering even intermediate states, and

• one equation of degree 32 coming from Equation (34),

in the r
2 variables x2, x4, . . . , xr. The number of equations is the same as the

number of variables, and we can again use Equation (23) to estimate the
degree of regularity. The complexities of the Gröbner basis computations are
summarised in Table 4, where we pessimistically assume ω = 2.8, but also
give the complexities for ω = 2 in parentheses.

7.6 Behaviour of the Attacks against Jarvis and Friday

Recall that our attack has three steps:

1. Set up an equation system and compute a Gröbner basis using, e.g.,
the F4 algorithm [Fau99], with cost CGB.
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r nv Dreg Complexity in bits

6 3 94 48 (34)
8 4 125 65 (47)
10 (Jarvis-128) 5 156 83 (59)
12 (Jarvis-192) 6 187 101 (72)
14 (Jarvis-256) 7 218 118 (85)

16 8 249 136 (97)
18 9 280 154 (110)
20 10 311 172 (123)

Table 4: Complexity estimates for the Gröbner basis step in preimage attacks on
Friday using r-round Jarvis.

2. Perform a change of term ordering for the computed Gröbner basis
using the FGLM algorithm [FGL+93], with cost CFGLM.

3. Solve the remaining univariate equation for the last variable using a
polynomial factoring algorithm, substitute into other equations, with
cost CSol.

For the overall cost of the attack we have3:

C := 2 CGB + 2 CFGLM + CSol,

C := 2
((

nv + D
D

)ω)
+ 2

(
nv · Du

3
)
+
(

Du log2 Du

)
.

We can estimate CGB if we assume that our systems behave like regular
sequences. For the CFGLM and CSol we need to establish the degree Du of
the univariate polynomial recovered, for which however we do not have
an estimate. We have therefore implemented our attacks on Jarvis and
Friday using Sage v8.6 [Ste+19] with Magma v2.20–5 [Mag] as the Gröbner
basis engine. In particular, we implemented both the unoptimised and the
optimised variants of the attacks from Sections 7.4.2 and 7.5.3.

We observed that our attacks performed significantly better in our exper-
iments than predicted. On the one hand, our Gröbner basis computations
reached significantly lower degrees D than the (theoretically) expected Dreg.
Furthermore, the degrees of the univariate polynomials seem to grow as
≈ 2 · 5r (Jarvis) and as ≈ 2 · 4r (Friday), respectively, suggesting the second
and third steps of our attack are relatively cheap.

We therefore conclude that the complexities given in Tables 3 and 4

are conservative upper bounds for our attacks on Jarvis and Friday. We
summarise our findings in Table 5, and the source code of our attacks on
MARVELlous is available on GitHub4.

In Table 5, r denotes the number of rounds, Dreg is the expected degree
of regularity under the assumption that the input system is regular, nv is the
number of variables, 2 · log2 (

nv+Dreg
Dreg

) is the expected bit security for ω = 2
under the regularity assumption, D is the highest degree reached during the
Gröbner basis computation, and 2 · log2 (

nv+D
D ) is the expected bit security

for ω = 2 based on our experiments. The degree of the recovered univariate
polynomial used for solving the system is denoted as Du.

3 As suggested in Section 7.3.3, our attack proceeds by running steps 1 and 2 twice, and recovering
the last variable via the GCD computation, thus reducing the complexity of step 3.

4 https://github.com/IAIK/marvellous-attacks

https://github.com/IAIK/marvellous-attacks
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Jarvis (optimised)

r nv Dreg 2 log2 (
nv+Dreg

Dreg
) D 2 log2 (

nv+D
D ) Du = deg(I) Time

3 2 47 20 26 17 256 0.3s
4 3 67 31 40 27 1280 9.4s
5 3 86 34 40 27 6144 891.4s
6 4 106 45 41 34 28672 99989.0s

Jarvis (unoptimised)

3 4 25 29 10 20 256 0.5s
4 5 33 38 11 24 1280 23.9s
5 6 41 47 13 29 6144 2559.8s
6 7 47 55 14 34 28672 358228.6s

Friday

3 2 39 19 32 18 128 3.6s
4 2 63 22 36 19 512 0.5s
5 3 70 32 36 26 2048 36.5s
6 3 94 34 48 29 8192 2095.2s

Table 5: Experimental results using Sage.

7.6.1 Comparison with MiMC

We note that the same attack strategy, namely a direct Gröbner basis com-
putation to recover the secret key, also applies, in principle, to MiMC, as
pointed out by [Ash19]. In particular, it is easy to construct a multivariate
system of equations for MiMC with degree 3 that is already a Gröbner basis
by introducing a new state variable per round5. This makes the first step
of a Gröbner basis attack free.6 However, then the change of ordering has
to essentially undo the construction to recover a univariate polynomial of
degree Du ≈ 3r. Performing this step twice produces two such polynomials
from which we can recover the key by applying the GCD algorithm with
complexity Õ (3r). In [AGR+16], the security analysis implicitly assumes that
steps 1 and 2 of our attack are free by constructing the univariate polynomial
directly and costing only the third and final step of computing the GCD.

The reason our Gröbner basis attacks are so effective against Friday and
Jarvis is that the particular operations used in the ciphers – finite field
inversion and low-degree linearised polynomials – allow us to construct a
polynomial system with a relatively small number of variables, which can in
turn be efficiently solved using our three-step attack strategy. We have not
been able to construct such amenable systems for MiMC.

7.7 Comparing the S-Boxes of Jarvis and the AES

The non-linear operation in Jarvis shows similarities with the AES S-box
SAES(X). In particular, SAES(X) is the composition of an F2-affine function
AAES and the multiplicative inverse of the input in F28 , i.e.

SAES(X) = AAES(X254),

5 This property was observed by Tomer Ashur and Alan Szepieniec and shared with us during
personal communication.

6 We note that this situation is somewhat analogous to the one described in [BPW06].



7.7 comparing the s-boxes of jarvis and the aes 98

where

AAES(X) = 0x8F · X128 + 0xB5 · X64 + 0x01 · X32 + 0xF4 · X16+

0x25 · X8 + 0xF9 · X4 + 0x09 · X2 + 0x05 · X + 0x63.

In Jarvis, we can also view the S-box as

S(X) = A(X254),

where
A(X) = (C ◦ B−1)(X)

and both B and C are of degree 4. In this section we show that AAES cannot
be split into

AAES(X) = (Ĉ ◦ B̂−1)(X),

with both B̂ and Ĉ of low degree. To see this, first note that above decompo-
sition implies

B̂(X) = A−1
AES(Ĉ(X)),

where

A−1
AES(X) = 0x6E · X128 + 0xDB · X64 + 0x59 · X32 + 0x78 · X16+

0x5A · X8 + 0x7F · X4 + 0xFE · X2 + 0x5 · X + 0x5

is the compositional inverse polynomial of AAES satisfying the relation

A−1
AES(AAES(x)) = x,

for every x ∈ F28 . Hence, to show that at least one of B̂, Ĉ is of degree > 4, it
suffices to compute A−1

AES(Ĉ) assuming a degree 4 for Ĉ, and to show that
then the corresponding B̂ has degree > 4.

Remark. First of all, note that since AAES has degree 128, it is always
possible to find polynomials Ĉ and B̂ of degree 8 such that the equality
AAES(X) = Ĉ(B̂−1(X)) is satisfied. Indeed, if both Ĉ and B̂ have degree
8, then each one of them have all monomials of degrees 1, 2, 4 and 8. The
equality AAES(X) = Ĉ(B̂−1(X)) is then satisfied if 8 equations (one for
each monomial of AAES) in 8 variables (both Ĉ and B̂ have 4 monomials
each) are satisfied. Hence, a random polynomial AAES satisfies the equality
AAES(x) = Ĉ(B̂−1(x)) with negligible probability if both Ĉ and B̂ have
degree at most 4.

Property of AAES. Let us assume a degree-4 polynomial

Ĉ(X) = ĉ4X4 + ĉ2X2 + ĉ1X + ĉ0.

We can now write down A−1
AES(Ĉ(X)), which results in B̂(X). However, we

want B̂ to be of degree at most 4, so we set all coefficients for the degrees
8, 16, 32, 64, 128 to 0. This results in a system of five equations in the three
variables ĉ1, ĉ2, ĉ4, given in Appendix 7.C. We tried to solve this system and
confirmed that no solutions exist. Thus, the affine part of the AES S-box
cannot be split into Ĉ(B̂−1(X)) such that both B̂ and Ĉ are of degree at most
4, whereas in Jarvis this is possible.

As a result, from this point of view, the main difference between AES
and Jarvis/Friday is that the linear polynomial used to construct the AES
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S-box does not have the splitting property used in our attacks, while the
same is not true for the case of Jarvis/Friday. In this latter case, even if
B(C−1) has high degree, it depends only on 9 variables instead of n + 1 as
expected by a linearised polynomial of degree 2n (where n ≥ 128). Thus, a
natural question to ask is what happens if we replace B and C with other
polynomials of higher degree.

7.8 Conclusion and Future Work

We have demonstrated that Jarvis and Friday are insecure against Gröbner
basis attacks, mainly due to the algebraic properties of concatenating the
finite field inversion with a function that is defined by composing two low-
degree affine polynomials. In our attacks we modelled both designs as
a system of polynomial equations in several variables. Additionally, we
bridged equations over two rounds, with the effect of significantly reducing
the number of variables needed to describe the designs.

Following our analysis, the area sees a dynamic development. Authors
of Jarvis and Friday have abandoned their design. Their new construc-
tion [ACG+19] is substantially different, although it still uses basic compo-
nents which we were able to exploit in our analysis. Whether our particular
method of bridging internal state equations can be applied to the new hash
functions is subject to future work. A broader effort is currently underway
to identify designs practically useful for a range of modern proof systems.
A noteable competition compares three new designs (Marvelous [ACG+19],
Poseidon/Starkad [GKR+21], and GMiMC [AGP+19]) with the more estab-
lished MiMC.
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7.a Polynomials of Section 7.4.2

In Section 7.4.2, we search for monic affine polynomials D, E such that the
equality

D(B) = E(C)

is satisfied, where B, C are monic affine polynomials of degree 4. In particular,
given

B(X) = X4 + b2X2 + b1X + b0 and C(X) = X4 + c2X2 + c1X + c0

the goal is to find

D(X) = X4 + d2X2 + d1X1 + d0 and E(X) = X4 + e2X2 + e1X + e0
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such that D(B) = E(C). By comparing the corresponding coefficients of
D(B) and E(C), we obtain a system of 5 linear equations in the 6 variables
d0, d1, d2, e0, e1, e2:

d2 + e2 = b4
2 + c4

2,

d1 + b2
2 · d2 + e1 + c2

2 · e2 = b4
1 + c4

1,

b2 · d1 + b2
1 · d2 + c2 · e1 + c2

1 · e2 = 0,

b1 · d1 + c1 · e1 = 0,

d0 + b0 · d1 + b2
0 · d2 + e0 + c0 · e1 + c2

0 · e2 = b4
0 + c4

0.

This system can be solved to recover D and E.

7.b Constants αi, βi, γi, and δi for the Round Keys

Each round key ki+1 = 1
ki
+ ci in Jarvis can be written as

ki+1 =
αi · k0 + βi
γi · k0 + δi

,

where αi, βi, γi, and δi are constants. By simple computation, note that:

• i = 0:
k1 =

1
k0

+ c0 =
c0k0 + 1

k0
,

and α0 = c0, β0 = 1, γ0 = 1, δ0 = 0;

• i = 1:

k2 =
1
k1

+ c1 =
(c0c1 + 1)k0 + c1

c0k0 + 1
,

and α1 = 1 + c0c1, β1 = c1, γ1 = c0, δ1 = 1;

• i = 2:

k3 =
1
k2

+ c2 =
(c0c1c2 + c0 + c2)k0 + c1c2 + 1

(c0c1 + 1)k0 + c1
,

and α2 = c0c1c2 + c0 + c2, β2 = c1c2 + 1, γ2 = c0c1 + 1, δ2 = c1;

and so on. Thus, we can derive recursive formulas to calculate the remaining
values for generic i ≥ 0:

αi+1 = αi · ci+1 + γi,

βi+1 = βi · ci+1 + δi,

γi+1 = αi,

δi+1 = βi.

7.c System of Equations from Section 7.7

The system of equations is constructed by symbolically computing

A−1
AES(Ĉ(x)),
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as described in Section 7.7, and setting all coefficients for degrees 8, 16, 32,
64, 128 to 0. These are five possible degrees and the following equations are
the sum of all coefficients belonging to each of these degrees:

0x5a · ĉ8
1 + 0x7f · ĉ4

2 + 0xfe · ĉ2
4 = 0,

0x78 · ĉ16
1 + 0x5a · ĉ8

2 + 0x7f · ĉ4
4 = 0,

0x59 · ĉ32
1 + 0x78 · ĉ16

2 + 0x5a · ĉ8
4 = 0,

0xdb · ĉ64
1 + 0x59 · ĉ32

2 + 0x78 · ĉ16
4 = 0,

0x6e · ĉ128
1 + 0xdb · ĉ64

2 + 0x59 · ĉ32
4 = 0.

By practical tests we found that no (nontrivial) coefficients ĉ1, ĉ2, ĉ4 satisfy
all previous equalities, which means that there are no polynomials B̂ and Ĉ
both of degree 4 that satisfy AAES(X) = (Ĉ ◦ B̂−1)(X).
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Based on the peer-reviewed conference publication

[CGG+22] Carlos Cid, Lorenzo Grassi, Aldo Gunsing, Reinhard Lüftenegger,
Christian Rechberger, and Markus Schofnegger. “Influence of the
Linear Layer on the Algebraic Degree in SP-Networks.” In: IACR
Transactions on Symmetric Cryptology 2022.1 (2022), pp. 110–137. doi:
10.46586/tosc.v2022.i1.110-137

Abstract We consider SPN schemes, i.e., schemes whose non-linear layer
is defined as the parallel application of t ≥ 1 independent S-Boxes over F2n

and whose linear layer is defined by the multiplication with a (n · t)× (n · t)
matrix over F2. Even if the algebraic representation of a scheme depends
on all its components, upper bounds on the growth of the algebraic degree
in the literature usually only consider the details of the non-linear layer.
Hence a natural question arises: (how) do the details of the linear layer
influence the growth of the algebraic degree? We show that the linear layer
plays a crucial role in the growth of the algebraic degree and present a new
upper bound on the algebraic degree in SP-networks. As main results, we
prove that in the case of low-degree round functions with large S-Boxes: (a)
an initial exponential growth of the algebraic degree can be followed by a
linear growth until the maximum algebraic degree is reached; (b) the rate of
the linear growth is proportional to the degree of the linear layer over Ft

2n .
Besides providing a theoretical insight, our analysis is particularly relevant
for assessing the security of cryptographic permutations designed to be
competitive in applications like MPC, FHE, SNARKs, and STARKs, including
permutations based on the Hades design strategy. We have verified our
findings on small-scale instances and we have compared them against the
currently best results in the literature, showing a substantial improvement of
upper bounds on the algebraic degree in case of low-degree round functions
with large S-Boxes.

Keywords Higher-Order Differential Cryptanalysis, Algebraic Degree,
SPN, Linear Layer

8.1 Introduction

Most modern block ciphers and cryptographic permutations over FN
2 , for

N = n · t, are based on the iteration of a round function. In many cases, the
round function is composed of two main components, a non-linear layer S
and a linear layer M (including the addition of round constants). The non-
linear layer S is defined as the parallel application of t independent non-linear
functions over Fn

2 . The linear layer M is defined via the multiplication with
a (n · t)× (n · t) matrix over F2. This design strategy is called a Substitution-
Permutation-Network (SPN).

The particular combination of these two building blocks, their details and
the number of rounds are chosen to guarantee security against all possible
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means of analysis present in the literature, while at the same time achiev-
ing good performance in the target applications. Regarding the security
aspect, the analysis of symmetric schemes can be divided into statistical and
algebraic cryptanalysis. Subsuming statistical analysis, we can identify all
methods that exploit statistical properties of the analyzed scheme, includ-
ing differential [BS91; BS93] and linear [Mat93] cryptanalysis, and all their
variants, like truncated differential [Knu94a], impossible differential [Knu98;
BBS99] and zero-correlation [BR14] analysis. In contrast, algebraic analysis
exploits algebraic properties of the analyzed schemes such as degrees and/or
the different algebraic representations. In this category, we include interpola-
tion cryptanalysis [JK97], higher-order differential analysis [Lai94; Knu94a],
cube attacks[DS09] and methods employing Groebner bases [Buc76]. While
the influence of the linear layer on statistical analysis has been largely ana-
lyzed in the literature [DR01; DR02a; BDK+21], the same is not true for the
case of algebraic analysis.

Influence of the Linear Layer on Statistical Analysis. For statistical anal-
ysis, the impact of the linear layer on the security against this means of
analysis is well studied in the literature. If the linear layer of a scheme is
defined by the multplication with a t× t matrix over F2n , an upper bound
of the probability of differential trails can be found by considering both
the maximum differential probability of the involved S-Boxes (namely, the
maximum probability that a non-zero input difference is mapped into an
output difference) and the branch number of the linear layer (that is, the
maximum number of active S-Boxes over two consecutive rounds). This is
known as the wide-trail design strategy [DR01; DR02a]. Analogous results
hold for the case of linear trails.

If the linear layer does not admit an equivalent representation as a t× t
matrix over F2n , statistical analysis that makes use of this alignment is
frustrated after a few rounds, but, e.g., the wide trail design strategy does
not apply anymore. In this scenario, differential/linear bounds are often
obtained by computer-aided proofs.

Influence of the Linear Layer on Algebraic Analysis. Contrary to statisti-
cal analysis, the influence of the linear layer on the security against algebraic
analysis is not well researched in the literature. Focusing on schemes over FN

2 ,
let’s consider, e.g., higher-order differential cryptanalysis [Lai94; Knu94a],
probably one of the most powerful cryptanalytic methods for symmetric
primitives over FN

2 with low-degree building blocks. Given an instance of
a (keyed or keyless) cryptographic permutation P : FN

2 → FN
2 , higher-order

differential cryptanalysis exploits the fact that if the algebraic degree of P
is strictly smaller than N − 1 then for any (proper) vector subspace V ⊆ FN

2
with dimension strictly greater than the algebraic degree of P and for any
v ∈ FN

2 , we have
⊕

x∈V⊕v P(x) = 0. Since the same property does not, in
general, hold for a permutation drawn at random, it is possible to distinguish
a given (keyed or keyless) permutation from a random permutation. The
idea was first introduced by Lai [Lai94], albeit without a concrete appli-
cation. Knudsen [Knu94a] then used higher-order differentials to analyze
low-degree ciphers which were deemed secure against standard differential
cryptanalysis.

The crucial problem in higher-order differential distinguishers against
iterated constructions is the analysis of the growth of the algebraic degree.
Currently, the best generic upper bound for the growth of the algebraic



8.1 introduction 104

degree is given in [BCC11], where authors upper bound the algebraic degree
of the composition of two functions over Ft

2n . More recently, for the particular
case in which the round function is defined as a low-degree polynomial over
F2N , a more accurate estimate on the minimum number of rounds to reach
maximum algebraic degree has been proposed in [EGL+20]. However, in all
these cases, the details of the linear layer are not taken into account.

The Scope of our Results. We pick up this problem, and we show how
the details of the linear layer influence the growth of the algebraic degree in
SPN schemes. As main results

• we generalize the upper bound given in [EGL+20] (only valid for Even–
Mansour schemes, a subset of all SPN schemes) to the whole class of
SPN schemes and prove a linear upper bound on the growth of the
degree that improves the exponential one proposed in [BCC11];

• we analyze the impact of the linear layer on the growth of the degree.
That is, we prove that the rate of the linear growth is proportional to
the degree of the linear layer when written as a linear function over
Ft

2n .

We point out that this is not only of theoretical interest. Indeed, motivated
by new applications such as secure Multi-Party Computation (MPC), Fully
Homomorphic Encryption (FHE) and Zero-Knowledge proofs (ZKP), the
need for symmetric encryption schemes with a simple natural algebraic
description has become ever more apparent. This is an active area of research,
and many dedicated symmetric encryption schemes that aim for simple
arithmetization or directly aim for a small number of multiplications in
F2n or Fp, for large n and prime p (usually, 2n, p ≈ 2128), have recently
been proposed in the literature. They include permutations, block ciphers,
and hash functions such as MiMC [AGR+16; GRR+16], GMiMC [AGP+19],
HadesMiMC [GLR+20] (and its hash variant Poseidon [GKR+21]), Jarvis &
Friday [AD18], Vision & Rescue [AAB+20], and Ciminion [DGG+21]. Many
of these proposed schemes use “algebraically simple” S-Boxes, e.g., based on
a power mapping x 7→ xd for a small odd integer d ≥ 3. In these schemes,
our bounds are most competitive against other state-of-the-art bounds and,
furthermore, they help to establish a more accurate estimate for the number of
rounds that guarantee security in future MPC-/FHE-/ZKP-friendly designs.

Nomenclature. Since we do not make any assumption about the round-
keys, our results equally apply to keyed and keyless permutations. Thus in
this paper we refer to both by using the term “schemes”. In this nomenclature,
e.g., an SPN scheme is a family of permutations built from an SPN construction
parametrized by secret keys or publicly known constants.

8.1.1 Related Work in the Literature

We focus on the case of iterated schemes, that is, schemes consisting of several
iterations of the same round function. Algebraic analysis, like interpolation
or higher-order differential and integral distinguishers, is based on bounding
the (algebraic) degree of the analyzed scheme, which is in general a difficult
task. Here, we recall the main results in the literature that focus on this prob-
lem. For a more detailed discussion and comparison of different approaches
to bounding the algebraic degree we refer to [CXZ+21].
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Theoretical Bounds on the Algebraic Degree

A naive bound for the algebraic degree of the composition of two functions
F, G : FN

2 → FN
2 is given by deg(G ◦ F) ≤ deg(G) · deg(F). If iterated,

this bound leads to an exponential bound on the algebraic degree for the
composition of more than two functions and a first estimate about the
minimum number of rounds to reach maximum algebraic degree in SPN
schemes. For an SPN scheme defined over Ft

2n with S-Box layer of algebraic
degree δ, it follows that at least

logδ(n · t− 1) ≈ logδ(n) + logδ(t)

rounds are required to reach maximum degree (note that the affine layer
does not increase the algebraic degree).

Result by Boura, Canteaut and De Cannière [BCC11]. The naive expo-
nential bound, however, does not reflect the real growth of the algebraic
degree when considering iterated schemes, and the problem of estimating
the growth of the algebraic degree has therefore been studied in the litera-
ture. After the initial work of Canteaut and Videau [CV02], a tighter upper
bound was presented by Boura, Canteaut, and De Cannière in [BCC11]. In
there, the authors deduce a new bound for the algebraic degree of iterated
permutations for SPN schemes over Ft

2n , which includes functions that have
a number of t ≥ 1 balanced S-Boxes over F2n as their non-linear layer. The
bound in [BCC11] only relies on the algebraic degree of the S-Box, and no
assumption on the linear layer is made. To apply the result presented in
[BCC11], one has to determine a particular parameter γ, that depends on the
details of the S-Box. As we discuss in Section 8.4.1, for an S-Box over F2n

the cost for computing γ is exponential in n. This means, for large S-Boxes
(e.g., n ≥ 64) it is infeasible to determine γ computationally and a further
study of the analyzed scheme is necessary. However, theoretically bounding
γ is in general a difficult task. Apart from the bound of Boura, Canteaut and
De Cannière, in a follow-up work Boura and Canteaut studied the influence
of F−1 on the algebraic degree of deg(G ◦ F) [BC13]. As main result, they
discuss how the algebraic degrees of F−1 and F affect each other, which
subsequently allows them to bound the algebraic degree of G ◦ F by means
of the degrees of G and F−1.

Result by Carlet [Car20]. More recently, Carlet [Car20] presented a bound
on the algebraic degree of G ◦ F by working with the indicators of the graphs
GF and GG (where GF = {(x, F(x)) : x ∈ FN

2 }). In this work, Carlet bounds
the algebraic degree of G ◦ F via the degree of G and the degree of the
indicator function of GF. However, the bounds in [Car20] require evaluating
the degree of large quantities of products of coordinate functions (see [Car20,
Theorem 5]) and, to the best of our knowledge, it is unclear if the bounds
in [Car20] practically improve upon the ones in [BCC11] if the function F in
G ◦ F is bijective. In this scenario, the deduced bound on the algebraic degree
of G ◦ F is essentially the same as in [BC13] (see discussion after Corollary 5

in [Car20]).

Division Property. A generalization of integral and higher-order differ-
ential distinguishers is the division property [Tod15], proposed by Todo at
Eurocrypt 2015. Given u = (u0, u1, ..., un−1) ∈ Fn

2 , let xu := ∏n−1
i=0 xui

i for
each x ∈ Fn

2 . The division property generalizes integral cryptanalysis and
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Parameter Explanation
F2n Finite field with 2n elements
Ft

2n t-fold cartesian product of F2n

n S-Box size in bits
t Number of words in the SPN

N := n · t State size in bits
d Word-level degree (over F2n ) of the S-Boxes
δ Algebraic degree (over F2) of the S-Boxes

l := 2l′ Degree of the linear layer (over F2n )
Word-level degree (over F2n ) of the round function

Table 6: Nomenclature and parameters in our results for SPN schemes over Ft
2n

higher-order differential distinguishers in the sense that it is interested in
the sum of this quantity taken over all vectors of X ⊆ Fn

2 . To the best of
our knowledge and at the current state of the art, the division property can
only provide useful bounds on the algebraic degree for small n. Indeed,
currently it is infeasible to apply the two-/three-subset bit-based division
property [TM16; FTI+17; WHT+18; HSW+20] to large S-Boxes (i.e., of size
bigger than 12 bits to the best of our knowledge). Hence, such a tool does
not seem to be useful in the case of schemes defined over Ft

2n for large n (as
targeted in this paper), and a theoretical estimation is hence crucial.

Algebraic Degree in MiMC-Like Schemes. MiMC [AGR+16; GRR+16]
is a scheme natively defined over F2N , where the S-Box is given by the
cube function x 7→ x3. Only recently a new upper bound on the algebraic
degree of MiMC-like schemes (that is, of schemes defined over F2N via a
round function of degree d ≥ 3) has been proposed in [EGL+20] at Asiacrypt
2020. More precisely, the authors show that when the round function can be
described as a low-degree polynomial function over F2N of degree at most d,
the algebraic degree δ(r) of r iterations of the round function grows linearly
with the number of rounds, i.e., δ(r) ≤ log2(d

r + 1). This observation implies
that at least logd(2

N−1 − 1) rounds are required for reaching maximum
algebraic degree. As a concrete application, [EGL+20] shows that the number
of rounds in MiMC needs to be increased by several percent to resist all
known cryptanalysis. Nevertheless, the authors of [EGL+20] do not provide
any statements about how to generalize their findings to SPN schemes.

8.1.2 Our Contribution

As main contribution, we present a new theoretical upper bound on the
algebraic degree for SPN schemes over Ft

2n in Theorem 17. In more detail,
we consider SPN schemes over Ft

2n for n ≥ 3 and t ≥ 2, where

• the S-Boxes are defined via invertible non-linear polynomial functions
over F2n of univariate degree d ≥ 3 and algebraic degree δ ≥ 2;

• the linear layer is defined as the multiplication with an invertible matrix
in Fn·t×n·t

2 . We denote by l = 2l′ the degree of the corresponding
function over F2n .

In Section 8.2.2 we give more details about the definition of an SPN scheme
and the involved degrees δ, d, l and . As a quick reference, Table 6 provides
a more comprehensive overview about the parameters in our results. In
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Theorem 17 we prove that the algebraic degree δ(r) after r rounds is upper-
bounded by

δ(r) ≤
{

δr if r ≤ Rexp = 1 + ⌊logδ(t)⌋,
t · log2

(
r−1·d

t + 1
)

if Rexp < r ≤ RSPN.
(35)

It follows that at least

RSPN = 1 + ⌈log
(

t · (2n − 1)− 2n−1
)
− log(d)⌉ ≈ log (t · (2n − 1))

rounds are necessary to reach maximum algebraic degree n · t− 1, see Sec-
tion 8.3.1. Our results have been practically verified on small-scale schemes.
Section 8.5 is devoted to a more detailed discussion of our practical exper-
iments. Moreover, our results match the ones given in [EGL+20] for the
particular case t = 1.

Comparison with Related Work. As discussed above, there are two pos-
sible approaches for estimating the growth of the algebraic degree in SPN
schemes: theoretical bounds, like the one by Boura, Canteaut and De Can-
nière [BCC11] and tool-based bounds, like the division property. However,
both approaches have inherent limitations when applied to SPN schemes
defined over Ft

2n for large n (as targeted in this paper and important for
MPC-/FHE-/ZKP-friendly schemes): in the first approach, the degree of
the S-Box over F2n and the alignment of the scheme (hence, the degree of
the linear layer over F2n ) are not taken into account. While this could be an
advantage in the sense that such results apply to a large class of schemes,
the resulting estimation of the growth of the algebraic degree is far from
being optimal when applied to schemes over Ft

2n with large and low-degree
S-Boxes; in the second approach, the tools cannot tackle large S-Boxes (i.e.,
n ≥ 12). Our new results include both scenarios.

A concrete comparison between our new bound on the algebraic degree
and the one proposed in [BCC11] for an SPN scheme over F8

233 with cube
S-Box S(x) = x3 for several values of l is presented in Fig. 8.

8.2 Preliminaries

In this section, we recall the most important results about polynomial rep-
resentations of Boolean functions and we recall the definition of SPN and
iterated Even–Mansour schemes. We also introduce the classification of
weak-arranged and strong-arranged SPN schemes.

8.2.1 Polynomial Representations over Binary Extension Fields

We denote addition (and subtraction) in binary extension fields and polyno-
mial rings over binary extension fields by the symbol ⊕. For n, t ∈N, every
function F : Ft

2n → F2n can be uniquely represented by a polynomial over
F2n in t variables with maximum degree 2n − 1 in each variable, i.e., as

F(X1, . . . , Xt) =
⊕

v=(v1,...,vt)∈{0,1,...,2n−1}t

φ(v) · Xv1
1 · . . . · Xvt

t , (36)

for certain φ(v) ∈ F2n . We refer to this representation as the word-level
representation. At the same time, the function F can be written as an n-
tuple (F1, . . . , Fn) of functions Fi : FN

2 → F2 and thus admits a unique
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Figure 8: Comparison between our new bound and the one proposed in [BCC11]
for the case of an SPN scheme instantiated over (F233 )8 with a cube S-Box S(x) = x3

for several values of l (where n = 33, t = 8, d = 3, δ = 2 and = d · l = 3 · l,
γ = (n + 1)/2 = 17). γ is a constant for the bound in [BCC11] that depends on the
details of the S-Box function S.

representation as an n-tuple (F1, . . . , Fn) of polynomials over F2 in N := n · t
variables with maximum degree 1 in each variable. Here, Fi takes the form

Fi(Y1, . . . , YN) =
⊕

u=(u1,...,uN)∈{0,1}N

ρi(u) ·Yu1
1 · . . . ·YuN

N , (37)

where the coefficients ρi(u) ∈ F2 can be computed by the Moebius transform
with a time complexity of O(N · 2N) additive operations. We call this alter-
native description the bit-level representation of F. Combining Equations (37),
for 1 ≤ i ≤ n, into a single polynomial representation leads to a description
of F as a single polynomial in N = n · t variables, but now with coefficients
in Fn

2 , instead of F2.
Whenever we refer to the degree of a single variable in F (or Fi), we

shall speak of the univariate degree. In contrast, the degree of F (or Fi) as
a multivariate polynomial shall be called its multivariate degree, or just its
degree.

We denote functions F : Fn
2 → F2 as Boolean functions and hence functions

of the form F : Fn
2 → Fn

2 , for n ∈ N, as vectorial Boolean functions. We only
work with vectorial Boolean functions where n = m. The unique polynomial
representation of a Boolean function is called its algebraic normal form (ANF),
which we emphasize with the following definition.

Definition 36. Let F : Fn
2 → F2 be a Boolean function. The algebraic normal

form (ANF) of F is the unique representation as a polynomial over F2 in n
variables and with maximum univariate degree 1, as given in Eq. (37). The
algebraic degree δ(F) of F is the degree of this representation as a multivariate
polynomial over F2.

When the function F is clear from the context, we also write δ instead
of δ(F). If G : Fn

2 → Fn
2 is a vectorial Boolean function and (G1, . . . , Gn) is

its representation as an n-tuple of multivariate polynomials over F2, then
its algebraic degree δ(G) is defined as the maximal algebraic degree of its
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coordinate functions Gi, i.e., as δ(G) = max1≤i≤n δ(Gi). The link between the
algebraic degree and the univariate degree of a vectorial Boolean function
is well-known, e.g., it is established in [CCZ98, Sect. 2.2]: due to the
isomorphism of F2-vector spaces F2n ∼= Fn

2 , every function over Fn
2 can

be considered as a function over F2n and thus admits a representation as a
univariate polynomial over F2n . Hence, the algebraic degree of a vectorial
Boolean function can be computed from its univariate representation. Eq. (38)
makes this link explicit: Let F : F2n → F2n be a function over F2n and
let F(X) = ∑2n−1

i=0 φi · Xi denote the corresponding univariate polynomial
description over F2n . The algebraic degree δ(F) of F as a vectorial Boolean
function is the maximum over all Hamming weights1 of exponents of non-
vanishing monomials, that is

δ(F) = max
0≤i≤2n−1

{hw(i) | φi ̸= 0} . (38)

Lastly, we recall that the algebraic degree of an invertible function F over Fn
2

is at most n− 1, while the univariate polynomial representation of F over
F2n has degree at most 2n − 2.

8.2.2 SPN Schemes

Here we recall the concept of SPN schemes, and we fix the notation used in
the rest of the article. Let Er

k : Ft
2n → Ft

2n denote the application of r rounds
of an SPN scheme under a fixed (secret or publicly known) key k ∈ Ft

2n with
n ≥ 3, t ≥ 2, and N := n · t. For every x = (x1, . . . , xt) ∈ Ft

2n we write

Er
k(x) := (Fr ◦ · · · ◦ F1) (x⊕ k0), (39)

where each Fi : Ft
2n → Ft

2n is defined as Fi(x) := R(x)⊕ ki. The subkeys
k0, . . . , kr ∈ Ft

2n may be derived from the master key k ∈ Ft
2n by means of a

key schedule, or they may just as well be randomly chosen elements. Here,
R denotes the composition of the S-Box and the linear layer, i.e., we have
R : Ft

2n → Ft
2n with

R(x) := (M ◦ S)(x) := M(S1(x1), . . . , St(xt)), (40)

where all Si : F2n → F2n are assumed to be invertible non-linear polynomial
S-Boxes of degree d ≥ 3 defined as

Si(x) :=
d⊕

j=0

c(i)j · x
j, (41)

for c(i)j ∈ F2n and c(i)d ̸= 0. Finally, M denotes an invertible linear layer
M : Fn·t

2 → Fn·t
2 defined by the multiplication with an invertible (n · t)× (n · t)

matrix M with coefficients in F2. We remark, every (n · t)× (n · t) matrix
M over F2 gives rise to an F2n -linear function over Ft

2n . Moreover, every
F2n -linear function over Ft

2n can be written as a function

M(x) = (M1(x), M2(x), . . . , Mt(x)),

where Mi : Ft
2n → F2n , for i ∈ {1, 2, . . . , t}, is a function of the form

Mi(x) =
t⊕

j=1

Mi,j(xj) =
l′⊕

h=0

Mi,j;h · x2h

j , (42)

1 Given x = ∑s
i=0 xi · 2i ∈N, for xi ∈ {0, 1}, then hw(x) = ∑s

i=0 xi .
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with Mi,j;h ∈ F2n for each i, j, h. In other words, each Mi,j is a linearized
polynomial over F2n with respect to the variable xj, and Mi is a sum of
linearized polynomials over F2n . In the following, we denote by l := 2l′ the
degree of M as a function over Ft

2n , i.e.,

l := deg M := max
1≤i≤t

deg(Mi) = max
1≤i,j≤t

deg(Mi,j),

and by the degree of the round function satisfying 2δ − 1 ≤ := min{d ·
l, 2n − 2}.

We always assume that the linear layer M ensures full diffusion after a
finite number of rounds, in the sense that there exists an r ∈ N such that
every output word after r rounds depends on every input word x1, . . . , xt.
E.g., the smallest integer r that satisfies the previous condition for an MDS
matrix is 1, for the AES MixLayer it is 2, while it does not exist for a diagonal
matrix. We refer to [BJK+16] for a more detailed analysis of this concept. A
particular subclass of SPN schemes are iterated Even–Mansour schemes. An
iterated Even–Mansour (EM) scheme is an SPN scheme with only one word,
i.e., with t = 1.

Under above definition, examples of SPN schemes include SHARK
[RDP+96], AES [DR02b] and AES-like schemes in general, SHA-3/Keccak
[BDP+11; BDP+13], Present [BKL+07], MiMC [AGR+16], LowMC [ARS+15a],
and so on. Examples of non-SPN schemes include Feistel and Lai-Massey
[LM90] schemes.

Classification: Strong-Arranged vs. Weak-Arranged SPN Schemes

We recall that for each n, t ≥ 1, every matrix in Ft×t
2n admits an equivalent

representation as a matrix in Fn·t×n·t
2 , while the opposite does not hold in

general. Let us introduce the following definition.

Definition 37. Let t ≥ 2 and let n ≥ 3, and let M : Ft
2n → Ft

2n be an invertible
F2n -linear function, represented as in Eq. (42). We say that M is (n, t)-reducible
if there exist invertible F2n -linear functions M′, L1, L2 : Ft

2n → Ft
2n with

L1, L2 ̸= M, deg(M′) < deg(M) such that for i = 1, 2 it holds

Li(x1, . . . , xt) = (Li,1(x1), . . . , Li,t(xt))

and
M = L1 ◦M′ ◦ L2. (43)

We note, deg(L1), deg(L2) are the degrees of L1, L2 when represented as in
Eq. (42). If M is not (n, t)-reducible, we call it (n, t)-irreducible.

With the requirement deg(M′) < deg(M) we want to exclude triv-
ial decompositions with M′ = L−1

1 ◦ M ◦ L−1
2 , for any linear functions

L1, L2 : Ft
2n → Ft

2n . The same remark applies for the condition L1, L2 ̸= M.
Thereby, we exclude decompositions with L1 = M and M′ = Id (Id being
the identity function). We often just say that M is (ir)reducible instead of
(n, t)-(ir)reducible, the context will provide enough clarification. Every SPN
scheme admits an equivalent representation in which the defining matrix M
for the linear layer is irreducible. Indeed, if this is not the case, it is sufficient
to incorporate L1 and L2 from Eq. (43) into the non-linear layer S, that is

S← L2 ◦ S ◦ L1, (44)

and to adjust the round constants. We point out that this procedure may
change the degrees d and l, but not the degree of the round function.
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As a concrete example, consider the AES. Its S-Box over F28 is defined as

x 7→ c + L̂ ◦ x−1 = c + L̂ ◦ (x127)2,

for a certain linear function L̂ over F28 of degree strictly bigger than 1. In the
equivalent representation in which L̂ and x 7→ x2 would be incorporated in
the linear layer of AES (and so the AES S-Box would be x 7→ x127 over F28),
the obtained linear layer would not be irreducible anymore with respect to
the definition just given. Motivated by above discussion, we can assume that
the linear layer M in an SPN scheme over Ft

2n is (n, t)-irreducible.

Definition 38. Let Er : Ft
2n → Ft

2n be an r-round SPN scheme with (n, t)-
irreducible linear layer M (otherwise, consider an equivalent representation
of Er in which M is irreducible). The SPN scheme is called strong-arranged if
the linear layer M has degree 1 over Ft

2n ; weak-arranged otherwise.

Among the previous examples, AES, MiMC, HadesMiMC, and Vision

are strong-arranged SPNs, while Keccak, Present and LowMC are weak-
arranged SPNs.

On the Degree of the Linearized Polynomial. Given a matrix M ∈
F
(n·t)×(n·t)
2 , the naive way to find its polynomial representation over F2n

is by interpolation. The polynomial Mi,j contains only n different monomi-
als (see Eq. (42)). Hence, t · n + 1 input/output pairs suffice to recover the
polynomial representation of each Mi, and thus M. Moreover, given the
polynomial representation of an F2n -linear function over Ft

2n (as in Eq. (42)),
the simplest possible way to check if it is invertible or not is by finding
the corresponding matrix over F

(n·t)×(n·t)
2 , and check if its determinant is

non-zero.

8.3 Growth of the Algebraic Degree in SPN Schemes

In this section we prove a new upper bound on the growth of the algebraic
degree in SPN schemes. Our proof proceeds analogously for SPN-derived
block ciphers and permutations, respectively, by assuming fixed and publicly
known constants in the latter case and fixed secret keys in the former one.

8.3.1 Minimum Number of Rounds for Preventing Higher-Order Differ-
ential Distinguishers

Here, we provide a minimum number of rounds to reach maximum algebraic
degree in SPN schemes. We show that this number matches the minimum
number of rounds needed to provide security against the interpolation
analysis [JK97].

Proposition 24. Let n ≥ 3. Consider r rounds of an SPN scheme Er
k over Ft

2n as
defined in Eq. (39), where l = 2l′ ≥ 1 is the degree of the linear layer and with
the additional assumption that all S-Boxes S1, . . . , St are defined via non-linear
polynomial functions with equal univariate degree d ≥ 3. Let be the degree of the
round function.

A lower bound on the number of rounds to prevent higher-order differential
distinguishers is given by

RSPN := 1 + ⌈log
(

t · (2n − 1)− 2n−1
)
− log(d)⌉, (45)
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independent of the (secret or publicly known) key k.

Note that
RSPN ≈ log(2n − 1) + log(t), (46)

especially for t, n ≫ 1 and small d ≥ 3 (where log(d) = 1 if l = 1 and
0 < log(d) < 1 otherwise).

Proof. To reach maximum algebraic degree n · t− 1 the polynomial represen-
tation of Er

k over F2n must contain a monomial with algebraic degree n in
t− 1 variables and algebraic degree n− 1 in one variable. This happens if Er

k
contains a word-level monomial with univariate degree 2n − 1 in t− 1 vari-
ables and univariate degree 2n−1 − 1 in one variable. Since the multivariate
degree of Er

k after r ≥ 1 rounds is upper bounded by r−1 · d (we note, the
final linear layer does not affect the algebraic degree), we obtain

r−1 · d ≥ (t− 1) · (2n − 1) + 2n−1 − 1 = t · (2n − 1)− 2n−1

as a necessary condition on the number of rounds to reach maximum alge-
braic degree n · t− 1. Rearranging for r yields

r ≥ 1 + log
(

t · (2n − 1)− 2n−1
)
− log(d).

8.3.2 Algebraic Degree of SPN Schemes

As main result of this paper, we prove the following upper bound on the
growth of the degree for SPN schemes.

Theorem 17. Let n ≥ 3 and t ≥ 1. Consider r rounds of an SPN scheme Er
k over

Ft
2n as defined in Eq. (39), where l = 2l′ ≥ 1 is the degree of the linear layer and

with the additional assumption that all S-Boxes S1, . . . , St are defined via the same
invertible non-linear function S of univariate degree d ≥ 3 and algebraic degree
δ ≥ 2. Let be the degree of the round function.

Let Rexp := 1 + ⌊logδ(t)⌋. Then, the algebraic degree of Er
k after r rounds,

denoted by δ(r), is upper-bounded by

δ(r) ≤
{

δr if r ≤ Rexp ,

min
{

δr, t · log2

(
r−1·d

t + 1
)}

if r > Rexp,
(47)

independent of the (secret or publicly known) key k and until the maximum algebraic
degree n · t− 1 is reached.

This means that after an initial exponential growth for the first Rexp :=
1 + ⌊logδ(t)⌋ rounds, the growth of the degree is upper bounded by a linear
growth of the form

t · log2

( r−1 · d
t

+ 1
)
≈ r · t · log2() + t · log2

(
d
· t

)
,

where the linear rate t · log2() is proportional to the number of words t and
to the degree of the round function, which is related to the degrees d and l
of the S-Boxes and of the linear layer over F2n .
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Idea of the proof. The roadmap for the proof of Theorem 17 reads as
follows:

1. Lemma 7 makes a statement about which monomials can occur in the
polynomial representation of the encryption function;

2. In Lemma 8 we prove that the algebraic degree grows as fast as δr

in the first Rexp := 1 + ⌊logδ(t)⌋ rounds; this shows that the naive
exponential bound can indeed be achieved;

3. Lemma 9 provides the linear growth for the latter rounds by involving
the logarithmic function instead of the hamming weights, resulting in

the bound δ(r) ≤ t · log2

(
r−1·d

t + 1
)

.

8.3.3 Proof of Theorem 17

About the (Initial) Exponential Growth

Lemma 7. Let t ≥ 1 and let d′ ≥ 3 be an integer and let d′ = ∑δ
i=1 2di be the base-2

expansion of d for certain di ∈ N. Given a polynomial P =
⊕

i∈{1,...,u} ci ·mi ∈
F2n [X1, . . . , Xt] that contains the monomials m1, m2, . . . , mu ∈ F2n [X1, . . . , Xt]
for a certain u ≥ 1, the monomials in Pd′ are of the form

m2d1
i1 ·m

2d2
i2 · . . . ·m2dδ

iδ (48)

where i1, i2, . . . , iδ ∈ {1, 2, . . . , u}.

Proof. We obtain

Pd′ =

 ⊕
i∈{1,...,u}

ci ·mi

2d1+···+2dδ

=
δ

∏
j=1

 ⊕
i∈{1,...,u}

c2
dj

i ·m2
dj

i


=

⊕
i1,i2,...,iδ∈{1,2,...,u}

(
δ

∏
j=1

c2
dj

ij
·m2

dj

ij

)
.

where the second equality holds since (x⊕ y)2k
= x2k ⊕ y2k

for each x, y ∈ F2n

and each k ∈ N. Hence, we conclude that only monomial products of the
form

m2d1
i1 ·m

2d2
i2 · . . . ·m2dδ

iδ

may occur in Pd, where i1, i2, . . . , iδ ∈ {1, 2, . . . , u}. The monomials mi1 , . . . ,
miδ are not necessarily different, therefore the exponents in Eq. (48) are either
powers of 2 or sums of powers of 2.

The next lemma shows that the naive exponential bound δr for the
algebraic degree is not only a trivial bound but can indeed be achieved.

Lemma 8. Let the same conditions as in Theorem 17 hold. Furthermore, let
S(x) = ∑d

i=0 ci · xi for ci ∈ F2n , and let d′ be a degree for which hw(d′) = δ and
cd′ ̸= 0. Let d′ = ∑δ

i=1 2di be the base-2 expansion of d′ for appropriate di ∈N. In
the first Rexp = 1 + ⌊logδ(t)⌋ rounds the algebraic degree grows as fast as δr.

Proof. The idea is to observe the growth of the algebraic degree with the help
of Lemma 7. After the first round, all monomials Xd′

1 , . . . , Xd′
t are present in

the polynomial representation of Er
k and have algebraic degree δ.
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According to Lemma 7, after one more round all monomials of the form
(i1, . . . , iδ ∈ {1, . . . , t})

(Xd′
i1 )

2d1 · (Xd′
i2 )

2d2 · · · · · (Xd′
iδ )

2dδ ,

are present in the encryption polynomial and have algebraic degree δ2 if
i1, . . . , iδ are pairwise different. To see why they have algebraic degree δ2, we
note that: (a) raising a (word-level) monomial of Er

k to the power of 2k, k ∈N,
does not change its algebraic degree, and (b) if two (word-level) monomials
mα1 , mα2 of Er

k do not contain any shared variable, the algebraic degree of the
product mα1 ·mα2 is the sum of the respective algebraic degrees.

In the same way as before, after another round, all monomials of the form
(i1, . . . , iδ2 ∈ {1, . . . , t})

(Xd′ ·2d1
i1 · · ·Xd′ ·2dδ

iδ )2d1 (Xd′ ·2d1
iδ+1

· · ·Xd′ ·2dδ

i2δ
)2d2 · · · (Xd′ ·2d1

i
δ2−(δ−1)

· · ·Xd′ ·2dδ

i
δ2

)2dδ

appear in the encryption polynomial and have algebraic degree δ3 if i1, . . . , iδ2

are pairwise different. Continuing this way, we conclude that the algebraic
degree grows as fast as δr until all t variables are exhausted, i.e., until
δr = δ · t, or equivalently, for the first ⌊logδ(δ · t)⌋ = 1+ ⌊logδ(t)⌋ rounds.

About the Linear Growth

Lemma 9. Let the same conditions as in Theorem 17 hold. Then, the algebraic
degree of Er

k after r rounds, denoted by δ(r), is upper-bounded by

δ(r) ≤ t · log2

( r−1 · d
t

+ 1
)

. (49)

Proof. Since the word-level degree of a single output word of Er
k after r

rounds is upper bounded by r−1 · d (we note, the final linear layer does not
affect the algebraic degree) the algebraic degree δ(r) of Er

k after r rounds can
be upper bounded by

δ(r) ≤ max
{(e1,...,et)∈Nt : ∑t

i=1 ei≤r−1·d}

t

∑
i=1

hw(ei),

where we use the fact that the algebraic degree of a monomial Xe1
1 · . . . · Xet

t
is given by ∑t

i=1 hw(ei).
Let (e1, . . . , et) ∈ Nt be arbitrary with ∑t

i=1 ei ≤ r−1 · d. We observe that
2w − 1 is the smallest number with hamming weight w ∈ N. This means
that 2hw(ei) − 1 ≤ ei, hence hw(ei) ≤ log2(ei + 1) and

t

∑
i=1

hw(ei) ≤
t

∑
i=1

log2(ei + 1).

Let (e1, . . . , et) ∈ Nt such that ∑t
i=1 ei ≤ r−1 · d. The logarithm is concave,

which means that

a · log2(x) + (1− a) · log2(y) ≤ log2(a · x + (1− a) · y)

for a ∈ [0, 1]. This is commonly generalized by induction to

t

∑
i=1

ai · log2(xi) ≤ log2

(
t

∑
i=1

ai · xi

)
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whenever ∑t
i=1 ai = 1 and ai ∈ [0, 1] for all i. Therefore

t

∑
i=1

log2(ei + 1) = t ·
t

∑
i=1

1
t

log2(ei + 1)

≤ t · log2

(
t

∑
i=1

ei + 1
t

)
≤ t · log2

( r−1 · d
t

+ 1
)

,

where the last inequality holds because ∑t
i=1 ei ≤ r−1 · d and the fact that the

logarithm is an increasing function. Combining this with the initial equation
results in the desired

δ(r) ≤ t · log2

( r−1 · d
t

+ 1
)

.

8.3.4 Discussion of Theorem 17

Forward versus Backward Direction. As originally proved in Corollary 3
of [BC13], given a fixed key k, the algebraic degrees of Er

k and its composi-
tional inverse E−r

k are related in a particular way: the algebraic degree of Er
k

is maximal (i.e. n · t− 1) if and only if the algebraic degree of E−r
k is maximal.

As an immediate consequence we state the following observation: the number
of rounds to reach maximal algebraic degree in the forward and in the backward
direction is the same. This fact is particularly surprising if one direction of an
SPN scheme is defined via low-degree S-Boxes, while the inverse direction
is built from S-Boxes of high degree. For example, for the S-Box function
S(x) = x3 over F2n the inverse function is given by S−1(x) = x(2

n+1−1)/3.
Here, S has algebraic degree 2, while S−1 has algebraic degree (n + 1)/2.

Remarks on implicit assumptions. According to the remark about the
connection of forward and backward direction below, it suffices to focus only
on one direction of the scheme when attempting to reach maximal algebraic
degree. We focus on the forward direction. Furthermore, our analysis is
independent of the concrete instantiation of the linear layer, besides assuming
it is invertible and it ensures full diffusion after a finite number of rounds.
Implicitly, our proof assumes the strongest possible linear layer, i.e., a linear
layer that guarantees full diffusion after one round and whose corresponding
linearized polynomial is full. Therefore, depending on the instantiation of
the linear layer, the algebraic degree might grow slower than we predict, but
never faster. Theorem 17 can easily be generalized to the case in which the
S-Boxes are defined via different invertible functions, under the assumption
that they all have the same univariate degree d and the same algebraic degree
δ.

Relation to Iterated Even–Mansour Schemes. The authors of [EGL+20]
state in Section 3.3 that for an iterated Even–Mansour scheme whose round
function can be described by a low-degree polynomial that

“[...] if the round function can be described by a polynomial of low uni-
variate degree d over F2n , we expect a linear behavior in [the algebraic
degree] δlin(r): δlin(r) ≤ ⌊log2(d

r + 1)⌋ ≈ r · log2(d)”.

However, no formal proof of this expectation is given in [EGL+20]. Our
Theorem 17 comprises this situation as special case t = 1 and l = 1; thus
we not only prove but also generalize the result in [EGL+20]. Indeed, in



8.4 comparison of Theorem 17 with the results in [BCC11] 116

Theorem 17 the case t = l = 1 corresponds to iterated Even–Mansour
schemes and hence the algebraic degree δ(r) after r rounds is upper bounded
by log2(d

r + 1).

Comparison with Interpolation Analysis. The previous bound on the
necessary number of rounds matches the number of rounds needed to
guarantee security against the interpolation analysis [JK97] introduced by
Jakobsen and Knudsen at FSE 1997. The goal of an interpolation analysis
is to construct the polynomial that describes the encryption or decryption
function. Hence, if the number of monomials is too large, such a polynomial
cannot be constructed faster than via a brute force search. Since the number
of monomials can be estimated by means of the given the degree of the
function, the designers must guarantee that the polynomial that represents
the scheme is of maximum degree and full (or at least dense) to guarantee
security against this type of cryptanalysis.

8.4 Comparison of Theorem 17 with the Results in [BCC11]

8.4.1 Iterative Application of the Bound in [BCC11]

The bounds on the algebraic degree in [BCC11] are stated for the compo-
sition of two functions which means that the application to iterated SPN
schemes (which often comprise the composition of several dozen functions)
requires an ad-hoc analysis of the analyzed scheme. Here, we first provide a
closed formuala for the bound in [BCC11, Theorem 2] when extended to the
composition of more than two functions, which provides the basis for our
comparisons in Section 8.5.

The bound given by Boura, Canteaut, and De Cannière in [BCC11, Theo-
rem 2] states the following: Let F be a function from FN

2 to FN
2 corresponding

to the concatenation of t smaller balanced2 S-Boxes S1, . . . , St defined over
Fn

2 . Then, for any function G from FN
2 to FN

2 , it holds

deg(G ◦ F) ≤ N − N − deg(G)

γ
, (50)

where
γ := max

i=1,...,n−1

n− i
n− δi

≤ n− 1, (51)

and δi is defined as the maximal algebraic degree of the product of any i
coordinates of any of the smaller S-Boxes.

We emphasize that γ and δi depend on the details of the S-Box. Namely,
two S-Boxes with the same algebraic degree can have in general different γ.
The result in [BC13, Theorem 2] uses the algebraic degree of the composi-
tional inverses S−1

j , 1 ≤ j ≤ t, for a bound on the algebraic degree of G ◦ F.
Under the same assumptions as above this result leads to the same bound as
stated in Eq. (50), with the additional upper bound on γ

γ ≤ max
1≤j≤t

max

{
n− 1

n− deg(Sj)
,

n
2
− 1, deg

(
S−1

j

)}
. (52)

Using an upper bound on γ for bounding the algebraic degree of G ◦ F in
Eq. (50) could lead to a less tight bound on deg(G ◦ F) than using the exact

2 A function f : Fn
2 → Fm

2 is said to be balanced if each element in Fm
2 has exactly 2n−m preimages.

For n = m, an S-Box is balanced iff it is invertible.
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value of γ. However, Eq. (52) has the advantage that it only uses known
facts about the involved functions and thus a bound on deg(G ◦ F) can be
computed straight away. The same remark applies to another bound in
[BC13, Corollary 2], which works with the algebraic degree of F−1 and is
given by

deg(G ◦ F) < N −
⌊

N − 1− deg(G)

deg (F−1)

⌋
.

In Proposition 25, we derive a direct upper bound of the algebraic degree of
SPN schemes in the simple but most common case where all S-Boxes are
equal. With “direct” upper bound we mean that we iteratively apply (50)
to the round functions of an SPN scheme and thus obtain a closed-form
statement about the algebraic degree after a certain number of rounds (and
not only for the composition of two functions as stated in [BCC11]).

Proposition 25. Let F be a function from FN
2 to FN

2 corresponding to the concate-
nation of t copies of a balanced S-Box S over F2n with algebraic degree δ ≥ 2. For
any affine functions L1, L2, . . . , Lr from FN

2 to FN
2 and any integer r ≥ 1 consider

the SPN scheme Er from FN
2 to FN

2 defined as

Er := Lr ◦ F ◦ Lr−1 ◦ F ◦ · · · ◦ L1 ◦ F.

Then the algebraic degree δ(r) of E after r rounds is upper-bounded by

δ(r) ≤

δr if r ≤ R0 :=
⌊

logδ

(
N · γ−1

γ·δ−1

)⌋
,

δR0

γr−R0
+ N ·

(
1− 1

γr−R0

)
if R0 < r ≤ R[BCD11],

(53)

independent of the (secret or publicly known) key k, where

R[BCD11] :=
⌊

logδ

(
N · γ− 1

γ · δ− 1

)⌋
︸ ︷︷ ︸

=R0

+
⌈

logγ

(
N − δR0

)⌉
(54)

is the minimum number of rounds for security against higher-order differential
distinguishers and where γ is defined as in Eq. (51).

The proof of Proposition 25 can be found in Appendix 8.A. The strategy
we adopt to prove Proposition 25 is similar to the one proposed by Biryukov,
Khovratovich, and Perrin [BKP16]. In there, authors focused on the case in
which all S-Boxes have maximum algebraic degree δ = n− 1, while here we
do not need this restriction. We point out one more time that the details of
the linear layer are not taken into account and do not influence the bound
just given.

Cost of Computing γ. The growth of the degree predicted in (50) depends
on the value of γ. Computing γ can be very expensive for large S-Boxes.
Indeed, one has to consider all possible combinations of the product of any i
coordinates of the given S-Boxes, which implies a lower bound on the cost of
order

Ω

(
n

∑
i=1

(
n
i

))
≈ Ω(2n).

In the case in which t different S-Boxes are used, the previous cost must
be multiplied by t. This means that for large S-Boxes (e.g., n ≥ 64) it is
infeasible to determine γ computationally and a further analysis of the
scheme is necessary. Our results in Section 8.3 do not have this limitation.
They depend on known parameters of the scheme and can be computed
straight away.
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8.4.2 Comparison and Impact of the Linear Layer

Comparison. For a better insight when the bound RSPN improves upon
the one given by R[BCD11] we ask the following question: For which values of
n, t, d, l and δ is

RSPN ≥ R[BCD11]

satisfied? Substituting the corresponding expressions we obtain the following
inequality

1 + log (t · (2n − 1))− log(d) ≥⌊
logδ

(
N · γ− 1

γ · δ− 1

)⌋
+

⌈
logγ

(
N · γ · (δ− 1)

γ · δ− 1

)⌉
.

Using the relations γ · δ− 1 ≥ γ− 1 and γ · δ− 1 ≥ δ− 1 (note that δ ≥ 2),
an upper bound for R[BCD11] is given by

R[BCD11] ≤ 1 + ⌊logδ(N)⌋+ ⌈logγ(N)⌉ ≤ 1 + ⌈logδ(N)⌉+ ⌈log2(N)⌉.

Focusing on the case n ≫ 1, the condition RSPN ≥ R[BCD11] is satisfied if
(approximately)

1 + log (t · (2n − 1))− log(d) ≈ n · log(2) + log(t)

≥ 1 + logδ(n · t) + log2(n · t),

or to put it another way, if

n · log(2) + log(t)︸ ︷︷ ︸
∈O(n)

≥ (log2(n) + log2(t)) · (1 + logδ(2)) + 1︸ ︷︷ ︸
∈O(log2(n))

. (55)

It is easy to see that for any fixed values of d, δ, l and t, the previous
inequality can be satisfied if n is large enough.

Impact of the Linear Layer. According to Theorem 17, after an exponential
growth, the algebraic degree grows at most linearly with a rate equal to
t · log2(). If l = 1 (and thus = d) the degree l of the linear layer does not
infuence the algebraic degree. However, if l ≥ 2, the initial exponential
growth can take place for more than Rexp; as an extreme case, if l is close
to its maximum possible value 2n−1, the linear growth may never occur. A
concrete example of these facts is given in Fig. 8. Concluding, the details of
the linear layer play a crucial role in the growth of the (algebraic) degree.

8.5 Practical Results

In this section, we present our practical results on SPN schemes over (F2n)t

(defined as in Section 8.3) with low-degree and large S-Boxes. Assuming
= d · l, we focus on the two cases (1) l = 1, t ≥ 2; and (2) l ≥ 2, t = 1.
This allows us to emphasize the impact of t and l independently. Since the
approach we take is the same for all of our tests, we will first describe it.

8.5.1 Test Methodology

Instead of computing the ANF of a (keyed or keyless) permutation (which
is quite expensive already for small field sizes3), we evaluate the zero-sum

3 For example, the computation of the Möbius transform is exponential in the bit size [BCB20],
and other methods (like the symbolic evaluation of the multiplication) are only feasible for small
n or large n with small d (i.e., a small number of multiplications).
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Algorithm 14: Evaluating the zero sum property of an SPN scheme
Er

k over (F2n)t using different input subspaces.

Data: SPN scheme Er
k using r rounds, with S-Box size n and t words,

dimension D of the subspace, number of tests nT .
Result: True if a zero sum is found in all tests, False otherwise.

1 for i← 1 to nT do
2 Randomly distribute D active bits among the N = n · t possible

positions, resulting in the input vector space V ⊆ FN
2 .;

3 Randomly sample round constants c1, . . . , cr and v.;
4 Randomly sample key k.;
5 Fix Er

k using c1, . . . , cr and k.;
6 s← 0.;
7 foreach x ∈ V ⊕ v do
8 s← s⊕ E(x).;
9 if s ̸= 0 then

10 return False.;
11 return True.;

property for multiple random input vector spaces. For this purpose, we
wrote a custom program in C++.4

For random keys and constants, given an input subspace of dimension
D ≤ N − 1, where N = n · t, we look for the minimum number of rounds r
for which the corresponding sum of the outputs is different from zero. Such
a number corresponds to

(1) the minimum number of rounds for reaching algebraic degree δ =
D + 1, and

(2) the minimum number of rounds for preventing higher-order differential
distinguishers for D = N − 1.

To avoid a bias by weak keys or “bad” round constants, we have repeated
the tests multiple times (with new random keys, round constants, and input
subspaces).

We illustrate the approach in Algorithm 14 using a keyed permutation.

Number of Subspaces of Dimension D. We emphasize, if the algebraic
degree of an SPN scheme Er

k after r rounds is δ(r), then summing over all
evaluations from any vector space of dimension D ≥ δ(r) + 1 always results
in a zero sum, i.e.,

⊕
x∈V Er

k(x⊕ v) = 0 for a generic (fixed) v. However, the
converse is not true in general. That is, having a zero sum over a vector
space of dimension D, does in general not imply that the algebraic degree is
δ(r) = D− 1. Indeed, δ(r) could be higher, and the zero sum could occur
merely due to the specific structure of the vector space and the analyzed
function.

Evaluating the zero sum property for all affine subspaces of dimension D
is actually infeasible. Indeed, when working over

(
Fp
)N , for any prime p

and N ∈N, the number of different subspaces of dimension D ≤ N is

(pN − 1) · (pN − p) · (pt − p2) · · · · · (pN − pD−1)

(pD − 1) · (pD − p) · (pD − p2) · · · · · (pD − pD−1)
∈ O

(
pD·(N−D)

)
4 The code we used for the practical tests can be found on GitHub: https://github.com/IAIK/
higher-order-differential

https://github.com/IAIK/higher-order-differential
https://github.com/IAIK/higher-order-differential
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as shown, e.g., in [Hog06], which is out of practical range even for small
values of p, N, D. For this reason, we have to limit ourselves to evaluate the
zero sum property for a limited number of subspaces only. However, in
our practical tests we observed that a small number of tests for each of the
possible combinations of active bits is sufficient to derive a stable number (e.g.,
around 10 tests for each combination). Indeed, for example, we observed no
differences when using an input subspace of dimension N − 1 and changing
the position of the single inactive bit in multiple tests.

The practical number of rounds to prevent higher-order differential dis-
tinguishers we report is the smallest number of rounds among all tested keys and
round constants. This means that potentially a higher number of rounds can
be cryptanalyzed by choosing the keys and round constants in a particular
way.

Randomization of Active Bits. Depending on the position of the active bits,
the final results may be very different. For example, significant differences
arise when considering a fixed number of active bits in a single word and the
same number of active bits split over multiple words. In order to counteract
this problem, we choose the input subspaces randomly such that the position
of active bits is also randomized. As a concrete example, consider t = 2
with d = 3 and arbitrary n. Clearly, after one round the algebraic degree is
upper-bounded by δ = 2, and indeed, when activating 2 bits in the same
word, we do not get a zero sum. However, if we activate one bit in each of
the two words (i.e., in total also 2 bits), we do get a zero sum, since only
products of at most δ = hw(d) = 2 bit variables from the same word occur in
the polynomial representation. Hence, we randomize the input subspaces in
our tests.

Computational Cost in Practice. In our practical tests we observed that
with very few trials we already reach a stable number for the algebraic degree
after a certain number of rounds. It is however crucial to test every possible
combination of active words, since this has a significant impact on the final
result. Concretely, we fix the number of tests to 100 for “feasible” numbers
of active bits (i.e., around 30). For the larger tests, we fix the number to 10.
While this may seem like a small sample size, we could not observe any
differences when testing more often with lower numbers of bits. As for the
concrete runtime, it largely depends on the number of active bits, but also on
additional properties like the tested degree. E.g., x3 can be evaluated faster
than x7 for a given S-Box input x. Practically, a test with 30 active bits can
thus take several hours depending on the concrete tested construction.

8.5.2 Results for SPN Schemes with t ≥ 2, l = 1 and S-Boxes of the form
S(x) = xd

In our experiments, we focus on a SHARK-like scheme [RDP+96] with power
maps as S-Box functions. More specifically, we focus on SPN schemes over
(F2n)t where the S-Box function S : F2n → F2n is given by S(x) = xd and
the mixing layer is defined as the multiplication of the t state words with
an invertible t× t matrix over F2n . The choice of n and d is governed by the
requirement gcd(d, 2n − 1) = 1, ensuring that S(x) = xd is a permutation of
F2n .

For the S-Box S(x) = x3, we report our results on the minimum number
of rounds to prevent higher-order differential distinguishers in Table 7. We
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Table 7: Theoretical lower bound and practical number of rounds for preventing
higher-order differential distinguishers on SPN schemes over (F2n )t for several values
of n and t ≥ 2 (where N = n · t). The chosen S-Box is the cube function S(x) = x3.
For the practical number of rounds, we consider both the case of an MDS matrix and
the case of a matrix that provides the “worst” possible diffusion (e.g., a sparse matrix
as in Eq. (57)). R[BCD11] is computed assuming γ = (n + 1)/2.

Parameters Theoretical # of Rounds Practical # of Rounds
N n t RSPN R[BCD11] MDS matrix Sparse matrix
35 5 7 5 6 8 15

35 7 5 6 6 8 12

36 9 4 7 6 9 11

33 11 3 8 5 10 10

39 13 3 10 6 11 12

34 17 2 12 6 12 12

38 19 2 13 6 14 14

66 11 6 9 7 - -
65 13 5 10 6 - -
60 15 4 11 6 - -
66 17 4 12 7 - -
63 21 3 15 6 - -
66 33 2 22 7 - -

132 11 12 10 8 - -
135 15 9 12 8 - -
133 19 7 14 7 - -
132 33 4 22 8 - -
129 43 3 28 7 - -
130 65 2 42 8 - -

observe that the number of rounds that can be covered by a higher-order
differential distinguisher is always close to the one predicted by our formula
(in some cases a little higher, but never smaller). Moreover, especially when
the size of the S-Box is not too small, the round number RSPN predicted by
our formula is significantly larger than R[BCD11]. Furthermore, our results
of small-scale experiments on the growth of the algebraic degree (according
to the test methodology in Section 8.5.1) for S(x) = x3 and S(x) = x7 are
depicted in Fig. 9 and Fig. 10, respectively.

Note that the tests made for Table 7 and, e.g., Fig. 9 use different ap-
proaches: in the former case we maximize the number of active bits and
see how many rounds we can distinguish, whereas in the latter case we
want to estimate the algebraic degree via the number of active bits. For this
reason, more test runs are needed to determine the degree growth, especially
in order to take care of the different positions of the active bits (where the
number of choices is lower for Table 7, since N − 1 bits are active in all tests).

Determining γ. To use the results from [BCC11] for our comparisons
we need to determine the parameter γ (see also Eq. (51)). Since an exact
computation of γ is too expensive for most instances we use, we derive an
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Figure 9: Degree growth for an SPN scheme over (F233 )4 instantiated with the S-Box
f (x) = x3.
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Figure 10: Degree growth for an SPN scheme over (F233 )3 instantiated with the S-Box
S(x) = x7.

upper bound on γ and use this upper bound as a benchmark. By definition
of γ, it holds

γ = max
1≤i≤n−1

n− i
n− δi

= max
{

max
1≤i≤q

n− i
n− δi

, max
q+1≤i≤n−1

n− i
n− δi

}
≤ max

{
max
1≤i≤q

n− i
n− i · δ , max

q+1≤i≤n−1

n− i
n− (n− 1)

}
= max

{
n− q

n− q · δ , n− (q + 1)
}

.

where q = ⌊(n− 1)/δ⌋ and δ = hw(d) is the algebraic degree of the S-Box.
For the particular case S(x) = x3 only odd values for n are allowed (to
guarantee gcd(2n − 1, 3) = 1) and thus we obtain n− 1 = q · 2. Hence,

γ ≤ max

{
n− n−1

2

n− 2 · n−1
2

, n− n− 1
2
− 1

}
=

n + 1
2

. (56)
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Figure 11: Degree growth for an iterated Even–Mansour scheme over F233 with a
linearized polynomial of degree l = 23 as linear layer and instantiated with the S-Box
S(x) = x3.

We assume γ = (n + 1)/2 to compute the theoretical values for R[BCD11]. We
also refer to [EGL+20, Lemma 3], where authors support this assumption by
practical experiments for each odd n ≤ 33.

Influence of the Linear Layer. To understand how the linear layer influ-
ences the minimum number of rounds to prevent higher-order differential
distinguishers, in our practical tests we consider two extreme cases: (1) we
evaluate the case in which the linear layer is defined as the multiplication
with an MDS matrix (for parameters n and t that allow us to do so5), which
corresponds to the case of the “strongest” linear layer from a diffusion point
of view; (2) we also evaluate the case in which the linear layer is “weak”,
which could happen if it is defined by the multiplication with a matrix
containing a large number of zero coefficients. For this second case, we used
a t× t matrix M with coefficients Mr,c given by

Mr,c =

{
1 if r = 0 or c ≡ r + 1 mod t,
0 otherwise.

(57)

We note, using M from Eq. (57) we need t rounds to have full diffusion
(at word level), instead of just one round as for the MDS case. Hence,
especially for large t, we expect that more rounds than previously predicted
may be necessary to guarantee security against higher-order differential
distinguishers. In Table 7 we report empirical evidence for this expectation:
the gap between the number of rounds predicted by our formula and the
one found by practical tests in the case of a sparse matrix is close to zero for
“small” t, and grows for “large” t.

8.5.3 Results for Iterated Even–Mansour Schemes (t = 1) with l ≥ 2 and
S-Boxes of the form x 7→ xd

We focus on an iterated Even-Mansour scheme with a power map as S-Box
function. More specifically, we focus on a scheme over F2n where the S-Box

5 An MDS matrix over Ft×t
2n exists if the condition log2(2t + 1) ≤ n (i.e., t ≤ 2n−1 − 1) is satisfied.
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Table 8: Theoretical lower bound and practical number of rounds for preventing
higher-order differential distinguishers on iterated Even–Mansour schemes over F2n

for several values of n and l ≥ 1. The chosen S-Box is the cube function S(x) = x3.
For the practical number of rounds, we consider two cases regarding the linearized
polynomial M, namely, M dense and M sparse. R[BCD11] is computed assuming
γ = (n + 1)/2.

Parameters Theoretical # of Rounds Practical # of Rounds
n l RSPN R[BCD11] Dense M Sparse M
33 1 21 5 21 21

33 2 13 5 13 13

33 4 10 5 10 10

33 8 8 5 8 8

33 16 7 5 7 7

33 32 6 5 6 7

65 1 41 6 - -
65 2 26 6 - -
65 4 19 6 - -
65 8 15 6 - -
65 16 13 6 - -
65 32 11 6 - -

129 1 81 7 - -
129 2 50 7 - -
129 4 37 7 - -
129 8 29 7 - -
129 16 24 7 - -
129 32 21 7 - -

function S : F2n → F2n is given by S(x) = xd and the linear layer is defined
as a linearized permutation polynomial of degree l := 2l′ . As in Section 8.5.2,
n and d are chosen such that S(x) = xd is a permutation of F2n .

We consider two different cases for the linearized polynomial:

• A dense linearized polynomial. In this case our polynomial is equal to
M(x) = ∑l′

i=0 λi · x2i
for λi ∈ F2n \ {0} that guarantee invertibility;

• A sparse linearized polynomial. In this case our polynomial is equal
to M(x) = λ · xl + λ′ · xl0 for small l0 = 2l̃0 (usually, l0 = 1) and
λ, λ′ ∈ F2n \ {0} that guarantee invertibility.

For the S-Box S(x) = x3, we report our results on the minimum number
of rounds to prevent higher-order differential distinguishers in Table 8 and
depict the growth of the algebraic degree for smaller number of rounds in
Fig. 11. We observe that the algebraic degree grows close to our bound for
both the sparse and dense cases, where the sparse case grows slightly slower
than the dense case. In fact, when only looking at the minimum number
of rounds required to prevent higher-order differential distinguishers as in
Table 8, almost all results coincide: the only exception is the case of n = 33,
l = 32 where a sparse linear polynomial requires one extra round. A more
substantial difference is found between the round number RSPN predicted
by our formula and R[BCD11], where the latter does not depend on l and is
significantly smaller.

For the difference in test methodology regarding Table 8 and the graph
in Fig. 11 the same remark as in Section 8.5.2 applies.
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Special Case: M(x) = µ · xl . Finally, we discuss the case in which the
linearized polynomial is of the form M(x) = µ · xl for l = 2l′ and µ ∈
F2n \ {0}. We remember that this function is always invertible over F2n

(x 7→ x2 is always invertible, due to gcd(2, 2n − 1) = 1). Here, the value of l
does not have any influence on the tests and the results are the same as for
strong-arranged SPN schemes (i.e., for l = 1). This becomes evident when
having a look at the relation between word-level degree and algebraic degree
in Eq. (38). Exponentiating a monomial me = Xe1

1 · . . . · Xet
t to the power of

2l′ is in fact only an l′-shift of all (non-zero) digits in the base-2 expansion of
e, hence

δ (me) =
t

∑
i=1

hw(ei) =
t

∑
i=1

hw
(

ei · 2l′
)
= δ

(
(me)2l′

)
.

This means, the word-level degree is increased by a factor of l = 2l′ , but
the algebraic degree remains the same. While the case M(x) = µ · xl , for
l = 2l′ , can be considered a degenerate case of a linear layer, the results of
our experiments for this case do not contradict Theorem 17. We emphasize
once more, the statement in Theorem 17 is an upper bound, and that the
growth of the degree can be slower than predicted (which is true for every
upper bound in the literature).

8.6 Possible Applications of Theorem 17

After the last advances in [BCC11], [BC13], and in [Car20], our findings
extend the canon of theoretical bounds for the growth of the algebraic
degree in SPN schemes by an improved bound, see Theorem 17. While
the currently best bounds are more generic than our bound, our results
substantially improve existing state-of-the-art bounds when considering SPN
schemes with large S-Boxes and for which the degrees of both the non-
linear layer and the linear layer are low, as is often the case in schemes
for MPC-/FHE-/ZKP-applications. In these domain specific schemes, it is
most often algebraic cryptanalysis, in particular higher-order differential
distinguishers, that dominates the overall security arguments. Thus, a better
understanding of the growth of the algebraic degree is not only vital for the
security assessment of schemes for MPC-/FHE-/ZKP-applications but also
for navigating design choices towards a more solid theoretical foundation.

HadesMiMC, Poseidon and Starkad. As a concrete application, Hades-
MiMC [GLR+20] is probably the most suitable candidate to apply our results.
In particular, even if both HadesMiMC and Poseidon are designed over
(Fp)t, there is no reason why a scheme based on the Hades strategy can-
not be designed over (F2n)t. As a concrete example, we refer to Starkad

[GKR+21], a variant of Poseidon defined over (F2n)t.
Moreover, our upper bound for the growth of the algebraic degree plays

an important role in higher-order differential distinguishers of SPN schemes
over Ft

2n that do not exploit the largest non-trivial vector subspace (i.e.,
Fn·t−1

2 ), but subspaces of smaller dimension than the state size n · t. This is
not only of theoretical interest, but it applies to all cases in which the security
level is smaller than the size of the full scheme, a scenario that is common
for schemes recently proposed for MPC/FHE/ZKP-applications.
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Schemes for MPC-/FHE-/ZKP-Applications. As we have seen in Sec-
tion 8.2.2, the degree of a generic invertible (n · t) × (n · t) matrix with
coefficients in F2 is in general very high when represented as a linearized
polynomial over F2n . In this case (namely, l ≈ 2n−1), our bound does not
improve the naive exponential bound.

However, the situation is different for schemes used in MPC-/FHE-/ZKP-
applications. In such applications, both the linear layer and the non-linear
one are naturally defined over F2n . One performance metric of schemes for
MPC-/FHE-/ZKP-applications is, e.g., a minimal number of multiplications
in F2n , which is why usually linearized polynomials of low degree over
F2n are used as linear layers. Concrete examples are Jarvis, and more
recently the follow-up design Vision. Jarvis is an EM scheme over F2n

(analyzed in [ACG+19]) with a linearized polynomial of degree 4 as linear
layer. Compared to the possible maximum degree 2127, the degree of this
linearized polynomial is low. In a similar way, the linear layer of Vision is
defined.

Consequently, in the case of SPN schemes with l ≥ 2 designed for
MPC-/FHE-/ZKP-applications , we expect that our results provide a better
estimation of the algebraic degree than the naive exponential bound and
the bound in [BC13], since in this scenario the linear layer usually has low
degree when represented as a linearized polynomial over F2n .
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8.a Proof of Proposition 25

Proof. Applying the naive exponential bound and the bound from [BCC11,
Theorem 2] (see Eq. (50)) to E1 = L1 ◦ F yields

deg(L1 ◦ F) ≤ min
{

δ, N ·
(

1− 1
γ

)
+

1
γ

}
= δ.

The last equality is justified as follows: for t = 1, this is obvious (δ is exactly
the degree of 1 round). For t ≥ 2, this follows from the fact that the non-
linear layer has degree δ (since we have parallel independent S-Boxes with
algebraic δ) and that the linear layer does not change the algebraic degree.

In other words, for at least one round the naive exponential bound for
the growth of the algebraic degree is better than the bound in [BCC11].
Therefore, we now look for the maximum number of rounds R0 with this
behavior. This corresponds to solving the following equation for R0

δR0 = N ·
(

1− 1
γ

)
+

δR0−1

γ
,

which gives

R0 = logδ

(
N · γ− 1

γ · δ− 1

)
.

To put it another way, for any number of rounds r ≤ R0, the degree of Er
is upper-bounded by δr. As a next step, we find the minimum additional
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number of rounds to prevent higher-order differential distinguishers, i.e., the
minimum additional number of rounds R1 such that the algebraic degree
after R0 + R1 rounds is N − 1 (the biggest non-trivial subspace of FN

2 has
dimension N − 1).

For r > R0, the bound in [BCC11] is better than the naive bound, hence,
the algebraic degree of Er after r = R0 + 1 rounds is upper-bounded by

deg
(
ER0+1

)
≤ N ·

(
1− 1

γ

)
︸ ︷︷ ︸

=:C

+
δR0

γ
= C +

δR0

γ
,

and after r = R0 + 2 rounds by

deg
(
ER0+2

)
≤ C +

1
γ
·
(

C +
δR0

γ

)
= C +

C
γ
+

δR0

γ2 .

Continuing this way, we conclude that after r = R0 + s rounds, for an integer
s ≥ 1, the algebraic degree is upper bounded by

deg
(
ER0+s

)
≤ δR0

γs + C ·
s−1

∑
i=0

1
γi =

δR0

γs + C ·
1− 1

γs

1− 1
γ

=
δR0

γs + N · γs − 1
γs .

This means, the minimum additional number of rounds R1 to prevent higher-
order differential distinguishers is given by the implicit condition

δR0

γR1
+

N · (γR1 − 1)
γR1

= N − 1,

which gives
R1 = logγ

(
N − δR0

)
.

We conclude, the minimum number of rounds R[BCD11] to prevent higher-
order differential distinguishers is given by

R[BCD11] =

⌊
logδ

(
N · γ− 1

γ · δ− 1

)⌋
+
⌈

logγ

(
N − δR0

)⌉
.
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R E I N F O R C E D C O N C R E T E : A FA S T H A S H F U N C T I O N F O R
V E R I F I A B L E C O M P U TAT I O N

Based on the peer-reviewed conference publication1

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger, Markus Schofnegger, and Roman Walch. “Rein-
forced Concrete: A Fast Hash Function for Verifiable Computation.”
In: SIGSAC Computer and Communications Security - CCS 2022. Ed. by
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM, 2022,
pp. 1323–1335. doi: 10.1145/3548606.3560686

Abstract We propose a new hash function Reinforced Concrete, which is
the first generic purpose hash that is fast both for a zero-knowledge prover
and in native x86 computations. It is suitable for a various range of zero-
knowledge proofs and protocols, from set membership to generic purpose
verifiable computation. Being up to 15x faster than its predecessor Poseidon
hash, Reinforced Concrete inherits security from traditional time-tested
schemes such as AES, whereas taking the zero-knowledge performance from
a novel and efficient decomposition of a prime field into compact buckets.

The new hash function is suitable for a wide range of applications like
privacy-preserving cryptocurrencies, verifiable encryption, protocols with
state membership proofs, or verifiable computation. It may serve as a drop-
in replacement for various prime-field hashes such as variants of MiMC,
Poseidon, Pedersen hash, and others.

Keywords Hash Functions, Verifiable Computation, ZKSNARKs, Finite
Fields

9.1 Introduction

SNARKs and hash functions. The recent years have been marked as a
thrive of distributed verifiable computation, where the outcome of some
algorithm A is accompanied with a succinct proof of correctness, widely
known as a SNARK [PHG+13; Gro16; MBK+19]. Performance of those
protocols, however, remains a major bottleneck for applications. The reasons
are manyfold, but one crucial point is that SNARKs are constructed for
statements formulated over prime fields whereas regular computer programs
are written for and executed over bitstrings. The necessary translation of
code into finite field arithmetic carries a significant overhead. A notable
example is the cost of computing 70 SHA-256 hash function calls, which
were needed to transfer Zcash [BHH+22] cryptocurrency privately back in
2017, and which took over 40 seconds to create such a SNARK, compared to
10 microseconds of native computation on a PC. Thus, the design of various
cryptographic primitives tailored for operating over finite fields is an active
research area [AGR+16; GKK+19; AAB+20].

In this paper we remove one of such bottlenecks by offering a hash func-
tion that is fast both for SNARKs and native computation. There already exist

1 A full version of this article can be found at https://eprint.iacr.org/2021/1038.pdf.
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functions that excel in either of those areas, but not in both. The motivation
for such a swissarmy tool is the following. To scale, parallelize, and aggregate
proofs we employ what is called a recursive proof protocol [BCM+20; COS20;
BDF+21; BCL+21], where a party can prove their share of computation to-
gether with a verification of proof coming from the predecessor. This also
enables wrapping multiple proofs into a single succinct check. Notably, how-
ever, many such recursive protocols require both hashing the input of a party
with Merkle tree and proving some openings of the tree in zero-knowledge
(ZK). Thus, whatever hash function is selected for the tree, it must be fast
in both scenarios. To make a concrete example, one of the most ZK-efficient
hash functions to date, Poseidon [GKK+19], when plugged into the Fractal
recursive protocol, makes the prover 100 times more expensive just because
it is slow in the native x86 computation [COS20, Section 13.2].

Summary of use cases. In more details, our new hash function will address,
among others, the following use cases:

• Fast and efficient set membership proofs based on Merkle tree accu-
mulators. Immensely popular in cryptocurrency protocols [OWW+20;
BHH+22; PSS21], this case requires a hash function for the tree. Parties
P1, P2, . . . , Pn add entries V1, V2, . . . , Vk to some public accumulator A.
Then at any point any party Pj can prove that Vi ∈ A. For instance, in
Zcash [BHH+22] Vi are unspent transactions and A is a Merkle tree
over them, so that in order to spend transaction V an owner is required
to provide a proof of knowledge that V ∈ A as well as a proof of
knowledge of some secret committed within V. Its ZK circuit should
minimize the proof creation time.

• Verifiable computation based on recursive proofs. Here the entire
computation is a chain of functions F1, F2, . . . , Fk applied consecutively
to some state. Starting with X, for each i Party Pi computes Fi and
carries an intermediate result and a proof of correctness to the next

Pi+1 so that the last Pk provides Y and attests X
Fk◦Fk−1◦···◦F1−−−−−−−−→ Y being

actually aware only of their own computation and the proof of correct-
ness πk−1 from Pk−1. Verifiable computation frameworks such as Halo
Infinite [BDF+21] or Fractal [COS20] instruct that the proof πk asserts
the correctness of Fk and that the code Ck that verifies πk−1 outputs a
success. If the inner commitment scheme is Merkle-tree-based (such as
FRI [BBH+18a]), then πk−1 consists of several Merkle tree openings, so
that Ck makes a number of calls to the hash function that comprises the
tree. Here we minimize both native computation time and the prover
time.

Both use cases require a cryptographically secure hash function, i.e., it should
resist preimage and collision attacks.

Summary of requirements. We summarize the requirements stemming
from the use cases as follows.

• Minimal prover time. For many ZK proof systems it is a (super)linear
function of the gate count, where each gate is usually a basic field
arithmetic operation or, in some systems, a table lookup [PHG+13;
Gro16; BCR+19; GWC19; GW20]. Though the actual performance de-
pends significantly on the proof system chosen and an application, the
mere number of standard gates is a good approximation. It is known
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that custom gates (lookup high-degree polynomials) may increase the
performance up to the factor of 10, but those are function-specific and
can’t be reasonably compared across distinct proof systems. In Table 9

we provide a count in R1CS constraints (roughly, the number of field
multiplications), in standard Plookup gates (each gate contains either a
single multiplication and an arity-4 addition, or a table lookup), and
in area-degree product (each custom gate contributes to the cost addi-
tively with the product of input size and the degree of the polynomial
that describes the gate constraint). Unfortunately, we can’t provide
a sound prover time benchmark since at the moment of submission
no production-ready proof system that supports lookups is available
though specifications exist [PFM+22].

• Native performance. A hash function is supposed to run as fast as
possible on typical hardware where proofs are created, which are
regular laptops and desktops nowadays. The Fractal use case [COS20]
implies that it should be at least 10x faster than Poseidon.

• Security. The common approach [AGR+16; GKK+19] is to provide
evidence that the existing attacks fail. However, as algebraic attacks
[ACG+19; GKR+22] are the most natural for finite-field-based designs,
it becomes increasingly difficult to estimate the security as the per-
formance of those attacks is highly volatile [BBL+22; SS21]. It is thus
desirable to base the security of a new hash function on a more tradi-
tional [MRS+09] rather than algebraic security analysis.

State of the art. There already exist several hash functions crafted for
the first use-case with the number of circuit gates (or equivalently low-
degree polynomial constraints) being the primary metric. Examples include
prime-field (Feistel) MiMC versions [AGR+16; AGP+19], Friday [AD18],
Poseidon [GKK+19], Rescue [AAB+20] (and its updated version Rescue-
Prime [AAB+20]), Griffin [GHR+23], Grendel [Sze21], Neptune [GOP+22].
Many of these hash functions share some common features, as the fact that
the non-linear layer is instantiated via a simple power map. Focusing on
Poseidon, it is based on the Hades design strategy [GLR+20], which makes
use of an uneven distribution of the S-boxes, namely, full S-box layers in
the external rounds and partial S-box layers in the middle ones, in order
to minimize the multiplicative complexity. The external rounds provide
security against statistical attacks, while the internal rounds have the goal of
increasing the degree of the permutation. A rather recent addition to this
set is Sinsemilla [BHH+22, Sec. 5.4.1.9], an instance of the Pedersen hash
function[BHH+22, Sec. 5.4.1.7] optimized for table lookups in custom gates.

While most of them have withstood public scrutiny [ACG+19; BCD+20a;
EGL+20; KR21; GRS21; BBL+22], the plain performance is not satisfactory
(see last column of Table 9), since each round of such schemes requires a
finite field multiplication, which is relatively expensive (hundreds of CPU
cycles) compared to bit operations utilized in traditional hash functions.

Our design: Reinforced Concrete. We present a new sponge hash function
Reinforced Concrete, in short RC, over Fp exploiting all the advantages of
lookup-equipped proof systems and suitable for both membership proofs
and verifiable computation use cases. The permutation that instantiates RC is
composed of two types of components:

1. outer ones for preventing statistical attacks;
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2. an inner one for preventing algebraic attacks.

The inner part strengthens the whole construction like steel bars strengthen
concrete, hence the name of the function and its components.

For the inner component, instead of using simple power maps as in
Poseidon and Rescue, we use a single building block with a complex
algebraic structure, which we call Bars. A Bars layer can be seen as a non-
linear layer composed of independent high-degree and dense S-boxes. The
Bars function combines a layer of S-boxes (such as in AES) with a field
element decomposition in just a handful of small operations (or table gates in
the circuit), and it admits a very simple representation when using look-up
tables, as e.g. in the case of AES [DR02b] and AES-like ciphers. As a result,
the security argument we propose for preventing algebraic attacks including
interpolation [JK97] and Grobner basis attacks [CLO15] resembles the one
well known and accepted in the literature for AES and more generally AES-
like ciphers, for which the algebraic attacks can attack only a tiny fraction of
the rounds compared to the statistical attacks [CP02; CL05].

Even if it prevents algebraic attacks, it can be broken by more traditional
statistical attacks such as rebound attacks [MRS+09; LMR+09]. As those are
much better studied, we instantiated the external rounds with other layers
which are known to protect against statistical attacks, including affine layers
called Concrete that provides full diffusion and low-degree non-linear layer
called Bricks, which both provides (non-linear) diffusion and ensure security
against statistical attacks.

Our approach to performance. We tackle the performance issue by making
the Bars layer fast in the native computation. For this we managed to avoid
field multiplications altogether in this layer and do only a bunch modular
reductions by small moduli instead, followed by compact S-boxes. The
performance of our design varies for different fields we operate on, but is in
the range of 2-9x overhead over the popular SHA-256.

Our approach to compactness. We tackle the prover time issue by pro-
viding an efficient lookup-based implementation of highly-nonlinear Bars,
which is therefore one of main contributions of this submission. Concretely, it
is the first primitive that is highly nonlinear, compact, and fast at the same
time. For S-boxes of size 29.5, we make only 126 lookups to process 510 bits
of data, which is not far from the optimal 510/9.5 ≈ 53.

Comparison to other designs. When compared to the hash functions
tailored to the same use cases, we are on par in the gate metric and are much
faster in the native performance.

The performance can be improved in certain fields, and we show how
to craft a prime to increase performance further. Even over generic prime
fields (such as the scalar fields of the BLS12-381 or BN254 elliptic curves)
RC is faster by a factor of 5 compared to Poseidon and by a factor of 140

compared to Rescue and 120 compared to Rescue-Prime. Using specially
crafted fields increases these factors to 16, 357, and 289 respectively. RC is,
thereby, only by a factor of 5 slower than Blake2, the fastest traditional hash
algorithm we benchmarked, but requires 7 times less gates when encoded
into a circuit.

Compared to Pedersen hash/Sinsemilla we provide pre-image resistance
in addition to collision resistance. Also we rely on the public scrutiny rather
than on (pre-quantum) hardness assumptions.
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Performance
Zero knowledge Native

R1CS Plookup Area-degree
eq-s reg. gates product (µs)

Poseidon 243 633 9495 19

Rescue 288 480 7200 480

Rescue-Prime 252 420 6300 415

Feistel-MiMC 1326 1326 19890 38

Griffin 96 186 2790 115

Neptune 228 1137 17055 20

SHA-256 27534 3000 60000 0.32

Blake2s 21006 2000 40000 0.21

Pedersen hash 869 13035 54

Sinsemilla 510 1530 137

Reinforced Concrete-BN/BLS - 378 5670 3.4
Reinforced Concrete-ST - 360 5400 1.09

Table 9: Performance of various hash functions in the zero knowledge (preimage
proof) and native (hashing 512 bits of data) settings. All native benchmarks are ours
(Section 9.8.2). Poseidon, Rescue, Rescue-Prime, Feistel-MIMC, Neptune, and Griffin
gate counts are ours (Section 9.8.1). SHA-256 and Blake2s R1CS gate counts are from
Hopwood’s notes [Hop19], and their Plookup costs as well as the area-degree product
is taken from the report by Williamson [Wil20]. Pedersen hash gate count is taken
from the Zcash protocol [BHH+22], and the area-degree product is calculated using
the same factor of 15 as for Poseidon. The Sinsemilla regular gate count by us is
Section 9.8.1, whereas the area-degree optimized version is from [BH21].

From the design perspective, one can view the collision resistant but
slower Sinsemilla as an alternative to the Bars layer, as both are not preim-
age resistant in isolation. Whether it is possible to take the best from both
designs, remains the subject of future work.

Regarding security analysis, the new design offers reasonably big security
margin against statistical attacks, but at the same time much bigger margin
against algebraic attacks. Since the latter are less explored, we conclude
that RC is more robust against possible breakthroughs in algebraic analysis.
On the other hand, the most recent algebraic cryptanalysis of weakened
Poseidon and Rescue-Prime [BBL+22] has proven to be memory-intensive
and thus less practical than can be expected.

Supported proof systems. Whereas some ZK proof systems explicitly work
with arithmetic gates (i.e. field additions and multiplications) only [PHG+13;
Gro16], a number of protocols also support lookup tables. Those include
Arya [BCG+18], Plookup [GW20; PFM+22], Halo2 [BHH+22], Cairo [GPR21].
As lookup gates also speed up traditional hash functions like SHA-2, we
expect such protocols to become widespread in the near future.

Restrictions and Future Work. Whereas RC clearly brings high native and
ZK performance, it also has its own restrictions. First of all, a proof system
should support lookup gates, as otherwise the RC circuit would be quite big
(we estimate it to be around 5000 constraints). Secondly the Bars component
is specific for each field, which implies a bit of work when carrying it to a
proof system with a new curve. Devising a more generic Bars is the subject
of the future work. Another interesting direction is non-sponge instances of
RC.
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Figure 12: A sponge hash function with a fixed-size output. In our case IV is a
3-tuple of zero Fp elements, mi are message chunks to be hashed (2 Fp elements
each), ⊕ is the elementwise addition in the field, hi are hash outputs.

Summary of the paper. We describe RC on a high level in Section 9.2. Then
we give formal security definitions and claims regarding the security of RC in
Section 9.3. A more detailed rationale and specification follows in Section 9.4.
We proceed with a summary of our own cryptanalysis in Section 9.5 (which
is detailed in Appendix). Then we present a constraint system (needed to
build a circuit for ZK proofs) for RC and prove its correctness and soundness
(Section 9.6). We conclude the main body of the paper with the benchmarks.
Details of RC instances for different fields and details of cryptanalysis are
presented in Appendix.

9.2 RC in a Nutshell

The RC hash function operates in the sponge framework (Fig. 12). The sponge
converts a fixed length bijective function (called RC permutation) to a variable-
length hash function, which is collision- and preimage-resistant as long as
the underlying permutation does not exhibit any ‘non-random‘ properties
up to the bound defined by the security level 2λ (in our case λ is universally
set to 128).

The RC permutation illustrated in Fig. 13, can be considered as a modified
7-round SP network, where input, output and intermediate state elements
are from F3

p for a prime number p. More formally,

RC := Concrete(8) ◦ Bricks ◦ Concrete(7)

◦ Bricks ◦ Concrete(6) ◦ Bricks

◦ Concrete(5) ◦ Bars ◦ Concrete(4)

◦ Bricks ◦ Concrete(3) ◦ Bricks

◦ Concrete(2) ◦ Bricks ◦ Concrete(1)

In the following, we refer to Concrete ◦ Bricks as "round".
We define RC for different p, with two (-BN and -BLS) being scalar fields

of the curves BN254 [Woo14] and BLS12-381
2 and another one (-ST) crafted

for a specially chosen field in order to deliver the highest performance. We
elaborate how to craft an instance in Section 9.4.

We reserve 1 field element for the capacity in sponge, thus aiming for the
128-bit security against collision and preimage attacks for all instances. A
single call to RC thus suffices for a 2-to-1 compression function.

2 https://electriccoin.co/blog/new-snark-curve/

https://electriccoin.co/blog/new-snark-curve/
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Figure 13: The RC permutation. The middle Br-C-B-C-Br part is secure against
algebraic attacks whereas C-Br-C-Br-C-Br-C-Br-C-Br-C is secure against rebounds
(more generally, statistical) attacks.

Design. The RC design depicted in Figure 13 is a modification of a tradi-
tional word-oriented SP-network (SPN) for constructing (keyed or keyless)
cryptographic permutations. The RC design differs from a traditional SPN in
two aspects:

• the middle layer of the SP network is replaced by a special compo-
nent called Bars. This special component effectively reinforces the
permutation against cryptanalytic approaches that would cover many
more rounds without Bars. It does not admit a low-degree polynomial
description but can be implemented as a circuit with reasonable costs
in ZK.

• instead of applying independent non-linear transformations on single
words, RC uses (low-degree) non-linear layers, called Bricks, that ad-
ditionally mix different words. Bricks used the same construction as
Horst [GHR+23]. It provides resistance against statistical cryptanalysis
and is cheap in the zero knowledge, i.e. via gate counting.

The third component, Concrete, is an analog of the traditional affine layer
but over F. It ensures diffusion to make statistical or algebraic properties
expand to the entire state, and is also cheap in ZK.

Layout. The Bricks and Concrete layers interleave exactly as in traditional
SPN designs [DR02b]. As RC is used in a sponge framework, the Bricks com-
ponents at either end would bring no security against collision or preimage
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attacks, so we start and end with Concrete. The middle call to Bricks is
replaced with Bars. The rationale behind putting all Bar into a single layer
is that start-from-the-middle attacks are somewhat easier to find and thus
we plan to detect them all in the design phase.

9.3 Security Requirements and Claims

Our high-level security claims, which determine the parameter selection for
RC, are the following.

• For the sponge hash function with RC, we aim for a collision and
preimage resistance up to 2128 field operations for 256-bit fields. We
want to be able to instantiate a random oracle in protocols up to 2128

calls.

• For the authenticated encryption scheme using RC, we aim for con-
fidentiality and integrity up to 2128 encrypted messages for 256-bit
fields.

• When using the RC in other future schemes, we aim for a 1-element
CICO security [GJM+11] up to 2128 field operations. More concretely, it
should be infeasible to find such x1, x2, y1, y2 such that

RC(0, x1, x2) = (0, y1, y2)

9.4 Specification and Rationale

The story behind the design of RC, which has determined its inner compo-
nents is as follows:

• We wanted to design a hash function which has a high degree as a
polynomial and would not allow a treatment with algebraic methods
such as Grobner basis.

• We were aware how table lookups can be used to implement hash
functions that are highly non-linear and resistant to algebraic attacks –
such as Blake2 and SHA-256. We seek to have similar functionality but
applied to finite field elements rather than 32/64/128/256-bit words.
For this we had to design an efficient way to decompose a field element
into smaller chunks, apply some nonlinear transformation, and then
wrap it back (composition). This was to become Bars.

• It turned out that in order to avoid overflows at composition, the
nonlinear transformation within Bars should have a certain number of
fixed points, and there must not be many of them for security. This
yielded an heuristic method for finding a decomposition.

• In order to protect against non-algebraic attacks, we had to wrap Bars

with additional confusion and diffusion layers. The number of those
was derived from traditional attacks on SPN-based designs such as
rebound [MRS+09].
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9.4.1 The Bricks function

The function Bricks : F3
p → F3

p is a non-linear permutation of degree d = 5
(with the requirement gcd(p− 1, d) = 1). Following [GHR+23], we define
Bricks as

Bricks(x1, x2, x3) = (xd
1 , x2(x2

1 + α1x1 + β1), x3(x2
2 + α2x2 + β2)),

where α1, α2, β1, β2 ∈ Fp such that α2
i − 4βi is not a quadratic residue modulo

p. We refer to [GHR+23, Section 3] for a proof regarding its invertibility,
which relies on the fact that z2 + αz + β ̸= 0 for each z ∈ Fp.

9.4.2 The Concrete function

The function Concrete(j) : F3
p → F3

p denotes the multiplication of the state
by a 3× 3 MDS matrix M = circ(2, 1, 1) with subsequent addition of the j-th
round constant vector c(j) ∈ F3

p, that is

Concrete(j)(x) :=

2 1 1
1 2 1
1 1 2

×
x1

x2
x3

+ c(j).

Note that M is invertible and MDS for each p ≥ 3. The elements c(j)
1 , c(j)

2 , c(j)
3

are certain pseudo-random constants, generated using e.g. Shake-128 with
rejection sampling.

9.4.3 The Bars Function

The function Bars : F3
p → F3

p is defined as

Bars(x1, x2, x3) = (Bar(x1), Bar(x2), Bar(x3)).

The function Bar : Fp → Fp is designed to be a permutation of Fp coming
from n smaller permutations acting independently on n smaller domains
Zs1 , . . . , Zsn , where s1, . . . , sn are defined for each prime p separately, see
Section 9.7. The independence requirement is crucial for the performance
of Bar. For this we decompose a field element x ∈ Fp into n smaller digits
x1, . . . , xn with xi ∈ Zsi with the function Comp, and then compose it back
with Decomp. Overall, Bar : Fp → Fp is defined as

Bar = Comp ◦ SBox ◦ Decomp. (58)

In the following, we define all these components. The invertibility of Bar is
proved in Section 9.A.

Decomposition and Composition

We choose the standard representation Fp = {0, 1, . . . , p− 1} for Fp, thus
identifying an element x ∈ Fp with an integer 0 ≤ x ≤ p− 1. Our decompo-
sition Decomp : Fp → Zs1 × . . .×Zsn expands x ∈ Fp as

x = x1 · s2s3 · · · sn + x2 · s3s4 · · · sn + · · ·

+ xn−1 · sn + xn =
n

∑
i=1

xi ∏
j>i

sj.
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with 0 ≤ xi < si and where the si are chosen such that ∏n
i=1 si > p. The

digits xi ∈ Zsi are determined similarly to ordinary base-b expansion:

xn := x mod sn,

xi :=
x−∑j>i xj ∏k>j sk

∏j>i sj
mod si.

(59)

It follows directly from the definition in Eq. (59) that the digits xi are unique.
Because of the strong analogy with ordinary base-b expansion and for ease
of notation in the following part, we define for 1 ≤ i ≤ n the elements

bi := ∏
j>i

sj = si+1si+2 . . . sn,

where bn is defined by the empty product and thus bn := 1. The inverse
process, the composition Comp : Zs1 × · · · ×Zsn → Fp is computed as

Comp(y1, . . . , yn) :=
n

∑
i=1

yibi mod p. (60)

SBox

Let (v1, v2, . . . , vn) = Decomp(p− 1) and let p′ ≤ min1≤i≤n vi. Then xi is
converted as follows:

yi := S(xi) =

{
f (xi) if xi < p′,
xi if xi ≥ p′,

(61)

where f denotes a permutation of Zp′ . In Lemma 12 we prove that Bar is
indeed a permutation of Fp. The value p′ is selected for each p separately.

The f function is derived from the MiMC cipher (which implicitly requires
p′ being prime). Reference values of p′ for various p and tables for f are
given in full in the Appendix.

9.4.4 Sponge framework parameters

We suggest the bijective transformation RC being used in the sponge frame-
work [BDP+08] similarly to Poseidon [GKK+19] and Rescue [AAB+20]. The
parameters are as follows:

• Rate is two Fp elements, capacity is one Fp element.

• Claimed preimage and collision security level of 128 bits.

• The padding rule is simply to add the 0 element to any input of
odd length. The very first capacity value is initialized by the length-
depending constant, e.g. just length l. This does not violate the sponge
security proof as long as only short lengths (say up to 232) are allowed.

9.5 Security Analysis

In this section we summarize our own analysis of RC security and connect it
with the requirements outlined in Section 9.3.

For the latter, we customarily reduce the security of RC hash to its re-
sistance against known cryptanalytic attacks. In particular, we focus on



9.6 lookup tables and system of constraints for bar 138

the following two classes of attacks, respectively statistical and algebraic
attacks. As already mentioned in the introduction, we make use of the
Hades/Poseidon design strategy in order to provide security:

• Statistical attacks (including differential, linear, rebound, truncated,
impossible, MiTM, boomerang) cannot be mounted on RC even with the
middle component Bricks-Concrete-Bars-Concrete-Bricks replaced
with a single Bricks layer up 2128 field operations.

• The middle component Bricks-Concrete-Bars-Concrete-Bricks resists
invariant subspace and algebraic (e.g., Gröbner basis) attacks up to 2128

field operations. Due to the high degree and because we are working
over prime fields, we also expect ample resistance against higher-order
differential attacks (e.g., zero-sum distinguishers or cube attacks).

We provide a detailed overview of our cryptanalysis in the Appendix of the
full version of this article under the link https://eprint.iacr.org/2021/

1038.pdf. The short summary is the following:

• Differential and linear attacks do not work as long as the Bricks layer
is involved.

• We cannot mount rebound attacks for 5 or more rounds thus having at
least 2 rounds of security margin.

• No invariant subspace attacks have been found.

• Groebner basis cryptanalysis fails at greatly weakened versions (10-bit
fields) already.

9.6 Lookup Tables and System of Constraints for Bar

In this section we create tables and a set of constraints such that for x, y ∈ Fp
it holds y = Bar(x) if and only if this set of constraints is satisfied. We face
two challenges:

1. The S-box Si acts on a domain of size si, which makes each S-box
potentially unique. If we specify the behavior of each S-box separately,
the table would have ∑i si entries, which renders it inefficient.

2. Since ∏i si > p, there exist distinct elements (x1, . . . , xn) ̸= (x′1, . . . , x′n)
in Zs1 × . . . Zsn that produce the same x ∈ Fp, i.e., for which it holds

x = Comp(x1, . . . , xn) =
n

∑
i=1

xibi mod p =

=
n

∑
i=1

x′ibi mod p = Comp(x′1, . . . , x′n).

We have to ensure that our table and set of constraints prevents this
collision from happening.

We address these challenges with two additional sets of variables

(z1, . . . , zn) and (c1, . . . , cn),

respectively. The variable zi encodes if xi < p′ (Si is non-linear function) or
xi ≥ p′ (Si is identity function) and is defined as

zi :=

{
0, if xi < p′;
1, if xi ≥ p′.

(62)

https://eprint.iacr.org/2021/1038.pdf
https://eprint.iacr.org/2021/1038.pdf
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The purpose of variables (c1, . . . , cn) is to indicate if a tuple (x1, . . . , xn) ∈
Zs1 × . . .×Zsn has the property ∑n

i=1 xibi ≥ p, or not. If ∑n
i=1 xibi ≥ p, the

tuple (x1, . . . , xn) “overflows” p and thus it is a potential candidate for a
collision since by definition composition is unique for all (x1, . . . , xn) with
∑n

i=1 xibi < p. With our set of constraints we need to exclude all those tuples
“overflowing” p. For (v1, . . . , vn) = Decomp(p− 1), we therefore define

ci :=


0, if xj = vj for all 1 ≤ j ≤ i;
1, if xi < vi;
2, if xi ≥ vi and xj ̸= vj for some 1 ≤ j ≤ i;

(63)

By definition of ci, only sequences c1, c2, . . . , cn of length n output by the
finite-state automaton A in Fig. 14 are allowed; they characterize all tuples
(x1, . . . , xn) ∈Nn with ∑n

i=1 xibi < p.
We create the following 4-ary tables for our set of constraints:

• Table T2 contains all binary sequences of length 4 (Fig. 15) thus provid-
ing a means to encode all possible sequences (z1, . . . , zn) by concatenat-
ing as many 4-ary sequences as needed;

• Table T3 contains all outputs of length 4 of the finite-state automaton
A in Fig. 14. They are chained together with the last element of one
4-ary sequence matching the first element of the next 4-ary sequence to
encode all possible outputs of A of length n, see constraints (65),(66);

• Table T1 encodes the output of the S-Boxes S1, . . . , Sn and indicates
whether for an input to S-Box Si the non-linear function f or the
identity function is applied (Fig. 16).

We claim that y = Bar(x) holds if and only if for x, y ∈ Fp and (x1, . . . , xn),
(y1, . . . , yn) in Nn the following constraints are satisfied:

∀n ≥ i ≥ 1 : (xi, i · zi, yi, ci) ∈ T1, (64)

∀⌈(n− 1)/3⌉ − 1 ≥ i ≥ 1 :

(c3i−2, c3i−1, c3i, c3i+1) ∈ T3, (65)

(cn−3, cn−2, cn−1, cn) ∈ T3, (66)

∀⌈n/4⌉ − 1 ≥ i ≥ 1 :

(z4i−3, z4i−2, z4i−1, z4i) ∈ T2, (67)

(zn−3, zn−2, zn−1, zn) ∈ T2, (68)

x =
n

∑
i=1

xibi mod p, (69)

y =
n

∑
i=1

yibi mod p. (70)

In particular, we claim for x ∈ Fp there doesn’t exist any collision in Zs1 ×
. . . Zsn . I.e., there is exactly one element (x1, . . . , xn) in Zs1 × . . . Zsn with

0 1 2

Figure 14: Finite-state automaton A representing all valid sequences c1, c2, . . . , cn.



9.6 lookup tables and system of constraints for bar 140

T2 =



0 0 0 0
0 0 0 1
0 0 1 0
· · ·
1 1 1 0
1 1 1 1

 ,

Figure 15: Lookup Table T2.

T1 =



0 0 f (0) 1
1 0 f (1) 1
· · ·

p′ − 1 0 f (p′ − 1) 1
p′ 1 p′ 1

p′ + 1 1 p′ + 1 1
· · ·

v1 − 1 1 v1 − 1 1
v1 1 v1 0
p′ 2 p′ 1
· · ·

v2 − 1 2 v2 − 1 1
v2 2 v2 0
v2 2 v2 2

v2 + 1 2 v2 + 1 2
· · ·

s2 − 1 2 s2 − 1 2
· · ·
p′ n p′ 1
· · ·

vn − 1 n vn − 1 1
vn n vn 0
vn n vn 2

vn + 1 n vn + 1 2
· · ·

sn − 1 n sn − 1 2



, T3 =



0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 2
0 1 1 1
0 1 1 2
0 1 2 1
0 1 2 2
1 1 1 1
1 1 1 2
1 1 2 1
1 1 2 2
1 2 1 1
1 2 1 2
1 2 2 1
1 2 2 2
2 1 1 1
2 1 1 2
2 1 2 1
2 1 2 2
2 2 1 1
2 2 1 2
2 2 2 1
2 2 2 2



Figure 16: Lookup Tables T1 and T3.

Comp(x1, . . . , xn) = x. We prove these assertions in Lemma 10 and Lemma 11.
As a result, the total number of lookup constraints is

n + ⌈(n− 1)/3⌉+ ⌈n/4⌉ ≈ n + n/3 + n/4 ≈ 1.59n

table lookups with tables of total size p′ + ∑i(si − p′ + 1) + 16 + 23.

9.6.1 Soundness and Completeness

Lemma 10. The set of constraints (64) – (70) is complete, i.e., for any x, y ∈ Fp
with y = Bar(x) it is possible to construct {xi, yi, ci, zi : 1 ≤ i ≤ n} that satisfy
them.

Proof. We work with the standard representation of Fp, that is, Fp =
{0, 1, . . . , p − 1}. Suppose for x, y ∈ Fp it holds y = Bar(x). Our proof
works as follows:

1. We construct xi, yi and show that constraints (69) and (70) are satisfied;

2. we define zi that satisfy constraints (67) and (68) regarding Table T2;
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3. we define ci that satisfy constraints (65) and (66) regarding Table T3;

4. we show that (xi, i · zi, yi, ci) satisfy the constraints (64) regarding Table
T1.

1st Step. We define

(x1, . . . , xn) := Decomp(x)

and
(y1, . . . , yn) := SBox(x1, . . . , xn) = (SBox ◦ Decomp)(x);

then constraint (69) holds by definition of Decomp and constraint (70) by
definition of Bar, i.e.,

y = (Comp ◦ SBox ◦ Decomp)(x)

= Comp (SBox ◦ Decomp(x))

= Comp(y1, . . . , yn) =
n

∑
i=1

yibi mod p.

2nd Step. Let p′ be according to the definition of the Bar function, i.e.,
p′ is the largest prime smaller than or equal to v = min1≤i≤n vi, where
(v1, . . . , vn) = Decomp(p− 1). For 1 ≤ i ≤ n we define

zi :=

{
0, if xi < p′;
1, if xi ≥ p′;

that indicate if xi < p′ or xi ≥ p′. The sequence (z1, . . . , zn) is a binary
sequence of length n, where all 2n combinations are possible: every digit
xi can be strictly smaller or greater than p′. Since T2 contains all binary
sequences of length 4, we have that the constraints (67) and (68) regarding
T2 are satisfied .

3rd Step. If x = p− 1, or equivalently, if xi = vi for all 1 ≤ i ≤ n, we
define ci := 0, for all 1 ≤ i ≤ n. Thus (c1, . . . , cn) = (0, . . . , 0) and the
corresponding constraints (65) and (66) in Table T3 are satisfied. If x < p− 1,
there exists at least one index 1 ≤ i ≤ n with xi < vi. Let j be the minimal
index with that property. We set

ci :=


0, if i < j;
1, if i ≥ j and xi < vi;
2, if i > j and xi ≥ vi.

Note that the case i = j and xi ≥ vi cannot happen, since this would on
the one hand mean xj ≥ vj and on the other hand xj < vj (by definition of
j), a contradiction. Thus, the above three cases cover all possible situations
regarding i. Next, we list all subsequences of c1, . . . , cn that are not possible:

(a) (2, . . .); since c1 = 2 this would mean 1 ≤ j < i = 1, a contradiction.

(b) (. . . , 0, 2, . . .); this would imply i < j (ci = 0) and i + 1 > j (ci+1 = 2), a
contradiction.

(c) (. . . , 1, 0, . . .); a contradiction, since i ≥ j (ci = 1) and i + 1 < j (ci+1 =
0).

(d) (. . . , 2, 0, . . .); a contradiction, since i > j (ci = 2) and i + 1 < j (ci+1 =
0).



9.6 lookup tables and system of constraints for bar 142

We explicitly note, all other subsequences are valid. In a next step, we model
a finite-state automaton B whose outputs of length n characterize all possible
sequences (c1, . . . , cn). Clearly, B has the states 0, 1, 2 with only 0, 1 being
accepting states: due to (a) no sequence can start with 2. According to (b), (c)
and (d), all possible transitions are given by

{(0, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2)}.

But this means, that automaton B is identical to automaton A depicted in
Fig. 14. Hence we conclude, all possible sequences (c1, . . . , cn) of elements
as defined above are precisely the outputs of length n of the finite-state
automatonA. If we divide the sequence (c1, . . . , cn) into chunks of 4 elements
such that the last element of one chunk matches the first element of the next
chunk, we see that constraints (65) and (66) regarding T3 are satisfied.

4th Step. Constraints (64) regarding T1 are satisfied as well: by definition
of xi, zi, yi, ci we have 0 ≤ xi ≤ si − 1, zi ∈ {0, 1}, yi = Si(xi) and ci ∈
{0, 1, 2}, respectively. This means, the domains of xi, i · zi, yi, ci agree with
the general conditions in T1. Not all combinations are allowed, however.
The following arguments show that indeed all possible 4-ary chunks (xi, i ·
zi, yi, ci) satisfy the constraints in T1. As in the 3rd Step, for x = p− 1 we
define ci := 0 and thus have (xi, i · zi, yi, ci) = (vi, i, vi, 0) for 1 ≤ i ≤ n.
Hence, for x = p − 1 the corresponding constraints (64) in Table T1 are
satisfied. Therefore let x < p− 1 and let again j be the minimal index with
xi < vi.

• For 0 ≤ xi < p′, we have zi = 0, i · zi = 0, yi = S(xi) = f (xi) and ci = 1
(since xi < p′ ≤ vi) by construction of xi, zi, yi and ci, respectively.
Thus the first p′ constraints in T1 are satisfied.

• For p′ ≤ xi = vi two cases can happen: if i < j, then ci = 0; if
i > j, then ci = 2. In both cases the corresponding 4-ary chunk
xi, i · zi = i, yi = xi, ci ∈ {0, 2} is contained in T1. We note, the case
xi = vi and i = j cannot happen due to the definition of j.

• For p′ ≤ xi < vi, we have zi = 1, i · zi = i, yi = S(xi) = xi and ci = 1
(since xi < vi). Thus the corresponding vi − p′ constraints in T1 are
satisfied.

• For vi + 1 ≤ xi ≤ si − 1 it holds zi = 1, i · zi = i, yi = S(x) = xi and
ci = 2, which shows that the corresponding si − vi − 1 constraints in
T1 are fulfilled.

Specifically, for i = 1 there is no entry (x1, i · z1, y1, 2) in T1, therefore we
have to argue that this case cannot happen; this is clear, however, since we
have already shown that automaton B, which represents all valid sequences
(c1, . . . , cn), guarantees c1 ∈ {0, 1}.

Lemma 11. The set of constraints (64)–(70) is sound, i.e., for any x, y ∈ Fp and
any {xi, yi, zi, ci ∈N : 1 ≤ i ≤ n} that satisfy them all it holds y = Bar(x).

Proof. We work with the standard representation of Fp. For R := Zs1 × . . .×
Zsn let

R<p := {(z1, . . . , zn) ∈ R :
n

∑
i=1

zibi < p}.

Our proof consists of the following parts:
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1. Show that (x1, . . . , xn) is a valid decomposition of x, i.e., (x1, . . . , xn) =
Decomp(x).

2. Show that for all 1 ≤ i ≤ n we have yi = Si(xi) according to (61) and
deduce (y1, . . . , yn) = (SBox ◦ Decomp)(x).

3. Use the above two facts and deduce y = Bar(x).

1st Step. Let (x′1, . . . , x′n) := Decomp(x) and x̂ := ∑n
i=1 xibi. Suppose x̂ < p,

or in other words (x1, . . . , xn) ∈ R<p. Then by (69) we have x̂ = x̂ mod p =

∑n
i=1 xibi mod p = x < p, and thus

Decomp(x) = Decomp

(
n

∑
i=1

xibi mod p

)
= (Decomp ◦ Comp)(x1, . . . , xn) = (x1, . . . , xn).

The last equality uses the fact, that Decomp and Comp are inverse to each other
on R<p and Fp; we proved this in more detail in Lemma 12.

We show that the case x̂ ≥ p leads to a contradiction. For this, suppose
x̂ ≥ p. This implies that there exists 1 ≤ k ≤ n with

xi = vi for all 1 ≤ i < k and xk > vk.

Note that k > 1 as x1 ≤ v1 by Table T1 (constraint (64)). Also, by constraint
(64) it holds ci ∈ {0, 2} for all 1 ≤ i < k and in particular c1 = 0. Therefore,
constraints (65) and (66) regarding Table T3 ensure that actually all ci = 0
for 1 ≤ i < k since there is no sequence with (. . . , 0, 2, . . .) in T3. Therefore,
again by constraints (65) and (66), we have that ck ∈ {0, 1}. By constraint
(64) this is only possible if xk ≤ vk. A contradiction.

2nd Step. Let 1 ≤ i ≤ n. We show yi = S(xi). By constraints (67) and
(68) it holds zi ∈ {0, 1}. If zi = 0 then i · zi = 0 and by constraint (64) we
have xi < p′ and yi = f (xi). If zi = 1, we have i · zi = i > 1, and again by
constraint (64) it holds xi ≥ p′ and yi = xi. Altogether we get that yi = Si(xi)
and thus

(y1, . . . , yn) = SBox(x1, . . . , xn)

Part1
= SBox(Decomp(x)) = (SBox ◦ Decomp)(x).

(71)

3rd Step. For the last part we use the definition of Bar, Part 2, the definition
of Comp and constraint (70), which yields

Bar(x)
(58)
= (Comp ◦ SBox ◦ Decomp)(x)

= Comp(SBox ◦ Decomp(x))
Part 2
= Comp(y1, . . . , yn)

(60)
=

n

∑
i=1

yibi mod p
(70)
= y.

9.7 Concrete Instances

The values of α1, α2, β1, β2 are given by

• p = pBLS381: (1,3,2,4).

• p = pBN254: (1,3,2,4)
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• p = pST : (1,2,3,4).

For the Bar function we choose a decomposition into n = 27 small S-boxes
for p being the order of BLS12-381 or BN254 curves.

BLS12-381. The prime p is given by

pBLS381 =0x73eda753299d7d483339d80809a1d80

553bda402fffe5bfeffffffff00000001.

The bucket sizes
s27, s26, . . . , s19,
s18, s17, . . . , s10,
s9, s8, . . . , s1,

for the Bar layer are given by

693, 696, 694, 668, 679, 695, 691, 693, 700,
688, 700, 694, 701, 694, 699, 701, 701, 701,
695, 698, 697, 703, 702, 691, 688, 703, 679.

If (v1, . . . , v27) denotes the decomposition of p − 1, the largest prime p′

smaller than or equal to v = min1≤i≤27 vi is p′ = 659. The values si were
found by a variant of branch-and-bound process where we recursively deter-
mine from s27 to s1 under the constraint that si − vi is not too large for any
i.

BN254. The prime p is given by

pBN254 =0x30644e72e131a029b85045b68181585

d2833e84879b9709143e1f593f0000001.

The bucket sizes for the Bar layer are given by

651, 658, 656, 666, 663, 654, 668, 677, 681,
683, 669, 681, 680, 677, 675, 668, 675, 683,
681, 683, 683, 655, 680, 683, 667, 678, 673.

If (v1, . . . , v27) denotes the decomposition of p − 1, the largest prime p′

smaller than or equal to v = min1≤i≤27 vi is p′ = 641. Decomposition was
found in the same way.

Special prime. We have crafted a special prime for the proof systems that
are not elliptic curve based, so that the decomposition and modular reduction
are extremely fast. Concretely, we found out that a 250-bit prime

pST = 0x3 f a000 . . . 001

admits the following representation:

pST = 2250 − 3 · 2241 + 1 =
24

∑
i=0

(210 − 6)210i + 1,

i.e.,

s2 = s3 = · · · = s24 = 1024, (72)

s25 = 1023, v1 = v2 = · · · = v25 = 1018. (73)

For this decomposition we first selected si to be almost all powers of two,
prepared constraints that (p − 1) is divisible by 230 for Discrete Fourier
Transform, and then tried a few values for vi until we find a prime.
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9.8 Performance

In this section we consider performance of plain and zero knowledge (circuit)
implementations of RC. As the application, we consider a single call to per-
mutation RC, which corresponds to hashing of two F elements, or computing
one node of a Merkle tree.

9.8.1 Proof System Performance

Circuit metrics

So far many circuit implementations of hash functions are tailored to the
proof system implementation they will be used, so it is extremely diffi-
cult to compare apples to apples by just measuring prover time. This is
more complicated for proof systems that support lookups as only reference
implementations are available3.

Thus we turned to different metrics. First one just count gates and
assumes that there are two types of gates: an arithmetic gate and a lookup
gate, with the former implementing a quadratic constraint of form

a1x1x2 + a3x3 + a4x4 + a5x5 = a6

with xi being witness variables and ai being values of selector polynomials.
It can handle a 2-ary addition. A lookup gate has form

(x1, x2, x3, x4) ∈ T

where T is the lookup table. These two gates are the ones defined in the
Plonk and Plookup papers [GWC19; PFM+22] and thus we call it regular
gates metric.

The second metric applies to custom gates, which implement arbitrary
polynomial lookup constraints, and attempts to estimate the prover cost by
assuming it is approximated as

Cprover ∼ (number of gates)× (max degree of a gate constraint)

× (gate arity)

We call it area-degree product. The maximum degree of a regular gate con-
straint is 3, the arity is 5, so each gate contributes with cost 15.

Measuring hash functions

RC. The regular gates count for the BLS/BN primes.

• Bricks: 8 gates per round (7 for pST with d = 3);

• Concrete: 2 gates per element, 6 per round.

• Bars: 94 gates per element, 282 per round

– decomposition: 26 gates

– composition: 26 gates

– table: 42 gates.

Total: 8 · 6 + 6 · 8 + 282 = 378 gates to process two Fp elements of data. The
pST case uses only 25 si so the total number of gates is 360. The area-degree
product is thus 378 · 15 = 5670.

3 E.g. Plonkup https://github.com/dusk-network/plonkup

https://github.com/dusk-network/plonkup
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Poseidon. Poseidon-128 [GKK+19] with 2 inputs, which needs 633 gates
for the same setting: each full round needs 9 quadratic gates and 6 addition
gates, whereas each partial round needs 3 quadratic and 6 addition gates.
Total count is 15 · 8 + 57 · 9 = 633.

Rescue. Rescue with 2 inputs requires 16 full founds, which together
utilize 288 quadratic gates. In addition, each (out of 16) round carries two
matrix multiplications, i.e. 2 · 6 addition gates per round. The total regular
gate count is then 480. Rescue-Prime, a new variant of Rescue, requires only
14 rounds and, thus, is 12% cheaper.

Sinsemilla. Sinsemilla is parameterized by k that determines the lookup
table length 2k and the same number of EC generators P0, P1, . . . , P2k−1. A
hash of tk-bit M = (M1, M2, . . . , Mt), t < 254 is defined as

H(M) = (Q + ∑
i≤t

[2t−i]PMi )x,

where Q is some EC point, + is EC addition, [a] is the EC scalar multiplication
by a, ()x is the x-coordinate of the curve.

To make a regular gate measurement, we take their system [BH21] of 5t
quadratic equations and a single t-ary addition of message decomposition.
Measuring in regular gates, we obtain that Sinsemilla needs 9t arithmetic
gates, and t lookup gates. For k = 10 and t = 51 we obtain 510-bit message
input, for which the total gate count is about 510 regular gates.

The authors also provide an optimized version with 51 custom gates of
degree 6 and arity 5. This yields the area-degree product of 51 · 6 · 5 = 1530.

9.8.2 Plain Implementation Performance

We implemented RC in pure Rust using the ff_ce library4 for field operations.
Further, we re-implemented Poseidon, Rescue, and Griffin with a statesize
of 3 words, Neptune using a statesize of 4 words, and Feistel-MiMC using
ff_ce to compare them to RC in a fair setting. We further compare RC to pure
Rust implementations of traditional hash algorithms5, and compare it to
Sinsemilla using an implementation found in the Zcash/Orchard repository
on Github6, and to a Pedersen Hash implementation from librustzcash7.
We benchmark input sizes of at least 512-bit (i.e., two field elements in RC).
We, thus, benchmark one permutation call for all symmetric hash functions,
except for Feistel-MiMC for which we require two. All benchmarks were
obtained on a Linux Desktop PC with an Intel i7-4790 CPU (3.6 GHz) and
16 GB RAM using stable Rust version 1.58 and the target-cpu=native flag.
The resulting benchmarks can be found in Section 9.8.2, code to reproduce
them is publicly available at [Has].

As Section 9.8.2 shows, the plain performance of RC highly depends
on the choice of the prime field, more specifically, how elements can be
decomposed. The Bars-layer for pST can be evaluated by using only one
big-integer division8, whereas a generic decomposition, i.e., for pBN254 and
pBLS12, requires significantly more. The result is a runtime difference by a

4 https://docs.rs/ff_ce/0.13.1/ff_ce/
5 https://github.com/RustCrypto/hashes
6 https://github.com/zcash/orchard, uses lookup tables to speed up performance.
7 https://github.com/zcash/librustzcash
8 We implemented divisions using precomputed reciprocals for all prime fields.

https://docs.rs/ff_ce/0.13.1/ff_ce/
https://github.com/RustCrypto/hashes
https://github.com/zcash/orchard
https://github.com/zcash/librustzcash
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Hashing algorithm BN BLS ST
ns ns ns ns

RC - 3 419 3 538 1 087

Concrete Layer - 39.1 39.5 34.2
Bricks Layer - 172.4 188.0 101.67

Bars Layer - 2 063 2 062 204.9

Poseidon - 19 944 20.423 18 185

Rescue - 470 030 498 210 388 430

Rescue-Prime - 408 780 431 130 314 660

Feistel-MiMC - 37 980 39 883 31 894

Griffin - 113 670 120 450 90 455

Neptune - 20 265 20 453 18 825

Sinsemilla 137 600 - - -
Pedersen Hash 54 027 - - -
SHA-256 319.1 - - -
Blake2b 189.6 - - -
Blake2s 213.3 - - -
SHA3-256 419.2 - - -

Table 10: Plain performance comparison in nano-seconds (ns) of different hash
functions over prime fields with primes pBN254

, pBLS381
, pST. Implemented in Rust.

factor of 3 for the total hashing time. Compared to the previous state-of-the-
art one can observe that RC is significantly faster. More concretely, RC is faster
than the previously fastest hash function over finite fields (i.e., Poseidon)
by a factor of 5 for pBN254 and pBLS12, and by a factor 16 for the pST prime
field. The Sinsemilla hash algorithm, which also leverages lookup tables
for a faster plain evaluation, is thereby slower than RC by a factor of up to
125, while the traditional Pedersen Hash is only slower by a factor of 49.
Compared to fast binary hash function, RC is only slower by a factor of 5 than
Blake2, the fastest benchmarked hashing algorithm. Blake2 in turn however
requires 7 times more Plookup gates than RC.

To further highlight the requirement for fast plain performance of ZK-
friendly hash functions, we compare the runtime to accumulate a Merkle
tree with 220 elements in Section 9.8.2. One can observer, that using tradi-
tional hash function, accumulating the Merkle tree already requires 3 s, the
runtime is significantly worse when using ZK-friendly hash functions, such
as Poseidon and Rescue. RC with its fast plain performance, however, is
only insignificantly slower then traditional hash functions, making it the
optimal choice for use case which require fast plain performance, as well as
fast ZK-proof generation.
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Hashing algorithm BN BLS ST
s s s s

RC - 3.91 3.97 1.36

Poseidon - 22.6 23.8 22.3
Rescue - 497.2 520.6 396.8
Rescue-Prime - 436.3 458.4 324.3
Feistel-MiMC - 42.2 44.3 34.1
Griffin - 122.7 129.6 95.0
Neptune - 24.4 26.1 24.1

Sinsemilla 144.9 - - -
Pedersen Hash 60.1 - - -
SHA-256 0.624 - - -
Blake2b 0.225 - - -
Blake2s 0.222 - - -
SHA3-256 0.439 - - -

Table 11: Performance comparison in seconds (s) of different hash functions over
prime fields with primes pBN254

, pBLS381
, pST for computing a Merkle tree with 220

elements. Implemented in Rust.

Technology (bmvit), the Austrian Federal Ministry for Digital and Economic
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9.a Bijectivity of Bar

Lemma 12. The function Bar permutes Fp.

Proof. We work with the standard representations of Fp and Zs1 , . . . , Zsn .
For R := Zs1 × . . .×Zsn let

R<p := {(z1, . . . , zn) ∈ R :
n

∑
i=1

zibi < p}.

The idea of the proof reads as follows: we show that

1. Decomp is injective and Decomp(Fp) ⊆ R<p;

2. SBox(R<p) ⊆ R<p and deduce that SBox permutes R<p;

3. Comp is injective on R<p.

With these statements, it follows at once that the function Bar : Fp → Fp
given by

Bar = Comp ◦ SBox ◦ Decomp

is injective and hence surjective as well. In particular, we see that Decomp and
Comp are indeed inverse functions over R<p and Fp.

Ad (1), (3): the statement Decomp(Fp) ⊆ R<p is a direct consequence of
the definition of Decomp. For the injectivity of Decomp we show that it has a
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left inverse function on R<p which is precisely given by Comp restricted to
R<p. Indeed, for x ∈ Fp it holds

(Comp ◦ Decomp)(x) = Comp(x1, . . . , xn)

=
n

∑
i=1

xibi mod p =
n

∑
i=1

xibi = x.

The second equality is just the definition of Comp, the third equality uses the
fact that Decomp(Fp) ⊆ R<p, and the fourth equality is true by definition of
Decomp. Similarly, we obtain for (z1, . . . , zn) ∈ R<p

(Decomp ◦ Comp)(z1, . . . , zn)

= Decomp(
n

∑
i=1

zibi mod p)

= Decomp(
n

∑
i=1

zibi) = (z1, . . . , zn)

and hence that Comp restricted to R<p has the left inverse Decomp.
Ad (2): Since SBox is the parallel application of n smaller bijections

it is clearly injective. The only assertion to prove is hence the inclusion
SBox(R<p) ⊆ R<p. Let (x1, x2, . . . , xn) ∈ R<p and let

(y1, . . . , yn) = (S(x1), . . . , S(xn))

denote the image under SBox. Now recall that v = mini vi where

(v1, v2, . . . , vn) = Decomp(p− 1),

and let m be the smallest index such that xm < v. If there is no such m, then
all S-boxes S are identity functions and the assertion holds. If such an m
exists, then for all i < m we have yi = S(xi) = xi by the definition of the
Si. Moreover, for i = m we have ym = S(xm) < v ≤ vm . For the remaining
part we highlight the following property of our decomposition (which has
an analogous counterpart in ordinary base-b expansion): for every 1 ≤ k ≤ n
it holds

n

∑
i=k+1

(si − 1)bi =
n

∑
i=k+1

(si − 1)∏
l>i

sl

=
n

∑
i=k+1

(
∏

l>i−1
sl −∏

l>i
sl

)
= ∏

l>k
sl − 1 = bk − 1.

Informally speaking, this translates to the statement “the sum of the maximal
values of the first l = n− k least significant positions equals the value of the
next greater significant position minus 1”. We use this fact and deduce

n

∑
i=1

yibi =
m−1

∑
i=1

yibi + ymbm +
n

∑
i=m+1

yibi︸ ︷︷ ︸
<bm

<
m−1

∑
i=1

xibi + (ym + 1)bm ≤
m−1

∑
i=1

xibi + vmbm

≤
m−1

∑
i=1

vibi + vmbm ≤ p− 1.
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Hence, SBox(x1, . . . , xn) ∈ R<p which implies that SBox permutes R<p. The
second last inequality uses the property that for u ∈ Fp with u ≤ p− 1, the
decompositions (u1, . . . , un) and (v1, . . . , vn) = Decomp(p− 1) ∈ R satisfy
for any 1 ≤ k ≤ n the inequality

k

∑
i=1

uibi ≤
k

∑
i=1

vibi.

In other words, “if u is smaller than or equal to v, the sum of the values
of any first k most significant digits of u is smaller than or equal to the
corresponding sum for v.” For u = v, the statement is obvious. For u ̸= v,
there is at least one index 1 ≤ i ≤ n with ui < vi; let t denote the minimal
index with this property. If k < t, then ∑k

i=1 uibi = ∑k
i=1 vibi by definition of

t. If k ≥ t then

k

∑
i=1

uibi =
t−1

∑
i=1

uibi + utbt +
k

∑
i=t+1

uibi

<
t−1

∑
i=1

uibi + (ut + 1)bt ≤
t−1

∑
i=1

vibi + vtbt

≤
k

∑
i=1

vibi.
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Based on the publication

[HLL+22] Manuel Hauke, Lukas Lamster, Reinhard Lüftenegger, and Chris-
tian Rechberger. “A Signature-Based Gröbner Basis Algorithm with
Tail-Reduced Reductors (M5GB).” in: IACR Cryptology ePrint Archive
(2022), p. 987. url: https://eprint.iacr.org/2022/987

Abstract Gröbner bases are an important tool in computational algebra
and, especially in cryptography, often serve as a boilerplate for solving
systems of polynomial equations. Research regarding (efficient) algorithms
for computing Gröbner bases spans a large body of dedicated work that
stretches over the last six decades. The pioneering work of Bruno Buchberger
in 1965 can be considered as the blueprint for all subsequent Gröbner basis
algorithms to date. Among the most efficient algorithms in this line of
work are signature-based Gröbner basis algorithms, with the first of its
kind published in the late 1990s by Jean-Charles Faugère under the name
F5. In addition to signature-based approaches, Rusydi Makarim and Marc
Stevens investigated a different direction to efficiently compute Gröbner
bases, which they published in 2017 with their algorithm M4GB. The ideas
behind M4GB and signature-based approaches are conceptually orthogonal to
each other because each approach addresses a different source of inefficiency
in Buchberger’s initial algorithm by different means.

We amalgamate those orthogonal ideas and devise a new Gröbner ba-
sis algorithm, called M5GB, that combines the concepts of both worlds. In
that capacity, M5GB merges strong signature-criteria to eliminate redundant
S-pairs with concepts for fast polynomial reductions borrowed from M4GB.
We provide proofs of termination and correctness and a proof-of-concept
implementation in C++ by means of the Mathic library. The comparison with
a state-of-the-art signature-based Gröbner basis algorithm (implemented
via the same library) validates our expectations of an overall faster run-
time for quadratic overdefined polynomial systems that have been used
in comparisons before in the literature and are also part of cryptanalytic
challenges.

Keywords Gröbner basis, Signature-based, M4GB, Tail-reduction

10.1 Introduction

Gröbner bases are an essential tool in commutative algebra and algebraic
geometry. Several important applications in these areas are (a) the Ideal
Equality Problem, characterizing the equality of two ideals through the re-
duced Gröbner bases of their sets of generators, (b) the Ideal Membership
Problem, characterizing whether a polynomial belongs to a given ideal via
the division remainder modulo the respective (reduced) Gröbner basis, and
(c) the Elimination Problem, eliminating variables from a system of polyno-
mial equations through, e.g., lexicographic Gröbner bases. There are many
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more applications of Gröbner bases in signal and image processing, robotics,
automated geometric theorem proving, and solving systems of polynomial
equations [BW98], [Abl10].

Especially in cryptography, both public-key and symmetric cryptography,
the problem of solving systems of polynomial equations arises in different
contexts, ranging from block cipher and hash function analysis [ACG+19;
BPW06] to the analysis of asymmetric encryption and signature schemes
[TPD21; FJ03]. The applicability of Gröbner bases to cryptanalysis has been
one of the driving factors for research on efficient algorithms for computing
them. In general, the pioneering Buchberger algorithm for computing Gröb-
ner bases devised by Bruno Buchberger and published in 1965 [Buc65; Buc76]
can be considered highly inefficient, mainly due to the excessive amount of
redundant computations that do not provide any new information for the
eventual Gröbner basis. In more detail, the Buchberger algorithm repeatedly
reduces so-called S-pairs [CLO15, p.85], adds all non-zero remainders to
the current basis and repeats this process until all S-pairs reduce to zero
with respect to the current basis. During the process of repeatedly reducing
S-pairs, often many of those S-pairs reduce to zero and thus they do not
provide any new information. To tackle this inefficiency, further criteria
have been developed to streamline the Buchberger algorithm by detecting
and discarding S-pairs that would otherwise reduce to zero. The work by
Gebauer and Möller [GM88] implements these criteria and presents a more
efficient instantiation of the Buchberger algorithm.

A different approach, which was initially investigated by Buchberger
[Buc83a; Buc83b] and Lazard [Laz79; Laz83; Laz01] and further developed
by Faugère in 1999 [Fau99], relates the problem of reducing S-pairs to the
problem of reducing matrices. The basic underlying idea is that for a degree
bound large enough and all term multiples of the initial polynomials up
to this degree, the matrix containing the corresponding coefficients of the
term multiples yields, after Gaussian row reduction, a Gröbner basis of
the ideal generated by the initial polynomials. Rather than choosing a
degree bound large enough and constructing one large matrix, Faugère’s F4

algorithm in [Fau99] constructs matrices for smaller degrees, row-reduces the
corresponding smaller matrices and continues in this fashion until a Gröbner
basis is found. Compared to the Buchberger algorithm, the advantage of F4
is that S-pairs are reduced in parallel rather than sequentially. This advantage
is the main source of the particular efficiency of F4 and some of the fastest
Gröbner basis implementations to date rely on this approach, as, e.g., the
implementation in the computer algebra system Magma.

Signature-based Gröbner basis algorithms are another line of work re-
garding more efficient instantiations of the Buchberger algorithm. In the
F5 algorithm introduced by Faugère in 2002 [Fau02], so-called signatures
help to keep track from which initial polynomials some S-pair has been
calculated. The information from the signatures allows to detect whether a
S-pair reduces to zero without having to carry out the reduction. Thus, the
main idea of signature-based criteria is reducing the amount of redundant
reductions. For a particular class of polynomial systems, called regular
sequences, F5 does not carry out any redundant reduction at all. The F5

algorithm and other signature-based Gröbner basis algorithms have later
been incorporated into the rewrite framework published by Christian Eder
and Bjarke Roune [ER13]. The rewrite framework generalizes many different
(signature-based) approaches for computing Gröbner bases and unifies them
under the umbrella of a single comprehensive framework.
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Compared to the approaches discussed above, Rusydi Makarim and
Marc Stevens present an orthogonal concept for computing Gröbner bases
[MS17]: their M4GB algorithm is based on the Gebauer-Möller version of
the Buchberger algorithm, with the difference that reductions of S-pairs
are carried out with tail-reduced reductors. In addition, these tail-reduced
reductors are stored for potential later reuse. The main advantage of this
approach is that no new reducible terms are introduced into the reduction
remainder, which allows reducing S-pairs in a term-wise and recursive
manner. This results in a fast polynomial reduction routine. The downside,
however, is that any reductor has to be tail-reduced first, and the overall
advantage of this approach depends on how often the algorithm is able to
reuse already constructed and stored tail-reduced reductors.

10.1.1 Our Contribution

We present a new algorithm for computing Gröbner bases, called M5GB,
which combines the strengths of M4GB [MS17] and signature-based Gröbner
basis algorithms like F5 [Fau02]. We provide proofs of termination and
correctness for M5GB. In particular, we show how one can adapt the fast
reduction routine used in M4GB to work with the signature-based criteria
from F5-like algorithms. This creates a generic optimization that can be
used for any signature-based Gröbner basis algorithm that does not use a
matrix approach for polynomial reduction. The question of merging the fast
reduction routine from M4GB with signature-based criteria arises naturally but
resolving it is a non-trivial task that requires technical care, especially when
it comes to algorithmic efficiency. To date, and to the best of our knowledge,
no algorithm in this line of work has been published yet.

For a proof-of-concept implementation, we concentrate on the signature-
based algorithm SB from Stillman and Roune [RS12], also called SigGB in
the reference implementation [Rou13b], and adapt this algorithm to be
compatible with an M4GB-like reduction routine. We show that using the
same library for implementing SB and M5GB, we obtain a significant, scalable
speed-up for dense, quadratic, overdefined systems. These systems are used
for benchmark purposes in the original article about M4GB by Makarim and
Stevens [MS17] and are posed as a problem instance in the MQ Challenge
[Tak15].

10.1.2 Related Work

Compared to our approach for computing Gröbner bases in M5GB, there exist
related but different approaches in the literature. Here, we briefly discuss
the main conceptual differences. One difference applies to all discussed algo-
rithms below: we state our M5GB algorithm in the rewrite framework [ER13],
while the below algorithms adopt the basic structure of F5. The rewrite
framework comprises the original F5 algorithm as a special instantiation.

F4/5 Albrecht and Perry [AP10] describe an algorithm that combines F4-
style reduction with F5-like signature criteria. This means, [AP10] integrates
- like M5GB - a fast reduction routine with signature-based criteria to discard
S-pairs. The difference to M5GB is that their algorithm F4/5 uses the same
linear algebra approach for reducing S-pairs as F4, and thus conceptionally
resembles Matrix-F5 [BFS15] rather than M5GB. Hence, it is the reduction of
S-pairs that distinguishes F4/5 and M5GB: the former algorithm uses F4-style
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reduction, while the latter one uses M4GB-style reduction. For a more detailed
differentiation between the respective reduction routines in F4 and M4GB we
refer to [MS17, Chapter 4.2].

F5C and F5R Eder and Perry [EP10] present a variant of Faugère’s original
F5 algorithm which works with reduced intermediate Gröbner bases rather
than non-reduced ones. This results in fewer S-pairs to consider for checking
the signature criteria and, eventually, fewer polynomial reductions. Eder and
Perry differentiate their approach called F5C, “F5 Computing by reduced
Gröbner bases”, from the approach devised by Stegers [Sho09] for which
they use the denomination F5R, “F5 Reducing by reduced Gröbner bases”.
In [Sho09], Stegers’ F5R algorithm uses reduced intermediate bases only for
polynomial reductions, however, it still uses unreduced intermediate bases
for computing new S-pairs. In contrast, F5C uses reduced intermediate bases
for, both, polynomial reductions and generating new S-pairs. To summarize,
the advantage of F5R over F5 is faster polynomial reductions, while the
advantage of F5C over F5R is a lower number of S-pairs to compute. The
main conceptual difference between F5C and M5GB is, again, the reduction
routine: F5C uses ordinary polynomial reduction while M5GB uses M4GB-style
reduction.

10.2 Preliminaries

Any work treating the theory behind Gröbner bases and, in particular, de-
scribing different algorithms to compute Gröbner bases is faced with the
challenge of having to introduce a significant amount of definitions and
denominations. On top of that, there are often considerable notational dif-
ferences between different authors. This being said, in Section 10.2.1 we
pay attention to stay close to commonly shared denominations and to find a
balance between a rigorous and compact nomenclature.

Furthermore, in Section 10.2.2 and Section 10.2.3 we give brief accounts
of M4GB and signature-based algorithms for computing Gröbner bases, re-
spectively. We describe these algorithms only to the extent that we are able
to sketch their core ideas needed for our presentation of M5GB in Section 10.3.
We assume some familiarity with these algorithms from the reader, although
the core ideas should become apparent without any deeper prior knowledge.

10.2.1 Preliminary Definitions

We work with polynomials in the variables X1, . . . , Xn over a finite field
F, i.e., with the polynomial ring P := F[X1, . . . , Xn]. A term is a power
product of variables, while a monomial is a product of coefficient and
term. By T we denote the set of all terms in P. For a polynomial f ∈ P,
the set T( f ) shall denote the set of all terms of f . For a term t ∈ T( f ),
the corresponding coefficient is denoted as Ct( f ). We define the free P-
module Pm with generators e1 := (1, 0, . . . , 0), . . . , em := (0, . . . , 0, 1). As for
polynomials, a module term is an element in Pm of the form tei, while a module
monomial is an element of the form c · tei, for c ∈ F, t ∈ T and 1 ≤ i ≤ m.
The set of all module terms in Pm is denoted by Tm.

Throughout this article, we write module elements f , g, . . . in Pm in
boldface, whereas polynomials f , g, . . . in P are written in normal style. We
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denote a term order on T and a compatible order extension1 to module
terms in Tm by the same sign ≤. We believe, this ambiguity is justified by an
easier notation and causes no deeper confusion because the context clarifies
whether ≤ relates polynomials or module elements. For a given term order≤,
the leading term of a polynomial f ∈ P, denoted by LT( f ), is defined as the ≤-
maximum term in T( f ) and the leading coefficient as the associated coefficient
of LT( f ). In a similar fashion, the module leading term MLT( f ) and module
leading monomial MLM( f ) are defined for a module element f ∈ Pm and a
compatible order extension ≤. The polynomial Tail( f ) := f − LC( f ) · LT( f )
is called the tail of f.

Given a finite set of non-zero polynomials F := { f1, . . . , fm} ⊆ P \ {0},
the module homomorphism φF : Pm → P given by (p1, . . . , pm) 7→ ∑i pi fi
connects the module and polynomial perspective. Usually, the underlying set
F is clear, therefore we often omit the subscript and just write φ instead of φF.
Using the canonical generators of Pm, we can also write φ : ∑i piei 7→ ∑i pi fi.
Any module element h ∈ Pm with φ(h) = 0 is called a syzygy. The signature
of a module element f ∈ Pm is given by sig( f ) := MLT( f ) ∈ Tm; of course,
always relative to some compatible order extension ≤.

For a finite set of polynomials G ⊆ P \ {0}, a non-zero polynomial f is
said to be reducible with respect to G, if there exist a term t ∈ T( f ) and an
element g ∈ G such that LT(g) | t. If u := t/LT(g) and c := Ct( f ), we denote
the reduction itself by f −→G f − c · ug.

The element c · ug is called a reductor of f . If t = LT( f ), the reduction step
is also called a top-reduction, otherwise a tail-reduction and the corresponding
reductors are called top-reductor and tail-reductor, respectively. If a polynomial
is not reducible (or tail-reducible) with respect to G, it is called irreducible
(or tail-irreducible) with respect to G. For the sake of notational convenience,
any non-zero scalar multiple d · ug, d ∈ F \ {0}, is also called a reductor of f .
This is why we often drop the scalar coefficient and just call ug a reductor
of f . If f reduces to h ∈ P in finitely many reduction steps with respect to
G, we denote this by f −→G,∗ h. This also includes the case in which no
reduction steps are done at all, hence f −→G f is trivially valid. We call a
polynomial f ′ ∈ P to be a normal form of f with respect to G if f −→G,∗ f ′ and
f ′ is irreducible with respect to G. We use the denomination

f mod G := { f ′ ∈ P : f ′ a normal form of f w.r.t. G}

to write down the set of all normal forms of a polynomial f .

Remark 1. Usually, we omit the specification with respect to G and presume
it to be clear from the context; whenever necessary, we explicitly mention the
underlying set G. The same applies for Sig-reductions defined below. Fur-
thermore, we often do not mention nor incorporate the underlying (module)
term order in our definitions and terminology. Again, the aim is having a
lighter notation.

For a finite set of module elements G ⊆ Pm \ {0}, a non-zero module
element f ∈ Pm \ {0} is said to be Sig-reducible with respect to G if there
exist a term t ∈ T(φ( f )) and an element g ∈ G such that the following
two properties hold: (i) LT(φ(g)) | t, in which case we set u := t/LT(φ(g));
(ii) sig( f ) ≥ sig(ug). If these properties are fulfilled, we define f − c · ug
as the outcome of the Sig-reduction, where c := Ct(φ( f ))/LC(φ(g)), and
denote the Sig-reduction itself by f −→G f − c · ug. In particular, the element

1 An order extension is called compatible, if ∀u, v ∈ T ∀1 ≤ i ≤ m : u ≤ v⇒ uei ≤ vei .
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c · ug is called a Sig-reductor of f . If sig( f ) > sig(ug), we call it a regular
Sig-reduction, otherwise a singular Sig-reduction. We denote a regular Sig-
reduction by f −→G,reg h and, analogously, any finite number of regular Sig-
reductions on f to a module element h by f −→G,reg,∗ h. We say f −→G,∗ 0 if
f −→G,∗ h for a syzygy h. This notation is justified by φ(h) = 0. We believe,
the definitions of Sig-top-reduction, Sig-tail-reduction, Sig-irreducible, Sig-tail-
irreducible, regularly Sig-irreducible, regularly Sig-tail-irreducible, f −→G,∗ h
are clear without any further explication. In some cases it is convenient to
speak of ordinarily reducing a module element f ∈ Pm (i.e., without above
constraint (ii) regarding the signatures), when, in fact, we mean reducing the
corresponding polynomial φ( f ) ∈ P.

We say f ′ ∈ Pm is a (regular) Sig-normal form of f if f −→G,reg,∗ f ′

and f ′ is (regularly) Sig-irreducible. We denote by f mod G the set of all
Sig-normal forms of f with respect to G, and by f modreg G the set of all
regular Sig-normal forms with respect to G. For a pair of module elements
f , g ∈ Pm we define the S-pair of f and g as

Spair( f , g) :=
(

ℓ

LM(φ( f ))
f ,

ℓ

LM(φ(g))
g
)

:= (u f , vg)

where l := lcm(LT(φ( f )), LT(φ(g))). We call Spair( f , g) regular if sig(u f ) ̸=
sig(vg) and singular otherwise.

Let F := { f1, ..., fm} ⊆ P \ {0} be a set of polynomials, I := ⟨F⟩ the
ideal generated by F and s ∈ Tm a module term. A set of module elements
G ⊆ Pm \ {0} is defined to be a Sig-Gröbner basis of I up to signature s if

∀ f ∈ Pm : sig( f ) < s =⇒ f −→G,∗ 0.

The set G is called a Sig-Gröbner basis of I if G is a Sig-Gröbner basis up to
every s ∈ Pm (i.e., for all possible signatures s). The dependence on the set
F (and thus the ideal I) is implicitly contained in the condition f −→G,∗ 0,
since for φ = φF this implies φ( f ) −→φ(G),∗ 0.2

A total order ⪯ on G with sig( f ) | sig(g) =⇒ f ⪯ g, for all f , g ∈ G,
is called a rewrite order. We assume that all elements in G have distinct
signatures, hence, the notion of a rewrite order is well-defined. For s ∈ Tm,
f ∈ Pm and u ∈ T, the element u f ∈ Pm is called the canonical rewriter of
signature s with respect to G if G = ∅ or if sig(u f ) = s and f = max⪯{g ∈
G : sig(g) | s}. Instead of this bulky denomination, we often just say “the
canonical rewriter of s”, because the set G will be clear from the context.

10.2.2 M4GB Algorithm

In 2017 Rusydi Makarim and Marc Stevens published a new algorithm for
computing Gröbner bases called M4GB. The main innovation of M4GB is a
fast polynomial reduction routine that only uses tail-reduced reductors in
each reduction step. In addition, M4GB maintains a set of already used (tail-
reduced) reductors and thus allows to reuse reductors. We describe a variant
of M4GB which is sketched in the performance section of [MS17, Sec. 4.1].
This variant outputs the same result as the original M4GB algorithm, albeit it
is considered more performant due to time savings in the update process
of the set of reductors. The authors of M4GB call this variant a lazy variant,
whereas we simply refer to this variant as M4GB. Here, we only describe the

2 The notion of Sig-Gröbner bases is motivated by the fact that if G is a Sig-Gröbner basis, then
φ(G) is a Gröbner basis.
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core ideas and those parts of M4GB that are relevant for our new Gröbner
basis algorithm M5GB in Section 10.3. In particular, we focus on the reduction
of polynomials in M4GB. For a more detailed description of M4GB we refer the
reader to the original article [MS17].

The M4GB algorithm essentially follows the basic outline of the textbook
Buchberger algorithm [Buc76], which is “Select, Reduce, Update”: selecting
an S-pair, reducing it, and adding the reduced S-pair to the current basis
in case it is nonzero. Whenever a nonzero reduced S-pair is added to the
current basis, the set of S-pairs is updated. In M4GB, updating the set of
S-pairs is achieved via the Gebauer-Möller criteria [GM88]. This process is
repeated until all S-pairs have been processed. In addition to the basic “Select,
Reduce, Update” triad, M4GB is characterised by the following two distinct
properties: (a) it performs reductions only with tail-reduced reductors and,
(b) it maintains a list of already used (tail-reduced) reductors for future
use. The benefit of these two properties are faster reductions because (b)
allows to reuse an already constructed (tail-reduced) reductor instead of
re-constructing it again, while (a) ensures that during a reduction no new
reducible terms are introduced into the resulting polynomial.

More formally, let G denote the current basis and TG( f ) the set of re-
ducible terms of f ∈ P with respect to G. Assume M4GB reduces a term t in a
polynomial p by an appropriate reductor m and m is not tail-irreducible with
respect to G. Then, for further reducing the result of the reduction p−m, all
terms in

TG(p−m) = (TG(p) ∪ TG(m)) \ {t}
would have to be reduced modulo G. However, if m is tail-irreducible we
have by definition TG(m) ⊆ {LT(m)} = {t}, hence

TG(p−m) = TG(p) \ {t},

and only terms in T(p) \ {t} need to be reduced modulo G. This is the main
conceptual advantage of M4GB and its fast reduction routine.

Throughout all computations, M4GB maintains a set of reductors M ⊇ G,
i.e., a set of monomial multiples of the current basis elements. All elements
in M have unique leading terms, which is why the current basis G can
be referenced only by its leading terms L. Nevertheless, we refer to L as
the intermediate (or current) basis. The original formulation of M4GB in
[MS17] proactively updates the whole set M in advance whenever a new
basis element is generated. In contrast, the variant of M4GB that we describe
(and that the authors of [MS17] implement) updates the elements in M only
on-demand.3 This means, only when an element m ∈ M is reused, the
algorithm checks if it needs to be tail-reduced with respect to the elements
referenced by L. This leads to a lazy implementation of the update process of
M. Although not explicitly stated in [MS17], for this lazy variant of M4GB the
authors implicitly use the concept of generations: the generation of a reductor
m ∈ M is the cardinality |L| of the intermediate basis L when m was added
to M. Keeping track of the generation has the following purpose: whenever
a reductor m ∈ M is reused during the execution of M4GB and the generation
of m is equal to the current generation, then we know m is tail-irreducible
with respect to the current basis L and it can be used reused without any
further considerations. If the generation of m is strictly smaller than the
current generation, m needs to updated.

3 When we speak of updating the set of reductors M, this is conceptionally different from updating
the set of S-pairs. The former one is specific to M4GB, while the latter one is an essential feature
of all Gröbner basis algorithms.
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10.2.3 Signature-Based Algorithms

In the textbook version of the Buchberger algorithm, many of the S-pairs will
be reduced to zero, which means they do not contribute any new information
to the eventual Gröbner basis. Hence, a reduction to zero is redundant work,
and it would be nice to have an oracle detecting whether or not an S-pair
will be reduced to zero without having to carry out the actual reduction.
There are criteria known to improve the textbook Buchberger algorithm
in this regard (i.e., Buchberger’s Product and Chain Criterion, realized in
the Gebauer-Möller instantiation [GM88] of the Buchberger algorithm), but
still many redundant reductions to zero might occur. In the following, a
change of perspective helps to establish even stronger criteria for detecting
redundant reductions to zero. Let f be a polynomial in the ideal generated
by the polynomials f1, . . . , fm ∈ P, i.e., f ∈ ⟨ f1, ..., fm⟩. Then f can be
written as f = ∑m

i=1 pi fi, for some polynomials p1, . . . , pm ∈ P (which are
not necessarily unique). This notation of f motivates a new perspective:
f cannot only be considered as polynomial but also as module element
(p1, . . . , pm) ∈ Pm. Adopting the module’s perspective, it is possible to
introduce a new concept called signatures for detecting unnecessary S-pair
reductions. The main idea behind signatures is, roughly speaking, to keep
track of how the polynomials generated during a Gröbner basis computation
depend on the original input polynomials. More concretely, this means a
signature-based algorithm not only processes information coming from a
polynomial f itself but also from the vector (p1, . . . , pm) constituting the
relation f = ∑i pi fi, where the fi would be the original input polynomials.
On the one hand, this idea aims at exploiting zero-relations between the
input polynomials (i.e., syzygies from the module perspective) to detect
redundant reductions; on the other hand, it uses the (more subtle) fact that
different polynomial combinations of the input polynomials (i.e., different
module elements from the module perspective) can have the same reduction
remainder. Thus only one of these reductions need to be performed. The
former observation is the basis for the so-called syzygy criterion, while the
latter observation leads to the rewrite-criterion (see Line 8 and 4, respectively,
in Algorithm 15).

With above motivation of signatures at hand, we state the signature equiv-
alent of Buchberger’s S-pair criterion. The fundamental theorem underlying
all signature-based algorithms is the following result.

Theorem 18 ([ER13], Theorem 3). Let s ∈ Tm be a module term and G ⊆ Pm

be a finite set of module elements. If for all p ∈ Pm with p a regular S-pair of
elements in G or p a canonical basis vector ei (and sig(p) < s, resp.) it holds that
p modreg G contains a syzygy or a singularly Sig-top-reducible element, then G is
a signature Gröbner basis (up to s, resp.).

The following two observations explicate how signatures help to detect
unnecessary reductions to zero in advance: assume we have a Gröbner basis
G ⊆ Pm up to signature s ∈ Tm. First, one can show that for any two
regularly Sig-irreducible module elements f , g ∈ Pm it holds

sig( f ) = sig(g) = s =⇒ φ( f ) = c · φ(g)

for some c ∈ F \ {0}. Second, if there exists a syzygy h ∈ Pm with sig(h) | s,
then

∀ f ∈ Pm with sig( f ) = s : f −→G,∗ 0.
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The salient points are: (a) we only need to Sig-reduce one element with a
given signature (we will choose the one which is ‘easier’ to handle). Hence, in
a signature-based algorithm, instead of an S-pair with a given signature, we
are free to choose any module element with the same signature and reduce
this element to check whether the current signature provides new information
for our eventual Gröbner basis. This approach is called rewriting and Gröbner
basis algorithms based on this approach are called rewrite algorithms [ER13];
(b) if we know that the signature of the element to be reduced is a multiple
of the signature of a syzygy, we can skip the computation of the reduction at
all. This is why a signature-based algorithm always keeps track of syzygy
signatures and stores them separately.

This is all we intend to say about the ideas behind signature-based and
rewrite Gröbner basis algorithms and, in particular, we do not state a pseudo
code for them. The basic ideas we adopt from the signature and rewriting
approach for our M5GB algorithm are evident from Algorithm 15. For a more
in-depth motivation and treatment of signature-based and rewrite Gröbner
basis algorithms we refer to the comprehensive survey article [EF17].

10.3 M5GB Algorithm

In this section, we present our new Gröbner basis algorithm M5GB that
amalgamates the core ideas of (signature-based) rewrite algorithms with
the main ideas of M4GB. For this amalgamation to be viable, we introduce
a new concept called signature flags. On a high level, signature flags play
a similar role as generations in M4GB and allow to efficiently fuse the ideas
behind signature-based algorithms and M4GB, respectively. As such, M5GB
is an algorithm which aims to combine the strengths of both worlds: (a)
fast reduction of polynomials due to the M4GB-like reduction routine; (b)
strong criteria for discarding redundant S-pairs adopted from signature-
based algorithms.

10.3.1 New Definitions

Since M5GB works with Sig-tail-irreducible reductors up to some signature
s, we explicate this concept in a formal definition. In the following let
G ⊆ Pm \ {0} be a non-empty and finite set of non-zero module elements.

We call a term t ∈ T Sig-reducible with respect to G and up to s, if there exist
u ∈ T, g ∈ G such that LT(φ(ug)) = t and sig(ug) < s. A module element
f ∈ Pm is called Sig-reducible with respect to G and up to s, if there exists a
term t ∈ T(φ( f )) that is Sig-reducible with respect to G and up to s. We
denote such a reduction step by f −→G,s f − c · ug, for an appropriate scalar
c ∈ F \ {0}. For a given set of terms D ⊆ T(φ( f )), we call f Sig-reducible
with respect to G, D and up to s if there exists a reductor ug of f such that
LT(φ(ug)) = d for some d ∈ D and sig(ug) < s. Such a reduction step is
denoted by f −→G,s,D f − c · ug.

Remark 2. In particular, for s = sig( f ) and D = T(φ( f )), the reduction
f −→G,s,D f − c · ug describes a regular Sig-reduction f −→G,reg f − c ·
ug. This means, our new view −→G,s,D on signature-based reductions
contains regular Sig-reductions as special case. Moreover, if we choose
D = T(Tail(φ( f ))), we allow all regular Sig-reductions except for a top-
reduction. These two special cases are the instantations of D we are most
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interested in, although the statements below, e.g., Lemma 13, can be applied
for arbitrary D ⊆ T(φ( f )).

As highlighted in Section 10.2.1, we often do not explicitly mention the set
G. In the same manner, we define f −→G,s,∗ h, f −→G,s,D,∗ h, Sig-irreducible
up to s, Sig-irreducible with respect to D and up to s, Sig-tail-irreducible up to
s. A normal form of f with respect to G and up to s is an element f ′ ∈ Pm

that is Sig-irreducible with respect to G and up to s and for which it holds
f −→G,s,∗ f ′. We denote the set of all normal forms of f with respect to G
and up to s by f mods G. For a set of terms D ⊆ T(φ( f )), a normal form of f
with respect to G, D and up to s is an element f ′ ∈ Pm that is Sig-irreducible
with respect to G, D and up to s such that f −→G,s,D,∗ f ′. We denote the set
of all normal forms of f with respect to G and up to s by f mods,D G.

As in M4GB, the generation gen(m) of a reductor m ∈ M is defined as the
cardinality of the set G at the time m is constructed. 4 We denote the instance
of G at this time with Ggen(m). For a module element f ∈ Pm the signature
flag with respect to G is defined as

Flag ( f ) := min{sig(vg) : g ∈ G, v ∈ T, vg a tail-reductor of f},

or Flag ( f ) := ∞ if f is tail-irreducible. The symbol ∞ can be understood as
a formal symbol added to Tm with the simple property that

∀s ∈ Tm : s < ∞.

10.3.2 Description of M5GB

The overall structure of M5GB is depicted in Algorithm 15 and resembles the
basic structure of a rewrite Gröbner basis algorithm (as outlined in [ER13])
with signature-based criteria to discard redundant S-pairs (see Line 4, 5, 6)
and the fundamental “Select, Reduce, Update” triad from the Buchberger

algorithm [Buc76]. In particular, M5GB processes S-pairs in strictly increasing
signature and keeps track of syzygy signatures in a separate set H (Line 8).
If a new basis element is found (Line 10), the Update routine (Algorithm 16)
for the current basis G and the current set of S-pairs P is triggered. The steps
in Update are governed by the same principles as in any other signature-
based algorithm, with the difference, that Update detects whether a basis
element ei has been processed and thus extends the set of syzygy signatures
H accordingly (Algorithm 16, Line 3). The main innovations of M5GB are
incorporated into the reduction routine Reduce described in Algorithm 17.
In the following, we discuss the novel features as well as the intricacies of
Reduce more comprehensively.

4 Here, the term “constructed” also encompasses the case when m is updated, or in other words,
“re-constructed”.
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Algorithm 15: M5GB
Input: Non-zero input polynomials F = { f1, ..., fm}, a rewrite order, a

term order on T and a compatible order extension on Tm
Output: A Gröbner basis G of the ideal generated by F

1 G := ∅; M := ∅; H := ∅
2 P := {ei : i ∈ {1, ..., m}}
3 while P ̸= ∅
4 Select f ∈ P with minimal signature s = sig( f ) and ug the

canonical rewriter of s w.r.t G.
5 P := P\{p ∈ P : sig(p) = s}
6 if s is not divisible by some h ∈ H then
7 (M, f ′) := Reduce( f , φ( f ), s, M, G)
8 if f ′ = 0 then
9 H := H ∪ {s}

10 else
11 (G, P, H) := Update( f ′, G, P, H)
12 return φ(G)

Algorithm 16: Update
Input: Current basis G, set of S-pairs P and set of syzygy signatures

H, new basis element f
Output: Updated G, P and H

1 P := P ∪ {Spair( f , g) : g ∈ G, Spair( f , g) regular}
2 G := G ∪ { f}
3 if sig( f ) = ei then // f comes from a basis element ei
4 H := H ∪ {sig(φ(g)ei − φ(ei)g) : g ∈ G}
5 return (G, P, H)

As in M4GB, the Reduce routine keeps track of previously used reductors
and stores them in a set M. The key feature of M4GB, namely, working with
tail-reduced reductors, is implemented in Reduce as well. The difference to
M4GB and a crucial point is that whenever a reductor m ∈ Pm is added to
M, it need not be fully tail-irreducible with respect to G but only Sig-tail-
irreducible up to the current signature s. This property is an important part
of our efficient amalgamation of signature-based algorithms with M4GB: by
Theorem 18, signature-based algorithms work with regular Sig-reductions and
hence, only those terms in T(Tail(m))) need be reduced that have a reducer
with signature smaller than s. We formalized this particular property in the
definitions in Section 10.3.1.

Again, as in M4GB, elements in M are updated in a lazy manner, meaning
only on-demand when they are reused and not proactively whenever a new
basis element is added to G.

Remark 3. In the context of M5GB, updating an element of M alludes to the
process of restoring its Sig-tail-irreducibility with respect to the current basis
G and up to the current signature s.

Below, we consider the two scenarios when some element m ∈ M stops
being Sig-tail-irreducible and thus needed to be updated in case it was
reused:

1. A new element is added to G which regularly Sig-tail-reduces m.

2. An existing tail-reductor of m becomes a valid Sig-tail-reductor in light
of the current signature s.
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Algorithm 17: Reduce
Input: f ∈ Pm, polynomial p ∈ P with T(p) ⊆ T(φ( f )), signature s,

current basis G, current set of reductors M ⊆ Pm

Output: Possibly extended set M, Sig-normal form
f ′ ∈ f mods,T(p) G with respect to T(p) and up to s

1 f ′ := f
2 for t ∈ T(p) do
3 if ∃m ∈ M : LT(φ(m)) = t then
4 Select such m
5 m′ := m
6 if gen(m) < |G| then
7 M := M\{m}
8 (M, m′) := Reduce(m, Tail(φ(m)), s, G\Ggen(m), M)

9 if Flag(m) < s then
10 (M, m′) := Reduce(m′, Tail(φ(m′)), s, Ggen(m), M)

11 (M, m′) := UpdateM(M, m′, G)

12 else if Flag(m) < s then
13 M := M\{m}
14 (M, m′) := Reduce(m′, Tail(φ(m′)), s, G, M)
15 (M, m′) := UpdateM(M, m′, G)

16 f ′ := f ′ − Ct(φ( f ′)) ·m′

17 else if ∃g ∈ G : LT(φ(g)) | t, sig(ug) < s, u := t/LT(φ(g)) then
18 Select such g
19 (M, m′) := Reduce(ug, Tail(φ(ug)), s, G, M)
20 (M, m′) := UpdateM(M, m′, G)
21 f ′ := f ′ − Ct(φ( f ′)) ·m′

22 return (M, f ′);

The aspect in 2 needs some clarification. Assume, at the time m was added
to M it was regularly Sig-tail-irreducible up to some signature r but not
ordinarily tail-irreducible (i.e., φ(m) is not tail-irreducible with respect to
φ(G)). This means, at the time m was added to M there was some basis
element multiple ug which tail-reduced m but the reduction was not a
valid regular Sig-tail-reduction up to r, because r ≤ sig(ug). If the current
signature s fulfills s > sig(ug), the reductor ug becomes a valid reductor for
a regular Sig-tail-reduction.

To resolve (1), we use the concept of ‘generations’ (adopted from M4GB).
All reductors added to M are equipped with a generation (the cardinality
of G at the time m is created). Everytime a new basis element is added to
G, the generation increases and thus, any reductor in M being reused and
having a strictly smaller generation than the current one needs to be updated
(Algorithm 17, Line 6). To resolve (2), we use the new concept of ‘signature
flags’. All reductors added to M are equipped with a signature flag. The idea
of a signature flag is to define it as the minimal signature for which (2) occurs.
Consequently, if the signature flag of a reductor being reused is smaller than
the current signature, the reductor needs to be updated (Algorithm 17, Line
9 and 12).
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Algorithm 18: UpdateM
Input: Current set of reductors M, reductor m′ to be normalized and

equipped with generation and signature flag, current basis G
Output: Updated set M and updated m′

1 m′ := LC(φ(m′))−1 ·m′

2 Flag(m′) := min{Flag(t) : t ∈ T(Tail(φ(m′)))}
3 gen(m′) := |G|
4 M := M ∪ {m′}
5 return (M, m′)

10.3.3 Termination and Correctness

Before we prove termination and correctness, we want to shed more light on
the particular update process of reductors in Reduce. For this, we come back
to the two situations in Section 10.3.2 when a reductor m ∈ M stops being
Sig-tail-irreducible with respect to the current basis G and up to the current
signature s. Here, we state them more formally and by means of our new
definitions from Section 10.3.1. Case (1) in Section 10.3.2 corresponds to

∃t ∈ T(Tail(m)), g ∈ G \Ggen(m), v ∈ T : sig(vg) < s ∧ LT(φ(vg)) = t,

whereas case (2) is characterised by

∃t ∈ T(Tail(m)), g ∈ Ggen(m), v ∈ T : sig(vg) < s ∧ LT(φ(vg)) = t.

This is the reason why Reduce only needs to Sig-reduce with respect to
G \ Ggen(m) in Line 8 whenever an update due to an older generation is
necessary and the same reasoning applies to Line 10 and Ggen(m).

The outline of M5GB follows the same outline as a rewrite basis algorithm,
with only the reduction routine Reduce being different. Since M5GB always
calls Reduce with the arguments ( f , φ( f ), s, M, G) and it holds s = sig( f ), we
only need to prove correctness and termination of Reduce to argue correctness
and termination for M5GB. We begin with an important lemma. In essence,
Lemma 13 explains why Reduce correctly computes a Sig-normal form with
respect to a given set of terms D and up to signature s. We emphasize that
the usage of Sig-tail-irreducible reductors is crucial here, without it, the
statement would be wrong.

Lemma 13. Let f ∈ Pm, s ∈ Tm ∪ {∞} and G ⊆ Pm. Let TG,s,D( f ) denote the
set of all terms in D ⊆ T(φ( f )) that are Sig-reducible with respect to G and up to
signature s. For each t ∈ TG,s,D( f ), let mt denote a reductor of t with sig(mt) < s
which is Sig-tail-irreducible with respect to G and up to s. Then

f ′ := f − ∑
t∈TG,s,D( f )

ct( f ) ·mt ∈ f mods,D G

where the coefficients ct( f ) are defined by φ( f ) = ∑
t∈T( f )

ct( f )t.

Proof. Because all mt are Sig-tail-irreducible up to s, we have

TG,s,D( f ′) ⊆
(

TG,s,D( f ) ∪
⋃

t∈TG,s,D( f )

TG,s,D(mt)
)
\ TG,s,D( f ) = ∅,
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so it follows that f ′ is Sig-irreducible with respect to D and up to s. We are
left to show that f −→G,s,D,∗ f ′. To do so, we proceed inductively: assume
by hypothesis that for a fixed n ∈N, we have that

f −→G,s,D,∗ fn := f −∑
t∈S

ct( f ) ·mt

holds for arbitrary S ⊆ TG,s,D( f ) with |S| = n. If S = TG,s,D( f ), then f ′ = fn
and the claim holds trivially. Otherwise, let t0 ∈ TG,s,D( f ) \ S. We need
to show that fn −→G,s,D,∗ fn − ct0( f )mt0 . As sig( f ) = sig( fn), it suffices
to show that t0 ∈ TG,s,D( fn). As mt is Sig-tail-irreducible by assumption
for every t ∈ S, we have t0 /∈ ⋃t∈S T(mt) and in particular, t0 ∈ TG,s,D( fn)
follows. This concludes the proof.

Theorem 19. Reduce terminates and correctly computes a Sig-normal form f ′ ∈
f mods,T(p) G.

Proof. For termination, we note that whenever Reduce is processing a term
t in recursion level n ∈N0 and calls itself, all terms being processed in the
following recursion level n + 1 regarding t are strictly smaller than t. This
is because whenever Reduce calls itself in level n while processing a term t,
it calls itself on Tail(v) of some polynomial v with LT(v) = t and thus for
any subsequent term u in level n + 1 regarding t it holds u < t. Hence, the
recursion depth of Reduce must be finite. Since at a given recursion level only
finitely many terms are being processed, we conclude that Reduce eventually
terminates.

To argue correctness, in view of Lemma 13, it suffices to prove that for
every t ∈ T(p), a potential reductor m′

t is Sig-tail-irreducible up to s and
fulfills sig(m′

t) < s.
It is clear that Reduce reaches the end of a recursive path if and only

if it processes a reductor where it does not call itself anymore. Looking
at Algorithm 17, this is the case if and only if Reduce is being called with
( f , T(p), s, G, M) such that every t ∈ T(p) is either (i) Sig-irreducible with
respect to G and up to s or (ii) there already exists a reductor m ∈ M
with gen(m) = |G| and Flag(m) ≥ s. By the definitions of generation and
signature flag and by the construction of elements in M, (ii) is equivalent
with sig(m) < s and m being Sig-tail-irreducible with respect to G and
up to s. Using Lemma 13, we deduce that the reduction remainder f ′ ∈
f mods,T(p) G. If f ′ serves as a reductor m′

t in a recursion level above, note
that sig( f ) < s and hence, also sig( f ′) < s follows.

Corollary 6. The algorithm M5GB terminates and is correct.

Proof. The routines of Algorithm 15 and Algorithm 16 are essentially identical
to the algorithm RB in [ER13], where a short proof of termination and
correctness is provided. For a more detailed treatment we refer the interested
reader to [Hau20]. Thus we are left to show that the reduction routine in
Reduce terminates and outputs a Sig-normal form f ′ ∈ f mods,T(p) G, which
is done in Theorem 19.

10.4 Implementation & Performance

In this section, we discuss some implementation details and the performance
of our M5GB algorithm. We base our implementation on the Mathic C++-
library developed by Roune [Rou13a]. In Mathic, we integrate our algorithm
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as a new module into the MathicGB Gröbner basis module. Using the
Mathic framework allows us to directly compare the performance of M5GB
against the signature-based algorithm SB presented by Roune and Stillman
[RS12]. Keeping the same naming convention as in [RS12], we refer to
their signature-based Gröbner basis algorithm as SB. As we optimize our
implementation of the reduction routine outlined in Algorithm 17, there
are minor differences to the pseudocode. These differences have no impact
on the overall behaviour or correctness of the algorithm. Instead, they aim
to leverage the language-specific advantages of C++ to create a competitive
proof-of-concept implementation. The source code of our implementation of
M5GB is available under https://extgit.iaik.tugraz.at/krypto/m5gb.git.

We show that using the same library for implementing SB and M5GB, we
obtain a significant, scalable speed-up for dense, quadratic, overdefined
polynomial systems. These systems are used for benchmark purposes in the
original article about M4GB by Makarim and Stevens [MS17] and are posed as
a problem instance in the MQ Challenge [Tak15].

We also performed informal tests for other systems, e.g., some canonical
test systems in the literature like katsura, eco or cyclic. Most of the results
indicated that the performance of M5GB falls behind that of SB. We conjecture
several reasons behind these results. First, creating tail-reduced reductors is
time-consuming and, depending on the structure of the polynomial system,
may not yield an overall advantage compared to using ordinary reductors.
Second, due to the recursive nature of the M4GB-style reductions, we cannot
use the efficient data structures that Mathic uses to increase the performance
of their implementation. Lastly, and connected to the previous point, since
M5GB uses M4GB-style reduction, our algorithm also inherits the disadvantages
of M4GB. This is further evidenced by the outcomes of informal comparisons
between M4GB and M5GB. Although these two algorithms are implemented
in a substantially different way, we found that whenever M5GB performed
poorly this also was the case for M4GB. However, to provide a more reliable
conclusion in this regard, further and more systematic experiments are
needed. This, as well, includes implementing M4GB and M5GB in a more
comparable manner. We leave this open for future work.

10.4.1 Implementation Details

The original signature-based algorithm SB of Roune and Stillman [RS12;
Rou13b] does not use signature flags and generations. Thus, we extend the
underlying data structures such that generations and signature flags are
supported. Both generations and signature flags are implemented on term
and polynomial granularity. Each polynomial stores its generation as an
integer value. An unordered map I, that maps term hashes to generations,
stores the generations of irreducible terms. We do not need to store additional
information for reducible terms, as they always cause a reducer lookup in
the current basis or a lookup in the current set of tail-reduced reductors M.

Contrary to the pseudocode, we do not explicitly calculate and store
signature flags when terms and module elements are stored in I or M.
Instead, we only store the information on whether a term has a dividing
leading term in the base. Only those terms may have a signature flag that
is not ∞. We encode this information using a single bit in the generation
integer. If a term or polynomial has a finite flag, we calculate and store the
actual signature flag on the first subsequent access. This approach allows
us to calculate signature flags only for elements where the flag is actually

https://extgit.iaik.tugraz.at/krypto/m5gb.git
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needed by the algorithm. Thus, we avoid unnecessary flag computations and
also reduce the memory overhead. For systems where most signature flags
are infinite, this optimization allows us to skip most of the flag logic, which
leads to a further increase in the performance of our implementation.

10.4.2 Performance Metrics

We evaluate our implementation of M5GB by computing the Gröbner basis for
overdefined dense quadratic systems with an increasing number of variables
N and M = 2N polynomials over F101, unless stated otherwise. The variable
count ranges from N = 5 to N = 21. For each N, we generate 10 distinct
equation systems that are certain to have a solution. The performance metrics
for each N are computed as the arithmetic mean of the metric over all 10

system instances. In our evaluation, we consider the following three metrics.

Time per Basis Element The time spent per basis element is the primary
indicator of the performance of our algorithm. A lower amount of time
per basis element indicates a faster implementation. The resulting time per
basis element is computed as the overall runtime divided by the number of
elements that reside in the final Gröbner basis.

Peak Memory Usage We monitor the memory consumption of the im-
plementations using the time-program on Linux. While we could track all
memory allocations in the program through instrumentation-based moni-
toring, we chose to measure the overall memory footprint instead, as it can
become a limiting factor when calculating large bases.

Number of Reductions As a third metric, we keep track of the number
of actual reductions. A reduction (or reduction step) in this context is a single
step in the process of reducing a polynomial (with respect to some set of
divisors). We extend the existing SB implementation such that each reduction
step is counted. Likewise, we keep track of reduction steps in M5GB as well.
Then, for a fixed polynomial system, we compare the respective number of
reductions in SB and M5GB.

10.4.3 Evaluation and Discussion

Figure 17a illustrates the arithmetic mean of the measured timing results.
The obtained results show that our implementation outperforms SB for dense
quadratic systems in all tested systems. For both implementations, the time
per basis element approximately doubles with each variable. Nevertheless,
the runtime of M5GB consistently stays below the runtime of SB in any of the
tested systems. Our evaluation shows that the runtime ration between SB

and M5GB fluctuates over different values for N. Figure 19a depicts the ratio
between the arithmetic means of runtimes depending on the variable count
N. After a slight drop between N = 17 and N = 20, for larger systems with
N = 21 the performance advantage of M5GB starts to increase again.

As we are particularly interested in dense quadratic systems, we also
evaluate the performance depending on the number of polynomials M for
a fixed number of variables N. We find that decreasing the number of
polynomials negatively influences the runtime and the performance gain
of M5GB compared to SB. For all evaluated systems, increasing the equation
count reduces the runtime for both implementations. The runtime ratio is
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Figure 17: The mean runtime and peak memory consumption for overdefined
quadratic polynomial systems with increasing variable count N and M = 2N polyno-
mials over F101.
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Figure 18: Comparison between mean runtime spent per basis element and the mean
number of reduction steps. The average is the arithmetic mean over 10 runs for dense,
overdefined, quadratic polynomial systems over F101.

not strongly influenced by increasing the number of polynomials M. Figure
19b illustrates the runtime changes depending on the number of provided
polynomials M. Our baseline system has N = 15 variables, and we vary
the equation count. Our evaluation demonstrates that once M ≥ 1.8 · N
holds, our implementation outperforms the classic implementation for the
tested systems. From these results, we conjecture that M5GB will continue to
outperform the classic algorithm for even larger systems, as long as they are
sufficiently overdefined.

Figure 17b shows the memory consumption of both implementations
on a logarithmic scale. As depicted, M5GB tends to use less memory than
the SB implementation. We can see that memory consumption increases
exponentially. This is unsurprising, given that the number of possible S-pairs
also grows exponentially. We could further reduce the memory footprint by
design choices in the implementation. This, however, would not improve
the memory growth behaviour of the algorithm itself. For the peak memory
consumption metric, we were not able to test systems with N = 21, as the
memory profiling imposes an additional runtime overhead.
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Figure 19: Ratio of runtimes between SB and M5GB for a varying variable count and
runtimes of SB and M5GB for a fixed number of variables N and a varying number of
polynomials M over F101.

In Figure 18b we see that the number of actually performed reductions
is significantly lower in M5GB than in SB. A comparison of Figure 18a and
Figure 18b indicates that the number of reductions is a good indicator of
the time cost. Note that the ratio between the reduction counts is larger
than the actual ratio of runtimes in Figure 19a. As our implementation is
meant as a proof of concept, this observation leads to the assumption that
a well-optimized implementation might lead to even higher performance
gains.

10.5 Future Work

As future work we plan to implement our M5GB algorithm via the dedicated
and optimized implementation of M4GB. It is the optimized implementation
of M4GB that holds some of the top rankings in the MQ challenge [Tak15].
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