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Abstract 
This thesis focuses on the feasibility of applying molecular dynamics (MD) simulations to 

investigate the transport behavior of different species in a polyimide, namely Kapton®. This 

polyimide is used as a protective layer of semiconductor devices against corrosive gases, 

corrosive ions and humidity. The simulations should provide an understanding of the underlying 

mechanisms that affect the protective properties of the polyimide. The main transport 

mechanism that is investigated is the diffusion within the polyimide. 

Simulations can be conducted (i) with more flexibility in terms of diffusing species and (ii) faster 

in comparison to saturation experiments that can take hundreds of hours (from personal 

communication with Stefan Wagner). Also, simulations provide rapid insight into the behavior 

in harsh and humid environments that are difficult to realize in experiments. Therefore, the 

applicability of the OPLS-AA force field, that allows simulations with liquid phases, was verified 

in a first step. Physical properties such as the density, the glass-transition temperature, the 

Young’s modulus and the Poisson’s ratio were determined from simulations and compared to 

experimental data from literature. 

All-atom MD simulations of ions in the polyimide matrix were conducted with the OPLS-AA 

force field. Trends like the temperature dependency and the effect of ionization, meaning 

comparing cupric and cuprous ions, on the diffusion coefficient, were replicated with the all-

atom simulations. However, for quantitatively determining the diffusion coefficient in the 

polyimide the simulation times were too short.  

Therefore, coarse-grained force field parameters for systems involving Kapton® were obtained. 

This enabled longer coarse-grained simulations to quantitatively determine the diffusion 

coefficient of organic solvents in the polyimide. Organic solvents were chosen since (i) they 

impact the durability of the polymer film, and (ii) experimental data was available that allowed 

a verification of the results. Although MD simulations up to 500 ns were conducted, the 

required simulation time (i.e., approximately 2.4 ms) was out of reach by a factor of 5000. 

However, a blueprint of how to (i) obtain coarse-grained force field parameters, as well as (ii) 

conduct coarse-grained simulations, is presented. These blueprints allow researchers to conduct 

meaningful simulations once the computational power is accessible to reach sufficiently long 

simulations times.  
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1 Introduction 

1.1 Motivation 

A large number of applications involving polymers is related to selectively transport ions and 

molecules [1]. Especially in corrosion processes it is important to understand limiting and 

accelerating factors that influence this transport of, e.g., corrosive gases, in order to protect 

industrial devices [2]. The high thermal stability of the polyimides, as well as their mechanical 

toughness and dielectric strength make them an important material in the electronic industry 

[3]. For this work the anticorrosive behavior of polyimide films in form of coatings [4] is of 

special interest to the industrial partner. The focus in the present thesis was on the polyimide 

PMDA-ODA, better-known under its brand name Kapton®. 

There is no direct way of measuring the diffusion coefficient from ions that migrate through a 

membrane or a film. In experiments, the permeability is the parameter that can be measured: 

Varain et al. [5] showed, in a parallel work to the present work, a way to determine the diffusion 

coefficient with permeability measurements based on a set of numerically solved ordinary 

differential equations and estimated partitioning coefficients. However, determining the 

diffusion coefficient in silico, e.g., with the aid of molecular dynamics (MD) simulations would 

allow for more flexibility in material investigation.  

A very detailed atomistic understanding of these transport processes can be achieved through 

such molecular dynamics simulations: for example, effects such as the swelling behavior of 

polymers due to moisture absorption can be predicted without lengthy experiments [6]. With 

the results from MD simulations - first and foremost the diffusion coefficient of an ion or 

molecule - polymers can be rationally developed, and designed to provide better corrosion 

protection. Additionally, the determination of physical properties from MD simulations will 

allow an estimation of possible applications that require higher mechanical strengths.    

Research has shown that results of MD simulations can describe mechanical properties of 

polyimides [7], [8], [9], [10]. However, the combination of the software tools used, the force 

fields to describe the polyimide system, and the methods to determine physical properties has 

not been used for research so far. In our opinion the presented MD-based framework allows 

for the highest degree of flexibility.  
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1.2 State-of-the-art in molecular dynamics simulations 

Neyertz et al. [6], [11], [12], [13], [14], [15] investigated the transport of various gases and water 

through polyimide membranes with MD simulations. They also described the simulation 

procedure to prepare free-standing membranes based on the real-world synthesis process. This 

preparation procedure was followed in this work as well, as these free-standing membranes 

allow the simulation of the experiments that were conducted by Lars Varain [16]. However, 

Neyertz et al. investigated mainly gases, which have faster diffusion coefficients than ions and 

organic solvents that were the species of interest in the present study. Therefore, it was possible 

for them to determine the diffusion coefficient with AA simulations.  

Especially in the field of batteries the investigation of the diffusion of ions through polymers 

[17] with MD simulations is a topic of huge interest [18], [19]. In the field of battery simulations, 

the species of interest is Lithium. As the elements that were investigated in the experiments of 

Varain, i.e., sodium (Na) and potassium (K), are alkali metals like lithium, it was promising to 

investigate these with MD simulations as well.  

Diddens et al. [19] investigated different possible effects on the ion mobility of the polymers 

with MD simulations. This topic is also of interest for the present work, as understanding the 

underlying mechanisms of the transport behavior would allow the design of materials towards 

improved properties.  

In terms of mechanical properties different groups investigated polyimides with MD 

simulations. Lei et al. [7] investigated the thermo-mechanical properties of PMDA-ODA (i.e., 

Poly[4,4′-oxydiphenylenepyromellitimide]), which is the scientific name for Kapton®. In their 

work, they used the COMPASS force field and the so-called “stress–Strain” scripting approach 

in the ‘Material Studio’ simulation package.  

Odegard et al. [10] predicted the mechanical properties of polymers with different force fields, 

including the OPLS-AA force field. However, Kapton® was not investigated in their research.  

Riccardi et al. [8], [9] described a method to determine a locally resolved Young’s modulus and 

Poisson’s ratio. In their work, they investigated an atactic polystyrene (PS) thin film and a 

polystyrene nanocomposite, described by the OPLS-AA force field. However, PS has a 

comparably simple structure to simulate in comparison to the structure of Kapton®. 
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1.3 Goals and content 

The goal of this thesis is to simulate the transport processes of different species, e.g. ions, 

corroding gases and organic solvents, in a polyimide protective film. Furthermore, the 

investigation of the mechanical properties of the polyimide films was a topic of interest.  

It was important to the industrial partner to investigate the feasibility of determining transport 

processes in polyimides, based on molecular dynamics simulations. The polyimide Kapton® 

was chosen, as it is a widely used and well described material in literature. Having literature data 

for a material, that can be used to verify the results from simulations, is vital before transferring 

the findings from discovered methods to novel materials. 

A blueprint to conduct both AA and coarse-grained (CG) simulations with already available 

software tools, i.e., LAMMPS [20] and VOTCA [21], as well as some in-house code for the post-

processing is provided. This blueprint allows to (i) create a CG representation of an AA system, 

(ii) conduct the CG MD simulations, (iii) determine the self-diffusion coefficient and (iv) verify 

if the Einstein equation is applicable to the system.  

The main part of this work contains the two publications “Extraction of Mechanical Parameters via 

Molecular Dynamics Simulation: Application to Polyimides” and “Towards coarse-grained MD of polyimides: 

combining PC-SAFT theory, experiments and MD simulations”. Both publications have a separate 

methods section, where all steps that were necessary to obtain the presented results are 

described. The conclusion and outlook into the future conclude the main part of the thesis. 

Further results, for example the investigation of ion transport properties, can be found in the 

appendix.  

1.4 Contributions to publications 

Chapter 2 is based on a scientific publication and chapter 3 will be submitted in the near future. 

In this section the author’s contributions are summarized. 

1.4.1 Publication on mechanical properties of polyimides 

P. Rosenauer, C. Kratzer, S. Larisegger, and S. Radl, “Extraction of Mechanical Parameters via 

Molecular Dynamics Simulation: Application to Polyimides,” Polymers (Basel), vol. 16, no. 6, p. 

813, Mar. 2024, doi: 10.3390/polym16060813. 

P. Rosenauer: Conceptualization, Methodology, Simulations, Postprocessing Code, 

Visualization, Writing 
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1.4.2 Publication on coarse-grained simulations of polyimides and organic 

solvents 

P. Rosenauer, S. Larisegger, and S. Radl, “Towards coarse-grained molecular dynamics 

simulations of polyimides: combining PC-SAFT theory, experiments and MD simulations”. 

P. Rosenauer: Conceptualization, Methodology, Simulations, Postprocessing Code, 

Visualization, Writing 
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2 Extraction of Mechanical Parameters via Molecular 

Dynamics Simulation: Application to Polyimides 

2.1 Introduction 

Polyimides have a vast number of applications in the field of semiconductor protection. They 

are used as a passivation stress buffer to protect the semiconductor chip surfaces from thermal 

and mechanical stresses in packaging processes. Furthermore, they are used as a protective layer 

from α-rays released by inorganic fillers in epoxy-molding compounds (EMC) and as a final 

insulation layer before interconnect bumping operations. Adapting and improving their 

behavior in regard to mechanical and thermal protection behavior is an important topic in 

materials science. Combining both the molecular dynamics simulations with experimental 

characterizations is often beneficial (or even necessary) to obtain a deeper understanding of 

influencing factors [1], [22], [23]. 

The first step in an attempt to improve the properties of a polymer with simulation is to verify 

the accurate representation of the reality with the used simulation parameters. Therefore, 

physical properties are predicted by means of computer simulations that can easily be compared 

to experimental or literature data. Our group has already investigated the density and glass-

transition temperature properties. 

Lei et al. [7] investigated the thermo–mechanical properties of six different polyimide films, 

including PMDA-ODA (Poly [4,4′-oxydiphenylenepyromellitimide]). Kapton® is the brand 

name of PMDA-ODA. In their work, they used the COMPASS force field and the so-called 

“Stress–Strain” scripting in the Material Studio simulation package. The Material Sstudio 

simulation package is a commercially available software tool that brings along licensing costs. 

Lei et al. also investigated the polymer PMDA-BIA, which was investigated as a second 

polyimide in our current work, as the literature data for it is extremely sparse. 

Odegard et al. [10] predicted the mechanical properties of polymers with different force fields. 

In their study, they investigated a single polyimide (i.e., BPDA-APB) with the force fields 

AMBER, OPLS-AA, and MM3. The prediction of the mechanical properties, namely the 

Young’s modulus and the shear modulus, was most accurate in comparison to experimental 

values with the OPLS-AA force field. However, Kapton® was not investigated by them, and 

we placed the focus of this work on determining the quality of predicted mechanical properties 

of Kapton® with the OPLS-AA force field. 



6 

 

Riccardi et al. [8], [9] described a method to determine a locally resolved Young’s modulus and 

Poisson’s ratio. In their work, they investigated an atactic polystyrene (PS) thin film and a 

polystyrene nanocomposite. For describing the atactic polystyrene, the OPLS-AA (“optimized 

potentials for liquid simulations all-atom”) [24] force field was used. PS has a comparably simple 

structure to simulate in comparison to the objective polymers of the present study, i.e., 

polyimides. 

The objective of our present study is to determine the applicability of the OPLS-AA force field 

to the polyimides (i) Kapton® (or PMDA-ODA) and (ii) pyromellitic dianhydride/2-(4-

aminophenyl)-1H-benzimidazole-5-amine(PMDA-BIA). In order to determine if the 

mentioned force field can be applied to PMDA-ODA and PMDA-BIA, (i) a thorough 

investigation of how to determine the Young’s modulus and the Poisson’s ratio was conducted, 

and (ii) the computed results were compared to the literature data. Kapton® was used as it is a 

commercially available standard polymer. PMDA-BIA was used as it is a similar polymer with 

different properties. In future research, we plan to use Kapton® in combination with an 

aqueous liquid phase. Therefore, the OPLS-AA force field was used. 

The Young’s modulus and Poisson’s ratio were determined via molecular dynamics with either 

(i) a simulation of the well-established tensile test [25], [26], [27], [28] or (ii) the methodology 

proposed by Riccardi et al. [8], [9]. To allow for more flexibility, contrary to previous works 

([7]), in this work, the large-scale atomic/molecular massively parallel simulator (LAMMPS) [29] 

was used with the OPLS-AA force field. 

The first section of this work describes the simulation and modeling details to allow the 

interested reader to replicate our results. Specifically, the preparation procedure for the virtual 

polymer molecules and the numerical parameters used by the software are described. 

Additionally, the different procedures used to calculate Young’s modulus will be described. 

The results section is organized in a way that the effect of each influencing parameter, like the 

system size, temperature, and pressure, are described individually for each deformation mode. 

This allows the reader to understand the different application fields of the deformation modes 

and what parameters to look for. The last part of the result section compares the behavior of 

the material in the simulations with literature and experimental data. 
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2.2 Materials and Methods 

2.2.1 Molecular Dynamics Simulation Method 

The molecular dynamics simulations in the present study were conducted with LAMMPS [29] 

(LAMMPS branch: stable; commit: 584943fc928351bc29f41a132aee3586e0a2286a (28 October 

2020)). To allow for the greatest flexibility in polymers that are investigated, the base geometry 

of a monomer is determined by vector coordinates in an xyz-file. The atomic structure of the 

monomers that were investigated in our present work were extracted in the form of bond 

lengths and angles from Ramos et al. [30]. With the atomistic bond lengths and angles, it was 

possible to calculate the coordinates of each atom of the monomer to prepare the xyz-file. 

Moltemplate [31] (git branch: master; commit: 9f1512e6b25f8325b5c6c1a4f2fecdc94eda40f1 

(21 March 2021)) was used to transform this xyz-file into the required LAMMPS input file 

collection. Moltemplate allows the user to determine the size of the simulation box, the chain 

length, and the number of chains, which is beneficial for the investigation of polymeric 

materials. 

As the initial state for a molecular dynamics simulation is created artificially, the system needs 

to be equilibrated before the actual simulation runs. The equilibration removes structural 

artifacts that occurred during the initialization of the system [32] and imposes the correct 

pressure and temperature on the system for the simulation. There are various ways and 

definitions to ensure that an equilibrated state has been reached [32]. In this study, the system 

was equilibrated based on the 21-step equilibration that uses a certain procedure of NVT 

(constant temperature, constant volume) and NPT (constant temperature, constant pressure) 

ensembles to reach that equilibrated state [33]. In the present study, the maximum pressure was 

set to be 50,000 (atm), and the final pressure and final temperature represent ambient conditions 

at 1 (atm) and 300 (K). 

2.2.2 Simulation Parameters 

Here, we describe the simulation parameters used in the present study to allow the reader the 

replication of the simulations. The parameters described were used for all systems of both 

investigated polymers. 

Both for the relaxation mode and the continuous deformation mode, periodic boundaries were 

imposed. Atom style “full” was chosen with real units. Bond, angle, and improper style were 

harmonic, and the OPLS style was used for dihedrals. The styles determine how the bonded 

forces between all atoms of the polymer of interest are calculated. The formulas for these 

potentials can be found in the LAMMPS manual [29]. For non-bonded interactions, the pair 
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style lj/cut/coul/long was used, which computes a standard 12/6 Lennard–Jones potential with 

an additional coulombic pairwise interaction. In LAMMPS, a long-range solver is used to 

compute long-range coulombic interactions. Most of these long-range solvers perform their 

computation in K-space, which we also prefer by using the “kspace style” command. As k-space 

style “pppm” with an accuracy of 0.0001 is used, and “kspace modified gewald” with a rinv 

value of 0.0002 [Å−1] is used to ensure that every simulation is conducted with the same solver 

conditions. Here, rinv represents the G-ewald parameter for Coulombics and is given in 

reciprocal distance units. 

2.2.3 Force Field and Numerical Parameters 

The “optimized potentials for liquid simulations” (OPLS) force field was used in its all-atom 

form to describe the interatomic interactions. This force field was developed by Jorgensen et al. 

[34], [35] and is widely used in molecular dynamics simulations [36]. Additionally, moltemplate 

has the OPLS force field already included, which allows for a less time-intensive preparation of 

the polymer system. 

2.2.4 Chain Length Selection 

The chain length selection impacts the behavior and results of the molecular dynamics 

simulation [37], [38]. The system behaves stiffer if the chain length is longer, i.e., the systems 

tend to have a stiffer elastic regime and higher yield stresses [38]. In particular, the entanglement 

is influenced by the chain length and is shown in the yield peak. Shorter chains can more easily 

align with the direction of loading and show a less pronounced yield peak. However, 

computational power is the limiting factor in molecular dynamics simulation; therefore, a chain 

length of 20 monomers was chosen as a compromise. This was motivated by the fact that model 

chains with 10–20 repeating units were previously found to be sufficient for reasonable results 

[39], [40], [41], [42] without inducing size effects. 

For reasons of comparability, the chain length that was chosen for Kapton© was also used for 

the simulations involving the PMDA-BIA polyimide. 

2.2.5 System Size 

The system size in molecular dynamics simulations is an important metric both for the results 

of the simulation and the required computational power. An important task is to find the sweet 

spot between those criteria and get the most representative results with the least possible 

computational power. Before the final system sizes were defined, some preliminary simulations 

were conducted to compare three system sizes. Table 1 shows the size of the different systems, 

the number of chains in each system, and the chain length. The preliminary results showed that 
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system A was not behaving isotropically already in our preliminary analysis. Furthermore, 

although Ries et al. [43] showed that the system size has no impact on their results, their systems 

were all larger than 104 atoms. Due to these reasons, we decided to remove system A from the 

investigation but kept the naming, as displayed in Table 1. 

Investigations of system size were skipped from the beginning for the additionally investigated 

polymer PMDA-BIA, as it was assumed that the smallest system would not produce usable 

results. As the number of atoms per monomer group is different for the two systems, Table 2 

shows the respective number of atoms for each system. 

Table 1: Different system sizes and chain lengths for PMDA-ODA (Kapton®). 

System Chains Monomers per Chain Atoms 

A 27 5 5265 

B 16 20 12,480 

C 80 20 62,400 

 

Table 2: Different system sizes and chain lengths for PMDA-BIA. 

System Chains Monomers per Chain Atoms 

B 16 20 14,496 

C 80 20 72,480 

2.2.6 Relaxation Mode 

This method was first introduced by D. N. Theodorou and U. W. Suter [25] to predict the elastic 

constant of a glassy polymer. Further development of the procedure was conducted by Riccardi 

et al. [8], [9] to locally resolve Poisson’s ratio and Young’s modulus of composite materials. The 

main idea behind this method is to apply a small deformation at time t0 and let the system relax 

afterwards. The relation of stress, strain, and elastic stiffness coefficient matrix are related 

according to Equation (2-1). Under the assumption of an isotropic material, this relation can be 

reduced to Equation (2-2): 

𝜎 = 𝐶̿  ∙  𝜀 ̅ (2-1) 

[

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

] =
1

𝐸
 [

1 −𝜈 −𝜈
−𝜈 1 −𝜈
−𝜈 −𝜈 1

] ∙ [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

]. (2-2) 

The main benefit of the method is the ability to locally resolve Poisson’s ratio in a compound 

material. Therefore, the strain is imposed in two directions uniformly; otherwise, the local 

displacements would be a function of the overall material properties if periodic boundary 

conditions were used [8]. During the deformation, the length of the edges in the third axis is 

held constant. After inducing the strain, an equilibration phase follows, whereby the length in 

the deformed directions is held constant in contrast to the unperturbed axis, which can change 
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its length to balance the emerging stress. Figure 1 shows the basic principle of this “relaxation 

mode”-type of simulation. 

 

Figure 1: Depiction of the method to determine Young’s modulus and Poisson’s ratio via “relaxation mode” simulations. 

Due to the biaxial strain scheme imposed on the system in the x and y direction, 𝜎xx = 𝜎yy = 

𝜎‖, and 𝜀xx = 𝜀yy = 𝜀‖. With the further assumption of mechanical equilibrium, the stress 𝜎zz 

= 0; thus, Equation (2-2) results in two linear equations, i.e., Equations (2-3) and (2-4). By 

rearranging these equations, a direct measurement of Young’s modulus (Equation (2-5)) and 

Poisson’s ratio (Equation (2-6)) is possible. The same rearrangements could be made by 

inducing the strain as a combination of the other directions: 

𝜎∥ −  𝜈𝜎∥  = 𝐸𝜀∥ (2-3) 

−2𝜈𝜎∥ = 𝐸𝜀𝑧𝑧 (2-4) 

𝐸 =
2𝜎∥

2𝜀∥ − 𝜀𝑧𝑧

 (2-5) 

𝜈 = −
𝜀𝑧𝑧

2𝜀∥ − 𝜀𝑧𝑧

 (2-6) 

Due to fluctuations in the MD simulations, 100 computed values were combined to one 

averaged value to smoothen the results. Furthermore, the final value of Young’s modulus was 

determined by averaging the results of the last 50% of the simulation time. The simulation time 

in the relaxation mode experiments was 5 ns. 

2.2.7 Continuous Deformation Mode 

The continuous deformation mode represents the tension test that is well-known and widely 

used to determine Young’s modulus and Poisson’s ratio of elastic materials. In the conventional 

tension test, Young’s modulus is determined from the stress–strain curve with Equation (2-7), 

as shown in Figure 2. Here, ε is the deformation in percent of the initial length as shown in 
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Equation (2-8), and σ is the stress in the normal stress in the material. Another important factor 

that is affecting the result of the simulation is the deformation rate 𝜀̇, defined in Equation (2-9) 

[44]: 

𝐸𝑖 =
𝜎𝑖

𝜀𝑖

 (2-7) 

𝜀 =
𝐿 − 𝐿0

𝐿0

 (2-8) 

𝜀̇ =
∆𝜀

∆𝑡
 (2-9) 

 

Figure 2: Stress–strain diagram of stretching system C of Kapton® as shown in Table 1with a strain rate of 1𝑥10−7 𝑓𝑠−1. 

As mentioned previously, to ensure that each simulation starts at the same initial state, the 

system is equilibrated before the actual simulation run. In the next step, the system is deformed 

in one direction with a certain deformation rate up to a maximum deformation, depending on 

the simulation time. It is important to mention that the deformation rate is extremely high in 

comparison to the real tension experiments where the deformation rate is between 10−4 [s−1] 

and 105[s−1]. In all our continuous deformation mode simulations of the present work, the rate 

is between 10−8[fs−1] and 10−5[fs−1], thus, 102 to 105 higher than the highest deformation 

rate of the real experiments. 

The Young’s modulus can then be calculated as the slope of a straight line fit between the origin 

(at ambient pressure) and the respective stress, for which the Young’s modulus is calculated. 

There is not one Young’s modulus, but each strain has a different Young’s modulus as the slope 

of the straight-line fit varies with different strains. The anisotropy Γ and the linearity in the form 

of R2 were introduced to allow for an objective determination of Young’s modulus. 
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2.2.8 Anisotropy Γ 

It is important that a small system (as modeled in an MD simulation) can represent the bulk of 

the polymer of interest as adequately as possible. One important property that needs to be 

represented is the isotropy. Therefore, every system was deformed in the three spatial directions 

x, y, and z. In the next step, normalized perpendicular stress was determined for each direction 

following Equations (2-10) and (2-11). 

𝜎 =
𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

3
 (2-10) 

𝜎𝑖
∗,𝑛 =

𝜎𝑖

𝜎
 (2-11) 

Γ(𝜀) =
1

𝑁
∑ 𝜎𝜎𝑖

∗,𝑛(𝜀)
 

𝑁=𝜀

𝑁=𝜀−0.01

 (2-12) 

The anisotropy is calculated by averaging the standard deviation of the normalized 

perpendicular stress 𝜎𝜎𝑖
∗.𝑛(𝜀)

 of the last percent of strain before the strain (corresponding to the 

value of Γ) is calculated (Equation (2-12)). 

2.2.9 Linearity 

The second determining factor is the R2 value of a straight line that is fitted to the simulation 

results to obtain Young’s modulus. Determining Young’s modulus in this way is only valid when 

the system follows Hooke’s law up to the first plastic deformation. Hooke’s law is valid when 

there is a linear relationship between the deformation and the stress at this deformation [45]. In 

order to verify the linearity quantitatively and, therefore, to probe the validity of Hooke’s law, 

the R2 value of the fit was logged. A high R2 represents a good representation of the results by 

the straight line fit. 

2.2.10 Software 

The software used for the simulation runs (i.e., LAMMPS), the pre-processing steps, and the 

exact version (i.e., commits) of the software was already mentioned at the beginning of the 

Methods Section (see “Molecular Dynamics Simulation Method”). The post-processing tools 

that were used for visualization were (i) Microsoft® Excel® for Microsoft 365 MSO (Version 

2401 Build 16.0.17231.20236) 64-bit, and (ii) self-written python scripts (Python 3.10.9 64-bit.) 

developed in the Spyder IDE (version 5.4.1). 
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2.3 Results and Discussion 

2.3.1 Effect of System Size and Isotropy 

The first thing that was investigated was the effect of the system size on the isotropy of the 

polymer system. As mentioned in the section about the relaxation mode, it is necessary for the 

system to be isotropic, i.e., to be able to use Equations (2-5) and (2-6) to calculate Young’s 

modulus and Poisson’s ratio. Both systems B and C were investigated regarding their isotropy. 

The isotropy was investigated based on the already described anisotropy Γ. Figure 3 shows the 

anisotropy in the first 10% of strain of system B and system C. From about 1.7% on, the black 

line that represents the anisotropy of system C is below the red line of system B. In this case, a 

lower anisotropy represents a more isotropic system. 

 

Figure 3: Comparison of anisotropy Γ of system B (red) and system C (black) for Kapton©. 

From this investigation, it can be seen that additional to the chain length mentioned by [37], 

[38], the system size is also relevant for MD predictions of the polymeric system. Both systems 

have the same chain length, but system C has five times more chains in comparison to system 

B. Further differences that surfaced due to the size difference was the behavior during stretching 

and compressing: regarding the calculated Young’s moduli of system B and system C, the 

general trend was that the difference between the moduli in system B is about 20% between 

compression and stretching while the difference in system C was about 10%. Although 

simulations were conducted for both system sizes, the results presented in the next sections 

were taken from the simulations of system C, as there was a clear indication that the larger 

system leads to more representative results. Figure 4 shows the same behavior for the second 

investigated polymer PMDA-BIA. With the confirmation of this system size-dependent 
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behavior, it can be said that bigger systems are beneficial for simulations that require a certain 

isotropy for representative results. 

 

Figure 4: Comparison of anisotropy Γ of system B (red) and system C (black) for PMDA-BIA. 

2.3.2 Effect of the Temperature 

2.3.2.1 Relaxation Mode 

The results from the relaxation mode simulations represent the assumed behavior from the 

literature: Lyulin et al. [27] showed a linear decrease of the Young’s modulus with increasing 

temperatures up to the glass-transition temperature. Here, we also demonstrate that above the 

glass-transition temperature, Young’s modulus leveled off and stayed constant, although 

temperatures were increasing for both polymers. With rising temperatures, the Young’s 

modulus and the Poisson’s ratio were decreased. The investigation of Young’s modulus for 

Kapton® over the temperature showed a change in slope between 600 (K) and 700 (K), which 

coincides with the glass-transition temperature described in the literature[7], [46]. Contrary, for 

PMDA-BIA, there was a steep decline in Young’s modulus between 500 K and 600 K. This 

coincided with the found glass-transition temperature of density monitoring from our 

simulations but did not coincide with the glass-transition temperature reported by Lei et al. [7]. 

2.3.2.2 Continuous Deformation Mode 

In the continuous deformation mode, the Young’s modulus also leveled off with rising 

temperature, but it was also seen that the behavior of the system changed with rising 

temperatures. For the equilibration process at 300 (K) the system started to expand when the 

simulation was conducted at higher temperatures. This led to a negative stress, although the 

system was stretched in one direction, and the stress should have been positive. Additionally, it 

was found that there was no linear behavior between higher deformation and stress, but the 

stress response stayed the same upon a continued deformation of the material. This leads to our 
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speculation that around the glass-transition temperature, where this behavior change was the 

highest, the system lost parts of its tensile strength. 

This behavior in the continuous deformation mode indicates that the equilibration method 

should be adapted before the measuring simulation. We assume that this can be done either (i) 

if the last NPT step of the 21-step equilibration is already conducted at elevated temperatures 

or (ii) an additional equilibration step is included before the measuring run to give the system 

the chance to equilibrate at the temperature of the simulation before measuring the stress–strain 

behavior. However, this would be a task for further investigation. 

2.3.3 Effect of the Pressure 

As the stress in molecular dynamics simulations is determined with the compute pressure 

command, it was assumed that the pressure will have a certain effect on the simulation results. 

In the MD simulations, the pressure was logged for each simulation run (i.e., stress and pressure 

were computed using LAMMPS’ “compute pressure” command). This was done in order to 

systematically investigate the effect of pressure on the system properties. Simulations regarding 

the Poisson’s ratio, Young’s modulus, and density were conducted in relaxation mode and 

normalized with the respective literature data. The results of these simulations are summarized 

in Figure 5. As can be seen in Figure 6 and Figure 7, the results of the continuous deformation 

mode also show a dependence on the pressure, but this effect is smaller than what is observed 

in the relaxation mode simulations. 

 

Figure 5: Pressure dependence of Young’s modulus, Poisson’s ratio, and density from relaxation mode simulations (system 
C) of Kapton®. The black dotted line represents the target value at 1 as this graph visualizes simulation values normalized 
to literature values. 
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Figure 6: Stress–strain diagram of system C of Kapton® during compression in the x-direction at 1 (atm). The simulation 
results are depicted as the red line. Straight lines with changing colors represent the linear fit for each corresponding strain 
(indicated in parenthesis in the legend). 

 

Figure 7: Stress–strain diagram of system C of Kapton® during compression in the x-direction at 750 [atm]. For interpretation 
of the legend, see the description in Figure 6. 

2.3.3.1 Relaxation Mode 

For the determination of the best representation of the real behavior by the simulation, a 

normalized Young’s modulus, a normalized density, and a normalized Poisson’s ratio were used. 

The values were normalized with data from the literature [46]; therefore, the best result for each 

of the investigated values is 1. For the simulation results the latter half of the 5 ns simulation 

run was averaged for each pressure and normalized as mentioned above. The best fit was 

determined to be at 750 (atm). Based on these findings, it was decided that simulations of the 

continuous deformation mode should be conducted at 750 atm as well. Simulations at this 

pressure resulted in the best agreement with literature, in respect to Young’s modulus, density, 

and Poisson’s ratio, as shown in Figure 5. 

2.3.3.2 Continuous Deformation Mode 

Figure 6 and Figure 7 show that also the continuous deformation mode simulations are affected 

by different pressures, but to a smaller extent, as a result of the relaxation mode simulations. In 

order to determine the Young’s modulus for each percent of deformation, a linear fit was 

applied to the simulation data. Specifically, as a least squares method was used, the linear fit had 

different ordinate distances that represented the stress at zero strain. For ambient pressure, this 
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needs to be zero in an equilibrated system. Therefore, the linear fit was forced to pass through 

the origin. On the contrary, at a pressure of 750 (atm), the stress at zero strain was higher as the 

elevated pressure also induced a certain stress on the system, although there was no strain 

applied at the beginning of the simulation. For this case, the linear fit was forced to pass through 

the stress determined at zero strain for each percentage of deformation. Both simulations at 1 

(atm) and 750 (atm) showed reasonable agreement for Young’s modulus when compared to the 

literature value of 2.5 (GPa) [46]. 

Based on the findings from the investigation of Kapton®, the second polymer PMDA-BIA was 

investigated at the same pressures and temperatures for reasons of comparability. Figure 8 and 

Figure 9 show that the behavior of both polymers is similar. Contrary to Kapton®, it is 

interesting that there was less influence of the pressure on the Young’s modulus for PMDA-

BIA. Furthermore, there is very little literature data that allows a comparison of the Young’s 

modulus of PMDA-BIA: in contrast to the agreeing results of Kapton®, the simulated results 

of this study were far off the results by Lei H. et al. [7], which is the only literature data that we 

found on this polymer. As the data were in good agreement with the experimental data, and the 

same procedure as for Kapton® was used, the reliability of the literature data was questioned. 

In [7], a Young’s modulus higher than 8.5 GPa was reported for PMDA-BIA, while the results 

of our study were in the order of 2 GPa. 

 

Figure 8: Stress–strain diagram of system C of PMDA-BIA during compression in the x-direction at 1 (atm). The simulation 
results are depicted as the red line. Straight lines with changing colors represent the linear fit for each corresponding strain 
(indicated i in parenthesis in the legend). 
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Figure 9: Stress–strain diagram of system C of PMDA-BIA during compression in the x-direction at 750 (atm). For 
interpretation of the legend, see description in Figure 8. 

2.3.4 Youngs Modulus and Poisson Ratio 

The stress–strain curve during the continuous deformation mode for both compression and 

expansion is shown in Figure 10. Our results showed the same known behavior of higher 

stresses at higher strain rates as observed for other polymers in MD simulations [27], [38], [47]. 

There was no detectable strain softening after the yield point in compression and a plateauing 

of the stress in stretching. There was no strain softening regime after the yield point, which also 

represents the typical behavior of a polyimide. 

The general behavior for all stress–strain curves during the continuous deformation mode 

stayed the same: First, there is a linear increase of the stress, followed by a region in which the 

slope decreases. Finally, the stress is almost constant (only for the slowest deformation rate 10−8 

(fs−1); there is a significant temporal fluctuation of the stress) till the end of the simulation. Also, 

there is a clear difference in the performance of the compression and stretching of the system: 

By stretching the system, the maximum stress was below the results of the compression 

simulations, especially at high strain rates. We speculate the following: The entangled chains 

need some time to relax after deformation is initiated. During stretching, entangled chains 

become loose-packed, which leads to lower intermolecular forces and hence, stresses. In 

contrast, during our compressive deformation simulations, the chains increasingly entangle with 

ongoing deformation, building up extremely high stress (approximately twice as high as during 

stretching). As we will show later, this also leads to extremely high values of the Poisson’s ratio. 
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Figure 10: Stress–strain relation for different strain rates on system C of Kapton®. Left panel with induced compression; right 
panel with induced stretch. 

Figure 11 shows a similar behavior for PMDA-BIA. The stresses during compression (shown 

in the left panel) were higher than during stretching, as in the case of Kapton®. While the 

behavior during stretching was very similar to the stretching of Kapton®, the compression of 

PMDA-BIA at the lowest deformation rate kept a linear upward trend after the initial steep 

linear behavior. 

 

Figure 11: Stress–strain relation for different strain rates on system C of PMDA-BIA. Left panel with induced compression; 
right panel with induced stretch. 

A noticeable semi-logarithmic relationship between the Young’s modulus and the strain rate 

was observed in the literature [48], [49]. Specifically, this behavior was observed in laboratory 

experiments that indicated that a faster deformation leads to a higher Young’s modulus. Exactly 
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such a trend was also observed in our compression and stretching simulation data, as shown in 

Figure 12. 

 

Figure 12: Young’s modulus of Kapton® analyzed at 2% strain, versus strain rate, simulated values as squares for system C, 
and triangles for system B. The plotted lines are fits using the least square method. The colors of the lines replicate the colors 
of the symbols for the respective system sizes described in the legend. Left panel: compression. Right panel: stretching. 
Results are in good agreement with values found in experiments using Kapton® HPP ST [49], indicated as a black dashed 
line. 

Analyzing the slope of regression lines from Young’s modulus versus strain rates results in a 

slope of 0.27 for the Kapton® (system C). This result was similar to the results observed during 

experiments using HPP ST polyimide films with a slope of 0.28 [49]. Also, the other simulated 

values agree well with values between 0.34 and 0.23. However, the laboratory trials were 

performed at significantly slower strain rates between 10−4 and 10−1 [𝑠−1]. The coefficient of 

determination R2 in the compression simulations is 0.91 for system C and 0.90 for system B. In 

the case of the stretching deformation mode, the coefficients of determination are even higher 

(i.e., 0.97 for system C and 0.98 for system B). 

Besides the similar slope to the existing literature, the increased Young’s modulus caused by 

longer chains matches the expected behavior, as well as results for different polymers during 

MD simulations (Refs. [27], [38], [47]; all these simulations used the continuous deformation 

mode). 

Although there were no values from experiments regarding the impact of the deformation rate 

on the Young’s modulus for PMDA-BIA, the same simulations as for Kapton® were conducted 

to see if the same semi-logarithmic behavior could be found. Similarly to Kapton®, the Young’s 

modulus of system C of PMDA-BIA showed a semi-logarithmic behavior, as can be seen in 

Figure 13. In contrast, the behavior of system B could not be described by the semi-logarithmic 

fit for PMDA-BIA. The coefficient of determination for compression for system C was 0.91, 
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and for system B it was 0.44. In the stretching simulations, the coefficient of determination for 

system C was 0.98 and for system B was 0.75. This is another indication that the system size is 

relevant, and that a larger system is beneficial for the simulation results of molecular dynamics 

simulations conducted in this study. 

 

Figure 13: Young’s modulus of PMDA-BIA analyzed at 2% strain, versus strain rate, simulated values as squares for system 
C, and triangles for system B. The plotted lines are fits using the least square method. The colors of the lines replicate the 
colors of the symbols for the respective system sizes described in the legend. Left panel: compression. Right panel: stretching. 

During the stretching of the simulation box, the Poisson’s ratio decreased from values around 

0.4 down to ν = 0.3 (see right panel Figure 14). Other researchers found the same influence, 

namely a decrease of the Poisson’s ratio for polystyrene for increasing strain ([47], [50]; these 

observations were made below the glass-transition temperature, the same as in our study). 

Finally, there was no clear trend on how the Poisson’s ratio changed when changing the strain 

rate. 
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Figure 14: Continuous deformation mode, Poisson’s ratio vs. strain for different 𝜀̇, system C of Kapton®. Left panel with 
stretching the system; right panel with compression. 

The left panel of Figure 14 shows the results during compression simulations. The behavior of 

increasing Poisson’s ratio did not match the expectations, and values over 0.5 [-] were physically 

not plausible (i.e., volume expansion upon compression). However, in the elastic regime (i.e., 

small deformation), the values around 𝜈 = 0.4 were in good agreement with the results with a 

positive strain. 

Figure 15 shows the Poisson’s ratio of PMDA-BIA. As the behavior is very similar to the case 

of Kapton® shown in Figure 14, we assume the same reasons for that behavior as before. 

Contrary to the investigation of Kapton® the slowest deformation rate (10−8 𝑓𝑠−1) leads to 

extremely high Poisson’s ratios and large fluctuations. 

 

Figure 15: Continuous deformation mode, Poisson’s ratio vs. strain for different 𝜀̇, system C of PMDA-BIA. Left panel with 
stretching the system; right panel with compression. 



23 

 

Figure 16 shows the result tables for the continuous deformation mode simulations of system 

C with different deformation rates. The results for R2 and the anisotropy Γ were color-coded to 

indicate the following: green means a high level of matching the criteria, red means a low level 

of matching the criteria. These criteria were defined as follows: Quality of a linear fit R2 > 0.88 

in each direction and isotropy parameter Γ < 0.11, rows matching both criteria were highlighted 

in grey. Finally, we note in passing that our prediction for the spatially averaged Young’s 

modulus at 4% deformation in the results table (Figure 16A) replicates the value from the 

literature (2.5 (GPa)) almost perfectly [46]. 

 

Figure 16: Results tables of Young’s modulus for system C of Kapton in the continuous deformation mode for different strain 
rates at ambient pressure. The results for R2 and the anisotropy Γ were color-coded to indicate the following: green means 
a high level of matching the criteria, red means a low level of matching the criteria. Rows matching both criteria were 
highlighted in grey and their values are displayed bold. (A) Strain rate of 1 × 10−6 (fs−1). (B) Strain rate of 1 × 10−7 (fs−1). 
(C) Strain rate of 1 × 10−8 (fs−1). 
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Figure 17 shows the results table for system C of PMDA-BIA under the same criteria as for 

Kapton®. The rows that match both criteria were highlighted in grey as before. Except for the 

case of a deformation rate of 1 × 10−6 𝑓𝑠−1 the values that fulfill the criteria are found at higher 

strains compared to Kapton®. 

 

Figure 17: Results tables of Young’s modulus for system C of PMDA-BIA in the continuous deformation mode for different 
strain rates at ambient pressure. The results for R2 and the anisotropy Γ were color-coded to indicate the following: green 
means a high level of matching the criteria, red means a low level of matching the criteria. Rows matching both criteria 
were highlighted in grey and their values are displayed bold. (A) Strain rate of 1 × 10−6 (fs−1). (B) Strain rate of 1 × 10−7 
(fs−1). (C) Strain rate of 1 × 10−8 (fs−1). 

2.4 Conclusions 

In our present contribution, a method was described to predict the Young’s modulus of the 

frequently used polyimide, namely Kapton®. Specifically, we used MD simulations with the 



25 

 

OPLS-AA force field to represent this popular polyimide. Additionally, the polymer PMDA-

BIA was investigated as a second polyimide to get a better understanding of whether our 

procedure applies to polyimides in general or not. 

A preparation procedure that allows for maximum flexibility in terms of using different materials 

is described. With this preparation method, a polymer can be used and adapted only by changing 

the geometry of the monomer. This was demonstrated by investigating the polymer PMDA-

BIA additional to Kapton®, with the same workflow as described in our present work. The 

Young’s modulus and the Poisson’s ratio of the polymers were determined with two modes for 

different system sizes, different pressures, and temperatures. 

For the investigated system in the relaxation mode, it was found that if the pressure is at 1 (atm) 

the system is breaking apart and will not have any calculable Young’s modulus in the case of 

Kapton®. A similar behavior was found for PMDA-BIA, although the system did not break 

apart completely (Young’s modulus at 1 atm was only 30% of the Young’s modulus found at 

750 atm). While the relaxation mode was strongly affected by a change in pressure, the 

continuous deformation mode simulations were strongly affected by the strain rate. The 

anisotropy Γ and the correlation coefficient R2 (determined from a linear approximation of the 

stress and strain) were introduced to determine the configuration at which the system is most 

isotropic and behaves linear elastic. Due to this procedure, it is now possible to investigate the 

influence of different simulation boundary conditions, e.g., pressure and temperature, as 

objectively as possible. Compared to the literature data, our continuous deformation mode 

simulation at 10−6 (𝑓𝑠−1) deformation rate replicated these results best. The Young’s modulus 

of Kapton® of 2.5 GPa is in perfect agreement with literature values that range from 2.5 GPa 

[51] to 3.2 GPa [52]. Lei et al. [7] reported a Young’s modulus of PMDA-BIA from a simulation 

of 5.37 GPa and referenced 8.5 GPa as the experimentally found Young’s modulus of Song et 

al. [47], [53]. 

The investigation of the system size showed that—contrary to Ries et al. [47] —the system size 

has an impact on the results for the polyimides Kapton® and PMDA-BIA. The larger system 

behaved more isotropic and was less affected by the direction of deformation (both for 

compression and stretching). For future research in that area, it is important to determine a 

sufficient system size to ensure an isotropic behavior of the material. This also suggests future 

investigations regarding the optimal system size, i.e., the sweet spot between a low anisotropy 

parameter Γ and the computational effort spent. 
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Regarding the Poisson’s ratio, the continuous deformation mode appears to be the more reliable 

one. The results of the continuous deformation mode simulations replicated the results from 

literature within their reported range for Kapton®. Both the results for system B with 0.33 and 

system C with around 0.38 [51]. However, the results from the relaxation mode simulations 

underestimate the Poisson’s ratio in comparison to the literature data by 50% for system B. The 

Poisson’s ratio for system C is about 25% underestimated. Unfortunately, there was no literature 

data on the Poisson’s ratio for PMDA-BIA. However, the differences between relaxation mode 

and continuous deformation mode simulations were identical to that for Kapton®. Both 

systems B and C showed a higher Poisson’s ratio in comparison to the simulations of Kapton®.  

Our contribution showed that there is a pressure dependence when performing relaxation mode 

simulations, as suggested initially by Riccardi et al. [9]. Specifically, we find that for Kapton®, a 

pressure of 750 (atm) showed the best results for the Young’s modulus in comparison with 

experimental data from the literature. Furthermore, at a pressure of 1 (atm), system B lost its 

structure and the simulation needed to be conducted at elevated pressures. Therefore, when 

investigating a homogeneous system, a simulation of the well-established tensile test is the more 

reliable way to obtain results that should replicate experimental values. In contrast, the relaxation 

mode is recommended to obtain a locally resolved determination of Young’s modulus and 

Poisson’s ratio, as described by Riccardi et al. [8], [9]. 

In summary, while Odegard et al. [10] already showed that the OPLS-AA force field can describe 

a single polyimide in MD simulations, we showed that this force field is also adequate for two 

other polyimides. This is of critical importance since future research may also be interested in 

other properties of polyimides (e.g., the diffusion behavior of ions) at different temperatures 

and molecular structures of the polymer. Since the OPLS-AA force field was built “… to give 

highly accurate descriptions of fluids” [34], we are optimistic that this force field can give a 

robust and accurate prediction for such applications. In future, this may allow researchers to 

simulate polyimides with a novel structure under extreme conditions that are difficult to 

replicate in a physical experiment. 
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3 Towards coarse-grained molecular dynamics 

simulations of polyimides: combining PC-SAFT 

theory, experiments and MD simulations 

3.1 Introduction 

A large number of applications involving polymers are related to the transport of ions and 

molecules in these materials [54]. Especially in corrosion processes it is important to understand 

limiting and accelerating factors that influence this transport of, e.g., corrosive gases, in order 

to protect industrial devices [2]. A detailed atomistic understanding of these transport processes 

can be achieved through molecular dynamics (MD) simulations: for example, effects such as the 

swelling behavior of polymers due to moisture absorption can be predicted without lengthy 

experiments [6]. With the results from MD simulations - first and foremost the diffusion 

coefficient of an ion or molecule - polymers can be rationally developed, and designed to 

provide better corrosion protection. Another topic is the usage of polymeric membranes both 

for separation of gases, as well as for fuel cells. Therefore, also the interest in understanding the 

underlying mechanisms of the diffusion process of different species through these membranes 

increased. MD simulations are also a useful tool to understand the influencing effects of these 

transport mechanisms [6], [15]. The ideas that came from membrane simulations can be 

transferred to investigations of protecting polymer films [55], [56].  

In our present study the focus is on the transport properties of organic penetrator molecules in 

a polymer film that is used as a protective layer against corrosion. Specifically, our contribution 

shows how a mechanistic understanding of the diffusion behavior of molecules in a polymer 

film, namely the polyimide Kapton®, can be created by using MD simulations. On the one 

hand, this is important fundamental research, since often the diffusion coefficient cannot be 

determined quantitively in experiments, i.e., as is the case for permeability experiments [5] (in 

situations in which the solubility cannot be determined, or is unknown). Furthermore, this 

knowledge could be transferred to corrosive ions and molecules and allow the design of 

corrosion protective polymer films on the molecular level and improve the lifetime of the 

protected devices. Therefore, the goal of the present study was to determine the diffusion 

coefficient of an organic solvent, namely isopropanol, in Kapton® to investigate influences on 

the transport properties of the polyimide.  

In membrane science, using MD simulations to investigate the transport properties of materials 

is a widely used tool already. For example, Neyertz et al. [15] investigated the diffusion based 
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on the concentration of the penetrator molecules (i.e., carbon dioxide) in three different 

polyimides. While they used the general force field TRIPOS 5.2, in the present work the more 

specific force field OPLS-AA [34] was used to allow for presumably more accurate results in 

simulations that include a liquid phase. They showed a concentration dependent diffusion 

coefficient and used a high penetrator concentration to allow for adequate statistics in terms of 

the number of atoms that were inserted in the polyimide matrix. 

In general, the diffusion coefficient can be determined with MD simulations by monitoring the 

mean-squared-displacement (MSD) of an atom, a molecule, or a group of all species of the same 

type. If Fickian diffusion is present, the self-diffusion coefficient can be determined from the 

Einstein equation, as described in the methods section [15].  

Müller-Plathe [57] and van der Vegt [58] state that for a small diffusion coefficient it is not 

possible to calculate the diffusion coefficient with the Einstein equation since feasible simulation 

times will be too short. In order to estimate the minimum simulation times, we used diffusion 

coefficients that were determined with experiments and the PC-SAFT continuum method and 

will be published in the future [59]. Based on the equation of Müller-Plathe [57] the minimum 

simulation time for isopropanol in Kapton® would be 2.4 ms, which would mean that the 

longest coarse-grained MD simulations conducted for the present work are too short by a factor 

of 5000.  

System sizes are small in MD simulations, that often leads to statistical problems for the MSD. 

For example, the MSD might fluctuate in time if some of the investigated atoms are trapped in 

the polymer matrix. One way to overcome both challenges (i.e., long enough simulation times 

and large enough system sizes) is to reduce the number of interactions within the system by 

coarse-graining (CG) the all-atom (AA) simulation. Specifically, CG is the grouping of several 

atoms to beads with the goal to represent the AA behavior of the system as close as possible. 

Coarse-grained simulations are already used widely to investigate larger systems for longer times 

[60], [61], [62], [63]. 

Even coarse-grained simulations will not allow for the expected simulation times of 2.4ms (of 

isopropanol in a PI), that were mentioned above. However, it is important to prepare a blueprint 

that describes the necessary steps to obtain meaningful results once longer simulation times 

become computationally affordable. In our present work we present a way to conduct CG 

simulations with the combination of the software tools LAMMPS [20] and VOTCA [21], which 

are both already widely used. The advantage of using existing software and understanding how 

to use it is that not every researcher has to start from scratch with coding programs that allow 
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(i) the grouping of atoms to beads (ii) doing the statistical calculations for the radial distribution 

functions and (iii) conducting a complex CG procedure (e.g., an iterative Boltzmann inversion).  

In order to provide a holistic view on the complete procedure, first AA simulations of (i) the 

pure substances, i.e., Kapton® and isopropanol, as well as (ii) a mixture of isopropanol and 

Kapton® were conducted. As a first step, these simulations were conducted to prepare 

physically correct systems that can be used as starting configuration for the CG procedure. 

Second, these simulations allowed a first understanding of trends, as it became apparent that 

with such short simulations times a sub-diffusive regime was present. Therefore, the AA 

simulations cannot be used to determine a diffusion coefficient. In the next step the results from 

the pure substance AA simulations were used to conduct the CG procedure with the pure 

substances, and investigate the results with the determined CG force fields. Although the CG 

systems behaved differently than the AA systems, the found force field parameters lead to stable 

simulations and allowed simulations of the target system, i.e. isopropanol in Kapton®. 

The current chapter of the thesis is split into a thorough methods section that highlights the 

main parameters we identified that influence the quality of the coarse-graining procedure and 

the determination of the diffusion behavior primarily. In the results section first the findings 

from the AA simulations are presented, followed by the results of the CG simulations. The 

conclusion and outlook summarize our findings and open interesting research questions for the 

future. 

3.2 Methods 

3.2.1 MD 

Molecular dynamics (MD) simulations allow us to determine atomistic states of molecular 

systems by solving Newton’s equations of motion. The system has a certain initial state, that 

includes the initial coordinates of all atoms in the system. Based on so-called force fields (see 

below) the interactions between all atoms can be calculated respectively. With the known initial 

state, the forces between all atoms can be calculated, and numerically integrated. That way it is 

possible to simulate the motion of polymer chains, as well as penetrator molecules. Such MD 

simulations have been state of the art since many years, see [64]. 

The interactions are divided into bonded and non-bonded interactions. The bonded interactions 

summarize all intramolecular interactions that represent a bond between 2 atoms, the angle 

between 3 atoms as well as the out of plane and the torsional interaction between 4 atoms. In 

our case, the bonded interactions, except the torsional (dihedral) interactions, are calculated 
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based on a harmonic potential. A harmonic potential can be thought of as a spring between the 

atoms and is calculated with an equation of the form 𝐸 = 𝐾 ∙ (𝑥 − 𝑥0)2, where x0 is the equilibrium 

bond distance or equilibrium angle in case of the harmonic angle potential, and K is a constant 

in the units of [
𝑒𝑛𝑒𝑟𝑔𝑦

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2] [20]. The dihedral interactions are calculated with the OPLS dihedral 

style in LAMMPS [20] which is based on a Ryckaert-Bellemans function and represents Fourier 

dihedrals [65]. 

Non-bonded interactions represent the coulombic and Van der Waals interactions between two 

intermolecular atoms within a certain distance. The non-bonded interactions in our study are 

calculated with an adapted 12-6 Lennard-Jones potential that is extended by a coulombic term 

[20].  

In this work the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was 

used as the MD simulation software. The 2020 version of LAMMPS was used for all simulations 

described in this work. Furthermore, the 2023 version (30.11.2023) of the Versatile Object-

oriented Toolkit for Coarse-graining (VOTCA) was used to conduct automated coarse-graining 

from LAMMPS simulations. Detailed information of the software used is provided in Appendix 

D – Software and Data Repositories. 

3.2.2 Determination of Diffusion Coefficients 

3.2.2.1 Self-diffusion 

The self-diffusion coefficient can be determined either from a Green-Kubo integral, with the 

argument of the velocity auto correlation function (VACF) or from the mean-squared 

displacement (MSD) of a certain group of atoms. Haile [66] showed the derivation of the MSD 

form from the VACF form, which shows that both approaches are formally equivalent. Due to 

the simple calculation of the self-diffusion coefficients from the MSD this version was chosen. 

Equation (3-1) shows the definition of the MSD [67], it can be tracked for every time step of 

the simulation.  

 

If Brownian motion, i.e. the atoms follow a random walk, is present, the Einstein equation (see: 

equation (3-2)) can be used to calculate the self-diffusion coefficient from the long-time limit of 

the MSD [15]. The random walk condition is obtained when the MSDs are proportional to t, 

i.e. within the framework of a long-time Fickian diffusive limit [57].  

𝑀𝑆𝐷 ≡
1

𝑁
∑|𝑟(𝑖)(𝑡) − 𝑟(𝑖)(0)|

2
𝑁

𝑖=1

 
(3-1) 
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Müller-Plathe [57] and van der Vegt [58] state that the second criterion to allow for equation (3-

2) to be used for calculating the diffusion coefficient from the MSD is that the slope of the log-

log plot of MSD over time is going to 1. Thus, equation (3-2) converges to a time-independent 

diffusion coefficient D if the MSD grows linearly with t. 

3.2.2.2 Sub-Diffusion 

If the MSD is not linearly changing with time, the Fickian diffusive limit is not reached, and 

anomalous diffusion is prevailing. In polymer systems the Fickian diffusion limit is often not 

achieved, simply because the atoms in these systems re-arrange relatively slowly. Tomasino et 

al. [68] state that in this case, it would be more correct to employ the generalized form of 

Einstein’s equation. Rezayani et al. [69] present the generic version of the Einstein’s equation 

(see: equation (3-3)) with an anomalous diffusion exponent n. 

Reformulating equation (3-3), one can calculate the anomalous diffusion coefficient as follows: 

Where n is defined via equation (3-5) and represents the slope of the MSD over time in a log-

log plot. 

 

However, it is not possible to convert anomalous diffusion coefficients into meaningful 

diffusion coefficients (e.g., the Maxwell-Stefan diffusion coefficient introduced next).  

In the present work the knowledge of sub-diffusion from the double logarithmic plots of the 

MSD allowed the discussion whether the simulation time is sufficiently long or if the Fickian 

diffusion limit was not reached yet.  

3.2.2.3 Maxwell-Stefan diffusion coefficient 

For reasons of comparison the self-diffusion coefficients need to be converted to Maxwell-

Stefan diffusion coefficients. We note in passing that within the continuum theory (in form of 

𝐷 =  lim
𝑡→∞

(
1

6𝑡
[

1

𝑁
∑|𝑟(𝑖)(𝑡) − 𝑟(𝑖)(0)|

2
𝑁

𝑖=1

])   
(3-2) 

〈(𝑟𝑗(𝑡) − 𝑟𝑗(0))
2

〉 =  𝑀𝑆𝐷 ~ 2𝑑𝐷𝑎𝑡𝑛 
(3-3) 

𝐷𝑎~
𝑀𝑆𝐷

6𝑡𝑛
 

(3-4) 

𝑛(𝑡) =
𝑑 ln(〈∆𝑟(𝑡)

2 〉)

𝑑 ln(𝑡)
  

(3-5) 



32 

 

the PC-SAFT equation of state) that will be described later, Maxwell-Stefan diffusion 

coefficients are determined directly.  

The conversion of the Maxwell-Stefan diffusion coefficients is based on the paper of Kubaczka 

[70]. His formulations are based on the theory of friction coefficients described by Bearman 

[71] and thoroughly investigated in the field of molecular dynamics by Vrentas and Vrentas [72], 

[73], [74]. This theory uses the self-diffusion coefficients of both materials, i.e. the pure polymer 

and the penetrator molecule (here: isopropanol), to calculate the friction coefficients for the 

specific system configuration. These friction coefficients can be used to determine the Maxwell-

Stefan diffusion coefficient of the system. The interested reader is referred to the literature 

references above for further details or to Appendix C – Maxwell-Stefan diffusion from MD 

simulations. 

3.2.3 System Preparation 

As computational resources still are the most restricting component in MD simulations, 

researchers often build an equilibrated state, that (i) does not contain structural artifacts of the 

initialization, and that (ii) can be used as the initial state for the simulation of interest (e.g. apply 

an external electric field to investigate the diffusion of ions) to avoid unnecessary initial 

equilibration simulations.  

One way to estimate if the system is sufficiently equilibrated is to track the radius of gyration 

and the mean-squared displacement. The system is treated as sufficiently equilibrated if on 

average the chains of the polymer have diffused some multiple of their radius of gyration [32]. 

There are different procedures to allow for a fast equilibration of the system. In this work we 

used the 21-step equilibration procedure described by Abbott et al. [33]. This procedure was 

used for each investigated system as the initial system preparation step. Regarding the system 

size, the systems in this work were prepared in the same manner as described in our previous 

work [75], in which we demonstrated that the polymer was modelled in a representative way.  

For the combined system of isopropanol in Kapton®, absorption experiments were conducted 

to measure the equilibration concentration that is required to give estimates of realistic loadings 

of the MD simulations systems and to calculate the PC-SAFT parameters that allow an 

estimation of the Stefan-Maxwell diffusion coefficients. During these experiments the 

equilibration concentration was found to be above 3 wt%. Therefore, the two mass 

concentrations that were prepared for the MD simulations were for 1 wt% and 3 wt% 

isopropanol in the Kapton® matrix.  
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The mass concentrations were realized by inserting the correct number of isopropanol 

molecules to the system before the 21-step equilibration run to allow a random distribution of 

the molecules within the polymer chains. For System B, as defined in Table 3, this means that 

102 isopropanol molecules were inserted for 1wt% concentration and 305 molecules for 3wt% 

concentration.  

3.2.4 Production Runs 

Two different system configurations of the polymer were investigated. It was decided to take 

the same system size as in our former work [75]: it was found that the system size, i.e. the 

number of atoms in the simulation has a significant impact on the results of the simulation. 

Therefore, a system size of 62’400 atoms was chosen, that already reproduced mechanical 

properties as the Young’s modulus and the density accurately. Table 3 shows the systems were 

prepared with different chain lengths to determine the impact of the chain length on the 

diffusion. The maximal chain lengths used are based on preliminary calculations with the 

continuum model PC-SAFT, where results differed minimally at chain lengths above 200 

monomers. To avoid excessive MD simulation times, longer chain lengths were avoided. 

Although the number of atoms is equal in both system A (SYS A) and B (SYS B) from Table 3, 

it was decided to conduct all simulations after this point with the configuration SYS B.  

Table 3: System sizes, chain lengths and number of chains. 

SYSTEM CHAIN LENGTH CHAINS 

SYS A 40 monomers 40 
SYS B 200 monomers 8 

 

3.2.5 Statistical Considerations 

As mentioned in the previous section, it is important to determine if there is a linear behavior 

between the MSD and time. In our simulations we identified that – next to the simulated time 

- the number of molecules that are sampled for the MSD had a significant impact on this 

behavior.  

An estimation for the minimum simulation time was first mentioned by Müller-Plathe [57] and 

later formulated in an estimation equation by van der Vegt [58]. Using the jump distance of 5 

to 10 Å suggested in their publications allowed us to estimate the minimum simulation time as 

already described in the introduction. 

The second influencing metric, namely the number of atoms, was addressed by averaging over 

multiple simulations. Simulations with different starting configurations were conducted for each 

production run. Figure 18 shows the average MSD of three single simulation runs and shows 
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that the averaging smooths the MSD curve to allow for more accurate results. Furthermore, 

effects like trapped molecules that might appear in individual simulations are not impacting the 

result that much, as the sample size of diffusing molecules is getting larger due to the averaging 

of different simulations.  

 

Figure 18: Comparison of average and single runs MSD data at 323 K and 1 atm for 50 ns (AA-MD simulation). 

Additionally, coarse-grained simulations were conducted to allow the investigation of larger 

systems with a similar requirement regarding computational power. In our results section we 

report on the effect of both considerations. 

3.2.6 Coarse-Graining 

All-atom simulations can reflect the behavior of the polymer accurately. However, due to the 

comparably slow movements in terms of relaxation and diffusion of the polymer, the attainable 

timescales (of a few hundred nanoseconds) might be too short. Furthermore, to even reach 

these simulation durations, the system sizes are in the range of up to a maximum of 100 nm, in 

our case. Therefore, a method called coarse-graining is used to reduce the complexity of the all-

atom simulation and to reduce the number of interactions that need to be calculated [63]. 

The basic idea of coarse-graining (CG) with respect to MD simulations is to reduce the number 

of atom-atom interactions in the simulation by grouping atoms to larger beads; e.g. grouping a 

benzene ring to a benzene bead (i.e., 12 atoms to 1 bead). The CG representation of the system 

needs to behave similarly to the AA simulation, to benefit from this approach. A well-

established procedure to do that is using Boltzmann inversion: this method calculates a potential 

between two beads based on data for the radial distribution of the centers-of-mass (COMs) 

obtained from AA simulation. These potentials can either be used as (i) tabulated potentials, or 

(ii) can be transferred to parameters of a (harmonic) potential. The latter is subsequently used 
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in MD simulations to describe the bonded interactions, i.e., bonds, angles, proper and improper 

dihedrals [60], [76]. 

Figure 19 shows the grouping used in the present work. The definition of the beads was chosen 

(i) as informed by the chemistry, (ii) to prevent atoms being in two beads simultaneously, and 

(iii) was motivated by the grouping of Hu et al. [77]. 

 

Figure 19: Schematic depiction of a possible grouping of the Kapton® monomer that was used in this work. 

3.2.6.1 Iterative Boltzmann Inversion (IBI) [63] 

In this work the IBI approach for obtaining the CG potential of Kapton® was followed. The 

iterative Boltzmann is the widest used method to obtain coarse-grained potentials due to its 

algorithmically simple scheme and good, i.e., fast convergence. As mentioned already in the 

introduction, the idea is to (i) define a reference bead-based representation from AA 

simulations, (ii) perform the coarse-grained simulations with an initial guess for the force field 

parameters, (iii) compare the radial distributions between the reference data and the coarse-

grained simulation, and (iv) update the coarse-grained potential according to the update scheme 

shown in Equation (C-1). The initial guess is made by the software tool VOTCA automatically 

with a single Boltzmann inversion step.  

𝑢𝑖
(𝑘)

 in equation (3-6) indicates the kth CG potential for a certain interaction distance r, e.g. bond 

between bead A and B from Figure 19, 𝑔𝐶𝐺
(𝑘)

(𝑟) is the radial distribution function (RDF) for the 

interaction with the index i from the kth CG potential, 𝑔𝐴𝐴(𝑟) is the AA target distribution, and 

𝛼 is a parameter that defines the magnitude of the potential update. 

The disadvantage of this approach is that the interactions (indexed with i) are determined 

independently. Therefore, the convergence is slower and less stable than for the Inverse Monte 

Carlo method. However, as the preservation of structural quantities is given for both methods, 

we decided to use IBI as it does not require the acquisition of cross-correlated averages, which 

would add more complexity to the methodology [63]. 

𝑢𝑖
(𝑘+1)(𝑟) = 𝑢𝑖

(𝑘)(𝑟) − 𝛼 ∙ 𝑘𝐵 ∙ 𝑇 ∙ ln (
𝑔𝐶𝐺

(𝑘)(𝑟)

𝑔𝐴𝐴(𝑟)
) 

(3-6) 
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Another CG approach would be to use the Martini force field that uses generic types of CG 

beads to represent the AA structure of the molecule [78], [79]. However, the idea in the present 

work is to further improve material properties on the atomistic level, which would be more 

difficult by using generic beads in contrast to beads that can be directly mapped back to an 

atomistic configuration. 

3.2.6.2 Development of Coarse-Grained Potentials 

Obtaining a stable force field for CG simulations is - aside from accurately reproducing results 

from AA simulations - the most important part of the CG procedure.  

Although in literature [60], [77] dihedral interactions are not included to reduce the complexity 

of the system, we included these interactions at first. However, after investigating the 

determined potential (i) the potential was noisy which is no good behavior for a force field 

potential (since the first derivative of the potential represents the force between the beads) and 

(ii) the smoothed potential had a slope of nearly zero, which would represent very little forces 

between the beads regarding the torsion. Therefore, we did not include the dihedral interactions 

in simulations that are presented in the results section. 

Through different iterations of the IBI procedure we ended up only determining the non-

bonded interactions from the IBI runs and taking the already found interaction parameters for 

similar beads from Wen et al. [60] for the bonded interactions.  

The results from the IBI are tabulated force field parameters, that determine the potential and 

hence the force between 2 types of beads at certain distances between these beads. To directly 

use these tabulated potentials in LAMMPS it is necessary to declare the “pair_style table” for 

nonbonded interactions. LAMMPS creates an interpolation table based on these tabulated 

potentials. In the LAMMPS documentation it is stated that the parameter N, that defines the 

number of entries in this interpolation table, should be equal to the number of entries in the 

tabulated potential file. The tabulated potential file is determined from the IBI to obtain a 

perfectly matched interpolation table to the calculated potential from the IBI [20]. However, in 

our simulations this was not the case as the interpolated potential that is used in the LAMMPS 

simulations was different from the obtained tabulated potential from the IBI. Therefore, we 

decided to use N for the interpolated table to be double the entries in the tabulated potential 

file. With this approach, we obtained a correctly interpolated potential for the LAMMPS CG 

simulations.  
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3.3 Results 

The results section is split into 2 main parts: our results from AA simulations, and the results 

from CG simulations respectively.  

3.3.1 AA Kapton® 

In our prior work [75] we showed that the OPLS-AA force field can be used for the 

representation of Kapton® in an AA MD simulation. The detailed results can be found there, 

but it is important to mention that the starting system for the CG procedure is behaving 

physically accurate regarding density, Young’s modulus and glass-transition temperature.  

3.3.2 AA Isopropanol 

As the matrix material was described well with the used force field, it was natural to also check 

if the diffusion properties of the material can be described accurately. Zangi et al. [80] already 

showed that the basic OPLS-AA force field [34] was not perfectly representing the behaviors 

of isopropanol and adapted the OPLS-AA parameters accordingly. In the present work we used 

the parameters Zangi et al. provided and conducted the production runs with 512 isopropanol 

molecules for 10 ns. Figure 62 and Figure 63 show the average MSD of three unique simulations 

over time and the double logarithmic plot. Both from the R-squared and the power law 

coefficient n that are shown in the figures it can be seen that these simulation results can be 

used to calculate the diffusion coefficients based on the MSD. Therefore, it can be assumed that 

the system size was chosen large enough to account for good statistics. 

The self-diffusion coefficients were compared to the experimental data from Partington et al. 

[81] and were found to be in good agreement. The simulations were conducted at 294 K and 

the resulting diffusion coefficient of 𝐷 = 6.4 ∙ 10−10  
𝑚2

𝑠
 is within the range presented in 

literature from 15 °C to 25 °C. Furthermore, the density of 764 
𝑘𝑔

𝑚3 is within 2.6% of the literature 

value of 785 
𝑘𝑔

𝑚3. 

Based on these findings, the applicability of the adapted OPLS-AA force field was verified, and 

the resulting systems can be used as the base for the coarse-graining procedure. 
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Figure 20: Isopropanol AA MSD (self-diffusion). Simulation at 294 K 
and 1 atm for 10 ns. 

 
Figure 21: Isopropanol AA MSD (self-diffusion; double logarithmic 
plot). Simulation at 294 K and 1 atm for 10 ns. 

 

3.3.3 AA Kapton® – Isopropanol 

After the pure systems, i.e. pure isopropanol and pure Kapton®, were investigated, the 

combined system was prepared. As mentioned in the methods section, “SYS B” in Table 3 was 

used to conduct the simulations. The system was prepared as described in the methods section. 

The simulations were conducted at various temperatures and with various simulation durations. 

The main simulation results were taken from the 100 ns simulations at 323 K and 353 K. These 

temperatures were chosen as the experiments were conducted within this temperature range.  

The most important parameter from these simulations is the slope of the double-logarithmic 

plot to see if it is possible to determine the self-diffusion coefficient from the Einstein equation 

(see Eqn. (3-2)). Figure 22 and Figure 23 show the double-logarithmic plots of the MSD, 

determined from 3 simulations respectively at 323 K and 353 K, for “SYS B” with 1 wt% of 

isopropanol molecules. The parameter n described in the graphs represents the slope of the 

graphs in the range from 10 ns to 100 ns. As can be seen, for 323 K 𝑛 = 0.2, and at 353 K 𝑛 =

0.33. Both of these factors are far from 1, which supports the assumption from the beginning 

that even these comparably long simulation times [6], [57], [82] are too short to determine the 

diffusion of isopropanol in Kapton®. 

However, we calculated the self-diffusion coefficient with Eqn. (3-2) and used the calculated 

diffusion coefficient to determine the Stefan-Maxwell diffusion coefficient and compare it to 

the results from the experiments and the PC-SAFT approach. At 323 K 𝐷𝑀𝑆 = 9.32 ∙ 10−15  
𝑚2

𝑠
 

and at 353 K 𝐷𝑀𝑆 = 2.38 ∙ 10−14  
𝑚2

𝑠
. Based on the results of the experiments and the PC-SAFT 

approach (to be published in a separate publication) the diffusion coefficients determined from 
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these simulations are more than two magnitudes of order higher than from experiments. This 

further implies that sub-diffusion is present [68], [69], [83] in this simulation, and that 

significantly longer simulation times are required.  

 
Figure 22: Double-logarithmic plot of MSD of isopropanol 
in Kapton® at 323 K and 1atm. 

 
Figure 23: Double-logarithmic plot of MSD of isopropanol 
in Kapton® at 353 K and 1atm. 

The most important finding here is that it is necessary to monitor the slope in the double-

logarithmic graph. Although the linearity based on R-squared was high in the MSD plot (see: 

Figure 24), what would fulfill one criterion for the Einstein equation, the double-logarithmic 

plot (see: Figure 23) shows that the MSD is not linear over time.   

  

 
Figure 24: MSD for the AA simulation of 62’400 polymer 
atoms in 8 chains with 102 isopropanol molecules at 353 K 
and 1atm. 

3.3.4 CG Isopropanol 

The first step in the CG procedure was to investigate the behavior of the CG isopropanol. 

Therefore, initially a very coarse grouping was chosen that grouped the whole isopropanol 
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molecule to 1 bead as shown in Figure 26. The reason for this is the reduced complexity of the 

required force field as only 1 non-bonded interaction is necessary to describe the coarse-grained 

isopropanol system. As mentioned above, the AA simulations of 512 isopropanol molecules 

were used to create the radial distribution functions during the IBI.  

 
Figure 25: Grouping of isopropanol into 4 beads. 

 
Figure 26: Grouping of isopropanol into 1 bead. 

As the AA simulations already showed a linear behavior after 10 ns (see Figure 62 and Figure 

63), the CG simulations were conducted for the same duration.  

3.3.4.1 Results for 1-bead isopropanol 

Simulations with the 1-bead configuration were conducted for 512 isopropanol molecules at 

308 K as this was a temperature where literature data for the self-diffusion coefficient was 

available. The system reached an equilibrium density of 1297 
𝑘𝑔

𝑚3, while still in a gaseous state, 

based on the measured temperature and pressure of the system.  

By investigating the trajectories of the molecules, it became clear that the coarse grouping led 

to a crystallized system, that looked more like a metallic material than a gaseous system. 

Naturally, the diffusion coefficient was about zero as the molecules only vibrated in place after 

a short initial phase that showed randomness. Therefore, the next step was to prepare a less 

coarse system with 4 beads representing an isopropanol molecule, as shown in Figure 25. 

3.3.4.2 Results for 4-bead isopropanol 

The assumption for the 4-bead configuration of isopropanol (see Figure 25) was that the grid 

formation monitored in the 1-bead configuration will be broken up and the molecules will move 

freely in the system. The idea was that the different bead types will help in this approach. 

However, the system showed the same behavior and reconfigured in an oriented system where 

only a vibrational motion was present during the investigation of the trajectories.  
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Contrary to the 1-bead system the equilibration density in this configuration was 756 
𝑘𝑔

𝑚3 which 

is within 4% of the density of isopropanol of 786 
𝑘𝑔

𝑚3. Similar to the system with the 1-bead 

configuration, the diffusion coefficient was close to zero as well, as the system did not show 

diffusion except from short-distance vibrational motion.  

One possibility for this could be the usage of tabulated potentials. These potentials are based 

on an equilibration state that is represented by the radial distribution functions for each 

interaction in AA simulations. The assumption is that the CG simulation is forced into a 

metastable state that only allows for small vibrations in place of the single bead. However, no 

relevant movements in terms of diffusive motion of the solvent were observed. 

3.3.5 CG Kapton® – Isopropanol 

Based on the findings of the CG simulations of both Kapton® and isopropanol it was decided 

to group the Kapton® as shown in Figure 19. As both configurations of isopropanol provided 

the same quality for the diffusion coefficient it was combined with the 1-bead configuration of 

isopropanol. The advantage of using the 1-bead configuration is the reduced complexity and 

hence the reduced required computational power.  

The final force field used to conduct stable simulations up to 500 ns was a mixture of the 

conducted IBI for the nonbonded interactions, the skipping of dihedral interactions and the 

usage of already prepared CG parameters for similar interactions from Wen et al. [60].  

While the density of the CG simulation of pure Kapton® was within 20% of the real density, 

in case of the system with Kapton® and isopropanol the density was too high. This fits with 

the findings from Demydiuk et al. [84]: they showed that with reduced torsional interactions the 

density increases. However, they showed a difference of the density between a full dihedral 

potential and a zero dihedral potential of only approximately 10%. In our case the density with 

switched off dihedral potential was 𝜌 = 2200 
𝑘𝑔

𝑚3 and therefore about 50% higher than the 

literature value. This leads to the suggestion that the density correction method used by Hu et 

al. [77] would allow for better results regarding the density. 



42 

 

 
Figure 27: MSD for the CG simulation of 62’400 polymer 
atoms in 8 chains with 102 isopropanol molecules at 353 
K and 1 atm for 500 ns. 

 
Figure 28: Double logarithmic plot of MSD for the CG 
simulation of 62’400 polymer atoms in 8 chains with 102 
isopropanol molecules at 353 K and 1 atm for 500 ns. 

 

Figure 27 shows the average MSD of three independent CG simulations of isopropanol in 

Kapton® over 500 ns. The CG systems consist of 62’400 atoms from the AA simulation that 

are coarse-grained to 9600 beads of Kapton® in 8 chains and the 102 isopropanol molecules. 

Figure 28 shows the double logarithmic plot of the MSD over the simulation time. Similarly to 

the results from the AA simulations, the slope of the double logarithmic graph is far from 1, 

which indicates that sub-diffusion is present.  

The longer simulation times up to 500 ns did not bring the slope of the double logarithmic MSD 

towards 1, but even further away in comparison to the AA simulations with a duration of 100 

ns.  

3.4 Conclusion 

In this work we presented a concept for conducting AA and CG simulations of an organic 

solvent in a polyimide material to determine the transport properties of the solvent. It was 

apparent that simulations at the moment will not lead to usable results, as required simulation 

times combined with large system sizes are not feasible with currently accessible computational 

power. However, the blueprint of how these simulations should be conducted - once it is 

possible to conduct AA MD or calibrated CG MD simulations - was presented. 

In the first step the pure systems, i.e., Kapton® and isopropanol, were investigated with AA 

simulations to (i) determine if the used force field OPLS-AA can describe the individual systems 

and (ii) to prepare a reference AA system that can be used as the base for the CG procedure. 

Our previous work [75] and the presented results in this work for pure isopropanol showed that 

these systems can be described accurately with AA MD simulations. Furthermore, the 
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simulations of these species can be used as the starting configuration for the CG procedure with 

the IBI method.  

The CG procedure was conducted with the software tool VOTCA [21] that allows an automated 

workflow of the iterative procedure (IBI). It also provides functions to determine the radial 

distribution functions (RDF) of the bonded and non-bonded interactions from AA simulations. 

It is further possible to automatically map the AA configuration to a CG configuration to allow 

the usage of an already equilibrated system that saves computational power. However, if 

compared to correct physical properties from literature, the simulations of pure Kapton® and 

pure isopropanol lead to better results than the simulations of the mixed system. It seems that 

the increased complexity of the CG system, namely the increased number of interactions due 

to different bead types, leads to difficulties in finding the correct CG force field. Skipping 

dihedral interactions lead to stable simulations, since IBI-based dihedral CG potentials were 

physically not meaningful. However, skipping the dihedral interactions leads to excessively high 

densities. Due to this high density, the reason for the sub-diffusive behavior of isopropanol in 

Kapton® as shown in Figure 28 remains unclear. On the one hand, the tabulated force field 

could be the reason that prevents an investigation of dynamic properties based on molecular 

movement. On the other hand, the high density could force the system into a state with little 

movement. Therefore, a density correction method that showed improved results in the work 

of Hu et al. [77] would be especially beneficial to the more complex system of isopropanol in 

Kapton®.  

The combination with experimental values and determination of the diffusion coefficient with 

PC-SAFT method allowed an estimation of the required simulation time to achieve meaningful 

results with MD simulations. Even the longest simulations in this work with extreme coarse-

graining, i.e., for Kapton® 39 atoms grouped to 6 beads and for isopropanol 12 atoms grouped 

to 1 bead, are by a factor of 5000 too short.  Although the sufficient simulation times are not 

yet reachable, this work highlighted a few parameters that need to be considered once these 

long simulation times are affordable.  

Dihedral interactions add a layer of complexity to the system, but are important to represent 

the density of the simulated system. The effect of adding a density correction method to the 

coarse-graining procedure on the diffusive behavior of the solvent would be an interesting 

starting point for future research.  

Another important point of interest is the reason that even for longer simulations as shown in 

Figure 28, the slope of the double logarithmic MSD graph is not converging towards 1. Instead, 
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this slope even diverges from it in comparison to the 100 ns AA simulations that are shown in 

Figure 23. This behavior can stem from the high density as mentioned before. However, by 

comparing the behavior to the CG isopropanol simulations, diffusion could not be detected 

although the density was correct. As mentioned above, a possible explanation would be the 

crystallization that was seen in the analysis of the trajectories. Therefore, transferring the 

tabulated potentials to parameters for a Lennard-Jones potential, i.e. σ and ε, would be an 

interesting starting point to investigate this influence. The analytical solution of the Lennard-

Jones potential might allow for more stability in the simulation in contrast to a discrete function. 

Another possibility from parcel-based approaches in discrete element methods, is either a slight 

variation in the size of the CG representation or a weak dilution of the system with a different 

species [85]. The first approach is similar to the simulation of isopropanol with the 1- and the 

4-bead grouping. The latter approach was not tested in this work and would be an interesting 

point to investigate in the future. 

Independent of the CG procedure and the software, it is necessary to check an obtained force 

field for its physical meaningfulness. For example, a potential that fluctuates strongly w.r.t to 

the distance is not acceptable as forces might change sign within a short distance. Automatic 

plotting and analysis of the derived CG potentials would help to address this challenge and 

accelerate research. 
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4 Conclusion 
In this work, the possibility of investigating the transport properties of different species in 

polyimides with MD simulations was surveyed. A flexible framework was developed that allows 

researchers to  

(i) prepare polymeric systems with different polymer types, chain lengths and number 

of chains, as well as penetrator molecules,  

(ii) conduct AA simulations with the OPLS-AA force field, as well as CG simulations 

with calibrated CG force fields with the MD simulation software LAMMPS,  

(iii) determine CG force fields based on AA simulations with the software tool VOTCA, 

and  

(iv) determine properties like the glass-transition temperature, the Young’s modulus the 

Poisson’s ratio, the self- and Maxwell-Stefan diffusion coefficients with in-house 

postprocessing code written in python.  

Before conducting MD simulations, a method had to be developed that allows to prepare a 

system of the polymer of interest (here: Kapton) flexibly, in terms of polymer chain length and 

number of polymer chains. As described in the first part of the thesis, moltemplate [31] was 

used to enable this flexibility. Based on bond lengths and angles, the structure, including the 

coordinates of each atom, of monomers can be described and prepared with moltemplate. Then 

this artificially created system was equilibrated with the method described in the first part of this 

thesis to prepare systems that are as close to the real system as possible.   

In the first step, the applicability of the OPLS-AA force field to the polyimide and various 

diffusing species was investigated and verified. Although force fields like COMPASS were 

already proven to allow for correct simulations of polyimides [7], the OPLS-AA force field was 

chosen. The reason was that simulations with liquid phases were planned for future research. 

Simulations to determine the Young’s modulus and the Poisson’s ratio, similarly to the well-

established tensile test, were conducted. The simulation results showed that the OPLS-AA force 

field can be used to describe the interactions in the Kapton polymer during uniaxial stretch and 

compression. However, the system size is of high importance as our investigation of an 

anisotropy metric showed. The system needs to have low anisotropy if the simulation should 

represent bulk properties of the polyimide. These findings were the first indication that the 

possibility of simulating larger system for longer times would be an important milestone when 

conducting MD simulations.  
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After verifying the applicability of the OPLS-AA force field to MD simulations of Kapton, 

simulations regarding the ion diffusion through the polyimide were conducted. The results of 

these simulations are presented in Appendix A – Atom and Ion diffusion. The idea was to 

simulate experiments of ion transport through a membrane that were previously conducted at 

Vienna University of Technology by Lars Varain [5]. However, the small system sizes of an MD 

simulation did not allow for the simulation of the complete process, including the ion absorption 

from the liquid phase into the membrane, the transport through the membrane and the 

desorption on the other side of the membrane. Therefore, the focus was set on the transport 

properties in the bulk of the polyimide. The diffusion coefficients of different ions were 

determined, based on their MSDs and the Einstein equation. However, due to the limited 

computational power the system sizes were too small and the simulation times too short to 

obtain good statistics. The presented results show sub-diffusive behavior as described in chapter 

2. Experimental values from literature [86] are 8 orders of magnitude slower than indentified in 

the present simulations. Clearly, longer simulations, as described in part two of the thesis, would 

be interesting points for future research.  

Müller-Plathe [57] also states that 10 ns long simulations bring diffusion coefficients of 4 ∙

10−11 𝑚2

𝑠
  within reach. The longest simulations in this thesis were 500 ns long. Therefore, it is 

necessary to investigate ways to allow longer simulations with the available computation power. 

The reoccurring topic of computational power to be the bottleneck of this research lead to the 

results described in the second part of the thesis, where the coarse graining of polymeric systems 

was investigated.  

This second part of the thesis dealt with the determination of a coarse-grained force fields for 

an organic solvent, namely isopropanol, in the polyimide Kapton. This system was chosen, as 

the experimentally determined absorption of isopropanol in Kapton showed promising results 

for good statistics in comparison to other organic solvents. These experiments in combination 

with the continuum method PC-SAFT, conducted by Stefan Wagner from Graz University of 

Technology, allowed an estimation of the diffusion coefficient of this system.  The determined 

Maxwell-Stefan diffusion coefficients can be used as verification for the MD simulations 

conducted in the present work. A blueprint was presented that allows researchers to determine 

a CG force field based on AA simulations and determine self-diffusion as well as Maxwell-

Stefan diffusion coefficients for diffusing species in a polymer matrix. The estimation of the 

diffusion time from the continuum method made it clear that conducting long enough 

simulations to describe the diffusion process properly is out of reach with the computational 
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power available for the present research. However, it was important to present the correct way 

to conduct simulations for investigating the transport properties of these species. The 

combination of the MD simulation tools LAMMPS and VOTCA, a toolbox to conduct coarse 

graining methods automatically, is presented in Appendix B – The VOTCA / LAMMPS 

Interface. The VOTCA tool presents tutorials for both simple and complex systems in 

combination with GROMACS [65]. When starting the present work, there was no thoroughly 

described tutorial for conducting the coarse-graining with VOTCA based on AA simulations 

from LAMMPS for complex systems. We hope this guide will support researchers in the future 

to allow a faster setup of CG simulations with the presented tools. Another possibility is the 

widely used coarse grained force field MARTINI [78]. However, for more flexibility in the 

application of the force field, as it is only determined by AA simulations verified beforehand, 

the combination of LAMMPS and VOTCA was chosen in the present work. 

The way to determine if a Fickian or sub-diffusive regime is present from MD simulation data 

was presented. Furthermore, the calculation of the Maxwell-Stefan diffusion coefficient based 

on self-diffusion coefficients was summarized in Appendix C – Maxwell-Stefan diffusion from 

MD simulations.  

5 Outlook 
The most important point for future research would be the determination of a stable CG force 

field that allows simulations up to the required times calculated in chapter 2 of the present thesis. 

Consequently, there are various ways to improve the presented method: 

I. Sample bonded interaction RDFs only from single polymer chains [60] 

II. Add the density correction to the coarse-graining method [77] 

III. Investigate the improvement by using pair coefficients instead of tabulated potentials 

An interesting point for future research will also be the investigation of the sub-diffusive 

behavior, and if a correct diffusion coefficient can be determined with shorter simulations. 

Tomasino et al. [68] and Berrod et al. [83] have presented generic versions of the Einstein 

equation that could be used to calculate a diffusion coefficient from MSDs that do not have a 

slope of 1 in a double logarithmic plot over time.  

Once stable CG force fields are found, the method described in the first chapter (i.e., to 

determine the Young’s modulus of the polymer) would allow the validation of the force field 

by comparison with experimental mechanical properties. In other words, combining the 

findings from chapter 1 and 2 would improve the validation of the found CG force fields. 
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Subsequently, the original goal of chapter 2 (i.e., combining atomistic simulations with a 

continuum method, e.g. PC-SAFT, to describe the transport properties in polyimides) could be 

followed.  
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7 Appendices 

7.1 Appendix A – Atom and Ion diffusion 

In this work, bulk diffusion for different species was determined and the results will be 

presented in this section. To provide better statistics the results were often averaged over all 

simulation runs and the results of single simulations are presented as visualization for the 

improvement of larger sample sizes. Table 4 summarizes the results of the bulk simulations for 

atoms and ions. 

7.1.1 Motivation 

Figure 29 shows an SEM image of a FIB cut of ion diffusion into the polyimide layer (dark part 

on the top of Figure 29). This ion diffusion can lead to defects of the protected device (light 

part on the bottom of Figure 29). In this case the polyimide acts as a protective layer to the 

metal surface below. Understanding the underlying mechanisms that influence the transport 

behavior of various ions through the polymer is the first step to improve the quality of the 

protective polyimide layer. MD simulations can aid in getting this understanding.  

 

Figure 29: SEM image of a FIB cut of ion diffusion into PI on a Cu surface [87]. 

7.1.2 Atoms 

The first simulation run was conducted with atoms to investigate the effect of atomic charge on 

the diffusion coefficient. The atoms were chosen as their respective ions were of interest in the 

present study. Although the uncharged atoms would not require counter ions for charge 

neutrality the system was prepared the same way as for the charged ions later for reasons of 

comparability. 
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7.1.2.1 Cu 

Figure 30 shows the average MSD graph of uncharged Cu atoms over the course of 9 

simulations each 5 ns long. The graph shows a reasonable linear fit over the range indicated by 

the black line.  

 

Figure 30: Average MSD of 9 simulation runs, each containing 93 uncharged Cu atoms in the Kapton matrix. The black line 
indicates the slope of the graph in the range of the line. 

7.1.2.2 Cl 

Similarly to the before-mentioned Cu atoms, the average MSD of uncharged Cl atoms can be 

estimated with a linear fit quite accurately and shows that the MSD is proportional to time. 

However, the slope of the linear fit is smaller in comparison to Cu before. 

 

Figure 31: Average MSD of 9 simulations runs, each containing 186 uncharged Cl atoms in the Kapton matrix. The black line 
indicates the slope of the graph in the range of the line. 
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7.1.3 Ions 

The species of interest will often be present as ions within the polymer matrix. Therefore, the 

second simulation series was conducted with ions and counterions to provide charge neutrality 

to the system. As main examples copper, double and single positively charged, as well as chloride 

single negatively charged, were chosen as for the investigation of atoms before.  

7.1.3.1 Cu2+ 

Figure 32 shows the average MSD of Cu2+ ions in the polymer matrix. In this case 9 simulations 

were averaged, but only 10 ions were inserted into the system, which is reflected by fluctuating 

data. The small sample size does not allow to draw any conclusions regarding the diffusion 

coefficient as there is no clear time dependence of the MSD shown.  

 

Figure 32: Average MSD of 9 simulations runs, each containing 10 Cu2+ ions in the Kapton matrix. 

Figure 33 shows the average MSD of Cu2+ over 9 simulations, but in this case 93 Cu2+ ions were 

inserted into each respective simulation. After about 2.2 ns the MSD begins to linearly increase 

with time, which is highlighted by the black line obtained from a least squares method. R² is 

smaller than for the graphs for atoms but is still in good agreement with the simulation. 

However, the diffusion is around 3 orders of magnitude slower for Cu2+ in comparison to Cu 

as indicated in Table 4. 
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Figure 33: Average MSD of 9 simulations runs, each containing 93 Cu2+ ions in the Kapton matrix. 

7.1.3.2 Cu+ 

In the next step Cu+ ions were investigated as the assumption was that the charge is influencing 

the diffusion, depending on the electro positivity.  

Figure 34 shows the MSD of a single simulation run with 80 Cu+ ions in the polymer matrix. 

Especially in the region between 2.5 and 4.5 ns it is important to note that due to only using 1 

simulation run, although with many ions, the simulation does not describe the behavior 

properly. In this region it is assumed that a lot of the ions are trapped and only vibrate in their 

spatial location, which leads to this plateauing of the MSD. In this case the Einstein equation 

cannot be used to determine the diffusion coefficient. 

 

Figure 34: MSD of 1 simulation run, containing 80 Cu+ ions in the Kapton matrix. 

Figure 35 shows the average MSD of 9 simulation runs, each containing 80 Cu+ ions. Although 

the fit is worse than for Cu2+, after 2.2 ns a clear linear trend of increasing MSD with time is 



63 

 

visible. As assumed the diffusion takes place faster than for the double charged ions before. 

Table 4 shows that the diffusion of single charged ions is one order of magnitude faster. 

 

 

Figure 35: Average MSD of 9 simulations runs, each containing 80 Cu+ ions in the Kapton matrix. 

7.1.3.3 Cl- 

Cl- was used as a counterion for the Cu ions as both Copper(II) chloride and Copper(I) chloride 

are salts often used in electro chemical experiments. In our simulations the charge of chloride 

did not change and only the number of chloride ions changed to provide the required charge 

neutrality. Similar to the graphs of Cu before, simulations with few ions do not allow to derive 

the diffusion coefficient from the MSD as there is no clear proportionality between MSD and 

time as shown in Figure 36. 

 

Figure 36: Average MSD of 9 simulations runs, each containing 20 Cl- ions in the Kapton matrix. Cl- as counterions for Cu2+. 
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Interestingly, chloride diffusion was monitored for different ions, i.e. Cu2+ and Cu+, but only 

the number of chloride counterions changed for the respective simulations. Therefore, it was 

possible to show that the diffusion is only dependent on the charge of the ions and not their 

counterparts, as the slope of the MSDs shown in Figure 37 and Figure 38 is in the same order 

of magnitude. The higher R² that can be seen in the graph of Figure 37 (Cl- ions were the 

counterions for Cu2+) supports the assumption that larger sample sizes provide better results.  

 

Figure 37: Average MSD of 9 simulations runs, each containing 186 Cl- ions in the Kapton matrix. Cl- as counterions for Cu2+. 

 

Figure 38: Average MSD of 9 simulation runs, each containing 80 Cl- ions in the Kapton matrix. Cl- as counterions for Cu+. 

Table 4 summarizes the results of the bulk diffusion simulations of Cu, Cl and their respective 

ions. 
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Table 4: Orders of diffusion coefficients for Cu and Cl atoms and their respective ions. 

 Cu Cu+ Cu2+ Cl Cl- 

Diffusion 
coefficient 

𝐷 = 𝑂 (10−10
𝑚2

𝑠
) 𝐷 = 𝑂 (10−12

𝑚2

𝑠
) 𝐷 = 𝑂 (10−13

𝑚2

𝑠
) 𝐷 = 𝑂 (10−11

𝑚2

𝑠
) 𝐷 = 𝑂 (10−12

𝑚2

𝑠
) 

 

7.1.4 Molecules 

The procedure for diffusion simulations of molecules is in this framework the same as for atoms 

and ions.  

7.1.4.1 Water 

The first molecule of interest was water, as the ions investigated before are coming from 

aqueous solutions. Water was investigated at concentrations of 1 and 3 wt% to be below the 

stated water uptake of 4 wt% in Kapton® [88]. 

Figure 39 and Figure 40 show the MSD graph of water with concentrations of 1 wt% and 3 

wt% respectively at 300 K. In this case 1 wt% is represented by 68 water molecules, which is 

already a usable sample size, based on the findings of the ion and atom simulations. The two 

figures show that the diffusion coefficient is independent of the concentration and that with a 

larger sample size (3 wt%) the linear fit is more accurate. 

 

Figure 39: Average MSD of 9 simulation runs at 300 K with 1 wt% water in the polymer matrix. 
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Figure 40: Average MSD of 9 simulation runs at 300 K with 3 wt% water in the polymer matrix. 

Figure 41 and Figure 42 show the MSDs of water at a temperature of 400 K. The graphs show 

the same behavior regarding the quality of the fit for the respective concentrations. 

Furthermore, the slopes of the linear fits are of the same order of magnitude, and as expected 

for higher temperatures steeper than the slopes of the simulations at 300 K. The steeper slope 

can be interpreted as a faster diffusion process as the slope is proportional to the diffusion 

coefficient. 

 

Figure 41: Average MSD of 9 simulation runs at 400 K with 1 wt% water in the polymer matrix. 
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Figure 42: Average MSD of 9 simulation runs at 400 K with 3 wt% water in the polymer matrix. 

7.1.5 Limitations 

Including the new findings from the isopropanol investigations described in chapter 2, the 

double logarithmic plots were investigated for the ions of copper as well. Figure 43 and Figure 

44 show the graphs of the average MSD of 3 simulations over time on a normal scale and double 

logarithmic scale respectively. While Figure 43 shows a decent linearity as the R² value highlights, 

the slope, i.e. n, in Figure 44 shows that sub-diffusion is present in the simulated system. The 

results presented in Table 4 support that assumption, as the diffusion coefficient, determined 

from experiments by Das et al. [86], is in the order of 10−22 𝑚2

𝑠
. The data in Table 4 shows a 

large deviation from the literature data. 
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Figure 43: Graph of average AA MSD (self-diffusion) of 3 simulations 
with 93 Cu2+ ions. Simulation at 300 K and 1 atm for 100 ns. 

 
Figure 44: Double logarithmic graph of average AA MSD (self-
diffusion) of 3 simulations with 93 Cu2+ ions. Simulation at 300 K and 
1 atm for 100 ns. 

 

The calculated minimal simulation time based on the equation presented by Müller-Plathe [57] 

and described in chapter two for diffusion of copper in a polyimide would be 2.5 ∙ 103 𝑠.  

7.1.6 Conclusion – ion diffusion 

The SEM images taken by Ludwig [87] showed that ion diffusion in protective polyimide layers 

can lead to defects of the protected devices. The present work aimed to investigate the transport 

properties of ions, and especially determine the diffusion coefficient of these ions in the 

polyimide bulk with molecular dynamics simulations.  

Equilibrated systems with varying amounts of ions were prepared and the mean-squared-

displacement (MSD) was monitored to allow the calculation of the diffusion coefficient. The 

first finding as shown in Figure 32 and Figure 34, was the importance of the sample size of ions 

for the MSD. If too few ions are sampled for the MSD, effects like the trapping of ions in the 

bulk, highlighted by the plateau in the MSD graph of Figure 34, affect the results from the 

simulation largely. Comparing Figure 32 and Figure 33 shows that more sampled ions, as in 

Figure 33, smooth the MSD graph and improve the identification of the linear region of the 

MSD. However, to prevent unrealistic concentrations of ions in the polyimide bulk by 

increasing the number of ions, it is necessary to prepare larger systems.  

The simulation of polyimide systems with ions and molecules showed that the prediction of 

trends is possible despite the short simulations. Stricker et al. [89] showed that the diffusion 

coefficient of cuprous ion (Cu+) is higher than the diffusion coefficient of cupric ion (Cu2+). 

Table 4 in the present work shows the same trend. Furthermore, the temperature dependency 

of water diffusion, described by Kazimierz et al. [90], was shown in Figure 40 and Figure 42. 
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The slope of the MSD graph, that represents the diffusion coefficient, in the simulations at 400 

K is steeper than the slope in the simulations at 300 K. 

However, the additional investigation of the slope of the MSD over time in a double logarithmic 

graph (see: Figure 44) showed that the simulations were still in a sub-diffusive regime. Therefore, 

it would be important to apply the findings for coarse-grained simulations described in chapter 

2 of the present work to facilitate longer simulations. Furthermore, extending the simulations 

to other ions of interest is an interesting point of future research. 
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7.2 Appendix B – The VOTCA / LAMMPS Interface 

A major part of this thesis was the provision of a working interface between the software tools 

VOTCA and LAMMPS. The software tool VOTCA has a good working interface with 

GROMACS, a different MD simulation software tool, including tutorials that allow the user to 

understand the required input files and the format of them to conduct correct simulations. 

However, it is different for LAMMPS as only 1 tutorial is provided that describes the CG 

simulations of SPC/E water, but not the process of getting there from an AA simulation. This 

appendix should allow researchers to obtain CG force fields and conduct CG MD simulations 

with the combination of VOTCA and LAMMPS, by following the steps described below. 

7.2.1 VOTCA commands 

7.2.1.1 Command for mapping the CG geometry 

The all-atom (AA) representation of system.data is mapped to the coarse-grained (CG) 

representation cg1.dump based on the geometry given in hexane.xml. The topo.xml describes 

the bonds, angles and dihedrals of the AA representation. 

csg_map --top topo.xml --cg hexane.xml --trj system.data --out cg1.dump 

7.2.1.2 Command for getting the RDFs 

The RDFs are used in the IBI to create the CG-beads based on the AA RDFs. The LAMMPS 

trajectory is also dumped as an xtc file. The settings.xml file describes how the CG process 

should be done.  

csg_stat --top topo.xml --trj lammps.xtc --cg hexane.xml --nt 24 --options settings.xml --begin 

0 

7.2.1.3 Further helpful commands from GROMACS 

gmx dump -f gromacs.xtc > GROMACS_xtc_readable 

gmx dump -s topol.tpr > read_topol 

After installing GROMACS the gmx dump command can be used. With this command it is 

possible to make binary files readable. 

7.2.2 VOTCA input files for LAMMPS 

To prepare the RDFs of an AA simulation from LAMMPS with VOTCA, the following files 

need to be prepared: 

• Trajectory file of all atom simulation (we export it to xtc as this works better) 

• Topology file of the CG representation (in our case: hexane.xml) 
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• Topology file of the AA representation including all bonds, angles and dihedrals (here: 

topo.xml) 

• Settings file that tells VOTCA what the range in which the interactions will be and how 

small the bins should be for the RDF (settings.xml) 

7.2.3 Step-by-step description from LAMMPS AA to VOTCA RDFs 

• Already prepare your LAMMPS system.data in the way that the atoms that are in 1 CG 

bead later are in chronological order 

• Conduct the all-atom simulation in LAMMPS (incl. the .xtc file) 

• Prepare the above-mentioned files 

• Use the csg_stat command mentioned above to get the RDFs 

7.2.4 Preparation of input files for the iterative Boltzmann inversion (IBI) 

Before preparing the input files it is important to understand how the LAMMPS notation 

translates to the VOTCA notation. This is since molecule and atom naming work differently in 

LAMMPS and VOTCA. 

The following command allows to get this information: 

• csg_dump --top system.data > log.data  

The result looks like this: 

 

This is the log.data file for a hexane molecule. It is important that the molecule is named based 

on what VOTCA detects as atoms in the molecule (in this specific case C6H14). Further, 
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VOTCA is starting the numbering of atoms with 0, and is adding the letter of the atom to the 

atom type that it was given in LAMMPS (e.g., 80 → C80) 

With this information we can prepare the required files based on the following example. 

7.2.4.1 Topology file topo.xml 

The first file is the topology file here always referred to as topo.xml that describes the AA 

topology of the molecule. Including the atoms that build the molecule, the bonds, angles and 

dihedral interactions within the molecule. 

 

The first line describes the molecule for VOTCA. The name that was found from the csg_dump 

command should be used for the molecule (here: C6H14). How many molecules there are in 

the AA simulation (here: 1000) and how many beads (in this case atoms) make up each molecule 

(here: 20). Each atom needs to be named the same way as found from the csg_dump command.  

Then bonds, angles and dihedrals need to be defined as the atom interaction in the AA 

simulation. 
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7.2.4.2 Coarse-graining file hexane.xml 

The coarse-graining file describes how the atoms from the AA topology will be combined to 

create the CG representation of the beads. 

 

The name of the molecule is how the user wants to define it and is of no interest for the 

mapping. The ident is important and needs to be the same as the molecules are named from the 

csg_dump command and are named in the topology file to allow VOTCA to make the 

connection.  

In the topology section the CG beads are described. Each bead has a name, is of a certain type 

and has a mapping. The mapping will be explained later.  

 

This figure shows how the CG beads are defined in this case. 
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In the cg_bonded section the bonds, angles and if there are the dihedral interactions of the CG 

beads need to be defined. In this case there are only bonds between A1 and B as well as between 

B and A2, and there is one angle A1 B A2 with B marking the middle bead. 

Lastly, the user must tell VOTCA the atomic masses of all atoms that build up the beads. The 

mapping in this section is connected to the mapping that was defined in the topology section. 

Both beads A1 and A2 were defined to have the same mapping A. For the case of A1 the 

mapping tells VOTCA that atom 1:C6H14:0 has a molecular weight of 12.011, atom 1:C6H14:1 

has 1.008 and so on. Importantly, one must use the right order for the different beads. That’s 

why bead A2 is not in chronological order but must replicate the same atom order as defined in 

mapping A for bead A1. If the ordering for A2 is not adapted, the center of mass calculation 

would be flawed. In this case if only the chronological order would have been followed the 4th 

atom in A2 (C16) would have had a weight of 1.008. 

 

7.2.4.3 Settings file settings.xml 

The settings file in the case for mapping defines what are the minimum and maximum values 

for each interaction (e.g., an angle between 0 and π, and a bond length between 0.05 and 1 Å) 

and the step size for each of these interactions. 

The first part was adopted directly from VOTCA tutorials. 

 

The second part includes the mentioned CG bonded and non-bonded interactions. 
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Importantly, the name that is defined for each interaction needs to match the name given to the 

interaction in the coarse-graining file (hexane.xml). For the bonded interactions this would be 

bond and angle. 

The same holds true for the non-bonded interactions. 

 

7.2.4.4 The trajectory file from LAMMPS (lammps.xtc) 

The VOTCA tool was developed for the GROMACS simulation tool, therefore the connectivity 

between these tools is working stable. Due to this, the user is advised to export the trajectory 

from the LAMMPS simulations in the compressed “.xtc” format that GROMACS is also using. 

The following LAMMPS command exports the trajectory to the .xtc file: 

dump 1 all xtc 5000 lammps.xtc 

7.2.5 Differences between GROMACS and LAMMPS as the MD Simulator 

There was no tutorial or thorough documentation of the mapping procedure for LAMMPS. 

Therefore, the tutorial for GROMACS “hexane” was replicated. The idea was to compare the 

results and assess if the LAMMPS case was built correctly. The system was made of 1000 hexane 

molecules and the AA simulations for LAMMPS and GROMACS were run for 5 ns respectively. 
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Although the qualitative behavior for 2 atom (bead) interactions were similar, especially the 

three atom interaction of the angle showed a very different behavior. 

 

Figure 45: Comparison of RDF of non-bonded interaction A-A, in 
GROMACS and LAMMPS before adaptation of files. 

 

 

Figure 46: Comparison of RDF of non-bonded interaction A-A, in 
GROMACS and LAMMPS after adaptation of files. 

 

 

Figure 47: Comparison of RDF of bonded interaction A1-B-A2, in 
GROMACS and LAMMPS before adaptation of files. 

 

 

Figure 48: Comparison of RDF of bonded interaction A1-B-A2, in 
GROMACS and LAMMPS after adaptation of files. 

 

The investigation of this difference in behavior between the LAMMPS and GROMACS 

simulation results began by reducing the complexity of the system. The interaction forces were 

set to zero, i.e., no movement of the atoms in the AA simulation. The interaction forces were 

set to zero by setting the force field parameters to zero (LAMMPS: settings.in file and 

GROMACS in the installation directory) Step-by-step interactions were added, i.e., first bond 

interactions, secondly angle interactions then dihedral and non-bonded interactions. The 

simulations were conducted for 1 timestep and results (atom coordinates and forces on atoms) 

were compared. For bonds and angles the results were identical as it was possible to use the 

same force fields in LAMMPS and GROMACS. After adding dihedral and non-bonded 

interactions, the results became different as it was not possible to replicate the used force field 
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equations in the two simulation tools. This in contrast to the fact that the force field parameters 

for dihedrals were the same for both LAMMPS and GROMACS. 

7.2.6 Iterative Boltzmann Inversion 

The steps described before were the prerequisite for the coarse-graining procedure. The actual 

coarse-graining procedure that is described here is called the “Iterative Boltzmann Inversion” 

(IBI), where in an iterative process the CG representation of the system is fitted to the AA 

behavior, which is represented by the RDFs. VOTCA already provides this feature, but again 

the correct input files need to be provided.  

The following files need to be prepared in advance to conduct the IBI: 

• settings.xml 

• interaction.dist.tgt 

• topo.xml 

• cg_system.data 

• system.in 

7.2.6.1 Settings file settings.xml 

As in the mapping procedure, the settings.xml file is the file that contains all the information 

for VOTCA to conduct the simulation. The file is structured as follows: 

 

In the file all parameters for each interaction need to be added. Again, the name of the 

interaction needs to match the name that was defined in the prior steps both in the hexane.xml 
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and the settings.xml file (here: “bond” and “angle”). The next lines define the range in which 

the values of the target distribution RDF (bond.dist.tgt) are interesting for the interaction. The 

target tag defines the file the contains the target RDF for each interaction (here: “bond.dist.tgt”). 

The table tag defines the name of the file where the final potential table should be saved after 

the IBI is finished. To account for the different units of VOTCA and LAMMPS the scale tag 

needs to be used. The scale tag is used for the x-axis of the RDF (here: the distance between to 

beads r in nm) and the y-scale accounts for the energy conversion. The same tags need to be 

addressed for the non-bonded interactions: 

 

Additionally, the beads as they are defined in the topo.xml file need to be mentioned for each 

interaction. If all interactions are defined the last part describes the general options for the IBI.  
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7.2.6.2 VOTCA additional information - <min> and <max> tags 

The VOTCA documentation says: “Similarly to the case of spline fitting 

(see Programs on csg_resample), the parameters min and max have to be chosen in such a way 

as to avoid empty bins within the grid.” (https://www.votca.org/csg/methods.html)  

7.2.6.3 VOTCA additional information - <traj> and </traj> tags 

The <traj> tag needs to include the name of a trajectory file that is created during the 

simulation run.  

 

Here the trajectory file is called “kapton.xtc” and needs to be called the same way in the 

system.in file for dumping of each iteration step. 

 

Without this, VOTCA is not able to iterate further than 1 step as it cannot find the trajectory 

file anymore from the previous iteration step. 

https://www.votca.org/csg/reference.html#reference-programs
https://www.votca.org/csg/methods.html
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7.2.6.4 Target interaction distribution *.dist.tgt 

 

7.2.6.5 Coarse-grained topology topo.xml 

Similar to the AA topology file, the CG version contains the information (weight, charge and 

name) of the atoms (here: the CG beads), and all the bond, angle and dihedral interactions of 

the beads.  
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7.2.7 Coarse-Graining for Polymers 

7.2.7.1 lammps2votca 

The tool lammps2votca (https://github.com/Chenghao-Wu/lammps2votca.py) aids in 

creating required files for VOTCA from LAMMPS. The tool also provides an example of 

polystyrene. Based on that example it is possible to understand the basic work principle of the 

software tool. In the python script the user must define a few arrays with the information how 

the coarse-grained representation of the polymer is described. L2V automatically recognizes 

molecules and atom types from the given system.data file of the AA geometry for LAMMPS. 

https://github.com/Chenghao-Wu/lammps2votca.py
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However, there are no bonds, angles and dihedrals between different molecules, which leads to 

errors in the topology file for VOTCA.  

With the tool several customized files are created, that contain the information VOTCA needs 

to conduct the IBI for coarse-graining.  

We took lammps2votca as an inspiration and wrote our own L2V code and combined it in the 

framework that can be found in Appendix D – Software and Data Repositories. 

7.2.7.2 cg_system.data 

The data file that contains the initial atomic/CG configuration of the system. In this file the 

same structure as for an AA simulation needs to be followed. The number of atoms, bonds, 

angles and dihedrals needs to be defined followed by the number of types for each category 

respectively. The next section defines the system size, afterwards the atom masses are defined. 

The last section of the file are the atom coordinates followed by the description of their bond, 

angle and dihedral interactions. 
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7.2.7.3 Coarse-graining file *_cg.xml 

Similar to the AA formulation, the mapping_cg.xml file contains the information of the beads. 

In the AA version the single beads were defined based on which atoms they inherit. In the CG 

version of the mapping file each bead contains itself as a bead. The file also contains information 

on which beads interact with one another in what form. The bonded section of the CG version 

of the mapping file is equivalent to the AA formulation.  
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7.2.7.4 LAMMPS input script system.in 

The system.in file is the main simulation file for LAMMPS. All information regarding the system 

the used ensembles, the force field parameters and the styling of how the interactions are 

calculated is defined in the system.in file. 

7.2.8 Handling of Tabulated Potentials in LAMMPS – Hexane vs. Kapton 

VOTCA prepares the potential tables for the interactions for LAMMPS from the distribution 

functions from the AA simulations. The same procedure for the combination of LAMMPS and 

VOTCA to coarse grain a certain system works for hexane. Unfortunately, this was not the case 

for Kapton. By analysis of the RDFs, and the calculated potentials the following graphs show 

the differences for one non-bonded interaction. 

 

Figure 49: Potential of non-bonded interaction A-A of Hexane. 

 

 

Figure 50: RDF of non-bonded interaction A-A of Hexane. 

 

 

Figure 51: Potential of non-bonded interaction C-C of Kapton. 

 

Figure 52: RDF of non-bonded interaction C-C of Kapton. 

 

7.2.8.1 Analysis of Kapton potentials from VOTCA after second iteration step 

The potential of the bond C-A as shown in the following figure obviously is wrong, and causes 

the error. 
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Figure 53: Potential of bonded interaction C-A of Kapton. 

 

Figure 54: Potential of non-bonded interaction A-B of Kapton. 

Furthermore, the distribution of dihedrals is a potential source of error as well. 

 

Figure 55: RDF of dihedral interaction CABA of Kapton. 

 

Figure 56: RDF of dihedral interaction CDCA of Kapton. 
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Figure 57: RDF of dihedral interaction DCAB of Kapton. 

7.2.8.2 Ideas to overcome the problem with potentials 

Ideas to overcome the problems with potentials of bad quality described in the section before 

would be to: 

I. Use coarser tables to overcome the sharp changes in slope of the RDFs 

II. Investigate potentials before using them and adapt the unphysical ones (e.g. bond C-A 

vs. bond A-B) by: 

o Using the same target distribution for C-A as for A-B (see: Figure 53 and Figure 

54) 

o Constrain the potential (𝐹 =  −
𝑑𝑈

𝑑𝑟
→  ∫ 𝑑𝑈 =  − ∫ 𝐹𝑑𝑟  𝑤𝑖𝑡ℎ 𝐹 = 𝑘 ∙ (𝑟 − 𝑟0)2) 

III. Work with the function post_update and smoothing from VOTCA 

IV. Don’t update bonded and non-bonded interactions at once 

o Use [60] to determine the harmonic parameters for the bonded interactions and 

only fit non-bonded interactions with VOTCA 
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7.2.8.3 Detected Errors 

 

 

Figure 58: Potential of bonded interaction B-B of Kapton. 

Based on this graph it can be seen why the pair distance can get smaller than the tabulated pair 

distance potential. To solve this, the B-B potential is used and transversed by 1 Å to the left to 

stabilize the system. No interactions below 2 Å were present and therefore only the physically 

correct repulsive part of the potential was affecting the bonded interaction B-B. 

7.2.9 Adaptation of initial potentials 

7.2.9.1 Fitting usable part of initial potentials 

Parts of the potentials were identified that represent the expected behavior and a polynomial 

equation of the second order was fitted to the data. Below the bond of C-A is shown as an 

example: 

-1

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

P
o

te
n

ti
al

 [
kc

al
/m

o
l]

distance r [Å]

Bond B-B Kapton



89 

 

 

Figure 59: Potential of bonded interaction C-A of Kapton. 

The data in the red square was used in this case to fit a polynomial equation of second order to.  

7.2.9.2 Possible reason why this potential occurs 

 

Figure 60: RDF of bonded interaction C-A of Kapton. 

Due to the oscillating behavior of the RDF at the boundaries of the usable section, the 

extrapolation is not really accurate. If VOTCA is using 2 points for the extrapolation that would 

be connected by a line with negative slope it gets obvious how the potential that is shown in 

Figure 59 can occur. 

7.2.9.3 First results with fitted potentials 

The potentials seem to be too small again as the bond length gets longer than the maximum 

estimated by the table: 
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7.2.10  Boltzmann Inversion for initial potentials  

The Boltzmann inversion is used to get the potential of an interaction based solely on the 

geometric property of the distribution functions for each interaction (i.e., bonds, angles, 

dihedrals, and non-bonded). The interested reader is referred to the work of Rühle et al. [21], in 

which equations 5 and 6 describe the mathematical principle of the function “csg_stat” from 

VOTCA. 

7.2.11  Final approach for coarse-graining of the polymer Kapton® 

After a thorough investigation of literature, it was found that seldomly both bonded and non-

bonded interactions are parametrized simultaneously [62] [91] [77][61]. Therefore, it was decided 

that the bonded interactions won’t be parametrized by the IBI procedure.  

It was further investigated if the iterative procedure improves the potential of the nonbonded 

interactions. Figure 61 below highlights that for the nonbonded interaction of the A-A beads, 

even 100 iteration steps are not improving the potential. This can similarly be found for all other 

non-bonded interactions as well. 

 

Figure 61: Comparison of potentials at 1 and 100 iteration steps. 

Therefore, it was decided that the potential for the non-bonded interactions will be taken from 

the first Boltzmann Inversion (BI) step. Additionally, the dihedral potential was also taken from 
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the Boltzmann Inversion as, (i) no dihedral potentials from literature were possible to use, (ii) 

often in CG simulations the dihedral potentials are even left unconsidered [60]. 

For the bonded interaction the potentials were not built from BI but taken from similar coarse-

grained beads from Wen et al. [60]. The figure below shows the section of the input file that 

includes the force field and potential parameters. 

 

With these settings it was possible to replicate the results regarding the density of the 21-step 

equilibration of a Kapton® system. A system of 64 chains and a chain length of 40 monomers 

(99840 atoms in total) was coarse-grained to a system of 15360 CG beads, that was equilibrated 

and simulated for 10 ns in around 16 h on 24 processors (shown in picture below) 
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Columns from left to right: step (represents 1 fs per step), temperature, pressure, density, radius 

of gyration of the polymer system.  

Although the density of the system at 1324 kg/m³ is smaller than the literature value of 1420 

kg/m³, the value from the CG simulation represents the found density in AA simulations 

accurately.  

7.2.12 Possible improvements in the connection between LAMMPS and 

VOTCA 

7.2.12.1 Automatic plotting of potential graphs from VOTCA IBI 

During our investigation an important part was the monitoring of the potentials that were 

calculated from the IBI in VOTCA. To check the quality of the determined potentials they had 

to be investigated with an in-house code. An implementation of this monitoring tool in 

VOTCA, that provides graphs of the potentials over the distance or the angle, depending on 

the interaction, would be a very helpful and time saving feature.  
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7.2.12.2 Deactivate interpolation of tabulated potentials in LAMMPS 

This would be a very important feature for future versions (here Version 2020 of LAMMPS was 

used). The LAMMPS documentation [20] explains the correct application of the “pair_style 

table” that is used for tabulated non-bonded potentials in this work. The general form of the 

pair_style is a follows:  

“pair_style table style N”  

The style basically describes how the table from the file should be interpolated for the 

application in LAMMPS. The important part here is the parameter N, that describes how many 

entries the table that LAMMPS uses to calculate the interaction forces should have. In the 

LAMMPS documentation it is suggested to define N in the pair_style command equivalently to 

the entries in the tabulated potential file.  

 
Figure 62: Comparison of isopropanol CG potential from VOTCA (red) 
and the interpolated potential from LAMMPS (black). 

 
Figure 63: Comparison of isopropanol CG forces from VOTCA (red) 
and the interpolated potential from LAMMPS (black). 

The results of using a linear pair_style table where N equals the number of entries in the 

tabulated potential file from VOTCA are shown in Figure 62 and Figure 63. As can be seen, the 

interpolated potential and force respectively (indicated by the black lines in Figure 62 and Figure 

63) are different from the found potential and force from the IBI method. Due to the 

determination of the force based on the potential (first derivative), an unphysical behavior 

occurs that explains the instability of the simulation.  

LAMMPS does not allow the user to decativate this interpolation and directly use the tabulated 

potential from the input file. Even by hard coding the flags that should allow this behavior in 

the LAMMPS source code did not resolve the problem of the difference in potential and force.  
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7.3 Appendix C – Maxwell-Stefan diffusion from MD simulations 

Based on the Einstein equation described in the methods section of the second part of the 

thesis, it is possible to calculate the self-diffusion coefficient from the MSDs of diffusing species. 

However, determining the self-diffusion coefficient in experiments, where one species is 

diffusing in another one (here: isopropanol or ions in Kapton), is difficult. 

In this work we followed the method described by Kubaczka [70] based on Bearman’s equations 

[71] and friction coefficients described by Vrentas and Vrentas [72], [73], [74]. The interested 

reader is advised to follow the complete description of the method in the literature sources 

above. However, the basic idea that can be followed to calculate the Maxwell-Stefan diffusion 

coefficient of a solvent in a polymer, based on the respective self-diffusion coefficients, is 

described here. 

7.3.1 Calculation of the Maxwell-Stefan diffusion coefficient from self-diffusion 

Kubaczka [70] combines statistical mechanical theory, thermodynamics of irreversible processes 

and continuum mechanical theory to obtain the definition of the Maxwell-Stefan diffusion 

coefficient shown in Eqn. (C-1). 

In Eqn. (C-1), R is the gas constant, T is the temperature of the system, C is the total 

concentration of the system and 𝜓𝑖𝑗 is the friction coefficient between the components i and j.   

Eqn. (C-2) describes the dependences between self-diffusion and the friction coefficients based 

on Bearman’s equations [71] for a binary system.  

Vrentas and Vrentas [72], [73], [74] argue that the adoption of the geometric relationship 

between the friction coefficients is generally viable and experimentally confirmed.  

With the geometric relationship shown in Eqn. (C-3) in combination with Eqn. (C-2), a clear 

relationship between self-diffusion and the friction coefficients can be provided: 

𝐷𝑖𝑗 =
𝑅𝑇

𝐶𝜓𝑖𝑗
 (C-1) 

𝐷1 =
𝑅𝑇

𝑐1𝜓11 + 𝑐2𝜓12
 𝑎𝑛𝑑 𝐷2 =

𝑅𝑇

𝑐1𝜓21 + 𝑐2𝜓22
 

(C-2) 

𝜓12 = (𝜓11𝜓22)0.5 
(C-3) 

𝐷1

𝐷2
= (

𝜓22

𝜓11
)

0.5

 
(C-4) 
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Eqn. (C-5) and Eqn. (C-3) allow to calculate the Maxwell-Stefan diffusion coefficient with Eqn. 

(C-1) as the total concentration and the temperature can be obtained from the MD simulations 

as well as the self-diffusion coefficients D1 and D2. 

This is the basic concept for a binary system as it was investigated in this work. However, in the 

literature sources, the authors also describe the application of this method to a multicomponent 

system.  

  

𝜓11 =
𝑅𝑇

𝐷1 ∙ (𝑐1 + 𝑐2 ∙ (
𝐷1
𝐷2

))

 𝑎𝑛𝑑 𝜓22 =
𝑅𝑇

𝐷2 ∙ (𝑐1 ∙ (
𝐷2
𝐷1

) + 𝑐2)
 (C-5) 
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7.4 Appendix D – Software and Data Repositories  

7.4.1 LAMMPS 

The version used in the present work can be found with the following information: 

LAMMPS branch: stable; commit: 584943fc928351bc29f41a132aee3586e0a2286a (28.10.2020) 

A complete installation guide for LAMMPS can be found at: 

https://docs.lammps.org/Install.html  

7.4.2 VOTCA 

The version used in the present work can be found with the following information: 

VOTCA branch: master, commit: 305586376 (23.11.2023) 

A complete installation guide for VOTCA can be found at: 

https://www.votca.org/INSTALL.html  

7.4.3 Moltemplate 

The version used in the present work can be found with the following information: 

moltemplate branch: master; commit: 9f1512e6b25f8325b5c6c1a4f2fecdc94eda40f1 

(21.3.2021) 

A complete installation guide for moltemplate can be found at: 

https://github.com/jewettaij/moltemplate  

7.4.4 Data and Software repository 

The used software for postprocessing can be found under the following link and can be opened 

after contacting for viable reasons: 

https://gitlab.tugraz.at/90ED8AF830FCF564/lammps2votca 

The data including all simulations is saved on the NAS01 server of the Institute of Process and 

Particle Engineering at Graz University. Access to this data is provided upon reasonable request. 

 

https://docs.lammps.org/Install.html
https://www.votca.org/INSTALL.html
https://github.com/jewettaij/moltemplate
https://gitlab.tugraz.at/90ED8AF830FCF564/lammps2votca
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