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Kurzfassung

Die tdglich wachsende Menge an Gesundheitsdaten unterschiedlicher Form
und Herkunft, sowie die zunehmende Entwicklung neuartiger Analyseme-
thoden bergen das Potential fiir eine personalisierte Gesundheitsversorgung.
Das Digital Health Information Systems Team am AIT Austrian Institute
of Technology entwickelt eine Infrastruktur, die hier ansetzt: Mittels daten-
schutzgerechter Aggregation und Standardisierung von Gesundheitsdaten,
sowie smarten Analysemethoden zur Erstellung pradiktiver Modelle sollen
Services zur mafsgeschneiderten Patientenbehandlung ermoglicht werden.
Dies wurde in einem ersten Pilotprojekt in einem sogenannten “smarten”
Register fiir Patienten mit chronischer Herzinsuffizienz implementiert.
Ziel dieser Arbeit war es die Entwicklung rund um dieses smarte Register zu
unterstiitzen, indem zunéchst eine Verifikationsanalyse durchgefiihrt wurde,
bei der die Registerdaten mit den Daten einer wissenschaftlichen Pub-
likation verglichen wurden. Dabei konnte gezeigt werden, dass basierend
auf den automatisch synchronisierten Daten des smarten Registers bereits
ein Grofiteil der im Vergleich dazu manuell gesammelten Publikations-
daten repliziert werden konnte. Durch diese Analyse konnten vor allem
auch Fehler und Abweichungen in den Registerdaten identifiziert und
somit die Datenqualitidt verbessert werden. Des Weiteren wurde ein ein-
faches Machine-Learning-Modell entwickelt, welches fiir Registerpatienten,
welche auch im Telemonitoring-Programm “HerzMobil Tirol” teilnahmen,
eine Verldngerung um eine zweite Telemonitoring-Periode voraussagt. Das
Vorhersagemodell erzielte dabei gemischte Performanceresultate. Gleich-
wohl konnte damit ein erster Anwendungsfall fiir eine Pradiktion auf Basis
von aggregierten Gesundheitsdaten im smarten Register demonstriert wer-
den.

Weitere Forschung zur Vernetzung von Gesundheitsdaten kombiniert mit
der Anwendung modernen Analysemethoden ist notwendig, um die per-
sonalisierte und datengetriebene Gesundheitsversorgung voranzutreiben.
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Abstract

The daily growing amount of health data of various forms and sources,
as well as the increasing development of novel analysis methods, hold
the potential for personalized healthcare. The Digital Health Information
Systems team of the AIT Austrian Institute of Technology is developing an
infrastructure that addresses this issue: Through privacy-preserving aggre-
gation and standardization of health data, as well as smart analysis methods
to create predictive models, services for customized patient treatment are
to be made possible. This was implemented in an initial pilot project in a
so-called "smart" registry for patients with chronic heart failure.

The aim of this work was to support the development of this smart registry
by first carrying out a verification analysis in which the smart registry data
was compared with the data from a scientific publication. It was shown that,
based on the automatically synchronized data of the smart registry, a large
part of the manually collected publication data could already be replicated.
This analysis also made it possible to identify errors and deviations in the
smart registry data and thus improve the data quality. Furthermore, a basic
machine learning model was developed that predicts an extension of a
second telemonitoring period for smart registry patients who also partici-
pated in the "HerzMobil Tirol" telemonitoring programme. The prediction
model achieved mixed performance results. Nevertheless, it was possible to
demonstrate a first use case for prediction based on aggregated health data
in the smart registry.

Further research on the networking of health data combined with the appli-
cation of modern analytical methods is necessary to advance personalized
and data-driven healthcare.
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1 Introduction

This introductory chapter provides information about heart failure and
its conventional and telehealth-supported treatment options. Furthermore,
the disease management programme HerzMobil Tirol (HMT) and the re-
cently concluded project D4Health Tirol are presented. Finally, this leads to
the description of possible data-driven methods for improved healthcare,
especially in the context of heart failure patients.

1.1 Heart failure

1.1.1 Defintion, classification, epidemiology

Heart failure (HF) is not defined as a single pathological diagnosis, but as
a clinical syndrome. Therein, symptoms of breathlessness, ankle swelling,
and fatigue go hand in hand by signs of a jugular venous pressure, pul-
monary crackles, and peripheral oedema. This is due to a structural and/or
functional abnormality of the heart, which results in elevated intracardiac
pressures and/or inadequate cardiac output at rest and/or during exercise
[1]. A more traditional and easier to understand, but thus somewhat inaccu-
rate definition of HF is the reduced pumping ability of the heart, resulting
in insufficient oxygen being supplied to the body [2].

The condition and progression of HF can be divided into several categories.
Traditionally, it is subdivided based on the measurement of left ventricular
ejection fraction (LVEF) because of different therapeutic approaches:

e HF with reduced LVEF (HFrEF) of <40%
¢ HF with a mildly reduced LVEF (HFmrEF) between 41% and 49%
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¢ HF with a preserved LVEF (HFpEF) of >50%

The New York Heart Association (NYHA) functional classification is another
commonly used and simple system to describe the severity of HFE. Based
on symptoms and functional capacity of the patients, it categorizes HF on
a scale of I to IV, where I refers to the mildest and IV to the most severe
manifestation.

Usually, HF is divided into acute heart failure (AHF) and chronic heart
tailure (CHF). Patients with CHF have been diagnosed with HF in the past
or obtain a more gradual onset of symptoms. AHF on the other hand may be
presented by a rapid onset or progressively escalating of symptoms and/or
signs of HE. This can be due to an acute singular event or the deterioration
of CHF. The latter, which is also described as decompensated HF, is the
more common reason for patient hospitalization. [2]

Studies estimate the prevalence of known HF in developed countries to be
1-2% of the adults, increasing to >10% in those aged 70 and over. The 5-year
mortality of all-type HF patients is estimated to be 57%. Of all hospital
admissions, HF hospitalizations represent 1-2%. The diagnosis HF is the
most common in hospitalized patients aged >65 years and associated with
the highest 30-day readmission rate. [3]

1.1.2 Conventional treatment

There are several approaches to treat HF patients, which are documented as
recommendations by the European Society of Cardiology in their guidelines
[1]. Their common goals focus on the reduction of mortality, the prevention
of recurrent hospitalization, and the improvement of the patients’ clinical
status, functional capacity, and quality of life (QOL).

First and foremost, pharmacotherapy is used for HF treatment. Here, the
drug groups of angiotensin-converting enzyme inhibitors (ACE-I) or an-
giotensin receptor-neprilysin inhibitors (ARNI), beta-blockers (BB), and
mineralocorticoid receptor antagonists (MRA) serve as a foundation for ther-
apy. They show to improve survival, reduce the risk of HF hospitalization,
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and reduce symptoms in patients with HFrEF. Angiotensin-receptor block-
ers (ARB) for patients intolerant to ACE-I or ARNI, and sodium-glucose
co-transporter 2 (SGLT2) inhibitors are added to this therapy. Other recom-
mended drugs are diuretics to handle patients” congestion, and I f-channel
inhibitors.

Cardiac rhythm management using implantable cardioverter-defibrillators
(ICD) and cardiac resynchronization therapy (CRT) is another measure for
the treatment of HFrEF.

In addition to drug and device-based HF therapy, increased attention has
focused on how HF care is delivered and the need for multidisciplinary
management of CHF. An important area here is patient education for self-
care. Patients with an improved knowledge for their HF condition benefit
through better QOL, lower readmission rates, and reduced mortality [1].
Subsequently, there is consistent evidence that patients also benefit from
physical conditioning through exercise rehabilitation. Further, an appropri-
ate follow-up for HF patients discharged from the hospital is recommended
to ensure continued optimal therapy and detect asymptomatic progression
of HF. Lastly, telemonitoring is used to support and optimize care of HF
patients. [1]

1.1.3 Telehealth-supported treatment

The high readmission rate and increased risk of death in the early period
after discharge from hospital reflect the elevated vulnerability of patients
in the post-discharge period after HF admission. In addition, the treatment
costs caused by readmissions contribute substantially to the overall economic
burden on the healthcare systems. This is despite the fact that an estimated
two-thirds of triggering factors for HF readmission could potentially be
avoided. These include suboptimal discharge planning, inadequate follow-
up, non-adherence to heart failure medication, insufficient social support,
and also delays in seeking medical attention. [4]

For these reasons, telehealth-based approaches for HF treatment have been
widely investigated and compared to usual care in the past. Multiple stud-
ies demonstrate that post-discharge disease management programmes can
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lead to a reduction of readmissions, mortality, and healthcare costs [4]. The
remote monitoring of HF should achieve earlier identification of decom-
pensation risk, better adherence to lifestyle changes and medication, and
interventions that reduce the need for hospitalization [5].

Telehealth systems provide healthcare services using telecommunication
technologies, and implementations vary widely [6]. The Keep-in-Touch (KIT)
Telehealth Solutions Platform, developed by the AIT Austrian Institute of
Technology (AIT), offers such a disease management programme for HF.
With HMT, a first major programme has been implemented here. [7]

1.2 HerzMobil Tirol

HMT is a multidisciplinary post-discharge disease management programme
for heart failure patients. It consists of a telemedical monitoring system used
by a comprehensive network of specialized HF nurses, local physicians, and
secondary/tertiary referral centers. Since 2012, the project has gone through
a number of project phases, and is in routine operation in the Austrian state
of Tyrol since 2017. One year later, HerzMobil was also implemented in the
state of Styria (HerzMobil Steiermark) [8] and in 2022, also in the state of
Carinthia (HerzMobil Karnten).

For a period of 3 months, patients are cared for in an integrated care
network. Therein, network physicians and HF nurses are responsible for
the monitoring of telemedical patient data, face-to-face visits, and phone
contacts with patients if required. In the HMT network, optimal patient
treatment is ensured by regular communication between all participants.
Further, a web-based telehealth software supports all stakeholders in their
individual tasks. [9]

During the programme, each patient is provided with a blood pressure
and heart rate monitor, a bodyweight scale, and a mobile phone capable of
near-field communication. After being trained on this equipment by nursing
staff, easy and secure data acquisition and transmission of blood pressure,
heart rate, bodyweight, self-reported well-being, and drug intake can be
performed by patients every day with the KIT technology. This data is
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analyzed by a certified medical product, to offer healthcare professionals a
rule-based notification system, if any values are above or below specified
thresholds. This should indicate a patient’s need for closer inspection and
focus awareness on patients who may need early therapeutic intervention.

[9]

The HMT programme has proven to be feasible and effective in clinical
practice, demonstrating reduced readmissions and all-cause mortality in HF
patients compared to conventional care. [8]

1.2.1 D4Health Tirol

In addition to HerzMobil Tirol, several innovative solutions for chronically
ill patients in Tyrol have already been implemented in the past as a result of
a collaboration between the Landesinstitut fiir Integrierte Versorgung (LIV)
and the AIT. Based on that, personalized patient care by the networking and
smart use of health data is expected to be focused on in the future. Digital
& Data-Driven Decisions for Health & Care (D4Health) applications are to
be increasingly used for this purpose. [10]

Therefore, the goal of the DgHealth Tirol project is to establish novel methods
of health data analytics and predictive modeling. Specifically, machine
learning algorithms are used to generate predictive models that can provide
decision support in patient care. Furthermore, a linkage of multiple data
sources is established with so-called smart registries. For example, clinical
data such as those from hospital information systems (HIS) are combined
with telehealth data such as those from the HMT programme. The data
model used for this purpose is described in more detail in the next chapter.
[10]

A raw overview of the IT architecture of D4Health Tirol can be seen in figure
1.1. It depicts the lifecycle from data extraction, through data processing
and modelling, to providing predictive services. After merging different
data sources and the pseudonymization of the data, it is available in a
standardized data store. Using application programming interfaces (APISs),
raw data can be exported from the data store and used to calculate features.
The features can then be stored in a central feature store and further used
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Figure 1.1: Architectural overview of the IT architecture of the DgHealth Heart Failure
Registry [12]

to create models for the model store. The "Predictive Analytics Toolset
for Healthcare" (PATH) developed by the AIT can be used to support the
development of predictive models from telemedicine data, but also any
other external modelling environment can be used here [11]. For a first pilot
in D4Health Tirol, the care programme HerzMobil Tirol was selected and a
smart registry for CHF patients was set up. [10]

1.2.2 OMOP CDM

As medical data can vary greatly in structure and is collected for different
purposes, it may be stored in different formats using different database
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Source 1 Source 2 Source 3

-
Analysis Analysis
method results

Figure 1.2: Basic schema of the OMOP CDM concept [13]

systems and information models. Data standardization is the critical process
of bringing this data into a common format, allowing collaborative research
and large-scale analytics. The Observational Medical Outcome Partnership
(OMOP) Common Data Model (CDM) is an open community data stan-
dard, developed by the Observational Health Data Sciences and Informatics
(OHDSI) initiative. It is designed to standardize the structure and content
of observational data and also to enable efficient analyses that can lead to
reliable findings. [13]

A basic schema of the OMOP CDM concept can be seen in figure 1.2. Sys-
tematic analysis of observational databases of diverging structure is made
possible by transforming the data contained in these databases into a com-
mon format (data model) as well as a common representation (terminologies,
vocabularies, coding schemes), and then performing systematic analyses
using a library of standard analysis routines written based on the common
format. [13]

The AIT uses the resources of the OHDSI to perform data conversions,
whereby heterogeneous data from different sources can be combined in an
OMOP CDM. This was used in the smart registry for CHF to aggregate data
such as from a HIS or the HMT programme into a standardized format,
allowing for clean further processing.
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1.2.3 Current status

The smart registry for CHF patients has already been implemented in a real
world setting and is automatically synchronized with various health data
sources. It is based on an infrastructure which enables pseudonymization
and privacy-preserved record linkage of cross-domain health data [14].
Further, standardization is implemented by using, for example, the OMOP
CDM and the Health Level 7 (HL7) FHIR data exchange standard. Finally,
by applying machine learning, supported by the feature and model store,
personalized healthcare can be enabled through smart decision support
services.

In addition, this infrastructure works in the spirit of the European Health
Data Space proclaimed by the European Union, which aims at a secure
and efficient exchange of health data within and across national health care
systems. [15]

Lastly, the smart registry aggregated health data of 5004 HF patients coming
from the HMT programme, the HIS of the Tirol Kliniken GmbH, and
an extract of the Austrian National Register of Deaths. A more detailed
description of the data of the smart registry can be found in chapter 2.1.

1.3 Data-driven methods to improve care

1.3.1 Artificial intelligence

The term artificial intelligence (Al) can be broadly described as the use of
computers to model intelligent behavior with minimal human involvement
[16]. It is used in engineering to solve complex tasks through novel concepts
and solutions.

Machine learning (ML) is a subfield of Al and is based on enhanced learning
through experience. Deep learning can be further considered as a specific
form of ML with even less human preprocessing by using complex algo-
rithms and deep neural networks to train a model. [17]
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ML algorithms can be divided into three categories. Unsupervised algo-
rithms can discover patterns or features from data. Supervised algorithms
can be used to make predictions and classifications based on past data.
Reinforcement learning is used to solve tasks in a specific problem space
with training through rewards and punishments. [16]

More and more health data are available and at the same time the de-
velopment of big data analytics is growing. This has recently led to the
increased successful application of Al in healthcare. Powerful Al algorithms
can extract clinically relevant information and features from vast masses
of healthcare data, assisting doctors in their decision-making by predicting
health status and intervening in real-time on health risk alerts. [18]

To do this, Al systems must first be trained with clinical data (demographics,
records from medical devices, clinical laboratory, medical notes, images,
etc.) to learn to recognize patterns in the provided features and how they
relate to the desired outcome. [16]

Al can be applied to a wide variety of healthcare data, which is often
divided into structured and unstructured data. Structured data such as
electrophysiological data are analyzed using ML techniques such as support
vector machines and neural networks to cluster patient characteristics or
conclude the probability of disease outcomes. Unstructured data such as
medical notes are processed with natural language processing methods
to extract information that can be further analyzed as machine-readable
structured data. [18]

To accelerate the application of Al on electronic medical records (EMR),
data from laboratories and clinics must be aggregated and made available
in real time in order to implement Al systems that can generate clinically
relevant knowledge to support clinical decision-making for cost-effective
personalized patient care. [16]

For a deeper insight, Eric Topol describes the multifaceted potential of Al in
healthcare and the accompanying transformation towards data-driven and
patient-centered care in detail in his book "Deep Medicine". [19]
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1.3.2 Machine learning examples

Al is becoming more prevalent in healthcare literature, but is mostly con-
cerned with diseases related to cancer, nervous system, and cardiovascular
system, as these are among the leading causes of death [18].

Gontarska et al. investigated a ML model that predicts the risk of a patient
requiring an intervention based on the patient’s daily vital parameters. The
data came from a telemedicine study of HF patients who were in NYHA
stages II or III. Using their model, they predicted the daily per-patient risk
of being in a medically critical condition and then sorted the patients by
this estimated risk. Their deep neural network model reached an area under
the receiver operating characteristic curve (AUROC) of 0.84 and with that
outperformed a rule-based model with an AUROC of 0.73. This approach
was to help medical practitioners focus their limited capacities on the most
critical patients. [20]

Another example would be the EMR-based study of Schrempf et al., were
they developed ML-based models for the 5-year risk prediction of major
adverse cardiovascular events (MACE), such as myocardial infarction or
stroke. MACE may be prevented by identifying patients at risk at an early
stage, and with a random forest model an AUROC of 0.88 was achieved
there. [21]

In a more recent study, Herman et al., used longitudinal patient data to
predict all-cause 30, 9o-, 180-, 360-, and 720-day mortality of patients with a
new onset or worsened HF. Based on the combination of a wide variety of
electronic health data recorded in the standard care setting, their ML-based
algorithm achieved a robust AUROC performance ranging from 0.83 to 0.89,
suggesting its potential in point-of-care clinical risk stratification. [22]

1.3.3 Opportunities of Al for HerzMobil Tirol and its patients

Just as described in the previous chapter, Al can also open opportunities in
the context of HMT and its patients. The basis for this is the smart registry
tor CHF, which allows data analysts to easily work with features and models

10
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of patient data. From this, predictions about the health status of patients can
be made, supporting healthcare professionals in their decision-making.

For example, predictions of adverse events, such as death, rehospitalization,
or an adjustment of medication could be made, allowing care plans to be
adapted accordingly. Furthermore, similar to the examples described in the
previous chapter, different types of risk stratification could be implemented
to improve patient outcome and optimize resources. In this way, smart
decision support services could contribute to personalized patient care and
thus advance data-driven healthcare.

1.4 Aims

The objectives of this thesis have been divided into two parts. As a basis for
this, a pre-processing of the existing health data from the smart registry for
CHEF should be made with PATH and MATLAB. Based on this, a quality
assurance step of the smart registry should then be performed in the first
part using a verification approach. For this purpose, the automatically
synchronized data from the smart registry should be compared with the
manually collected data of a recent study concerning the HMT programme
[8]. In the second part, a basic prediction model should be implemented
as a proof of concept. More precisely, the model should predict whether a
patient within the HMT programme would need an extension, i.e., a second
3-month telemonitoring period, after his or her first 3-month period.

11






2 Methods

This chapter first describes the smart registry and its current data. This is
followed by a brief description of the work with the smart registry data,
which served as the basis for the analyses of the two core topics of this
thesis. Then, the verification analysis of the smart registry is described, with
its data overview, processing, and comparison. In addition, a post-analysis
update is presented, which was carried out after a data update in the smart
registry. Finally, the development of a simple prediction model based on the
smart registry data is shown.

The analyses were approved by the Ethics Committee of the Medical Uni-
versity of Innsbruck (vote no. 1035/2022).

2.1 Smart Heart Failure Registry

The smart registry for CHF patients is still an ongoing project in develop-
ment and at the time of writing held health data from a total of 5004 HF
patients. The data came from three different sources and were aggregated
in the smart registry according to the privacy preserving record linkage and
in the format of the OMOP CDM.

The first data source was the HMT system and included 960 patients who
participated in the HMT programme, encompassing a total data transmis-
sion period from April 2016 to November 2022. Accordingly, the smart
registry included HMT patients’ self-reported daily data on blood pressure,
heart rate, body weight, well-being, and medication compliance. In addition,
a NYHA score, which is usually determined during the initial admission
in the hospital before inclusion into HMT, was available for most patients.
Furthermore, in HMT, patient-specific lower and upper thresholds for blood

13
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pressure, heart rate, and body weight are set by the patients’ respective
physicians. These thresholds, which are used for automatic detection of
possible deterioration of health status within the HMT network, were also
loaded into the smart registry. Finally, in addition to basic patient data, such
as demographics, clinical free text notes are also included.

The second major data source of the smart registry consisted of an extract
from the HIS of Tirol Kliniken GmbH. This contains EMR data of HF
patients, which were selected as such under certain filter criteria. These
included at least one diagnosis from a list of ICD-10 codes and a minimum
value of the biomarker NT-proBNP in the past, a previously established
HF diagnosis, or if the patient had previously been included in the HMT
programme. The HIS export covered the period from January 2016 to April
2023. Through record linkage, the existing g6o HMT patients in the smart
registry were assigned their data from the HIS, if available, and all remaining
4044 patients were newly created. The HIS extract consisted of patient master
data (e.g., name, birthday, sex, date of death with reason), physiological
measurement data (e.g., blood pressure, pulse, weight), laboratory data (e.g.,
sodium, troponin, NT-proBNP), as well as date and reason of outpatient
and inpatient admissions.

The third data source consisted of an extract from the Austrian National
Register of Deaths, which was obtained within the D4Health Tirol project for
HMT patients. This contained the date of death of deceased HMT patients
until June 2022 and was accordingly added to these patients in the smart
registry.

As mentioned above, the smart registry uses the open community data
standard OMOP CDM to aggregate the health data from these different
sources in a standardized format. The data is mainly managed in the
standardized clinical data tables, which can be seen in detail in the current
version of the OMOP CDM in figure 2.1. The standardized vocabularies
used, such as SNOMED-CT or ICD-10, are also an important component
here, as they ensure a uniform representation of medical concepts/terms
and thus interoperability at data level. For a brief insight, some of the most
important tables used are described in the following.

14
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Figure 2.1: OMOP Common Data Model domains and tables [13]

The table "person" contains all basic data for unique identification of pa-
tients, such as a unique person ID, date of birth and gender. The table
"measurement” contains all records of standardized measurements of per-
sons, such as vital signs or laboratory values, in a structured form with
measurement concept and associated measurement value. The "observation"
table includes clinical facts about examinations or questionnaires of a person,
which cannot be represented by other domains. In the case of the smart reg-
istry, for example, this corresponds to the patient’s self-assessed well-being
or their information on medication compliance. The tables "visit_occurrence"
and "condition_occurrence" contain events about contacts with health care
facilities, as well as information about diseases or diagnoses of persons.

[13]

Of the 5004 patients, over 2.9 million measurements and over 570,000 ob-
servations were in the smart registry at last count. In total, over 5.2 million
data points were available. A screenshot of the standard dashboard layout
of the smart registry is shown in figure 2.2.
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Figure 2.2: Screenshot of the default dashboard of the Smart Heart Failure Registry

2.2 Data preprocessing

The PATH software tool developed by AIT was used to start processing
the health data from the smart registry data store. PATH, which is based
on MATLAB R2022a (The MathWorks, Inc., Natick, Massachusetts, United
States), supported data analysis and visualization. Each data processing step
could be specified using definition files in Microsoft Excel and visualized in
the associated PATH app with graphical user interface.

To load patient data tables from the data store, the API of the smart registry
was used. SQL queries with the desired tables were defined in PATH, and
the file format (JSON or CSV) in which they should be loaded from the smart
registry was also specified. After all desired tables (person, measurement,
observation, etc.) were exported from the smart registry in JSON format,
they were further processed as MATLAB tables. In this process, all relevant
information from the tables containing patient health data was aggregated
into a full data table in MATLAB via several intermediate steps. Thus, this
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table contained all data of the HF patients from the smart registry, and then
served as the basis for all further processing.

2.3 Smart registry verification analysis

As the process of developing such a smart registry is quite complex, ver-
ification is an essential part of it. Therefore, the first task of this thesis
was to analyze, to which extent the smart registry is capable of replicating
data from the recent study on the feasibility and effectiveness of the HMT
programme [8]. For better readability, this study will be further referred to
as the "HMT study." This approach was intended to verify that the smart
registry was correctly populated with data and to demonstrate a safe and
efficient way to analyze health data. This first part of the present master
thesis also resulted in a paper published at the dHealth 2023 conference

[23].

As the development of the smart registry was an ongoing process whilst
working on the thesis, the available data and with that the results of this
analysis naturally changed throughout time. Therefore, a post-analysis
update on how these changes have affected the analysis is provided at
the end of each of the Methods, Results, and Discussion chapters of this
verification analysis.

2.3.1 Data overview

For this replication attempt, a table regarding the HMT study data was
available as an Excel file. This contained health data of 251 HMT patients
and 257 control group (conventional care) patients over the period from
April 2016 to October 2019. The data consisted of baseline characteristics and
outcome data for each patient, summarized in 96 variables. These included
demographic data such as age and sex, physiological measures such as
blood pressure, heart rate, and body weight, or laboratory values such
as creatinine, NT-proBNP, and sodium. Furthermore, previous diseases or
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diagnoses at the time of HMT initiation, as well as data on hospitalizations
and death during and after the HMT programme were included.

The smart registry, on the other hand, contained health data for 4680 HF
patients at the time of this analysis. Of these, 506 were from the HMT
programme, with a data transmission period from April 2016 to June 2021.
As already described in chapter 2.1, these were HMT data such as demo-
graphics, the measurement data acquired by the patients themselves during
telemonitoring, or NYHA scores. The remaining 4174 patients came from
the HIS of the Tirol Kliniken GmbH with patient records between June 2022
and January 2023. These were EMR data as also described in chapter 2.1
(demographics, vital signs, diagnoses, etc.). Since the time period of these
EMR data from the HIS did not overlap with that of the HMT study, no
direct comparison was originally possible here for this analysis. However, a
statement could be made about a possible replicability of variables regard-
ing these data based on the existing tables in the smart registry. Finally, the
extract from the Austrian National Register of Deaths with the date of death
of HMT patients was linked into the smart registry.

2.3.2 Data processing

As described in chapter 2.2, the data from the smart registry had already
been preprocessed in PATH and MATLAB, and were then available as a
full data table for further processing. Furthermore, the 257 patients in the
conventional care group of the HMT study were not considered for this
analysis. Of the 251 patients in the HMT study who participated in the HMT
programme, 248 patients were initially matched in the smart registry.

For the sake of clarity, the g6 HMT study variables were divided into g cate-
gories for analysis, which can be seen in table 3.1 in the Results chapter. For
each of the 248 HMT patients, all variables were finally recalculated as far as
possible using the data existing in the smart registry with PATH/MATLAB.
An overview of the data processing workflow for the verification analysis is
shown in figure 2.3.
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Figure 2.3: Overview of the data processing workflow of the smart registry verification
approach

2.3.3 Data comparison

For the comparison of the two datasets, the Excel table of the HMT study was
also converted to a MATLAB table. Furthermore, the quality of replicability
of the 96 variables from the smart registry was classified into the following
4 classes:

* Not replicable variables: Variables that could not be replicated from
the smart registry, as no tables in the smart registry with information
regarding these variables existed.

* Theoretically replicable variables: Variables that would be replicable
from the existing smart registry tables if these tables were appropri-
ately filled with data.

¢ Time-deviating replicable variables: Variables that could actually be
recalculated from the smart registry tables, but the time range of the
data did not match that of the HMT study.

* Correctly replicable variables: Variables that could be replicated from
the smart registry tables, where the time range of the data also matched
that of the HMT study.

2.3.4 Post-analysis update

Since the completion of the described analyses, the smart registry had
evolved and received additional data (see Chapter 2.1). This increased the
number of time-deviating and correctly replicable variables, and all 251
HMT patients of the HMT study were also to be found in the smart registry
at last. Of particular interest to the verification analysis was the extension
of the HIS extract, back to 2016. Thus, the time period of the EMR data of
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126 of the 251 patients in the smart registry overlapped with that from the
HMT study, allowing a first direct comparison regarding the variables of
these data.

Subsequently, a PATH-internal function was used, which made it possible
to compare any number of variables from two tables with each other. The
values of all variables that could be correctly replicated in MATLAB from
the smart registry were compared with the values of the corresponding
variables from the table of the HMT study. With this compare function,
congruence, correlation, and the percentage of finite elements between the
respective variables of the two tables could be calculated. The congruence
describes to what extent the variable values of the respective patients in
the comparison of the two tables exactly match (degree of similarity). The
correlation compares the variables of both tables using linear regression.
The percentage of finite elements reflects the proportion of finite values
in the respective variable category, i.e. values which were not NaN (not a
number) when comparing the two tables. Some variables for which it did
not make sense to apply a certain comparison metric, such as correlation
between categorical variables like patients’ assigned hospital, were excluded
in the process. The results of the three metrics were then averaged for the
respective variable categories for clarity.

2.4 HMT extension necessity prediction model

The second goal of this master’s thesis was to try to develop a simple
prediction model based on the existing data in the smart registry. The aim
was not to design an elaborate complex model, but to implement a basic
machine learning model within the smart registry infrastructure as a proof-
of-concept, and in turn to support the development of the smart registry
with a use case. One question within the HMT environment that was of
interest in this regard was whether an extension of a further 3 months is
recommended for a patient after their initial 3-month stabilization phase.
This can be decided individually by the healthcare professionals caring for
each HMT patient based on the development and current state of his or her
health before the end of the initial telemonitoring period. An automated tool
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could support and improve this decision-making process on the necessity
of an extension by means of objective criteria. Therefore, an attempt was
made to design a model for predicting an extension based on the aggregated
health data of HMT patients in the smart registry. Data pre-processing for
this was done within MATLAB and PATH. Further processing and actual
modeling were carried out in SPYDER as a programming environment
using the Python programming language.

2.4.1 Data overview and processing

MATLAB

Based on the pre-processed full data table with the smart registry data
of all 5004 patients, the further processing steps were carried out in this
second part of the PATH experiment. For the given question, all HMT smart
registry patients were included who had been hospitalized at least once
before or during their initial HMT period and thus had HIS data in the
smart registry. The health data of this patient group from the full data table
was then mapped onto daily level to form "daily reports", which contained
all available information for one patient on a specific date. Relevant variables
were derived and calculated from the raw health data in the OMOP format
of the full data table as so-called features. These were basic features such
as age, gender or blood pressure values, as well as more complex ones
such as the Charlson Comorbidity disease categories derived from ICD-10
diagnoses or the adherence of patients and physicians on the prescribed
heart failure medication (for the complete feature list see Appendix B).
Missing feature values (NaNs) were filled with the last observation carried
forward method between the daily reports [24]. As a decision is made in
the last days of the initial HMT period as to whether a patient is extended
or not, the daily reports of all patients were logically removed after the last
telemonitoring day of the stabilization phase. The information as to whether
an HMT patient had an extension was previously generated and stored in
the smart registry as a feature in the feature store and could therefore be
easily imported via PATH and then assigned to the patients in the daily
reports as a target with a binary label (i.e. "0" for no extension, "1" for
extension).
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In the end, this resulted in 298 patients, of which 69 patients were extended,
with a total of 32650 daily reports and 56 features over a data period from
January 2016 to July 2022. This 32650 x 56 matrix was then exported as a
csv file for subsequent modeling in Python.

Python

For a functioning modeling, features were first filtered, which consisted of
at least 99% missing values (NaNs). This applied to some features relating
to Charlson Comorbidities, as the “condition_occurrence” table of the large
HIS export was not available in the smart registry at the time of the analy-
ses. All other missing values were filled in using an initially patient-wide
and then dataset-wide median. All features of the resulting feature matrix
were then normalized to the value range [o, 1] using dataset-wide min-max
scaling. The daily reports of each patient were then sampled into windows
of 12 daily reports with an overlap of 3 reports. The 12-day windows were
then assigned the target regarding extension "No" or "Yes" (binary label
"0" or "1") according to the daily reports. These labels were additionally
smoothed with a Gaussian noise and shortened to avoid "hard" labels [25].
The principle of this label smoothing is visualized in figure 2.4. Since only
69 of 298 patients were included in an extension period, the data set was
naturally unbalanced, which is why basic data augmentation was also used
to increase this balance. Thereby, a twin patient was created from each
extension patient, in which all variables and parameters were modified with
either random noise (for continuous values such as blood pressure), random
choice (for categorical categories such as gender) or a random constant
offset (for constant values such as age).

2.4.2 Predictive model

A residual neural network was used to predict the necessity of an extension.
The Tensorflow implementation of ResNet50V2, which is a convolutional
neural network with 50 layers, was trained for 50 epochs with a batch size of
32 samples and the Adam optimizer. Furthermore, the Keras implementation
of binary cross entropy was used as a loss function. The evaluation of the
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Figure 2.4: Label smoothing effect visualized. Instead of "hard" values of "0" and "1" (blue),
target values are smoothed (orange).

model was based on a 5-fold cross-validation split with a test:train ratio of
20:80 in each fold.
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3 Results

This chapter presents the results of the smart registry verification analysis
and the HMT extension necessity prediction model.

3.1 Smart registry verification analysis

Table 3.1 shows the g6 HMT study variables divided into the g categories
on the left, and the corresponding number of variables replicated from the
smart registry in the 4 replicability classes on the right. In total, 8o of the
96 HMT study variables could be theoretically replicated from the smart
registry. For the remaining 16 variables, no information existed in the smart
registry from which they could have been derived. 52 variables could be
replicated with a different time range compared to the HMT study, and 17
variables could be replicated correctly.

3.1.1 Post-analysis update

The results of the analysis with the latest smart registry data are shown
in table 3.2. With that, 60 variables could be recalculated with a deviating
time-period. Also, due to the extension of the HIS extract back to 2016, 47
variables could be correctly replicated.

The three comparisons of the 47 variables correctly replicated from the smart
registry with those from the HMT study are entered in table 3.3. For each
category, the three comparison metrics used were entered as an averaged
value. The mean of all six replicable categories was a congruence of 0.67, a
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Table 3.1: HMT study variables in each category with the associated four classes of repli-
cated variables from the smart registry with initial data prior to the data update

HMT study Smart registry

Not Replicable  Replicable Replicable

replicable variables variables  variables
Category Variables variables  (theoretical) (deviant) (correct)
Administrative | 4 0 4 3 3
Demographic | 4 0 4 4 4
Physiologic 9 0 9 9 0
Laboratory 13 0 13 10 0
Hospitalization | 12 0 12 6 0
Diagnosis 22 0 22 8 0
Doctor’s letter | 6 6 0
Other sources | 13 10 3 0 0
Death 13 0 13 12 10
Total 96 16 80 52 17

Table 3.2: Verification analysis variables with updated smart registry data

HMT study Smart registry

Not Replicable  Replicable Replicable

replicable variables variables  variables
Category Variables variables (theoretical) (deviant) (correct)
Administrative | 4 0 4 4 4
Demographic | 4 0 4 4 4
Physiologic 9 0 9 9 6
Laboratory 13 0 13 10 10
Hospitalization | 12 0 12 12 12
Diagnosis 22 0 22 8 0
Doctor’s letter | 6 6 0 0
Other sources | 13 10 3 0 0
Death 13 0 13 13 11
Total 96 16 80 60 47

correlation of 0.83, and a percentage of finite elements of 0.70. A detailed
overview of all 96 variables can be found in Appendix A.

26



3.2 HMT extension necessity prediction model

Table 3.3: Comparison metrics of the correctly replicable variables averaged in each category

Replicable

variables Percentage
Category (correct) Congruence Correlation finite
Administrative | 4 0.81 1.00 0.87
Demographic | 4 0.99 1.00 1.00
Physiologic 6 0.29 0.49 0.24
Laboratory 10 0.43 0.77 0.47
Hospitalization | 12 0.67 0.71 0.75
Death 11 0.85 0.99 0.86
Total 47 0.67 0.83 0.70

3.2 HMT extension necessity prediction model

The results of the 5-fold cross-validation performance of the prediction
model are shown in table 3.4. The metrics used to evaluate the performance
of the model were the accuracy, the AUROC, as well as sensitivity and
specificity. The metrics mean result plus/minus standard deviation, as well
as the selected best result across all 5 folds were documented.

Table 3.4: Achieved model performance, shown as mean value plus/minus standard devia-
tion and the performance range across all 5 folds

Evaluation metric Mean result + standard deviation [Min - Max]

Accuracy 0.6194 * 0.1501 [0.3280 - 0.7551]
AUROC 0.7020 * 0.0615 [0.6333 - 0.8144]
Sensitivity 0.6967 + 0.1455 [0.4573 - 0.9038]
Specificity 0.5950 * 0.2307 [0.1444 - 0.7651]
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4 Discussion

During the work within this thesis two main goals were pursued. The basis
for these was the work with the data from the smart registry for CHF, and
the further pre-processing.

4.1 Smart registry verification analysis

The first goal of this thesis was a verification analysis of the smart registry
to ensure its data quality. To this end, the extent to which the smart reg-
istry could replicate the data of a scientific publication (HMT study) was
analyzed.

This analysis showed that theoretically a large part, more precisely 8o of the
96 variables of the HMT study, could be replicated via the smart registry
route. Of those variables, 52 could be replicated, but with a deviating time
period, thus with no overlap, and 17 could be replicated with a matching
time period. The latter were the variables from the administrative and
demographic categories, which were replicated from the basic patient data of
the HMT data source in the smart registry. In addition, a large proportion of
the variables in the death category could be replicated using the extract from
the Austrian National Register of Deaths available in the smart registry.

The 16 variables that could not be replicated often contained information
that was taken manually from doctors’ letters in the HMT study. These were
variables such as smoking behavior, which were derived from individual
patient histories. Automated annotation of such free-text documents from
the EMR to make unstructured information available in the smart registry
would be a potential solution here but is a very difficult task that will require
turther research in the future. Furthermore, non-replicable variables also
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came from other sources, such as LVEF, which was taken from a subsystem
of Tirol Kliniken GmbH. A connection of such additional data sources with
the smart registry is planned for the future.

Because the smart registry did not yet have data from the HIS with the same
time period of the HMT study at the beginning of this analysis, a direct com-
parison of most replicated variables was not yet possible. Overall, however,
the infrastructure of the smart registry was able to theoretically replicate
most of the information in the HMT publication. This was especially true
for variables in the hospitalization and death categories, which were crucial
for the primary and secondary outcomes of the HMT study [8].

Above all, this first analysis confirmed the importance of verification to
confirm or improve the data quality of the smart registry. By comparison
with a quality-controlled data source from the HMT study, relevant miss-
ing information and potential data discrepancies could be identified. It
should be noted that the verification was based on the HMT study dataset
mentioned above, which itself was derived from primary data sources. A
verification of the source data as such was not carried out.

4.1.1 Post-analysis update

With the extension of the HIS data extract back to 2016, 60 variables could
be practically recalculated at last, of which 47 variables were recalculated
with a correct time period. After this update of the smart registry, all 251
HMT patients of the HMT study were present in the smart registry, and of
these, EMR data was found in 126 patients. This resulted in a congruence of
100% in a number of variables for the first time, as can be seen in the table
in Appendix A.

In a direct comparison of all values of the 47 correctly replicated variables
with those of the HMT study, some matches were found in six of the nine
categories as a first step. The administrative and demographic category vari-
ables could be replicated identically from the smart registry to a large extent.
Only the variable for the HMT programme start date differed minimally
for many patients, resulting in a lower congruence with simultaneously
high correlation in the administrative category. In addition, some patients
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in this category could not be assigned to a participating hospital because of
unavailable data, which explains the imperfect percentage of finite elements.
Variables of the physiological and laboratory category had a slightly lower
congruence, because also here, similar to the HMT start date, the exact time
of the measured values could not be derived from the manually generated
HMT study data according to any fixed scheme, and therefore often devi-
ated in the automated recalculation. The variables of the hospitalization
category could again be replicated with a higher agreement, but often also
depended on the deviating HMT start date. The same was the case for the
follow-up variables of the death category, otherwise the replicated death
data were identical.

4.2 HMT extension necessity prediction model

In the second part of this master thesis, an attempt was made to design a
basic ML model based on the smart registry data, which predicts whether a
subsequent second period is necessary for an HMT patient after his or her
initial 9o days in the HMT telemonitoring programme. As presented in table
4, the prediction models showed a mixed performance. On the one hand,
the selected model with the best fold achieved satisfactory results, on the
other hand, the performance varied greatly between the folds. A common
problem in training was that models tended to collapse into a version with
high specificity (> 0.9) and low sensitivity (> 0.2), or vice versa. This trend
is reflected in the high standard deviation values in the results. This could
be due to a common problem of models collapsing into local optima rather
than a global optimum, which our best-case model shows would likely exist.
These results suggest that the model architecture may be sufficient, but the
training methods and data preprocessing could be improved.

It should also be said that the data set of 298 patients and 69 positive targets
is probably small enough for the given issue. For events that are relatively
complex in their development and are influenced by many factors, it is
important to have a considerable number of observations. Our question
of telemonitoring extension is relatively specific and the outcome is also
influenced by many individual and personalized factors. It can therefore
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be assumed that a data set with a higher number of patients and features
would have a positive effect on the performance and results of our model.

Of course, there are a large number of model hyperparameters that have
not yet been examined in detail here. For example, the window size and
its overlap could be further optimized using grid search to obtain better
predictions. Likewise, noise generation during label smoothing or data
augmentation could be investigated in more detail. Furthermore, other dif-
ferent approaches could also be tried out during data preprocessing, for
example when imputing and scaling the data. Although different loss func-
tions/configurations and batch sizes were also experimented with during
model training, a systematic search could also reduce the model collapse.
Other optimizing functions, early stopping and better regularization could
be explored as well.

With regard to the prediction itself, it should be noted that the methods
described basically predict retrospectively which feature patterns are as-
sociated with extended inclusion in a disease management programme.
However, this prediction does not correlate with clinical outcomes or the
future health status of patients. Thus, the model gives an indication of
how likely it is that a patient with these given data will be included in an
extension, but not how much an extension would help that patient, or how
much a patient actually needs it to avoid adverse events.

In general, it is of course difficult to make a truly qualitative statement
about whether an extension would be indicated based on the available data,
considering that this decision-making process is influenced in real life by a
variety of other factors and information that cannot be taken into account or
are not available in this prediction setting. Extending the model to include
future clinical outcomes would certainly be a more convincing use case that
could help healthcare professionals in their practice as a decision support
tool. This would have benefits for patient care, health economics and quality
of life, but more data and research is needed to make this a reality.
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4.3 Conclusion

The basic scope of this master’s thesis was the work around the smart
registry for CHF patients in order to support its development with quality
assurance steps. The working environment was based primarily on the
PATH software developed for such purposes within MATLAB, which en-
abled a data communication interface with the smart registry and effective
further processing. The aims were to improve the data quality of the smart
registry through a verification analysis and to develop a basic ML model
as a use case in the smart registry, which performed a prediction based on
the health data of HMT patients automatically aggregated from various
sources.

The verification analysis showed that a manually collected data set of a
scientific publication could largely be replicated via the smart registry. The
work carried out during this analysis also made it possible to identify
deviations in the smart registry data and thus improve its quality. The ML
model developed was able to achieve relatively satisfactory performance
results for the given data situation. Of course, one has to be careful when
making a statement about whether the health of a patient would benefit
from the prediction results, but it was possible to run through an initial
use case with the smart registry data and thus gain some insights and
knowledge for further approaches.

In summary, it can be said that the development of the smart registry
infrastructure presented here can make an important contribution to the
future of the European health data economy. This master’s thesis has made
a small contribution to its quality assurance through a data verification
analysis and a basic prediction model. Further aggregation of health data
and the generation of features and models from it is necessary for the
further advancement of the smart registry. This could improve resource
management in the healthcare system and bring us closer to the goal of
assisting healthcare professionals at the point of care with smart decision
support services.
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Appendix A

Variable list of the smart registry verification analysis

Category Variable name 2222?;?5') g?lli';:gle zeoelr::;t)’le Congruence Correlation fFi’ﬁirlceentage
Administrative Patient_ID 1 1 1 1,00 NaN 1,00
Administrative HMT_yes_no 1,00 NaN 1,00
Administrative Beginning_date 0,42 1,00 1,00
Administrative Hospital_center 0,81 NaN 0,48
Demographic Date_of_birth 0,99 1,00 1,00
Demographic Gender 1,00 0,99 1,00
Demographic Age_at_HMT_start 0,98 1,00 1,00
Demographic Group_Age_Median_73 1,00 1,00 1,00
Physiologic Height 0,75 0,56 0,49
Physiologic Heart rate 0 0,21 0,16 0,19
Physiologic Systolic_BP_0 0,18 0,59 0,20
Physiologic Diastolic_BP_0 0,22 0,50 0,20
Physiologic Weight 0 0,33 0,64 0,18
Physiologic BMI_O 0,07 0,50 0,18
Physiologic NYHA 0

Physiologic Obesity BMIgt30

Physiologic Group_NYHA

Laboratory Creatinin_0 0,46 0,84 0,49
Laboratory GFR_O 0,01 0,75 0,49
Laboratory Sodium_mmoll_0 0,42 0,67 0,49
Laboratory Potassium_mmoll_0 0,35 0,41 0,49
Laboratory GOT ASAT Ul 0 0,62 0,81 0,47
Laboratory GPT_ALAT Ul 02 0,60 0,88 0,45
Laboratory GGT_UL O 0,59 0,90 0,45
Laboratory Troponin_T_0 0,46 0,69 0,41
Laboratory NTproBNP_0 0,42 0,92 0,48
Laboratory Hb 0 0,36 0,84 0,49
Laboratory Group_NTproBNP

Laboratory Group_GFR

Laboratory INNTproBNP

Hospitalisation Index_Admission_Hospitalisation 0,70 0,88 0,47
Hospitalisation Index_Discharge_Hospitalisation 0,71 0,87 0,47
Hospitalisation Index_Hospitalisation_Duration 0,64 0,77 0,49
Hospitalisation Index_ICU_stay 0,86 NaN 1,00
Hospitalisation Index_ICU_stay _duration 0,80 NaN 0,50
Hospitalisation Hospitalisation_yes_no 0,71 NaN 1,00
Hospitalisation Date of admission 0,68 0,99 0,09
Hospitalisation Follow_up_Date_Hospitalisation 0,34 0,99 1,00
Hospitalisation Follow_up_Duration_Months_Hospitalisation 0,62 0,29 1,00
Hospitalisation Count_Hospitalisation 0,65 0,59 1,00
Hospitalisation cum_Sum_Days_lost_due_Hospitalisation 0,66 0,55 1,00
Hospitalisation Group_Count_Hospitalisation 0,66 0,50 1,00

Diagnosis LBBB_Left_Bundle_Branch_Block
Diagnosis KHK

Diagnosis Avrterial_hypertension
Diagnosis COPD_or_asthma
Diagnosis OSAS

Diagnosis pAVK

Diagnosis AS

Diagnosis MS

Diagnosis TS

Diagnosis Al

Diagnosis Ml

Diagnosis TI

Diagnosis Valvular_heart_disease
Diagnosis DM

Diagnosis Depressio

Diagnosis Malignom

Diagnosis ICD10Code

Diagnosis Initialdiagnosisdate
Diagnosis Renal_insufficiency_Stage
Diagnosis Anemia

Diagnosis CharlsonKomorbiditatsindex
Diagnosis Group_Artrial_fibrillation

Physician’s letter

Cause_of_Decompensation

Physician’s letter

Cause_of_HF

Physician’s letter

Ejection_fraction

Physician’s letter

Classification_EF_0

Physician’s letter

EF_Grouping_45

Physician’s letter

Cause_of _HF_groups

Other sources Date_of_diagnosis
Other sources Heart_rhythm
Other sources Device

Other sources St,p,_MCI

Other sources St,p, ACBG
Other sources St,p,_Valve_OP
Other sources St,p,_Stroke
Other sources Smoking

Other sources Smoking_codiert
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Other sources Pack_years 0 0 0
Other sources St,p,malignom__under_therapy 0 0 0
Other sources filter_$ 0 0 0
Other sources Group_CRT_ICD 1 0 0
Death Death 1 1 1 0,99 0,98 1,00
Death Dateofdeath 1 1 1 1,00 1,00 0,22
Death CauseofDeath 1 1 0
Death Follow_up_Death_Date 1 1 1 0,99 1,00 1,00
Death Follow_up_Duration_in_months 1 1 1 0,03 1,00 1,00
Death Death_12_mo 1 1 1 1,00 1,00 1,00
Death Followup_Duration_12_mo 1 1 1 0,84 0,99 1,00
Death Days_lost_due_death 1 1 1 0,94 1,00 1,00
Death Death_6_mo 1 1 1 1,00 1,00 1,00
Death Days_lost_due_death_6_mo 1 1 1 0,98 1,00 1,00
Death Distribution_mortality 1 1 1 0,95 1,00 0,22
Death Time_alive_and_out_of_hospital 1 1 1 0,60 0,88 1,00
Death death_hospital 1 1 0
Total 96 80 60 47 0,65 0,80 0,68




ion necessity prediction model

Feature list of the HMT extens
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