
Richard Hohensinner, BSc

Integration of a Life Science Research
Tool into a Distributed Data Management

System

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering & Management

submitted to

Graz University of Technology

Supervisor
Univ.-Prof. Dipl-Ing. Dr. Stefanie Lindstaedt

Co-Supervisors
Sarah Stryeck PhD &
Dipl.-Ing. Konrad Lang

Institute for Interactive Systems and Data Science (ISDS)
Head: Univ.-Prof. Dipl-Ing. Dr. Stefanie Lindstaedt

Graz, April 2022

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Acknowledgement

This master thesis was created in context of the CyVerse Austria project in
collaboration of the Know Center and the University of Technology Graz.

First, I want to thank Sarah Stryeck PhD and Dipl.-Ing. Konrad Lang for
taking over the role of advising this thesis as well as bringing in their
expertise to the project. With this they were an excellent help throughout the
course of this thesis. Additionally, I want to thank Dr. Slave Trajanoski for
always being approachable and a helpful contact person from the side of the
Medical University of Graz. His cooperation greatly benefited the outcome of
this thesis’ projects. I especially want to thank Univ.-Prof. Stefanie Lindstaedt
for making this master thesis possible by supervising and examining it.

Furthermore, I want to thank my friend Inti Gabriel Mendoza Estrada for
keeping me motivated as well as being a magnificent companion throughout
my days as a student.

Most of all, I want to thank my parents for always believing in me and
always supporting me throughout my (many) years of study.

Graz, April 2022

Richard Hohensinner

iv

Abstract

Modern life sciences go hand in hand with computational research tools.
In addition, the volume of data used in life sciences increases due to high-
throughput methods as well as the large amount of available data via
public data repositories. Thus, embedding these computational research
tools into technological environments where the (experimental) data are
kept, is crucial for efficient and robust workflows and therefore scientific
progress. A plethora of aspects need to be considered to ensure reliability
and usability of these workflows: (i) data security for any sensitive data
(e.g., genetics), (ii) data access for controlled user access, (iii) resources for
storage and computation and (iv) interoperability of tools and systems, to
name a few.

The main goal of this thesis is the technical integration of an existing
computational research tool from the life sciences The Galaxy Project (2021)
with an existing data management system CyVerse Austria (2022) to enable
an automated workflow for researchers. In order to do so, an interface
between Galaxy and iRODS (2021) was developed based on design and
implementation principles. This workflow was evaluated by a number
of researchers to investigate usability and develop strategies for further
development. Finally, the achieved goals were critically reflected and the
outlook for further implementations is presented.

v

Summary

“The end of a melody is not its
goal: but nonetheless, had the
melody not reached its end it
would not have reached its goal
either. A parable.”

Friedrich Nietzsche

The Medical University of Graz suffers from unoptimzed file transfer proto-
cols. Often employees resort to impractical measures such as using physical
storage (e.g., USB sticks) to temporarily store data and physically walking
to the desired endpoint to share data. CyVerse Austria aims to provide
a way to fix the issue through research data management. Unfortunately,
this method does not comply with security restrictions that the Medical
University of Graz demands. Thus, this thesis was born out of necessity of
a research data management solution that does comply with data security
restrictions.

To make an informed decision on what the solution should be, we con-
ducted a literature survey on life sciences and their research tools, as well
as distributed data management systems. Through the literature survey,
we concluded that the best way to achieve the desired solution is to inte-
grate the research tool Galaxy directly with iRODS, CyVerse Austria’s data
management system.

In conjunction with the Medical University of Graz, interface tools for
Galaxy were developed. This partnership, alongside continuous feedback
loops ensured a tool that followed the security guidelines required by the
Medical University. The current version of the tool is completely functional

vi

Summary

with Galaxy, but is not bound to the research tool - it can be embedded
into other research tools with minimal effort. This is a testament to the
compliance of the project’s requirements, which were enforced throughout
the project.

Furthermore, to validate the project’s results, an evaluation process was con-
ducted. First, through interviews with the project’s target user, we ensured
that the functional requirements as well as the behavioral requirements were
met. Additionally, by conducting an experiment, we observed quantifiable
improvements over legacy methods, both in transfer speed and security
assurances. Finally, we reflected on the project’s life cycle. We identified
development pitfalls that will be useful for any further or similar projects.
We also recognize our tools’ limitations as well as possible areas of im-
provement. In the end, we concluded that the interface serves its purpose, it
is currently being used, and will continue to do so, even after the project
finished.

vii

Contents

Acknowledgement iv

Abstract v

Summary vi

1 Introduction 1
1.1 A brief historical background of Life Sciences 2

1.2 Life Sciences in Austria . 4

1.3 Life Science Research tools - Current state of the art 5

1.4 Challenges for Life Science research 6

1.5 Problem Formulation . 8

1.6 Motivation . 9

1.7 Requirements . 10

1.7.1 Functional Requirements 10

1.7.2 Non-Functional Requirements 11

1.8 Structure of Thesis . 11

2 Technological Basis 13
2.1 Distributed Data Management Systems 13

2.1.1 Rationale of a Distributed Data Management System . 14

2.2 CyVerse Austria . 19

2.3 iRODS . 21

2.4 Galaxy . 23

2.5 Summary of Chapter 2 . 26

3 The Interface Tools - Connecting Galaxy and iRODS 27
3.1 Resulting Functionality . 29

3.2 Summary of Chapter 3 . 32

viii

Contents

4 Design and Implementation 33
4.1 Requirements . 33

4.1.1 Functional Requirements 34

4.1.2 Non-Functional Requirements 35

4.2 Design Decisions . 36

4.3 Technologies used . 37

4.4 Interface Implementation . 39

4.4.1 Course of Development 39

4.5 Summary of Chapter 4 . 41

5 Evaluation 43
5.1 Methods of Evaluation . 45

5.2 User Feedback . 46

5.3 Project Performance & Results 46

5.4 Summary of Chapter 5 . 50

6 Lessons Learned 52
6.1 Pitfalls . 53

6.2 Critical Reflection . 54

6.2.1 Comparison between set Goals and Results 55

6.3 Outlook and Future Work . 56

6.4 Summary of Chapter 6 . 57

Bibliography 59

ix

List of Figures

1.1 Visual representation of the spectrum of Life Sciences 2

1.2 Structure of this thesis . 12

2.1 Illustration of a distributed data management system 18

2.2 CyVerse’s Discovery Environment 20

2.3 Illustration of Galaxy’s user interface 25

3.1 Illustration of the interface’s tool shed entry 28

3.2 Illustration of the interface and its environment 30

3.3 Illustration of the download tool 31

3.4 Illustration of the upload tool 32

4.1 Illustration of implementation environment 40

5.1 Analogy of the bridge-interface comparison 44

5.2 Results of S1. 48

5.3 Results of S2. 48

5.4 Results of S3. 48

5.5 Results from performance testing 49

x

1 Introduction

“The science of today is the
technology of tomorrow”

Edward Teller

Life sciences (alt. Biosciences) comprise all research fields that involve a
direct connection to living beings. This includes domains such as medicine,
pharmacy, biochemistry, biophysics, bioinformatics, and of course the field
of biology itself. Life sciences count as one of the largest groups of today’s
modern research areas due to their comprehension of many diverse research
fields, as well as their methodology of combining these fields in an inter-
disciplinary way (STANDARD, 2012). It is necessary to limit the range of
life sciences in this thesis because mentioning everything in detail would
exceed the scope. Thus, we will primarily focus on the biological aspects in
combination with medicine as well as the meaning of bioinformatics as a
research method for this discipline.

Figure 1.1 illustrates the scientific research fields connected to the domain
of life sciences.

Currently, life sciences are part of the most future oriented areas of research.
Modern biosciences play a major role in advancing the development of new
diagnostic methods, therapies, and medical technology. Because of these
rapid developments and perpetually increase of extent, they are proclaimed
to enable the key technologies of the current century.

1

1 Introduction

Figure 1.1: Visual representation of the fields of study connected to Life Sciences.

1.1 A brief historical background of Life Sciences

The modern term life sciences originates from the scientific discipline biology.
The term biology was first introduced at the beginning of the nineteenth
century and defined biology as the science of living organisms. Needless
to say, the sciences related to biology are much older than the nineteenth
century. In fact, some of the fields within biology, like medicine, even date
back to ancient times. Alongside medicine, topics like plant science and
knowledge about animals were combined to create the term that we now
call biology. The most important factor in this term derivation was the
realisation that all these topics had one thing in common: life. With this new
insight, the creation of biology, the science of living organisms or the science
of alive things, was conducted. Furthermore, this very concept is vital for
understanding the rationale of Life Sciences in general (Magner, 2002).

In recent times, due to the vastly increasing knowledge and understanding
about life itself, more and more things became connected to biology. An

2

1 Introduction

example would be a prosthetic arm. On first thought the arm clearly is not
a living thing. Once attached, it is also technically a lifeless extension of the
human body. However, with recent developments and new insights, it is
possible to connect a prosthetic arm to the human body in a way that it can
almost fully be controlled by its wearer, thus making it a bionic prosthesis.
It may be possible, down the line, to not only control the arm with the
help of the body’s nervous system, but also transmit signs of touch, thus
allowing the feeling of touching. This would improve the prosthesis to a
point where the core functionalities of an arm are recreated. This poses
the question whether the bionic prosthesis has now become truly part of a
living organism and thus should be considered biotic. This topic falls under
the research field of biomedical engineering & bionics, which is one many
area of studies linked to life sciences and even philosophy itself.

With the knowledge about the term life sciences and the insights of which
other research fields can be connected to biology, it is now possible to
explain the rise of the term life sciences. Biology, the umbrella term for the
study of all living beings, gets connected to prior not directly related fields
of studies, like mechanical engineering, to describe the link between both,
being called life sciences. This way, life sciences could be seen as biology
2.0, or an extended version of biology, by involving other disciplines into
the context of biology, thus increasing its spectrum and reach.

Today’s modern understanding of the term life sciences opens the scope
of bio sciences to a much more manifold notion. This also brings up many
new questions which emerged with currently thriving developments in the
fields. As already mentioned, bionics are a big representative for life science
research, along with many other medical treatments and developments.
To also give an example of a potential life science topic in connection to
computer science, the topic of artificial intelligence (AI) can be proposed.
Ever since the idea of AI was first introduced, the question whether such a
system could at some point be considered alive or not, emerged alongside.
Assuming such a self-sustaining system, e.g. an AI robot, that would possess
the power of learning, and at some point learn the ability to reproduce (or
rebuild) itself, could indeed become terrifyingly close to a living being. In
essence, the only difference between an AI model and a human could end up
being that the former is made of copper and the latter of organic materials.
This again poses the question whether a system like this could be classified

3

1 Introduction

as being alive, and if not, might introduce the need of an additional term
for almost life-like state of being.

1.2 Life Sciences in Austria

As mentioned in the previous subchapters, life sciences comprise a variety
of distinct research areas and researchers all over the world that work on
projects to bring innovation and a better understanding to processes of
and in living organisms. To show the importance of life sciences in Austria,
some important facts and figures are presented. As of 2020, 982 companies
are currently working within the life sciences research field in Austria,
achieving a summed up turnover of 25.1 billion euros. In comparison to
2017, the workforce in these companies was increased by roughly 9% and
the overall increase in revenues was about 12%. Due to Austria’s strong
performance and competence in the field, Austrian life science companies
were able to receive an amount of 313.2 million euros as international
venture capital investments. Additionally, the growing rate of Austrian
life science research infrastructure, such as science parks or incubators,
steadily increases the financial migration to Austria by attracting well-
known multinational companies (FFG, 2010).

Regarding research and innovation, there are currently 17 universities, 13

universities of applied sciences, and 25 non-university institutes working
in the field of life sciences. The ensemble of 55 life science institutions in
Austria involves over 24,000 employees, totalled. As of 2020, there is a total
number of 77,000 life science related students in Austria, this makes up
about 25% of the entire count of 281,791 students in Austria (according to
STATISTICS-AUSTRIA, 2021). The Medical University of Graz, Innsbruck
Medical University, and the Medical University of Vienna are the most
important medical universities regarding life science in Austria, due to
their significant impact on research in this field (LISA, 2022). In this thesis,
researchers of the Medical University of Graz will be in the focus.

4

1 Introduction

1.3 Life Science Research tools - Current state of
the art

As life sciences become more and more popular, so do the (research) tools
linked to them. So, as with any raising field of study, with the increasing
popularity of the field comes more demand for people in that sector. As well
as more research projects being requested by third parties, thus increasing
the market share. According to Bhisey (2021), the major reasons for life
science research tools success in the past years are the growth of the phar-
maceutical industry, the healthcare industry as well as the research, and
development sector in relation to life sciences. Additionally to these factors,
the still ongoing COVID-19 pandemic is also said to be one of the biggest
driving factors when observing the rapid success in the field of life sciences.
This might be caused by the threat of replication from not only the corona
virus itself, but also future viruses capable of starting another pandemic.
Thus, strengthening this field of research was perceived as appealing by the
entire world, which may ultimately have contributed to the raising success
of life science research.

Looking at the ”Life Science Tools Market Size & Share Report”, by Grand-
ViewResearch (2021), supports the claim that COVID-19 was a major factor
in the rise of life science research tools. The two most influencing factors
were the development of COVID-19 testing tool-kits and the pressing desire
to create a vaccine. Besides those factors, the life science research tool market
is assumed to increase at a constant annual growth rate of around 12% and
estimated to more than double its size from USD 105,5 billion (2021) to USD
227,3 billion (2028).

It is worth noting that the market of life science research tools involves
a wide variety of utensils such as instruments, consumables, reagents,
software and other services. Despite considering the entire extent of the
current life science research tools market, the scope of this thesis lies on
software tools for sophisticated data analysis. This is done to not blow the
whistle of the project’s scope, as it is primarily oriented at the touching point
between a life science software tool and a distributed data base management
system.

5

1 Introduction

In the context of life sciences many different kinds of tools exist to help
researchers conduct their jobs. For the scope of this thesis, three of these
software solutions are especially important for its related projects. First,
CyVerse Austria (2022) forms a platform for research data management,
which researchers can use to store, share and analyze their data. CyVerse
Austria is explained in more detail in chapter 2.2. Furthermore, iRODS
(2021), the distributed data management system used within the CyVerse
Austria project, enables users to securely store and access their data. Chapter
2.3 is elaborating on this system. Finally, the life science research tool that is
used at the Medical University of Graz, The Galaxy Project (2021), is used
for genome sequence analyses. A detailed description of Galaxy is given in
2.4.

1.4 Challenges for Life Science research

Today’s life science research is undergoing rapid changes and, therefore, is
becoming more and more dependent on technology. This is because modern
rapid technological improvements imply that its applications are affected
by it and vice versa (Ison et al., 2019). The swift changes of technology pose
a lot of challenges for researchers, universities and technology providers.
Therefore, one must determine the tipping point where switching to a new
technology is useful taking into account the effort it takes (time, money
and human resources). With this in mind, it is important to find the correct
balance between these three factors. In terms of time, it is crucial to estimate
the time span required to introduce new technologies. Especially, consid-
ering how long it will take researchers to adapt to new technologies. For
monetary decisions, the cost-benefit ratio for switching to new tools has to
be considered as well as whether it is reasonable to upgrade currently used
technologies to newer versions. The coordination with human resources
then closes the loop. There might be reason why researches do not wish to
switch to new technologies. In contrast, researchers may prefer to keep their
current tools, but wish for extensions to the current system.

A big concern in life sciences research is data handling. This is because
of the large amounts of data due to high-throughput technologies and

6

1 Introduction

available data in online repositories. In addition, data is often sensitive
- one has to protect individuals’ privacy. With this in mind, many tasks
related to data in this context become non trivial. For instance, any form
of outsourcing computation is dangerous because the data might end up
exposed to unauthorized parties. The same thing applies for sharing data
with colleagues. Several universities use on-premise cloud solutions (e.g.,
ownCloud (2022), Nextcloud (2022)), where researchers can create open
links to provide access to their data. This can lead to unauthorized access to
files when the link is shared with others and becomes even more problematic
when sensitive data is stored on the on-premise cloud solution. One solution
to this problem would be to use physical copies of data, for example, USB
drives. In a scenario like this, no third party may ever get a chance to
access the data. Furthermore, this can provide additional data security by
providing the ability to use encryption on the physical device. However,
this solution is impractical because it requires physical interaction; which
may not be a problem if two people work in the same building but becomes
difficult if two people work in different countries. In conclusion, with current
developments in data management, resorting to physical data storage to
exchange files appears to be more of a problem, which needs a solution,
rather than a solution itself.

Distributed data management systems provide a sound solution to this prob-
lem. At Medical University of Graz, University of Graz and Graz University
of Technology, CyVerse Austria (2022) has been deployed. This infrastructure
offers a distributed data management layer with the possibility to perform
reproducible data analytics using container technologies. CyVerse Austria
connects storage and computing resources from the three universities. With
this system, it is possible for researchers to securely store and share sensi-
tive data while keeping them on storage resources of their own institution.
The underlying open-source technology for distributed storage is iRODS
(integrated rule-oriented data system). The setup is designed to comply
with security guidelines of Medical University of Graz. Researchers can
give access rights for their data to collaborators. However, the data does
not leave the institution, collaborators will only see what is available on the
respective storage resources.

Other security measures include storage and sharing security. Storage secu-
rity is achieved through fragmentation of data. Thus, unauthorized access

7

1 Introduction

to any single data point only yields incomplete and therefore useless results.
The sharing security can be achieved by only giving owners the ability to
temporarily share data with other already existing users.

For this thesis’ project, the life science research tool Galaxy, which is hosted
and used at Medical University of Graz, forms the point of action for the
data management integration. Galaxy itself, does not provide decent enough
ways to securely share data with a save storage. However, researchers are in
need of a solution to share data in a safe-guarded way.

Thus, the main goal of this work is the technical integration of an existing
computational research tool from the life sciences The Galaxy Project (2021)
with an existing database management system iRODS (embedded within
CyVerse Austria) to enable an automated workflow for researchers.

1.5 Problem Formulation

Research tools require data management. This is due to the fact that these
tools work with data sets, which have to be imported into the tool in
some way or another. Whereas researchers are not responsible for data
management per se, they rely on the tools data management capabilities to
conduct their analyses and perform data transfer tasks. This need forms the
main issue this thesis and its related projects try to solve.

In the context of this thesis researchers at the Medical University of Graz
face issues with a research tool named Galaxy. This tool provides methods
to upload data and perform analytic tasks on these data sets. The analytics
functionalities of Galaxy are focused on genetics or protein investigations
with single tools, or entire analytics pipelines. However, Galaxy lacks the
option to share data in a secure way, especially with collaborators outside
of the tool’s user base. Out of this need, the requirement to enhance data
transfer tasks for sharing emerged. This thesis and its related projects’ aim
to tackle this precise problem setting.

8

1 Introduction

1.6 Motivation

The motivation for this project is to ensure easy data integration from iRODS
into Galaxy to provide an easy workflow for researchers. When working
with Galaxy, researchers use provided tools to analyze their data sets. This
includes uploading their data sets as well as downloading the results to
visualize them with separate tools. For this, researchers often need to share
data sets or result files with collaborators (e.g., to share an interesting finding
or request a second opinion). However, this sometimes involves dealing with
sensitive data, which cannot be shared through common ways. To avoid
conflicting with security regulations, researchers often resort to suboptimal
solutions. With the help of the interface module, which was developed along
side this thesis, researchers are able to share their data sets and result files
in a secure way. By using the interface researchers can upload their findings
to CyVerse Austria to share it with collaborators. Additionally, researchers
can also upload their data sets, or shared data from collaborators, directly
into Galaxy.

Consequently, the main goal behind this project is to find a fitting solution
to the connection of the life science research tool TheGalaxyProject1 and the
distributed data management system iRODS2. The need for this project was
initialized by the Medical University of Graz. They requested the creation
of an interface between these two systems, because they were in need of
an interoperable system, which avoids or reduces the need of insecure data
transfer tasks for researchers. The interface’s main job is to load research data
sets from a data management system directly into a life science research tool
(and vice versa). This includes data and user management being handled
securely in the background.

1An open-source software framework that aims to help researchers with no computer
science expertise develop and maintain a system that allows them to perform computational
web-based analyses. (The Galaxy Project, 2021)

2An open source data management software that implements data virtualization,
enables data discovery, automates data workflows and enables secure collaboration (iRODS
(2021)).

9

1 Introduction

1.7 Requirements

For any project related to software engineering, requirements have to be
defined first. These requirements are a mutual agreement between the client
and the developer and vehemently boost the success rate of a project if
done correctly. Generally requirements are split into two groups: func-
tional requirements and non-functional (non-behavioral) requirements. (chi-
trasingla2001, 2020)

Functional requirements cover all required functionalities of the software
project. In general, these requirements can be seen directly in the final
version of the project and thus act as a list of available functionalities. An
example functional requirement could look like this:

User Registration - The user is able to create an account at the registration page.

Whereas Non-functional requirements are hidden within the project’s
environment and cannot be perceived without context. Thus, non-functional
requirements are often referred to as non-behavioral requirements. Non-
functional requirements are used as a reflection of quality. An example for
a non-functional requirement could look like this:

Scaleability - The system capable of being scaled up- or downwards.

The requirements mentioned below are abbreviated and are discussed in
more detail in section 4.1.

1.7.1 Functional Requirements

R1 User Authentication - Users are able to authenticate their accounts when
accessing the data management system.

R2 Data Upload - Users are able to upload (import) data from the research
tool into the data management system.

R3 Data Download - Users can download (export) data from the data
management system into the research tool.

10

1 Introduction

1.7.2 Non-Functional Requirements

R4 Security - The used data is securely stored and linked to an authorized
user.

R5 Availability - The interface and the connected data management system
are always accessible.

R6 Scalability - Multiple files can be send at once and the interface can be
used by N people simultaneously.

R7 Reliability - Data transferred via the interface is always sound and
complete.

R8 Reusability - The interface is portable into other research tools.

1.8 Structure of Thesis

The introduction of the thesis focuses on the central aspects of this paper: life
sciences and their respective research tools. It starts with the introduction
of life sciences as a (scientific) discipline, and gives an overview about
the history and novel challenges life science researchers have to face. The
chapter already introduces three regional tools which are objects of study in
this thesis (CyVerse Austria, iRODS and Galaxy). Additionally, we provide
a short overview about the thesis’ topic in general, including the motivation
of this work, the problem formulation that led to this scientific paper, as
well as giving an outline about the requirements that influenced the thesis’
project and development work.

The subsequent chapter, Technological Basis, gives in-depth insight into
distributed data management and further elaborates in detail on the techno-
logical aspects of CyVerse Austria, iRODS and Galaxy.

The third chapter, Interface Tools, showcases the projects results by describ-
ing the interface tools, created alongside this thesis.

The Design and Implementation chapter revolves around the design deci-
sions that aim to fulfill the application’s requirements. First, the technologi-
cal background and the project’s setting is explained, by stating its purpose

11

1 Introduction

Figure 1.2: Structure of this thesis, illustrating the individual chapters and their coherences

and creation. Then, the interface implementation is elaborated via the course
of development.

In the next chapter, Evaluation, the user aspect connected to this project
is highlighted. First, the available methods of evaluation are elaborated.
Second, user feedback and its rationale is mentioned. Third, evaluation
results are presented, by including gathered user feedback.

The last chapter, Lessons Learned, serves as a way to wrap up the thesis, by
pointing out both the things that went well and the encountered pitfalls, as
well as anything noteworthy during our literature survey. We also provide
a critical reflection of the entire project and a comparison between the
previously set goals and the actually received results. Additionally, an
outlook into the future and suggestions for future work is given.

Figure 1.2 showcases the structure of the thesis. Besides illustrating the flow
of the chapters, it also explains how the individual chapters correlate.

12

2 Technological Basis

“It is not the beauty of a building
you should look at; its the
construction of the foundation
that will stand the test of time.”

David Allan Coe

This chapter is divided into four parts. The first one lays the scientific
foundation for distributed data management systems. This chapters gives
a brief historical excursion followed by an explanation of the current state
of the art as well as the recent tools being used. One particular solution of
a distributed data management system is mentioned especially. Then, the
next three parts emphasize important tools at Universities in Graz, CyVerse
Austria, iRODS and Galaxy, because of their importance for the next chapter,
the implementation of the project. Finally, a one-page summary concludes
this chapter.

2.1 Distributed Data Management Systems

With the rising success of the internet, data management has become a
significant factor in today’s environment. While also affecting people’s
private lives, it is most crucial on a corporate level. Thus, in modern work
life dealing with data management is inevitable, because in one way or
another, data is omnipresent. Whereas data itself is broad and general, the
context gives data meaning and importance.

13

2 Technological Basis

For the scope of this project, researchers and related research data is essential.
According to The University of Sheffield (2022), research data is used to
support research conclusions and can exist in various forms. Simply put,
research data describes files and data sets that researchers use to conduct
analyses, draw conclusions and propose results. Research data management
(RDM) is often used in the context of research data to describe the tasks
and the environment which are necessary to enable working with research
data. Thus, research data management starts at generating data, covers
data sharing and ends by providing long-term archiving methods to enable
viable referencing for scientific work.

The research data management for this thesis’ projects is achieved by con-
necting Galaxy to the distributed data management system iRODS, which
is embedded in a research data management platform called CyVerse Aus-
tria. The following chapters elaborate on the concept of distributed data
management systems and highlight their benefits in the context of this
thesis.

2.1.1 Rationale of a Distributed Data Management System

To help understanding the concept of a distributed data management system
we break it down to the three elements it consists of: Distributing, Data
Management, and System. This way, it is possible to look at the individual
topics in detail, to then combine the knowledge and understanding to
grasp the underlying concept. Therefore the three elements are explained
individually.

Distributing

Distributing in this context means decentralisation. This involves the storage
of data, which is usually achieved by a physical storage on a server within
the network. When using a centralized approach, one single server acts as
the storage device for the entire set of data. Whereas, for a decentralized
approach, the data is distributed on multiple machines, also called nodes.
Both approaches posses advantages, however, in terms of security and

14

2 Technological Basis

availability, the distributed approach outshines the centralized approach.
While centralized data storage is generally cheaper and easier to maintain,
it is also very prone to system failure. Once an error occurs at the main
node, which in this case is the only node, the entire system stops working.
This means that in a scenario like just described none of the data is available
at all, thus, nothing is available. However, a decentralised approach allows
the possibility to divide the data into smaller pieces and distribute them
over multiple nodes. This way it is highly unlikely that all nodes experience
failure at the exact same time, which makes this approach much more
resilient to attacks. With enough storage capacity it is also possible to
establish an infallible system, by keeping additional copies of one node
on other node(s). This means, that even if one node would fail, other
nodes could still provide the files from that unavailable node. Additionally,
distribution also enables the possibility of data fragmentation, which means
splitting individual files into pieces and storing them separately. Using data
fragmentation increases security aspects of the system, because a malicious
third party, which only has access to a single node would just find pieces of
files, similar to a few pieces of multiple jigsaw puzzles. This effect can be
enhanced even more by ciphering the individual files before splitting them
up.

Data Management

According to Stedman (2019), data management is the process of ingesting,
storing, organizing, and maintaining the data created and collected by an
organization. Simply put, it serves three major tasks: to take data as input
and to process it, to store data with a long-term plan in mind, and to
provide the contained data as an output. Additionally, data management is
often, but not always, combined with user management, which takes care
of access rights for the data. In a simplistic version of data management,
particular users are able to upload data and access it whenever needed. In
this case, the author of the uploaded data is the sole person with access
rights on the files. This version can be extended by allowing users to share
selected files with another user, thus, making it possible for multiple users
to access the same data. As a last extension, the system can be enhanced
by allowing shared storage spaces, similar to a directory, to which a team

15

2 Technological Basis

of multiple users has access. This makes it possible to collaborate in real
time by manipulating files synchronously. It is also worth noting, that data
management knows two types of access rights: Read access and Write access.
Read access allows particular users to view specified data whereas, write
access grants dedicated users the ability to manipulate the files. Write access
thus can be seen as an extension of reading permissions, because a user
must also be able to view the data in order to manipulate it. Finally, access
rights in data management are generally bound to data rather than users.
Meaning, that particular files can be accessed by specified users, other than
users themselves having global access rights. Besides that, data management
also takes care of topics such as: Data security - by forming the boundary
of what is inside and outside of the network as well as being responsible
for backups, storage space - by defining physical hardware space as data
storage space, and data availability - by providing access to the data via the
network of the system. Data management in general, describes the purpose
of handling data. However, to apply the rules for a physical solution an
embedment - a system - is required.

System

A System is a set of individual pieces, which are put together to attain
a mutual purpose. In other words, a system consists of multiple compo-
nents working together to achieve a task. A system is simplest explained
by looking at the human body. The human body consists of many differ-
ent elements: organs, fluids, bones, muscles, and nerves. Here, the nerves
play a special role, because they form a subsystem within the body itself,
also known as the nervous system. Thus, when examining the individual
pieces, it becomes notable that everything has its own purpose. Yet, when
put together they achieve a greater good, so to say the big system of the
human body. It is important to understand that, while every component
has its unique task, they are unable to exist on their own. For example, the
bones are reliant on the muscles to provide tension, only then providing
the system with stability. The muscles depend on the bloodstream and its
contents to function and provide the system with movement. The blood-
stream acts as a network between the organs, similar to the nervous system,
which controls their actions. Finally, the skin acts as a border for the system,

16

2 Technological Basis

determining what is inside and outside of it. Now, transposing this analogy
to the world of data management, it becomes clear that it also consists of
multiple components, which are working together. Thereby, they form a
system, which achieves the purpose of data management. In this case, the
system also limits the borderline of data management, by determining what
is within the system. To start, a system like this consists of a primary node,
with the purpose of running data management services. Besides holding the
information on what is stored within the system, this node also orchestrates
other nodes, if there are additional nodes present within the system. In ad-
dition to that, a network is required to connect the system’s components to
each other. At this point, the system may be extended by auxiliary services,
e.g., a user management system, to supplement the existing system. Finally,
the system is connected to the outside - also via the network - to users.
On the one hand, the users are responsible to provide data to store within
the system. On the other hand, the users also request data when accessing
the system. Finally, a backup system can be placed outside the system to
provide additional security.

With the in-depth knowledge about the three individual elements of a
distributed data management system it is now possible to explain the
connected concept of such a system. Figure 2.1 illustrates an example
for a distributed data management system. Following the principles of
distributing, the framework consists of multiple nodes all connected to each
other. The special node amongst the others serves the purpose of being the
service node which, besides providing the service for a data management
system, also contains meta information about the data stored within the
system. The nodes forming the data management service are enclosed by
a circle, showcasing the system’s boundaries. Outside the system, there
are multiple users interacting with the data management framework. In
addition to that, there are two extra points connected to the system; one
of which being the external backup service and the other one being the
external user management system. Each of which are connected to the main
node via the network. When communicating with the system, the users
primarily communicate with the main node of the data management system.
The main node, which runs the data management service then handles the
data management in the background.

17

2 Technological Basis

Figure 2.1: Illustration of a distributed data base management system containing nodes,
users, a network and external services.

18

2 Technological Basis

To illustrate this as an example: a user might want to upload a data file to
the system. The user provides the file and additionally his user credentials
to the system. When arriving at the system, the main node firstly forwards
the user credentials to the external user management service, which upon
successful authentication returns approval to the main node. The main node
then requests one of the nodes within the system to store the data and, after
successful completion, stores the data entry within the system. Finally, it
acknowledges the user about successful completion.

2.2 CyVerse Austria

CyVerse is a platform designed for researchers and to help them with their
data management needs. It is of importance for the context of this thesis
because it involves a distributed data management system called iRODS.
With this, it is elaborating the distributed data management system aspect
of this technological basis.

CyVerse was originally born in collaboration with multiple universities in
the United States of America (CyVerse National Science Foundation, 2022).
Its goal is to establish a framework for researchers that provides a better way
for them to handle their data. Additionally, it was a goal to create a system
where researchers could collaborate effectively and not only share their data
sets and results, but also their actual experimental procedures and methods,
by the analysis tools they created. The former is achieved by the use of a
distributed data management system called iRODS which manages all the
data entered to the system in the background. By exploiting the distributing
aspects of a DDMS, it is possible to connect various storage nodes into the
system and also extend the system further. This enables multiple universities
to provide a part of their hardware capabilities to CyVerse. In addition to
that, CyVerse also includes a user management service, enabling verification
via universities’ SSO realms. To enable users to share their tools and appli-
cations, CyVerse uses the Docker (2022) framework and Docker containers.
With the use of Docker containers researchers are able to wrap their research
analyses into independent, often pseudo platform-independent, virtual ma-
chines, that can be reused by other researchers. This helps speeding up the

19

2 Technological Basis

Figure 2.2: Illustration of CyVerse Discovery Environment. [Screenshot taken by author
from the latest build of CyVerse AT on 28.03.2022]

process of development, because by sharing their tools, researchers do not
need to create their own versions of a particular analysis, but instead can use
the already existing application. Additionally, it is possible to chain multiple
tools together to form a sequenced application. This makes it possible to
build large automated systems, which can be started with a single mouse
click. One of CyVerse’s biggest advantages is the joined forces for hardware
capacities, which can be allocated to researchers, depending on their current
workloads (CyVerse Austria, 2022).

Figure 2.2 shows CyVerse’s Discovery Environment, which is used as the
main interface between the user and the data management system. From
this point it is possible to upload data, access data available to the user,
share data with collaborators as well as import data into CyVerse from
various sources. Furthermore, it is possible for researchers to create their
individual tools from the discovery environment. To create tools for CyVerse,
researchers need a valid Docker container, which was previously uploaded

20

2 Technological Basis

to an official Docker Hub1. Then, via CyVerse’s framework, the creator
of a tool is able to set performance restrictions, e.g., hardware required,
which will then be taking into consideration at run time for the tool. As a
next step, researchers can then build an application from their previously
created tools, or already existing tools from other colleagues. An application
acts as a framework surrounding one or multiple tools, sequencing them
together to achieve a tool-chain. This framework contains information such
as input variables, specifications for the execution environment, or output
specifications. Built applications can then be started by users after issuing
the execution requirements. The application will then be run on whichever
hardware is currently available and fits the performance needs issued by
the contained tools. After completion, results from the application can be
examined either directly via CyVerse or downloaded and interpreted by
another tool.

2.3 iRODS

iRODS (2021) is a widely known distributed data management solution. It
defines a system that focuses on covering 4 main tasks: data virtualisation,
data discovery, workflow automation, and secure collaboration. iRODS is
especially important for this thesis, because it forms the second part of the
connection for the the interface between a life science research tool and a
distributed data management system (iRODS Consortium, 2016).

To achieve its 4 main goals, iRODS relies on a system called iRODS Zone.
An iRODS Zone describes a cluster of servers, connected via network, which
run the iRODS server software. Within a iRODS Zone, one node takes the
role of the catalogue provider, which holds the meta information about the
data stored across the cluster. In addition to that, catalogue consumer nodes
exist in a varying number, which can range from one to multiple hundreds
of individual server nodes. With this feature, the iRODS server software
enables a great opportunity for upscaling an iRODS Zone - personalizable to
fulfill specific needs. iRODS Servers in the zone accept requests from iRODS

1The world’s largest library framework for docker containers that provides possibilities
to create, manage, deliver and share docker applications. (Docker Inc., 2022)

21

2 Technological Basis

clients, which are embodied by users who issue tasks to the system. Tasks
like these could for example consist of a data upload request, or a user data
pull request. iRODS is usually coupled with an external user management
system. However, it possesses the capability of an internal user management
registry as well. iRODS’ internal user management involves the option of
user administration services to create and modify user access rights.

iRODS data management stores files as data objects, which are organized
in so called collections. The collections in this context work similar to
directories known from common file systems. This way, the iRODS server
service attains data virtualisation, which is achieved by two requirements:
the collections are uncoupled from a physical storage path (data objects
within a collection may be stored on multiple different physical locations)
and data objects refer to one to many replicas (with replicas being exact
copies of a file, stored in different locations). In essence, iRODS achieves
data virtualisation, by implementing a virtual file system above the iRODS
zone, which contains the physical storage devices.

Data discovery in iRODS is provided by the catalogue provider nodes
within each iRODS zone. This metadata catalogue contains information
about the data object, the collections, the users, and zone and storage
resources. Besides traditional metadata information, iRODS additionally
entails rich metadata. This extended metadata contains information such
as author names, keywords, and content types. By the use of meta data,
iRODS is amplifying its data discovery capability.

The third goal, workflow automation is conjunct with each iRODS servers
Rule engine, which works as an event-triggered background service. The
events to trigger the rule engine are called policy enforcement points, or
PEPs. They define the points at which the system is making changes to
access rights of files. For example, a rule could be made that before a data
object is deleted, the meta information of said file is sent to an external
data point, which keeps track of deleted files within the system. With newer
versions of iRODS, many programming languages, e.g., Python or C++, are
supported by using the Rule engine.

The last objective of iRODS is secure collaboration. This goal is of paramount
importance because data management systems are usually used by a large
number or users. With the rising number of users, the risk of a data breach

22

2 Technological Basis

increases accordingly. To ensure secure collaboration with iRODS, the system
uses three additional features: Tickets, Permissions and Federation. Tickets
allow controlled access for public sharing to data objects and collections.
The iRODS Permissions resemble UNIX file system permissions, which
provide additional security. Finally, the Federation feature allows iRODS
systems to communicate across individual iRODS zones.

In addition to that, iRODS also comprises a powerful API, which can be
used to manage iRODS servers by administrators as well as basic data
manipulation performed by users.

2.4 Galaxy

The Galaxy Project (2021) is an open source life science research tool solution
that aims to be an all-in-one solution for researchers. It is especially impor-
tant for this thesis because it represents one of the two key points involved
for the interface between itself and the distributed data management system.
Thus, it will be emphasized and explained in greater detail, to help the
understanding in later chapters of this thesis’ project.

As already mentioned, the Galaxy project embodies an all-in-one solution
for FAIR data analysis. It is actively maintained and constantly expanded
to increase its reach and adapt to the rapidly changing developments in
the field. It is widely known in the research community, not only because
it is open source, but also because of its possibility to self-administrate an
entire instance. There are two different ways of installation: installing Galaxy
directly onto a Linux server or installing it via Docker onto any Docker-
supporting platform. With this in mind, Galaxy offers the possibility to
embed itself into many different settings, thus, making it very flexible. The
Galaxy project itself consists of a core which is primarily written in Python,
a web client (frontend) as well as a data base. Additionally, Galaxy allows
management and administration instances via its built-in user management.
User credentials and permissions are stored within Galaxy’s database where
it can be backed up directly. Galaxy also includes lightweight user data
management options called histories, which are bound to user accounts.
Besides Galaxy’s basic features, local data up- and downloading, its further

23

2 Technological Basis

features come from external software, imported as tools. Those tools can
be installed by system administrators via so called tool sheds. Tool sheds
are external tool stores, similar to app stores, which provide access to prior
developed tools from various sources. This allows researches, in case a
special functionality is not already present, to develop their own procedures,
pack them into the framework of a tool and upload it to a tool shed to
share it with other researchers. This way, Galaxy’s functionality constantly
increases in size and potency by researchers sharing their work. In addition
to that, third party developers, e.g., software engineers, are also working
on tools to create interfaces between Galaxy and other software solutions
in order to make Galaxy accessible to other life science research tools. In
this sense, the interface between Galaxy and the DDMS iRODS was also
developed in order to enable Galaxy to connect to iRODS instances. In short,
the purpose of said tool is to provide a way of secure data transfer between
Galaxy’s built-in histories and iRODS’ secure distributed data management
system. Tasks like this become increasingly important when dealing with
sensitive data, e.g., protected health information, which in some cases also
might be used for research purposes. Despite the data being anonymized,
the risk of it ending up in the wrong hands while sharing the data with
colleagues is still outside of acceptable thresholds. Thus, a solution for
secure data exchange was set as an important goal.

Figure 2.3 shows a screenshot of Galaxy’s user interface. The available tools
are placed on the left side of the interface, while the user’s history (and
tasks) are placed on the right side. The space in the middle is used for the
selected tool and research. A user can select a tool from the list on the left,
input chosen data sets and start the tools research processing. Depending
on the task, this analysis could take between minutes or hours to finish.
The (task) history on the right provides information about the currently
ongoing tasks, additionally notifying the user once a particular task has
been finished. After processing terminates, the results are made available
to the user via the history on the right. From this point out, users are able
to inspect the results directly within the history task, export it to analyze it
further locally or pipeline it to another tool available on the instance.

A potential workflow could look like this: a user uploads data and selects a
tool to manipulate the data in a specific way, e.g., by removing noise. The
manipulated data then gets “pipelined” to another tool resulting in the

24

2 Technological Basis

Figure 2.3: Illustration of the Galaxy user interface, showcasing tools, tool interfaces
and user history. [Screenshot taken by author from Galaxy version 21.01 on
28.03.2022]

25

2 Technological Basis

desired analysis of the initial data. The user then might want to export the
results to visually inspect the data by a third party program.

2.5 Summary of Chapter 2

This chapter explains the technological basis required to understand the
purpose of the interface on which this work is based upon. Generally, the
explanation is split into four parts, reflecting the two worlds that meet
through this project.

First, distributed data management, its purpose and goal, is described in
detail. Then, the three technological solutions available at Medical University
of Graz are introduced and described in detail.

This chapter explains what the project is trying to achieve, as well as
presenting the two systems, which the interface module connects.

26

3 The Interface Tools -
Connecting Galaxy and iRODS

“I pass with relief from the
tossing sea of Cause and Theory
to the firm ground of Result and
Fact.”

Winston Churchill

This chapter will elucidate the interface tool, which was created throughout
the course of this project. This interface is a tool developed for the life
science research tool Galaxy that aims to connect it to the distributed data
management system iRODS. This interface was developed during the course
of 2021, finally resulting in the publication of the finished tool in Galaxy’s
official tool shed1.

The final outcome of this thesis’ projects, the interface module and tools,
are currently published and accessible via the dedicated tool shed entry as
well as a separate public GitHub repository. The official tool shed entry can
be found here: Interface Tool Shed Entry (2021). The GitHub repository is
available here: Interface GitHub Repository (2021).

Figure 3.1 shows the current version of the tool shed entry to which the
interface module was published.

1Galaxy’s tool shed works similar to an app store, providing an option to install
additional research tools to Galaxy instances. (Galaxy Community, 2022)

27

3 The Interface Tools - Connecting Galaxy and iRODS

Figure 3.1: Illustration of the Galaxy tool shed entry, showcasing the current version of
the interface tools. [Screenshot taken by author from Galaxy Tool Shed on
31.03.2022]

28

3 The Interface Tools - Connecting Galaxy and iRODS

3.1 Resulting Functionality

The interface primarily serves the purpose of allowing users to transfer
data between their Galaxy user history and their iRODS Zone storage space.
Thus, the iRODS zone ends up connected to CyVerse for this interface. This
makes it possible to use the extra features for the data - that are inherited
by CyVerse.

This interface consists of two independent tools: it is designed to export
data from Galaxy to any desired iRODS zone and it is designed to import
data from any iRODS zone into the users Galaxy history. Together, the two
functionalities make up the data transfer feature of the interface. Thus, a file
created within Galaxy can be exported to iRODS, manipulated via CyVerse,
and finally imported back into the Galaxy history.

For example: Researcher “R” is working on an analysis within the Galaxy
instance. R has to first upload data to their Galaxy history. After importing
the data, R runs an analysis tool on the data set. After termination, R
wants to share the results with a collaborator. To achieve this, R decides
to use the iRODS interface tools. R exports the results from their history
to CyVerse’s iRODS zone. Then R logs into the CyVerse service to access
the data through the discovery environment. R is able to share the data to
a collaborator through CyVerse. After some time R receives a notification
that the collaborator made some changes to the shared result files. R can
then import the data back into his Galaxy history to run some additional
analysis tools on the modified data file.

Figure 3.2 illustrates the environment surrounding the interface tools. In the
middle of the image, the interface tools are presented. On the left, Galaxy
is illustrated, comprising the interface tools. On the right side, iRODS and
CyVerse are visible. In addition to that, researchers, data, and potential
workflow of them are drawn. This illustration gives an overview about how
the individual elements surrounding the interface are connected to each
other.

Figure 3.3 and 3.4 illustrate screenshots of the interface tools. The interface
and its tools are installed in Galaxy, and are accessed from there. Figure
3.3 shows the download tool, which allows downloading (exporting) files

29

3 The Interface Tools - Connecting Galaxy and iRODS

Figure 3.2: Illustration of the interface module, consisting of two separate tools, and the
environment in which the interface is embedded into.

30

3 The Interface Tools - Connecting Galaxy and iRODS

Figure 3.3: Showcase of the download tool that was created throughout the course of
this thesis’ project. [Screenshot taken by author from Galaxy version 21.01 on
28.03.2022]

31

3 The Interface Tools - Connecting Galaxy and iRODS

Figure 3.4: Showcase of the upload tool that was created throughout the course of this thesis’
project. [Screenshot taken by author from Galaxy version 21.01 on 28.03.2022]

from an iRODS zone to the Galaxy history. For this the target iRODS zone’s
information, the path to the data as well as user credentials for iRODS have
to be entered. Figure 3.4 shows the second interface tool, which is used to
upload (import) data from the Galaxy history to the iRODS zone. First, a
particular history entry, which should be uploaded, has to be selected. Then,
similar to the download tool, this tool also requires the target iRODS zone
information as well as the user’s iRODS credentials.

3.2 Summary of Chapter 3

In this chapter the result of the project is explained. Thus, the interface,
which consists of two independent tools, is presented here. In addition to
giving a short explanation about the interface’s context, this chapter also
showcases the tools which are the direct results of this project. An illustration
is used to demonstrate the interface’s intentional use. Screenshots of both
tools and a description then conclude this chapter.

32

4 Design and Implementation

“Life is soup, I am fork.”

Pakalu Papito

In this chapter we will explain the design decisions taken during our
development process. We will first revisit and elaborate the requirements
previously mentioned in the introduction. We do this to show how our
design decisions help us fulfill the requirements. Afterwards, the interface
implementation and process will be explained in detail. This includes the
additional decisions taken during the course of development.

4.1 Requirements

The requirements are split into two main groups - functional and non-
functional requirements. During the initial planning phase of the project
three functional requirements and five non-functional requirements were
agreed upon by all actors. To reiterate, functional requirements describe
possible actions or features of a software project, e.g., clicking a button.
Whereas non-functional requirements imply passive behaviour of the sys-
tem, e.g., the software is responsive by not exceeding 2 seconds without
feedback. The gathered requirements form the basis for choosing a design
concept for the project. In this case, the requirements directly influenced the
choice of the used design concept.

33

4 Design and Implementation

4.1.1 Functional Requirements

R1 User Authentication - Users are able to authenticate their accounts when
accessing the data management system.

R2 Data Upload - Users are able to upload (import) data from the research
tool into the data management system.

R3 Data Download - Users can download (export) data from the data
management system into the research tool.

R1 defines the most significant feature of the interface tool. Because data
cannot exist solely with a designated user in a data management system, it
is always connected to a particular author of the data. In this case, the data
has to be considered for two systems. To transfer data from one system to
another, user authentication has to be considered. The author of a file in one
system must also be the author of the file on the other system, after transfer.
For this reason, the interface tool enables users to enter user credentials in
the Galaxy tools, that are used to authenticate the user for the target iRODS
zone involved in the data exchange request. Furthermore, already existing
user information has to be known to the target system as well as the source
system. Only then user authentication can be enforced securely for the data
exchange procedure.

R2 and R3 describe the two main functionalities which enable data transfer.
Data uploading allows the user to transfer data from system A (Galaxy)
to system B (iRODS). Data downloading facilitate file transportation from
system B (iRODS) to system A (Galaxy). By providing these functionalities,
we make it possible for the user to transfer data as required. Connecting
two one-way transportation routes and switching origin and destination
form a data exchange cycle. Additionally, it enables users to include several
destination nodes by using the Galaxy history as a juncture. E.g., User pulls
data from destination X (iRODS zone 1) to the Galaxy history and pushes
the files to destination Y (iRODS zone 2).

34

4 Design and Implementation

4.1.2 Non-Functional Requirements

R4 Security - The used data is always securely stored and linked to an
authorized user.

R5 Availability - The interface and the connected data management system
are always accessible.

R6 Scalability - Multiple files can be sent at once and the interface can be
used by N people simultaneously.

R7 Reliability - Data transferred via the interface is always sound and
complete.

R8 Reusability - The interface is portable into other research tools.

R4 - R8 comprise important passive behaviour of the system. R4 Security
is of utmost importance when managing data, because it induces a sense of
safety to the user. To achieve this, the data always has to be in control of the
authorized user solely. Also, when using the interface, only the author of
the data has access to the transferred files. With this in mind, the interface
tools are designed so that data is exchanged directly via the origin and
destination system, with no (insecure) hops in between.

To achieve R5 Availability, the interface tools are designed in a stateless
fashion. The tools are always ready to be used, regardless of their current
state. However, to be able to transfer data from system A to system B, both
systems have to be available to work. So, as long as the origin and target
systems are up, running and available, the tools are utilizable.

The tools are designed to attain R6 Scalability by providing the option to
transfer multiple files at once. In case of importing data, this can be achieved
by grouping history elements together and sending them in one request.
For exporting data, files can be gathered by selecting a collection instead of
a single data object. Galaxy tools are being run as tasks with a unique ID,
which enables the possibility of multiple tool request calls at the same time.
In addition to that, iRODS zone access supports simultaneous access to the
servers, which allows multiple users to transfer data with the same iRODS
zone in parallel.

R7 Reliability is ensured by using iRODS data transportation framework.
This prevents spurious data exchange by saving files only after the transfer

35

4 Design and Implementation

process was completed successfully. For unsuccessful transfers, the users
will be informed accordingly, preventing misconceptions with regards to
the data transfer task. This causes the data exchange to either be sound and
complete, or aborted and non interfering. The tools also check files with
regards to storage space before execution. So, the data transfer will only be
carried out if enough storage space is available on the target system.

R8 Reusability had the biggest influence on the implementation of the
interface tools. They are designed with reusability in mind, making it
possible to shift the entire software service into another host system, with
the only requirement of possible input parameter adaption. Besides that,
the tools can also be run entirely on their own, removing the need to be
embedded into a Galaxy tool.

4.2 Design Decisions

After evaluating the requirements, design concepts for the project were in-
vestigated. This included design principles for software engineering. These
were examined and chosen in coordination with the established require-
ments. According to Thaktur (2022), the designing phase is the stage in
software development in which a blueprint for the system is created. This
blueprint is created by connecting the requirements to the planned goal of a
system. It defines the best fit for the requirements in consideration of the
final product, while keeping software development principles in mind. The
blueprint and design concepts help software engineers to stick to common
principles during the course of development.

For this project four design principles were chosen:

D1 Reusability
D2 Simplicity
D3 Usability
D4 Modularity

The desired ability to be reusable formed the most important design decision.
This principle influenced the structure and architecture of the interface
vehemently as it tasked us to embed the interface into other (research) tools,

36

4 Design and Implementation

the decision was made to detach the input parameters as much as possible
from the interface. Thus, the interface was designed in a way to be usable
in a stand-alone fashion and any source (Galaxy) specific behaviour was
uncoupled from the main interface. This makes it possible to integrate the
interface service into other projects, by simply piping the input parameters
to fit the request needs.

The tool’s jobs are simple: move user possessed data from point A to point
B, or vice versa. Thus, the paradigm of simplistic design was chosen to keep
things as self-explanatory as possible. Even though the project provides
the possibility to be extended with many additional features, e.g., transfer
flags, data integrity checks, etc., the interface and its code focuses solely
and precisely on the task of user authenticated data transfer between two
end-points.

Because the task of transferring data is considered an auxiliary task, for
which users should not be forced to read pages of documentation, well
designed usability is vital for this project. Thus, the UI design for the
interface tools is kept as minimalist and self-explaining as possible as well
as non-obstructive. This means, that the required user input is kept to its
minimum, which involves just three kinds of information: target system
definition, file selection, and user credentials.

Last but not least, the concept of modularity has to be mentioned. In the case
of this interface service, the feature of data transfer was cut into two. One
half of the tool provides the ability to export data from the source system
and the other half enables the user to import data from the target system.
Thus, sticking to the principles of modularity, the tools are subdivided into
two pieces as well as a third shared module that is used to establish the
connection with the target system, authenticate the user, and initialize the
data transfer request.

4.3 Technologies used

• The Galaxy Project

• Planemo

37

4 Design and Implementation

• Galaxy Tool Shed

• CyVerse Austria

• iRODS data management system

• Python 3

– python-irods-client (Version 0.8.2.)

– requests (Version 2.25.1.)

– h5py (Version 3.2.1.)

• Cheetah Template Engine

• GitHub

The interface was primarily developed in Python, with the additional usage
of the Cheetah Template Engine for XML files. Cheetah allows inline Python
code execution at file access. The interface was implemented as two tools
for Galaxy, which are defined via XML files. The tools were created and
published via the help of Planemo, a third party tool which allows tool
creation, validation, and publication of Galaxy projects. Galaxy was used
as the source system, whereas iRODS in context of CyVerse Austria was
used as the target system for file transfer. Besides native Python code,
the Python packages python-irods-client, requests, and h5py were used.
The python-irods-client module provides a framework to establish a
connection with an iRODS zone. The request module is used to send http
requests. Finally, the h5py package enables file manipulation, which is used
to handle files for data transfer. Throughout the course of development
a GitHub repository was used to host the codebase and document the
project’s progress. Finally, the Galaxy Tool Shed was used to publish the
interface and its tools to the public.

38

4 Design and Implementation

4.4 Interface Implementation

After the requirements were finalized, the design concepts was conceived
and agreed upon, the implementation process of the interface started. First, a
test version of Galaxy was set up to develop and test the tools. Additionally,
research was conducted to find documentation on how tools are created
for Galaxy. During that phase, Planemo was found, which prooved helpful
during the development of the tools. Planemo provided a way to create
templates for tools as well as provide an example tool implementation
as reference. The reference tool acted as a starting point for the actual
tool implementation. Thus, the first prototype of the tools were created.
The first task was to ascertain the required parameters necessary for the
execution of a data transfer request. With this information, the tool templates
were adapted to allow users to enter the required information. After that,
the module to authenticate users and perform data transfer requests was
developed. The tools were then written one after the other, starting with the
download version. The rest of the implementation phase was done in an
iterative feedback loop involving the project sponsor.

Figure 4.1 gives an overview of the environment in which the interface was
implemented. Planemo and its containing Galaxy version was primarily
used to develop the tools. To test the tools whenever progress was made,
they were manually transported to a previously set up Galaxy testing
environment, to mimic a real system. Additionally, a GitHub repository
was used to keep track of changes during the development phase. Finally,
after successfully verifying the tools through testing, the tools were then
published to the official Galaxy tool shed. From there, they were installed
and tested on a real Galaxy environment.

4.4.1 Course of Development

The interface was implemented throughout the course of 2021, starting with
the tool creation with Planemo. The two tools and the auxiliary module
were then developed within the test environment of Planemo. After testing
the tools on a private instance of Galaxy, the initial prototype was published
to the tool shed on the 23rd of June, 2021. Subsequently, forward version

39

4 Design and Implementation

Figure 4.1: Showcase of the implementation environment which was used during the
development phase of this thesis’ project, providing visual clues on how the
individual components interact with each other.

40

4 Design and Implementation

updates were conducted in consultation with the project sponsor. This
process involved feedback loops and testing on the real Galaxy system,
including on-site installation and verification. The timeline of published
interface versions was as follows:

• Version 0.0.1 published on 23rd of June 2021
• Version 0.0.2 published on 2nd of July 2021
• Version 0.0.3 published on 19th of July 2021
• Version 0.0.4 published on 4th of August 2021

Version 0.0.1 was the first published prototype of the interface tools. On
version 0.0.2 some bugs were resolved connected to the tool’s data file
paths. Version 0.0.3 resolved an issue with a required registry file as a
dependency. Finally, version 0.0.4 forms the currently up-to-date and fully
working implementations of the interface tools. After the final installation
of the latest interface version, extensive testing was conducted. Luckily no
further bugs arose. At this point the implementation phase as well as the
development of the tools was completed and the evaluation phase of the
project started.

4.5 Summary of Chapter 4

The design and implementation of the project is explained in detail through-
out this chapter, starting off with an in-depth description of requirements
which were already announced in the introduction. The individual require-
ments are explained and put into context, also explaining the reasoning
behind them. With the functional and non-functional requirements closed,
the next section deals with the design decision made for the projects. The
4 design principles, which were valued throughout the implementation
phase are described and justified. Furthermore, the technologies used for
the development of the interface are enlisted in the subsequent. Addition-
ally, a description on how the individual components were used together is
given.

Next, the implementation process of the tools is described. This description
includes a figure to showcase the process. We clear up all actions leading to

41

4 Design and Implementation

the final result. Finally, the development trajectory is particularized, explain-
ing the progress and important milestones achieved during its course.

In conclusion, this chapter’s purpose is to clarify the decisions made for the
project - why they are important and how they are embodied throughout
the implementation phase.

42

5 Evaluation

“We can’t improve when we
can’t measure.”

Bharath Mamidoju

The Implementation phase is usually followed by the Evaluation phase in
software development. Its main goal is to check the results, evaluate user
feedback, and, if necessary, initialize further developments as requested
by clients. In other words, the evaluation phase can be broken down to
addressing two simple questions: Are (all of) the requirements met? and Is
the project fit for its purpose? These questions differentiate in perspective.
The former question is primarily targeted at the customer or potential
users, whereas the latter focuses on the project in connection to the owners.
Transposing the evaluation of software to the evaluation of a physical project
could be figuratively compared to the task of building a bridge. After the
completion of the bridge a similar evaluation process takes place. The
first question, regarding the customer, would be answered in collaboration
with the client: Is the bridge built as wanted? Is it located at the right
place? Does it look the way it was intended? Whereas the later question
would be answered by examining the bridge itself: Is the bridge usable
by whoever it was designed for? How much weight can it hold? Under
which circumstances would it crumble? Switching back to the realm of
software engineering, the feedback-centered question can be answered
straight forwardly in a review process involving the customer. However,
the project-perspective question is more complex to answer. This is caused
by the versatility involved in the outcome of software engineering projects.
Thus, making it seem impossible to find a unified schema to evaluate
software projects. To help evaluating results, so called evaluation criteria

43

5 Evaluation

Figure 5.1: Illustration of the bridge-interface comparison, which describes how an interface
could be compared to a bridge.

can be used and applied on an individual level (Hegner, 2003).

Applying the bridge example to this project, an interface module can be
figuratively seen as a bridge-like object. In this case, the bridge is not
traversed by humans or vehicles, but data. Similarly, the entrance and exit
of the bridge can be compared to the origin and target of an interface.
However, with the addition that the bridge cannot be crossed when one
of the endpoints is missing (which should never be the case for a bridge)
but is analog to one of the systems being unavailable for the interface.
Additionally, the bearing load is comparable to the maximum load of data
transmittable via the interface. However, this is not merely influenced by
the interface module itself, but rather the surrounding infrastructure the
module is embedded in, e.g., network bandwidth or transfer speed (channel
capacity).

Figure 5.1 showcases the analogy of comparing an interface module to a
bridge.

44

5 Evaluation

5.1 Methods of Evaluation

The methods for this project’s evaluation are twofold. The prime evaluation
method is linked to user feedback, whereas the second method is targeted
at the project’s results and performance.

First, there are many different methods of generating and evaluating user
feedback. For software projects targeted at a larger user base, user reviews
are most commonly used. This method consists of ratings, often on a scale
of 1 to 5, which are used to reflect a summarized experience review of the
users. However, methods like this can only be used with a larger number of
users because too little data might lead to spurious evaluations. In addition
to that, questionnaires can be used to attain feedback from willing users. For
this method, questionnaires are sent to either the entire user base, or a part
of it, with expectations of speedy user responses. Yet, evaluating projects
this way requires a relatively large and diverse group of users. As a third
option, direct user interviews are possible. Besides drawing a lot more time
and generating more effort for evaluators, this method can be used for any
size of user base. Because this project’s (initial) target user base is relatively
small, almost targeted at individuals, the third option was the method of
choice.

Second, evaluating the performance and project results is easiest done
by comparing the outcome to alternatives. In case of this project, there is
no trivial way to compare the procedure of this interface to a comparable
system. So, the next best option was taken, by comparing the functionality of
the system to alternative ways to achieve the same task. For this, a particular
user task was chosen, executed with the system and finally compared to
two alternatives. In addition to that, use-case related tests were conducted
to ensure full functionality of the interface.

The following chapters will elaborate on the two methods chosen to evaluate
this project.

45

5 Evaluation

5.2 User Feedback

To avoid ending up with an incorrectly working system, user feedback was
omnipresent throughout the entire phase of implementation for this project.
After arranging the requirements for the interface, the project sponsor and
the developer agreed upon having reoccurring meetings. During the course
of development this decision proved to be beneficial for both parties involved
in the project. The issuing person of the project had the ability to directly
contribute his feedback, thus being sure the interface tools were designed
and developed in a fitting way. Furthermore, the developer of the tools was
able to propose ideas while getting immediate feedback. This way, making
it impossible to drift off into unwanted functionality during development.
Thus, the drawn through feedback loop had a major impact on the successful
and proper completion of the project. This way of including feedback directly
into the development process can best be described as agile development.
Considering daily stand-up meetings between the developer and a senior
developer as well as scheduled reoccurring feedback evaluations with the
project sponsor and the developer. Finally, the concluding task of setting up
the interface module was also done in cooperation of both parties.

After the implementation phase was completed, an evaluation interview
with the project issuer was conducted. This interview verified that every-
thing was working as intended. In addition, indirect user feedback was
forwarded to the developer, including ideas for improvement and concepts
for future work. During this meeting the interface module was confirmed to
be fully working as intended and fulfilling all of the agreed upon require-
ments. A collection of ideas to improve the interface in the future, which
arose from the meeting, is explained in more detail in section 6.3 - Outlook
and Future Work.

5.3 Project Performance & Results

The functionality of the interface tools was verified by testing. For this, not
only use-cases scenarios were applied but also system-behavior tests were

46

5 Evaluation

conducted to ensure coverage of a broad spectrum of data transfers. The use-
cases consisted of all tasks users might perform while using the particular
tools. This involves data management tasks, data sharing, and redirecting
the acquired data sets to other tools to ensure sound data transfer. The
system-behavior tests were primarily focused on the data that was being
transferred, which involved a list of commonly used file formats and a set of
actual test files. Additionally, network issues were simulated to make sure
that the interface still behaves as intended, even in case of environmental
failure. Under any circumstances, the data transfer process should either
complete successfully, or, when experiencing troubles, abort and remove any
kind of artifacts. The above-mentioned properties were tested successfully
on the latest version of the interface module.

To measure performance of the interface, a likely use-case was chosen and
applied for three scenarios, measuring the time for users to complete each
scenario. The data that was used for the use-case execution was a 50MB
file, taken from the sample data set provided for testing. Furthermore, each
scenario forms an alternative way of solving the particular use-case. The
use-case and scenarios are as follows:

UC: Share data stored in a Galaxy history entry with a collaborator via CyVerse’s
discovery environment.

S1 Transfer data from Galaxy via the interface module and share the file
via CyVerse’s discovery environment.

S2 Manually export the data from Galaxy and import it into iRODS via
CyVerse, then share the file via CyVerse’s discovery environment.

S3 Manually export the data from Galaxy and transfer the data to a USB
drive, then physically share the USB drive with a collaborator.

Figures 5.2, 5.3 and 5.4 show the results of the individual Scenarios’ outcome.
To measure the results, the Scenarios were cut to single tasks. The tasks were
then performed by 4 researchers with varying experience using the interface
and the time was taken for each step. Furthermore, the times of all users was
summed up to calculate the average time it took to achieve the tasks. The
average time is visualized in the figures. To provide a better understanding
of the individual tasks which were created out of the scenarios, they are
listed and explained in more detail.

47

5 Evaluation

Figure 5.2: Results of S1. Figure 5.3: Results of S2. Figure 5.4: Results of S3.

Scenario 1 consisted of five tasks, which are listed below:

T1.1 Transfer data, already present in a Galaxy history entry, by using the
Upload Tool from the interface module.

T1.2 Navigate to CyVerse’s Discovery Environment.
T1.3 Log into the system using a test user account (credentials provided).
T1.4 Find the data in the Discovery Environment (path provided by Upload

Tool).
T1.5 Use CyVerse’s data sharing feature to share the data with a collaborator

(collaborator username and email provided).

Scenario 2 consisted of six tasks, which are listed below:

T2.1 Download data, already present in a Galaxy history entry, by manually
exporting it from the Galaxy instance.

T2.2 Navigate to CyVerse’s Discovery Environment.
T2.3 Log into the system using a test user account (credentials provided).
T2.4 Upload the data, previously downloaded from Galaxy, through the

Discovery Environment.
T2.5 Find the data in the Discovery Environment.
T2.6 Use CyVerse’s data sharing feature to share the data with a collaborator

(collaborator username and email provided).

Scenario 3 consisted of four tasks, which are listed below:

T3.1 Download data, already present in a Galaxy history entry, by manually
exporting it from the Galaxy instance.

T3.2 Plug in a USB stick (Hardware provided).
T3.3 Copy the previously downloaded data to the USB stick.

48

5 Evaluation

Figure 5.5: Result chart of the conducted performance testing providing a visual compari-
son of the three executed scenarios.

T3.4 Physically share the USB stick with a collaborator (estimation of 300

seconds).

Figure 5.5 illustrates the results of the performance testing by comparing the
outcome of all three scenarios. Scenario 1, using the interface tool, proved
to be the quickest with 146 seconds. The second Scenario, which involved
manual recreation of the tools job, turned out to be the second fastest with
186 seconds. Finally, the third scenario emerged as the slowest option with
400 seconds required to complete the tasks.

It is important to mention, that for the third scenario an estimation of 5

minutes was taken to physically move the USB stick to another location.
This was necessary, because of the high variance this task could imply.
Considering the best-case scenario, the collaborator might be placed in the
same office space as the user. This would reduce the time to execute the
task down to few seconds. However, the worst-case scenario of this task
might be that the target collaborator is located very far away (e.g., across
the city, another town or even in another country). This would potentially
increase the time to complete the task to hours, or maybe even days, which

49

5 Evaluation

also increases the chances of the task not being fulfilled that way. Finally,
the likely-case of 5 minutes was estimated to achieve this task. For this, it
was assumed that the collaborator is located in the same company building,
but placed in another office room. Thus, the task of walking from office
room ”A” to office room ”B” was estimated with 5 minutes.

Furthermore, it is also noteworthy to highlight the performance of using the
tool individually. When compared to manually handling the data, the tools
execution time (T1.1) is close to the time it takes just to download the data
(T2.1 & T3.1). Thus, disregarding the additional task of sharing the data, it
is eligible to assume that the tool’s usage outperforms manual execution
clearly.

5.4 Summary of Chapter 5

This chapter comprises the evaluation results of the project. Initially, the
separation between user-centered evaluation and project-centered evaluation
is made. Additionally, we explain how both perspectives are important to
evaluate a project successfully. To achieve that, the physical example of
building a bridge is presented. With that idea, the analogy of comparing a
bridge to an interface module is introduced.

After that, the chosen methods of evaluation are explained. In my thesis,
we focused on user feedback with user interviews for the user-centered
evaluation, and on performance and requirement fulfillment for our eval-
uation. The user feedback took place throughout the entire course of the
project through reoccurring meetings. In addition, a completion meeting
was conducted at the end of the project, which resulted in ideas for the
future. The performance was measured by verifying all of the requirements
that were fulfilled. As an extra measure, a use-case experiment was con-
ducted, which compared the usage of the interface to two alternative ways
of accomplishing the job of sharing data with a collaborator. The results
suggest that using the interface module is more efficient than the other
approaches.

50

5 Evaluation

With this chapter, the evaluation process of the project is embedded into the
thesis, emphasising on two evaluation perspectives.

51

6 Lessons Learned

“Experience is a hard teacher
because she gives the test first,
the lesson afterward.”

Vernon Law

When working on a long-term software project not all things work out
exactly as planned. Requirements might change during the course of de-
velopment, issues in management might result in set-backs for the imple-
mentation phase, or technical troubles might lead to postponement of the
completion of the project. This chapter’s goal is to perform a critical re-
flection on the realisation of this project. The course of the project will be
examined in detail, elaborating on what worked out well, but also on the
decisions and actions that did not turn out to be beneficial in the end. Such
general observations can only be conducted in hindsight because, what
might have seemed to be a save bet during the project’s life cycle, might
turn out to be a horrible mistake in hindsight.

Beginning with a list of encountered pitfalls along the way, this chapter
will start of with what mistakes were encountered during execution of the
project. This is followed by critical reflection on the decisions made before
and throughout the implementation of the project. Finally, a target-actual
comparison will conclude this work, emphasizing on the goals achieved in
the end. Finally, before a short summary of mistakes and successes closes
this chapter, an outlook into the future of the interface module is given.

52

6 Lessons Learned

6.1 Pitfalls

A pitfall is defined as an unexpected error or difficulty which is encountered
during the course of a project. It is intended to warn and thus prevent a
repeat of the same mistakes in the future. According to Zilinskas (2019),
pitfalls happen especially often in context of software development projects.
Thus, this section lists the most important pitfalls encountered during this
project.

Test Environment != Real System

One would think that testing on what was assumed to be an identical set
up of a test environment would ensure that everything behaves the same on
the real system. In case of this project, that assumption proved to be wrong.
Although the version numbers of the Galaxy instances matched exactly,
the systems behaved differently. This was primarily due to the network
embedding where the real system was running, but also due to very specific
additional options set for the actual instance.
To avoid issues like this, the testing environment should be placed within
the network of the actual system. Additionally, the test system should not
be set up independently but rather be a derivative of the real system.

This is a 6! - No, this is obviously a 9?!

The ancient controversial subject of perspective also proved to be immanent
in this project. This was mainly caused by the intersection of two worlds,
becoming clearly visible during the course of this project. ”Wait, so a single
galaxy history entry can consist of multiple files?” or ”There is a difference for
transferring different kind of data?” are just two of many realizations which
arose during meetings throughout the implementation of the interface
module. This highlighted once more that, what might be obvious to one
person, might be astonishing knowledge for someone else.
To really make another person understand what you are saying, sometimes
it might be necessary to explain things as simple as possible, even if things
may seem obvious.

53

6 Lessons Learned

Underestimating Framework Restrictions

When designing user interfaces, which are embedded in another piece of
software, some things might not be working as planned. In case of this
project, it was expected that Galaxy comprises a way of allowing to input
data in a hidden way. However, during the course of development it became
clear that Galaxy does not include a feature like this. Thus, a compromise
had to be made to allow users to enter their passwords in plain text, which
is generally considered very bad practice. But, regarding the alternative
options this seemed to be the only way possible in order to still ensure
simplicity of the interface tools.
Problems like these can be avoided by sketching a possible user interface
before starting development. When making prototypes on the target system,
issues like this become obvious immediately.

6.2 Critical Reflection

Although some minor issues arose during the entire course of the project,
the results confirmed the tools to be successful in the end. The steady flow
of communication, in terms of regular meetings during the development
phase, proved to be very influential on the performance of the interface.
Additionally, taking the time to think and discuss the requirements before
the implementation phase started turned out to be very helpful. Without a
doubt, the project was not always smooth sailing. During the course of the
project, the development demanded a lot of effort from everyone involved
(in the project). Some problems took many hours to resolve, other issues
were fixed within minutes. Furthermore, many hours were spent to achieve
consensus with regards to design. Yet, despite the setbacks encountered
during and near the end of the interface’s release, the project concluded
with pleasing results, which ultimately resulted in the both-sided approval
for finalisation of the project.

54

6 Lessons Learned

6.2.1 Comparison between set Goals and Results

This section, which evaluates the final result of the project to the planned
goal, is divided into two parts. First, the prime evaluation factor will be the
previously agreed upon requirements, whereas the second criteria will be
based on the project’s performance.

In regards to requirements, the development process of the interface module
was able to fulfill all of the requirements. Whereby the main focus was laid
upon implementing the functional requirements, non-functional require-
ments were also considered throughout the entire phase of implementation.
In terms of functional requirements, the three requirements: R1 - User
Authentication, R2 - Data Upload and R3 - Data Download were fulfilled
for the final version of the interface tool. Furthermore, the non-functional
requirements R4 - Security, R5 - Availability, R6 - Scalability, R7 - Relia-
bility and R8 - Reusability were enforced throughout the entire course of
implementation as well.

Finally, the performance evaluation indicated, that using the interface mod-
ule resulted in a much more efficient performance by comparing the dif-
ferent ways of conducting the use-case Share data stored in a Galaxy history
entry with a collaborator via CyVerse’s discovery environment.. In comparison to
the two alternative ways, S2 - ”Manually export the data from Galaxy and
import it into CyVerse data management, then share the file via CyVerse’s
discovery environment.” and S3 - ”Manually export the data from Galaxy
and transfer the data to a USB drive, then physically share the USB drive
with a collaborator.”, using the interface module as S1, proved to be much
more efficient.

55

6 Lessons Learned

6.3 Outlook and Future Work

This section covers ideas obtained from retrospect on the project with
regards to possible future work as well as an outlook for the project. The
aforementioned ideas are as follows:

I1 A dedicated user interface to select files when importing data objects
or collections might be useful.

I2 When exporting data from iRODS into the Galaxy history, there should
be an option to create multiple history entries instead of just one
history entry for data collections.

I3 There should be an option to authenticate the user for the target
iRODS zone by using a particular environment file, which can be
stored locally.

I1 emerged from issues with file selection when using the interface tool.
Currently, it is necessary to know the exact path to files stored within the
iRODS zone to initialize file transfer. A dedicated user interface would allow
users to browse through their available data, thus allowing them to select
their files dynamically. When downloading multiple files simultaneously
from iRODS into Galaxy, the set of files is treated as a collection. This means
that multiple files will be combined into a single Galaxy history entry. Users
can manually split this entry into individual files to run further tasks for
just a particular data file. I2 forms a solution to this issue, by allowing users
to set an option to split files into separate Galaxy entries automatically. I3
would enable users to store their user credentials in a particular environment
file, which would replace the need to enter the credentials over and over for
every tool request. This would provide additional comfort, especially when
using the tools very frequently.

Currently, the interface tool is being used at the Medical University of Graz,
it is performing all of the desired tasks, following the security requirements.
The solution is expected to continue being used for the foreseeable future.
This conclusion is drawn, from the feedback received throughout the project
and the current user base at the target University. As of writing, the tool has
been installed twenty-three times so far, suggesting that its usage is not just
limited to the Medical University of Graz. Its open source nature allows for

56

6 Lessons Learned

this. Furthermore, improvements to the interface tools are expected from
the Galaxy community and whatever subsequent frameworks it is extended
to and thus, will survive the life span of this project and thesis. The interface
in its latest version can be accessed, downloaded and further developed
through the Interface Tool Shed Entry (2021).

6.4 Summary of Chapter 6

This final chapter revolves around important events that happened during
the project. This is done by pointing out what worked out great as well as
by mentioning what went wrong and should not be done the same way in
retrospect.

First, a list of pitfalls is presented, which form the most important errors
that happened during the project. Besides underestimating the differences
between a test and a productive environment of a system, there were issues
with opposing perspectives along the way and restrictions caused by the
framework which were noticed too late. Before comparing the planned goals
do the achieved results in a target-actual way, a section regarding critical
reflection gives a short conclusion of the project’s implementation. In the
end, an outlook into the future is proposed and ideas for future tasks and
the interface’s life cycle after the project are presented.

This chapter includes an assessment into the thesis by applying critical
thinking and critical evaluation of the attained results.

57

Appendix

58

Bibliography

Bhisey, Rohit (May 2021). Life Sciences Tools Market: Rise of the research and
development sector has provided significant boost to the market. url: https://
www.biospace.com/article/life-sciences-tools-market-rise-of-

the-research-and-development-sector-has-provided-significant-

boost-to-the-market/ (cit. on p. 5).
chitrasingla2001 (Apr. 2020). Functional vs Non Functional Requirements. url:

https://www.geeksforgeeks.org/functional-vs-non-functional-

requirements/ (cit. on p. 10).
CyVerse Austria (Mar. 2022). CyVerse Austria Homepage. url: https://www.

tugraz.at/sites/cat/home/ (cit. on pp. v, 6, 7, 20).
CyVerse National Science Foundation (Mar. 2022). CyVerse Homepage. url:

https://cyverse.org/ (cit. on p. 19).
Docker (Mar. 2022). Docker Homepage. url: https://www.docker.com/ (cit.

on p. 19).
Docker Inc. (Mar. 2022). Docker Hub. url: https://hub.docker.com (cit. on

p. 21).
FFG (Jan. 2010). Life Sciences. url: https://www.ffg.at/en/content/life-

sciences-overview (cit. on p. 4).
Galaxy Community (Mar. 2022). Galaxy Tool Shed. url: https://toolshed.

g2.bx.psu.edu/ (cit. on p. 27).
GrandViewResearch (June 2021). Life Science Tools Market Size & Share Report.

url: https://www.grandviewresearch.com/industry-analysis/life-
science-tools-market (cit. on p. 5).

Hegner, Marcus (May 2003). Methoden zur Evaluation von Software. url:
https://www.gesis.org/fileadmin/upload/forschung/publikationen/

gesis_reihen/iz_arbeitsberichte/ab_29.pdf (cit. on p. 44).
Interface GitHub Repository (Aug. 2021). Interface GitHub Repository. url:

https://github.com/RHohensinner/Galaxy-iRODS-Interface (cit. on
p. 27).

59

https://www.biospace.com/article/life-sciences-tools-market-rise-of-the-research-and-development-sector-has-provided-significant-boost-to-the-market/
https://www.biospace.com/article/life-sciences-tools-market-rise-of-the-research-and-development-sector-has-provided-significant-boost-to-the-market/
https://www.biospace.com/article/life-sciences-tools-market-rise-of-the-research-and-development-sector-has-provided-significant-boost-to-the-market/
https://www.biospace.com/article/life-sciences-tools-market-rise-of-the-research-and-development-sector-has-provided-significant-boost-to-the-market/
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
https://www.tugraz.at/sites/cat/home/
https://www.tugraz.at/sites/cat/home/
https://cyverse.org/
https://www.docker.com/
https://hub.docker.com
https://www.ffg.at/en/content/life-sciences-overview
https://www.ffg.at/en/content/life-sciences-overview
https://toolshed.g2.bx.psu.edu/
https://toolshed.g2.bx.psu.edu/
https://www.grandviewresearch.com/industry-analysis/life-science-tools-market
https://www.grandviewresearch.com/industry-analysis/life-science-tools-market
https://www.gesis.org/fileadmin/upload/forschung/publikationen/gesis_reihen/iz_arbeitsberichte/ab_29.pdf
https://www.gesis.org/fileadmin/upload/forschung/publikationen/gesis_reihen/iz_arbeitsberichte/ab_29.pdf
https://github.com/RHohensinner/Galaxy-iRODS-Interface

Bibliography

Interface Tool Shed Entry (Aug. 2021). Interface Tool Shed. url: https://
toolshed.g2.bx.psu.edu/repository?repository_id=8cf3752f7534e9b7&

changeset_revision=19c1cecdfdfd (cit. on pp. 27, 57).
iRODS (Dec. 2021). Open Source Data Management Software. url: https:

//irods.org/ (cit. on pp. v, 6, 9, 21).
iRODS Consortium (Jan. 2016). iRODS Technical Overview. url: https://

irods.org/uploads/2016/06/technical- overview- 2016- web.pdf

(cit. on p. 21).
Ison, Jon et al. (2019). “The bio. tools registry of software tools and data

resources for the life sciences.” In: Genome biology 20.1, pp. 1–4 (cit. on
p. 6).

LISA (Jan. 2022). Life Science Austria - Interesting Facts. url: https://www.
lifescienceaustria.at/life- science- in- austria/interesting-

facts (cit. on p. 4).
Magner, L.N. (2002). A History of the Life Sciences, Revised and Expanded. CRC

Press. isbn: 9780203911006. url: https://books.google.at/books?id=
YKJ6gVYbrGwC (cit. on p. 2).

Nextcloud (Mar. 2022). Nextcloud Homepage. url: https://nextcloud.com/
(cit. on p. 7).

ownCloud (Mar. 2022). ownCloud Homepage. url: https://owncloud.com/
de/ (cit. on p. 7).

STANDARD (Mar. 2012). Was alles zu Life-Sciences gehört. url: https://www.
derstandard.at/story/1332323642715/wissen-was-alles-zu-life-

sciences-gehoert (cit. on p. 1).
STATISTICS-AUSTRIA (Nov. 2021). Students, studies. url: https://www.

statistik.at/web_en/statistics/PeopleSociety/education/universities/

students_studies/index.html (cit. on p. 4).
Stedman, Craig (Oct. 2019). What is data mangement and why is it impor-

tant? url: https : / / www . techtarget . com / searchdatamanagement /

definition/data-management (cit. on p. 15).
Thaktur, Dinesh (Mar. 2022). Principles of Software Design & Concepts in

Software Engineering. url: https://ecomputernotes.com/software-
engineering/principles-of-software-design-and-concepts (cit. on
p. 36).

The Galaxy Project (Dec. 2021). Galaxy Community Hub. url: https://
galaxyproject.org/ (cit. on pp. v, 6, 8, 9, 23).

60

https://toolshed.g2.bx.psu.edu/repository?repository_id=8cf3752f7534e9b7&changeset_revision=19c1cecdfdfd
https://toolshed.g2.bx.psu.edu/repository?repository_id=8cf3752f7534e9b7&changeset_revision=19c1cecdfdfd
https://toolshed.g2.bx.psu.edu/repository?repository_id=8cf3752f7534e9b7&changeset_revision=19c1cecdfdfd
https://irods.org/
https://irods.org/
https://irods.org/uploads/2016/06/technical-overview-2016-web.pdf
https://irods.org/uploads/2016/06/technical-overview-2016-web.pdf
https://www.lifescienceaustria.at/life-science-in-austria/interesting-facts
https://www.lifescienceaustria.at/life-science-in-austria/interesting-facts
https://www.lifescienceaustria.at/life-science-in-austria/interesting-facts
https://books.google.at/books?id=YKJ6gVYbrGwC
https://books.google.at/books?id=YKJ6gVYbrGwC
https://nextcloud.com/
https://owncloud.com/de/
https://owncloud.com/de/
https://www.derstandard.at/story/1332323642715/wissen-was-alles-zu-life-sciences-gehoert
https://www.derstandard.at/story/1332323642715/wissen-was-alles-zu-life-sciences-gehoert
https://www.derstandard.at/story/1332323642715/wissen-was-alles-zu-life-sciences-gehoert
https://www.statistik.at/web_en/statistics/PeopleSociety/education/universities/students_studies/index.html
https://www.statistik.at/web_en/statistics/PeopleSociety/education/universities/students_studies/index.html
https://www.statistik.at/web_en/statistics/PeopleSociety/education/universities/students_studies/index.html
https://www.techtarget.com/searchdatamanagement/definition/data-management
https://www.techtarget.com/searchdatamanagement/definition/data-management
https://ecomputernotes.com/software-engineering/principles-of-software-design-and-concepts
https://ecomputernotes.com/software-engineering/principles-of-software-design-and-concepts
https://galaxyproject.org/
https://galaxyproject.org/

Bibliography

The University of Sheffield (Jan. 2022). What is research data management? url:
https://www.sheffield.ac.uk/library/rdm/whatisrdm (cit. on p. 14).

Zilinskas, Shane (Sept. 2019). Common Pitfalls of Software Development and
Tips to Avoid Them. url: https://devops.com/common-pitfalls-of-
software-development-and-tips-to-avoid-them/ (cit. on p. 53).

61

https://www.sheffield.ac.uk/library/rdm/whatisrdm
https://devops.com/common-pitfalls-of-software-development-and-tips-to-avoid-them/
https://devops.com/common-pitfalls-of-software-development-and-tips-to-avoid-them/

	Acknowledgement
	Abstract
	Summary
	Introduction
	A brief historical background of Life Sciences
	Life Sciences in Austria
	Life Science Research tools - Current state of the art
	Challenges for Life Science research
	Problem Formulation
	Motivation
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Structure of Thesis

	Technological Basis
	Distributed Data Management Systems
	Rationale of a Distributed Data Management System

	CyVerse Austria
	iRODS
	Galaxy
	Summary of Chapter 2

	The Interface Tools - Connecting Galaxy and iRODS
	Resulting Functionality
	Summary of Chapter 3

	Design and Implementation
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Design Decisions
	Technologies used
	Interface Implementation
	Course of Development

	Summary of Chapter 4

	Evaluation
	Methods of Evaluation
	User Feedback
	Project Performance & Results
	Summary of Chapter 5

	Lessons Learned
	Pitfalls
	Critical Reflection
	Comparison between set Goals and Results

	Outlook and Future Work
	Summary of Chapter 6

	Bibliography

