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Abstract
This thesis introduces a hybrid kinetic-MHD approach for the linear modelling of the interaction of
resonant magnetic perturbations (RMPs) with tokamak plasmas. The model uses an iterative scheme
where the solution of Ampère’s law in realistic device geometry is combined with the computation of
plasma response currents to a given magnetic perturbation. The latter computation employs the ideal
MHD model in most of the plasma volume, and a collisional kinetic model inside the resonant layers
centered around rational flux surfaces. Within a 1D kinetic model, a straight inhomogeneous plasma
cylinder geometry is assumed, and the finite Larmor radius expansion of plasma response currents and
charge densities up to second order is employed. For the solution of magnetostatic equations, a Fourier-
finite-element method is introduced in order to decouple the solutions of the toroidal harmonics in two
dimensions. The hybrid kinetic-MHDmodel is implemented in the codeMEPHIT and applied to RMPs
in ASDEX Upgrade experiments on edge-localized mode (ELM) suppression. The results of these
simulations are compared to the results of the ideal MHD code GPEC, achieving at least qualitative
agreement when the ideal MHD plasma response currents are used in MEPHIT. Application of the
plasma response current from the kinetic model results in a markedly different picture, which might
help explain the sensitivity to isotope content in ELM suppression experiments in the future.

Kurzfassung
In der vorliegenden Arbeit wird ein hybrider Ansatz aus kinetischer Theorie und MHD für die lineare
Modellierung der Wechselwirkung von resonanten magnetischen Störungen (RMPs) mit Tokamak-
Plasmen vorgestellt. DasModell verwendet ein Iterationsschema, bei demdie Lösung desAmpèreschen
Gesetzes in realistischer Tokamak-Geometrie mit der Berechnung der Plasma-Antwortströme aus einer
gegebenen magnetischen Störung kombiniert wird. Für den letzteren Schritt kommt das ideale MHD-
Modell im größten Teil des Plasmavolumens zur Anwendung, während die Berechnung innerhalb der
resonanten Schichten, die die rationalen Flussflächen umgeben, nach einem kinetischen Modell mit
Kollisionen erfolgt. In diesem eindimensionalen kinetischenModell wird für das Plasma die Geometrie
eines geraden, inhomogenen Zylinders angenommen und die Taylor-Reihe des Larmor-Radius in den
Strömen und Ladungsdichten bis zur zweiten Ordnung entwickelt. Für die Lösung der magnetosta-
tischen Gleichungen wird eine Fourier-Finite-Element-Methode eingeführt, um die Lösungen der
toroidalen Fourier-Moden in zwei Dimensionen zu entkoppeln. Der Code MEPHIT implementiert
dieses hybride Kinetik-MHD-Modell und wird auf Experimente zur Unterdrückung von edge-localized
modes (ELMs) in ASDEX Upgrade angewendet. Diese Ergebnisse werden mit den Ergebnissen des
idealen MHD-Codes GPEC verglichen, wobei zumindest qualitative Übereinstimmung erreicht wird,
wenn die Plasma-Antwortströme gemäß dem idealen MHD-Modell berechnet werden. Werden die
Plasma-Antwortströme gemäß dem kinetischen Modell berechnet, ergibt sich ein deutlich anderes
Bild, das in Zukunft dazu beitragen könnte, die Abhängigkeit vom Isotopengehalt in Experiementen
zur Untedrückung von ELMs zu erklären.
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Chapter 1

Introduction

The class of plasma instabilities known as edge-localized modes (ELMs) is of special concern
in tokamaks operating in the high-confinement mode, such as ASDEX Upgrade and the
future ITER facility. One strategy for ELM mitigation is the application of resonant magnetic
perturbations (RMPs) via external coils, as indicated in figure 1.2. Kinetic modeling accurately
describes the plasma response to these RMPs ab initio, particularly the parallel shielding
currents at resonant surfaces. The straight-cylinder approximation applied here still yields
adequate results in the sense that it is free of the errors introduced with the simplifications
resulting from fluid theory. Away from resonant surfaces, ideal magnetohydrodynamics
(iMHD) is expected to yield sufficiently accurate results, providing a computationally less
expensive option that could complement kinetic modeling.

Figure 1.1: Eight sets of RMP coils (“B coils”) are arranged in upper and lower position of
ASDEX Upgrade. Coil currents are of the order 6.5 kA-turns and are approximately fitted
to sin(2𝜑 + 𝛿) with some phase shift 𝛿, meaning the toroidal mode 𝑛 = 2 is dominant in
the resulting vacuum perturbation field. For reference, the separatrix up to the X-point is
extruded.

The code MEPHIT has been developed to solve the linearized iMHD equations in a way
that is compatible with iterative kinetic modeling approaches. We consider an axisymmetric
iMHD equilibrium in realistic tokamak geometry under the influence of a quasi-static non-
axisymmetric external perturbation from ELM mitigation coils. The plasma responds to
this external magnetic perturbation with a current perturbation, which in turn produces
a magnetic field perturbation. The resulting fixed-point equation can be solved in a self-
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1 Introduction

consistent manner by preconditioned iterations in which Ampère’s equation and the magnetic
differential equations for pressure and current are solved in alternation until convergence
is reached. After expansion in toroidal Fourier harmonics, these equations are solved on a
triangular mesh in the poloidal plane using finite elements.

Results that are part of this thesis have been published in [1, 2, 3, 4], where parts of the present
text, including this introduction, can be found with some modifications. The corresponding
references are marked in the text where appropriate.

1.1 Magnetic Field Structure and Geometric Considerations
Since the idealized tokamak is axisymmetric, it is convenient to work in cylindrical coordinates
(𝑅, 𝜑, 𝑍) and assume the fields are independent of 𝜑. With these assumptions, the ideal MHD
force balance yields the Grad–Shafranov equation,

𝛥∗𝜓 ≔ 𝑅 𝜕
𝜕𝑅 ( 1

𝑅
𝜕𝜓
𝜕𝑅) + 𝜕2𝜓

𝜕𝑍2 = −𝐹d𝐹
d𝜓 − 𝑅2 d𝑝

d𝜓, (1.1)

a nonlinear elliptical second-order PDE for the stream function 𝜓(𝑅, 𝑍) with the given profiles
𝑝(𝜓) and 𝐹(𝜓), which generally cannot be solved analytically. 𝜓 is a normalized poloidal
magnetic flux, 𝛹pol = 2𝜋𝜓, but it can also be interpreted as the covariant toroidal component
of the magnetic vector potential, 𝜓 = 𝐴𝜑. Thus, the poloidal components of the magnetic
field can be recovered from 𝜓:

𝐵̂𝑅 = − 1
𝑅

𝜕𝜓
𝜕𝑍, 𝐵̂𝑅 = 1

𝑅
𝜕𝜓
𝜕𝑅. (1.2)

Since 𝐹 is identical to the covariant toroidal component of the magnetic field, 𝐹 = 𝐵𝜑, the
physical toroidal component of the magnetic field is simply given by

𝐵̂𝜑 = 𝐹
𝑅. (1.3)

Applying Ampère’s law, we find for the poloidal components of the current density

̂𝐽𝑅 = 𝑐
4𝜋𝐹′(𝜓)𝐵̂𝑅, ̂𝐽𝑍 = 𝑐

4𝜋𝐹′(𝜓)𝐵̂𝑍, (1.4)

which is why 𝐹 is also called the poloidal current function. For the toroidal component of the
current density, we find it is proportional to the right-hand side of (1.1),

̂𝐽𝜑 = 𝑐𝑅𝑝′(𝜓) + 𝑐
4𝜋𝑅𝐹𝐹′(𝜓). (1.5)

Thus the solution of the Grad-Shafranov equation yields the equilibriummagnetic field and
current density. This axisymmetric equilibrium is characterized by nested closed magnetic flux
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1.1 Magnetic Field Structure and Geometric Considerations

surfaces (contours of constant 𝜓 in the poloidal cross-section) in the core plasma surrounding
the magnetic axis or O-point, the degenerate innermost magnetic flux surface. The core plasma
is surrounded by the scrape-off layer where flux surfaces are not closed but intersect with the
divertor plates at the bottom of the device. The boundary between core plasma and scrape-off
layer is called the separatrix. It self-intersects at the X-point, a poloidal null or saddle point
where the poloidal magnetic field vanishes. Below the X-point is the private flux region where
flux surfaces also connect to the divertors. The resulting geometry and associated coordinate
systems (see below) are illustrated in figure 1.1.

Figure 1.2: Poloidal cross-section of a tokamak plasma with nested flux surface cross-sections,
one of which is extruded in toroidal direction. Coordinate directions are indicated by arrows
for (𝑅, 𝜑, 𝑍) and (𝜓, 𝜑, 𝜗). The separatrix is not a closed flux surface and extends beyond
the saddle point (X-point). The symmetry flux coordinate 𝜗 is distorted compared to the
geometrical angle 𝜃 and is only defined up to the separatrix. Data is taken from ASDEX
Upgrade shot #33353 at 2325ms.

To describe this magnetic field structure, we additionally introduce pseudo-toroidal coor-
dinates (𝜚, 𝜑, 𝜗). The plane perpendicular to the direction of 𝜑 is spanned by (𝑅, 𝑍) for
cylindrical coordinates, which behave similarly to Cartesian coordinates, and by (𝜚, 𝜗) for
pseudo-toroidal coordinates, which behave similarly to bipolar coordinates. Here, we follow
the convention of D’haeseleer et al. [5], where 𝜚 is a flux surface label which increases strictly
monotonically from the axis outwards. In principle, any strictly monotonic flux surface quan-
tity can be chosen for the actual coordinate, and we choose 𝜓. However, 𝜓 might increase or
decrease depending on the direction of the poloidal magnetic field it describes, and we write
𝜓 = 𝜎𝜓′𝜚, with 𝜎𝜓′ = 𝜓′(𝜚) = ±1 denoting the sign of the radial derivative. This way, we can
maintain (𝜚, 𝜑, 𝜗) as a right-handed system with a positive Jacobian √𝑔, and still accomodate
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1 Introduction

both possible variants with regard to 𝜓 whenever the sign is relevant. For the system to
be right-handed, 𝜑 and 𝜗 are also assumed to point in counter-clockwise direction, but see
section 4.7 for more details.

There are multiple options to define 𝜑 and 𝜗, but we already implied by notation that the
toroidal angle 𝜑 of our pseudo-toroidal coordinates is the same as the azimuthal angle 𝜑 of
cylindrical coordinates. With 𝜚 = 𝜎𝜓′𝜓 also fixed, this still leaves some freedom in defining
𝜗, when allowing for a generalized notion of a poloidal “angle”. There is a unique choice
such that magnetic field lines are straight lines in (𝜑, 𝜗) for fixed 𝜓, resulting in symmetry flux
coordinates or PEST coordinates [6],

(d𝜑
d𝜗 )

𝜓=const.
= |𝑞(𝜓)|, (1.6)

with the safety factor 𝑞. The safety factor describes the number of toroidal windings per
poloidal winding of field lines on a particular flux surface labelled by 𝜓. The Jacobian of these
coordinates is then given by

√𝑔 =
𝜎𝜓′

𝐵𝜗
0

= 𝑞(𝜓)
𝐹(𝜓)𝑅2𝜎𝜓′ . (1.7)

Using (1.3), we can also express the safety factor via

𝑞 =
𝐵𝜑

0
𝐵𝜗

0
. (1.8)

As a consequence of the above, 𝜗, √𝑔, and some related quantities depend on the given
equilibrium magnetic field and can only be obtained numerically in general. This procedure
is described in section 4.1. Furthermore, since 𝜓 and 𝜗 are generally not orthogonal to each
other, it is expedient to use the co-/contravariant formalism, which is covered by D’haeseleer
et al. [5] and briefly explained in section 2.1, albeit with some modifications to the notation.

Even if some quantity 𝑓 is not axisymmetric, it still needs to be periodic in 𝜑 and thus lends
itself to Fourier series expansion in 𝜑,

𝑓 (𝑅, 𝜑, 𝑍) =
∞
∑

𝑛=−∞
𝑓𝑛(𝑅, 𝑍)ei𝑛𝜑. (1.9)

When 𝑓 is real-valued, toroidal Fourier amplitudes 𝑓𝑛 with negative 𝑛 are just the complex
conjugate of the corresponding toroidal Fourier amplitude with positive 𝑛, i.e. 𝑓−𝑛 = 𝑓 ∗

𝑛 . Thus
we only need to consider positive 𝑛, which simplifies the sum to

𝑓 (𝑅, 𝜑, 𝑍) = 𝑓0(𝑅, 𝑍) + 2Re
∞
∑
𝑛=1

𝑓𝑛(𝑅, 𝑍)ei𝑛𝜑. (1.10)
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1.1 Magnetic Field Structure and Geometric Considerations

This also highlights the distinction between axisymmetric and non-axisymmetric Fourier
amplitudes, which is further discussed in section 2.1 along with Fourier series expansion
of vector-valued quantities. If the toroidal Fourier series expansion is used with symmetry
flux coordinates instead of cylindrical coordinates, poloidal Fourier series expansion can be
applied subsequently:

𝑓𝑛(𝜓, 𝜗) =
∞
∑

𝑚=−∞
𝑓𝑚𝑛(𝜓)ei𝑚𝜗. (1.11)

If we take the discrete Fourier transform of some √𝑔 𝑓𝑛, the result is a convolution involving
𝑓𝑚𝑛 because √𝑔 also depends on 𝜗. Due to this poloidal mode coupling, the poloidal Fourier
amplitudes are generally affected by neighbouring poloidal modes in toroidal geometry.

The choice of the coordinate system depends on the context; analytical derivations are often
only feasible in symmetry flux coordinates including the above toroidal-poloidal decomposi-
tion. On the other hand, the coordinate singularity at the magnetic axis can be problematic
for numerical calculations, which is one reason why MEPHIT uses cylindrical coordinates in
the implementation. The coordinate singularity of cylindrical coordinates is less of a problem
because the cylindrical axis is usually outside the computational domain of interest, but see
section 2.1 for a counter-example.

A further coordinate system arises from a simplification of the toroidal geometry where a
circular torus is cut open at a poloidal cross-section and “unbent” into a straight cylinder
with coordinates (𝑟, 𝜃, 𝑧) and periodic boundary conditions in 𝑧 to connect the two ends of
the cylinder. The transformation to cylindrical coordinates is given by

𝑅 = 𝑅0 + 𝑟 cos 𝜃, 𝜑 = 𝑧
𝑅0

, 𝑍 = 𝑟 sin 𝜃. (1.12)

This approximation is also called the large aspect ratio limit 𝐴 → ∞, where the aspect ratio

𝐴 = 𝑅0
𝑎 (1.13)

is the ratio of major radius 𝑅0 and minor radius 𝑎. In this approximation, the flux poloidal
angle 𝜗 reduces to the geometric poloidal angle 𝜃, and the metric determinant reduces to
√𝑔 = 𝑟, where 𝑟 is usually the actual geomtric radius of the concentrically nested flux surfaces.
As a consequence, no poloidal mode coupling occurs, and we can write the Fourier series
expansion as

𝑓 (𝑟, 𝜃, 𝑧) = ∑
𝒌

𝑓𝒌(𝑟)ei𝑚𝜃+i𝑘𝑧𝑧, (1.14)

where the wave vector is given as

𝒌 = 𝑚∇𝜃 + 𝑘𝑧∇𝑧 = 𝑚∇𝜃 + 𝑛
𝑅0

∇𝑧. (1.15)
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Chapter 2

Stationary Linear Perturbation of Linear
Ideal MHD Equilibrium

This section has already been published in summarised form [2, 7].

Regardless of the geometry and the underlying plasma model, we can abstract the setup as
follows. An axisymmetric equilibrium is characterized by its magnetic field 𝑩0, its current
density 𝑱0, and its pressure 𝑝0. A small non-axisymmetric perturbation (of relative order
10−4) is applied to the equilibrium by switching on additional coils outside the plasma
region as pictured in figure 1.2. The resulting coil field in the absence of plasma is variously
called the external or vacuum perturbation field, 𝛿𝑩v. 𝛿𝑩v induces a plasma response current
density 𝛿𝑱, which produces a plasma perturbation field 𝛿𝑩p, in turn changing 𝛿𝑱. To arrive at a
self-consistent solution, the perturbed equilibrium, we use a fixed-point iteration as follows.

𝛿𝑩v is computed for given coil currents with the Biot-Savart law and is fixed within iterations,
assuming no feedback on the external coils from the plasma. 𝛿𝑩p is computed via Ampère’s
law from 𝛿𝑱 in every iteration step, which we denote with an operator 𝑀̂,

∇ × 𝛿𝑩p = ∇ × (∇ × 𝛿𝑨p) = 4𝜋
𝑐 𝛿𝑱 ↔ 𝛿𝑩p = 𝑀̂𝛿𝑱. (2.1)

Note that we do not need to distinguish between plasma and external contributions as we do
for the magnetic field and the associated vector potential since the coil currents are outside
the computational domain, i.e., the plasma region, and so we omit the subscript for plasma
here.

𝛿𝑱 is computed from the full perturbation 𝛿𝑩 = 𝛿𝑩v +𝛿𝑩p in every iteration step using a suitable
plasma model, e.g., ideal MHD, resistive MHD, or a more general description from kinetic
theory [7]. Moreover, different models can be used for different regions. We represent this
again with an operator 𝑃̂,

𝛿𝑱 = 𝑃̂𝛿𝑩 = 𝑃̂ (𝛿𝑩p + 𝛿𝑩v) . (2.2)

We substitute 𝛿𝑱 from (2.2) into (2.1) and use the shorthand 𝐾̂ = 𝑀̂𝑃̂ for a complete iteration
step to arrive at a fixed-point equation for 𝛿𝑩p,

𝛿𝑩p = 𝐾̂ (𝛿𝑩p + 𝛿𝑩v) . (2.3)

7



2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

Adding 𝛿𝑩v on both sides yields a fixed-point equation for the full perturbation,

𝛿𝑩 = 𝐾̂𝛿𝑩 + 𝛿𝑩v. (2.4)

Repeated application of 𝐾̂ corresponds to direct iterations with the initial value given by the
vacuum field,

𝛿𝑩[𝑘+1] = 𝐾̂𝛿𝑩[𝑘] + 𝛿𝑩v, 𝛿𝑩[0] = 𝛿𝑩v. (2.5)

To obtain convergence conditions for linear 𝐾̂, consider the explicit form of (2.4),

𝛿𝑩 = ( ̂𝐼 − 𝐾̂)−1 𝛿𝑩v =
∞
∑
𝑘=0

𝐾̂𝑘𝛿𝑩v, (2.6)

where the equalitywith theNeumann series holds if and only if the series converges. Assuming
non-singular 𝐾̂, we can formally write its eigendecomposition as

𝐾̂ = 𝑉̂𝛬̂𝑉̂−1. (2.7)

The Neumann series reduces to geometric series for the eigenvalues 𝜆𝑘 in the diagonal of 𝛬̂,
which yields the convergence condition |𝜆𝑘| < 1 ∀𝑘. Since this is generally not the case, we
introduce a preconditioning scheme as follows. We rearrange (2.4),

( ̂𝐼 − 𝐾̂) 𝛿𝑩 = 𝛿𝑩v, (2.8)

apply a full-rank linear operator 𝛱̂,

( ̂𝐼 − 𝛱̂) ( ̂𝐼 − 𝐾̂) 𝛿𝑩 = ( ̂𝐼 − 𝛱̂) 𝛿𝑩v, (2.9)

and regroup to arrive at

( ̂𝐼 − ̂𝐾̄) 𝛿𝑩 = 𝛿𝑩̄v, (2.10)

where

̂𝐾̄ = 𝛱̂ + ( ̂𝐼 − 𝛱̂) 𝐾̂, (2.11)
𝛿𝑩̄v = ( ̂𝐼 − 𝛱̂) 𝛿𝑩v. (2.12)

Since (2.10) has the same form as (2.8), we can write preconditioned iterations in analogy to
the direct iterations of (2.5),

𝛿𝑩̄[𝑘+1] = ̂𝐾̄𝛿𝑩̄[𝑘] + 𝛿𝑩̄v, 𝛿𝑩̄[0] = 𝛿𝑩̄v, (2.13)

which converge to the same result, i.e., 𝛿𝑩̄ → 𝛿𝑩 for 𝑘 → ∞. Inserting (2.12) and (2.11) back
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into (2.13),

𝛿𝑩̄[𝑘+1] = 𝛱̂𝛿𝑩̄[𝑘] + ( ̂𝐼 − 𝛱̂) (𝐾̂𝛿𝑩̄[𝑘] + 𝛿𝑩v) , (2.14)

we see that the last parentheses capture the original direct iteration step, allowing us to
rewrite (2.13) via the following two-part iteration step:

𝛿𝑩[𝑘+1] = 𝐾̂𝛿𝑩̄[𝑘] + 𝛿𝑩v, (2.15)
𝛿𝑩̄[𝑘+1] = 𝛿𝑩[𝑘+1] + 𝛱̂ (𝛿𝑩̄[𝑘] − 𝛿𝑩[𝑘+1]) . (2.16)

This preconditioned iteration only requires one additional matrix-vector multiplication per
step, with 𝛱̂ to be determined.

The Arnoldi iteration described in further detail in section 4.6 yields approximations to the
eigenvalues of largest magnitude and the associated eigenvectors, the so-called Ritz values
and vectors. Thus, we consider only the 𝑟 largest eigenvalues 𝜆𝑘 above a given threshold
𝜆sup ≤ 1,

|𝜆𝑘| ≥ 𝜆sup ∀𝑘 ≤ 𝑟. (2.17)

Instead of the full eigendecomposition of 𝐾̂ as in (2.7), we get a reduced eigendecomposition,

𝐾̂𝑉̂𝑟 = 𝑉̂𝑟𝛬̂𝑟, (2.18)

with an 𝑁 × 𝑟 matrix of Ritz vectors and an 𝑟 × 𝑟 matrix of Ritz values. This allows us to
demand

̂𝐾̄𝑉̂𝑟
!= ̂0, (2.19)

so that these eigenvalues do not contribute to the preconditioned iterations in (2.13). Insert-
ing (2.11), we get

(𝛱̂ + ( ̂𝐼 − 𝛱̂) 𝐾̂) 𝑉̂𝑟 = ̂0, (2.20)

to which we apply (2.18), giving

𝛱̂𝑉̂𝑟 + ( ̂𝐼 − 𝛱̂) 𝑉̂𝑟𝛬̂𝑟 = ̂0. (2.21)

Rearrangement yields

𝛱̂𝑉̂𝑟 = 𝑉̂𝑟𝛬̂𝑟 (𝛬̂𝑟 − ̂𝐼)−1 , (2.22)
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

but rectangular 𝑉̂𝑟 cannot be inverted. Instead, we insert a unity term on the right-hand side,

𝛱̂𝑉̂𝑟 = 𝑉̂𝑟𝛬̂𝑟 (𝛬̂𝑟 − ̂𝐼)−1 (𝑉̂†
𝑟 𝑉̂𝑟)

−1
𝑉̂†

𝑟 𝑉̂𝑟, (2.23)

and comparison results in

𝛱̂ = 𝑉̂𝑟𝛬̂𝑟 (𝑉̂†
𝑟 𝑉̂𝑟 (𝛬̂𝑟 − ̂𝐼))

−1
𝑉̂†

𝑟 . (2.24)

Effectively, we have partially diagonalized 𝐾̂ in the Krylov subspace of the largest eigenvalues,
and continue with preconditioned iterations to solve the fixed-point equation in the comple-
mentary subspace. 𝜆sup is then the supremum of the remaining eigenvalues and the geometric
series in 𝜆sup then serves as a convergent major to the Neumann series in (2.6). In MEPHIT,
𝛿𝑩 is represented as an array of size 𝑁 with typical values on the order of 105, while the
number 𝑟 of eigenvalues is usually on the order of 101. By the choice of 𝜆sup, the necessary
number of Arnoldi iteration steps and the succeeding preconditioned iteration steps can in
principle be balanced against each other.

2.1 Magnetic Field Perturbation
This section has already been published as part of [1] and contains the derivation of a method
to solve the magnetostatic equations in certain symmetric domains efficiently by applying the
Fourier transform to the finite element method. Validation and benchmarking examples for
this general approach are attached as section 5.1. In MEPHIT, we use it to solve (2.1) on the
poloidal plane with symmetry in the toroidal direction, thus realizing the operator 𝑀̂. Note
that SI units are used in this section.

The magnetostatic equations for magnetic field intensity 𝑯(𝒓), magnetic flux density 𝑩(𝒓),
and current density 𝑱(𝒓) as functions of position 𝒓 are

curl𝑯 = 𝑱, (2.25)
div𝑩 = 0, (2.26)

where 𝑯 is related to 𝑩 via the constitutive relation

𝑯 = ̂𝜈𝑩 (2.27)

with local reluctivity (inverse permeability) tensor ̂𝜈(𝒓) = 𝜇̂(𝒓)−1. Written in terms of a vector
potential 𝑨(𝒓) with curl𝑨 = 𝑩, such that (2.26) is automatically fulfilled, they are equivalent
to the curl-curl equation,

curl( ̂𝜈 curl𝑨) = 𝑱, (2.28)

as long as the domain is simply connected.

10



2.1 Magnetic Field Perturbation

The goal of this method is to solve (2.28) on a finite three-dimensional domain 𝛺 with a
symmetry direction 𝒆3 = grad 𝑥3 along which the cross-section 𝛺t does not change and where
all sources and boundary conditions are 2𝜋-periodic in 𝑥3. An illustration in appropriately
ordered cylindrical coordinates 𝑥1 = 𝑍, 𝑥2 = 𝑅, 𝑥3 = 𝜑 is found in figure 2.1.

Figure 2.1: Example of an axisymmetric domain with indication of the coordinate axes for
𝑥1, 𝑥2, 𝑥3. Note that the indicated transverse cross-sections do not change their shape along
the symmetry direction 𝑥3.

2.1.1 Vector Calculus in 3D and 2D Curvilinear Coordinates

Let (𝑥1, 𝑥2, 𝑥3) be right-handed curvilinear coordinates that uniquely describe any position 𝒓 =
𝒓(𝑥1, 𝑥2, 𝑥3) given by Cartesian components 𝑟𝑘 in the relevant domain. Co- and contravariant
basis vectors are respectively defined by

𝒆𝑘 = 𝜕𝒓
𝜕𝑥𝑘 , 𝒆𝑘 = grad 𝑥𝑘, (2.29)

and co- and contravariant components of vector fields 𝑽(𝒓) by 𝑉𝑘 = 𝑽 ⋅ 𝒆𝑘 and 𝑉𝑘 = 𝑽 ⋅ 𝒆𝑘,
respectively. Components 𝑔𝑖𝑗 of the metric tensor ̂𝑔 are

𝑔𝑘𝑙 = 𝒆𝑘 ⋅ 𝒆𝑙 = 𝑔𝑘𝑙(𝑥1, 𝑥2, 𝑥3), (2.30)

and the metric determinant 𝑔 = det[𝑔𝑘𝑙] is always positive, as we are considering right-
handed systems. Its square-root √𝑔 is equal to the Jacobian of the transformation to Cartesian
coordinates and thus the weight of the volume element. The usual symmetry condition
𝑔𝑘𝑙 = 𝑔𝑙𝑘 follows from the geometric definition of ̂𝑔 in (2.30).

For the metric-free definition of differential operators and later use in their discretized form
for numerics, it is useful to introduce densities of weight 𝑊 as a generalization of scalars,

11



2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

vectors, and tensors [8]. A density 𝒰 (denoted in calligraphic letters) of weight 𝑊 for a
quantity 𝑈 is defined as

𝒰 = √𝑔𝑊𝑈, (2.31)

where 𝑈 can represent either a scalar, or co-/contravariant components of a vector or tensor
field. If not stated otherwise, we use the term density for the default value 𝑊 = +1. Usual
scalars and vector/tensor components correspond to the case 𝑊 = 0. Terms such as contravari-
ant vector density and contravariant density representation of a vector will be used synonymously
here for easier notation, as the conceptual difference has no practical concequence in the
present context. A translation to notation in differential forms is found in table 2.1.

Table 2.1: Translation between terminology of classical tensor calculus and differential geom-
etry in dimension 𝑁.

Tensor calculus Differential geometry
scalar 0-form / scalar

scalar density 𝑁-form
contravariant vector vector
covariant vector 1-form / covector

contravariant vector density (𝑁 − 1)-form
rank-2 tensor densities Hodge operators

Table 2.2: Natural input and output for differential operators in curvilinear coordinates.
Densities are of weight +1 here.

Operator Notation Argument Result
gradient grad scalar covariant vector

curl curl covariant vector contravariant vector density
divergence div contravariant vector density scalar density
transverse
gradient gradt scalar covariant vector

transverse
scalar curl curlt covariant vector scalar density

transverse
vector curl curlt scalar contravariant vector density

transverse
divergence divt contravariant vector density scalar density

Table 2.2 lists the choice of input and output representation for differential operators such that
the Jacobian √𝑔 is formally removed from their definition. Note that the present notation only
indicates co-/contravariance and densities for components, but not for abstract vectors, so for
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2.1 Magnetic Field Perturbation

example, we can write1 𝑼 = 𝒰𝑘𝒆𝑘 or 𝑽 = 𝑉𝑘𝒆𝑘 and the distinction is given in the definition
of each quantity. In this way, the coordinate-independent definitions of 3D divergence and
gradient are

grad𝑈 = 𝒆𝑘𝜕𝑘𝑈, div𝑼 = 𝜕𝑘𝒰𝑘, (2.32)

where the divergence acts on a contravariant vector density and yields a scalar density, and
the gradient acts on a scalar field and yields a covariant vector field. The 3D curl operator

curl𝑼 = 𝜖𝑖𝑗𝑘𝒆𝑖𝜕𝑗𝑈𝑘 (2.33)

acts on a covariant vector field and yields a contravariant vector density. It contains the
Levi–Civita tensor ̂𝜖 with contravariant density components 𝜖𝑖𝑗𝑘 = 1 for 𝑖𝑗𝑘 being circular
permutations of 123, −1 for circular permutations of 321, and 0 otherwise.

Wewant to treat the symmetry direction 𝑥3 separately, splitting the problem into a longitudinal
part along the symmetry direction, and a transverse part containing the remaining two
dimensions. For the notation of abstract two-dimensional vectors as well as densities we
use lowercase bold letters while components remain uppercase. We define two-dimensional
transverse divergence and gradient operators analogous to the 3D case with

gradt 𝑈 = 𝒆1𝜕1𝑈 + 𝒆2𝜕2𝑈, divt 𝒖 = 𝜕1𝒰1 + 𝜕2𝒰2. (2.34)

For the curl, in contrast to 3D, both a vectorial and a scalar transverse curl operator exist with

curlt 𝑈 = 𝒆1𝜕2𝑈 − 𝒆2𝜕1𝑈, curlt 𝒖 = 𝜕1𝑈2 − 𝜕2𝑈1, (2.35)

yielding vector and scalar densities, respectively. Note that all four of these operations either
take a scalar corresponding to the longitudinal part as input and give a two-dimensional
vector corresponding to the transverse part as output, or vice versa.

Matching input and output of operators in table 2.2 reflect the de Rham complex [9] describing
in which order operators may act between different function spaces. In 3D this is

𝐻1 grad
−−−→ 𝐻curl curl−−→ 𝐻div div−−→ 𝐿2, (2.36)

where application of two operators in a row yields zero, e.g., curl grad𝑈 = 0. This is the case
for any de Rham complex. The 3D de Rham diagram leads from a scalar field in 𝐻1 to a scalar
density field in 𝐿2. Here, 𝐿2 is the space of square-integrable functions, and 𝐻1 is the Sobolev
space of such functions whose weak derivatives of first order are also square-integrable.
𝐻curl and 𝐻div are then limited to vector-valued functions whose curl and divergence are
square-integrable, respectively.

1Here and later we use the notation 𝜕𝑘 = 𝜕/𝜕𝑥𝑘, and the Einstein summation convention to sum over indices
appearing twice, i.e. ∑3

𝑘=1 in (2.32).
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

Since the curl operator mixes vector components, and in order to distinguish between trans-
verse and longitudinal parts, relation (2.36) breaks up into two separate ones in 2D, given
by

𝐻1
gradt−−−→ 𝐻curlt

curlt−−−→ 𝐿2, (2.37)

𝐻1 curlt−−−→ 𝐻divt
divt−−→ 𝐿2. (2.38)

As in the 3D case, both diagrams lead from a scalar field in 𝐻1 to a scalar density field in 𝐿2.
The difference lies in the use of covariant vectors in 𝐻curlt or contravariant vector densities in
𝐻divt . These two cases can be translated into each other by rotation via the 2D Levi–Civita
tensor ̂𝜖t with contravariant density components given by

𝜖𝑘𝑙
t = ⎛⎜

⎝
0 1

−1 0
⎞⎟
⎠

. (2.39)

Relations between 2D differential operators can be written as

curlt 𝑈 = ̂𝜖t gradt 𝑈, (2.40)

curlt 𝒖 = divt( ̂𝜖t𝒖). (2.41)

With ̂𝜖t, the cross product of vectors with covariant components 𝑈𝑘 and 𝑉𝑘 can be cast as

𝑼 × 𝑽 = (𝒖 ̂𝜖t𝒗)𝒆3 + 𝑉3 ̂𝜖t𝒖 − 𝑈3 ̂𝜖t𝒗. (2.42)

2.1.2 Covariant Formulation of Classical Electrodynamics

Using differential operators in the metric-free way stated above, Maxwell’s equations act on
density representations of fields listed in table 2.3. In SI units they are written as

𝜕𝑘𝒟𝑘 = 𝜌, (2.43)

𝜖𝑖𝑗𝑘𝜕𝑗𝐸𝑘 = −𝜕ℬ𝑖

𝜕𝑡 , (2.44)

𝜖𝑖𝑗𝑘𝜕𝑗𝐻𝑘 = 𝒥𝑖 + 𝜕𝒟𝑖

𝜕𝑡 , (2.45)

𝜕𝑘ℬ𝑘 = 0, (2.46)

in any curvilinear coordinate system. To fulfill (2.44) and (2.46) automatically, 𝐸𝑘 and ℬ𝑘 can
be written in terms of a scalar potential 𝛷 and a vector potential 𝐴𝑘 with

𝐸𝑘 = −𝜕𝑘𝛷 − 𝜕𝐴𝑘
𝜕𝑡 , ℬ𝑘 = 𝜖𝑖𝑗𝑘𝜕𝑖𝐴𝑗. (2.47)
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2.1 Magnetic Field Perturbation

Ambiguities in these potentials can be fixed by transformation with a gauge potential 𝜒,

𝛷 → 𝛷 − 𝜕𝜒
𝜕𝑡 , 𝐴𝑘 → 𝐴𝑘 + 𝜕𝑘𝜒. (2.48)

Magnetostatic equations (2.25)–(2.26) are reproduced in the stationary limit of (2.45)–(2.46)
with vanishing time derivatives. The constitutive relations linking excitations 𝒟𝑘, 𝐻𝑘 to local
linear responses 𝐸𝑙, ℬ𝑙 are

𝒟𝑘 = 𝜀𝑘𝑙𝐸𝑙, (2.49)
𝐻𝑘 = 𝜈𝑘𝑙ℬ𝑙, (2.50)

with permittivity ̂𝜀 and reluctivity ̂𝜈 respectively represented by contravariant 𝑊 = +1 density
and covariant 𝑊 = −1 density components,

𝜀𝑘𝑙 = √𝑔𝒆𝑘 ⋅ ̂𝜀𝒆𝑙, (2.51)

𝜈𝑘𝑙 = √𝑔−1𝒆𝑘 ⋅ ̂𝜈𝒆𝑙. (2.52)

While the field equations (2.43)–(2.46) remain independent of coordinates, (2.49)–(2.50)
contain all influence from the metric tensor ̂𝑔 implicitly via the basis vectors and the Jacobian
in (2.51)–(2.52). In particular for a scalar 𝜈, components of ̂𝑔 enter the resulting covariant
density representation of ̂𝜈 in curvilinear coordinates,

𝜈𝑘𝑙 = 1
√𝑔 ∑

𝑖,𝑗
𝜕𝑘𝑟𝑖𝜕𝑙𝑟𝑗𝜈𝛿𝑖𝑗 = 𝑔𝑘𝑙

√𝑔𝜈. (2.53)

This means that covariant reluctivity components generated by a scalar 𝜈 inherit their symme-
try properties from 𝑔𝑘𝑙. If physical components of the permeability tensor are already given
in the desired coordinate frame as a matrix [𝜇(𝑘𝑙)], covariant density components of ̂𝜈 can be
found by taking its inverse [𝜈(𝑘𝑙)] = [𝜇(𝑘𝑙)]−1 and computing

𝜈𝑘𝑙 =
√𝑔𝑘𝑘𝑔𝑙𝑙

√𝑔 𝜈(𝑘𝑙). (2.54)

One can see that if 𝜈𝑘𝑙 are constant in certain curvilinear coordinates, physical components
𝜈(𝑘𝑙) will usually vary locally and vice versa. One should remark that the solution for covariant
components 𝐻𝑘 in curvilinear geometry with constant physical 𝜈(𝑘𝑙) is identical to the one for
Cartesian components of 𝑯 with a spatially varying 𝜈(𝑘𝑙). Thus one could emulate curvilinear
geometry for magnetostatics in flat geometry by a material with locally varying permeability,
and vice versa.
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

Table 2.3: Conventions to represent electromagnetic scalar, vector and tensor fields by densities
of varying weight.

Quantity Symbol Type Weight
metric tensor 𝑔𝑘𝑙 covariant 0
inverse metric 𝑔𝑘𝑙 contravariant 0

Jacobian √𝑔 scalar +1
Levi–Civita tensor 𝜖𝑖𝑗𝑘 contravariant +1
charge density 𝜌 scalar +1
current density 𝒥𝑘 contravariant +1
electric field 𝐸𝑘 covariant 0

magnetic flux density ℬ𝑘 contravariant +1
electric displacement 𝒟𝑘 contravariant +1

magnetic field intensity 𝐻𝑘 covariant 0
scalar potential 𝛷 scalar 0
vector potential 𝐴𝑘 covariant 0
gauge potential 𝜒 scalar 0

magnetic surface charge density 𝜎m scalar +1
surface current density 𝒦𝑘 contravariant +1

permittivity 𝜀𝑘𝑙 contravariant +1
permeabiliy 𝜇𝑘𝑙 contravariant +1
reluctivity 𝜈𝑘𝑙 covariant −1

longitudinal reluctivity 𝜈33 scalar −1
transverse reluctivity 𝜈t, 𝑘𝑙 covariant −1

modified transverse reluctivity ̄𝜈𝑘𝑙
t contravariant +1

transverse Levi–Civita tensor 𝜖𝑘𝑙
t contravariant +1

2.1.3 Reduction of Magnetostatics to 2D by Fourier Expansion

To reduce the 3D problem of (2.28) to a number of 2D equations we write quantities assumed
to be 2𝜋-periodic in 𝑥3 as a Fourier series

𝑓(𝑥1, 𝑥2, 𝑥3) =
∞
∑

𝑛=−∞
𝑓𝑛(𝑥1, 𝑥2) 𝑒i𝑛𝑥3 , (2.55)

where i is the imaginary unit. With this convention, the forward transform reads

𝑓𝑛(𝑥1, 𝑥2) = 1
2𝜋 ∫

2𝜋

0
𝑓(𝑥1, 𝑥2, 𝑥3) 𝑒−i𝑛𝑥3 d𝑥3. (2.56)
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2.1 Magnetic Field Perturbation

These transforms are not applied to whole vector fields, as a reader familiar with the reciprocal
space of crystallography might assume. Instead, dual vector bases are used for the covariant
formalism, and the Fourier transform is applied only on one out of three coordinates here.
Only the component functions are expanded as Fourier series, all with the same 𝑛. To be
compatible with the respective equations, the actual representation is taken as in table 2.3 for
each quantity. For example, for contravariant vector field density components we write

𝑭 = ℱ𝑘(𝑥1, 𝑥2, 𝑥3)𝒆𝑘 = (
∞
∑

𝑛=−∞
ℱ𝑘

𝑛(𝑥1, 𝑥2) 𝑒i𝑛𝑥3) 𝒆𝑘 =
∞
∑

𝑛=−∞
𝑭𝑛 𝑒i𝑛𝑥3 , (2.57)

where an implicit sum is taken over 𝑘.

The Fourier basis exp(i𝑛𝑥3) is orthogonal, so the following equations have to hold for each
harmonic individually, as long as no mode-coupling occurs. Thus we omit 𝑛 as an index in
the notation and use ̄𝑓 ≡ 𝑓𝑛=0 for non-oscillatory and ̃𝑓 ≡ 𝑓𝑛≠0 for oscillatory harmonics. This
allows for compact notation when transforming 3D differential operators to 2D differential
operators:

grad𝑈 → gradt 𝑈 + i𝑛𝑈̃𝒆3, (2.58)

div𝑼 → divt 𝒖 + i𝑛𝒰̃3, (2.59)
curl𝑼 → 𝒆3 curlt 𝒖 + curlt 𝑈3 − i𝑛 ̂𝜖t ̃𝒖. (2.60)

Applying (2.58) to (2.48), we see that ̄𝐴3 is not affected by any gauge, but we can set ̃𝐴3 = 0
by using the gauge potential

̃𝜒 = i
𝑛

̃𝐴3. (2.61)

Independent gauging in this manner is possible for each 𝑛 ≠ 0. Due to the superposition
principle, we can use a fully transverse vector potential with a different gauge for each
individual harmonic and take a Fourier sum in the end. Contravariant magnetic flux density
components follow as

ℬ̃3 = curlt ̃𝒂, 𝒃̃ = −i𝑛 ̂𝜖t ̃𝒂, (2.62)
ℬ̄3 = curlt ̄𝒂, 𝒃̄ = curlt ̄𝐴3. (2.63)

Thus, the original problem splits into three separate cases, classified by components of 𝑨: ̃𝒂
(transverse 𝑛 ≠ 0), ̄𝒂 (transverse 𝑛 = 0), and ̄𝐴3 (longitudinal 𝑛 = 0).

To retain linearity of terms involving 𝑥3 and thus avoid mode-coupling via convolution in
the constitutive relation (2.50), we require covariant 𝑊 = −1 density components 𝜈𝑘𝑙 =
𝜈𝑘𝑙(𝑥1, 𝑥2) of the reluctivity tensor ̂𝜈 to be independent of the symmetry coordinate 𝑥3 to
allow arbitrary harmonics 𝑛 for the fields. In addition, to be able to split transverse and
longitudinal components of fields later, off-diagonal components in 𝑥3 shall vanish. This
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

means that

𝜈𝑘𝑙 =
⎛⎜⎜⎜⎜
⎝

𝜈t, 𝑘𝑙
0
0

0 0 𝜈33

⎞⎟⎟⎟⎟
⎠

, (2.64)

with transverse reluctivity

𝜈t, 𝑘𝑙 = ⎛⎜
⎝

𝜈11 𝜈12
𝜈21 𝜈22

⎞⎟
⎠

(2.65)

as a covariant 𝑊 = −1 density and longitudinal reluctivity 𝜈33 as a scalar 𝑊 = −1 density.
In the case of a scalar permeability, those symmetry restrictions thus apply to the metric
tensor and vice versa, so √𝑔−1𝑔𝑘𝑙 shall be independent of 𝑥3 and 𝑔𝑘3 = 𝑔3𝑘 = 0 for 𝑘 ≠ 3. A
modified1 transverse reluctivity

̂̄𝜈t = − ̂𝜖t ̂𝜈t ̂𝜖t (2.66)

is useful to introduce, with contravariant density components

̄𝜈𝑘𝑙
t = ⎛⎜

⎝
𝜈22 −𝜈21

−𝜈12 𝜈11
⎞⎟
⎠

(2.67)

proportional to the inverse of (2.65). For scalar 𝜈 and 𝑔𝑘𝑙 of the form (2.64) this reduces to

̄𝜈𝑘𝑙
t =

√𝑔 𝑔𝑘𝑙
t

𝑔33
𝜈, (2.68)

where 𝑔𝑘𝑙
t is the transverse part of the (symmetric) inverse metric tensor.2

Under the given restrictions, Ampère’s law in the form of (2.28) splits into transverse and
longitudinal parts. For all 𝑛, the transverse part is given by

curlt (𝜈33 curlt 𝒂) + 𝑛2 ̂̄𝜈t𝒂 = 𝒋. (2.69)

As opposed to the singular ungauged three-dimensional curl-curl equation (2.28), the addi-
tional term resulting from the fixed gaugemakes (2.69) uniquely solvable for 𝑛 ≠ 0, analogous
to the 3D curl-curl equation with a time-harmonic term. Like in the scalar Helmholtz equation
−Δ𝛷 + 𝑛2𝛷 = 𝜚 arising from Fourier expansion of the Poisson equation in electrostatics, a
positive definite ̂̄𝜈t weighted by 𝑛2 leads to decaying solutions, opposed to oscillating solutions
which would typically result from the Fourier expansion of a wave equation in time.

For 𝑛 = 0, the longitudinal part reads

curlt( ̂𝜈t curlt ̄𝐴3) = ̄𝒥3. (2.70)

1The bar does not refer to the Fourier series coefficient with 𝑛 = 0 here, but since we required tensor
components to be independent of 𝑥3, the notation is unambiguous.

2If instead the inverse of the transverse part of 𝑔̂ were used, the result would be identical, e.g. for cylindrical
coordinates ̄𝜈𝑍𝑍

t = ̄𝜈𝑅𝑅
t = 𝜈/𝑅. This inverted dependency on 𝑅 compared to the usual Laplacian Δ in cylindrical

coordinates is characteristic for the Grad–Shafranov operator Δ⋆ (see [5]).
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2.1 Magnetic Field Perturbation

Using the relations between 2D differential operators in (2.40)–(2.41) together with the
modified transverse reluctivity ̂̄𝜈t of (2.66), we can rewrite (2.70) as a Poisson equation

−divt( ̂̄𝜈t gradt
̄𝐴3) = ̄𝒥3. (2.71)

The longitudinal part for 𝑛 ≠ 0,
i𝑛divt( ̂̄𝜈t ̃𝒂) = ̃𝒥3 (2.72)

is automatically fulfilled via the divergence relation for Fourier harmonics

divt 𝒋 + i𝑛𝒥3 = 0, (2.73)

which can be seen from applying divt to (2.69). Thus the longitudinal case has to be solved
only for 𝑛 = 0.

All equations are now given in coordinate space (𝑥1, 𝑥2) on a cross-section perpendicular to
the symmetry direction 𝑥3 of the original domain 𝛺. The coordinate-independent formulation
uses integrals of densities with the volume element d𝑥1 d𝑥2 in the 2D coordinate domain 𝛺t
and line element

dℓ = √(d𝑥1)2 + (d𝑥2)2 (2.74)

on the boundary 𝛤t in coordinate space.

2.1.4 Boundary Conditions

Well-posed boundary value problems for (2.28) in 𝑨 include Dirichlet, Neumann, or Robin
boundary conditions. Since Robin boundary conditions are just weighted sums of Dirichlet
and Neumann boundary conditions, they are not treated specifically here.

For a Dirichlet boundary condition, the magnetic flux density component perpendicular to
the surface is given by

𝑩 ⋅ 𝑵 = ℬ𝑘𝑁𝑘 = 𝜎m, (2.75)

where 𝑵 is the outward unit normal vector on the boundary 𝛤, and 𝜎m is a magnetic surface
charge density (perpendicular component of the induction) with weight 𝑊 = +1. Integration
over the boundary 𝛤 yields the magnetic flux 𝛹 through the boundary 𝛤, which is zero for a
closed boundary.

Inserting (2.62)–(2.63) into (2.75) and separating the case 𝑛 = 0 from 𝑛 ≠ 0 yields

𝜎̃m = 𝑁3 curlt ̃𝒂 − i𝑛𝒏 ̂𝜖t ̃𝒂, (2.76)
𝜎̄m = 𝑁3 curlt ̄𝒂 + 𝒏 ⋅ curlt ̄𝐴3. (2.77)

Due to the symmetry imposed, 𝑁3 = 0 and the Dirichlet boundary condition for the case
𝑛 ≠ 0 can be written as

̃𝒂 ̂𝜖t𝒏 = − i
𝑛𝜎̃m. (2.78)
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

For 𝑛 = 0, no restrictions for ̄𝒂 can be imposed via (2.77), so we are free to set

̄𝒂 ̂𝜖t𝒏 = 0. (2.79)

Rewriting the remaining term of (2.77) results in,

𝜎̄m = − ̂𝜖t𝒏 ⋅ gradt
̄𝐴3, (2.80)

where the right-hand side is the directional derivative along the tangent of the boundary 𝛤t.
Integration along a line element dℓ of 𝛤t yields

̄𝐴3 = − ∫
𝛤t

𝜎̄m dℓ, (2.81)

where the direction of integration is given by the direction of ̂𝜖t𝒏. We require all Dirichlet
boundaries to be connected in order to share the same integration constant in (2.81). This
problem is discussed further in section 5.1.1.

For a Neumann boundary condition, the magnetic field components parallel to the surface
are given by

𝑯 × 𝑵 = 𝑲 ⇔ 𝜖𝑖𝑗𝑘𝐻𝑖𝑁𝑗 = 𝒦𝑘, (2.82)

where 𝑲 is a surface current density. Taking an inner product with 𝑵, we get the condition
𝑲 ⋅ 𝑵 = 0, leaving only two components of 𝑲 to be chosen independently for any given 𝑵.
Neumann boundary conditions are subject to compatibility conditions,

∮
𝛤

𝑲 d𝛤 = − ∫
𝛺

𝑱 d𝛺, (2.83)

on a closed surface 𝛤, and
div𝑲 = 𝑱 ⋅ 𝑵, (2.84)

on every point of the boundary 𝛤. Integration of the latter yields the current 𝐼 flowing through
the boundary 𝛤.

Inserting all pertaining definitions into (2.82) and splitting components gives

𝒌̃ = −𝜈33(curlt ̃𝒂) ̂𝜖t𝒏 + i𝑛𝑁3 ̂̄𝜈t ̃𝒂, (2.85)
𝒌̄ = −𝜈33(curlt ̄𝒂) ̂𝜖t𝒏 − 𝑁3 ̂̄𝜈t gradt

̄𝐴3, (2.86)

𝒦̃3 = −i𝑛𝒏 ̂̄𝜈t ̃𝒂, (2.87)
𝒦̄3 = 𝒏 ̂̄𝜈t gradt

̄𝐴3. (2.88)

Since 𝑁3 = 0, the transverse equations (2.85) and (2.86) reduce to a single equation valid for
all 𝑛,

𝜈33(curlt 𝒂) ̂𝜖t𝒏 = −𝒌. (2.89)
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2.1 Magnetic Field Perturbation

Equation (2.87) is automatically fulfilled by prescribing (2.85), as can be seen by inserting
both equations into 𝒌 ⋅ 𝒏 + 𝒦3𝑁3 = 0, which holds even without 𝑁3 = 0. Finally, (2.88) can
be used for the longitudinal case with 𝑛 = 0 as is.

2.1.5 Variational Formulation in Coordinate Space

To find a variational formulation for numerical computations, (2.71) and (2.69) are multi-
plied by a test function and integrated with weight √𝑔 in coordinate space (𝑥1, 𝑥2). Volume
integration of quantities 𝐹(𝑥1, 𝑥2) over 𝛺 and dividing the result by the range 2𝜋 of 𝑥3 results
in an integral over the 2D coordinate domain 𝛺t of the density representation ℱ = √𝑔𝐹,

1
2𝜋 ∫

𝛺
𝐹(𝑥1, 𝑥2) d𝛺 = 1

2𝜋

2𝜋

∫
0

d𝑥3 ∫
𝛺t

ℱ(𝑥1, 𝑥2) d𝑥1 d𝑥2 = ∫
𝛺t

ℱ(𝑥1, 𝑥2) d𝑥1 d𝑥2. (2.90)

The variational form of the longitudinal equation (2.71) for 𝑛 = 0 with scalar test function
𝑤(𝑥1, 𝑥2) is

∫
𝛺t

(𝜕𝑘𝑤) ̄𝜈𝑘𝑙
t (𝜕𝑙 ̄𝐴3) d𝑥1 d𝑥2 − ∫

𝛤t

𝑤𝒦̄3 dℓ = ∫
𝛺t

𝑤 ̄𝒥3 d𝑥1 d𝑥2. (2.91)

Here 𝒏 = (𝑁1, 𝑁2) is the unit outward normal vector across the boundary line 𝛤t in coordinate
space (𝑥1, 𝑥2) and the implied sums are taken over 𝑘, 𝑙 from 1 to 2. The reduced Neumann
boundary condition is the natural boundary condition for this weak form. For the special
case 𝑤 = 1 the compatibility condition (2.83) in the transverse plane follows as

− ∫
𝛤t

𝒦̄3 dℓ = ∫
𝛺t

̄𝒥3 d𝑥1 d𝑥2, (2.92)

fixing the Neumann term in (2.91) corresponding to the magnetic field parallel to the trans-
verse boundary to the total current through the surface 𝑥3 = const. within the domain.

For the transverse equation (2.69) for 𝑛 = 0 as well as 𝑛 ≠ 0, with vectorial test function 𝒘
with covariant components 𝑊𝑘, we obtain

∫
𝛺t

curlt 𝒘 𝜈33 curlt 𝒂 d𝑥1 d𝑥2 + 𝑛2 ∫
𝛺t

𝑊𝑘 ̄𝜈𝑘𝑙
t 𝐴𝑙 d𝑥1 d𝑥2 − ∫

𝛤t

𝑊𝑘𝒦𝑘 dℓ = ∫
𝛺t

𝑊𝑘𝒥𝑘 d𝑥1 d𝑥2.

(2.93)
The resulting linear system is singular for 𝑛 = 0 and either needs an iterative solver, or an
ad-hoc regularization where 𝑛2 is set to a value small enough in order not to perturb the
solution, but large enough (compared to machine precision) in order to make the resulting
stiffness matrix non-singular.

The longitudinal 𝑛 = 0 Poisson problem (2.91) can be treated via standard (Lagrange)
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

finite elements for the scalar function ̄𝐴3 as well as the test function 𝑤. For the general
transverse variational problem (2.93), the natural discretization for 𝒂 are 2D (Nédélec) edge
elements conforming to 𝐻curlt(𝛺t). Due to its fixed divergence in (2.70), components 𝒥𝑘 of
the transverse current density 𝒋 should be discretized by 2D (Raviart–Thomas) elements
conforming to 𝐻divt(𝛺t).

Since div 𝑱 = 0, it may also be written as 𝑱 = curl𝑻. Here, 𝑻 is an analogue to the vector
potential 𝑨 in (2.61) and similar considerations apply. Fourier decomposition then yields

̃𝒥3 = curlt ̃𝒕, ̃𝒋 = −i𝑛 ̂𝜖t ̃𝒕, (2.94)
̄𝒥3 = curlt ̄𝒕, ̄𝒋 = curlt 𝑇̄3. (2.95)

From (2.94) it also follows that divt ̃𝒋 = −i𝑛 curlt ̃𝒕 and so it is apparent that 𝒕 can be dis-
cretized by 2D Nédélec elements, which can be interpreted as an orthogonal rotation of
Raviart–Thomas Elements. This makes implementation of (2.93) convenient since all appear-
ing vector fields can be represented by the same type of finite element.

2.1.6 Cartesian, Cylindrical and Spherical Coordinates

For the simplest case of scalar reluctivity 𝜈, we shall list the concrete tensor components
according to (2.54) and (2.68) for the conceivably most common sets of coordinates.

In Cartesian coordinates

𝑥1 = 𝑋, 𝑥2 = 𝑌, 𝑥3 = 2𝜋 𝑍
𝑍0

, (2.96)

where 𝑍0 is the period of 𝑍, we have the simple result

𝑔11 = 𝑔22 = 1, 𝑔33 = (2𝜋
𝑍0

)
2

, √𝑔 = 2𝜋
𝑍0

, (2.97)

̄𝜈11
t = ̄𝜈22

t = 𝑍0
2𝜋𝜈, 𝜈33 = 2𝜋

𝑍0
𝜈, (2.98)

where only a constant factor is introduced to keep the notation of the Fourier series exponent
consistent.

For cylindrical coordinates with symmetry in the azimuthal angle 𝜑, we write a right-handed
system (𝑅, 𝜑, 𝑍) as

𝑥1 = 𝑍, 𝑥2 = 𝑅, 𝑥3 = 𝜑, (2.99)

in order to keep our convention of assigning the symmetry direction to the third coordinate.
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2.1 Magnetic Field Perturbation

This results in the following metric and reluctivity components:

𝑔11 = 𝑔22 = 1, 𝑔33 = 𝑅2, √𝑔 = 𝑅, (2.100)

̄𝜈11
t = ̄𝜈22

t = 𝜈
𝑅, 𝜈33 = 𝑅𝜈. (2.101)

Spherical coordinates with azimuthal angle 𝜑 and inclination angle 𝜃, i.e. with the following
conversion to Cartesian coordinates,

𝑋 = 𝑟 sin 𝜃 cos𝜑, 𝑌 = 𝑟 sin 𝜃 sin𝜑, 𝑍 = 𝑟 cos 𝜃, (2.102)

constitute a right-handed system with the ordering

𝑥1 = 𝑟, 𝑥2 = 𝜃, 𝑥3 = 𝜑. (2.103)

This yields the metric components

𝑔11 = 1, 𝑔22 = 𝑟2, 𝑔33 = 𝑟2 sin2 𝜃, (2.104)

Jacobian
√𝑔 = 𝑟2 sin 𝜃, (2.105)

and reluctivity

̄𝜈11
t = 𝜈

sin 𝜃, ̄𝜈22
t = 𝜈

𝑟2 sin 𝜃, 𝜈33 = 𝜈 sin 𝜃. (2.106)

Note that the underlying symmetry is still cylindrical and not spherical since the Fourier
transform is taken along the same azimuthal angle in both cases. The distinguishing feature
concerns the transverse part of the problem: planes of constant 𝜑 are spanned by quasi-polar
coordinates (𝑟, 𝜃) instead of quasi-Cartesian coordinates (𝑅, 𝑍). Taking spherical symmetry
into accountwould reduce the problem to one dimension in 𝑟, thus rendering the finite element
method unnecessary, and require expansion in spherical harmonics instead of Fourier series,
which is outside the scope of this work.

Cylindrical, spherical and related coordinates contain singularities near axis positions and
poles. In the present work this problem is treated in an ad-hoc way. In case the computational
domain contains such a singularity, we impose a homogeneous Neumann condition for
transverse cases with 𝑛 = 0, and a homogeneous Dirichlet condition for all other cases, both
at a small distance from the actual singular boundary. To avoid division by zero at 𝑅 = 0, it
was found to be sufficient to move the boundary of the computational domain (extending up
to 𝑅 = 1) to 𝑅 = 10−31, without any visible impact on the solution. In the future we expect
this problem to be solved in a general manner by imposing uniqueness and regularity in the
limiting case directly at the boundary, or by coupling to an analytical or numerical solution in
an interior domain with different coordinates [10].
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

2.2 Plasma Response Current
In this section, we derive the plasma response current for a purely ideal MHD model and a
hybrid MHD/kinetic model, thus realizing the operator 𝑃̂ in (2.2).

Neglecting time derivatives and flow velocity, the ideal MHD force balance equation for the
axisymmetric equilibrium is given by

𝑐∇𝑝0 = 𝑱0 × 𝑩0. (2.107)

Applying non-axysymmetric perturbations to all terms, we get

𝑐∇ (𝑝0 + 𝛿𝑝) = (𝑱0 + 𝛿𝑱) × (𝑩0 + 𝛿𝑩) . (2.108)

We then linearize by neglecting terms of order 𝑂(𝛿2), and subtract (2.107) to arrive at

𝑐∇𝛿𝑝 = 𝛿𝑱 × 𝑩0 + 𝑱0 × 𝛿𝑩. (2.109)

The scalar product of this linearized force balance equation with 𝑩0 yields the magnetic differ-
ential equation (MDE), a first-order partial differential equation, for the pressure perturbation,

𝑐𝑩0 ⋅ ∇𝛿𝑝 = (𝑩0 × 𝑱0) ⋅ 𝛿𝑩
(2.107)

= −𝑐∇𝑝0 ⋅ 𝛿𝑩 = −𝑐𝑝′
0(𝜓)𝛿𝐵𝜓. (2.110)

Since 𝐵𝜓
0 = 0, the MDE decouples in radial direction and is reduced to two dimensions with

periodic boundary conditions in 𝜑 and 𝜗,

(𝐵𝜗
0𝜕𝜗 + 𝐵𝜑

0 𝜕𝜑) 𝛿𝑝 = −𝑝′
0(𝜓)𝛿𝐵𝜓, (2.111)

which can be solved on each magnetic flux surface cross-section independently. The Fourier
transform in the toroidal angle further reduces this to a first-order ordinary differential
equation with periodic boundary conditions in 𝜗,

(𝐵𝜗
0𝜕𝜗 + i𝑛𝐵𝜑

0 ) 𝑝𝑛 = −𝑝′
0(𝜓)𝐵𝜓

𝑛 . (2.112)

If we use cylindrical coordinates with physical components instead, the result is

(𝑩pol
0 ⋅ ∇pol + i𝑛

𝑅 𝐵tor
0 ) 𝑝𝑛 = −𝑝′

0(𝜓)𝐵𝜓
𝑛 , (2.113)

which we solve with a first-order finite difference scheme as described in section 4.5, although
a solution via a least-squares Galerkin method is feasible as well [11, 12]. In either case,
solving the MDE yields the pressure perturbation, given the equilibrium quantities and the
magnetic field perturbation, which leaves only the current perturbation unknown.

Due to the cross product in (2.109), 𝛿𝑱 is determined up to a component parallel to 𝑩0, the
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Pfirsch-Schlüter current perturbation. To isolate the perpendicular components, the diamagnetic
current perturbation, we take another cross product with a vector parallel to 𝑩0 and simplify:

𝒉
𝐵0

× 𝑐∇𝛿𝑝 = 𝒉
𝐵0

× (𝛿𝑱 × 𝑩0 + 𝑱0 × 𝛿𝑩)

= (𝒉 ⋅ 𝒉)𝛿𝑱 − (𝛿𝑱 ⋅ 𝒉)𝒉 + 𝛿𝑩 ⋅ 𝒉
𝐵0

𝑱0 − 𝑱0 ⋅ 𝒉
𝐵0

𝛿𝑩

= 𝛿𝑱⟂ + 𝛿𝐵∥

𝐵0
𝑱0 −

𝐽∥
0

𝐵0
𝛿𝑩. (2.114)

Considering only the parallel component of the last equation, we get

𝛿𝐵∥

𝐵0
𝐽∥
0 −

𝐽∥
0

𝐵0
𝛿𝐵∥ = 0 (2.115)

which is trivially true. The remaining perpendicular components yield

𝛿𝑱⟂ = 𝑐
𝐵0

𝒉 × ∇𝛿𝑝 +
𝐽∥
0

𝐵0
𝛿𝑩⟂ − 𝛿𝐵∥

𝐵0
𝑱⟂
0 = (2.116)

= 𝑐
𝐵0

𝒉 × ∇𝛿𝑝 +
𝐽∥
0

𝐵0
𝛿𝑩 −

�
�
�

��𝐽∥
0

𝐵0
𝛿𝐵∥𝒉 − 𝛿𝐵∥

𝐵0
𝑱0 +

�
�

�
�𝛿𝐵∥

𝐵0
𝐽∥
0𝒉 = (2.117)

= 1
𝐵2

0
(𝑐𝑩0 × ∇𝛿𝑝 + (𝑱0 ⋅ 𝑩0) 𝛿𝑩 − (𝛿𝑩 ⋅ 𝑩0) 𝑱0) (2.118)

With the perpendicular components fixed, the remaining parallel component can be deter-
mined from the condition of zero divergence:

∇ ⋅ (𝛿𝐽∥𝒉) + ∇ ⋅ 𝛿𝑱⟂ = 0 (2.119)

𝑩0 ⋅ ∇𝛿𝐽∥

𝐵0
= −∇ ⋅ 𝛿𝑱⟂ (2.120)

The latter equation again takes the form of an MDE, for which we compute the divergence of
the perpendicular components on the right-hand side analytically:

∇ ⋅ 𝛿𝑱⟂ = (𝑐𝑩0 × ∇𝛿𝑝 + (𝑱0 ⋅ 𝑩0) 𝛿𝑩 − (𝛿𝑩 ⋅ 𝑩0) 𝑱0) ⋅ ∇ 1
𝐵2

0
+

+ 1
𝐵2

0
∇ ⋅ (𝑐𝑩0 × ∇𝛿𝑝 + (𝑱0 ⋅ 𝑩0) 𝛿𝑩 − (𝛿𝑩 ⋅ 𝑩0) 𝑱0) =

= 𝐵2
0𝛿𝑱⟂ ⋅ −2

𝐵3
0

∇𝐵0 + 1
𝐵2

0
(𝑐∇ ⋅ (𝑩0 × ∇𝛿𝑝) + ∇ ⋅ ((𝑱0 ⋅ 𝑩0) 𝛿𝑩) − ∇ ⋅ ((𝛿𝑩 ⋅ 𝑩0) 𝑱0)) =

= 𝐵2
0𝛿𝑱⟂ ⋅ −1

𝐵4
0

∇ (𝑩0 ⋅ 𝑩0) + 1
𝐵2

0
((((((((((𝑐𝑩0 ⋅ (∇ × ∇𝛿𝑝) − 𝑐∇𝛿𝑝 ⋅ (∇ × 𝑩0) +

+ 𝛿𝑩 ⋅ ∇ (𝑱0 ⋅ 𝑩0) +(((((((((𝑱0 ⋅ 𝑩0) ∇ ⋅ 𝛿𝑩 − 𝑱0 ⋅ ∇ (𝛿𝑩 ⋅ 𝑩0) −(((((((((𝛿𝑩 ⋅ 𝑩0) ∇ ⋅ 𝑱0) =
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= 1
𝐵2

0
(−𝛿𝑱⟂ ⋅ ∇ (𝑩0 ⋅ 𝑩0) − 4𝜋𝑱0 ⋅ ∇𝛿𝑝 + 𝛿𝑩 ⋅ ∇ (𝑱0 ⋅ 𝑩0) − 𝑱0 ⋅ ∇ (𝛿𝑩 ⋅ 𝑩0)) (2.121)

Note that Ampère’s law has been used in addition to vector calculus identities. The partial
derivatives of the remaining simple scalar products are easily evaluated via the product rule.
Fourier mode expansion of (2.120) and (2.121) yields

(𝑩pol
0 ⋅ ∇pol + i𝑛

𝑅 𝐵tor
0 ) 𝐽∥

𝑛
𝐵0

= 1
𝐵2

0
(𝑱⟂

𝑛 ⋅ ∇pol (𝑩0 ⋅ 𝑩0) − 𝑩𝑛 ⋅ ∇pol (𝑱0 ⋅ 𝑩0) +

+ (𝑱pol0 ⋅ ∇pol + i𝑛
𝑅 𝐽tor0 ) (4𝜋𝑝𝑛 + 𝑩𝑛 ⋅ 𝑩0)), (2.122)

which is an MDE and can be solved in the same manner as (2.113). This solution of (2.122)
can be interpolated and combined with (2.118) to give the full 𝑱𝑛:

𝑱𝑛 = 𝐽∥
𝑛𝒉 + 𝑱⟂

𝑛 = 𝐽∥
𝑛

𝐵0
𝑩0 + 1

𝐵2
0

(𝑐𝑩0 × (∇pol 𝑝𝑛 + i𝑛
𝑅 𝑝𝑛 ̂𝒆tor) + (𝑱0 ⋅ 𝑩0) 𝑩𝑛 − (𝑩𝑛 ⋅ 𝑩0) 𝑱0)

(2.123)

To summarize: with known equilibrium quantities, the magnetic field perturbation, and the
pressure perturbation, the diamagnetic current perturbation and the Pfirsch-Schlüter current
perturbation can be solved for.

We have not yet accounted for the 𝛿 distribution in the current density that iMHD predicts at
resonance positions, or for the current density of finite value and extent that occurs in kinetic
models instead. In the first case, the 𝛿 distribution can not be represented by the finite element
bases covered in section 4.3, so we need to approximate it by a current density of finite value
and width as well1. In section 2.2.1, we derive such an approximation in a slab model with
the intent to roughly reproduce the ideal shielding provided by the 𝛿 distribution. Both this
approach and the kinetic model used in chapter 3 yield a parallel current density, similar to
the Pfirsch-Schlüter current, from which we need to reconstruct a helical current density, i.e.,
one for which the radial component vanishes. Thus our ansatz in symmetry flux coordinates
(𝜚, 𝜑, 𝜗) is

𝛿𝑱 = 𝛿𝐽∥

𝐵0
𝑩0 + 𝛿𝐶⟂𝑩0 × ∇𝜓, (2.124)

where 𝛿𝐶⟂ = 𝛿𝐶⟂(𝜚, 𝜑, 𝜗) describes the contribution by the perpendicular part. Since no
products of functions of 𝜑 appear, we can immediately rewrite our ansatz for toroidal Fourier

1Basis functions of XFEM (extended FEM) could include such a discontinuity, but that approach is beyond
the scope of this thesis. Also, for the higher goal of treating the resonant current with a kinetic model, it is not
necessary to accomodate such discontinuities.
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modes:

𝑱𝑛 = 𝐽∥
𝑛

𝐵0
𝑩0 + 𝐶⟂

𝑛 𝑩0 × ∇𝜓. (2.125)

With the other two components fixed, we can determine 𝛿𝐶⟂ from the condition of zero
divergence, for which we need to calculate the contravariant density components:

√𝑔𝐽𝑘
𝑛 = 𝐽∥

𝑛
𝐵0

√𝑔𝐵𝑘
0 + 𝐶⟂

𝑛 𝜀𝑖𝑗𝑘𝐵0𝑖𝜕𝑗𝜓 → (2.126)

√𝑔𝐽𝜚
𝑛 = 𝐽∥

𝑛
𝐵0

√𝑔𝐵𝜚
0 + 𝐶⟂

𝑛 𝜀𝑖𝑗𝜚𝐵0𝑖𝜕𝑗𝜓 = 0, (2.127)

√𝑔𝐽𝜑
𝑛 = 𝐽∥

𝑛
𝐵0

√𝑔𝐵𝜑
0 + 𝐶⟂

𝑛 𝜀𝑖𝑗𝜑𝐵0𝑖𝜕𝑗𝜓 = 𝐽∥
𝑛

𝐵0
𝑞𝜎𝜓′ + 𝐶⟂

𝑛 𝐵0𝜗𝜎𝜓′ , (2.128)

√𝑔𝐽𝜗
𝑛 = 𝐽∥

𝑛
𝐵0

√𝑔𝐵𝜗
0 + 𝐶⟂

𝑛 𝜀𝑖𝑗𝜗𝐵0𝑖𝜕𝑗𝜓 = 𝐽∥
𝑛

𝐵0
𝜎𝜓′ − 𝐶⟂

𝑛 𝐵0𝜑𝜎𝜓′ . (2.129)

Here we used 𝐵𝜚
0 = 0 and 𝜕𝑗𝜓 = 𝛿𝑗𝜚𝜎𝜓′ as well as (1.7) and (1.8). This yields the condition of

zero divergence as

0 = 𝜕𝑘 (√𝑔𝐽𝑘
𝑛) = i𝑛 𝐽∥

𝑛
𝐵0

𝑞𝜎𝜓′ + i𝑛𝐶⟂
𝑛 𝐵0𝜗𝜎𝜓′ + 𝜕

𝜕𝜗
𝐽∥
𝑛

𝐵0
𝜎𝜓′ − 𝜕

𝜕𝜗𝐶⟂
𝑛 𝐵0𝜑𝜎𝜓′ . (2.130)

Cancelling 𝜎𝜓′ and rearranging yields an ODE in 𝜗 for 𝐶⟂
𝑛 with 𝜓 fixed. Since 𝐵0𝜗 depends

on 𝜗, we cannot use a Fourier transform in 𝜗 without a convolution, but we can expand the
parallel current as a Fourier series in 𝜗 instead:

𝜕
𝜕𝜗𝐶⟂

𝑛 − i𝑛𝐵0𝜗
𝐵0𝜑

𝐶⟂
𝑛 = 1

𝐵0𝜑
(i𝑛𝑞 + 𝜕

𝜕𝜗) 𝐽∥
𝑛

𝐵0
(2.131)

= 1
𝐵0𝜑

(i𝑛𝑞 + 𝜕
𝜕𝜗) ∑

𝑚∈𝑚res

⎛⎜
⎝

𝐽∥
𝑛

𝐵0
⎞⎟
⎠𝑚

ei𝑚𝜗 (2.132)

= ∑
𝑚∈𝑚res

i(𝑛𝑞 + 𝑚)
𝐵0𝜑

⎛⎜
⎝

𝐽∥
𝑛

𝐵0
⎞⎟
⎠𝑚

ei𝑚𝜗. (2.133)

Note that only resonant poloidal modes are considered. Since (2.133) is of the same type as the
MDE (2.112), except for the coefficients, we can solve it with the same finite difference scheme
described in section 4.5. 𝐶⟂

𝑛 is then interpolated like in (4.34). Inserting (1.2) and (1.3)
into (2.125) yields a convenient form for projection to finite elements according to (4.29)
and (4.32),

̂𝐽𝑛𝑅 = ⎛⎜
⎝

𝐽∥
𝑛

𝐵0
+ 𝐶⟂

𝑛 𝑅𝐵̂0𝜑
⎞⎟
⎠

𝐵̂0𝑅, (2.134)
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

̂𝐽𝑛𝑍 = ⎛⎜
⎝

𝐽∥
𝑛

𝐵0
+ 𝐶⟂

𝑛 𝑅𝐵̂0𝜑
⎞⎟
⎠

𝐵̂0𝑍, (2.135)

̂𝐽𝑛𝜑 = 𝐽∥
𝑛

𝐵0
𝐵̂0𝜑 + 𝐶⟂

𝑛 𝑅 (𝐵̂2
0𝑅 + 𝐵̂2

0𝑍) . (2.136)

When adding this kind of current density, the Pfirsch-Schlüter current and the pressure
perturbation should be damped near the resonance position. To this end, we modify the
MDEs (2.113) and (2.122) on the left-hand side such that 𝑛 → 𝑛 + i𝜀(𝜓), where the damping
is given as

𝜀(𝜓) = ∑
𝑚∈𝑚res

𝑛𝑞′(𝜓)
𝑞(𝜓) 𝛿𝑚𝑛 exp(−(𝜓 − 𝜓𝑚𝑛)2

𝛿2
𝑚𝑛

) . (2.137)

Here, 𝜓𝑚𝑛 is the resonance position and 𝛿𝑚𝑛 is the width of the resonance layer in terms of 𝜓
which is given by (45) in [13].

2.2.1 Ideal MHD Response Current

We consider a slab model where 𝑥 stands in as the radial coordinate, 𝑦 as the poloidal coordi-
nate, and 𝑧 as the toroidal coordinate. We place the magnetic axis at 𝑥 = −𝐿 and the plasma
edge at 𝑥 = 𝐿. We use Fourier series expansion in 𝑦 and 𝑧 and write

𝑩(𝒓) = (𝐵𝑥(𝑥) ̂𝒆𝑥 + 𝐵𝑦(𝑥) ̂𝒆𝑦 + 𝐵𝑧(𝑥) ̂𝒆𝑧) ei𝑘𝑦𝑦+i𝑘𝑧𝑧. (2.138)

In the vector form we notate

𝒌 = 𝑘𝑦 ̂𝒆𝑦 + 𝑘𝑧 ̂𝒆𝑧. (2.139)

Note that in this section, we omit the index 𝒌 in the Fourier amplitudes to avoid cluttering the
equations. Equilibrium quantities are explicitly introduced, such as the equilibrium magnetic
field. It has flux surfaces 𝑥 = const so that its unit vector is

𝒉(𝑥) = ℎ𝑦(𝑥) ̂𝒆𝑦 + ℎ𝑦(𝑥) ̂𝒆𝑧. (2.140)

We assume that the resonant surface is located at 𝑥 = 𝑥s such that 𝒌 ⋅ 𝒉(𝑥s) = 0.

To reproduce shielding of the radial perturbation field at rational surfaces, we need to derive
an expression for the paralell current density to be used with (2.125). We consider a vacuum
with a shielding current 𝑱 flowing within flux surfaces, i.e., it is helical and 𝐽𝑥 = 0. The
condition of zero divergence thus reduces to 𝒌 ⋅ 𝑱 = 0. If this current were purely parallel,
𝑱 = 𝒉𝐽∥, the condition of zero divergence is 𝒌 ⋅ 𝒉(𝑥)𝐽∥ = 0, which means that 𝐽∥ = 𝐶∥𝛿(𝒌 ⋅ 𝒉)
differs from zero only at the resonant surface. For the finite radial grid, the width of the
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2.2 Plasma Response Current

current must be finite. Therefore we model this shielding current as

𝑱 = 𝒉𝐽s ⟦−Δ𝑥 < 𝑥 < Δ𝑥⟧ ei𝑘𝑦𝑦+i𝑘𝑧𝑧. (2.141)

Here 𝐽s is a constant to be determined, the resonant point 𝑥s is located in the interval −Δ𝑥 <
𝑥 < Δ𝑥, and the Iverson bracket ⟦⋅⟧ yields one if the condition in the argument is true and
zero otherwise. This means that we add (2.141) via (2.125) to (2.123) at the radial grid points
surrounding the resonance position 𝑥s, here modelled by ±Δ𝑥.

Ampère’s law and the condition of zero convergence reduce to

i (𝑘𝑦𝐵𝑧 − 𝑘𝑧𝐵𝑦) = 4𝜋
𝑐 𝐽𝑥 = 0, (2.142)

i𝑘𝑧𝐵𝑥 − 𝜕𝐵𝑧

𝜕𝑥 = 4𝜋
𝑐 𝐽𝑦, (2.143)

𝜕𝐵𝑦

𝜕𝑥 − i𝑘𝑦𝐵𝑥 = 4𝜋
𝑐 𝐽𝑧, (2.144)

𝜕𝐵𝑥

𝜕𝑥 + i𝑘𝑦𝐵𝑦 + i𝑘𝑧𝐵𝑧 = 0, (2.145)

Due to (2.142) and (2.145) one of the equations (2.143) and (2.144) is redundant and, intro-
ducing the new unknown,

𝐹 = i𝐵𝑧

𝑘𝑧
= i𝐵𝑦

𝑘𝑦
, (2.146)

we reduce the set of remaining three equations to two equations,

𝜕𝐹
𝜕𝑥 + 𝐵𝑥 = 4𝜋i

𝑐𝑘𝑦
𝐽𝑧 = −4𝜋i

𝑐𝑘𝑧
𝐽𝑦, (2.147)

𝜕𝐵𝑥

𝜕𝑥 + 𝑘2𝐹 = 0, (2.148)

where 𝑘2 = 𝑘2
𝑦 + 𝑘2

𝑧 . We set the boundary conditions 𝐵𝑥(−𝐿) = 0, which models the magnetic
axis, and 𝐵𝑥(𝐿) = 𝐵v𝐿, which models the vacuum field driven by the external coil current.
With the shielding current (2.141), the equation set (2.147) to (2.148) is solved in three regions.
In the regions −𝐿 < 𝑥 < −Δ𝑥 and Δ𝑥 < 𝑥 < 𝐿 where 𝐽𝑦 = 𝐽𝑧 = 0, the solutions are

𝐵𝑥(𝑥) = (e𝑘(𝑥+𝐿) − e−𝑘(𝑥+𝐿)) 𝐵−, −𝐿 ≤ 𝑥 ≤ −Δ𝑥, (2.149)

𝐵𝑥(𝑥) = (e𝑘(𝑥−𝐿) − e−𝑘(𝑥−𝐿)) 𝐵+ + e𝑘(𝑥−𝐿)𝐵v𝐿, Δ𝑥 ≤ 𝑥 ≤ 𝐿, (2.150)

where 𝐵− is a free constant in the left (inner) region and 𝐵+ is a free constant in the right
(outer) region. In the middle region −Δ𝑥 < 𝑥 < Δ𝑥, where

4𝜋i
𝑐

𝐽𝑧

𝑘𝑦
= −4𝜋i

𝑐
𝐽𝑦

𝑘𝑧
= 4𝜋i

𝑐
ℎ𝑧

𝑘𝑦
𝐽s = 𝐵s0, (2.151)
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2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

the solution is

𝐵𝑥(𝑥) = 𝐵s0 + 𝛽+e𝑘𝑥 − 𝛽−e−𝑘𝑥, −Δ𝑥 ≤ 𝑥 ≤ Δ𝑥. (2.152)

Since 𝐵𝑥 and its derivatives are continuous at the region boundaries, we obtain four linear
equations for the four unknown constants 𝐵−, 𝐵+, 𝛽+ and 𝛽−.

It is more convenient to consider the field 𝐵𝑥
v(𝑥) driven by the coil current and the field 𝐵𝑥

s (𝑥)
driven by the shielding current separately,

𝐵𝑥 = 𝐵𝑥
v(𝑥) + 𝐵𝑥

s (𝑥). (2.153)

The first of these fields does not require splitting into three regions since it is obtained for
𝐵s0 = 0. This solution can immediately be written as

𝐵𝑥
v(𝑥) = 𝐵v𝐿

sinh (𝑘(𝑥 + 𝐿))
sinh(2𝑘𝐿) . (2.154)

For the field driven by the shielding current, we should set 𝐵v𝐿 = 0 in (2.150). Then, 𝐵𝑥
s (𝑥) =

𝐵𝑥
s (−𝑥) is an even function, which is given explicitly for the three regions as

𝐵𝑥
s (𝑥) = 𝐵s0

sinh(𝑘Δ𝑥)
cosh(𝑘𝐿) sinh (𝑘(𝐿 + 𝑥)) , −𝐿 ≤ 𝑥 ≤ −Δ𝑥, (2.155)

𝐵𝑥
s (𝑥) = 𝐵s0 (1 − cosh (𝑘(𝐿 − Δ𝑥))

cosh(𝑘𝐿) cosh(𝑘𝑥)) , −Δ𝑥 ≤ 𝑥 ≤ Δ𝑥, (2.156)

𝐵𝑥
s (𝑥) = 𝐵s0

sinh(𝑘Δ𝑥)
cosh(𝑘𝐿) sinh (𝑘(𝐿 − 𝑥)) , Δ𝑥 ≤ 𝑥 ≤ 𝐿. (2.157)

An example for these two fields is shown in figure 2.2.

Now we link the amplitude of the shielding current 𝐽s to the radial magnetic field at two
points, 𝑥 = −Δ𝑥 and 𝑥 = Δ𝑥. Since 𝐽s can be expressed through 𝐵s0 via (2.151), we link 𝐵s0
directly to the radial magnetic field as follows,

𝐵s0 = 𝛼−𝐵𝑥(−Δ𝑥) + 𝛼+𝐵𝑥(Δ𝑥), (2.158)

where 𝛼− and 𝛼+ are some constants to be determined. Using the explicit expressions (2.155)
to (2.157) and the fact that 𝐵𝑥

s (𝑥) is an even function, we obtain an equation for 𝐵s0,

𝐵s0 = (𝛼− + 𝛼+)𝐵𝑥
s (Δ𝑥) + 𝛼−𝐵𝑥

v(−Δ𝑥) + 𝛼+𝐵𝑥
v(Δ𝑥)

= (𝛼− + 𝛼+)𝐵s0
sinh(𝑘Δ𝑥)
cosh(𝑘𝐿) sinh (𝑘(𝐿 − Δ𝑥)) + 𝛼−𝐵𝑥

v(−Δ𝑥) + 𝛼+𝐵𝑥
v(Δ𝑥), (2.159)
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1
Figure 2.2: Radial magnetic fields 𝐵𝑥

v(𝑥), driven by the coil current, and 𝐵𝑥
s (𝑥), driven by the

shielding current (left) and the sum of the two fields for different combinations of shielding
constants 𝛼± (right). The fields are evaluated according to (2.154) to (2.157) and (2.160) for
the values 𝐿 = 1, Δ𝑥 = 0.1, 𝑘 = 1/𝐿, 𝐵v𝐿 = 1. In the left plot, 𝐵s0 = 5, and in the right plot, the
nonzero values are 𝛼± = 104. The dotted vertical lines indicate the boundaries at ±Δ𝑥.

which is solved as

𝐵s0 = (1 − (𝛼− + 𝛼+)sinh(𝑘Δ𝑥)
cosh(𝑘𝐿) sinh (𝑘(𝐿 − Δ𝑥)))

−1
(𝛼−𝐵𝑥

v(−Δ𝑥) + 𝛼+𝐵𝑥
v(Δ𝑥)) . (2.160)

The radial magnetic field driven by the shielding current at the edges of this current then is

𝐵𝑥
s (±Δ𝑥) = (1 − (𝛼− + 𝛼+)sinh(𝑘Δ𝑥)

cosh(𝑘𝐿) sinh (𝑘(𝐿 − Δ𝑥)))
−1 sinh(𝑘Δ𝑥)

cosh(𝑘𝐿) sinh (𝑘(𝐿 − Δ𝑥)) ×

× (𝛼−𝐵𝑥
v(−Δ𝑥) + 𝛼+𝐵𝑥

v(Δ𝑥)) . (2.161)

We observe that there exists a particular value of the sum (𝛼− +𝛼+) such that the denominator
in (2.160) goes to zero. For this particular value, the iterations diverge – this is the only case
where the preconditioned iterations cannot succeed in principle.

For estimations, it is convenient to simplify the exact expressions above using typical parame-
ters for the modes of interest. These are the modes which can penetrate in the core region
in the vacuum case, such that 𝑘𝐿 ∼ 1 or 𝑘𝐿 ≪ 1, since high poloidal modes with 𝑘𝐿 ≫ 1 are
exponentially small already in the vacuum case. In MEPHIT, the width Δ𝑥 of the shielding
current is limited by the radial grid divisions, which means Δ𝑥 ≪ 𝐿. For the modes of interest,
this means also that 𝑘Δ𝑥 ≪ 1. In this limit, (2.161) can be approximately written as

𝐵𝑥
s (±Δ𝑥) = 𝑘Δ𝑥 tanh(𝑘𝐿)

1 − (𝛼− + 𝛼+)𝑘Δ𝑥 tanh(𝑘𝐿) (𝛼−𝐵𝑥
v(−Δ𝑥) + 𝛼+𝐵𝑥

v(Δ𝑥)) . (2.162)

31



2 Stationary Linear Perturbation of Linear Ideal MHD Equilibrium

2.2.1.1 Large Shielding Constants

Our main interest is in large values of 𝛼−, 𝛼+, or both so that we can ignore the 1 in the
denominator in (2.161). As follows from (2.162), this limit corresponds to

|𝛼− + 𝛼+| 𝑘Δ𝑥 → ∞. (2.163)

In this limit, we get for the field driven by the shielding current

𝐵𝑥
s (±Δ𝑥) → −𝛼−𝐵𝑥

v(−Δ𝑥) + 𝛼+𝐵𝑥
v(Δ𝑥)

𝛼− + 𝛼+
, (2.164)

which means that the total field is shielded,

𝐵𝑥(±Δ𝑥) → 𝐵𝑥
v(±Δ𝑥) − 𝛼−𝐵𝑥

v(−Δ𝑥) + 𝛼+𝐵𝑥
v(Δ𝑥)

𝛼− + 𝛼+
= ±𝛼∓ (𝐵𝑥

v(Δ𝑥) − 𝐵𝑥
v(−Δ𝑥))

𝛼− + 𝛼+
. (2.165)

Introducing a “form factor” 𝑓 (𝑥) as the ratio of total field to the vacuum field 𝐵𝑥
v,

𝑓 (𝑥) = 𝐵𝑥(𝑥)
𝐵𝑥
v(𝑥) = 1 + 𝐵𝑥

s (𝑥)
𝐵𝑥
v(𝑥), (2.166)

we evaluate this form factor at the boundaries of the shielding current with substitution
of (2.164) and (2.165), which gives

𝑓 (±Δ𝑥) → 𝛼∓
𝛼− + 𝛼+

(1 − 𝐵𝑥
v(∓Δ𝑥)

𝐵𝑥
v(±Δ𝑥)) . (2.167)

We see that shielding occurs if Δ𝑥 is small compared to the scale of the vacuum field, 𝑘Δ𝑥 ≪ 1,
which is the cases for the modes of interest. For these modes, using (2.154), we get in the
leading order

𝐵𝑥
v(∓Δ𝑥)

𝐵𝑥
v(±Δ𝑥) = sinh (𝑘(𝐿 ∓ Δ𝑥))

sinh (𝑘(𝐿 ± Δ𝑥)) ≈ 1 ∓ 2𝑘Δ𝑥
tanh(𝑘𝐿), (2.168)

so that

𝑓 (±Δ𝑥) ≈ ±𝛼∓
𝛼− + 𝛼+

2𝑘Δ𝑥
tanh(𝑘𝐿). (2.169)

Shielding improves with the reduction of the poloidal mode number 𝑘 since for 𝑘𝐿 ∼ 1 we
have

𝑓 (±Δ𝑥) ∼ 𝛼∓
𝛼− + 𝛼+

𝑘Δ𝑥, (2.170)
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but then it saturates for very small 𝑘𝐿 ≪ 1,

𝑓 (±Δ𝑥) ≈ ±𝛼∓
𝛼− + 𝛼+

2Δ𝑥
𝐿 . (2.171)

If we use only one boundary, say, 𝑥 = Δ𝑥 for setting the shielding current, this corresponds to
𝛼− = 0. We can see from (2.169) that 𝑓 (Δ𝑥) = 0 and 𝑓 (−Δ𝑥) = 𝑘Δ𝑥/ tanh(𝑘𝐿) with this choice,
i.e., shielding is complete at the chosen boundary and is up to 𝑘Δ𝑥 ≪ 1 at the other one.

An example of strong shielding at the outer and at the inner edge of the shielding current is
shown in figure 2.2. Results in the right plot are computed for large value of 𝛼+ + 𝛼− = 104

and are already close to the asymptotical limit (2.164). Results for smaller values of this
parameter and shielding at the outer edge, 𝛼− = 0, are shown in figure 2.3.
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1
Figure 2.3: Total radial magnetic field for 𝛼− = 0 and different values of 𝛼+. The remaining
parameters are the same as in figure 2.2 and the dotted vertical lines indicate the boundaries
at ±Δ𝑥. The case 𝛼− = 𝛼+ = 0 again corresponds to the vacuum field.

They are quite demonstrative. It can be seen that 𝛼+ = 1 is too small to cause any shielding,
𝛼+ = 100 is already close to the asymptotical case and 𝛼+ = 1000 is almost indistinguishable
from that case. At the same time, we see even an amplification for 𝛼+ = 10 which corresponds
to the intermediate case with |𝛼− +𝛼+|𝑘Δ𝑥 = 1, according to the parameters given for figure 2.2
in contrast to to (2.163).

Thus, we conclude that using this method without compensation at the boundaries of the
shielding current, meaning |𝛼− +𝛼+| ∼ max |𝛼±|, an effect resulting, finally, in shielding occurs
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if

max |𝛼±| > 1
|𝑘Δ𝑥| ≫ 1. (2.172)

2.2.1.2 Method with Compensation

It can be seen from (2.169) that instead of shielding there is an infinite amplification if we
take 𝛼− = −𝛼+. On the other hand, this case does not fit our strong shielding limit (2.164).
Therefore we consider it separately using the exact formula (2.161), which results in

𝐵𝑥
s (±Δ𝑥) = 𝛼+

sinh(𝑘Δ𝑥)
cosh(𝑘𝐿) sinh (𝑘(𝐿 − Δ𝑥)) (𝐵𝑥

v(Δ𝑥) − 𝐵𝑥
v(−Δ𝑥))

≈ 𝛼+𝑘Δ𝑥
tanh(𝑘𝐿) (𝐵𝑥

v(Δ𝑥) − 𝐵𝑥
v(−Δ𝑥)) . (2.173)

For the form factor (2.166), we use the approximation 𝑘Δ𝑥 ≪ 1 as we did for (2.168), and
obtain

𝑓 (±Δ𝑥) ≈ 1 + 2𝛼+ ( 𝑘Δ𝑥
tanh(𝑘𝐿))

2
. (2.174)

We can see that in contrast to the uncompensated case, an indefinite increase of 𝛼+ does not
cause shielding, but instead leads to the indefinite amplification of the field. On the other
hand, the effect of shielding shows up for much larger values of 𝛼+ as compared to (2.172),
such that

|𝛼+| > 1
(𝑘Δ𝑥)2 ≫ 1. (2.175)

This is compatible with our aim to create a scheme where resonant currents, which should be
shielded, are treated with the uncompensated method, and the non-resonant currents, which
should not be shielded, are treated with the compensated method.

2.2.1.3 Discrimination of Modes via Pressure Perturbation

It is obvious from the estimates (2.172) and (2.175) that shielding of the modes in the case
where the amplitude of the shielding current is linked directly to the radial magnetic field
via (2.158) with fixed constants 𝛼± does not distinguish resonant modes from non-resonant
modes and shields (or does not shield) them all in a similar way. Therefore, in order to make
the constants 𝛼± sensitive to the resonance condition, we use the pressure perturbation to
discriminate the modes. Specifically, the “helical” current density 𝐽s is linked to the pressure
perturbation via

𝐽s = 𝐵0 (𝐶−𝑝(−Δ𝑥) + 𝐶+𝑝(Δ𝑥)) , (2.176)
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where the pressure perturbation is given by

𝑝(𝑥) =
i𝑝′

0(𝑥)
𝐵0𝑘∥(𝑥)𝐵𝑥(𝑥), (2.177)

with the equilibrium pressure 𝑝0, the equilibrium magnetic field modulus 𝐵0, and

𝑘∥(𝑥) = 𝒌 ⋅ 𝒉(𝑥) = 𝑘𝑦ℎ𝑦(𝑥) + 𝑘𝑧ℎ𝑧(𝑥). (2.178)

Combining (2.177) with (2.176) and substituting the result into (2.151), we obtain

𝐵s0 = −4𝜋
𝑐

ℎ𝑧

𝑘𝑦
(𝐶−

𝑝′
0(−Δ𝑥)

𝑘∥(−Δ𝑥) 𝐵𝑥(−Δ𝑥) + 𝐶+
𝑝′

0(Δ𝑥)
𝑘∥(Δ𝑥) 𝐵𝑥(Δ𝑥)) . (2.179)

Comparing this to (2.158), we obtain

𝛼± = −4𝜋
𝑐

ℎ𝑧

𝑘𝑦

𝑝′
0(±Δ𝑥)

𝑘∥(±Δ𝑥) 𝐶± = 4𝜋
𝑐

ℎ𝑦

𝑘𝑧

𝑝′
0(±Δ𝑥)

𝑘∥(±Δ𝑥) 𝐶±. (2.180)

It is obvious from the last expression that the only quantity which is mode-dependent is 𝑘∥,
since 𝑘𝑧 corresponds to the toroidal mode number 𝑛 which we consider fixed in the context of
toroidal Fourier series expansion.

2.2.1.4 Method without Compensation

First, let us obtain the criteria for 𝐶± for the uncompensated method by setting one of the
constants, say 𝐶− = 0. Then, according to (2.175), we must fulfill the condition |𝛼+𝑘Δ𝑥| ≫ 1
for the resonant mode and the condition |𝛼+𝑘Δ𝑥| ≪ 1 for the non-resonant modes. The
second condition is most critical for the nearest non-resonant mode which is non-resonant
within the limits of the shielding current but its resonant point is the closest to the shielding
current. For both resonant and nearest non-resonant modes we will use the expansion of
𝑘∥(𝑥) around the resonant point, which we denote with 𝑥s for the resonant mode and with 𝑥 ̄s
for the non-resonant mode, respectively yielding

𝑘∥(𝑥) ≈
𝜕𝑘∥(𝑥s, ̄s)

𝜕𝑥 (𝑥 − 𝑥s, ̄s) = 𝑘′
∥(𝑥 − 𝑥s, ̄s). (2.181)

Thus we obtain a double condition for the coefficient 𝐶+,

|Δ𝑥 − 𝑥s| ≪ ∣∣∣∣
4𝜋ℎ𝑦𝑝′

0
𝑐𝑘𝑧𝑘′

∥
𝑘Δ𝑥∣∣∣∣

|𝐶+| ≪ |Δ𝑥 − 𝑥 ̄s|, (2.182)

where we assumed that the derivative 𝑘′
∥ is about the same for both modes. For the resonant

mode, we have to take the largest possible value of |Δ𝑥 − 𝑥s|, which is obtained for 𝑥s = 0. For
the non-resonant mode, we assume |𝑥 ̄s| ≫ Δ𝑥. Thus, the estimate (2.182) for 𝑥s in general
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location is

1 ≪ ∣∣∣∣
4𝜋ℎ𝑦𝑘𝑝′

0
𝑐𝑘𝑧𝑘′

∥

∣∣∣∣
|𝐶+| ≪ |𝑥 ̄s|

Δ𝑥 . (2.183)

We see that uncompensated method has a relatively narrow window for coarse grids where
the condition Δ𝑥 ≪ |𝑥 ̄s| is not very strong. It is convenient to rewrite (2.183) in terms of
threshold constant

𝐶s = ∣
𝑐𝑘𝑧𝑘′

∥
4𝜋ℎ𝑦𝑘𝑝′

0
∣ (2.184)

so that it takes the form

1 ≪ |𝐶+|
𝐶s

≪ |𝑥 ̄s|
Δ𝑥 . (2.185)

Note that for strong shielding we need |𝐶+| ≫ 𝐶s, while |𝐶+| ≈ 𝐶s can even result in an
amplification of the resonant mode.

2.2.1.5 Method with Selective Compensation

Due to the dependence of the coefficients 𝛼± on 𝑥 in (2.180), the choice 𝐶− = −𝐶+ does
not mean that the compensation condition 𝛼− = −𝛼+ is fulfilled exactly. Moreover, for the
resonant mode with −Δ𝑥 < 𝑥s < Δ𝑥, the compensation condition for 𝛼± is not fulfilled at all,
which can be seen by keeping the dependence on 𝑥 in (2.180) only for 𝑘∥(𝑥) and ignoring the
small change of 𝑝′

0 over the resonant layer. With this, we obtain

𝛼− = Δ𝑥 + 𝑥s
Δ𝑥 − 𝑥s

𝛼+, (2.186)

i.e., both 𝛼± have the same sign. Therefore, |𝐶+| ≫ 𝐶s remains a sufficient criterion for strong
shielding of the resonant mode, the same as in the uncompensated method.

As can be seen from (2.180), again ignoring the change of 𝑝′
0 which has a larger scale than 𝑘∥,

we have partial compensation of 𝛼± for the non-resonant modes,

𝛼− ≈ −𝛼+ (1 − 2Δ𝑥
𝑥 ̄s

) , (2.187)

with |𝑥 ̄s| ≫ Δ𝑥. Sincewe have only partial compensation, we cannot use the limit of large shield-
ing constants of section 2.2.1.1 or the limit of full compensation of section 2.2.1.2 and, therefore,
we use as a starting point the more general expression (2.162). Together with (2.187), this
yields

𝐵𝑥
s (±Δ𝑥) = 𝛼+𝑘Δ𝑥 tanh(𝑘𝐿)

1 − 2𝛼+𝑘Δ𝑥2 tanh(𝑘𝐿)𝑥−1
̄s

(𝐵𝑥
v(Δ𝑥) − 𝐵𝑥

v(−Δ𝑥) (1 − 2Δ𝑥
𝑥 ̄s

)) . (2.188)
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Using (2.168), we approximate the last parentheses as

(𝐵𝑥
v(Δ𝑥) − 𝐵𝑥

v(−Δ𝑥) (1 − 2Δ𝑥
𝑥 ̄s

)) ≈ 2Δ𝑥𝐵𝑥
v(±Δ𝑥) (𝑘 + 1

𝑥 ̄s
) , (2.189)

and the condition of weak non-resonant mode shielding |𝐵𝑥
s | ≪ |𝐵𝑥

v| takes the form

∣𝐵
𝑥
s (±Δ𝑥)

𝐵𝑥
v(±Δ𝑥)∣ ≈ ∣2𝛼+𝑘Δ𝑥2 tanh(𝑘𝐿)(𝑘 + 𝑥−1

̄s )
1 − 2𝛼+𝑘Δ𝑥2 tanh(𝑘𝐿)𝑥−1

̄s
∣ ≪ 1. (2.190)

For the modes of interest, we estimate tanh(𝑘𝐿) ∼ 1, yielding as a sufficient condition for
weak shielding

|𝛼+| 𝑘Δ𝑥2 max(𝑘, 1
|𝑥 ̄s|

) ≪ 1. (2.191)

For the non-resonant mode, (2.180) and (2.184) result in

|𝛼+| ≈ |𝐶+|
𝑘|𝑥 ̄s|𝐶s

(2.192)

Then, the condition of strong shielding of the resonant mode, |𝐶+| ≫ 𝐶s, combined with the
condition of weak shielding of the nearest non-resonant mode take the form

1 ≪ |𝐶+|
𝐶s

≪ 𝑥2
̄s

Δ𝑥2 max (1, 𝑘|𝑥 ̄s|)
. (2.193)

Comparing this to the conditions (2.185) of the uncompensated method, we see that the
method with selective compensation allows for larger a shielding constant 𝐶+, whose upper
limit is now quadratic in the large parameter 𝑥 ̄s/Δ𝑥, replacing the linear dependence in (2.185).

2.2.1.6 Extension to Tokamak Geometry

It is convenient to express quantities pertinent to slab geometry through quantities of tokamak
geometry and so we write

𝑥 → 𝑟 − 𝑟0, ℎ𝑦 → ℎ̂𝜃 ≈ 𝑟
𝑞𝑅0

, 𝑘𝑦 → ̂𝑘𝜃 = 𝑚
𝑟 , 𝑘𝑧 → ̂𝑘𝜑 = 𝑛

𝑅0
, (2.194)

where 𝑟0 is an appropriate offset for positioning 𝑥 close to resonance position. For the parallel
wave vector 𝑘∥ and its derivative at the resonant surface we have

𝑘∥(𝑥) → 𝑚 + 𝑛𝑞(𝑟)
𝑞(𝑟)𝑅0

, (
𝜕𝑘∥
𝜕𝑥 )

𝑥s

→ 𝑛𝑞′

𝑞𝑅0
. (2.195)
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Since ̂𝑘𝜑 ≪ ̂𝑘𝜃, we approximately have 𝑘 ≈ ̂𝑘𝜃. Thus, our shielding threshold constant (2.184)
takes the form

𝐶s = 𝑐
4𝜋

𝑛2|𝑞′|
𝑅0|𝑚𝑝′

0| = 𝑐
4𝜋

𝑛|𝑞′|
𝑞𝑅0|𝑝′

0| , (2.196)

where we used the resonance condition 𝑘∥ = 0 to eliminate the explicit dependence on 𝑚.
Derivatives of 𝑞 and 𝑝0 over the minor radius 𝑟 can obviously be replaced with derivatives
over any other flux surface label 𝜓 without a formal change,

𝐶s = 𝑐
4𝜋

𝑛
𝑞𝑅0

∣ 𝜕𝑞
𝜕𝜓∣ ∣𝜕𝑝0

𝜕𝜓 ∣
−1

. (2.197)

Finally, let us express the distance between nearest resonant modes 𝑥 ̄s in terms of tokamak
geometry. If the mode 𝑚 is resonant at the radius 𝑟s, the nearest non-resonant poloidal modes
𝑚 ± 1 are resonant at the radii 𝑟s + 𝑥 ̄s. Using (2.195), we get the resonance conditions for
these modes as

𝑘∥(𝑥 ̄s) = 𝑚 ± 1 + 𝑛𝑞(𝑟s + 𝑥 ̄s)
𝑞(𝑟s + 𝑥 ̄s)𝑅0

≈ ±1 + 𝑛𝑞′(𝑟s)𝑥 ̄s
𝑞(𝑟s)𝑅0

= 0, (2.198)

which results in

|𝑘𝑥 ̄s| = |𝑘|
𝑛|𝑞′| = |𝑚|

𝑟𝑛|𝑞′| = |𝑞|
𝑟|𝑞′| = 1

|𝑠| , (2.199)

where 𝑠 is the shear parameter. Normally, 𝑠 ∼ 1, but it becomes large near the separatrix.
Thus, we can transform the upper limits in the conditions (2.185) and (2.193) using

|𝑥 ̄s|
Δ𝑥 = |𝑘𝑥 ̄s|

𝑘Δ𝑥 → 𝑟
Δ𝑟|𝑚𝑠| = 𝑞

Δ𝑟|𝑚𝑞′| = 1
𝑛Δ𝑞, max (1, 𝑘|𝑥 ̄s|) → 1, (2.200)

where Δ𝑞 = 𝑞′Δ𝑟 is the change of safety factor between radial positions on the grid. Conse-
quently, the condition (2.185) for the uncompensated method takes the form

1 ≪ |𝐶+|
𝐶s

≪ 1
𝑛Δ𝑞, (2.201)

and the condition (2.193) for the compensated method takes the form

1 ≪ |𝐶+|
𝐶s

≪ 1
𝑛2Δ𝑞2 . (2.202)

It can be seen that rather good radial grid resolution is needed for the uncompensated method
due to the shear parameter. E.g., if we want to shield the resonant mode 10-fold and at the
same time change the non-resonant modes by not more than 10%, we need 𝑛Δ𝑞 < 0.01, which
means for 𝑛 = 2 not more than 0.5% change of the safety factor per radial grid step. This may
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quickly get critical at the edge where 𝑞 changes rapidly. The compensated method should
work with higher change of 5%, which allows for 10 times coarser grids. Finally, we stress
that shielding threshold constant (2.197) is independent of the grid size and is the same for
both methods.

As noted in [2], “[a]bove the lower limit in [(2.202)], shielding of the resonant poloidal mode
is enforced; below the upper limit, the effect on the poloidal modes which are not resonant at
given surface is minimized. It can be shown that the particular choice within these limits only
slightly influences the resultant resonant current, and we choose the geometric mean of the
lower and upper limits,

𝐶+ = 𝐶s
𝑛Δ𝑞. (2.203)

If we use poloidal modes [as suggested by (2.133)], we can discriminate between resonant
and non-resonant modes directly, thus eliminating the upper limit in [(2.202)]. It nevertheless
serves as a useful estimate.”

2.2.1.7 Shielding Current

As a last step, let us show that the shielding current depends only weakly on the shielding
constants if the shielding is strong. We define the linear density of this current as

𝑗s =
𝐿

∫
−𝐿

d𝑥 𝑱 ⋅ 𝒉 e−i𝑘𝑦𝑦−i𝑘𝑧𝑧 = 2Δ𝑥𝐽s, (2.204)

where (2.141) has been used. According to (2.151), we have

4𝜋i
𝑐

ℎ𝑧

𝑘𝑦
𝑗s = 2Δ𝑥𝐵s0, (2.205)

and according to (2.157), we have

𝐵𝑥
s (±Δ𝑥) = 𝐵s0

sinh (𝑘Δ𝑥)
cosh(𝑘𝐿) sinh (𝑘(𝐿 − Δ𝑥)) ≈ 𝑘Δ𝑥𝐵s0 tanh(𝑘𝐿). (2.206)

Relating the field of the shielding current to the vacuum field via the form factor (2.166) and
using for this form factor the strong shielding limit (2.169), we get for the field of the shielding
current

𝐵𝑥
s (±Δ𝑥) = (𝑓 (±Δ𝑥) − 1) 𝐵𝑥

v(±Δ𝑥) = ( ±𝛼∓
𝛼− + 𝛼+

2𝑘Δ𝑥
tanh(𝑘𝐿) − 1) 𝐵𝑥

v(±Δ𝑥)

≈ − (1 + 𝛼− − 𝛼+
𝛼− + 𝛼+

𝑘Δ𝑥
tanh(𝑘𝐿)) 𝐵𝑥

v(0) (2.207)
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and thus for the line density (2.204) of the shielding current

𝑗s ≈
i𝑐𝑘𝑦𝐵𝑥

v(0)
2𝜋ℎ𝑧𝑘 tanh(𝑘𝐿) (1 + 𝛼− − 𝛼+

𝛼− + 𝛼+

𝑘Δ𝑥
tanh(𝑘𝐿)) . (2.208)

In our selective compensation method, 𝛼−𝛼+ > 0 for the resonant mode, and thus |𝛼− − 𝛼+| <
|𝛼− +𝛼+|. Therefore the second term in parentheses, which depends on the shelding constants,
is always small as 𝑘Δ𝑥 ≪ 1, i.e., the line density of the shielding current (2.204) is only weakly
dependent on those constants.
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Chapter 3

Kinetic Response Current

This chapter is based on the papers by Markl et al. [13] and Heyn et al. [14] and follows their
notation, e.g., using 𝒎 ≡ (𝑚, 𝑛) to refer to the specific poloidal and toroidal Fourier mode of a
linear perturbation indicated by an index of 1, unless noted otherwise. They consider a circular
tokamak in the large aspect ratio limit, thus derivations are conducted in straight-cylinder
coordinates (𝑟, 𝜃, 𝑧) discussed in section 1.1 for the most part. First, we shall recapitulate the
derivations also for quantities not mentioned by Markl et al. [13] and Heyn et al. [14], where
we specifically discuss the electric potential perturbation. Second, we adapt the solution thus
obtained to toroidal geometry. Finally, we repeat these derivations for the finite Larmor radius
expansion up to second order. A short summary of the results has already been published [3,
4].

In (60), Heyn et al. [14] give the drift-kinetic expression for the Fourier amplitude of the
parallel current density of species 𝛼 in the collisional case as

𝐽𝛼
∥𝒎 = −𝑛𝛼𝑒𝛼𝑣𝑇𝛼

𝜈𝛼𝐵0
[((𝐴𝛼

1 + 𝐴𝛼
2) 𝐼11 + 1

2𝐴𝛼
2𝐼31) 𝑣𝑇𝛼𝐵𝑟

𝒎 +

+ ((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼10 + 1
2𝐴𝛼

2𝐼21) 𝑐𝐸⟂𝒎] . (3.1)

Here, 𝑛𝛼, 𝑒𝛼, 𝑣𝑇𝛼 = √𝑇𝛼/𝑚𝛼, 𝑇𝛼, 𝑚𝛼, and 𝜈𝛼 are the density, charge, thermal velocity, tempera-
ture, mass, and collision frequency of species 𝛼, respectively. The thermodynamic forces are
given in (22) of [14] as

𝐴𝛼
1 = 1

𝑛𝛼

𝜕𝑛𝛼
𝜕𝑟 + 𝑒𝛼

𝑇𝛼

𝜕𝛷0
𝜕𝑟 − 3

2𝑇𝛼

𝜕𝑇𝛼
𝜕𝑟 , 𝐴𝛼

2 = 1
𝑇𝛼

𝜕𝑇𝛼
𝜕𝑟 , (3.2)

where 𝛷0 is the equilibrium electric potential. The complex susceptibility functions 𝐼𝑘𝑙(𝑥1, 𝑥2)
are thoroughly discussed byMarkl et al. [13] in appendixA; herewe only repeat the definitions
of its arguments according to (8) through (10):

𝑥1 =
𝑘∥𝑣𝑇𝛼

𝜈𝛼
, 𝑥2 = −𝜔𝐸

𝜈𝛼
, (3.3)

where the wave vector (see also (1.15)) and its projections to the magnetic field unit vector
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are given by

𝑘∥ = 𝒌 ⋅ 𝒉, 𝑘⟂ = 𝒌 ⋅ (𝒉 × ∇𝑟), 𝒌 = 𝑚∇𝜃 + 𝑛
𝑅0

∇𝑧, 𝒉 = 𝑩0
𝐵0

, (3.4)

and the electric rotation frequency1 and the radial electric field are given by

𝜔𝐸 = 𝑘⟂𝑉𝐸×𝐵 = −𝑐𝑘⟂𝐸0𝑟
𝐵0

, 𝐸0𝑟 = −𝜕𝛷0
𝜕𝑟 . (3.5)

𝑥1 can be interpreted as a normalized distance to the resonance position 𝑟𝒎, i.e., 𝑥1 → 0 as
𝑟 → 𝑟𝒎, because 𝑘∥ ∝ (𝑟 − 𝑟𝒎). 𝑥2 is a proxy for collisionality, i.e., 𝑥2 ≪ 1 for high collisionality
and 𝑥2 ≫ 1 in the collisionless limit.

The only quantity in (3.1) we have not yet accounted for is the perpendicular electric field
perturbation

𝐸⟂𝒎 = −i𝑘⟂𝛷𝒎. (3.6)

To this end, we compute the perturbations of charge density and current density in the
lowest order over Larmor radius, which means that we ignore the difference between the
guiding center position and the actual particle position and treat the Fourier amplitude of the
perturbed distribution function (3.13), defined at the guiding center position, as a function of
actual particle position. Thus, when computing the current density (3.8) as a velocity-space
integral of the distribution function times the actual particle velocity 𝒗 = 𝒗g + 𝒗L, only the
guiding center velocity 𝒗g contributes to the current, while the Larmor gyration velocity 𝒗L
averages to zero upon integration over the gyrophase. Moreover, we retain in the guiding
center velocity only the parallel motion and the 𝑬 × 𝑩 drift and ignore the magnetic drift, so
that this velocity is

𝒗g ≈ 𝑣∥
𝑩
𝐵 + 𝑐𝑩 × ∇𝛷

𝐵2 . (3.7)

By doing so, we ignore the “polarization charge” density responsible for slow modes (drift
mode in particular) and also the diamagnetic and Pfirsch-Schlüter current density. The latter
two are important in the bulk plasma (outside resonant layers, where they provide small
corrections) and are accounted for by the ideal MHD response currents covered in section 2.2.

We consider the definition of 𝐽𝛼
∥𝒎 in (60) of [14] as a moment of the perturbed distribution

function,

𝐽𝛼
∥𝒎 = 𝑒𝛼 ∫d3𝑝 𝑣∥ 𝑓𝒎, (3.8)

1For this definition, Markl et al. [13] use 𝑉𝐸×𝐵 where Heyn et al. [14] use 𝑣𝐸⟂, which is the perpendicular
component of 𝒗𝐸 in (3.12).
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where 𝑓𝒎 is the Fourier amplitude of (20),

̃𝑓 = 𝑓1 + 𝑓0
𝑒𝛼𝛷1
𝑇𝛼

, (3.9)

the index 1 denotes the perturbation of linear order1, and 𝑓 𝛼
0 is a local Maxwellian defined by

(17),

𝑓 𝛼
0 (𝑣⟂, 𝑣∥) = 𝑛𝛼(𝑟)

(2𝜋𝑚𝛼𝑇𝛼(𝑟))3
2
exp⎛⎜

⎝
−

𝑚𝛼 (𝑣2
⟂ + 𝑣2

∥ )
2𝑇𝛼(𝑟)

⎞⎟
⎠

. (3.10)

We insert (37) into (40) and retain the first two terms of (29), i.e., those of zero order in
Larmor radius,

𝑣𝑟
𝒎 ≈

𝑣∥
𝐵0

𝐵𝑟
𝒎 − i𝑐𝑘⟂

𝐵0
𝛷𝒎 (3.11)

which is the Fourier amplitude of the radial guiding center velocity (drift velocity) 𝑣𝑟
g1, and

𝛷𝒎 is the Fourier amplitude of 𝛷1. Compare this with the unperturbed (zero order) guiding
center velocity given by (12) of [14],

𝒗g0 ≈ 𝑣∥
𝑩0
𝐵0

+ 𝒗𝐸, 𝒗𝐸 = 𝑐𝑩0 × ∇𝛷0
𝐵2

0
, (3.12)

where the same approximation has been made as in (3.7). Putting everything together, we
arrive at

𝑓 𝛼
1,𝒎 = 𝑓 𝛼

𝒎 − 𝑒𝛼𝛷𝒎
𝑇𝛼

𝑓 𝛼
0

= −
∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥)
⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠

𝑓 𝛼
0 (𝑣⟂, 𝑣′

∥) ×

× (
𝑣′

∥
𝐵0

𝐵𝑟
𝒎 − i𝑐𝑘⟂

𝐵0
𝛷𝒎) − 𝑒𝛼𝛷𝒎

𝑇𝛼
𝑓 𝛼
0 (𝑣⟂, 𝑣∥). (3.13)

Here, 𝐺𝒎 is the Green’s function of the kinetic equation.

Up to the linear order in perturbation amplitude, the distribution function of species 𝛼 is
given by 𝑓 𝛼 ≈ 𝑓 𝛼

0 + 𝑓 𝛼
1 . The charge and current density perturbations of this order are

𝜚1 = ∑
𝛼

𝑒𝛼 ∫d3𝑝 𝑓 𝛼
1 , 𝑱1 = ∑

𝛼
𝑒𝛼 ∫d3𝑝 (𝒗g0 𝑓 𝛼

1 + 𝒗g1 𝑓 𝛼
0 ) . (3.14)

Due to the symmetry of the Maxwellian, the first term in (3.7) does not contribute to the

1𝐵1 in this chapter would correspond to 𝛿𝐵 in other chapters
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current density. Thus, this density is

∑
𝛼

𝑒𝛼 ∫d3𝑝 𝒗g1 𝑓 𝛼
0 = 𝑐 ∑

𝛼
𝑒𝛼 (𝑩 × ∇𝛷

𝐵2 )
1

𝑛𝛼 = 0 (3.15)

due to the charge neutrality condition,

∑
𝛼

𝑒𝛼𝑛𝛼 = 0. (3.16)

Thus we obtain for the Fourier amplitudes of current and charge density perturbations

𝑱𝒎 = ∑
𝛼

𝑒𝛼 ∫d3𝑝 𝑓 𝛼
1,𝒎 (𝒉𝑣∥ + 𝒗𝐸) = 𝒉𝐽∥𝒎 + 𝒗𝐸𝜚𝒎, (3.17)

𝜚𝒎 = ∑
𝛼

𝑒𝛼 ∫d3𝑝 𝑓 𝛼
1,𝒎. (3.18)

It can be seen that current density has no radial component, i.e., it is tangential to the un-
perturbed flux surfaces. Now, we insert (3.13) and (3.10), and integrate over 𝑝⟂ = 𝑚𝛼𝑣⟂ to
obtain

𝐽∥𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼
√2𝜋 𝑣𝑇𝛼𝐵0

∞

∫
−∞

d𝑣∥

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥)
⎛⎜
⎝

𝐴𝛼
1 + 𝐴𝛼

2 +
𝑣′

∥
2

2𝑣2
𝑇𝛼

𝐴𝛼
2
⎞⎟
⎠

×

× exp⎛⎜
⎝

−
𝑣′

∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

(𝑣′
∥𝐵𝑟

𝒎 + 𝑐𝐸⟂𝒎) 𝑣∥, (3.19)

𝜚𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼
√2𝜋 𝑣𝑇𝛼𝐵0

∞

∫
−∞

d𝑣∥

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥)
⎛⎜
⎝

𝐴𝛼
1 + 𝐴𝛼

2 +
𝑣′

∥
2

2𝑣2
𝑇𝛼

𝐴𝛼
2
⎞⎟
⎠

×

× exp⎛⎜
⎝

−
𝑣′

∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

(𝑣′
∥𝐵𝑟

𝒎 + 𝑐𝐸⟂𝒎) − ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎, (3.20)

where we used (3.6). These quantities can be expressed in terms of the susceptibility functions
defined via (50) of [14],

𝐽∥𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼
𝜈𝛼𝐵0

[((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼11 + 1
2𝐴𝛼

2𝐼13) 𝑣𝑇𝛼𝐵𝑟
𝒎 +

+ ((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼10 + 1
2𝐴𝛼

2𝐼12) 𝑐𝐸⟂𝒎] , (3.21)

𝜚𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼
𝜈𝛼𝐵0

[((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼01 + 1
2𝐴𝛼

2𝐼03) 𝑣𝑇𝛼𝐵𝑟
𝒎 +

+ ((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼00 + 1
2𝐴𝛼

2𝐼02) 𝑐𝐸⟂𝒎] − ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎. (3.22)
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The first of these expressions agrees with (3.1) due to the symmetry of susceptibility functions
over indices, 𝐼𝑘𝑙 = 𝐼𝑙𝑘.

Next, we show that the current density in (3.17) has zero divergence, i.e,

𝒌 ⋅ 𝑱𝒎 = 𝑘∥𝐽∥𝒎 + 𝑘⟂𝑣𝐸𝜚𝒎 = 𝑘∥𝐽∥𝒎 + 𝜔𝐸𝜚𝒎 = 0, (3.23)

where we used (3.5) in the last step. Substituting (3.21) and (3.22), we obtain

𝒌 ⋅ 𝑱𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝑘∥𝑣𝑇𝛼
𝜈𝛼𝐵0

[((𝐴𝛼
1 + 𝐴𝛼

2) (𝐼11 − √2𝑧𝛼𝐼01) + 1
2𝐴𝛼

2 (𝐼13 − √2𝑧𝛼𝐼03)) 𝑣𝑇𝛼𝐵𝑟
𝒎 +

+ ((𝐴𝛼
1 + 𝐴𝛼

2) (𝐼10 − √2𝑧𝛼𝐼00) + 1
2𝐴𝛼

2 (𝐼12 − √2𝑧𝛼𝐼02)) 𝑐𝐸⟂𝒎] − ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝜔𝐸𝛷𝒎,

(3.24)

where we used

√2𝑧𝛼 = 𝑥2
𝑥1

= − 𝜔𝐸
𝑘∥𝑣𝑇𝛼

(3.25)

from (A5) in [13], as well as the following recurrence relations between susceptibility func-
tions, also discussed in appendix A of [13]:

𝐼10 = √2𝑧𝛼𝐼00 − i
𝑥1

, (3.26)

𝐼11 = √2𝑧𝛼𝐼01, (3.27)

𝐼12 = √2𝑧𝛼𝐼02 − i
𝑥1

, (3.28)

𝐼13 = √2𝑧𝛼𝐼03 = √2𝑧𝛼𝐼12. (3.29)

We notice that the factor in front of the magnetic field perturbation (on the first line in (3.24))
is identically zero while the factor in front of the perpendicular electric field perturbation (on
the second line in (3.24)) does not contain susceptibility functions anymore. We insert 𝑥1
from (3.3), as well as (3.6), (3.2), and (3.5) to arrive at

𝒌 ⋅ 𝑱𝒎 = ∑
𝛼

𝑒𝛼𝑛𝛼
𝐵0

(𝐴𝛼
1 + 3

2𝐴𝛼
2) i𝑐𝐸⟂𝒎 − ∑

𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝜔𝐸𝛷𝒎

= ∑
𝛼

𝑒𝛼𝑛𝛼
𝐵0

( 1
𝑛𝛼

𝜕𝑛𝛼
𝜕𝑟 + 𝑒𝛼

𝑇𝛼

𝜕𝛷0
𝜕𝑟 ) 𝑐𝑘⟂𝛷𝒎 − ∑

𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝑐𝑘⟂
𝐵0

𝜕𝛷0
𝜕𝑟 𝛷𝒎

= 𝑐𝑘⟂
𝐵0

𝛷𝒎
𝜕
𝜕𝑟 ∑

𝛼
𝑒𝛼𝑛𝛼 = 0, (3.30)

where charge neutrality (3.16) accounts for the last step.
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3.1 Electric Potential Perturbation
We rewrite the charge density in (3.22) via the recurrence relations (3.26) through (3.29) to
arrive at

𝜚𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼
𝜈𝛼𝐵0

((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼01 + 1
2𝐴𝛼

2𝐼03) (𝐵𝑟
𝒎 + 𝑐𝑥1

𝑣𝑇𝛼𝑥2
𝐸⟂𝒎) −

− ∑
𝛼

𝑒𝛼𝑛𝛼
𝜈𝛼𝐵0

(𝐴𝛼
1 + 3

2𝐴𝛼
2) i𝑐

𝑥2
𝐸⟂𝒎 − ∑

𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎. (3.31)

The second line of (3.31) corresponds to𝜔𝐸𝒌⋅𝑱𝒎, which can be seen from the first line of (3.30),
and vanishes accordingly. Therefore, the charge density is

𝜚𝒎 = − (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼
𝜈𝛼

((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼01 + 1
2𝐴𝛼

2𝐼03) . (3.32)

Comparing this result to the misalignment field given by (12) of [13],

𝐸MA
⟂𝒎 = 𝐸⟂𝒎 + 𝑘⟂𝐵𝑟

𝒎
𝑘∥𝐵0

𝐸0𝑟, (3.33)

we can see that

𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

=
𝑘∥𝐸MA

⟂𝒎
𝑘⟂𝐸0𝑟

. (3.34)

Introducing the misaligment potential as

𝛷MA
𝒎 = i𝐸MA

⟂𝒎
𝑘⟂

= 𝛷𝒎 + i𝐸0𝑟𝐵𝑟
𝒎

𝑘∥𝐵0
, (3.35)

we can present (3.32) as

𝜚𝒎 = − i𝛷MA
𝒎

𝐸0𝑟
∑
𝛼

𝑒𝛼𝑛𝛼𝑥1 ((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼01 + 1
2𝐴𝛼

2𝐼03) . (3.36)

The implications become apparent when we consider the Poisson equation for the potential
perturbation 𝛷1,

𝛥𝛷1 = −4𝜋𝜚1 = ⋯ + ∑
𝛼

𝛷1
𝜆2
D𝛼

, (3.37)
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where we inserted (3.22) and focussed on the last term, which also contains the potential
perturbation, as well as the Debye length

𝜆D𝛼 = √ 𝑇𝛼
4𝜋𝑛𝛼𝑒2

𝛼
. (3.38)

We estimate the Laplacian term as

𝛥𝛷1 ∼ 𝛷1
𝛿2

𝒎
, (3.39)

where 𝛿𝒎 is the typical resonant layer width according to (45) of [13]. Since 𝛿2
𝒎 ≫ 𝜆2

D𝛼, we
could neglect the Laplacian term and continue with charge neutrality, i.e., 𝜚𝒎 = 0. However,
for (3.32) to fulfill this condition it is required that (3.34) becomes zero. In this case, the
perturbed equipotential surfaces coincide with the perturbed flux surfaces, which means
the misalignment field vanishes and shielding is lost according to (13) of [13]. Moreover,
𝑘∥ → 0 approaching the resonance position, resulting in a singular 𝛷𝒎 there, which would
need to be balanced by a correspondingly large term to achieve vanishing 𝜚𝒎. Thus, further
investigation is warranted.

In the region outside the resonant layer, where we apply iMHD, we derive the asymptotics of
the susceptibility functions as follows. In the case of high collisionality, we have 𝑥2

1 ≫ |𝑥2|,
which we use to further approximate (A11) of [13]. In the case of low collisionality, we have
𝑥2

1 ≫ 𝑥2
2, equivalent to 𝑧𝛼 ≪ 1, which we use to further approximate (A18) of [13]. Together

with (3.29), both approximations yield

𝐼01 ≈ 𝐼03 ≈ − i
𝑥1

, |𝑥1| ≫ 1. (3.40)

Inserting this into (3.36) yields

𝜚𝒎 → −𝛷MA
𝒎

𝐸0𝑟
∑
𝛼

𝑒𝛼𝑛𝛼 (𝐴𝛼
1 + 3

2𝐴𝛼
2) = −𝛷MA

𝒎
𝐸0𝑟

∑
𝛼

𝑒𝛼𝑛𝛼 ( 1
𝑛𝛼

𝜕𝑛𝛼
𝜕𝑟 + 𝑒𝛼

𝑇𝛼

𝜕𝛷0
𝜕𝑟 )

= −𝛷MA
𝒎 ∑

𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

= −𝛷MA
𝒎 ∑

𝛼

1
4𝜋𝜆2

D𝛼
. (3.41)

In this case, the Poisson equation (3.37) reads

𝛥𝛷1 = 𝛷MA
1 ∑

𝛼

1
𝜆2
D𝛼

= (𝛷1 − 𝛷A
1 ) ∑

𝛼

1
𝜆2
D𝛼

, (3.42)

where 𝛷A
1 is the potential aligned with the perturbed flux surfaces. Its Fourier amplitude
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follows from (3.35) as

𝛷A
𝒎 = −i𝐸0𝑟𝐵𝑟

𝒎
𝑘∥𝐵0

, (3.43)

which means that it satisfies the magnetic differential equation

i𝑘∥𝐵0𝛷A
𝒎 + 𝐵𝑟

𝒎
𝜕𝛷0
𝜕𝑟 = 0. (3.44)

Respectively, the aligned potential satisfies

𝑩0 ⋅ ∇𝛷A
1 + 𝐵𝑟

1
𝜕𝛷0
𝜕𝑟 = 0, (3.45)

which is the same form as for the pressure perturbation (2.113) if one replaces the unperturbed
pressure 𝑝0 with the unperturbed electrostatic potential𝛷0. Actually, this equation is valid also
in real tokamak geometry, and can be used for setting boundary conditions at the boundaries
of the resonant layer. Indeed, far from the resonance position 𝑟𝒎 where |𝑟 − 𝑟𝒎| ≫ 𝛿𝒎 ≫ 𝜆D𝛼
such that the asymptotical approximation (3.42) is already valid one can ignore the Laplacian
in the left-hand side of (3.42) which means a fully aligned field, 𝛷1 = 𝛷A

1 .

Within the resonant layer, however, we cannot ignore the Laplacian, as previously discussed.
Close to the resonant surface where |𝑟 − 𝑟𝒎| ≪ 𝛿𝒎, the asymptotics of the susceptibility
functions are

𝐼03 ≈ 3𝐼01 ≈ 3𝑥1
𝑥2

, |𝑥1| ≪ 1, (3.46)

which means that the coefficient of 𝛷MA
𝒎 in (3.36) scales with 𝑥2

1 ∝ 𝑘2
∥ ∝ (𝑟 −𝑟𝒎)2. The inverse

scaling of the aligned potential with distance to the flux surface, 𝛷MA
𝒎 ∝ 𝑘−1

∥ ∝ (𝑟 − 𝑟𝒎)−1,
cannot beat the quadratic scaling of the coefficient. Therefore, the perturbation of the charge
density vanishes at the resonant surface, and one cannot ignore the Laplacian there anymore
since this is the only term remaining in the Poisson equation.

Application of the iterative approach to the Poisson equation (3.37) looks problematic. If we
invert the Laplacian and iterate the right-hand side,

𝛷1 = −4𝜋𝛥−1𝜚1, (3.47)

direct iterations (2.5) mean iterating over the large parameter 𝛿2
𝒎/𝜆2

D𝛼 ≫ 1. Preconditioned
iterations (2.16) will not help much because the number of large eigenvalues will be too high.
One way to improve the convergence is to rewrite the Poisson equation as

𝛥𝛷1 − 𝛷1 ∑
𝛼

1
𝜆2
D𝛼

= −4𝜋𝜚1 − 𝛷1 ∑
𝛼

1
𝜆2
D𝛼

(3.48)
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and then invert the left-hand side operator. Iterations of the right-hand side operator in the
resulting equation

𝛷1 = − (𝛥 − ∑
𝛼

1
𝜆2
D𝛼

)
−1

(4𝜋𝜚1 + 𝛷1 ∑
𝛼

1
𝜆2
D𝛼

) (3.49)

should not result in large eigenvalues. However, this is reserved for future work, which will
be necessary when treating the solution of the kinetic equation in realistic geometry. For now,
we shall derive a quick solution in cylindrical geometry and ignore poloidal mode coupling.
For the Fourier amplitudes, the Poisson equation reduces to a second-order ODE in 𝑟,

1
𝑟

𝜕
𝜕𝑟 (𝑟 𝜕

𝜕𝑟) 𝛷𝒎 − (𝑚2

𝑟2 + 𝑛2

𝑅2
0

) 𝛷𝒎 = 4𝜋 (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥
𝐸0𝑟

𝛷𝒎) ×

× ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼
𝜈𝛼

((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼01 + 1
2𝐴𝛼

2𝐼03) . (3.50)

It is more convenient to replace the susceptibility functions 𝐼01 and 𝐼03 by 𝐼11 and 𝐼13 us-
ing (3.27) and (3.28) and their symmetry 𝐼𝑘𝑙 = 𝐼𝑙𝑘 as follows,

𝐼01 = −
𝑘∥𝑣𝑇𝛼
𝜔𝐸

𝐼11, 𝐼03 = −
𝑘∥𝑣𝑇𝛼
𝜔𝐸

𝐼13. (3.51)

Thus we get

1
𝑟

𝜕
𝜕𝑟 (𝑟 𝜕

𝜕𝑟) 𝛷𝒎 − (𝑚2

𝑟2 + 𝑛2

𝑅2
0

) 𝛷𝒎 = −
4𝜋𝑘∥
𝜔𝐸

(𝐵𝑟
𝒎

𝐵0
−

i𝑘∥
𝐸0𝑟

𝛷𝒎) 𝐹𝒎 (3.52)

with

𝐹𝒎 = ∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼

𝜈𝛼
((𝐴𝛼

1 + 𝐴𝛼
2) 𝐼11 + 1

2𝐴𝛼
2𝐼13) . (3.53)

The function 𝐹𝒎 stays finite at the resonant surface where

𝐼13 = 3𝐼11 = 3
1 − i𝑥2

(3.54)

according to (A27) of [13].

We can now express the current density (3.21) via the function (3.53) too by using the
recurrence relations (3.27) and (3.29) in the form

𝐼10 = −
𝑘∥𝑣𝑇𝛼
𝜔𝐸

𝐼11, 𝐼12 = −
𝑘∥𝑣𝑇𝛼
𝜔𝐸

𝐼13. (3.55)
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Thus we obtain

𝐽∥𝒎 = − (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥
𝐸0𝑟

𝛷𝒎) 𝐹𝒎. (3.56)

From this form of the parallel current density it is obvious that it is zero in case we ignore
the Laplacian on the left-hand side of the Poisson equation (3.52). Actually, this Laplacian
can also be strongly simplified taking into account that the radial derivatives of 𝛷𝒎 can be
estimated as 𝛷𝒎/𝛿𝒎, i.e., they scale inversely with the small resonant layer width. Therefore,
one can approximate the Laplacian in (3.52) as follows,

1
𝑟

𝜕
𝜕𝑟 (𝑟 𝜕

𝜕𝑟) 𝛷𝒎 − (𝑚2

𝑟2 + 𝑛2

𝑅2
0

) 𝛷𝒎 ≈ 𝜕2

𝜕𝑟2 𝛷𝒎. (3.57)

3.2 Phenomenological Account of Toroidal Geometry
Having derived an expression for the parallel current density in (3.56), we can use (2.125) to
reconstruct the full helical current density. However,

𝐽∥𝒎
𝐵0

= (
𝐽1∥
𝐵0

)
𝒎

(3.58)

holds in our straight-cylinder geometry, but not in toroidal geometry. In order to apply (3.58),
we approximate the result for straight-cylinder geometry to get rid of any dependencies on 𝜃.
We divide the factor containing the misalignment potential in (3.56) by 𝐵0 and rearrange it,

1
𝐵0

(𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) =
𝐵𝜑

0
𝐵2

0

⎛⎜
⎝

𝐵𝑟
𝒎

𝐵𝜑
0

−
i𝑘∥𝐵0𝛷𝒎

𝐵𝜑
0 𝐸0𝑟

⎞⎟
⎠

=
𝐵𝜑

0
𝐵2

0

⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− 1
𝐸0𝑟

⎛⎜
⎝

𝑩0 ⋅ ∇𝛷1
𝐵𝜑

0

⎞⎟
⎠𝒎

⎞⎟⎟
⎠

. (3.59)

Note that we already used analogues of (3.58) in the last step. The last term in parentheses
can be expanded in flux coordinates as

𝑩0 ⋅ ∇𝛷1
𝐵𝜑

0
= 1

𝐵𝜑
0

(𝐵𝜗
0

𝜕𝛷1
𝜕𝜗 + 𝐵𝜑

0
𝜕𝛷1
𝜕𝜑 ) = 1

𝑞
𝜕𝛷1
𝜕𝜗 + 𝜕𝛷1

𝜕𝜑 , (3.60)

and, therefore,

⎛⎜
⎝

𝑩0 ⋅ ∇𝛷1
𝐵𝜑

0

⎞⎟
⎠𝒎

= i𝑚 + 𝑛𝑞
𝑞 𝛷𝒎. (3.61)
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The covariant component 𝐸0𝑟 is a flux function and, seeing how this also applies to 𝐵0𝜑, we
approximate 𝐵2

0 = 𝐵0𝜗𝐵𝜗
0 + 𝐵0𝜑𝐵𝜑

0 ≈ 𝐵0𝜑𝐵𝜑
0 , so we can write

𝐵𝜑
0

𝐵2
0

≈ 1
𝐵0𝜑

. (3.62)

Thus, the expression for the current density (3.56) takes the form

(
𝐽1∥
𝐵0

)
𝒎

≈ − 𝐹𝒎
𝐵0𝜑

⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

. (3.63)

In order to interpret the function 𝐹𝒎 in toroidal geometry, we notice that all the factors in (3.53)
except for the susceptibility functions are flux functions. The argument 𝑥2 is almost a flux
function because

𝜔𝐸 = 𝑐𝒌 ⋅ 𝑬0 × 𝑩0
𝐵2

0
= 𝑐𝐸0𝑟

√𝑔𝐵2
0

(𝑘𝜗𝐵0𝜑 − 𝑘𝜑𝐵0𝜗) = 𝑐𝐸0𝑟

√𝑔𝐵2
0

(𝑚𝐵0𝜑 − 𝑛𝐵0𝜗) , (3.64)

where √𝑔 is the Jacobian of (𝑟, 𝜑, 𝜗) coordinates with a general radial coordinate 𝑟. In the
vicinity of the resonance position, 𝑚 ≈ −𝑛𝑞, so we get

𝜔𝐸 ≈ −𝑐𝐸0𝑟𝑛
√𝑔𝐵2

0
(𝑞𝐵0𝜑 + 𝐵0𝜗) = −𝑛𝑐𝐸0𝑟

√𝑔𝐵𝜗
0

= −𝑛𝑐𝐸0𝑟
𝜕𝜓
𝜕𝑟

= −𝑛𝛺𝐸. (3.65)

Here, 𝛺𝐸 is the toroidal 𝑬 × 𝑩 rotation frequency,

𝛺𝐸 = 𝑐𝜕𝛷0
𝜕𝜓 . (3.66)

The only quantity where we need a forced interpretation is the argument 𝑥1 containing 𝑘∥,
which we postulate to be the same as in the straight cylinder geometry,

𝑘∥ = 𝑚 + 𝑛𝑞
𝑞𝑅0

→ 𝑥1 = (𝑚 + 𝑛𝑞) 𝑣𝑇𝛼
𝑞𝑅0𝜈𝛼

, (3.67)

where 𝑅0 is a reference major radius. Note that 𝑟 is still a general radial variable, although
it is convenient to use 𝜓, and we already inserted (1.7) above, but in principle any radial
variable can be used as long as the thermodynamic forces in (3.2) are adapted to use the same
variable.

For a more general interpretation of the Poisson equation (3.52), we proceed in a similar
manner. Noting that

𝑘∥𝐵0 = 𝑚 + 𝑛𝑞
𝑞 𝐵𝜑

0 , (3.68)
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we multiply this equation with (𝐵0/𝐵𝜑
0 )2 and obtain

⎛⎜
⎝

⎛⎜
⎝

𝐵0
𝐵𝜑

0

⎞⎟
⎠

2
𝛥𝛷1

⎞⎟
⎠𝒎

= −4𝜋(𝑚 + 𝑛𝑞)𝐹𝒎
𝑞𝜔𝐸

⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

. (3.69)

With a similar argument as above, we retain in the Laplacian only the largest term with the
second derivative of 𝛷1 over radius,

𝛥𝛷1 = 1
√𝑔

𝜕
𝜕𝑥𝑖 (√𝑔𝑔𝑖𝑗 𝜕𝛷1

𝜕𝑥𝑗 ) ≈ 𝑔𝑟𝑟 𝜕2𝛷1
𝜕𝑟2 , (3.70)

and ignore poloidal mode coupling by replacing the factor

𝑔𝑟𝑟 ⎛⎜
⎝

𝐵0
𝐵𝜑

0

⎞⎟
⎠

2
≈ 𝑔𝑟𝑟 𝐵0𝜑

𝐵𝜑
0

(3.71)

with its average over the poloidal angle, indicated by ⟨⋅⟩𝜃, and get

⟨𝑔𝑟𝑟 𝐵0𝜑

𝐵𝜑
0

⟩
𝜃

𝜕2𝛷𝒎
𝜕𝑟2 = −4𝜋(𝑚 + 𝑛𝑞)𝐹𝒎

𝑞𝜔𝐸

⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

. (3.72)

Using for the symmetry flux coordinates 𝐵0𝜑 = 𝑅2𝐵𝜑
0 and using the definition 𝑔𝑟𝑟 = |∇𝑟|2, we

rewrite (3.52) as

𝜕2𝛷𝒎
𝜕𝑟2 = −4𝜋(𝑚 + 𝑛𝑞)𝐹𝒎

𝑞𝜔𝐸 ⟨𝑅2|∇𝑟|2⟩𝜃
⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

. (3.73)

This second order ODE should be solved for 𝛷𝒎 in the resonant layer with the boundary
conditions of vanishing right-hand side outside the resonant layer.

3.3 Finite Larmor Radius Effects
For the following derivations, we stay in a straight cylinder geometry where the unperturbed
motion is simple. In zeroth order, we take the Boltzmann distribution

𝑓 𝛼
B (𝑟g, 𝐻) =

𝑛𝛼(𝑟g)

(2𝜋𝑚𝑇𝛼(𝑟g))
3
2
exp⎛⎜

⎝

𝑒𝛼𝛷0(𝑟g) − 𝐻
𝑇𝛼(𝑟g)

⎞⎟
⎠

, (3.74)

where

𝐻 = 𝑚𝛼𝒗2

2 + 𝑒𝛼𝛷(𝒓) (3.75)
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is the total energy and

𝑟g = 𝑟 − 𝜚𝑟 = 𝑟 − 𝒉 × 𝒗 ⋅ ∇𝑟
𝜔c𝛼

(3.76)

is the guiding center radius computed in the unperturbed field with the cyclotron frequency

𝜔c𝛼 = 𝑒𝛼𝐵0
𝑚𝛼𝑐 . (3.77)

The Vlasov operator for the stationary electromagnetic field,

𝐿̂V = 𝒗 ⋅ ∇ + 𝑒𝛼
𝑚𝛼

(−∇𝛷 + 1
𝑐 𝒗 × 𝑩) ⋅ 𝜕

𝜕𝒗, (3.78)

conserves total energy in any magnetic geometry, 𝐿̂V𝐻 = 0. The unperturbed Vlasov operator

𝐿̂V0 = 𝒗 ⋅ ∇ + 𝑒𝛼
𝑚𝛼

(−∇𝛷0 + 1
𝑐 𝒗 × 𝑩0) ⋅ 𝜕

𝜕𝒗, (3.79)

conserves the guiding center radius in the straight cylinder geometry, 𝐿̂V0𝑟g = 0. Introducing
the perturbation of the Vlasov operator,

𝛿𝐿̂V = 𝑒𝛼
𝑚𝛼

(−∇𝛿𝛷 + 1
𝑐 𝒗 × 𝛿𝑩) ⋅ 𝜕

𝜕𝒗, (3.80)

such that 𝐿̂V = 𝐿̂V0 + 𝛿𝐿̂V, we look for the solution of the kinetic equation

𝐿̂V𝑓 𝛼 = 𝐿̂C 𝑓 𝛼, (3.81)

where 𝐿̂C is the Coulomb collision operator such that 𝐿̂C 𝑓 𝛼
B = 0, and

𝑓 𝛼(𝒓, 𝒗) = 𝑓 𝛼
B (𝑟g, 𝐻) + 𝛿𝑓𝛼(𝒓, 𝒗). (3.82)

Up to linear order in the perturbation we get,

𝐿̂V0𝛿𝑓 𝛼 + 𝐿̂V𝑓 𝛼
B = 𝐿̂C𝛿𝑓 𝛼. (3.83)

Given the previous definitions, we simplify the second term,

𝐿̂V𝑓 𝛼
B =

𝜕𝑓 𝛼
B

𝜕𝐻 𝐿̂V𝐻 +
𝜕𝑓 𝛼

B
𝜕𝑟g

𝐿̂V𝑟g =
𝜕𝑓 𝛼

B
𝜕𝑟g

𝐿̂V𝑟g =
𝜕𝑓 𝛼

B
𝜕𝑟g

𝛿𝐿̂V𝑟g = (𝐴𝛼
1 + 𝐻 − 𝑒𝛼𝛷0

𝑇𝛼
𝐴𝛼

2) 𝑓 𝛼
B 𝛿𝐿̂V𝑟g,

(3.84)
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and

𝛿𝐿̂V𝑟g = 𝑐∇𝑟 × 𝒉 ⋅ ∇𝛿𝛷
𝐵0

+ 𝛿𝑩 ⋅ ∇𝑟
𝐵0

𝒉 ⋅ 𝒗 − 𝛿𝑩 ⋅ 𝒉
𝐵0

𝒗 ⋅ ∇𝑟. (3.85)

We ignore the last termwhose contribution to the gyroaverge is of the order of 𝜚L𝛼𝑘⟂𝛿𝐵∥ ≪ 𝛿𝐵⟂

compared to the previous one, where

𝜚L𝛼 = 𝑣𝑇𝛼
𝜔c𝛼

(3.86)

is the Larmor radius. This term, however may contribute significantly to the first cyclotron
harmonic. We nevertheless ignore it assuming that its perturbation is of Alfvénic type, i.e.,
it is purely perpendicular, 𝛿𝑩 ⋅ 𝒉 = 0. Denoting the parallel velocity with respect to the
unperturbed field as 𝒉 ⋅ 𝒗 = 𝑣∥, we get

𝛿𝐿̂V𝑟g ≈ − i𝑐𝑘⟂𝛿𝛷
𝐵0

+ 𝛿𝐵𝑟

𝐵0
𝑣∥ =

𝛿𝐵𝑟𝑣∥ + 𝑐𝛿𝐸⟂

𝐵0
. (3.87)

Thus we get the kinetic equation as

(𝐿̂V0 − 𝐿̂C) 𝛿𝑓 𝛼 = − (𝐴𝛼
1 + 𝐻 − 𝑒𝛼𝛷0

𝑇𝛼
𝐴𝛼

2) 𝑓 𝛼
B

𝛿𝐵𝑟𝑣∥ + 𝑐𝛿𝐸⟂

𝐵0
. (3.88)

Here, we ignore the perturbation of the potential (leading to the quadratic correction) in the
factor

𝐻 − 𝑒𝛼𝛷0
𝑇𝛼

≈ 𝐻 − 𝑒𝛼𝛷
𝑇𝛼

=
𝑚𝛼 (𝑣2

⟂ + 𝑣2
∥ )

2𝑇𝛼
(3.89)

as well as in the Boltzmann distribution, where we set 𝛷0 → 𝛷 so that it becomes a local
Maxwellian, 𝑓 𝛼

B → 𝑓 𝛼
0 . We further transform the uperturbed Vlasov operator to the guiding

center variables,

𝐿̂V0 ≈ (𝑣∥𝒉 + 𝒗𝐸) ⋅ ∇g − 𝜔c𝛼
𝜕

𝜕𝜙 = i(𝑘∥𝑣∥ + 𝜔𝐸) − 𝜔c𝛼
𝜕

𝜕𝜙. (3.90)

Here, ∇g denotes derivatives over the guiding center position. Also, we ignored the magnetic
drift in the unperturbed field in favour of the elecric drift, as we did before.

Since we ignored the compressional perturbations by assuming 𝛿𝑩 ⋅ 𝒉 = 0, the main contribu-
tion comes from the zero cyclotron harmonic (gyroaverge) of the distribution function ⟨𝛿𝑓 𝛼⟩𝜙
descibed by the gyrokinetic equation

(i(𝑘∥𝑣∥ + 𝜔𝐸) − 𝐿̂C) ⟨𝛿𝑓 𝛼⟩𝜙 = − ⎛⎜
⎝

𝐴𝛼
1 +

𝑚𝛼(𝑣2
⟂ + 𝑣2

∥ )
2𝑇𝛼

𝐴𝛼
2
⎞⎟
⎠

𝑓 𝛼
0

⟨𝛿𝐵𝑟⟩𝜙𝑣∥ + 𝑐⟨𝛿𝐸⟂⟩
𝜙

𝐵0
. (3.91)
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Except for gyroaveraging, this is the same equation as we solved before. We compute the
gyroaverges of the perturbation field to the leading order, ignoring FLR corrections to the
angles, e.g., for any 𝑎,

⟨𝑎(𝑟, 𝜃, 𝑧)⟩𝜙 ≈ ⟨𝑎 (𝑟g − 𝜚𝑟, 𝜃g, 𝑧g)⟩
𝜙

≈ ⟨⎛⎜
⎝

1 + (𝜚𝑟)2

2
𝜕2

𝜕𝑟2
g

⎞⎟
⎠

𝑎(𝑟g, 𝜃g, 𝑧g)⟩
𝜙

= ⎛⎜
⎝

1 + 𝑣2
⟂

4𝜔2
c𝛼

𝜕2

𝜕𝑟2
g

⎞⎟
⎠

𝑎(𝑟g, 𝜃g, 𝑧g). (3.92)

When computing the moments of ⟨𝛿𝑓 𝛼(𝑟g, 𝜃g, 𝑧g)⟩𝜙, we have to transform it back to actual
positions (𝑟, 𝜃, 𝑧), which we do to the same accuracy in Larmor radius. So we get, e.g., for the
density

𝛿𝑛𝛼 = 𝑚3
𝛼 ∫d3𝑣 ⟨𝛿𝑓 𝛼(𝑟g, 𝜃g, 𝑧g)⟩

𝜙
= 𝑚3

𝛼 ∫d3𝑣 ⟨𝛿𝑓 𝛼 (𝑟 − 𝜚𝑟, 𝜃 − 𝜚𝜃, 𝑧 − 𝜚𝑧)⟩
𝜙

≈ 𝑚3
𝛼 ∫d3𝑣 ⟨𝛿𝑓 𝛼 (𝑟 − 𝜚𝑟, 𝜃, 𝑧)⟩𝜙 ≈ 𝑚3

𝛼 ∫d3𝑣 (1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) ⟨𝛿𝑓 𝛼(𝑟, 𝜃, 𝑧)⟩𝜙. (3.93)

If we ignore the FLR correction terms proportional to 𝑣2
⟂/𝜔2

c𝛼 in (3.92) and (3.93), we get the
old results (3.19) and (3.20). Note that here and in the following derivations, when we write

(1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) , (3.94)

the derivative is intended to act on the terms to the right of the closing parenthesis as well.

Note that the first order perturbation is contained not only in ⟨𝛿𝑓 𝛼⟩𝜙, but also in the Boltzmann
distribution which we expand as

𝑓 𝛼
B ≈ (1 − 𝑒𝛼𝛿𝛷

𝑇𝛼
) 𝑓 𝛼

0 . (3.95)

Here, the perturbation potential 𝛿𝛷 appears as is, without gyroaveraging so that the last term
in (3.20) stays the same even if FLR efects are taken into account. Thus, a complete first order
perturbation of the distribution function is

𝑓 𝛼
1 (𝑟, 𝜃, 𝑧) = ⟨𝛿𝑓 𝛼(𝑟g, 𝜃, 𝑧)⟩

𝜙
− 𝑒𝛼𝛿𝛷(𝑟, 𝜃, 𝑧)

𝑇𝛼
𝑓 𝛼
0 . (3.96)

Assuming as before that perturbations are given as a single Fourier harmonic,

𝑓 𝛼
1 (𝑟, 𝜃, 𝑧) = 𝑓 𝛼

1,𝒎(𝑟)ei𝑚𝜃+i𝑘𝑧𝑧, (3.97)
⟨𝛿𝑓 𝛼⟩𝜙(𝑟g, 𝜃, 𝑧) = 𝑓 𝛼

𝒎(𝑟g)ei𝑚𝜃+i𝑘𝑧𝑧, (3.98)

𝛿𝛷(𝑟, 𝜃, 𝑧) = 𝛷𝒎(𝑟)ei𝑚𝜃+i𝑘𝑧𝑧, (3.99)
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the Fourier amplitude of the complete first order perturbation of the distribution func-
tion (3.13) is modified by FLR effects to

𝑓 𝛼
1,𝒎(𝑟) = 𝑓 𝛼

𝒎(𝑟g) − 𝑒𝛼𝛷𝒎(𝑟)
𝑇𝛼

𝑓 𝛼
0 . (3.100)

Formally, this expression is the same as (3.13), except that we distinguish now the guiding
center radius 𝑟g from the actual radius 𝑟 (but we ignore this difference in the angles 𝜃 and
𝑧). When computing the moments of the first term 𝑓 𝛼

𝒎(𝑟g), we have to transform it back to
the actual position 𝑟, which we do to the same accuracy in Larmor radius as we did for the
gyroaverges. Thus, for the charge density perturbation we get

𝜚𝒎 = ∑
𝛼

𝑒𝛼 ∫d3𝑝 𝑓 𝛼
1,𝒎(𝑟) = ∑

𝛼
𝑒𝛼 ∫d3𝑝 𝑓 𝛼

𝒎(𝑟g) − ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟)

= ∑
𝛼

𝑒𝛼 ∫d3𝑝 𝑓 𝛼
𝒎 (𝑟 − 𝜚𝑟) − ∑

𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟)

≈ ∑
𝛼

𝑒𝛼 ∫d3𝑝 ⎛⎜
⎝

1 + (𝜚𝑟)2

2
𝜕2

𝜕𝑟2
⎞⎟
⎠

𝑓 𝛼
𝒎(𝑟) − ∑

𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟)

= ∑
𝛼

𝑒𝛼 ∫d3𝑝 (1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) 𝑓 𝛼
𝒎(𝑟) − ∑

𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟). (3.101)

Similarly, for the parallel current density perturbation we get

𝐽∥𝒎 = ∑
𝛼

𝑒𝛼 ∫d3𝑝 𝑣∥ 𝑓 𝛼
1,𝒎(𝑟) = ∑

𝛼
𝑒𝛼 ∫d3𝑝 𝑣∥ 𝑓 𝛼

𝒎(𝑟g)

= ∑
𝛼

𝑒𝛼 ∫d3𝑝 (1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) 𝑣∥ 𝑓 𝛼
𝒎(𝑟). (3.102)

We express the solution of the gyrokinetic equation (3.91) in terms of Green’s functions as
before,

𝑓 𝛼
𝒎(𝑟g) = −

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥)
⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠

𝑓 𝛼
0 (𝑣⟂, 𝑣′

∥) ×

× (
𝑣′

∥
𝐵0

⟨𝐵𝑟
𝒎⟩𝜙 + 𝑐

𝐵0
⟨𝐸⟂𝒎⟩𝜙)

≈ −
∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥)
⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠

𝑓 𝛼
0 (𝑣⟂, 𝑣′

∥) ×

× 1
𝐵0

⎛⎜
⎝

1 + 𝑣2
⟂

4𝜔2
c𝛼

𝜕2

𝜕𝑟2
g

⎞⎟
⎠

(𝑣′
∥𝐵𝑟

𝒎(𝑟g) + 𝑐𝐸⟂𝒎(𝑟g)) , (3.103)

where we substituted the FLR expansion (3.92) for gyroaverages. Substituting (3.103) in the
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charge density perturbation (3.101) we get

𝜚𝒎 + ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟) = ∑
𝛼

𝑒𝛼 ∫d3𝑝 (1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) 𝑓 𝛼
𝒎(𝑟)

= 2𝜋 ∑
𝛼

𝑒𝛼𝑚3
𝛼

∞

∫
0

d𝑣⟂ 𝑣⟂

∞

∫
−∞

d𝑣∥ (1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) 𝑓 𝛼
𝒎(𝑟)

= −2𝜋 ∑
𝛼

𝑒𝛼𝑚3
𝛼

∞

∫
0

d𝑣⟂ 𝑣⟂

∞

∫
−∞

d𝑣∥ (1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) 1
𝐵0

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠

𝑓 𝛼
0 (𝑣⟂, 𝑣′

∥) (1 + 𝑣2
⟂

4𝜔2
c𝛼

𝜕2

𝜕𝑟2 ) (𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟))

= − ∑
𝛼

𝑒𝛼

∞

∫
0

d𝑣⟂ 𝑣⟂

∞

∫
−∞

d𝑣∥ (1 + 𝜕2

𝜕𝑟2
𝑣2
⟂

4𝜔2
c𝛼

) 𝑛𝛼
√2𝜋𝑣3

𝑇𝛼𝐵0
exp(− 𝑣2

⟂
2𝑣2

𝑇𝛼
)

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠
exp⎛⎜

⎝
−

𝑣′
∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

(1 + 𝑣2
⟂

4𝜔2
c𝛼

𝜕2

𝜕𝑟2 ) (𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟))

≈ − ∑
𝛼

𝑒𝛼

∞

∫
0

d𝑣⟂ 𝑣⟂

∞

∫
−∞

d𝑣∥
𝑛𝛼

√2𝜋𝑣3
𝑇𝛼𝐵0

exp(− 𝑣2
⟂

2𝑣2
𝑇𝛼

)
∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠
exp⎛⎜

⎝
−

𝑣′
∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

(𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟)) −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼

∞

∫
0

d𝑣⟂ 𝑣⟂

∞

∫
−∞

d𝑣∥
𝑣2
⟂

4𝜔2
c𝛼

𝑛𝛼
√2𝜋𝑣3

𝑇𝛼𝐵0
exp(− 𝑣2

⟂
2𝑣2

𝑇𝛼
)

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠
exp⎛⎜

⎝
−

𝑣′
∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

(𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟)) −

− ∑
𝛼

𝑒𝛼

∞

∫
0

d𝑣⟂ 𝑣⟂

∞

∫
−∞

d𝑣∥
𝑣2
⟂

4𝜔2
c𝛼

𝑛𝛼
√2𝜋𝑣3

𝑇𝛼𝐵0
exp(− 𝑣2

⟂
2𝑣2

𝑇𝛼
)

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜⎜
⎝

𝐴𝛼
1 +

𝑚𝛼 (𝑣2
⟂ + 𝑣′

∥
2)

2𝑇𝛼
𝐴𝛼

2
⎞⎟⎟
⎠
exp⎛⎜

⎝
−

𝑣′
∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

𝜕2

𝜕𝑟2 (𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟)) ,

where we retained in the last expression only the lowest order non-vanishing correction in
Larmor radius which scales as 𝑣2

⟂/𝜔2
c𝛼 and, respectively, ignored the fourth derivative over

radius keeping only the second derivatives. Evaluating the integrals over 𝑣⟂, we get

𝜚𝒎 + ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟)
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= − ∑
𝛼

𝑒𝛼𝑛𝛼
√2𝜋𝑣𝑇𝛼𝐵0

∞

∫
−∞

d𝑣∥

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜
⎝

𝐴𝛼
1 + 𝐴𝛼

2 +
𝑣′

∥
2

2𝑣2
𝑇𝛼

𝐴𝛼
2
⎞⎟
⎠
exp⎛⎜

⎝
−

𝑣′
∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

(𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟)) −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2√2𝜋𝑣𝑇𝛼𝐵0

∞

∫
−∞

d𝑣∥

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜
⎝

𝐴𝛼
1 + 2𝐴𝛼

2 +
𝑣′

∥
2

2𝑣2
𝑇𝛼

𝐴𝛼
2
⎞⎟
⎠
exp⎛⎜

⎝
−

𝑣′
∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

(𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟)) −

− ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2√2𝜋𝑣𝑇𝛼𝐵0

∞

∫
−∞

d𝑣∥

∞

∫
−∞

d𝑣′
∥ 𝐺𝒎(𝑣∥, 𝑣′

∥) ×

× ⎛⎜
⎝

𝐴𝛼
1 + 2𝐴𝛼

2 +
𝑣′

∥
2

2𝑣2
𝑇𝛼

𝐴𝛼
2
⎞⎟
⎠
exp⎛⎜

⎝
−

𝑣′
∥
2

2𝑣2
𝑇𝛼

⎞⎟
⎠

𝜕2

𝜕𝑟2 (𝑣′
∥𝐵𝑟

𝒎(𝑟) + 𝑐𝐸⟂𝒎(𝑟)) . (3.104)

Note that if we set 𝜚L𝛼 = 0 in this expression, we recover the old result (3.20). Expressing the
double integrals via susceptibility functions, this perturbation of charge density is

𝜚𝒎 + ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟) = − ∑
𝛼

𝑒𝛼𝑛𝛼
𝜈𝛼𝐵0

[((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼01 + 1
2𝐴𝛼

2𝐼03) 𝑣𝑇𝛼𝐵𝑟
𝒎 +

+ ((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼00 + 1
2𝐴𝛼

2𝐼02) 𝑐𝐸⟂𝒎] −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝜈𝛼𝐵0
[((𝐴𝛼

1 + 2𝐴𝛼
2) 𝐼01 + 1

2𝐴𝛼
2𝐼03) 𝑣𝑇𝛼𝐵𝑟

𝒎 +

+ ((𝐴𝛼
1 + 2𝐴𝛼

2) 𝐼00 + 1
2𝐴𝛼

2𝐼02) 𝑐𝐸⟂𝒎] −

− ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝜈𝛼𝐵0
[((𝐴𝛼

1 + 2𝐴𝛼
2) 𝐼01 + 1

2𝐴𝛼
2𝐼03) 𝑣𝑇𝛼

𝜕2

𝜕𝑟2 𝐵𝑟
𝒎 +

+ ((𝐴𝛼
1 + 2𝐴𝛼

2) 𝐼00 + 1
2𝐴𝛼

2𝐼02) 𝑐 𝜕2

𝜕𝑟2 𝐸⟂𝒎] . (3.105)

Similarly, we obtain the parallel current density perturbation as

𝐽∥𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼
𝜈𝛼𝐵0

[((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼11 + 1
2𝐴𝛼

2𝐼13) 𝑣𝑇𝛼𝐵𝑟
𝒎 +

+ ((𝐴𝛼
1 + 𝐴𝛼

2) 𝐼10 + 1
2𝐴𝛼

2𝐼12) 𝑐𝐸⟂𝒎] −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼𝜚2
L𝛼

2𝜈𝛼𝐵0
[((𝐴𝛼

1 + 2𝐴𝛼
2) 𝐼11 + 1

2𝐴𝛼
2𝐼13) 𝑣𝑇𝛼𝐵𝑟

𝒎 +
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+ ((𝐴𝛼
1 + 2𝐴𝛼

2) 𝐼10 + 1
2𝐴𝛼

2𝐼12) 𝑐𝐸⟂𝒎] −

− ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼𝜚2
L𝛼

2𝜈𝛼𝐵0
[((𝐴𝛼

1 + 2𝐴𝛼
2) 𝐼11 + 1

2𝐴𝛼
2𝐼13) 𝑣𝑇𝛼

𝜕2

𝜕𝑟2 𝐵𝑟
𝒎 +

+ ((𝐴𝛼
1 + 2𝐴𝛼

2) 𝐼10 + 1
2𝐴𝛼

2𝐼12) 𝑐 𝜕2

𝜕𝑟2 𝐸⟂𝒎] . (3.106)

Now, we repeat the transformations from previous sections for the newly derived FLR
terms. First, we transform the charge density perturbation (3.105) using the recurrence
relations (3.26) and (3.28) to express 𝐼00 and 𝐼02 as follows

𝐼00 = 𝑥1𝐼10 + i
𝑥2

= −
𝑘∥𝑣𝑇𝛼
𝜔𝐸

𝐼10 + i𝜈𝛼
𝜔𝐸

, 𝐼02 = 𝑥1𝐼12 + i
𝑥2

= −
𝑘∥𝑣𝑇𝛼
𝜔𝐸

𝐼12 + i𝜈𝛼
𝜔𝐸

. (3.107)

Using (3.6) and treating as constant all functions of radius except 𝛷𝒎, 𝐵𝑟
𝒎 and 𝑘∥, we get

𝜚𝒎 + ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

𝛷𝒎(𝑟)

= − ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼
𝜈𝛼

((𝐴𝛼
1 + 𝐴𝛼

2)𝐼01 + 1
2𝐴𝛼

2𝐼03) (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) −

− ∑
𝛼

𝑒𝛼𝑛𝛼
𝐸0𝑟

(𝐴𝛼
1 + 3

2𝐴𝛼
2) 𝛷𝒎 −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼𝜚2
L𝛼

2𝜈𝛼
((𝐴𝛼

1 + 2𝐴𝛼
2)𝐼01 + 1

2𝐴𝛼
2𝐼03) (𝐵𝑟

𝒎
𝐵0

−
i𝑘∥𝛷𝒎

𝐸0𝑟
) −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝐸0𝑟
(𝐴𝛼

1 + 5
2𝐴𝛼

2) 𝛷𝒎 −

− ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼𝜚2
L𝛼

2𝜈𝛼
((𝐴𝛼

1 + 2𝐴𝛼
2)𝐼01 + 1

2𝐴𝛼
2𝐼03) ( 𝜕2

𝜕𝑟2
𝐵𝑟

𝒎
𝐵0

−
i𝑘∥
𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎) −

− ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝐸0𝑟
(𝐴𝛼

1 + 5
2𝐴𝛼

2) 𝜕2

𝜕𝑟2 𝛷𝒎.

As we have already shown previously via (3.30), the second term in the first line is cancelled
by the expression in the third line.

𝜚𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼
𝜈𝛼

((𝐴𝛼
1 + 𝐴𝛼

2)𝐼01 + 1
2𝐴𝛼

2𝐼03) (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼𝜚2
L𝛼

2𝜈𝛼
((𝐴𝛼

1 + 2𝐴𝛼
2)𝐼01 + 1

2𝐴𝛼
2𝐼03) (𝐵𝑟

𝒎
𝐵0

−
i𝑘∥𝛷𝒎

𝐸0𝑟
) −

− ∑
𝛼

𝑒𝛼𝑛𝛼𝑣𝑇𝛼𝜚2
L𝛼

2𝜈𝛼
((𝐴𝛼

1 + 2𝐴𝛼
2)𝐼01 + 1

2𝐴𝛼
2𝐼03) ( 𝜕2

𝜕𝑟2
𝐵𝑟

𝒎
𝐵0

−
i𝑘∥
𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎) −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝐸0𝑟
(𝐴𝛼

1 + 5
2𝐴𝛼

2) 𝛷𝒎 − ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝐸0𝑟
(𝐴𝛼

1 + 5
2𝐴𝛼

2) 𝜕2

𝜕𝑟2 𝛷𝒎. (3.108)
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In the zero Larmor radius limit where only the first line is retained, this expression coincides
with (3.32). Using now relations (3.51) we can express charge density (3.108) via suscepti-
bility functions 𝐼11 and 𝐼13 which stay finite at the resonant surface and decay as 1/𝑘2

∥ away
from it,

𝜚𝒎 =
𝑘∥
𝜔𝐸

∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼

𝜈𝛼
((𝐴𝛼

1 + 𝐴𝛼
2)𝐼11 + 1

2𝐴𝛼
2𝐼13) (𝐵𝑟

𝒎
𝐵0

−
i𝑘∥𝛷𝒎

𝐸0𝑟
) +

+ 𝜕2

𝜕𝑟2
𝑘∥
𝜔𝐸

∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼𝜚2

L𝛼
2𝜈𝛼

((𝐴𝛼
1 + 2𝐴𝛼

2)𝐼11 + 1
2𝐴𝛼

2𝐼13) (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) +

+
𝑘∥
𝜔𝐸

∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼𝜚2

L𝛼
2𝜈𝛼

((𝐴𝛼
1 + 2𝐴𝛼

2)𝐼11 + 1
2𝐴𝛼

2𝐼13) ( 𝜕2

𝜕𝑟2
𝐵𝑟

𝒎
𝐵0

−
i𝑘∥
𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎) −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝐸0𝑟
(𝐴𝛼

1 + 5
2𝐴𝛼

2) 𝛷𝒎 − ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝐸0𝑟
(𝐴𝛼

1 + 5
2𝐴𝛼

2) 𝜕2

𝜕𝑟2 𝛷𝒎. (3.109)

The parallel current density (3.106) is expressed via functions 𝐼11 and 𝐼13 in a similar manner,

𝐽∥𝒎 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼

𝜈𝛼
((𝐴𝛼

1 + 𝐴𝛼
2) 𝐼11 + 1

2𝐴𝛼
2𝐼13) (𝐵𝑟

𝒎
𝐵0

−
i𝑘∥𝛷𝒎

𝐸0𝑟
) −

− 𝜕2

𝜕𝑟2 ∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼𝜚2

L𝛼
2𝜈𝛼

((𝐴𝛼
1 + 2𝐴𝛼

2) 𝐼11 + 1
2𝐴𝛼

2𝐼13) (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) −

− ∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼𝜚2

L𝛼
2𝜈𝛼

((𝐴𝛼
1 + 2𝐴𝛼

2) 𝐼11 + 1
2𝐴𝛼

2𝐼13) ( 𝜕2

𝜕𝑟2
𝐵𝑟

𝒎
𝐵0

−
i𝑘∥
𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎) . (3.110)

For a more compact notation, we introduce

𝐺𝒎 = ∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼𝜚2

L𝛼
2𝜈𝛼

((𝐴𝛼
1 + 2𝐴𝛼

2)𝐼11 + 1
2𝐴𝛼

2𝐼13) , (3.111)

which should not be confused with the Green’s function of (3.13). We furthermore use the
perpendicular fluid velocity given by (13) of [13],

𝑉𝛼⟂ = 𝑐
𝑒𝛼𝑛𝛼𝐵0

𝜕(𝑛𝛼𝑇𝛼)
𝜕𝑟 − 𝑐𝐸0𝑟

𝐵0
= 𝑐𝑇𝛼

𝑒𝛼𝐵0
(𝐴𝛼

1 + 5
2𝐴𝛼

2) , (3.112)

as well as (3.12) and (3.38), to rewrite the coefficient in the last two terms in (3.108) succinctly
as

𝐻 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝐸0𝑟
(𝐴𝛼

1 + 5
2𝐴𝛼

2) = 1
8𝜋 ∑

𝛼

𝜚2
L𝛼𝑉𝛼⟂

𝜆2
D𝛼𝑣𝐸

, (3.113)

which in turn should not be confusedwith the total energy in the Boltzmanndistribution (3.74).
With (3.53), (3.111), and (3.113), the perturbations of charge density and current density can

60
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be compactly written as

𝜚𝒎 =
𝑘∥
𝜔𝐸

𝐹𝒎 (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) + 𝜕2

𝜕𝑟2
𝑘∥
𝜔𝐸

𝐺𝒎 (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) +

+
𝑘∥
𝜔𝐸

𝐺𝒎 ( 𝜕2

𝜕𝑟2
𝐵𝑟

𝒎
𝐵0

−
i𝑘∥
𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎) + 𝜕2

𝜕𝑟2 𝐻𝛷𝒎 + 𝐻 𝜕2

𝜕𝑟2 𝛷𝒎, (3.114)

𝐽∥𝒎 = −𝐹𝒎 (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) − 𝜕2

𝜕𝑟2 𝐺𝒎 (𝐵𝑟
𝒎

𝐵0
−

i𝑘∥𝛷𝒎
𝐸0𝑟

) −

−𝐺𝒎 ( 𝜕2

𝜕𝑟2
𝐵𝑟

𝒎
𝐵0

−
i𝑘∥
𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎) . (3.115)

In the limit of vanishing Larmor radius, 𝜚L𝛼 → 0, we have 𝐺𝒎 → 0 and 𝐻 → 0. Thus only the
first terms on the right-hand sides of (3.114) and (3.115) remain, and these expressions are
reduced to (3.52) and (3.56), respectively.

3.3.1 Repeating Recurrence Relations and Limiting Cases

Now we check the perturbation of charge density (3.114) far away from the resonant surface
in the collisionless case where 𝑧𝛼 ≪ 1. We retain the first-order correction in 𝑧𝛼 to the
susceptibility functions in (A22) of [13], resulting in the approximation

𝐼11 ≈ − i𝑥2
𝑥2

1
+ √𝜋

2
𝑥2

2
|𝑥1|3 , 𝐼31 ≈ − i𝑥2

𝑥2
1

. (3.116)

For the term involving 𝐹𝒎, we retain only the leading order in 𝐼11,

i𝑘2
∥

𝜔𝐸𝐸0𝑟
𝐹𝒎 ≈

𝑘2
∥

𝜔𝐸𝐸0𝑟
∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼

𝜈𝛼

𝑥2
𝑥2

1
(𝐴𝛼

1 + 3
2𝐴𝛼

2) = − ∑
𝛼

𝑒𝛼𝑛𝛼
𝐸0𝑟

(𝐴𝛼
1 + 3

2𝐴𝛼
2)

= ∑
𝛼

𝑒2
𝛼𝑛𝛼
𝑇𝛼

= 1
4𝜋 ∑

𝛼

1
𝜆2
D𝛼

. (3.117)

For the term involving 𝐺𝒎, we keep the first correction in 𝐼11,

i𝑘2
∥

𝜔𝐸𝐸0𝑟
𝐺𝒎 ≈

𝑘2
∥

𝜔𝐸𝐸0𝑟
∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼𝜚2

L𝛼
2𝜈𝛼

𝑥2
𝑥2

1
(𝐴𝛼

1 + 5
2𝐴𝛼

2 + i√𝜋
2

𝑥2
|𝑥1| (𝐴𝛼

1 + 2𝐴𝛼
2))

= 1
2𝐻 − i√𝜋

2
𝑐𝑘⟂

𝐵0|𝑘∥|
∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼

2𝑣𝑇𝛼
(𝐴𝛼

1 + 2𝐴𝛼
2)

= 1
2𝐻 − i

8𝜋
√𝜋

2
𝑘⟂
|𝑘∥|

∑
𝛼

𝜚3
L𝛼

𝜆2
D𝛼

(𝐴𝛼
1 + 2𝐴𝛼

2). (3.118)

Since 𝐻 ∼ 𝜚2
L𝑖/𝜆2

D𝑖, the second term is a correction of the order 𝜚L𝑖/𝐿p where 𝐿p is a typical
gradient length of plasma parameters. Keeping this correction only for the terms with 𝛷𝒎
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where a cancellation occurs, the perturbed charge density is

4𝜋𝜚𝒎 ≈ − ∑
𝛼

1
𝜆2
D𝛼

(𝛷𝒎 + i𝐸0𝑟𝐵𝑟
𝒎

𝑘∥𝐵0
) − ∑

𝛼

𝜚2
L𝛼𝑉𝛼⟂

𝜆2
D𝛼𝑣𝐸

𝜕2

𝜕𝑟2
i𝐸0𝑟𝐵𝑟

𝒎
𝑘∥𝐵0

+

+i√𝜋
8

𝑘⟂
|𝑘∥|

∑
𝛼

𝜚3
L𝛼

𝜆2
D𝛼

(𝐴𝛼
1 + 2𝐴𝛼

2) 𝜕2

𝜕𝑟2 𝛷𝒎, (3.119)

where we ignored derivatives of the equilibrium field and of 𝑘∥. We see that the last term may
exceed the Laplacian term in the Poisson equation, but it cannot produce a running wave
because it is purely imaginary. Then, radial derivatives of the potential perturbation can be
estimated as 1/𝐿p, and this term is a correction of the order 𝜚3

L𝑖/𝐿3
p ≪ 1. Similarly, we get that

terms with magnetic field derivatives estimated in the same manner produce a correction of
the order of 𝜚2

L𝑖/𝐿2
p ≪ 1. Thus, the Poisson equation in the ideal region still reduces to the

charge neutrality condition which aligns the potential with perturbed flux surfaces.

3.3.2 Extension to Toroidal Geometry

In order to accomodate toroidal geometry, we include FLR effects in the extended for-
mula (3.63) for the parallel current density which was obtained via the cylindrical expres-
sion (3.56). Using now formula (3.115), which includes the FLR effects, we approximately
get

(
𝐽1∥
𝐵0

)
𝒎

= − 𝐹𝒎
𝐵0𝜑

⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

−

− 𝜕2

𝜕𝑟2 ⟨𝑅2|∇𝑟|2⟩
𝜃

𝐺tor
𝒎

𝐵0𝜑

⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

−

− ⟨𝑅2|∇𝑟|2⟩
𝜃

𝐺tor
𝒎

𝐵0𝜑

⎛⎜⎜
⎝

𝜕2

𝜕𝑟2
⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎
⎞⎟⎟
⎠

. (3.120)

Here, we extended the definition of 𝐺𝒎 to 𝐺tor
𝒎 ,

𝐺tor
𝒎 =

𝐵2
0

𝐵2
0𝜑

𝐺𝒎 = ∑
𝛼

𝑒𝛼𝑛𝛼𝑣2
𝑇𝛼𝜚2

L𝛼𝐵2
0

2𝜈𝛼𝐵2
0𝜑

((𝐴𝛼
1 + 2𝐴𝛼

2)𝐼11 + 1
2𝐴𝛼

2𝐼13) , (3.121)

so that the common factor here is flux a function, as 𝜚L𝛼𝐵0 does not depend on angles. Next,
we extend the definition of charge density (3.114), as we did from (3.52) to (3.73),

𝐵0𝜑

𝐵𝜑
0

𝜚𝒎 = 𝑚 + 𝑛𝑞
𝑞𝜔𝐸

𝐹𝒎
⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

+

+ ⟨𝑅2|∇𝑟|2⟩
𝜃

𝜕2

𝜕𝑟2
𝑚 + 𝑛𝑞

𝑞𝜔𝐸
𝐺tor

𝒎
⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

+
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+ ⟨𝑅2|∇𝑟|2⟩
𝜃

𝑚 + 𝑛𝑞
𝑞𝜔𝐸

𝐺tor
𝒎

⎛⎜⎜
⎝

𝜕2

𝜕𝑟2
⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎
⎞⎟⎟
⎠

+

+ ⟨𝑅2|∇𝑟|2⟩
𝜃

( 𝜕2

𝜕𝑟2 𝐻tor𝛷𝒎 + 𝐻tor 𝜕2

𝜕𝑟2 𝛷𝒎) . (3.122)

In order to make it a flux function, we extended the definition (3.113) as follows:

𝐻tor =
𝐵2

0𝑅2
0

𝐵2
0𝜑

𝐻 = − ∑
𝛼

𝑒𝛼𝑛𝛼𝜚2
L𝛼𝐵2

0𝑅2
0

2𝐸0𝑟𝐵2
0𝜑

(𝐴𝛼
1 + 5

2𝐴𝛼
2) . (3.123)

This definition is consistent with the postulation (3.67) for 𝑥1 in the sense that cancellation
of the leading order term in the factor of the derivative of 𝛷𝒎 still occurs in the ideal region.
Finally, the Poisson equation (3.73) is extended to

𝜕2

𝜕𝑟2 𝛷𝒎 = − 4𝜋(𝑚 + 𝑛𝑞)
𝑞𝜔𝐸 ⟨𝑅2|∇𝑟|2⟩𝜃

𝐹𝒎
⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

−

− 𝜕2

𝜕𝑟2
4𝜋(𝑚 + 𝑛𝑞)

𝑞𝜔𝐸
𝐺tor

𝒎
⎛⎜⎜
⎝

⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝛷𝒎
⎞⎟⎟
⎠

−

−4𝜋(𝑚 + 𝑛𝑞)
𝑞𝜔𝐸

𝐺tor
𝒎

⎛⎜⎜
⎝

𝜕2

𝜕𝑟2
⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

− i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝜕2

𝜕𝑟2 𝛷𝒎
⎞⎟⎟
⎠

−

−4𝜋 ( 𝜕2

𝜕𝑟2 𝐻tor𝛷𝒎 + 𝐻tor 𝜕2

𝜕𝑟2 𝛷𝒎) . (3.124)

The straight-cylinder limit is recovered from (3.120) and (3.124) by choosing 𝑟 to be the minor
radius and setting ⟨𝑅2|∇𝑟|2⟩𝜃 = 𝑅2

0, 𝐵𝜑
0 = 𝐵0/𝑅0, and 𝐵0𝜑 = 𝐵0𝑅0.

3.3.3 Representation for the Finite Difference Method

To solve the Poisson equation (3.124) using a lowest-order finite difference representation, it
is convenient to re-notate it as

𝑎out2
𝜕2

𝜕𝑟2 𝛷𝒎 + 𝜕2

𝜕𝑟2 𝑎in2 𝛷𝒎 + 𝑎0𝛷𝒎 = 𝑏out2
𝜕2

𝜕𝑟2
⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

+ 𝜕2

𝜕𝑟2 𝑏in2 ⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

+ 𝑏0
⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

(3.125)

where

𝑎in2 = −4𝜋i(𝑚 + 𝑛𝑞)2𝐺tor
𝒎

𝑞2𝜔𝐸𝐸0𝑟
+ 4𝜋𝐻tor, 𝑎out2 = 1 + 𝑎in2 , 𝑎0 = − 4𝜋i(𝑚 + 𝑛𝑞)2𝐹𝒎

𝑞2𝜔𝐸𝐸0𝑟 ⟨𝑅2|∇𝑟|2⟩𝜃
, (3.126)

𝑏in2 = −4𝜋(𝑚 + 𝑛𝑞)𝐺tor
𝒎

𝑞𝜔𝐸
, 𝑏out2 = 𝑏in2 , 𝑏0 = −4𝜋(𝑚 + 𝑛𝑞)𝐹𝒎

𝑞𝜔𝐸 ⟨𝑅2|∇𝑟|2⟩𝜃
. (3.127)
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3 Kinetic Response Current

The expression for the current density (3.120) is compacted similarly to

(
𝐽1∥
𝐵0

)
𝒎

= 𝑐out2
𝜕2

𝜕𝑟2 𝛷𝒎 + 𝜕2

𝜕𝑟2 𝑐in2 𝛷𝒎 + 𝑐0𝛷𝒎 +

+𝑑out2
𝜕2

𝜕𝑟2
⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

+ 𝜕2

𝜕𝑟2 𝑑in2 ⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

+ 𝑑0
⎛⎜
⎝

𝐵𝑟
1

𝐵𝜑
0

⎞⎟
⎠𝒎

(3.128)

where

𝑐in2 =
i(𝑚 + 𝑛𝑞)𝐺tor

𝒎 ⟨𝑅2|∇𝑟|2⟩
𝜃

𝑞𝐸0𝑟𝐵0𝜑
, 𝑐out2 = 𝑐in2 , 𝑐0 = i(𝑚 + 𝑛𝑞)𝐹𝒎

𝑞𝐸0𝑟𝐵0𝜑
, (3.129)

𝑑in2 = −
𝐺tor

𝒎 ⟨𝑅2|∇𝑟|2⟩
𝜃

𝐵0𝜑
, 𝑑out2 = 𝑑in2 , 𝑑0 = − 𝐹𝒎

𝐵0𝜑
. (3.130)

For an efficient implementation, the following relations are useful:

𝑎0 = i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝑏0, 𝑎in2 = i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝑏in2 + 4𝜋𝐻tor, (3.131)

𝑐0 = −i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝑑0, 𝑐in2 = −i𝑚 + 𝑛𝑞
𝑞𝐸0𝑟

𝑑in2 . (3.132)
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Chapter 4

Numerical Treatment

On the highest level, the simulation underlying MEPHIT proceeds via the follow steps.

1. Field-line integration of the equilibrium magnetic field 𝑩0 yields (𝑅, 𝑍) coordinates of
points of constant𝜓with high resolution, i.e., flux surface cross-sections. This procedure,
as well as the retrieval of various other equilibrium quantities is described in section 4.1.

2. From these, a coarser, but still field-aligned grid, i.e., a structured mesh, is constructed
according to section 4.4. This triangulation serves as a basis for the finite elements
described in section 4.3.

3. The vacuum perturbation field 𝛿𝑩v is calculated from the external coil currents by the
Biot–Savart law as described in section 4.2. For the selected toroidal mode number 𝑛,
𝑩𝑛 is then projected onto the finite element basis.

4. The iterations steps are performed according to chapter 2, with implementation details
given in sections 4.5 and 4.6.

5. The results are post-processed and possibly converted as discussed in section 4.7.

The results of this procedure are shown in section 5.2.

4.1 Equilibrium Quantities
The equilibrium quantities are assumed to be available in GEQDSK format, shortly sum-
marized by Lao [15] and commonly created with codes like EFIT and CLISTE. It consists
of

• 𝜓 data points given on a rectangular (𝑅, 𝑍) grid, which we interpolate with quintic
splines in 𝑅 and 𝑍,

• profiles, i.e., flux surface quantities 𝐹(𝜓), 𝑝0(𝜓), 𝐹𝐹′(𝜓), 𝑝′
0(𝜓), 𝑞(𝜓) given for equidistant

values of 𝜓, which we interpolate with Lagrange polynomials of fourth order,

• geometric data: the position (𝑅O, 𝑍O) of the magnetic axis, points on the separatrix, a
polygon approximating the vacuum vessel, all of which are displayed in figure 1.1,

• the toroidal current, and the magnetic field at the center, which are relevant for the sign
conventions covered in section 4.7.
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4 Numerical Treatment

Note that the code to handle these equilibrium quantities is shared with Gorilla [16], but
the latter assumes 𝐹 = 𝐵0𝜑 to be constant. Furthermore, alternative values for 𝑝0 may be
supplied, and 𝑞 computed from the field-line integration described further below is usually
more reliable than the values supplied by the GEQDSK file. The toroidal equilibrium current
density 𝐽tor0 may be computed by Ampère’s law,

𝐽tor0 = 𝑐
4𝜋 (

𝜕𝐵𝑅
0

𝜕𝑍 −
𝜕𝐵𝑍

0
𝜕𝑅 ) . (4.1)

This reduces to the second derivative of a spline in 𝜓, which may result in unacceptable
amplification of any noise present in the input data or introduced by spline interpolation.
One solution to this problem is to smooth out input data by averaging over a given number of
neighbouring data points. Alternatively, the toroidal equilibrium current may be recovered
from the solution of the Grad–Shafranov equation, the necessary data being contained in the
GEQDSK file, as discussed near equation (1.1). Lao [15] includes the corresponding formula,
but note that a factor of 𝜇0 is missing in the denominator of the second term on the right-hand
side. The relation in Gaussian units is given by

𝐽tor0 = 𝑐𝑅𝑝′
0(𝜓) + 𝑐

4𝜋𝑅𝐹𝐹′(𝜓). (4.2)

With the equilibrium magnetic field available via spline evaluation, we can perform field-line
integration. Using the relation between coordinates and magnetic field components from
D’haeseleer et al. [5], we can write the equations for a magnetic field line as

d𝑅
d𝜑 =

𝐵𝑅
0

𝐵𝜑
0

= 𝐵̂0𝑅
𝐵̂0𝜑

𝑅, d𝑍
d𝜑 =

𝐵𝑍
0

𝐵𝜑
0

= 𝐵̂0𝑍
𝐵̂0𝜑

𝑅. (4.3)

These 𝑦′
1(𝜑), 𝑦′

2(𝜑) can be integrated along the curve parameter 𝜑 with standard Runge–Kutta
methods, yielding the poloidal position (𝑦1, 𝑦2) = (𝑅, 𝑍), which in turn is used in spline
evaluation of the magnetic field. Projected onto the poloidal cross-section, this position will
move along the contours depicted in figure 1.1, and |𝑞| toroidal turns are necessary to complete
one poloidal turn. By adding further 𝑦′

𝑘, we can determine the position of the magnetic axis
and the X point, as well as various flux functions and the symmetry flux coordinates. To find
the magnetic axis, we use

𝑦′
3 = 𝑅, 𝑦3 = ⟨𝑅⟩ Δ𝜑, (4.4)

𝑦′
4 = 𝑍, 𝑦4 = ⟨𝑍⟩ Δ𝜑, (4.5)

where Δ𝜑 is the integration interval, here some multiple of 2𝜋, and ⟨⋅⟩ denotes the flux surface
average. For nested elliptical cross-sections without Shafranov shift, ⟨𝑅⟩ and ⟨𝑍⟩ would
already correspond to the position of the magnetic axis, but even in the general case they lie
on a flux surface inside the one we averaged over. Using ⟨𝑅⟩ and ⟨𝑍⟩ as new initial values for
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𝑦′
1 and 𝑦′

2, and repeating the process draws ever smaller contours, approaching the magnetic
axis at (𝑅O, 𝑍O) arbitrarily close.

To find the separatrix, we start the field-line integration at (𝑅O + Δ𝑅, 𝑍O) with Δ𝑅 gradually
increasing, i.e., we move in outboard direction. For each Δ𝑅, we repeatedly take small steps
in Δ𝜑 in order to take note of the sign of 𝑍 − 𝑍O. After the sign changes a second time, one
poloidal turn is completed. If at any intermediate step the resulting (𝑅, 𝑍) is located outside
the rectangular grid, we followed a non-closed flux surface and thus bracketed the separatrix;
otherweise we proceed with larger Δ𝑅 until this is the case.

One step further inside lies the last closed flux surface for the chosen resolution. Starting
again at (𝑅O + Δ𝑅, 𝑍O), we save the current and previous (𝑅, 𝑍) position of each step in order
to determine the distance in the poloidal plane covered by the current integration step. Close
to the X point, a poloidal null, this distance will be lowest, thus we save the associated position
(𝑅𝑋, 𝑍𝑋) as the approximate X point. Again, by tracking the sign of 𝑍 − 𝑍O, we ensure that
we stop after one poloidal turn.

To calculate the flux functions, we need to determine the Δ𝜑 for which exactly one poloidal
turn is completed. We start at the 𝜃 = 0 line, which lies at an angle 𝜃0 relative to the horizontal
line extending from the magnetic axis in outboard direction, i.e., the initial position is now
(𝑅0 + Δ𝑅 cos 𝜃0, 𝑍0 + Δ𝑅 sin 𝜃0). The method used already twice above stops after surpassing
the starting position (now at 𝜃0), but it depends on the chosen step size by how much. To
improve upon this estimate, we use Newton’s method as follows. Consider the vector from
the magnetic axis to the current poloidal position, and the tangent vector of the magnetic
field line in the poloidal plane, i.e.,

𝒓 = (𝑅 − 𝑅0) ̂𝒆𝑅 + (𝑍 − 𝑍0) ̂𝒆𝑍 = (𝑦1 − 𝑅0) ̂𝒆𝑅 + (𝑦2 − 𝑍0) ̂𝒆𝑍, (4.6)

𝒔 = d𝑅
d𝜑 ̂𝒆𝑅 + d𝑍

d𝜑 ̂𝒆𝑍 = 𝑦′
1 ̂𝒆𝑅 + 𝑦′

2 ̂𝒆𝑍, (4.7)

as well as the angles between them and the 𝜃 = 0 line,

𝜃𝒓 = arctan 𝑍 − 𝑍O
𝑅 − 𝑅0

− 𝜃0 = arctan 𝑦2 − 𝑍O
𝑦1 − 𝑅0

− 𝜃0, (4.8)

𝜃𝒔 = arctan
d𝑍
d𝜑
d𝑅
d𝜑

− 𝜃0 = arctan
𝑦′

2
𝑦′

1
− 𝜃0. (4.9)

We project both vectors onto the tangential direction at 𝜃0, i.e., ̂𝒆𝜃. This is the distance |𝒓| sin 𝜃𝒓
of which we want to find the zero position, and its derivative is |𝒔| sin 𝜃𝒔. Now we only need
to take care of the sign of 𝜃′(𝜑), which is just the sign of the safety factor 𝑞. This is easily
determined by evaluating 𝜎𝑞 = sgn 𝐵̂0𝑍𝐵̂0𝜑 at (𝑅O + Δ𝑅, 𝑍O). Putting everything together,
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we update the integration interval as follows:

Δ𝜑 → Δ𝜑 − |𝒓| sin 𝜃𝒓
|𝒔| sin 𝜃𝒔

𝜎𝑞. (4.10)

With Δ𝜑 thus determined, we can immediately compute the safety factor on this flux surface
in analogy to (1.6) as

𝑞 = 2𝜋
Δ𝜑𝜎𝑞. (4.11)

Spline evaluation at (𝑅, 𝑍) yields the poloidal flux, while the flux surface area 𝐴 and the
circumference 𝐶 are obtained from field line integration:

𝑦′
5 = 𝑅d𝑍

d𝜑, 𝑦5 = 𝐴, (4.12)

𝑦′
6 = √(d𝑅

d𝜑)
2

+ (d𝑍
d𝜑)

2
, 𝑦6 = 𝐶. (4.13)

Finally, with 𝑞 known, we can take integration steps at Δ𝜗 = 𝑞 Δ𝜑. We save the corresponding
values of 𝑅(𝜓, 𝜗) and 𝑍(𝜓, 𝜗) and interpolate them with splines, which allows us to transform
symmetry flux coordinates to cylindrical coordinates. Evaluating (1.7) yields the associated
metric determinant, and 𝑦6 from (4.13) contains the equal-arclength poloidal angle.

Some of the above quantities and partial derivatives are also cached at certain evaluation
points, e.g., in regards to the flux surface cross-sections described in further detail in section 4.4.
For the profiles, there is one value on each flux surface, referred to as full-grid value, and one
value between flux surfaces, referred to as half-grid value. The poloidal Fourier series expansion
serves as an example. As discussed in section 4.3, the pressure perturbation is represented by
values on the flux surface, so the associated poloidal Fourier amplitudes are full-grid values.
On the other hand, the reperesentation of the magnetic field and current density perturbations
is discontinuous along triangle edges, so interpolation is performed between flux surfaces,
resulting in half-grid values for the associated poloidal Fourier amplitudes.

4.2 Magnetic Field Perturbation in Vacuum
Assuming coils of infinitesimal width, the vacuum perturbation field 𝛿𝑩v of chapter 2, which
we simplify to 𝛿𝑩 for the remainder of this section, is computed from the current 𝐼𝑘 flowing in
the closed contour 𝐶𝑘 of the coil 𝑘 via the Biot-Savart law evaluated at position 𝒙,

𝛿𝑩(𝒙) = 𝑐0 ∑
𝑘

𝐼𝑘 ∫
𝐶𝑘

d𝒍𝑘 × 𝒙 − 𝒍𝑘
|𝒙 − 𝒍𝑘|3 ≕ 𝑐0

𝐼0
∑

𝑘
𝐼𝑘 𝛿𝑩𝑘(𝒙). (4.14)
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4.2 Magnetic Field Perturbation in Vacuum

As the last step already suggests, we compute the magnetic field 𝛿𝑩𝑘 of each coil 𝑘 separately
for unit current 𝐼0, and only take the sum over the coils and their currents at the very end,
which is allowed because the summation and integration are linear and exchangeable. This
way, the computationally expensive Biot-Savart integral, which only depends on the coil
geometry and not on the changing coil currents, needs only be evaluated once per device
instead of once per shot or even time slice.

Furthermore, we are interested in the toroidal Fourier modes 𝑩𝑛 of 𝛿𝑩. The discrete Fourier
transform of the three-dimensional field is also a linear operation, so we can compute 𝑩𝑛,𝑘
from 𝛿𝑩𝑘 and save the former for later retrieval, i.e., for the linear combination with 𝐼𝑘 for
the specific shot or time slice. Since the actual evaluation points depend on the mesh and
thus on the specific equilibrium and configuration values, and the discrete Fourier transform
is computed numerically instead of analytically, interpolation is necessary. Thus we use
the same bivariate fifth-order splines as in section 4.1, albeit for the vector potential 𝑨𝑛 to
ensure zero divergence for interpolated 𝑩𝑛. For toroidal mode numbers 𝑛 ≠ 0, the magnetic
vector potential can be gauged such that ̂𝐴𝑛𝜑 = 0, as discussed in section 2.1. Note that the
contribution from 𝑛 = 0 is assumed to be contained in the equilibriu 𝑩0 already and does not
need to be considered here. This results in the following expressions for the magnetic field in
cylindrical coordinates:

𝐵̂𝑛𝑅 = i𝑛
𝑅

̂𝐴𝑛𝑍, 𝐵̂𝑛𝜑 = 𝜕
𝜕𝑍

̂𝐴𝑛𝑅 − 𝜕
𝜕𝑅

̂𝐴𝑛𝑍, 𝐵̂𝑛𝑍 = − i𝑛
𝑅

̂𝐴𝑛𝑅. (4.15)

With this gauge, only a simple algebraic transformation is needed to obtain 𝑨𝑛 from 𝑩𝑛. Note
that 𝐵̂𝑛𝜑 is not used in construction of the splines even though it is easily available from the
Biot-Savart law.

This ansatz has one disadvantage: the magnetic field diverges towards the coils, which are
generally located inside the rectangular computational domain, and trying to resolve such a
field results in spline oscillation. The current approach to alleviate this is by “contracting” the
coordinates: any evaluation point outside a defined convex polygon modelled on the vacuum
vessel cross-section is smoothly mapped to a point closer to the convex polygon, thus avoiding
the singularity near the coils. This requires manual definition of the convex polygon fitting
the device for which simulations are performed. Another approach under investigation is to
avoid the singularity during the evaluation of the Biot-Savart integral, which is discussed in
further detail below.

Coil geometries are commonly given as filamentary segments, i.e., a list of points on each
coil which are connected by straight lines. Hanson and Hirshman [17] derive a closed-form
expression of the Biot-Savart integral over such a line segment and discuss how to handle
the singularity, and application of the resulting formula for 𝛿𝑩 is straightforward. Seeing
how we ignore the toroidal component near (4.15), we consider computing the gauged vector
potential directly, which does not ignore part of the computation and turns out to improve
the spline behaviour somewhat. The simplest representation of the gauge potential for (4.15)
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is in Fourier space,

𝜒𝑛 = i𝑅
𝑛

̂𝐴𝑛𝜑, (4.16)

so the calculation steps are:

1. from the Biot-Savart law, calculate the Cartesian components of 𝑨, ∇ ̂𝐴𝑋, ∇ ̂𝐴𝑌,

2. by coordinate transform, calculate the cylindrical components of 𝑨, 𝜕𝑅 ̂𝐴𝜑, 𝜕𝑍 ̂𝐴𝜑,

3. by discrete Fourier transform, calculate the Fourier amplitudes of 𝑨𝑛, 𝜕𝑅 ̂𝐴𝑛𝜑, 𝜕𝑍 ̂𝐴𝑛𝜑,

4. calculate bivariate splines of the gauged components ̂𝐴𝑛𝑅 + 𝜕𝑅𝜒𝑛 and ̂𝐴𝑛𝑍 + 𝜕𝑍𝜒𝑛.

For a current 𝐼 along a line segment beginning at 𝒙i and ending at 𝒙f, Hanson and Hirshman
[17] give the following expression for the magnetic vector potential at evaluation point 𝒙,
transformed to Gaussian units,

𝑨(𝒙) = 𝐼
𝑐

𝑳
𝐿 ln 𝑅i + 𝑅f + 𝐿

𝑅i + 𝑅f − 𝐿, (4.17)

where 𝑳 = 𝒙f − 𝒙i, 𝑹i = 𝒙 − 𝒙i, 𝑹f = 𝒙 − 𝒙f. They further introduce a parameter

𝜀 = 𝐿
𝑅i + 𝑅f

, (4.18)

whose geometric interpretation is the eccentrity of an ellipse with focal points 𝒙i and 𝒙f
passing through 𝒙. This is useful when introducing a cutoff to avoid the singularity at the
infinitesimally thin wire as 𝜀 → 1, which can be seen from the expression

ln 𝑅i + 𝑅f + 𝐿
𝑅i + 𝑅f − 𝐿 = ln 1 + 𝜀

1 − 𝜀 ≕ 𝑓 (𝜀). (4.19)

As an option to avoid the singularity, we implement a maximum value for 𝜀 and a minimum
value for 𝑅i and 𝑅f. Setting the former to 1 and the latter to 0 effectively applies no cutoff. Next,
to calculate the gradient of the Cartesian components, we only need to consider the gradient
of this function,

∇𝑓 (𝜀) = 𝑓 ′(𝜀)∇𝜀 = 2
1 − 𝜀2 ∇ 𝐿

𝑅i + 𝑅f
= 2(𝑅i + 𝑅f)2

(𝑅i + 𝑅f)2 − 𝐿2
−𝐿

(𝑅i + 𝑅f)2 (∇𝑅i + ∇𝑅f) =

= 2𝐿
𝐿2 − (𝑅i + 𝑅f)2 (𝑹i

𝑅i
+ 𝑹f

𝑅f
) = − 𝐿

𝑅i𝑅f + 𝑹i ⋅ 𝑹f
(𝑹i

𝑅i
+ 𝑹f

𝑅f
) , (4.20)

where in the last step, we used 𝑳 = 𝑹f − 𝑹i. The Cartesian components and their gradients
then are

̂𝐴𝑘 = 𝐼
𝑐

𝐿̂𝑘
𝐿 ln 𝑅i + 𝑅f + 𝐿

𝑅i + 𝑅f − 𝐿, ∇ ̂𝐴𝑘 = −𝐼
𝑐

𝐿̂𝑘
𝑅i𝑅f + 𝑹i ⋅ 𝑹f

(𝑹i
𝑅i

+ 𝑹f
𝑅f

) . (4.21)
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The remaining cylindrical components and partial derivatives are

̂𝐴𝑅 = ̂𝐴𝑋 cos𝜑 + ̂𝐴𝑌 sin𝜑 = 𝐼
𝑐

𝐿̂𝑋 cos𝜑 + 𝐿̂𝑌 sin𝜑
𝐿 ln 𝑅i + 𝑅f + 𝐿

𝑅i + 𝑅f − 𝐿, (4.22)

̂𝐴𝜑 = ̂𝐴𝑌 cos𝜑 − ̂𝐴𝑋 sin𝜑 = 𝐼
𝑐

𝐿̂𝑌 cos𝜑 − 𝐿̂𝑋 sin𝜑
𝐿 ln 𝑅i + 𝑅f + 𝐿

𝑅i + 𝑅f − 𝐿, (4.23)

𝜕𝑍 ̂𝐴𝜑 = 𝜕𝑍 ̂𝐴𝑌 cos𝜑 − 𝜕𝑍 ̂𝐴𝑋 sin𝜑 = −𝐼
𝑐

𝐿̂𝑌 cos𝜑 − 𝐿̂𝑋 sin𝜑
𝑅i𝑅f + 𝑹i ⋅ 𝑹f

⎛⎜
⎝

𝑅̂i,𝑍
𝑅i

+
𝑅̂f,𝑍
𝑅f

⎞⎟
⎠

, (4.24)

𝜕𝑅 ̂𝐴𝜑 = 𝜕𝑋 ̂𝐴𝑌 cos2 𝜑 + (𝜕𝑌 ̂𝐴𝑌 − 𝜕𝑋 ̂𝐴𝑋) sin𝜑 cos𝜑 − 𝜕𝑌 ̂𝐴𝑋 sin2 𝜑 =

= −𝐼
𝑐

𝐿̂𝑌 cos𝜑 − 𝐿̂𝑋 sin𝜑
𝑅i𝑅f + 𝑹i ⋅ 𝑹f

⎛⎜
⎝

𝑅̂i,𝑋 cos𝜑 + 𝑅̂i,𝑌 sin𝜑
𝑅i

+
𝑅̂f,𝑋 cos𝜑 + 𝑅̂f,𝑌 sin𝜑

𝑅f
⎞⎟
⎠

. (4.25)

The Fourier amplitudes of these quantities are then used for the gauged magnetic vector
potential,

̂𝐴𝑛𝑅 → ̂𝐴𝑛𝑅 + i𝑅
𝑛 (𝜕𝑅 ̂𝐴𝜑)

𝑛
+ i

𝑛
̂𝐴𝑛𝜑, (4.26)

̂𝐴𝑛𝑍 → ̂𝐴𝑛𝑍 + i𝑅
𝑛 (𝜕𝑍 ̂𝐴𝜑)

𝑛
. (4.27)

4.3 Finite Elements
The finite element method described in section 2.1, specifically (2.93), yields the con-
travariant density components of 𝑩pol

𝑛 represented in a finite element basis of 𝐻divt , such
as Raviart–Thomas elements on triangles. Due to an error in the derivation in [18], the
original method impemented in MEPHIT was only applicable to lowest-order (i.e., linear)
Raviart–Thomas elements. While higher-order elements show a lower approximation error
(see section 5.1.1), a more generic re-implementation is not trivial at this point. Furthermore,
MEPHIT is intended to interface with Gorilla [16], which uses linearised perturbation quan-
tities to reduce sensitivity to statistical noise. However, a comprehensive comparison of the
effects resulting from different orders of finite elements is reserved for future work, thus linear
interpolation is used for perturbation quantities.

As mentioned in section 1.1, cylindrical coordinates (𝑅, 𝜑, 𝑍) have no singularity at the mag-
netic axis and are more easily extended beyond the separatrix, which simplifies the imposition
of boundary conditions. Computations are thus performed in the poloidal plane spanned by
𝑅 and 𝑍 and with a density √𝑔cyl = 𝑅. For any triangle 𝛺 in the poloidal plane, evaluation of
the lowest-order Raviart–Thomas element at a point 𝒓 = 𝑅 ̂𝒆𝑅 + 𝑍 ̂𝒆𝑍 within the triangle yields
the magnetic field perturbation as

𝑅𝑩pol
𝑛 = 1

2𝐴𝛺

3
∑
𝑘=1

(𝒓 − 𝒓𝑘)𝛹𝑘. (4.28)
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4 Numerical Treatment

Here, 𝐴𝛺 is the area of the triangle 𝛺, 𝛹𝑘 is the scalar complex-valued degree of freedom associ-
ated with edge 𝛤𝑘, and 𝒓𝑘 = 𝑅𝑘 ̂𝒆𝑅 +𝑍𝑘 ̂𝒆𝑍 is the coordinate vector of the triangle vertex opposite
edge 𝛤𝑘, as illustrated in figure 4.1a. Inversely, the degree of freedom can be determined from
a given magnetic field perturbation as the integral along the associated edge 𝛤𝑘, with 𝒏𝑘 the
normal vector pointing outwards of the triangle:

𝛹𝑘 = ∫
𝛤𝑘

𝑅𝑩pol
𝑛 ⋅ ̂𝒏𝑘 d𝛤𝑘. (4.29)

Note that 𝛹𝑘 has the physical dimension of a magnetic flux and the symbol is chosen to reflect
that, but it does not have a simple, direct physical interpretation — it does not result from the
area integral of a three-dimensionalmagnetic flux density after the Fourier transform. This is in
contrast to the three-dimensional case without Fourier series expansion, i.e., Raviart–Thomas
elements defined on tetrahedra, where the degree of freedom for the lowest order is indeed
the magnetic flux through the associated face of the tetrahedron. Further note that, with
regard to two adjacent elements (triangles/tetrahedra), interpolation via (4.28) is generally
discontinuous along edges/faces, but the perpendicular component across edges/faces is
continuous, as can be seen from (4.29) yielding the same result for both triangles sharing that
particular edge.

Next, as another consequence of the Fourier transform, consider the divergence, which consists
of a poloidal contribution from (4.28) that is constant on each triangle, and an independent
toroidal contribution:

𝜕𝑘 (√𝑔𝛿𝐵𝑘) → 𝜕𝑅 (𝑅𝐵𝑅
𝑛 ) + 𝜕𝑍 (𝑅𝐵𝑍

𝑛 ) + i𝑛𝑅𝐵𝜑
𝑛 = 1

𝐴𝛺

3
∑
𝑘=1

𝛹𝑘 + i𝑛𝐵tor
𝑛 . (4.30)

To impose zero divergence, 𝐵tor
𝑛 must also be constant on each triangle, corresponding to

lowest-order Lagrange elements, and for this case, the toroidal component is determined as

𝐵tor
𝑛 = i

𝑛𝐴𝛺

3
∑
𝑘=1

𝛹𝑘. (4.31)

Using (4.31) and (4.29) together has one caveat regarding numerical accuracy. When solving
the integral along the edge in (4.29) with Gauss–Legendre quadrature, one evaluation point
should be sufficient to exactly integrate a linear function. This reduces the integral to a single
term, the evaluation of the integrand at the mid-point of the edge multiplied by the length
of the edge. The “inverse” operation, in a sense, is to evaluate (4.28) at the edge mid-point
and multiply by the edge normal vector. This even reproduces the associated degree of
freedom exactly, which can be seen by inserting, e.g. 𝒓 = 1

2(𝒓1 + 𝒓2) and multiplying with
𝒏3 = (𝑍2 − 𝑍1) ̂𝒆𝑅 − (𝑅2 − 𝑅1) ̂𝒆𝑍, which yields 𝛹3. So it seems justified, and it appears
that FreeFem++ [19] employs this one-point quadrature. However, comparing the result
of (4.31) with the exact values for typical 𝑩𝑛v shows large deviations even across neighbouring
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triangles. Using higher orders in the Gauss–Legendre quadrature reduces these deviations
considerably, and in fact, two evaluation points are already sufficient and higher orders show
no further improvement.

Alternatively, the divergence in (4.30) can be computed from the toroidal component, ef-
fectively shifting the numerical error from the latter to the former. To this end, 𝐵tor

𝑛 has to
be averaged over the area of the triangle. Cowper [20] lists quadrature schemes of various
orders, approximating the integral of a function 𝑓 over a triangle 𝛺 as

∬
𝛺

𝑓 (𝑅, 𝑍) d𝑅d𝑍 ≈ 𝐴𝛺

𝑁
∑
𝑖=1

𝑤𝑖 𝑓 (𝑅𝑖, 𝑍𝑖). (4.32)

Since second-order quadrature appears to be sufficient for (4.29), we use a fourth-order
scheme for the area integral, i.e., second-order in both 𝑅 and 𝑍. One such scheme with 𝑁 = 6
evaluation points, tabulated in table 4.1, is given by two sets of weights and barycentric
coordinates 𝜆𝑖, the latter of which are permuted to form triplets of distinct points, as indicated
in figure 4.1d.

Table 4.1: Weights and evaluation points for fourth-order area integral approximation by
Cowper [20]. The barycentric coordinates 𝜆𝑖 are permuted to form triplets of distinct points,
i.e., (𝑅𝑖, 𝑍𝑖) in (4.32).

𝑤𝑖 𝜆1 𝜆2 𝜆3

0.109 951 743 655 322 0.816 847 572 980 459 0.091 576 213 509 771 0.091 576 213 509 771
0.223 381 589 678 011 0.108 103 018 168 070 0.445 948 490 915 965 0.445 948 490 915 965

The 𝐿2 norm of the finite element function over one triangle 𝛺 is also an area integral. As
such, it could be computed via (4.32), but an analytic solution is also possible and turns out to
be faster1. It involves multiplication of a 1 × 3 matrix containing edge vectors 𝒍𝑘 as indicated in
figure 4.1c, two constant 3 × 3 centrosymmetric matrices, and two 3 × 1 matrices constructed
from the degrees of freedom 𝛹𝑘 as shown in figure 4.1a. The square of the norm is then

∥𝑅𝑩pol
𝑛 ∥

2

2
= ∬

𝛺
∣𝑅𝑩pol

𝑛 ∣
2
d𝑅d𝑍 = 1

24𝐴𝛺
[𝒍3 ⋅ 𝒍3 𝒍3 ⋅ 𝒍1 𝒍1 ⋅ 𝒍1]

⎛⎜⎜⎜⎜
⎝

⎡
⎢⎢
⎣

3 1 1
3 −1 3
1 1 3

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝛹∗
1 𝛹1

𝛹∗
2 𝛹2

𝛹∗
3 𝛹3

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

1 −1 −1
1 −3 1

−1 −1 1

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝛹∗
2 𝛹3 + 𝛹2𝛹∗

3
𝛹∗

3 𝛹1 + 𝛹3𝛹∗
1

𝛹∗
1 𝛹2 + 𝛹1𝛹∗

2

⎤
⎥⎥
⎦

⎞⎟⎟⎟⎟
⎠

. (4.33)

For the scalar perturbation quantities, the situation is much simpler. Solving the MDE (2.113)
as described in section 4.5 yields the value of the pressure perturbation 𝑝𝑛 at certain points.
On any triangle resulting from the triangulation of all these points in the poloidal plane, linear

1The approximate solution by quadrature is retained as a unit test for the analytical solution.
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𝛹1
𝛹2

𝛹3

𝒓3

𝒓2𝒓1

𝒓

(a) Interpolation of linear Raviart–Thomas ele-
ments according to (4.28). The basis functions
consist of vectors pointing from the triangle ver-
tices 𝒓𝑘 to the evaluation point 𝒓. The degrees of
freedom 𝛹𝑘 are associated with the edges oppo-
site to the vertex 𝒓𝑘.

𝜋3

𝜋2𝜋1

(𝑅, 𝑍)

(b) Interpolation of linear Lagrange elements ac-
cording to (4.34). The degrees of freedom 𝜋𝑘 are
associated with the triangle vertices 𝒓𝑘. The basis
functions are the barycentric coordinates corre-
sponding to these vertices.

̂𝒏1̂𝒏2

̂𝒏3

𝒍1

𝒍2

𝒍3

(c) Edge vectors 𝒍𝑘 point in counter-clockwise
direction in (4.33), and normal vectors 𝒏𝑘 point
outwards in (4.29).

•

•• •

• •

(d) Six evaluation points for the fourth-order area
integral approximation given in table 4.1. The
median lines are indicated for reference.

Figure 4.1: Example triangles illustrating the interpolation functions for 𝑩pol
𝑛 and 𝑝𝑛, as well as

the definitions involved in the quadratures. The barycentric coordinate 𝜆𝑘 associated with one
vertex 𝒓𝑘 is the ratio between the area of the triangle spanned by the remaining two vertices
and the evaluation point, and the total triangle area. In (4.1a) and (4.1b), the evaluation point
(𝑅, 𝑍) has barycentric coordinates (0.2 ∶ 0.4 ∶ 0.4).

interpolation corresponds to evaluation of Lagrange elements of second-lowest order:

𝑝𝑛 = 1
2𝐴𝛺

3
∑
𝑖=1

3
∑
𝑗=1

3
∑
𝑘=1

𝜀𝑖𝑗𝑘(𝑅 − 𝑅𝑖)(𝑍 − 𝑍𝑗)𝜋𝑘. (4.34)

Here, the degrees of freedom 𝜋𝑘 are simply the aforementioned values of 𝑝𝑛 at triangle
vertices. The interpolant within the triangle can also be interpreted as the sum of the degrees
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of freedom weighted by the barycentric coordinates, as illustrated in figure 4.1b. Calculation
of the gradient is straightforward, and similarly to the divergence of the Raviart–Thomas
elements above, the value is constant on each triangle:

𝜕𝑝𝑛
𝜕𝑅 = 1

2𝐴𝛺

3
∑
𝑖=1

3
∑
𝑗=1

3
∑
𝑘=1

𝜀𝑖𝑗𝑘(𝑍 − 𝑍𝑗)𝜋𝑘 = 1
2𝐴𝛺

3
∑
𝑖=1

3
∑
𝑗=1

3
∑
𝑘=1

𝜀𝑖𝑗𝑘𝑍𝑖𝜋𝑘, (4.35)

𝜕𝑝𝑛
𝜕𝑍 = 1

2𝐴𝛺

3
∑
𝑖=1

3
∑
𝑗=1

3
∑
𝑘=1

𝜀𝑖𝑗𝑘(𝑅 − 𝑅𝑖)𝜋𝑘 = 1
2𝐴𝛺

3
∑
𝑖=1

3
∑
𝑗=1

3
∑
𝑘=1

𝜀𝑖𝑗𝑘𝑅𝑗𝜋𝑘. (4.36)

Finally, note that the approach laid out for 𝑩pol
𝑛 also applies to the current density perturbation

𝑱pol𝑛 (or any quantity represented by contravariant density components), where the degrees
of freedom 𝐼𝑘 take the physical dimension of current, again without an underlying physical
current. Likewise, 𝐽∥

𝑛𝐵−1
0 in the magnetic differential equation (2.122) is treated in the same

manner as 𝑝𝑛.

4.4 Mesh Construction
Since the magnetic field perturbation 𝛿𝑩 is represented by an array containing the degrees of
freedom for a finite element basis, it is necessary that these are interpreted in the same way
in every iteration step, so that 𝐾̂ in (2.15) stays the same, which is in turn required for the
computation of 𝛱̂ in (2.16). As a consequence, the mesh cannot change between iteration
steps. In particular, refinement of the mesh based on the result of iteration steps is not possible.
It’s only conceivable to use the converged result to construct a refinedmesh and start iterations
anew, but this is outside the scope of this thesis. Instead, we set out to construct a feasible
mesh from the available information.

While not strictly necessary, for simplicity we use the same mesh for the different finite
elements discussed in the previous section. Then the first restriction comes from the solution
of theMDE as described in section 4.5: all mesh nodes need to be placed on nested flux surface
cross-sections, resulting in a structured or field-alignedmeshwhere each triangle connects points
on two adjacent cross-sections. Anticipating the behaviour of the perturbation, we need to
place these cross-sections closer together near resonance positions, requiring radial refinement.
Secondly, due to the approximation error incurred by a triangulation containing elongated
triangles, we choose the number of points distributed over these cross-sections accordingly,
a process we refer to as poloidal refinement by analogy. Finally, we construct a constrained
Delaunay triangulation from this point set, along with the relevant data structures. Note
that, as initially mentioned, different meshes could be used for the different finite elements,
interpolating when necessary. This might yet be relevant whenMEPHIT is applied to multiple
toroidal modes 𝑛 in parallel, such as for Fourier expansion of these modes in combination
with Gorilla [16]. Both radial and poloidal refinement increase the size of the linear systems
to be solved, so they should only be applied to the resonance positions of each specific 𝑛
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separately. However, this is reserved for future work.

To determine the radial positions of the field-aligned mesh, we use the horizontal line extend-
ing from the magnetic axis outwards to the separatrix. In this context, 𝑟 denotes the distance
from the magnetic axis along this line1, or rather its normalized variant ̂𝑟, i.e., we search for
a partition of the unit interval with some maximum subinterval length 𝐷. We also want to
surround each known resonance position ̂𝑟res symmetrically with subintervals of length 𝑑,
such that the closest two points are centered around the resonance position and 𝐿 points are
added on each side. This results in the positions

̂𝑟±𝑙 = ̂𝑟res ± (𝑙 − 1
2) 𝑑, ∀𝑙 = 1, 2, … , 𝐿. (4.37)

Between these finer regions, there should be a smooth transition to the coarser subintervals
of maximum length 𝐷, in the sense that the ratio of adjacent subinterval lengths should not
exceed some factor 𝑓. On the other hand, we want to minimize the number of points needed.
Thus we extend the last subinterval of length 𝑑 by subintervals of length 𝑓 𝑑, then by 𝑓 2𝑑, and
so on, forming a geometric series in 𝑓, resulting in the positions

̂𝑟±(𝐿+𝑛) = ̂𝑟res ± (𝐿 − 1
2 + 𝑓 𝑛+1 − 𝑓 1

𝑓 − 1 ) 𝑑, ∀𝑛 = 0, 1, … , 𝑁. (4.38)

The resulting subinterval lengths must not exceed the given maximum 𝐷, and from that
restriction, we can determine the maximum extent of the transitional region:

𝑓 𝑁𝑑 ≤ 𝐷 ⇒ 𝑁 = ⌊ ln𝐷 − ln 𝑑
ln 𝑓

⌋ . (4.39)

In order to determine the points in the transitional regions, consider two adjacent resonance
positions ̂𝑟𝑚 and ̂𝑟𝑚−1 and their associated additional points ̂𝑟−𝑖,𝑚 and ̂𝑟+𝑗,𝑚−1 determined by
𝑑𝑚, 𝐿𝑚, 𝑓𝑚 and 𝑑𝑚−1, 𝐿𝑚−1, 𝑓𝑚−1, respectively. Starting from 𝑖 = 𝐿𝑚 +𝑁𝑚 and 𝑗 = 𝐿𝑚−1 +𝑁𝑚−1,
we calculate the distance

𝛥(𝑖, 𝑗) = ̂𝑟−𝑖,𝑚 − ̂𝑟+𝑗,𝑚−1. (4.40)

If 𝛥 is negative, the adjacent fine regions overlap. Until 𝛥 is positive, either 𝑖 or 𝑗 is reduced by
one, down to a minimum of 𝐿𝑚 and 𝐿𝑚−1, respectively. If neither can be further reduced, the
algorithm fails and another set of parameters has to be chosen. If both can be reduced, the
point further apart from the next point of its own set is chosen to be removed, i.e., if

𝑑𝑚 𝑓 𝑖−𝐿𝑚
𝑚 ≥ 𝑑𝑚−1 𝑓 𝑗−𝐿𝑚−1

𝑚 , (4.41)

𝑖 is reduced, and otherwise 𝑗 is reduced. To determine the number 𝑘 of subintervals into which

1corresponding to Δ𝑅 in section 4.1
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4.4 Mesh Construction

the resulting coarse region of length 𝛥 is divided, we consider the maximum distance that
fulfills the restrictions imposed by 𝑓𝑚 and 𝑓𝑚−1, i.e.,

𝑘(𝑖, 𝑗) = ⎡
⎢⎢⎢

𝛥(𝑖, 𝑗)
min(𝐷, 𝑑𝑚 𝑓 𝑖−𝐿𝑚+1

𝑚 , 𝑑𝑚−1 𝑓 𝑗−𝐿𝑚−1+1
𝑚 )

⎤
⎥⎥⎥

. (4.42)

Then, until

𝛥(𝑖, 𝑗)
𝑘(𝑖, 𝑗) ≥ 𝑑𝑚 𝑓 𝑖−𝐿𝑚

𝑚 ∧ 𝛥(𝑖, 𝑗)
𝑘(𝑖, 𝑗) ≥ 𝑑𝑚−1 𝑓 𝑗−𝐿𝑚−1

𝑚 , (4.43)

the reduction scheme for 𝑖 and 𝑗 is applied as described above. This procedure, illustrated
in figure 4.2, is repeated for each resonance position where 𝑓𝑚 > 0 and 0 < 𝑑𝑚 < 𝐷, and
the magnetic axis at ̂𝑟 = 0 and the separatrix at ̂𝑟 = 1 are treated like resonances for which
no further reduction of points is possible. However, due to the usually steep increase of 𝑞
towards the separatrix, resonance positions become more densely packed. Once the distance
between them is too low for the fine regions and some transition region, i.e.,

̂𝑟𝑚 − ̂𝑟𝑚−1 < (𝐿𝑚 − 1
2 + 𝑓𝑚) 𝑑𝑚 + (𝐿𝑚−1 − 1

2 + 𝑓𝑚−1) 𝑑𝑚−1, (4.44)

the refinement is not applied to 𝑚 and all higher resonances. Instead, the procedure for the
coarse region is applied directly after the last fine region is constructed, i.e.,

𝛥 = 1 − ( ̂𝑟𝑚−1 + (𝐿𝑚−1 − 1
2 + 𝑓𝑚−1) 𝑑𝑚−1) . (4.45)

The subintervals on the unit interval resulting from this entire procedure are shown in
figure 4.3.

In a sense, the “optimal” distribution of points on a given flux surface cross-section is one
that yields triangles with edges of roughly equal length. While this is not equivalent to
the Delaunay triangulation which maximises the minimal interior angle of all triangles, it
allows for a simple estimate. In the field aligned-mesh, we can distinguish two types of edges.
Poloidal edges connect two adjacent points on the same cross-section, i.e., in poloidal direction,
and radial edges connect two points on adjacent cross-section, i.e., roughly in radial direction.
Given the circumference 𝐶𝑖 of cross-section 𝑖 from (4.13), the average length of poloidal edges
connecting 𝑁𝑖 points is

̄𝑙pol𝑖 = 𝐶𝑖
𝑁𝑖

. (4.46)

For the radial edges, we assume an appropriately averaged distance to the adjacent cross-
section(s) Δ𝑟𝑖 as the altitude of the triangle. For an equilateral triangle, which serves as a

77



4 Numerical Treatment

̂𝑟𝑚−1 ̂𝑟𝑚
radial position ̂𝑟

1

2

3

4

5

6

re
du

ct
io
n
st
ep

𝑑𝑚−1 𝑑𝑚

𝐿𝑚−1𝑑𝑚−1 𝐿𝑚𝑑𝑚

𝑓𝑚−1𝑑𝑚−1 𝑓𝑚𝑑𝑚

𝛥

𝛥

𝛥
𝑘

1
Figure 4.2: Radial refinement procedure, progressing from top to bottom. The dashed ver-
tical lines to the left and right indicate the positions of the resonances. The right-pointing
red triangles and the left-pointing blue triangles indicate the positions according to (4.37)
and (4.38) surrounding each resonance, i.e., ̂𝑟+𝑗,𝑚−1 and ̂𝑟−𝑖,𝑚. The circles indicate the position
that is removed in each iteration step according to the criterion in (4.41). Since 𝑑𝑚 and 𝑓𝑚
are quite similar to 𝑑𝑚−1 and 𝑓𝑚−1, 𝑖 and 𝑗 are reduced in an alternating fashion. Starting
from step 4, 𝛥 as specified in (4.40) is positive, i.e., the transition regions do not overlap any
more. Since the criterion (4.43) is still not fulfilled, the reduction scheme continues until
step 6, where it is fulfilled with 𝑘 = 3. The resulting equidistant positions are indicated by
the down-pointing black triangles. As a result, step 4 and 6 contain the same number of
positions, but their distribution is more balanced after step 6. Note that 𝐷 is almost as large
as the distance between the resonances, thus 𝑁𝑚 and 𝑁𝑚−1 from (4.39) are so large that the
resulting positions would extend beyond the adjacent resonance. For illustration purposes,
these positions and the iteration steps necessary to remove them are skipped.

rough average over all triangle shapes, this results in the edge length

̄𝑙rad𝑖 = Δ𝑟𝑖
sin 60°. (4.47)

Equating the average poloidal and radial edge lengths yields the number of points on cross-
section 𝑖 as

𝑁𝑖 = 2
√3

𝐶𝑖
Δ𝑟𝑖

, (4.48)

which is then rounded to the closest multiple of 2 in order to allow combining triangles to
quadrangles for later use with Gorilla [16]. However, due to the dependence on Δ𝑟𝑖, 𝑁𝑖
in (4.48) scales linearly with the density of the radial positions, i.e., if the number of cross-
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Figure 4.3: Distances between radial positions resulting from the radial refinement procedure
described in figure 4.2. The dashed vertical lines indicate resonances from𝑚 = 3 to𝑚 = 12, but
refinement is only performed up to 𝑚 = 9. The dashed horizontal line shows the maximum
distance 𝐷 and the horizontal lines of the fine and coarse regions lie at their corresponding
𝑑𝑚 and 𝛥

𝑘 , respectively. Note that the distances are plotted over their index and not over their
position because the markers would become indistinguishable in the finer regions. Combined
with logarithmic scaling, the constant slope then indicates the factor 𝑓𝑚 of the corresponding
geometric series in the transition regions. For the resonances 𝑚 = 6 and 𝑚 = 7, which are the
ones used in figure 4.2, factors are set to 1.4 and 1.6, respectively, while all others are set to
1.5. Data is taken from ASDEX Upgrade shot #33353 at 2325ms with 𝑛 = 2.

section is doubled due to radial refinement, the total number of points is roughly quadrupled.
Since the variation of the interpolated quantities is much higher in radial direction than
in poloidal direction, this increases the size of the linear systems to be solved without an
accompanying gain in accuracy. As a compromise, we replace the averaged distance of
adjacent cross-sections by its geometric average with the maximum distance 𝐷 used in the
radial refinement process:

𝑁𝑖 = 2
√3

𝐶𝑖

√Δ𝑟𝑖𝐷
. (4.49)

For Δ𝑟𝑖, we don’t use the same radial coordinate as for radial refinement, i.e., the distance
along the horizontal line extending from the magnetic axis outwards. Due to the Shafranov
shift and the ellipticity of the cross-sections, it is close to the minimum distance between
cross-sections. A better approximation to the average distance between cross-sections is the
small radius, i.e., the radius of a circle with the same area 𝐴𝑖 as the cross-section 𝑖, given
by (4.12). Using half-grid quantities (see section 4.1) to average over the inner and outer
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adjacent cross-sections, we get

Δ𝑟𝑖 = 𝑟𝑖+ 1
2

− 𝑟𝑖− 1
2

= √𝐴𝑖+ 1
2

𝜋 − √𝐴𝑖− 1
2

𝜋 , (4.50)

except for the last cross-section 𝑁, which has only one adjacent cross-section, where we use
Δ𝑟𝑁 = 𝑟𝑁 − 𝑟𝑁−1 instead. Similar reasoning applies to the poloidal distribution of the 𝑁𝑖
points. To roughly achieve the average edge length from (4.46), they would need to be placed
equidistantly in equal-arclength poloidal angle. However, the actual length of a particular radial
edge scales with the actual radial distance from the adjacent cross-section in its vicinity, and
so does the length of the subtended arc. The latter in turn approximates the actual length of
the poloidal edge nearby. Accordingly, using this rough estimation, the 𝑁𝑖 points are spaced
equidistantly in the geometric poloidal angle 𝜃, which is also obtained more easily.

Now that the number of points and their positions are fixed, the constrained Delaunay
triangulation can proceed as illustrated in figure 4.4. It is constrained because we impose the
poloidal edges and only need to determine the radial edges connecting points on adjacent
cross-sections. We start with a fixed radial edge, namely the one lying on the horizontal line
extending outwards from the magnetic axis, which is also the 𝜃 = 0 line. From there, we can
construct a triangle either by connecting the point on the inner cross-section with the next
point on the outer cross-section, or by connecting the point on the outer cross-section with the
next point on the inner cross-section. These four points form a quadrangle whose diagonals
are the two candidates for the next radial edge. Exactly one of the two possible triangles
fulfills the Delaunay condition, i.e., the fourth point lies outside the circumcircle of the other
three points1. If the three points comprising the triangle are numbered in counter-clockwise
order, the condition can be written as

det
⎡
⎢⎢
⎣

𝑅1 − 𝑅4 𝑍1 − 𝑍4 (𝑅1 − 𝑅4)2 + (𝑍1 − 𝑍4)2

𝑅2 − 𝑅4 𝑍2 − 𝑍4 (𝑅2 − 𝑅4)2 + (𝑍2 − 𝑍4)2

𝑅3 − 𝑅4 𝑍3 − 𝑍4 (𝑅3 − 𝑅4)2 + (𝑍3 − 𝑍4)2

⎤
⎥⎥
⎦

≤ 0. (4.51)

The edge thus selected serves as the starting edge of the next quadrangle, and this selection
process is repeated until the last triangle, which contains the starting edge at 𝜃 = 0 and closes
the loop. In contrast to unconstrained Delaunay triangulation, this algorithm proceeds in
linear time with respect to the number of triangles, since no revision of already constructed
triangles by edge flipping is necessary. In principle, it can be parallelized over the cross-
sections because the selection process is independent of the neighbouring triangle loop. An
illustration of the resulting mesh can be seen in figure 4.5.

Concerning the numbering of the points, edges, and triangles, we make the following obser-
vations. We number the flux surface cross-sections from 0 for the magnetic axis, a degenerate

1In the unlikely event that the four points form a cyclic quadrilateral, i.e., the fourth point lies exactly on the
circumcircle of the other three points, both triangles fulfill the Delaunay condition and the choice is arbitrary.
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Figure 4.4: Constrained Delaunay triangulation, proceeding from the top to the bottom. A
subset of points of two adjacent cross-sections is shown, situated slightly above the magnetic
axis at (𝑅O, 𝑍O). The poloidal edges are already connected and the triangulation proceeds in
counter-clockwise direction, i.e., from right to left. The thick lines show the triangles which
have been constructed previously. The thin dotted lines indicate the quadrangle formed by
including the next point of each cross-section, as well as its diagonals. In the top plot, the
circumcircles of the two candidate triangles are shown in green and red. The green circle
fulfills the Delaunay condition (4.51) as it encloses no fourth point. This triangle is selected
and its edge is used as the starting edge in the middle plot, where the same procedure is
applied again. The bottom plot shows the resulting triangulation for the given point set.
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Figure 4.5: Example of a mesh resulting from the procedure described in section 4.4. For
illustration purposes, a rather coarse radial separation of 𝐷 = 1.25 cm is used and only the
resonances (𝑚, 𝑛) = (−3, 2), (−4, 2), (−5, 2) are considered in the refinement. With parame-
ters 𝑑 = 0.35 cm, 𝑓 = 1.5, 𝐿 = 1, the resulting mesh consists of 53 flux surface cross-sections,
18774 triangles, and 9531 vertices. A variant of this figure has already been published [2].
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flux surface, to 𝑁𝜚 for the last closed flux surface1. The number of points on flux surface 𝑖 is
given by 𝑁P

𝑖 , determined as previously described, and the total number of points is then

𝑁P =
𝑁𝜚

∑
𝑖=0

𝑁P
𝑖 . (4.52)

Points are numbered in the order they are created (see above), i.e., starting at 𝜗 = 0 and
going counter-clockwise, then continuing with the next flux surface. Saving these values as
a jagged array allows conversion between the local point number (here referring to the flux
surface) and the global point number (here referring to the entire mesh). Next, we consider
the number of triangles 𝑁△

𝑖 between2 flux surface cross-sections 𝑖 and 𝑖 − 1. Each poloidal
edge belongs to one triangle, and the number of poloidal edges on a cross-section is the same
as the number of points thus connected, yielding

𝑁△
𝑖 = 𝑁P

𝑖 + 𝑁P
𝑖−1, (4.53)

except for 𝑖 = 1, where we have to subtract 1 to account for the lack of edges connecting the
only point at 𝑖 = 0 to itself. The total number is then

𝑁△ = 2𝑁P − 𝑁P
𝑁𝜚 − 1. (4.54)

Triangles are numbered in the same manner as points. Finally, the number of triangles is the
same as the number of radial edges, which taken together with the number of poloidal edges
gives the total number of edges as

𝑁e = 𝑁△ + 𝑁P − 1 = 3𝑁P − 𝑁P
𝑁𝜚 − 2. (4.55)

The distinction between radial and poloidal edges is also reflected in their numbering scheme.
We start numbering with the poloidal edges in the same manner as the points associated with
them, i.e., 𝑖𝑒,pol = 𝑖𝑃 − 1, again because the point at the magnetic axis has no poloidal edge.
Then we continue with all the radial edges in the same manner as the triangles associated
with them, i.e., 𝑖𝑒,𝜚 = 𝑁P − 1 + 𝑖△.

Mapping between these indices is achieved by filling appropriate arrays during construction
of the mesh. This leaves us with one last task concerning the mesh: finding the triangle
containing a given point 𝑃. From the bounding boxes, i.e., the extent of each triangle in 𝑅 and
𝑍, we can construct an R* tree. Querying this tree with the coordinates of 𝑃 yields a list of
triangle indices in whose bounding box 𝑃 is contained. We can then check individually for
each of these triangles whether it contains 𝑃 as follows. Assume the edge vectors 𝒍𝑘 all point
in counter-clockwise direction and the normal vectors 𝒏𝑘 all point outwards (see figure 4.1c).
Construct the vectors 𝒑𝑘 pointing from 𝑃𝑘, the initial point of the 𝒍𝑘, to 𝑃. The dot product

1This is also the numbering scheme used for the full-grid values mentioned in section 4.1.
2This is also the numbering scheme used for the half-grid values mentioned in section 4.1.
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𝒑𝑘 ⋅ 𝒏𝑘 is negative if 𝑃 lies to the left of 𝒍𝑘. If it is negative for all three edges, 𝑃 lies inside the
triangle. However, due to numerical inaccuracies, this test might fail for both triangles sharing
an edge if 𝑃 is close to that edge. To have the test succed for at least one triangle, assign a
finite thickness 𝜀 to edges. Then compute the distance between the line segment and 𝑃 as

𝑑2
𝑘 =

⎧{{
⎨{{⎩

𝒑𝑘 ⋅ 𝒑𝑘 if 0 < 𝒑𝑘 ⋅ 𝒍𝑘,
𝒑𝑘 ⋅ 𝒑𝑘 − 𝒑𝑘⋅𝒍𝑘

𝒍𝑘⋅𝒍𝑘
if 0 ≤ 𝒑𝑘 ⋅ 𝒍𝑘 ≤ 𝒍𝑘 ⋅ 𝒍𝑘,

𝒑𝑘+1 ⋅ 𝒑𝑘+1 if 𝒑𝑘 ⋅ 𝒍𝑘 > 𝒍𝑘 ⋅ 𝒍𝑘,

(4.56)

where we assumed 𝒑4 ≡ 𝒑1 for simplicity. If 𝑑𝑘 < 𝜀, 𝑃 lies on the line segment with thickness
𝜀 and the test succeeds.

Finally, to solve for 𝑩𝑛 with the method presented in section 2.1, we would need to impose
a homogeneous Dirichlet boundary condition at infinity. A Poincaré-Steklov operator, or
Dirichlet-to-Neumann map, would allow us to transform this to an inhomogeneous Neumann
boundary condition on the actual boundary of the computational domain, which could be
used in conjunction with (2.89). Until this is implemented, we circumscribe the mesh of the
core plasma1 with an ellipsis, use Triangle [21] for Delaunay triangulation connecting the two
boundaries, and impose a homogeneous Dirichlet boundary condition on the outer boundary
via (2.78). As Albert et al. [7] note: “If [the computational domain] is chosen with a large
enough current-free region around the actual domain of interest, this description is suited to
approximately describe the decay of the magnetic field at infinite distance.”

4.5 Magnetic Differential Equations
To solve the MDEs (2.113) and (2.122), we apply a lowest-order finite difference scheme. We
approximate 𝑩pol

0 ⋅ ∇pol 𝑝𝑛 as a directional derivative along a poloidal edge 𝒍𝑘 pointing from
node 𝒓𝑘 to node 𝒓𝑘+1 on the same flux surface cross-section, which in turn we approximate as
a difference quotient,

𝑩pol
0 (𝒍𝑘) ⋅ ∇pol 𝑝𝑛(𝒍𝑘) ≈ 𝑩pol

0 (𝒍𝑘) ⋅ 𝜕𝑝𝑛
𝜕𝒍𝑘

(𝒍𝑘) ≈ 𝑩pol
0 (𝒍𝑘) ⋅ 𝒍𝑘

𝑙𝑘
𝑝𝑛(𝒓𝑘+1) − 𝑝𝑛(𝒓𝑘)

𝑙𝑘
, (4.57)

where (𝒍𝑘) signifes evaluation at the edge midpoint. We accordingly approximate 𝑝𝑛(𝒍𝑘) ≈
1
2(𝑝𝑛(𝒓𝑘+1) − 𝑝𝑛(𝒓𝑘)), which is actually exact for linear interpolation according to (4.34), and
the discretized MDE then reads

𝑩pol
0 ⋅ 𝒍𝑘

𝑙𝑘
𝑝𝑛(𝒓𝑘+1) − 𝑝𝑛(𝒓𝑘)

𝑙𝑘
+ i𝑛

𝑅 𝐵tor
0

𝑝𝑛(𝒓𝑘+1) + 𝑝𝑛(𝒓𝑘)
2 = −𝑝′

0(𝜓)𝐵𝜓
𝑛 , (4.58)

1or the entire vacuum vessel in future versions

84



4.6 Arnoldi Iterations

where the evaluation point is the edge midpoint unless indicated otherwise. Reordering in
terms of the unknowns, i.e., degrees of freedom 𝑝𝑛(𝒓𝑘) yields

(𝑏𝑘 − 𝑎𝑘)𝑝𝑛(𝒓𝑘) + (𝑏𝑘 + 𝑎𝑘)𝑝𝑛(𝒓𝑘+1) = 𝑠𝑘 (4.59)

with

𝑎𝑘 = 𝑩pol
0 (𝒍𝑘) ⋅ 𝒍𝑘

𝑙2𝑘
, 𝑏𝑘 = 1

2
i𝑛

𝑅(𝒍𝑘)𝐵tor
0 (𝒍𝑘), 𝑠𝑘 = −𝑝′

0(𝜓)𝐵𝜓
𝑛 (𝒍𝑘). (4.60)

Note that the damping by (2.137) is accomodated by supplying an appropriately modified
𝑏𝑘. Now, setting up the equations for all 𝑁 poloidal edges of a discretized flux surface and
applying periodic boundary conditions results in a linear system of equations of the form
[𝐾𝑖𝑗][𝑝𝑛(𝒓𝑗)] = [𝑠𝑖] with 𝐾𝑖𝑗 = (𝑏𝑖 − 𝑎𝑖)𝛿𝑖,𝑗 + (𝑏𝑖 − 𝑎𝑖)𝛿𝑖,(𝑗 mod 𝑁)+1, or, in matrix form,

𝐾̂ =

⎡
⎢⎢⎢⎢⎢⎢
⎣

𝑏1 − 𝑎1 𝑏1 + 𝑎1 0 … 0
0 𝑏2 − 𝑎2 𝑏2 + 𝑎2 … 0
0 0 𝑏3 − 𝑎3 … 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑏𝑁 + 𝑎𝑁 0 0 … 𝑏𝑁 − 𝑎𝑁

⎤
⎥⎥⎥⎥⎥⎥
⎦

. (4.61)

Note that this sparse matrix is weakly diagonally dominant since 𝑎𝑘 is purely real and 𝑏𝑘
is purely imaginary. The linear system of equations can be solved with a direct solver like
UMFPACK [22]. To solve for 𝐽∥

𝑛
𝐵0

instead of 𝑝𝑛, we simply have to replace 𝑠𝑘 by the right-hand
side of (2.122). Since (2.133) differs from (2.112) only in the coefficients, we can apply the
same approach using the chain rule

𝜕
𝜕𝜗 = 𝜕𝑅

𝜕𝜗
𝜕

𝜕𝑅 + 𝜕𝑍
𝜕𝜗

𝜕
𝜕𝑍 =

𝜕𝒓pol
𝜕𝜗 ⋅ ∇pol, (4.62)

resulting in

𝑎𝑘 =
𝜕𝒓pol
𝜕𝜗 (𝒍𝑘) ⋅ 𝒍𝑘

𝑙2𝑘
, 𝑏𝑘 = −1

2
i𝑛

𝐵0𝜑

𝜕𝒓pol
𝜕𝜗 (𝒍𝑘) ⋅ 𝑩pol

0 (𝒍𝑘), 𝑠𝑘 = ∑
𝑚∈𝑚res

i(𝑛𝑞 + 𝑚)
𝐵0𝜑

⎛⎜
⎝

𝐽∥
𝑛

𝐵0
⎞⎟
⎠𝑚

ei𝑚𝜗(𝒍𝑘).

(4.63)

Finally, note that all the 𝑎𝑘 and 𝑏𝑘 only depend on equilibrium quantities and thus stay constant
across iteration steps; only the 𝑠𝑘 need to be updated.

4.6 Arnoldi Iterations
ARPACK [23] and similar numerical packages implementing the Arnoldi iteration mentioned
in chapter 2 are designed to compute a fixed number of extremal eigenvalues, but in our
case, the number 𝑟 of eigenvalues above the threshold 𝜆sup is not known beforehand. To
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Algorithm 1 Arnoldi iteration with breaking conditions

Input: operator 𝐾̂, start vector 𝒒0, maximum dimension of Krylov subspace 𝑘max,
threshold of eigenvalue magnitude 𝜆sup, tolerance in convergence estimation

Output: Ritz values 𝜆1, … , 𝜆𝑟, Ritz vectors 𝒗1, … , 𝒗𝑟

1 𝑠1 ← 0
2 𝒒1 ← 𝒒0

∥𝒒0∥
3 for 𝑘 ← 1, … , 𝑘max
4 𝒒𝑘+1 ← 𝐾̂𝒒𝑘
5 for 𝑗 ← 1, … , 𝑘
6 𝐻𝑗,𝑘 ← 𝒒∗

𝑗 ⋅ 𝒒𝑘+1
7 𝒒𝑘+1 ← 𝒒𝑘+1 − 𝐻𝑗,𝑘𝒒𝑗
8 𝐻𝑘+1,𝑘 ← ∥𝒒𝑘+1∥
9 if 𝐻𝑘+1,𝑘 ≈ 0 break
10 𝒒𝑘+1 ← 𝒒𝑘+1

𝐻𝑘+1,𝑘

11 𝜆1, … , 𝜆𝑘 ← HessenbergEigenvalues(𝐻1,1, … , 𝐻𝑘,𝑘)
12 𝑟 ← max 𝑟 ∶ 𝜆𝑟 ≥ 𝜆sup

13 if |𝜆𝑗−𝑠𝑗|
|𝜆𝑗|

< tolerance ∀𝑗 ≤ 𝑟 break
14 𝑠1, … , 𝑠𝑘 ← 𝜆1, … , 𝜆𝑘
15 𝒖1, … , 𝒖𝑟 ← HessenbergEigenvectors(𝐻1,1, … , 𝐻𝑘,𝑘; 𝜆1, … , 𝜆𝑘; 𝑟)
16 𝒗1, … , 𝒗𝑟 ← MatrixMultiplication(𝒒1, … , 𝒒𝑘; 𝒖1, … , 𝒖𝑟)

circumvent this problem, our implementation uses this fixed number as themaximumnumber
of iterations as well as for memory allocations, and exits early if convergence is reached.
This requires roughly three times as many iteration steps as there are Ritz values above the
threshold. To estimate convergence, we compute the Ritz values after each Arnoldi iteration
step and compare themwith the Ritz values saved in the previous iteration step. The complete
approach is given as pseudocode in algorithm 1, where we assume that eigenvalues are sorted
by magnitude in descending order to simplify the mathematical notation, while the actual
implementation uses masked arrays. The LAPACK routines ZHSEQR and ZHSEIN are used to
compute the eigenvalues and eigenvectors of the Hessenberg matrix, respectively.

With 𝛬̂𝑟 and 𝑉̂𝑟 now known, 𝛱̂ from (2.24) can in principle be computed. First, we compute
the inverse of

𝐿̂𝑟 = 𝑉̂†
𝑟 𝑉̂𝑟(𝛬̂𝑟 − ̂𝐼) (4.64)

by solving for 𝑌̂𝑟 in 𝐿̂𝑟𝑌̂𝑟 = ̂𝐼 with the LAPACK routine ZGESV. Note that 𝑁 is usually larger
than 𝑟 by a factor of 104. Since 𝛱̂ is a dense 𝑁 × 𝑁 matrix, it would become prohibitively
large to keep in memory, so we only keep the 𝑁 × 𝑟 matrix 𝑉̂𝑟 and the 𝑟 × 𝑟 matrix 𝛬̂𝑟𝐿̂−1

𝑟 , and
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perform repeated matrix–vector multiplication from the right,

𝛱̂𝛿𝑩 = 𝑉̂𝑟𝛬̂𝑟𝐿̂−1
𝑟 𝑉̂†

𝑟 𝛿𝑩. (4.65)

With this time–memory tradeoff, runtime scales with 𝑂(𝑁2𝑟4) instead of 𝑂(𝑁2), but it is still
negligible compared to other computations performed in each iteration step.

To estimate the convergence of preconditioned iteration steps of (2.13), we consider the differ-
ence between successive values of 𝛿𝑩, i.e., 𝛿𝑩[𝑘] − 𝛿𝑩[𝑘−1]. Its 𝐿2 norm should approximately
follow a geometric series, whose convergent major is the geometric series in 𝜆sup:

∥𝛿𝑩[𝑘] − 𝛿𝑩[𝑘−1]∥
2

≤ ∥𝛿𝑩[0]∥
2

𝜆𝑘
sup. (4.66)

𝛿𝑩 reduces to 𝑩𝑛, whose representation is discussed in section 4.3. The 𝐿2 norm is then
given by (4.33), albeit only for the poloidal component. However, the toroidal component
fully depends on the poloidal component via (4.31), so in a sense, no information is missing
when the toroidal component is omitted from essentially two-dimensional finite element area
integral. Moreover, it seems that the relative error computed from the (numerical) 𝐿2 integral
of the toroidal component is bounded from below1, possibly because the toroidal component
is constant on each triangle while the poloidal component varies linearly.

4.7 Conversion between Conventions
There are more choices in the coordinate systems than we have discussed in section 1.1 and the
coordinate conventions COCOS suggested by Sauter and Medvedev [24] are very useful for
this kind of derivations. The GEQDSK format [15] detailed in section 4.1 explicitly specifies
that (𝑅, 𝜑, 𝑍) is a right-handed system, meaning 𝜎𝑅𝜑𝑍 = +1 in COCOS. The units of 𝜓 are
given as Wb rad−1, implying the poloidal flux is divided by 2𝜋, thus setting 𝑒𝐵pol = 0 in
COCOS. We have made the same choices in section 1.1 and this leaves us with valid COCOS
indices 1, 3, 5 or 7. With (1.2), we already implicitly fixed the sign 𝜎𝐵pol = −1 as well, thus
using COCOS indices 3 or 7 with

𝐵pol
0 = ∇𝜓 × ∇𝜑. (4.67)

This means that radially increasing 𝜓 (𝜎𝜓′ = +1) corresponds to a counter-clockwise poloidal
magnetic field, and radially decreasing 𝜓 (𝜎𝜓′ = −1) corresponds to a clockwise poloidal
magnetic field. However, 𝜎𝐵pol is not directly available from GEQDSK data, which leaves
open the possibility that 𝜎𝐵pol = +1 was used implicitly, inverting the sign in (4.67). This
has to be decided by inspection of the toroidal current 𝐼tor in the GEQDSK header, which is
unambiguous because 𝜑 is fixed: a positive toroidal current produces a clockwise poloidal

1see figure 5.12, where inclusion of the toroidal component would result in a constant relative error (a
horizontal line) after initially following the geometric series
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magnetic field, and a negative toroidal current produces a counter-clockwise poloidalmagnetic
field. This means that the sign of the given 𝜓 might need to be swapped to ensure consistency1.

Finally, in a similarmanner as before, we already fixed 𝜎𝜚𝜗𝜑 = −1 by defining 𝜗 to turn counter-
clockwise in (1.6), leaving us with COCOS index 3. Again, this choice is not represented
directly in GEQDSK data, and it might affect the sign of 𝑞. If 𝐼tor and 𝐵tor point in the same
direction, the magnetic field lines form a right-handed helix (going against the direction of
𝜗) and 𝑞 is negative, and if 𝐼tor and 𝐵tor point in opposite directions, the magnetic field lines
form a left-handed helix (going along the direction of 𝜗) and 𝑞 is positive.

To summarize, we impose COCOS index 3 and adapt the sign of some GEQDSK data if
necessary, according to the information given in the file header. In the overview (4.68), where
we included the Jacobian from (1.7), the signs on the left of the vertical line determine the
signs to the right. Note that 𝑝 is assumed to monotonically decrease radially outwards.

𝐵tor 𝐼tor 𝑞 𝜎𝜓′ 𝐹 𝑝′(𝜓) √𝑔
+ + − − + + +
+ − + + + − +
− + + − − + +
− − − + − − +

(4.68)

Some trade-offs have beenmade in these choices. We deemed it simpler to keep the coordinates
fixed and track the signs of 𝜎𝜓′ and 𝑞 when necessary. To compare, GPEC [25] operates on a
different principle: the direction of 𝜑 depends on the helicity, such that 𝑞 is always positive,
i.e., 𝜑 points in clockwise direction where 𝑞 is negative in (4.68). Furthermore, GPEC uses
the Fourier series expansion

𝑓 (𝜓, 𝜑, 𝜗) = Re
∞
∑
𝑛=0

∞
∑

𝑚=−∞
𝑓𝑚,𝑛ei𝑚𝜗−i𝑛𝜑, (4.69)

whereas MEPHIT uses (1.10) and (1.11), which combine to

𝑓 (𝜓, 𝜑, 𝜗) =
∞
∑

𝑚=−∞
𝑓𝑚,0ei𝑚𝜗 + 2Re

∞
∑
𝑛=1

∞
∑

𝑚=−∞
𝑓𝑚,𝑛ei𝑚𝜗+i𝑛𝜑. (4.70)

Thus, to convert GPEC output 𝑓𝑚,𝑛 to the conventions of MEPHIT, 𝑓𝑚,𝑛 has to be halved for
𝑛 ≠ 0, and if 𝑞 is positive in MEPHIT, the complex phase and the poloidal mode number swap
sign, i.e., 𝑓𝑚,𝑛 → 𝑓 ∗

−𝑚,𝑛. Additionally, when comparing the radial magnetic field perturbation,
MEPHIT uses the contravariant density component as discussed in section 2.1, i.e.,

ℬ𝜓
𝑚𝑛 = (√𝑔𝑩𝑛 ⋅ ∇𝜓)

𝑚
. (4.71)

1The sign could also be accounted for in (4.67), but this way a particular COCOS index can be imposed on
the given GEQDSK file.
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With the configuration jsurf_out set to 1, GPEC supplies a similar quantity Jbgradpsi, which
is defined as

(√𝑔𝐵⟂
𝑛 |∇𝜓|)

𝑚
⟨√𝑔 ∣∇𝜓∣⟩

, (4.72)

where the angle brackets indicate a flux surface average and 𝐵⟂
𝑛 is the component perpendic-

ular to the flux surface; this is not to be confused with our usual notion of the component
perpendicular to 𝑩0, which generally has non-zero poloidal and toroidal components. The
flux surface average has the dimension of area and is roughly proportional to the flux surface
area, which has to be accounted for in comparison with results from MEPHIT. The projection
to 𝐵⟂

𝑛 uses a vector that is always pointing radially outwards, whereas the projection with ∇𝜓
might point in the opposite direction, meaning that 𝜎𝜓′ has to be included in either MEPHIT
or GPEC results. Taken together, (4.72) can then be written as 𝜎𝜓′ℬ𝜓

𝑚𝑛𝐴−1. Finally, note that
GPEC versions lower than 1.5.0 ignore the vertical offset of the computational domain defined
in the GEQDSK format (discussed in section 4.1), which effectively shifts the RMP coils to a
different position. This has since been corrected after benchmarking efforts with MEPHIT,
the results of which can be seen in figure 5.14.
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Chapter 5

Simulation Results

Perceptually uniform colour maps [26] are used in the following visualizations of simulation
results.

5.1 Validation and Benchmarking of Fourier-FEM
This section has already been published as part of [1] and contains validation and benchmark-
ing examples for the general method derived in section 2.1, which are otherwise not part of
MEPHIT. Note that SI units are used in this section.

Here, we present results for an implementation of the Fourier-FEM approach in cylindrical
coordinates 𝑥1 = 𝑍, 𝑥2 = 𝑅, 𝑥3 = 𝜑, whereas the corresponding Cartesian coordinates are
denoted (𝑋, 𝑌, 𝑍). First, convergence of the method is shown in a comparison to analytical
validation cases. Secondly, the Fourier-FEM is compared to conventional 3D FEM. The
implementation of the Fourier-FEM is realized inside FreeFEM [27], while the 3D numerical
computations are made with EleFAnT 3D [28]. To discretize the variational formulation, a
triangular mesh in the (𝑅, 𝑍) plane is used in FreeFEM, while EleFAnT 3D uses quadratic
order hexahedral edge elements in 3D Cartesian coordinates [29]. The test cases are sketched
in figures 5.1 and 5.2 and have been inspired by TEAM (testing electromagnetic analysis
methods) workshop problems [30].

5.1.1 Convergence Study

Validity and convergence of numerical computations are assessed based on analytical test
cases with field components defined in a piecewise manner over cylinder radius 𝑅. For the
numerical computations boundary values and possible volumetric currents are imposed. In
all cases, a default scalar permeability 𝜇r = 1 is used that increases to 𝜇r = 50 in the cylinder
shell 0.4 ≤ 𝑅 < 0.5 with dimensions as in figure 5.1, but with extension in the 𝑍 direction
up to the boundaries in order to generate simple analytical cases. All non-zero components
are given by numerical value equations for standard SI units in this subsection, and physical
components are indicated with coordinate indices in parentheses.

For the case of an axisymmetric (𝑛 = 0) longitudinal vector potential ̄𝐴𝜑 we introduce an
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Figure 5.1: Plan (left) and elevation (right) of model problem A: A cylindrical shell with
relative permeability 𝜇r = 50 surrounded by a domain with 𝜇r = 1 in a homogeneous 𝑩 field
in 𝑋 direction imposing its normal component on the boundary. Measurements are given in
units of millimeters.

Figure 5.2: Plan (left) and elevation (right) of model problem B: A “racetrack” coil with a
cylindrical core of 𝜇r = 5000, current flowing counterclockwise, and homogeneous Dirichlet
boundary conditions. Measurements are given in units of millimeters and coordinates are
the same as in figure 5.1.

analytical magnetic field 𝒃̄ ∥ 𝒆𝑍 with

ℬ̄𝑍 =

⎧{{
⎨{{⎩

52
25𝑅 − 1

2𝑅3 (𝑅 < 0.4),
100𝑅 (0.4 ≤ 𝑅 < 0.5),
2𝑅 (0.5 ≤ 𝑅),

(5.1)

corresponding to

̄𝒥𝜑 = ̄𝐽(𝜑) =
⎧{
⎨{⎩

𝑅 (𝑅 < 0.4),
0 (𝑅 ≥ 0.4).

(5.2)

On the boundaries, we impose homogeneous Neumann conditions at 𝑍 = ±0.5, and an
inhomogeneous Neumann condition with 𝒦̄𝜑 = 𝐻̄𝑍𝑁𝑅 = 2 at 𝑅 = 1. Choosing the corre-
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sponding Dirichlet condition at 𝑅 = 1 requires knowledge of the difference to the value of
̄𝐴𝜑 at 𝑅 = 0, since the Neumann boundaries separate the two Dirichlet boundaries. In this

example, we know the full solution and can integrate ℬ̄𝑍𝑁𝑍 along 𝑍 = −0.5 or 𝑍 = 0.5 to set
the proper integration constant for the integral. The Dirichlet condition at 𝑅 = 1 is then given
by ̄𝐴𝜑 = 5.4132 and produces results identical to the aforementioned Neumann condition.

A second case for 𝑛 = 0 with a transverse vector potential ̄𝒂 yielding 𝑩̄ ∥ 𝒆𝜑 is given by

ℬ̄𝜑 =

⎧{{
⎨{{⎩

1
2𝑅 (𝑅 < 0.4),
4𝑅−1 (0.4 ≤ 𝑅 < 0.5),
2

25𝑅−1 (𝑅 ≥ 0.5),
(5.3)

corresponding to

̄𝒥𝑍 = 𝑅 ̄𝐽(𝑍) =
⎧{
⎨{⎩

𝑅 (𝑅 < 0.4),
0 (𝑅 ≥ 0.4).

(5.4)

As an analytical test case for the oscillatory Fourier harmonic 𝑛 = 1, we use a radial field with
̃𝑱 = 𝟎 derived from the vector potential

𝑨̃ = ̃𝐴𝑍(𝑅)𝑒i𝑛𝜑𝒆𝑍 (5.5)

with

̃𝐴𝑍(𝑅) =

⎧{{
⎨{{⎩

20000
128927𝑅 (𝑅 < 0.4),
510000
128927𝑅 − 78400

128927𝑅−1 (0.4 ≤ 𝑅 < 0.5),
106436
128927𝑅 + 22491

128927𝑅−1 (𝑅 ≥ 0.5),
(5.6)

resulting in

ℬ̃𝑅 = 𝑅𝐵̃(𝑅) = i𝑛 ̃𝐴𝑍, ℬ̃𝜑 = 𝐵̃(𝜑) = − d
d𝑅

̃𝐴𝑍, (5.7)

Figure 5.3 shows the convergence of the 𝐿2 error in contravariant density components ℬ𝑘

of the magnetic flux density (ℬ𝑅, ℬ𝑍 for 𝑛 = 0 longitudinal and 𝑛 = 1 transverse, and ℬ𝜑

for 𝑛 = 0 transverse) from numerical computations. The convergence rate over degrees of
freedom is cubic, as expected from the discretization in the third-lowest order finite element
space – Lagrange elements for ̄𝐴3 and Nédélec elements for 𝒂, respectively. As with previous
examples, the direct solver UMFPACK [22] is used except for the transverse 𝑛 = 0 part,
where the conjugate gradient (CG) method is used. Alternatively, as noted for (2.93), a small
non-zero value for 𝑛2 could be used in conjunction with a direct solver. For this particular
example, similar results to CG can be achieved with a value of 10−9, while a value of 10−8

results in a higher minimum error, and a value of 10−10 results in a drastically increasing error
past a certain level of refinement. No attempt has been made to estimate a generally “safe”
value, and usage of an iterative solver is deemed more numerically robust.
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Figure 5.3: Convergence of ℬ𝑘 from numerical Fourier-FEM computations for analytical test
cases. Using third-order finite elements, the relative error decreases cubically with the number
of radial divisions, i.e., for edge length ℎ, it is proportional to ℎ−3. The consistently lower
relative error for the longitudinal component was not investigated further and thus should
not be assumed to be a general feature of the presented approach.

5.1.2 Shielding by a Finite Cylindrical Shell

This test treats magnetic shielding of a finite-height cylindrical shell with relative magnetic
permeability 𝜇r = 50 compared to the remaining domain, as depicted in figure 5.1. Here we
impose a homogeneous 𝑩 field pointing in the 𝑋 direction on the boundary via a Dirichlet
condition specifying its normal component. Only the 𝑛 = 1 harmonic is required to solve this
problem, as cylindrical field components are proportional to cos𝜑 and sin𝜑. The Fourier-FEM
computation is compared to a full three-dimensional computation in the code EleFAnT 3D [28].
The Fourier-FEM uses second-lowest order triangular Nédélec elements with vertices on a
regular rectangular gridwith a spacing of 1mm and using the up–down symmetrywith 𝑍 = 0
at the symmetry plane. A homogeneous Dirichlet condition is imposed near the cylinder axis
at 𝑅 = 10−31 m to obtain a regular solution.

Figure 5.4 shows results of this computation along the radial direction on a cut at 𝑍 = 0. The
agreement is visibly good over a wide range in 𝑅 and deteriorates near the outer border of
the cylindrical shell at 𝑅 = 500mm, where the permeability is discontinuous.

5.1.3 “Racetrack” Coil with Cylindrical Core

The final application is a racetrack-shaped coil with an iron core as depicted in figure 5.2. To
be compatible with the Fourier-FEM, the core has to share the coordinate symmetries and
is thus limited to a cylindrical shape. In contrast, the current density in the coil can be of
arbitrary shape and contributes to different harmonics. This is illustrated in figure 5.5 which
shows a stream function 𝑇𝑍 that decreases linearly from the inside to the outside of the coil

94



5.2 Perturbed Equilibrium Results

0 200 400 600 800 1000
- / mm

0.25

0.50

0.75

1.00

1.25

1.50

�
-
(-
,.
=

0m
m
,/
=

0m
m
)/

T 3D FEM
Fourier-FEM

Figure 5.4: Results for model problem A: Magnetic field component 𝐵𝑋 along 𝑋 evaluated at
the mid symmetry plane 𝑍 = 0.

cross-section and is normalized so that the total circulating current amounts to 1 kA. Due to
mirror symmetries, only every fourth harmonic (𝑛 = 0, 4, 8, … ) is non-zero. Superposition
up to 𝑛 = 12 gives a shape in figure 5.6 that is visually indistinguishable from the reference,
illustrating the convergence of the Fourier series.

In the numerical computation, grid points are chosen equidistant in 𝑅 and 𝑍 and separated
by 1mm. Brezzi–Douglas–Marini elements of lowest order are used to impose ̃𝒋, while ̃𝒂
is represented by Nédélec elements of second-lowest order. Lagrange elements of first and
second order are used for ̄𝒥3 and ̄𝐴3, respectively. Figure 5.7 shows the first five non-vanishing
harmonics of 𝑱, decaying with increasing 𝑛, as expected.

For homogeneous Dirichlet boundary values, the resulting first five non-zero harmonics of
the 𝐵𝑍 component are depicted in figure 5.8. In figure 5.9 the superposition of 17 non-zero
harmonics up to 𝑛 = 64 of this result is compared to the reference 3D FEM computation along
the Cartesian 𝑋 coordinate axis. The curves match visually, apart from a slight shift near
𝑅 = 70mm, at the border of the iron core where the permeability is discontinuous.

5.2 Perturbed Equilibrium Results
Themethods presented in chapters 2 to 4 are applied to experimental data of ASDEXUpgrade,
specifically shot #33353 at 2.9 s as used by Markl et al. [13]. Figure 5.10 shows the eigenvalue
spectrum resulting from the iterative scheme derived in chapter 2. Compared to the full
system size of 5 × 105 corresponding to the number of edges in the mesh, the size of the Krylov
subspace of 20 to 30 makes the application of the preconditioner (and its computation via
roughly 60 to 75 iterations) feasible. The eigenvector associateed with the largest eigenvalue is
depicted in figure 5.11. For the pure iMHD model, it attains its largest magnitude around the
(𝑚, 𝑛) = (−3, 2) rational surface, and the eigenvectors associatedwith the next few eigenvalues
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Figure 5.5: Current stream function 𝑇𝑍 and circular cuts at different radii indicated by gray
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96



5.2 Perturbed Equilibrium Results

0 20 40 60 80 100 120 140 160 180 200
' / mm

−100

0

100

200

300

400

� =
/k

A
m
−2

ReJ i
0

Im �'4

Im �'8

Im �'12

Im �'16

Figure 5.7: Radial dependency of first five non-zero harmonics of current density 𝑱 at any
|𝑍| < 50mm. Vertical lines indicate the cuts shown in figure 5.5.

0 20 40 60 80 100 120 140 160 180 200
' / mm

−5

0

5

10

15

20

Re
�
/ =
('
,i
=

0°
,/
=

0m
m
)/

m
T = = 0

= = 4
= = 8
= = 12
= = 16

Figure 5.8: Resulting 𝐵𝑍 component from Fourier-FEM: radial dependency of first five non-
zero real harmonics. Vertical lines indicate the cuts shown in figure 5.5.

97



5 Simulation Results

0 20 40 60 80 100 120 140 160 180 200
- / mm

−5

0

5

10

15

20

�
/
(-
,.
=

0m
m
,/
=

0m
m
)/

m
T 3D FEM

Fourier-FEM

Figure 5.9: Comparison of 𝐵𝑍 between 3D FEM and 2D Fourier-FEM with first 17 non-zero
harmonics shows excellent agreement, with only a slight shift at 𝑋 = 70mm where the
permeability is discontinuous. Vertical lines indicate the cuts shown in figure 5.5.

are generally also localized around rational surfaces. The hybrid iMHD/kinetic model instead
yields an eigenvector localized around a flux surface close to the magnetic axis for its largest
eigenvalue, but otherwise follows the same trend. The convergence behaviour shown in
figure 5.12 is what would be expected from the Neumann series (2.6).

Figure 5.13 shows the spectrum of the magnetic field perturbation in poloidal Fourier space
over the radial coordinate, visualizing the effects of the plasma response near resonant surfaces.
Figure 5.14 shows a few of these poloidal modes separately. It can be seen that the vacuum
perturbations ofMEPHIT andGPEC agree, but the full perturbation of the pure iMHDmodels
deviate from each other. This is likely due to the fact that the current of finite width imposed by
equation (2.141) cannot completely reproduce the behaviour of an infinitesimal current sheet1.
This might be alleviated by use of XFEM, which allows for basis functions with singularities,
but such attempts are beyond the scope of this thesis. Instead, this model is a stepping stone
for the hybrid iMHD/kinetic model, which does not exhibit singular current densities in the
first place. Moreover, there is still some qualitative discrepancy close to the axis, as can be seen
from figure 5.15, which we discuss further in section 5.2.1. The hybrid iMHD/kinetic model
yields reduced shielding for the (𝑚, 𝑛) = (−6, 2) mode, which is also singled out byMarkl et al.
[13] as relevant to the discussion about ELM mitigation/suppression in simulations, whereas
experiments seem to be more sensitive to the (𝑚, 𝑛) = (−7, 2) mode, which appears less
affected also in figure 5.14. Isotope effects resulting from the finite Larmor radius expansion
are shortly discussed in section 5.2.2.

1This assumption is supported by the fact that agreement has already improved compared to previous
attempts [2] due to improved approximations in the slab model.
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(a) Plasma current response from the pure iMHD
model. The largest 27 eigenvalues are shown, 16
of which have a magnitude greater than one.
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(b) Plasma current response from the hybrid
iMHD/kinetic model. The largest 22 eigenval-
ues are shown, 15 of which have a magnitude
greater than one.

Figure 5.10: Eigenvalues of the iteration operator 𝐾̂ as discussed in chapter 2 in the complex
plane. Note that the radius is plotted logarithmically outside the innermost grid circle,
corresponding to a value of one, and linearly inside. A threshold value of 𝜆sup = 0.5, indicated
by the dashed gray circle, and a tolerance of 10−9 (see section 4.6) have been used. The pure
iMHD model yields eigenvalues which are clustered around the real line and have higher
magnitude than the hybrid iMHD/kinetic model, but the number of relevant eigenvalues is
quite similar.
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(a) Plasma current response from the pure iMHD
model. This eigenvector attains its largest magni-
tude around the (𝑚, 𝑛) = (−3, 2) resonance posi-
tion.

(b) Plasma current response from the hybrid
iMHD/kinetic model. This eigenvector attains its
largest magnitude around a flux surface between
the (𝑚, 𝑛) = (−3, 2) resonance position and the
magnetic axis.

Figure 5.11: The magnitude of the eigenvector corresponding to the largest eigenvalue of
the iteration operator 𝐾̂ discussed in chapter 2, interpreted as magnetic field perturbation in
arbitrary units. This visualizes the contribution of the magnetic perturbation field which is
most strongly amplified by the plasma response.
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Figure 5.12: Convergence of the preconditioned iterations as discussed in section 4.6, specif-
ically (4.66), for the hybrid iMHD/kinetic model. After 27 iteration steps, a relative error
of 9.98 × 10−10 is achieved, which is one iteration step below the requested relative error of
10−9 indicated by the dotted horizontal line. The black circles indicate this relative error, i.e.,
the 𝐿2 norm of the difference to the previous iteration step over the 𝐿2 norm of the vacuum
magnetic perturbation. The dashed orange line indicates a convergent major, the geometric
series with a factor of 𝜆sup = 0.5, which is the supremum of the remaining eigenvalues of the
preconditioned iterations discussed in chapter 2.
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Figure 5.13: Spectrum of the magnetic field perturbation for toroidal mode number 𝑛 = 2.
The shielding by the plasma response is apparent near the resonant surfaces indicated by the
blue crosses.

5.2.1 Near-Axis Behaviour

We consider the asymptotic behavior near the magnetic axis at (𝑅O, 𝑍O) of the radial magnetic
field perturbation as given by (4.72), which we fully expand to

𝜎𝜓′ℬ𝜓
𝑚𝑛

𝐴 =
(√𝑔𝐵𝜓

𝑛 )
𝑚

⟨√𝑔 ∣∇𝜓∣⟩
=

𝜎𝜓′

2𝜋 ∫2𝜋
0 √𝑔𝑩𝑛 ⋅ ∇𝜓 e−i𝑚𝜃 d𝜗

∫2𝜋
0 √𝑔 ∣∇𝜓∣d𝜗

. (5.8)

We are interested in the leading order of the Taylor series in 𝜓, so we start with the series
expansion of each factor in 𝑥 = 𝑅 − 𝑅O and 𝑦 = 𝑍 − 𝑍O, and then take the coordinate
transform. For transformation from cylindrical to symmetry flux coordinates, we assume
elliptical contours for the flux surfaces

̂𝜓 = ̂𝑟2 = 𝑥2

𝑎2 + 𝑦2

𝑏2 , (5.9)

where ̂𝜓 is normalized 𝜓. Without loss of generality, we continue with ̂𝜓 instead of 𝜓, as the
normalization constant cancels in the numerator and denominator of (5.8) and we can ignore
the sign 𝜎𝜓′ . Now, using the geometrical poloidal angle 𝜃, the associated coordinate transform
is

𝑥 = 𝑎 ̂𝑟 cos 𝜃, 𝑦 = 𝑏 ̂𝑟 sin 𝜃. (5.10)

102



5.2 Perturbed Equilibrium Results

0

1

2

3

4

5

6

|( √
𝑔𝐵

𝜓 𝑛
) 𝑚

|𝐴
−

1
/
T

×10−4
(𝑚, 𝑛) = (5, 2)

resonance position
GPEC, vacuum
GPEC, iMHD
MEPHIT, vacuum
MEPHIT, iMHD
MEPHIT, kinetic

0

1

2

3

4

|( √
𝑔𝐵

𝜓 𝑛
) 𝑚

|𝐴
−

1
/
T

×10−4
(𝑚, 𝑛) = (−5, 2)

0

1

2

3

4

5

6

|( √
𝑔𝐵

𝜓 𝑛
) 𝑚

|𝐴
−

1
/
T

×10−4
(𝑚, 𝑛) = (6, 2)

0

1

2

3

4
|( √

𝑔𝐵
𝜓 𝑛

) 𝑚
|𝐴

−
1
/
T

×10−4
(𝑚, 𝑛) = (−6, 2)

0.0 0.2 0.4 0.6 0.8 1.0
normalized poloidal flux ̂𝜓

0

1

2

3

4

5

6

|( √
𝑔𝐵

𝜓 𝑛
) 𝑚

|𝐴
−

1
/
T

×10−4
(𝑚, 𝑛) = (7, 2)

0.0 0.2 0.4 0.6 0.8 1.0
normalized poloidal flux ̂𝜓

0

1

2

3

4

|( √
𝑔𝐵

𝜓 𝑛
) 𝑚

|𝐴
−

1
/
T

×10−4
(𝑚, 𝑛) = (−7, 2)

1
Figure 5.14: Fourier amplitudes of the magnetic perturbation fields resulting from MEPHIT
and GPEC for a few selected poloidal/toroidal modes. Note that vacuum perturbations agree
up to the line width. While non-resonant poloidal modes are not qualitatively altered in their
shape, their resonant counterparts with the same periodicity show significant shielding at the
resonance position and field penetration in the interior region. The amplitude is generally
reduced in the kinetic vs. the iMHD case, and at least for 𝑚 = −5 and 𝑚 = −6, shielding is
also reduced.
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Figure 5.15: Fourier amplitudes of the magnetic perturbation fields resulting from MEPHIT
(ideal MHD) and GPEC for a few selected poloidal/toroidal modes, enhanced around the
magnetic axis. Due to the low poloidal resolution close to the axis, the results of the Fourier
transform in MEPHIT are somewhat imprecise. The leading-order estimate given in table 5.2
still holds, although the application of a numerical derivative is not feasible.
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To show that the geometric 𝜃 approximates magnetic 𝜗 well near the axis, we consider the
Jacobian of symmetry flux coordinates,

√𝑔 = 𝐶( ̂𝜓)𝑅2, (5.11)

with someflux function𝐶( ̂𝜓) that accounts for the flux functions in (1.7) and the normalization
of 𝜓, and compare it to the progression of coordinate transforms from Cartesian to symmetry
flux coordinates,

√𝑔 = 𝜕 (𝑋, 𝑌, 𝑍)
𝜕 ( ̂𝜓, 𝜑, 𝜗)

= 𝜕 (𝑋, 𝑌, 𝑍)
𝜕 (𝑅, 𝜑, 𝑍)

𝜕 (𝑅, 𝑍)
𝜕 ( ̂𝜓, 𝜗)

= 𝑅 𝜕 (𝑥, 𝑦)
𝜕 ( ̂𝜓, 𝜗)

= 𝑅𝜕 (𝑥, 𝑦)
𝜕 ( ̂𝑟, 𝜃)

𝜕 ( ̂𝑟, 𝜃)
𝜕 ( ̂𝜓, 𝜗)

= 𝑅𝑎2𝑏2 ̂𝑟 𝜕 ( ̂𝑟, 𝜃)
𝜕 ( ̂𝜓, 𝜗)

= 𝑅𝑎2𝑏2
�� ̂𝑟 1
2�� ̂𝑟

𝜕𝜃
𝜕𝜗. (5.12)

Comparison of (5.11) and (5.12) yields

𝜕𝜃
𝜕𝜗 = 2𝐶( ̂𝜓)

𝑎2𝑏2 𝑅. (5.13)

With 𝑅 ≈ 𝑅O near the axis, this factor is constant. This means it is necessarily equal to 1, and
geometric 𝜃 and magnetic 𝜗 are equal (up to a constant offset) in this approximation.

Expanding (5.11) in 𝑥 and transforming to ( ̂𝑟, 𝜃) yields

√𝑔 = 𝐶( ̂𝜓) (𝑥2 + 2𝑅O𝑥 + 𝑅2
O) = 𝐶( ̂𝜓) (𝑎2 ̂𝑟2(cos 𝜃)2 + 2𝑅O𝑎 ̂𝑟 cos 𝜃 + 𝑅2

O)

= 𝐶( ̂𝜓)
2

∑
𝑗=0

𝑐𝑗 ̂𝑟𝑗(cos 𝜃)𝑗 (5.14)

with factors

𝑐0 = 𝑅2
O, 𝑐1 = 2𝑅O𝑎, 𝑐2 = 𝑎2. (5.15)

The flux surface average is given by

𝐴 = ⟨√𝑔 ∣∇𝜓∣⟩ = 2𝐶( ̂𝜓)
2𝜋

∫
0

(𝑥2 + 𝑅O𝑥 + 2𝑅2
O) √𝑥2

𝑎4 + 𝑦2

𝑏4 d𝜃 (5.16)

= 4𝐶( ̂𝜓) ̂𝑟
𝑎

2
∑
𝑗=0

𝑐𝑗 ̂𝑟𝑗

2𝜋

∫
0

(cos 𝜃)𝑗√1 − (1 − 𝑎2

𝑏2 ) (sin 𝜃)2 d𝜃 (5.17)

= 𝐶( ̂𝜓)(𝐶0 ̂𝑟 + 𝐶2 ̂𝑟3). (5.18)

The remaining coefficients are given in terms of complete elliptic integrals of the first and
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second kind, although we are mostly interested in the order of magnitude:

𝐶0 = 16𝑎
𝑏𝐸 (1 − 𝑏2

𝑎2 )
𝑅2
O
𝑎 ≤ 8𝜋

𝑅2
O
𝑎 , (5.19)

𝐶2 = 8
3𝑏

⎛⎜⎜
⎝

𝑎
𝑏

1
1 − 𝑎2

𝑏2

(𝑎𝐾 (1 − 𝑎2

𝑏2 ) + 𝑏𝐾 (1 − 𝑏2

𝑎2 )) −

− ⎛⎜⎜
⎝

1 + 1
1 − 𝑎2

𝑏2

⎞⎟⎟
⎠

(𝑎𝐸 (1 − 𝑏2

𝑎2 ) + 𝑏𝐸 (1 − 𝑎2

𝑏2 ))⎞⎟⎟
⎠

𝑎 ≤ 4𝜋𝑎, (5.20)

𝐶2
𝐶0

∼ 𝑎2

𝑅2
O

. (5.21)

For our estimation, we expand the reciprocal in ̂𝑟,

1
𝐴 = 1

⟨√𝑔 ∣∇𝜓∣⟩
= 1

𝐶( ̂𝜓)
̂𝑟−1

𝐶0
(1 − 𝐶2

𝐶0
̂𝑟2 +

𝐶2
2

𝐶2
0

̂𝑟4 − ⋯ ) , (5.22)

and keep only the leading order, as successive coefficients fall off rapidly.

Finally, we expand the Taylor series of the toroidal Fourier amplitudes of the cylindrical
components of 𝑩𝑛:

𝐵𝑅
𝑛 =

∞
∑

𝑚1=0

∞
∑

𝑚2=0

𝑥𝑚1𝑦𝑚2

𝑚1!𝑚2!
𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑅

𝑛 (𝑅O, 𝑍O), (5.23)

𝐵𝑍
𝑛 =

∞
∑

𝑚1=0

∞
∑

𝑚2=0

𝑥𝑚1𝑦𝑚2

𝑚1!𝑚2!
𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑍

𝑛 (𝑅O, 𝑍O). (5.24)

Taking the projection 𝑩𝑛 ⋅ ∇ ̂𝜓 and transforming from (𝑥, 𝑦) to ( ̂𝑟, 𝜃) yields

𝐵 ̂𝜓
𝑛 = 2

∞
∑

𝑚1=0

∞
∑

𝑚2=0

𝑥𝑚1𝑦𝑚2

𝑚1!𝑚2! ( 𝑥
𝑎2

𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑅

𝑛 (𝑅O, 𝑍O) + 𝑦
𝑏2

𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑍

𝑛 (𝑅O, 𝑍O))

= 2
∞
∑

𝑚1=0

∞
∑

𝑚2=0

̂𝑟𝑚1+𝑚2+1(𝑎 cos 𝜃)𝑚1(𝑏 sin 𝜃)𝑚2

𝑚1!𝑚2! (cos 𝜃
𝑎

𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑅

𝑛 (𝑅O, 𝑍O) +

+ sin 𝜃
𝑏

𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑍

𝑛 (𝑅O, 𝑍O)) . (5.25)

For brevity, we collect factors independent of ̂𝑟 and 𝜃,

𝛽𝑅
𝑚1,𝑚2

= 2
𝑎

𝑎𝑚1𝑏𝑚2

𝑚1!𝑚2!
𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑅

𝑛 (𝑅O, 𝑍O), (5.26)

𝛽𝑍
𝑚1,𝑚2

= 2
𝑏

𝑎𝑚1𝑏𝑚2

𝑚1!𝑚2!
𝜕𝑚1+𝑚2

𝜕𝑅𝑚1 𝜕𝑍𝑚2
𝐵𝑍

𝑛 (𝑅O, 𝑍O). (5.27)

Furthermore, we introduce a new summation index 𝑚0 = 𝑚1 + 𝑚2 instead of 𝑚2, which
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allows grouping by the largest exponent:

𝐵 ̂𝜓
𝑛 =

∞
∑

𝑚1=0

∞
∑

𝑚2=0
̂𝑟𝑚1+𝑚2+1(cos 𝜃)𝑚1(sin 𝜃)𝑚2 (𝛽𝑅

𝑚1,𝑚2
cos 𝜃 + 𝛽𝑍

𝑚1,𝑚2
sin 𝜃)

=
∞
∑

𝑚0=0
̂𝑟𝑚0+1

𝑚0

∑
𝑚1=0

(cos 𝜃)𝑚1(sin 𝜃)𝑚0−𝑚1 (𝛽𝑅
𝑚1,𝑚0−𝑚1

cos 𝜃 + 𝛽𝑍
𝑚1,𝑚0−𝑚1

sin 𝜃) . (5.28)

Before considering the Fourier transform in 𝜃, we include √𝑔 from (5.14),

√𝑔𝐵 ̂𝜓
𝑛 = 𝐶( ̂𝜓)

2
∑
𝑗=0

𝑐𝑗

∞
∑

𝑚0=0
̂𝑟𝑚0+1+𝑗

𝑚0

∑
𝑚1=0

(cos 𝜃)𝑚1+𝑗(sin 𝜃)𝑚0−𝑚1 (𝛽𝑅
𝑚1,𝑚0−𝑚1

cos 𝜃 +

+ 𝛽𝑍
𝑚1,𝑚0−𝑚1

sin 𝜃) . (5.29)

Anticipating the Fourier transform, we use complex forms for sine and cosine. For a given
exponent 𝐾, we see that exponents of exp i𝜃 range from −𝐾 to 𝐾. Again, we are not interested
in constant coefficients, and just abbreviate them without explicit transformation:

(cos 𝜃)𝐾 =
𝐾

∑
𝑘=0

1
2𝐾 (𝐾

𝑘)ei(𝐾−2𝑘)𝜃 =
𝐾

∑
𝑘=−𝐾

𝜎𝑘ei𝑘𝜃, (5.30)

(sin 𝜃)𝐾 =
𝐾

∑
𝑘=0

(−1)𝑘

2𝐾i𝐾 (𝐾
𝑘)ei(𝐾−2𝑘)𝜃 =

𝐾
∑

𝑘=−𝐾
𝜂𝑘ei𝑘𝜃. (5.31)

The combined maximum exponent in (5.29) is 𝐾 = HH𝑚1 + 𝑗 + 𝑚0 −HH𝑚1 + 1, yielding

√𝑔𝐵 ̂𝜓
𝑛 = 𝐶( ̂𝜓)

2
∑
𝑗=0

𝑐𝑗

∞
∑

𝑚0=0
̂𝑟𝑚0+1+𝑗

𝑚0+1+𝑗

∑
𝑘=−𝑚0−1−𝑗

𝛼𝑚0,𝑘ei𝑘𝜃 (5.32)

with some constant coefficients 𝛼𝑚0,𝑘. The Fourier transform is then simply

ℬ ̂𝜓
𝑚𝑛 = (√𝑔𝐵 ̂𝜓

𝑛 )
𝑚

= 1
2𝜋

2𝜋

∫
0

√𝑔𝐵 ̂𝜓
𝑛e−i𝑚𝜃 d𝜃 = 𝐶( ̂𝜓)

2𝜋

2
∑
𝑗=0

𝑐𝑗

∞
∑

𝑚0=0
̂𝑟𝑚0+1+𝑗

𝑚0+1+𝑗

∑
𝑘=−𝑚0−1−𝑗

𝛼𝑚0,𝑘

2𝜋

∫
0

ei(𝑘−𝑚)𝜃 d𝜃.

(5.33)

We include the normalization from (5.22), cancel 𝐶( ̂𝜓), and absorb the remaining constants
into 𝑐𝑗, i.e., 𝑐𝑗 → 𝑐𝑗/2𝜋𝐶0, effectively reducing the order of ̂𝑟 by 1. The integral reduces to a
Kronecker delta and we finally have

ℬ ̂𝜓
𝑚𝑛
𝐴 =

2
∑
𝑗=0

𝑐𝑗

∞
∑

𝑚0=0
̂𝑟𝑚0+𝑗

𝑚0+1+𝑗

∑
𝑘=−𝑚0−1−𝑗

𝛼𝑚0,𝑘𝛿𝑘,𝑚 =
2

∑
𝑗=0

∞
∑

𝑚0=0
𝑐𝑗𝛼𝑚0,𝑚 ̂𝑟𝑚0+𝑗 ⟦𝑚0 + 1 + 𝑗 ≥ |𝑚|⟧ . (5.34)

107



5 Simulation Results

In the last step, we used the Iverson bracket1 to reduce the innermost summation. It can be
interpreted as imposing a lower bound on 𝑚0 depending on 𝑗 and |𝑚|. We are interested in
the leading orders in ̂𝑟, so we carry out the summations for the first few terms and group the
results accordingly, yielding table 5.1.

Table 5.1: Taylor series expansion of the radialmagnetic field perturbationℬ ̂𝜓
𝑚𝑛𝐴−1, depending

on poloidalmode number𝑚 according to (5.34). The schematic continues regularly for |𝑚| > 2.

|𝑚| ℬ ̂𝜓
𝑚𝑛𝐴−1 grouped by 𝑚0 ℬ ̂𝜓

𝑚𝑛𝐴−1 grouped by 𝑚0 + 𝑗
0 𝛼0,𝑚(𝑐2 ̂𝑟2 + 𝑐1 ̂𝑟1 + 𝑐0 ̂𝑟0) + ̂𝑟0 𝑐0𝛼0,𝑚 +

𝛼1,𝑚(𝑐2 ̂𝑟3 + 𝑐1 ̂𝑟2 + 𝑐0 ̂𝑟1) + ⋯ ̂𝑟1(𝑐0𝛼1,𝑚 + 𝑐1𝛼0,𝑚) + ⋯
1 𝛼0,𝑚(𝑐2 ̂𝑟2 + 𝑐1 ̂𝑟1 + 𝑐0 ̂𝑟0) + ̂𝑟0 𝑐0𝛼0,𝑚 +

𝛼1,𝑚(𝑐2 ̂𝑟3 + 𝑐1 ̂𝑟2 + 𝑐0 ̂𝑟1) + ⋯ ̂𝑟1(𝑐0𝛼1,𝑚 + 𝑐1𝛼0,𝑚) + ⋯
2 𝛼0,𝑚(𝑐2 ̂𝑟2 + 𝑐1 ̂𝑟1) + ̂𝑟1(𝑐0𝛼1,𝑚 + 𝑐1𝛼0,𝑚) +

𝛼1,𝑚(𝑐2 ̂𝑟3 + 𝑐1 ̂𝑟2 + 𝑐0 ̂𝑟1) + ̂𝑟2(𝑐0𝛼2,𝑚 + 𝑐1𝛼1,𝑚 + 𝑐2𝛼0,𝑚) +
𝛼2,𝑚(𝑐2 ̂𝑟4 + 𝑐1 ̂𝑟3 + 𝑐0 ̂𝑟2) + ⋯ ̂𝑟3(𝑐0𝛼3,𝑚 + 𝑐1𝛼2,𝑚 + 𝑐0𝛼1,𝑚) + ⋯

3 𝛼0,𝑚 𝑐2 ̂𝑟2 + ̂𝑟2(𝑐0𝛼2,𝑚 + 𝑐1𝛼1,𝑚 + 𝑐2𝛼0,𝑚) +
𝛼1,𝑚(𝑐2 ̂𝑟3 + 𝑐1 ̂𝑟2) + ̂𝑟3(𝑐0𝛼3,𝑚 + 𝑐1𝛼2,𝑚 + 𝑐2𝛼1,𝑚) +
𝛼2,𝑚(𝑐2 ̂𝑟4 + 𝑐1 ̂𝑟3 + 𝑐0 ̂𝑟2) + ⋯ ̂𝑟4(𝑐0𝛼4,𝑚 + 𝑐1𝛼3,𝑚 + 𝑐2𝛼2,𝑚) + ⋯

4 𝛼1,𝑚 𝑐2 ̂𝑟3 + ̂𝑟3(𝑐0𝛼3,𝑚 + 𝑐1𝛼2,𝑚 + 𝑐2𝛼1,𝑚) +
𝛼2,𝑚(𝑐2 ̂𝑟4 + 𝑐1 ̂𝑟3) + ̂𝑟4(𝑐0𝛼4,𝑚 + 𝑐1𝛼3,𝑚 + 𝑐2𝛼2,𝑚) +
𝛼3,𝑚(𝑐2 ̂𝑟5 + 𝑐1 ̂𝑟4 + 𝑐0 ̂𝑟3) + ⋯ ̂𝑟5(𝑐0𝛼5,𝑚 + 𝑐1𝛼4,𝑚 + 𝑐2𝛼3,𝑚) + ⋯

Judging from table 5.1, the leading order for 𝑚 = 0 should be ̂𝜓0, but in figure 5.15, it appears
to be ̂𝜓 1

2 instead, implying 𝛼0,0 = 0. This can be explained by revisiting (5.29) and the
transformation following it. The exponents of exp i𝜃 are actually all even for even 𝐾 and all
odd for odd 𝐾. The case distinction is cumbersome for the general derivation, but consider the
coefficients of ̂𝑟0 in the case 𝑚 = 0. It only has contributions from 𝑚0 = 0 and 𝑗 = 0, meaning
𝐾 = 𝑚0 + 𝑗 + 1 = 1. Thus 𝑘 = ±1, which does not contribute to the 𝑚 = 0 mode; however, it
contributes to the 𝑚 = ±1 modes, which show the expected behavior. All other coefficients
of ̂𝑟𝐾−1 for all 𝑚 have at least one even and odd non-zero contribution, so we have the only
exception covered. We arrive at the leading order in ̂𝜓 for ℬ ̂𝜓

𝑚𝑛𝐴−1 and its derivative near the
magnetic axis given in table 5.2.

Comparing the full perturbation including plasma response and the vacuum perturbation
between GPEC andMEPHIT, we notice a few peculiarities. The predicted behavior is followed
by the vacuum perturbations of both MEPHIT and GPEC, as well as the full perturbation
of MEPHIT (up to the availabe precision), but not by the full perturbation of GPEC, except
possibly for 𝑚 = 0, ±2. The derivation depends only on geometrical considerations, so the

1yields 1 if its argument is true an 0 otherwise
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Table 5.2: Leading order of radial coordinate ̂𝜓 in Taylor series expansion of the radialmagnetic
field perturbation ℬ ̂𝜓

𝑚𝑛𝐴−1 and its radial derivative in table 5.1, depending on poloidal mode
number 𝑚.

|𝑚| ℬ ̂𝜓
𝑚𝑛𝐴−1 𝜕 ̂𝜓 (ℬ ̂𝜓

𝑚𝑛𝐴−1)

0 ̂𝜓 1
2 ̂𝜓− 1

2

1 ̂𝜓0 ̂𝜓− 1
2

2 ̂𝜓 1
2 ̂𝜓− 1

2

3 ̂𝜓1 ̂𝜓0

4 ̂𝜓 3
2 ̂𝜓 1

2

5 ̂𝜓2 ̂𝜓1

result of any Fourier transform as derived should result in the expected behaviour; however,
GPEC operates directly on the poloidal modes. In private corresespondence, Park and Logan
[25] acknowledged this discrepancy, but they point out that “incorrect asymptotics do not
impact bulk response benchmarks with other established codes [31, 32]”. The underlying
code DCON exhibits a singular point at the axis, which explains the lower bound ̂𝜓 ≈ 0.05 of
the curves for GPEC in figure 5.15.

5.2.2 Isotope Effects

The results presented in this section have already been submitted for publication [4].

To characterize the plasma response current from the kinetic model presented in chapter 3,
we perform a sweep over the 𝐸 × 𝐵 velocity by adding an appropriate offset to 𝐸0𝑟, once for a
pure deuterium plasma and once for a pure hydrogen plasma. (𝐵𝑟

1/𝐵𝜑
0 )𝒎 is set constant and

the parallel current density perturbation resulting from (3.120) is then integrated in analogy
to (15) of [13],

𝐼∥𝒎 = 2𝜋

𝑟𝒎−Δ𝑟

∫
𝑟𝒎−Δ𝑟

d𝑟 (
√𝑔𝐽∥

𝑅 )
𝒎

, (5.35)

where Δ𝑟 was set to the width 𝛿𝒎 of the resonant layer. The results for this parallel response
current for two Fourier modes of interest are shown in figure 5.16.

For the same modes, we run the full iterative scheme twice with different offsets for 𝐸0𝑟,
once “on” and once “off” the electron fluid resonance seen in the sweep, again for a pure
deuterium and a pure hydrogen plasma. Since the difference between the isotopes would
be harly visible in figure 5.14, figure 5.17 provides an enlarged version, showing the effect of
isotope discrimination in the kinetic approximation.
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Figure 5.16: Parallel response current within the resonant layer as a function of 𝐸 × 𝐵 velocity
at constant magnetic field perturbation for deuterium and hydrogen. The dotted vertical line
indicates the electrical or gyrocenter resonance at 𝑉𝐸×𝐵 = 0. The electron fluid resonance at
negative velocities yields the lowest parallel response current, as is expected. A tentative ion
fluid resonance occurs at positive velocities. The dashed and solid vertical lines indicate the
velocities chosen for a full iterative solution “on” and “off” the electron fluid resonance in
figure 5.17. The dash-dotted vertical line indicates the original value, i.e., without the offset
for the sweep.

110



5.2 Perturbed Equilibrium Results

0.825 0.850 0.875 0.900 0.925
normalized ploidal flux ̂𝜓

0.0

0.2

0.4

0.6

0.8

1.0

|(√
𝑔𝐵

𝜓
) 𝒎

|𝐴
−

1
/

T
×10−4

𝒎 = (−6, 2)

D off el.fl.res.
H off el.fl.res.
D on el.fl.res.
H on el.fl.res.

0.875 0.900 0.925 0.950 0.975
normalized ploidal flux ̂𝜓

0.0

0.2

0.4

0.6

0.8

1.0

|(√
𝑔𝐵

𝜓
) 𝒎

|𝐴
−

1
/

T

×10−4

𝒎 = (−7, 2)

D off el.fl.res.
H off el.fl.res.
D on el.fl.res.
H on el.fl.res.

1
Figure 5.17: Fourier amplitude of the radial magnetic field perturbation, the same quantity as
in figure 5.14, but enlarged around the resonance position indicated by the dotted vertical
line. The dashed vertical line indicates twice the resonant layer width 𝛿𝒎. Shielding is slightly
lower for hydrogen than for deuterium in the kinetic approximation, at least off the electron
fluid resonance.

Despite a very similar radial perturbation magnetic field, the parallel misalignment electro-
static field is rather different for the hydrogen and deuterium ions. This field is shown in
figure 5.18 together with the respective parallel plasma response current densities. The latter
are very similar (which explains similar RMP shielding) since these densities are mainly
produced by the electrons in a narrow region around the resonant flux surface where the
contribution of the electrostatic potential perturbation to the misalignment field is much
smaller than the contribution of the axisymmetric electric field via the corrugation of mag-
netic flux surfaces. In contrast to the electrons, the region where ions interact with RMPs via
Landau damping is much wider than the region of electron interaction. Although the ion
contribution to the parallel shielding current is small, their resonant interaction with RMPs
leads to quasilinear toroidal torque which is not necessarily small compared to the electron
torque.
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Figure 5.18: Parallel misalignment field and parallel response current density for deuterium
(black) and hydrogen (orange) ions for mode 𝒎 = (−6, 2) off the electron fluid resonance as
indicated in figure 5.16.
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Chapter 6

Conclusion and Outlook

In this work, an ideal MHD model of resonant magnetic perturbations (RMPs) in realistic
tokamak geometry has been derived from first principles and implemented as the code
MEPHIT. The previously established iteration scheme with a custom preconditioner [7] is
demonstrated to be compatible with this model. As part of each iteration step, Ampère’s
equation is solvedwith a finite elementmethod. To this end, we developed a general formalism
to apply a Fourier series expansion along a symmetry direction in the context of the Galerkin
method, which is validated against established model problems [1]. The simulation results
for the ASDEX Upgrade tokamak have been benchmarked against the established ideal MHD
code GPEC [33], showing at least qualitative agreement. An analytical derivation of the
near-axis behaviour further supports the results obtained via MEPHIT. Moreover, the ideal
MHD model has been combined with a kinetic model of the plasma response current in the
region surrounding rational surfaces, a novel approach which is also shown to be compatible
with the iterative scheme. It has been derived in the straight-cylinder limit, which is then
extended to toroidal geometry. Inclusion of the second-order contribution of finite Larmor
radius expansion allows discrimination between hydrogen isotopes in principle, although
the influence of ions on shielding of RMPs is rather small. Despite the very similar radial
perturbation magnetic field, the parallel misalignment electrostatic field is rather different for
the hydrogen and deuterium ions, which in turn affects quasi-linear effects such as toroidal
torque from RMPs. Further investigation is warranted to explain the experimentally observed
differences [34], likely necessitating a kinetic integral model, but this endeavour is beyond
the scope of this thesis.

The presented model is quite extensible, and an interface to the fully three-dimensional drift-
kinetic code Gorilla [16] is planned. The latter also extends its mesh to the scrape-off layer
and the private flux region, which we expect to be applicable also to MEPHIT, given that it
operates on cylindrical coordinateswhich do not exhibit singularitieswithin the computational
domain. Further benchmarking of the existing model is currently underway, specifically with
the code MARS [35, 36] and for the MAST Upgrade tokamak. On a more technical note, there
is still room for improvement in the implementation of MEPHIT. Higher-order finite elements,
XFEM to handle the singularities in the ideal MHD model, and adaptive mesh refinement
come to mind. Parallelization would further improve performance, making the running time
comparable to GPEC [33].
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