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Abstract

This thesis presents the analysis and evaluation of acoustic representations and
models for conversational speech for two tasks: prosodic prominence classification
and automatic speech recognition (ASR). Conversational speech poses unique chal-
lenges compared to read or prepared speech due to characteristics such as lively
turn-taking, incomplete utterances, disfluencies, and high degree of pronunciation
variation. Given these characteristics, both prosodic annotation tools and ASR
systems trained on the typical benchmark datasets perform significantly worse on
conversational speech. This thesis thus follows two aims, 1) to analyze acoustic
representations for conversational speech using explainable machine learning (ML)
methods, and 2) to improve the performance of prosodic prominence classification
and ASR systems, as measured with standard performance measures. Our experi-
ments on prosodic prominence classification revealed that the main acoustic cues
for perceived prominence were the durational features. We introduce novel entropy-
based prosodic features, which showed to encode necessary durational information
along with information on pitch and loudness, leading to detection performances
which aligned with inter-annotator agreements for the different prominence levels.
These entropy-based prosodic representations were further used to examine their
impact on utterance-level word error rates (WERs) of HMM- and transformer-
based ASR systems. Our results reveal significant effects of durational and prosodic
features on WER, but also how they interact with pronunciation variation and
utterance-level complexity measures. Finally, we developed prominence detectors
and prominence-aware ASR systems and explored how prosodic information is
encoded through fine-tuning of self-supervised speech representations, indicating the
feasibility of integrating prosodic information into ASR. Given that our experiments
were based on data from conversational Austrian German, we had to deal with high
variation stemming from dealing with a (low-resourced) regional variety of a (well-
resourced) language in addition to the high variation between speakers and between
different speaker pairs given the casual speaking style. Using clustering methods
for shared discrete speech representations we demonstrated their effectiveness in
differentiating language and variety aspects and capturing speaker differences across
styles. The distances between quantized latent speech representations showed to
meaningfully capture fine-grained differences between speakers when producing
different speaking styles. Overall, this thesis provides insights into the complexities
of conversational speech and demonstrates how the analysis and evaluation of acous-
tic representations and models deepen our understanding of conversational speech.
The findings have implications for various applications such as human-machine
interaction, conversation transcription and hearing aid technology.
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Kurzfassung

Diese Dissertation prasentiert die Analyse und Evaluierung akustischer Reprasen-
tationen und Modelle fiir Konversationssprache in zwei Aufgabenbereichen: der
Klassifikation prosodischer Prominenz und der automatischen Spracherkennung
(ASR). Konversationssprache bietet im Vergleich zu gelesener oder vorbereiteter
Sprache einzigartige Herausforderungen und ist durch eine lebhafte Gesprachsdyna-
mik, unvollstindige AuBerungen, Fiillworter und ein hohes Maf8 an Ausspracheva-
riation charakterisiert. Aufgrund dieser Merkmale funktionieren sowohl prosodische
Annotations-Tools als auch ASR-Systeme, die auf typischen Benchmark-Datensétzen
trainiert wurden, bei Konversationssprache signifikant schlechter. Diese Disserta-
tion verfolgt zwei Ziele: 1) die Analyse akustischer Reprisentationen fiir unter
Verwendung erklarbarer Methoden des maschinellen Lernens (ML), und 2) die
Verbesserung der Leistung von Systemen zur Klassifikation prosodischer Prominenz
und ASR-Systemen, gemessen an standardisierten Evaluierungsparametern. Die
Experimente zur Klassifikation prosodischer Prominenz zeigten, dass die wichtigs-
ten akustischen Merkmale fiir wahrgenommene Prominenz die dauer-bezogenen
Merkmale waren. Es wurden entropiebasierte prosodische Merkmale eingefiihrt,
die notwendige Informationen zur Dauer sowie Informationen {iber Tonhéhe und
Lautstérke kodieren. Die dadurch erreichte Modellgenauigkeit stimmte mit jener
der menschlichen Annotatoren iiberein. Diese entropiebasierten prosodischen Re-
prasentationen wurden weiter verwendet, um ihren Einfluss auf Wortfehlerraten
(WERs) von HMM- und transformerbasierten ASR-Systemen zu untersuchen. Die
Ergebnisse zeigen signifikante Effekte von Dauer- und Prosodiemerkmalen auf die
WER, aber auch, wie sie mit Aussprachevariationen und Komplexitdtsmafen auf
AuBerungsebene interagieren. Schliefllich priisentiert diese Dissertation Prominenz-
detektoren und prominenz-sensitive ASR-Systeme, die neben der orthographischen
Transkription auch Prominenzniveaus automatisch annotieren, und untersucht, wie
prosodische Information durch das Fine-Tuning von self-supervised Sprachrepré-
sentationen enkodiert wird. Da alle Experimente dieser Dissertation auf Daten
des Deutsch basieren, war es notwendig, Methoden zu entwickeln, die mit hoher
regionaler Variation umgehen koénnen - zusétzlich zur hohen Variabilitdt zwischen
Sprecher*innen und Sprecherpaaren aufgrund des informellen Sprechstils. Durch
den Einsatz von Clustering-Methoden fiir self-supervised Sprachrepriasentationen
wurde gezeigt, dass diese effektiv Sprache unterschiedlicher Stile und Varietédten
unterscheiden. Die Abstande zwischen quantisierten latenten Sprachreprasentatio-
nen erwiesen sich als aussagekréftig bei der Erfassung feingranularer Unterschiede
zwischen Sprecher*innen bei der Produktion unterschiedlicher Sprechstile. Insgesamt
bietet diese Dissertation Einblicke in die Komplexitéit der Konversationssprache
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und zeigt, wie die Analyse und Bewertung akustischer Représentationen und Mo-
delle unser Verstandnis von Konversationssprache vertiefen. Die Ergebnisse dieser
Arbeit kénnen in verschiedenen Bereichen zur Anwendung kommen, im speziel-
len um Mensch-Maschine-Interaktion natiirlicher zu gestalten, und linguistische
Sprachkorpora automatisch auf Wort und Prominenzniveau zu annotieren.
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Chapter 1

Introduction

This thesis explores conversational speech by analyzing and evaluating acoustic
representations and models for prosodic prominence detection and speech recognition.
In general, conversational speech refers to a speaking style where two or more people
are conducting a spontaneous conversation, resulting in a less structured form than
read or prepared speech. Anything beyond these general properties could refer to the
casualness of the conversational setting, the relationship between the conversational
interlocutors or the setting of a face-to-face conversation. With respect to its
structural properties, the conversational speaking style is characterized by a lively
turn-taking, resulting in short utterances, grammatically incomplete utterances,
self-interruptions, backchannels and disfluencies. Another characteristic is a high
degree of pronunciation variation, resulting from acoustic reduction processes and
(dialectal) phonological processes (Schuppler, Adda-Decker, & Morales-Cordovilla,
2014). This list of conversational characteristics is by no means complete, but
clearly shows that these aspects introduce elusive complexities which need to be
taken into account for the development of appropriate applications. This thesis
investigates certain aspects of these complexities in conversational speech, which can
be beneficial for improving various applications such as human-machine interaction
systems (e.g., social robots or speech agents), transcription software for spontaneous
conversations between two or more humans (e.g., meeting recordings) or hearing
aid technology.

The technology of all these applications in the focus of this thesis is automatic
speech recognition (ASR). ASR performance varies greatly across languages (i.e.,
well-resourced vs. low-resourced) and speaking styles (i.e., read or well-prepareed
vs. spontaneous speech) making it challenging to establish a universal benchmark.
As an example, there exists the common English read speech corpus LibriSpeech
(Panayotov et al., 2015)) for which impressive word error rates (WERs) of 1.4 % were
reported (Zhang et al., |2020). In contrast, Xu et al.| (2021) reach a WER of 12.3%
for read speech corpora in German. Speech recognition results for spontaneous
or conversational speech are even more diverse. For instance, ASR results on
the Switchboard corpus (J. J. Godfrey et al., [1992), a corpus of spontaneous
telephone conversations in American English, demonstrate the progress made in
speech recognition with recently reported WERs in the range of 4.3 % (Tiiske et
all 2021) to 5.1 % (Xiong et all |2018)), whereas on the same corpus WERs were in
the range of 11.5% to 14.5 % only 10 years ago. These high performances on the
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well-resourced language American English, however, can by far not be achieved for
low-resource languages, low-resource language varieties nor for more spontaneous
speaking styles. For instance, the OpenASR21 challenge showed that for low-resource
languages WERs fall in the range of 32 % (Swahili) to 68 % (Farsi) (Peterson et
al., 12022)). Overall, it is not straightforward to define sub-categories of spontaneous
speaking styles which are subject to many factors (cf. Fig. . Therefore, this
makes it difficult to directly compare WERs of different spontaneous speech corpora.
One focus of this thesis is the analysis of the conditions under which different ASR
architectures (HMM-based vs. transformer-based) face challenges. Additionally, it
presents how a combination of data-choice and linguistic knowledge integration
improves ASR performance and it shows how self-supervised speech representations
are related to speaking styles and language varieties.

Another important aspect of conversational speech is prosodic variation, where
in this thesis the focus is specifically on prosodic prominence. Prosodic prominence
is a complex phenomenon (B. Wagner et al.l 2015) and generally defined as a
linguistic entity which stands out from its environment due to prosodic characteristics
(Terken & Hermes| [2000)). This definition emphasizes the relative nature of prosodic
prominence which also includes monosyllabic utterances because they stand out from
silence (Terken & Hermes) 2000)). Either way, acoustic cues to perceived prominence
have not only been analyzed on syllable-level (Kochanski et al.l [2005; Mixdorff et
al., [2015} (Terken & Hermes) [2000; [P. Wagner|, [2005) but also on word-level (Bishop,
2012; (Cole et al.l 2019} |2010; [Turnbull et al., |2017) or vowel-level (Baumann et al.,
2016|). The annotation of prominence can be based on either two or more levels (like
in this thesis) or on a continuous scale. Surprisingly, the findings in the literature
do not suggest a consistent view on which acoustic cues that mainly contribute
to the perception of prosodic prominence. This inconsistency may stem from the
fact that the perception of prominence is influenced by various factors that go
beyond prosodic acoustic cues such as the lexical context or the speaking style. This
thesis analyzes which acoustic features contribute how strongly to the perception
of prosodic prominence in conversational Austrian German and shows methods to
enhance its classification and detection performance.

Applications including ASR and prosodic prominence have strongly been influ-
enced by the recent advancements in the field of machine learning (ML). Initially,
ML problems were solved with relatively simple models (e.g., simple linear models or
decision trees) whose decision processes were easily interpretable. They were, how-
ever, largely replaced by less interpretable deep learning models (Goodfellow et al.)
2016|). At present, especially due to the advances in computing power, it is possible
to train highly parameterized models (e.g., ChatGPT has 175 billion parameters and
its successors could be six times larger (M. Mijwil et al., 2023))). While these models
can solve increasingly challenging problems, their complexity comes at the cost
of interpretability for scientists employing them. Interpreting these more complex
models remains feasible especially when they incorporate model-specific analysis
methods (e.g., random forests with impurity-based feature importances (Breiman,
2001}, 12002)); cf. Chap. . Simultaneously, there exists a multitude of interpretable
model-agnostic methods (e.g., SHAP (Lundberg & Leel |2017) or permutation fea-
ture importances (Breiman| 2001, 2002} |[Fisher et al.| [2019)) which aim to provide
interpretations for various model types. These methods are not only theoretically
established, but are also becoming increasingly accessible due to rapidly evolving
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Figure 1.1: Overview of the two research aims (ellipses describe entities and dashed rectangles
processes): Conversational speech builds the origin for most experiments described in this
thesis and it generally includes acoustic data together with meta data. The next step involves
the processing of the speech data in acoustic representations and models (i.e., training
or fine-tuning of word or word sequence models as well as encoding with speech representation
models). This leads to the aims of this thesis which comprise 1) the analysis of acoustic
representations and models with explainable machine learning methods (e.g., tree-based
or feature transformation methods) and 2) the evaluation of acoustic representations and
models with standard performance measurements (e.g., accuracies/recalls/F1-scores or
WERS). These research aims lead to specific research questions which are discussed in this thesis
in order to deepen our understanding of conversational speech characteristics. The double-headed
arrow between the dashed rectangles indicates that the two research aims depend on each other.

research in the field of explainable Al. Hence, there is always a necessity to search
and apply new interpretable model-agnostic or model-specific perspectives. In this
thesis, modern tree-based models with advanced model-specific methods are utilized,
enabling the analysis of interacting variables (e.g., Interaction Forests (Hornung
& Boulesteix, [2022a)); cf. Chap. . Furthermore, more advanced deep neural
network architectures which learn powerful latent or contextualized representations
(i.e., wav2vec2.0 (Baevski, Zhou, et al. [2020)) are analyzed with respect to feature
transformations and clustering methods in order to provide a better interpretability
of the information encoded in these representations (cf. Sec. [4.4)).



4 CHAPTER 1. INTRODUCTION

1.1 Research aims

This thesis has two main research aims (cf. Fig. : The first aim is the analysis
of acoustic representations and models with explainable tree-based or feature
transformation methods. The second aim is the evaluation of acoustic representations
and models with standard performance measurements. Both research aims are
investigated on two different tasks for conversational speech: prosodic prominence
classification and automatic speech recognition. All studies presented contribute to
deepen our understanding of conversational speech characteristics.

1.1.1 Aim 1: Analysis of acoustic representations for con-
versational speech with explainable machine learning
methods

The first aim of this thesis is the analysis of acoustic representations and models
with ezxplainable tree-based or feature transformation methods in order to deepen
our understanding of conversational speech characteristics.

To achieve this aim, we investigated the following four research questions:
RQ1: Which are the main acoustic cues for prosodic prominence?
RQ2: Are WERs of conversational speech affected by utterance-level features?

RQ3: What do shared discrete speech representations encode with respect to
language varieties, speaking styles and speakers?

RQ4: Does the fine-tuning of self-supervised speech representations implicitly
encode prosody?

1.1.2 Aim 2: Evaluation of acoustic representations and mod-
els for conversational speech with standard perfor-
mance measurements

The second aim of thesis is the evaluation of acoustic representations and models
with standard performance measurements in order to deepen our understanding
of conversational speech characteristics

Related to this aim, we investigate the following two research questions:

RQ5: Are word-level prominence classification results with prosodic features or
word-level prominence detection results with fine-tuned speech representa-
tions in line with inner-annotator agreements?

RQG6: How do low-resourced HMM-based ASR systems compare to low-resourced
or data-driven transformer-based ASR systems in terms of effectiveness
for recognizing Austrian German conversational speech?
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1.2 Contributions and outline

The core of this thesis is based on six reformatted articlesﬂ (incorporated into
Chap. [2[- Chap. , which encompass the two research aims with the corresponding
research questions. The first aim is to analyze acoustic representations and models
for conversational speech, such as classifying prosodic prominence or performing
automatic speech recognition, by using explainable methods like tree-based algo-
rithms or feature transformation techniques. The second aim is to evaluate these
acoustic representations and models using standard performance metrics, including
accuracies/recalls/F1-scores or WERs. In general, this thesis has three core chapters:
Chap. |2 presents conversational speech resources and initial ASR experiments on
these resources, Chap. [3| presents experiments for prosodic prominence classification
and Chap. [f] ASR experiments. For each of these chapter, we briefly outline their
main contributions here:

Chap. [2|(cf. Linke, Wepner, et al.|(2023))) provides a categorization of spontaneous
speech corpora with respect to critical questions like task-oriented?, experimenter
present?, number of speakers?, casual?, relationship? or face-to-face? (cf. Sec.|2.1))
and it also describes in more detail speech corpora with spontaneous/conversational
speech components which are relevant for this thesis (cf. Sec. . This chapter
also introduces initial (low-resourced) speech recognition experiments for Austrian
German read and conversational speech using Kaldi (cf. Sec. . These Kaldi-
based experiments serve as a baseline, demonstrating the challenges of ASR for
conversational Austrian German. Thus, this chapter is meant as an extension of
the motivation of this thesis by describing the research gap that requires a more
differentiated view of experiments with conversational speech data.

Chap. [3] investigates word-level prominence classification for read and conver-
sational speech. The evaluation is based on different training/test conditions or
specific feature selections. Furthermore, prosodic features are analyzed with respect
to x2-statistics or impurity-based feature importances which are derived from ran-
dom forest classification models (cf. Sec. Linke et al.| (2020)). In addition, novel
entropy-based prosodic features are introduced to the field of prosody (cf. Sec.
Linke, Kubin, and Schuppler| (2023)). Overall, the contributions of this chapter
show that, with minor exceptions, the classification of word-level prominence is
consistent with the inter-annotator agreement and that word duration is by far the
most important feature.

Chap. [d]includes all ASR experiments with a focus on conversational speech. The
first study (cf. Sec. Linke et al.| (2024])) provides insights into the challenges of
speech recognition with conversational speech when comparing different automatic
speech architectures (i.e., Kaldi, wav2vec2 and Whisper). More specifically, four
different ASR systems are examined in more detail with respect to three aspects: 1)
A comparison of HMM-based and transformer-based architectures, 2) the influence of
the amount of training data from the target language and style, and 3) the meaning
of the incorporation of explicit linguistic knowledge. One major finding of this study

IThe full list of the publications included in this thesis is given in the Curriculum Vitae (cf.
page . Throughout the thesis, the publications are of course referenced at the relevant places.
In all included publications, my contribution roles were the conceptualization, data curation,
formal analysis, investigation, methodology, software, validation, visualization and writing (original
draft and review/editing).
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is that with zero-shot learning, the performance on out-of-domain conversational
speech is poor especially for short utterances and large pronunciation variation.
The second study deals with the role of data in conversational speech recognition
(cf. Sec. Linke et al| (2022)). In particular, I show that a low-resource language
processing assumption is permissible for the conversational speech component of
the GRASS corpus. In addition, I present also a deeper discussion on the role of
linguistic knowledge, the role of targets and the difference between inter-conversation
and inter-speaker variation. Both studies (cf. Sec. and Sec. reveal that
transformer-based architectures pre-trained on large amounts of data outperform
HMM-based architectures if fine-tuned or trained on the same corpus. Likewise, if
the decoder of these fine-tuned transformers includes linguistic knowledge in the
form of a lexicon or language model, the performance is generally better and at the
same time more robust against acoustic and lexical variation. Next, we present an
analysis of self-supervised speech representations with respect to languages, varieties,
speaking styles and speakers (cf. Sec. Linke, Kadar, et al.[(2023)). This study
reveals that the calculation of distances with respect to shared quantized latent
speech representations is also meaningful on a much finer granularity level (i.e.,
per speaker per speaking style instead of only per languages). The last experiment
presented in this thesis (cf. Sec. presents yet unpublished work on integrating
prominence detection into a ASR by introducing prominence-aware ASR. More
precisely, T show that performance of word-level prominence detection (in contrast
to prominence classification; cf. Chap. [3) can be integrated into a transformer-based
automatic speech recognition framework.

Chap. |p| discusses all findings in the light of the two overarching research aims
and presents the contributions corresponding to the detailled research questions
(RQ1 - RQ6). This chapter presents ideas for future work related to each aim and
concludes this thesis.



Chapter 2

Conversational speech
resources

This chapter provides a categorization of spontaneous speech corpora and describes
the speech materials relevant for this thesis in detail. Additionally, this chapter
presents initial speech recognition experiments for Austrian German with the speech
recognition toolbox Kaldi (Povey et al., [2011]) to obtain a first impression of the
performance of ASR on read vs. conversational speech. Experiments with more
recent ASR systems are presented later in Chap.

2.1 Categorization of spontaneous speech corpora

In ASR literature, speaking styles are defined after different criteria, and terms
for corpus categorization such as "read", "spontaneous" and "conversational" may
actually point to corpora of very different characteristics. Fig. shows a cate-
gorization scheme that helps us describing the style of the corpora we use in this
study, and in general, helps us defining which of the corpora widely used in the
ASR community are actually comparable to each other. Note that we do not present
a full categorization of all possibilities in Fig. but end the tree at those points,
where the corpora used in this study drop out.

In general, we can distinguish read from spontaneous speech, where spontaneous
contrasts from read given that lexemes and their word order are planned sponta-
neously. Examples for read speech (RS) are LibriSpeech (Panayotov et al., |2015)),
for which state-of-the-art speech recognition systems reach a performance of 1.4%
WER (Zhang et al., |2020)). Also the read speech components of the Kiel (Kohler
et al 2017) and GRASS corpus (Schuppler, Hagmiiller, et al., 2014) used in this
study fall into this category (cf. Sec. for more detail).

Next, we distinguish spontaneous speech with respect to whether it is task-
oriented or not. Speech from task-oriented dialogues are in general characterized by

This chapter has been reformatted from:

[A] Julian Linke, Saskia Wepner, Gernot Kubin, and Barbara Schuppler. (2023). Using Kaldi for

automatic speech recognition of conversational Austrian German. ArXiv (abs/2301.06475).

My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).
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Speech Corpora

Read Speech

Isolated Words
Read Sentences
|Schuppler Hagmiillel et al.l (2014

Spontaneous Speech
Task-Oriented?

AMI
Carletta et al.|(2006

Wawra Kiel

BEA

GRASS Switchboard

GE GE
|bchupplel Hagmiiller, et al. |m |J J. Godfrey et al. |m |Schweltzer et a] |m |Schweltzer et al |m

Figure 2.1: Categorization of speech corpora for different speaking styles. The tree structure is
defined by statements (black rectangles), questions (ellipses) and chosen examples (blue). The
dashed rectangle indicates the possibility of machine-oriented interaction between speakers and
machines (i.e., dialogue systems). The bold line indicates the path for GRCS.

covering a specific domain, and that speakers chat less freely than when the topic
of a conversation is open. Task-oriented dialogues can be categorized based on the
presence or absence of an experimenter (such as a linguist or broadcast interviewer)
who guides the conversation. This type of speech is characterized by utterances
of relatively complete syntactic structures which are pronounced carefully, given
that trained speakers are involved. In contrast, in casual conversations, speakers
strongly reduce their pronunciation and produce syntactically incomplete structures
. An example for task-oriented dialogues without experimenter
present are the dialogues in Verbmobil and in the Kiel Corpus
(Kohler et all [2017). These short dialogues last for approx. 2 — 20 minutes each, a
time span that does not allow the speakers to forget about the recording situation,
which affects the naturalness of the resulting speaking style.

Another way how to categorize speech corpora is with respect to the (number
of) interlocutor(s). We distinguish (spontaneous) monologues and machine-oriented
dialogues that both do not show cross-talk, from conversations between two or more
speakers (e.g., conversations between three speakers in a casual setting (Torreira et
2010); between even more speakers in a meeting setting (Carletta et al., [2006)).
With increasing number of speakers, the challenge for ASR is rising, as one needs
to deal with overlapping speech, which comes not only with acoustic difficulties,
but also with structural speech phenomena such as co-completion, turn-competition
and broken turns. For the AMI-Meeting corpus, WERs of approx. 21.2% have been
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achieved (Kanda et al.l [2021]).

When focusing on conversations between two speakers, we may further distinguish
whether the topic of the conversation is casual or professional, as we assume that
casual topics also lead to a speaking style that is characterized by more pronunciation
variation and/or a stronger use of dialectal variants. Pronunciation variation may
become even more salient when speakers have a close relationship to each other (and
are maybe even from the same dialectal area). All of these effects on style may be
continuous in some language areas (e.g., in Austrian German), or diglossic in others
(e.g., in Swiss German) (Stepkowskal 2012). We are aware of the sociolinguistic
fact that the effect of relationship on the speaking style is not comparable across
languages.

Finally, we categorize conversational speech (CS) with respect to whether they
occurred face-to-face or not. In the widely used Switchboard corpus (J. J. Godfrey et
al., |1992)), speakers who knew each other well were having telephone conversations,
where the speakers were not able to benefit from visual cues and needed to deal
with reduced sound quality, forcing them to pronounce more clearly and to avoid
overlapping talk. ASR results for Switchboard are in the range of 4.3% to 5.1 %
WER (Tiske et al.l 2021} Xiong et al., [2018)).

The IMS GECO database from Stuttgart contains conversations between two
speakers of a distant relationship, in face-to-face (GECO-Multi) and in a non-
face-to-face setting where speakers were separated by a solid wall (GECO-Mono)
(Schweitzer & Lewandowskil |2013; [Schweitzer et al., |2015)). First word recognition
results with GECO correctly identified only 25 % of the words (Arnold et al.l [2017).

The corpus in focus of this thesis is the conversational component of the GRASS
corpus (GRCS), containing topic-open, casual, face-to-face conversations between
two closely related persons that last for one full hour, with no experimenter present
(Schuppler et al.l [2017). So far, there is little data available for this specific speaking
style. The Japanese Corpus of Everyday Japanese Conversations (CEJC) (Koiso
et al 2018), published in March 2022 (Koiso et al., |2022)), includes recordings
collected through an individual-based recording method. The material comprises
recordings from 40 informants balanced in terms of sex and age, each collecting
approx. 15h of speech data using portable recording devices over two to three
months in various everyday situations. To the best of our knowledge, so far there
have not yet been published any ASR experiments with CEJC; a study on dialogue
situation recognition using CEJC showed that the system did not reach the level of
human evaluation results (Chiba & Higashinakay [2021)). In summary, CEJC and
the data used in this study (GRCS) contain a broad variety of challenges resulting
from speaker interaction in conversational speech.

2.2 Spontaneous speech corpora

This thesis presents experiments on spontaneous speech corpora, with a primary
focus on Austrian German conversational speech (cf. Sec. . To explore re-
gional variations, some experiments also include other German corpora, namely
the IMS GECO database (cf. Sec. and the Kiel Corpus (cf. Sec. [2.2.3). In
addition, one experiment extends the analysis by including the Hungarian BEA
database (cf. Sec. , which provides additional insights into cross-lingual speech
representations (cf. Sec. [4.4).
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2.2.1 GRASS corpus

The Graz corpus of Read And Spontaneous Speech (GRASS) (Schuppler, Hagmiiller:
et al, |2014; |Schuppler et al., |2017)) contains about 30h of Austrian German read
(GRRS) and conversational speech (GRCS) from 38 Austrian speakers (19f/19m).
As language usage in CS varies strongly with educational level, social background
and dialect region, speakers were selected who were born in the same broad dialect
region (Eastern Austria), had been living in an urban area for years and had a
higher education degree. For the CS component, 19 pairs of speakers who have
been knowing each other for several years were recorded for one hour each without
interruption in order to encourage a fluent, spontaneous conversation. There was no
experimenter present in the recording room and there was no restriction in terms of
chosen topic or speaking behavior, leading to the use of natural, partly dialectal
pronunciation with typical characteristics such as frequently occurring overlapping
speech, laughter, and the use of swear words (Schuppler et al.l |2017)). Despite the
speakers’ awareness of being recorded, they appeared to completely forget about
the studio recording situation after a period of five to ten minutes, entering a casual
conversation. Only after the hour of CS, speakers read short stories as well as
selected isolated sentences. Both, RS and CS component were produced by the
same speakers.

2.2.2 IMS GECO database

The IMS GECO database (GECO) (Schweitzer & Lewandowski, 2013} [Schweitzer
et al., |2015) contains 46 spontaneous dialogues of approx. 25 minutes between
unfamiliar female speakers from two settings: 1) a unimodal setting with 22 dialogues
(GECO-Mono; GEMO), where participants could not see each other because they
were separated by a solid wall and 2) a multimodal setting with 24 dialogues (GECO-
Multi; GEMU), with face-to-face conversations comparable to GRCS. The unimodal
setting involves 12 speakers, where 7 returned for the multimodal setting meaning
that some dialogue pairs are present in both GECO-Multi and GECO-Mono. In
both settings, speakers were free to choose the topics they wanted to discuss.

2.2.3 Kiel corpus

The Kiel Corpus of Spoken German (Kohler et al.,|2017)) contains a total of 5 h of read
(KIRS) and spontaneous speech produced by speakers mainly coming from Northern
Germany. Two spontaneous components are available: (1) the “appointment-making-
scenario” part (KIVM), which contains approx. 4h of dialogues from 43 speakers
(22f/21m) who were making appointments. In this scenario, speech was only recorded
if participants were holding a button pressed which was at the same time blocking the
interlocutor’s channel. Thus, this scenario effectively avoids overlapping speech. (2)
the “video-task-scenario” part (KIVT) contains approx. 1h of dyadic conversations.
In this scenario, manipulated video materials from a television series were presented
separately to two participants who had the task to find the differences in the video.
We used the spontaneous speech component from the Kiel Corpus (KICS) for our
experiments with Austrian CS.
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2.2.4 BEA database:

The original BEA (“BEszélt nyelvi Adatbézis” in Hungarian, meaning spoken lan-
guage database) aimed at collecting studio quality speech data from 500 speakers,
representative in age, sex, dialect, and educational background, primarily for lin-
guistic research purposes (Neuberger et all 2014)). The BEA-Base subset (Mihajlik
et all 2022) of the database includes the read Readtext (BERS) and the conver-
sational Discourse (BECS) modules of the "train-114" subset. Both, BERS and
BECS included the same speakers while female and male participants were closely
balanced. In case of BECS, each conversation was recorded approx. 45 min and one
experimenter guided the casual conversations between the speaker and an optional
discourse partner on various random topics. The recordings were made in the same
studio environment and were cleaned from ambiguous and parallel parts, similarly
to the previous databases. The recordings containing the voices of the experiment
leader or of a 3rd person were excluded from the investigations. Hence, conversations
from BECS included recordings which relate to only one speaker which makes it
possible to compare specific speakers between BECS and BERS but, different from
GRCS, it is impossible to compare one speaker pair from BECS with respective
speakers from BERS.

2.3 Initial Kaldi experiments for Austrian German

This section introduces initial Kaldi experiments for Austrian German read and
conversational speech. These initial speech recognition experiments reveal that
the conversational speaking style poses challenges, especially with respect to the
GRASS corpus which supports a low-resourced language processing assumption (cf.

Sec. .

2.3.1 ASR for read speech

Methods: Acoustic Models (AM) and Language Models (LM) were trained on
data from the RS corpus. The GRRS data set comprises 6h of speech, where each
speaker reads mostly the same, phonetically balanced sentences. The training set
included 33 speakers (5.25h), the validation set 2 speakers (0.37h) and the test set
also 2 speakers (0.34h).

We extracted 13-dimensional MFCCs and performed cepstral mean and variance
normalization (CMVN) while comparing a combination of different frame lengths
{20ms, 25ms, 30ms} and frame shifts {7.5ms, 10ms, 12.5ms}. For the acoustic
models (AM), the initial diagonal GMM-HMM models (short GMM) comprise basic
monophone and triphone training with MFCCs+A+AA features.

The lexicon was built with a G2P online tool (Reichel, 2012) for standard
German. As this resource is not available for the Austrian variety of German, we
applied a set of rules on phone-level to adapt its output towards standard Austrian
German pronunciation (Schuppler, Adda-Decker, & Morales-Cordovillal |2014)), and
phonological reduction phenomena, such as schwa-deletion. We reduced the phone
set yielded by G2P in order to improve recognition performance using three rules:
(R1), a replacement rule to devoice all alveolar and postalveolar fricatives and
affricates (a common phonological process in standard Austrian German); (R2), a
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Table 2.1: Summary of the best WERs [%] with GRRS. We trained a GMM (cf. Sec. [2.3.1) and
compared the impact of different phone set minimization rules on wvalid and test sets.

Phone Set Rule wvalid test

- 0.96 1.2

+R1 1.06 1.04
+R1+R2 0.4 0.64
+RI+R2+R3 0.56 0.64

rule to split all diphthongs into two separate phones; (R3), a rule to unite short and
long vowels, based on phonetic studies on Austrian German (Moosmiiller, [2007). In
total, we reduced the phone set from initially 64 to 38 phones.

We used the SRILM toolkit with a Witten-Bell discounting for an N-gram
language model (LM) of different orders (Stolckel |2002). Note that the LM for the
GRRS experiments was generated given the text of all utterances from the entire
RS component since all speakers in the RS component read the same textﬂ

Results: Tab. shows a summary of the results for RS. First, we analyzed
the influence of different frame shifts and frame lengths with a trigram LM. Our
experiments showed that different frame lengths of fie, = {20ms, 25 ms, 30 ms}
have less impact on the WERs than frame shifts fgy, = {7.5ms, 10ms, 12.5ms}. The
best triphone WER (0.96 %) was achieved with fg, = 12.5ms and fien, = 20 ms.
Monophone and triphone models performed similarly most of the time. Yet, with a
frame shift of fg, = 10ms combined with frame lengths of fio, = {25 ms, 30 ms},
triphone models returned worse results. In order to further optimize the set of AMs,
rules R1, R2 and R3 were applied one after the other. When comparing our final
WERs with the RS component (cf. Tab. 7 R1 and R2 lead to an improvement of
our best triphone WERs by 0.56 %. R3 slightly deteriorated our results by 0.16 %.

Next, we tested different LM of orders {1,2,3,4,5} with our best frame shift
fsn = 12.5ms and frame length fien = 20ms configuration. Bigrams, trigrams,
four-grams and five-grams performed similarly well regarding both, monophone
and triphone models (WER ~ 1% — 2%). We decided to stick to the trigram model
which had a slight advantage with the best WER = 0.96 %. With unigrams, we
achieved non-comparable results since best WERs differed widely. In this case, best
WERs of the monophone model (WER = 35.77 %) were also much worse than best
WERSs of the triphone model (WER = 18.25%).

Conclusion: Our ASR experiments for RS showed that the lowest WER was
achieved with a lexicon with canonical pronunciation, i.e. no pronunciation variants.
The only adaptation made to this canonical lexicon was the reduction of the phone
set according to Austrian Standard German pronunciation (e.g., devoicing alveolar
fricatives). State-of-the-art performance was obtained with a basic triphone model
(0.64% WER with test). We observed that our methodological choices lead to
large improvements (i.e., frame shift, phone set minimization, AM passes and LM
orders). Additionally, the difference in WER between wvalid and test were relatively

'n Sec. [4.2.4] we describe GRRS experiments based on different training splits also with respect
to the LMs that achieved a best speaker-dependent WER of 0.67%.
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low (approx. 0.01% — 0.24%). In general, the WERs were in the range of other
state-of-the art systems for RS (e.g., 1.4% in [Chung et al.| (2021))).

2.3.2 ASR for conversational speech

Methods: Fig. shows a schematic overview of the experimental setup. AMs
and LMs were trained with data from GRCS, GECO and KICS (cf. Sec. [2.2). We
present experiments which are trained merely with GRCS, or GRCS and GECO, or
GRCS and KICS or GRCS and GECO and KICS. This study focuses on evaluating
ASR on conversational Austrian German by performing leave-p-out cross-validation
with respect to GRCS (with p = 2 speakers of the same conversation) resulting in
approx. 0.8 h of test data and 13.5h of training data per split. We randomly chose
10% of resulting training splits as validation sets (approx. 1.35h) to adjust basic
model parameters. When adding training data from GECO or KICS, validation
sets were built by randomly choosing 10% from the newly introduced training data.
For evaluation, we compared the performance on the test splits which result from
the described cross-validation.

In GRCS preprocessing, we excluded chunks that contained laughter, singing,
imitations/onomatopoeia, completely incomprehensible word tokens or artefacts
(e.g., when a speaker accidentally touched their microphone). In case of GECO, we
removed symbols indicating laughter, throat clearing and broken words from the
transcriptions. In case of KICS, we removed symbols indicating laughter, smacking
sounds, different types of noise and repetitions from the transcriptions.

For the AM, the ASR monophone and triphone training steps were in most
parts analogous to the RS experiments. First two models were again trained with
13-dimensional MFCCs+A+AA and CMVN (with fg, = 10ms and fien, = 25 ms).
On top of the triphone GMMs (cf. Sec. , a speaker independent GMM model
with linear discriminative analysis (LDA) and maximum likelihood linear trans-
form (MLLT) (Gopinath, [1998|) was trained resulting in GMM+LDA+MLLT.
Speaker-adapted training was performed also on top of GMM+LDA+MLLT with
constrained maximum likelihood linear regression (fMLLR) (Gales, [1998) resulting
in GMM+fMLLR. The final triphone alignments were used to train a baseline
DNN-HMM hybrid model consisting of a TDNN with 13 layers and hidden dimen-
sions of 512 while utilizing only already calculated MFCC features. The network is
trained with a frame-level objective function based on the cross-entropy criterion.
Our recipe is based on a recipe published in [Meyer| (2020) and related DNN setups
are described in Rath et al. (2013 and |Vesely et al.| (2011]).

For the LM, we used the SRILM toolkit (Stolcke) |2002) with the same con-
figuration as in RS but trained trigrams. Here, the LM was generated given the
text of all utterances from the cross-validation training splits from GRCS and the
two additional German corpora if they were also utilized for AM training. In order
to evaluate a potential limited data problem when training the LMs, we also ran
experiments utilizing a bigger trigram by adding approx. 220k Austrian German
sentences from subtitles of broadcasts for the deaf and hard of hearing of an Austrian
public television service (AGS) (ORF-TVthek: Broadcasts for the Deaf and Hard of
Hearing, n.d.). For the latter, we performed LM-rescoring with a four-gram by again
adding a random subset of 5M German sentences from AGS, German Wikipediaﬂ

2https://dumps.wikimedia.org/dewiki/20220701/dewiki-20220701-pages-articles
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Figure 2.2: Schematic architecture for our conversational speech recognition experiments. Training is
conditioned on 4 x 19 data combinations since we introduce 4 possible corpora combinations (switch
D) and each conversation from GRCS is processed individually. This results in 19 conversation-
dependent training and test splits for 4 data combinations (cf. Tab. . Experiments analyzing
the influence of the lexicon (switch L) utilize the same data for AM and LM training. Experiments
analyzing the influence of the LM (switch G) utilize our standard lexicon and perform LM-rescoring
as an additional option (grey arrows).

and the European parliamentﬂ In order to receive the additional LM data, we
adapted a toolkit which is described in [Milde and Kohn! (2018]).

Lexicon Generation: We created word lists from the transcriptions of all corpora,
Canonical pronunciations were obtained with a G2P online tool (Reichel & Kisler|
2014). We created four different pronunciation lexicons.

standard. Since the German language setting of the utilized tool creates pro{
nunciations for German Standard German (GSG)EL we applied 6 input switch
rules to obtain an Austrian Standard German pronunciation. We call the resulting
pronunciation lexicon standard. For the foreign language words, we changed the
language setting to the corresponding language.

allPVs. We created a lexicon with pronunciation variants (PVs) by applying 26
phonological rules (based on findings from |Schuppler, Adda-Decker, and Morales-
Cordovillal (2014))) to the canonical Austrian German pronunciations. 17 of these
rules are relevant for conversational speech of all German varieties, e.g., assimilation
of plosives and r deletion in the syllable coda, whereas 9 rules cover pronunciations
that are typical for the Austrian German variety, e.g., the deletion of the syllable “ge’|
in the beginning of specific past participles. In addition to these rule-based variants.
we also created a couple of PVs manually, in order to capture pronunciations that
cannot be generated in an automated way but are frequent in Austrian German
spontaneous speech, e.g., the pronunciation [ma:| for the word “wir” with canonical
pronunciation [virp|. The resulting lexicon (allPVs) contained on average 5.57 —6.18
variants per word.

usedPVs. We used the allPVs lexicon to create a forced alignment based segmen
tation (with a frame shift of fo, = 7.5ms) of all of corpora (i.e., GRCS, KICS and
GECO). From these segmentations, we extracted the pronunciation variants that

rmultistream.xml.bz2
Shttps://www.statmt.org/europarl/v7/de-en.tgz
4With German Standard German, we refer to German as spoken by speakers from Germany
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Table 2.2: Entry statistics of the different pronunciation lexicons used for the ASR experiments
with conversational speech. The number of entries is influenced by the number of utilized corpora
for AM/LM training (cf. Tab. and Fig.[2.2).

Lexicon Name min(#entries) max(#entries)

standard 13.9k 22.7k
allPVs 74.2k 135.1k
usedPVs 17.4k 30.4k
likelyPVs 14.6k 26.9k

had been actually produced by the speakers, and created a pronunciation lexicon
with those PVs only. The resulting lexicon (usedPVs) had on average 1.37 — 1.43
variants per word.

likelyPVs. We created a lexicon containing only those variants which showed
a high frequency of occurrence in the forced alignment, inspired by the approach
presented in|Chen et al.| (2015). As in|Chen et al.| (2015)), we calculated the statistics
for the pronunciation probability estimation, but instead of integrating different
probabilities for specific pronunciations, we considered only pronunciations which
result in an estimated probability of p > 0.65. This choice was made in order
to give a better comparison with our other lexicons since introducing additional
pronunciation probabilities to the lexicon would change the experimental design (in
other words, all final lexicons involve pronunciation variants with equal probabilities
by definition). The resulting lexicon (likelyPVs) had an average of 1.16—1.26 variants
per word. Tab. presents a summary of all different pronunciation lexicons used
in our ASR experiments.

Results: Tab. shows the ASR results for different training setups, always
using GRCS as test data. We compared ASR experiments with (1) different data
sizes for AM training, (2) lexicons of different amounts of variants (3) LMs trained
on different data sizes and (4) a combination of the best AM, Lexicon and LM.
With respect to the Acoustic Model (AM), all AMs showed benefits from additional
training data from other corpora, resulting in absolute WER, improvements of
approx. 1% — 2% with respect to mean values; then again, respective standard
deviations are higher when more data is used indicating that overall performance
improves but robustness problems arise. With respect to the pronunciation lexicon,
our results showed that in comparison to using our standard lexicon, lexicons with
very high numbers of variants (i.e., allPVs and usedPVs) lead to a performance
decrease. With the likelyP Vs lexicon, however, which contained a small number of
likely pronunciation variants, performance improved by approx. 1.5% compared
to the best mean value of the baseline with the standard lexicon. With respect to
varying the amount of training data for the LM, we achieved the best results by
adding data from all corpora for AM training, adding data from all corpora plus
AGS for LM training, a lexicon with likely pronunciation variants and LM-rescoring
with our 5M additional German sentences (cf. Sec. resulting in a best mean
WER of 48.5%.

Overall, when comparing the best mean WER with our baseline system, we
achieved an absolute WER improvement of approx. 4.5%. In general, in all experi-
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Table 2.3: Summary of conversation-dependent WERs [%] for Austrian German conversational
speech obtained with our Kaldi baseline system. The first two columns show the utilized data for
AM and LM training, the third column shows the utilized lexicons and the remaining columns
give mean and standard deviations of resulting 19 WERs as well as corresponding minimum (min)
and maximum (max) WERs.

AM LM Lexicon WERSs min max
¢ GRCS 53.89/5.18 42.1  63.7
= GRCS+KICS - andapd | 9322/5:23 420 63.2
Z GRCS+GECO 52.58/5.59 40.5  63.9
R GRCS+GECO+4KICS 51.91/5.74 39.7 63.2

GRCS 55.56/5.03 43.9  64.7

GRCS+KICS 55.16/5.21 44.4  64.8

GRCS+GECO same allPVs 5y 37/5.45 426 647
£ GRCS+CGECO+KICS 53.62/5.56 41.6  64.7
% GRCS 55.22/4.88 438 643
— GRCS+KICS e wsedpVe D506/5.15 435 645
€ GRCS+GECO 54.15/5.4 425  64.7
£ GROS+GECO+KICS 53.69/5.52 42.9  64.3
=  GRCS 51.87/4.88 40.3  60.9

GRCS+KICS — likelyPVs 2104/5:22 400 619

GRCS+GECO 50.93/5.61 388  62.2

GRCS+GECO+KICS 50.48/5.66 39.7 62.0

GRCS 52.26/5.5 40.1  62.9

GRCS+KICS +AGS . 5L53/5.58 403 628
Z GRCS+GECO (220k) 51.38/5.72 40.3  63.3
s GRCS+GECO-+KICS 50.74/5.82  39.0  62.3
€ GRCS +AGS 51.17/5.26 39.5  62.4
S GRCSHKICS (220k) andapq 90-91/5.65 39.8  62.4

GRCS+GECO +Rescor- 50.92/5.82 39.5  63.2

GRCS+GECO+KICS  ing (5M) 50.19/5.82 38.7 62.2

GRCS +AGS 49.15/5.28 373  59.1
% GRCS+KICS (220k) likelvpVs 49-02/5.69 37.3 604
A  GRCS+GECO +Rescor- YEYS 49.07/588 372 60.8

GRCS+GECO+KICS  ing (5M) 48.5/6.09 37.0 61.3

ments, we observed highly varying WERs between the different conversations (i.e.,
speaker pairs) of GRCS (standard deviations range from 4.88% to 6.09%).

Discussion: These experiments aimed at building a Kaldi-based ASR system for
Austrian German, with a focus on conversational speech. Since our first experiments
already showed large differences from speaker pair to speaker pair, we decided
to provide cross-validation results in order to get more insight into conversation-
dependency of ASR systems. It is worth noting that, even though when reaching
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performance gains by certain methodological choices, we still observed similarly
high standard deviations of the WERs across the conversations. Hence, neither
the change of data sizes for AM and LM training nor the different approaches
for pronunciation modeling made the ASR system more robust to variation in
conversational speech (Linke et al., |2022]).

In comparison to other benchmarks, our results form the cross-validation ap-
proach highlights how challenging the task of conversational speech recognition
is. Other benchmarks tend to train and test on pre-defined training and test sets
which may cause an optimistic bias towards ASR accuracy (Szymanski et al., |2020)).
The cross-dialect analysis described in (Elfeky et al.| 2018]), for instance, showed
how ASR performance decreases when a dialect variation is evaluated on a system
which had been trained on another dialect of the same language. We hypothesize
that testing each conversation individually shows a similar effect because even
though speakers in GRASS had a comparable regional background, we still find high
individual dialectical variation which is in line with a previous analysis of the corpus
in (Schuppler, Adda-Decker, & Morales-Cordovillal |2014). Our results suggest not
only to investigate how to improve overall ASR performance but to focus more of
tackling missing robustness, especially in case of conversational speech recognition.

ASR with our standard lexicons and a large amount of additional LM data re-
sulted in a mean WER of 50.19%. When utilizing a lexicon with likely pronunciation
variants only (by adding approx. 4.2k entries to the standard lexicon; cf. Tab.
without adding a large amount of additional LM data, we achieved a mean WER of
50.48%. Thus, when comparing our results from using different lexicons with those
from using different amounts of data for the LM (cf. Tab. , we observe that
training LMs with large amounts of data had a similarly high impact on improving
WERs (approx. 1.5%) as using the best pronunciation lexicon (i.e., likelyPVs). A
survey on modeling pronunciation variation for ASR (Strik & Cucchiarinil, [1999))
summarizes that adding pronunciation variants to the lexicon appears to improve
recognition performance especially if the different frequencies of occurrence of vari-
ants are considered. Two decades and many ASR architectures later, our results still
confirm their observation. We further showed that well-developed pronunciation
modeling, for which no additional data resources nor high computational efforts
are necessary, could compensate for the necessity of collecting more LM data. Yet,
the combination of both methodological approaches (pronunciation modeling and
collecting more LM data) still yielded the best results. This finding is especially
relevant for the field of low-resourced ASR.

From the literature, we know that expanding the lexicon to include pronunciation
variants can improve coverage of observed variation in spontaneous speaking styles,
but it can also increase the search space, which may lead to higher decoding
complexity and degraded recognition performance (Karanasoul 2013; Kessens et
al., 2002} [Strik & Cucchiarini, [1999). We analyzed the search space of the ASR
decoders for the different pronunciation lexica (standard, allPVs, usedPVs versus
likelyPVs), focusing on the interaction between mean lattice depth per frame, mean
WERs and pronunciation variants per word. Mean lattice depth, calculated during
the beam search decoding process in Kaldi, represents the average number of
competing hypotheses (arcs) crossing each frame in the search lattice. This metric
directly reflects the complexity of the decoder’s search space, as more pronunciation
variants lead to more competing paths that must be maintained within the beam.
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For systems trained exclusively on GRCS, our analysis showed that the system
utilizing likely pronunciation variants (1.16 variants per word) achieves the best
balance with a mean WER of 51.87% and the lowest mean lattice depth of 71.58.
In comparison, the baseline system with standard pronunciations (1 variant per
word) shows moderate performance with a mean WER of 53.89% and mean lattice
depth of 110.39, while systems with more variants (i.e., utilizedPVs and allPVs)
demonstrate performance degradation. Specifically, increasing to 1.37 variants per
word leads to higher search complexity (mean lattice depth of 125.89) and worse
recognition performance (mean WER of 55.22%). The trend continues with the
inclusion of all pronunciation variants (5.57 variants per word), resulting in the
highest mean lattice depth of 138.19 and poorest performance with a mean WER of
55.56%. These results align with previous research emphasizing the importance of
balancing pronunciation variant modeling in ASR. While some degree of variation
improves robustness to real-world speech phenomena, excessive numbers of variants
can inflate search space and lead to increased complexity in the decoder. Our
findings reinforce the principle that lexicon design should prioritize quality over
quantity by focusing on likely pronunciation variants, ensuring an optimal balance
between recognition accuracy and search efficiency.

Conclusion We achieved similar performance gains by either incorporating
knowledge into the pronunciation lexicon or augmenting the training data. We
observed high variation in performance from conversation to conversation (i.e., ap-
prox. 5% — 6% standard deviation), regardless of the overall performance, indicating
low robustness of the ASR system for conversational speech. The reasons for the
lack of robustness could come from high variation with respect to pronunciation
variation (i.e., dialectal background), speech rate variation (in CS speech rate varies
from 0.88 to 45.45 phones per second with a mean of 12.38s~! and a standard
deviation of 4.28 s71), differences in lexical choice (as the topics are chosen freely),
differences with respect to whether complete syntactic structures are used by the
speakers and their turn-taking behaviour. In future work, we plan to analyze in
detail which are the factors that hinder robust ASR of conversational speech.



Chapter 3
Prosodic prominence

3.1 Introduction

Prosodic prominence is a complex phenomenon that can be studied from different
perspectives (B. Wagner et al., [2015). Some linguistic unit is usually considered
prosodically prominent if it is perceived as standing out from its environment
. However, what is perceived as prominent is influenced by a multitude of
factors involving functional, structural and frequency criteria, and the rating task
as much as the physical properties of the item that is perceived as being prominent
(Bishop, 2012} |Cole et al., 2019, 2010} |[Turnbull et al., 2017; |P. Wagner, 2005). In
the following works, we focus on the correlates of prominence in the acoustic signal.

3.1.1 Acoustic cues and perception of prosodic prominence

Different languages rely on different weightings of acoustic cues to create perceptual
prominence [1986)), the most important of which are F0 variation, duration
and intensity (e.g., (Baumann et al.| [2016} [Kochanski et al., [2005; Mixdorff et al.)
|2015; [Terken & Hermes|, 2000} [Turk & Sawusch) 1996)). With respect to F0, not
only pitch height or excursion are relevant for prominence, but also the shape and
alignment of pitch contours (Baumann et al., 2016; [Kohler & Gartenberg, [1991}
2010). For English, Cole et al. (Cole et al., 2010) found that duration

is a more important cue for prominence perception than intensity/loudness (e.g.,
(Arnold et al., [2012; Turk & Sawusch, |1996)).

For German, |Arnold et al| (2013)) and [Niebuhr and Winkler| (2017)) reported that
FO0 was a more important correlate of prosodic prominence than syllable duration.
Pitch-accent related variables outranked both acoustic FO and durational features in
Baumann and Winter| (2018)). On the other hand, |Arnold et al|(2012) argued that
word duration was more important for prominence perception than F0 and intensity,

This introduction has been reformatted from:

[B] Julian Linke, Anneliese Kelterer, Markus A. Dabrowski, Dina El Zarka, and Barbara
Schuppler. (2020). Towards automatic annotation of prosodic prominence levels in Austrian

German. In Proc. of Speech Prosody (pp. 1000-1004).

[C] Julian Linke, Gernot Kubin, and Barbara Schuppler. (2023). Using word-level features for

prosodic prominence detection in conversational speech. In Proc. of ICPhS (pp. 3101-3105).

My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).
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and (Tamburini and Wagner| (2007) found that force-accent related parameters (i.e.,
duration and spectral emphasis) were more important for syllable prominence than
pitch-accent related parameters (i.e., FO contour features and overall intensity).
For Austrian German, it has been found that duration and spectral tilt are strong
acoustic cues to perceptual prominence, whereas a change in FO within a syllable
did not necessarily correlate with stronger perceptual prominence (El Zarka et al.)
2017)). Concerning vowel quality, higher prominence only seems to affect F1, but
not F2 and F3 (El Zarka et al., |2017)).

3.1.2 Automatic prosodic annotation tools

Several automatic prosodic annotation tools have been built and distributed. Some
of them combine acoustic, lexical and syntactic features (e.g., |[Ananthakrishnan and
Narayanan| (2008) for American English, |Avanzi et al.| (2008) and |Christodoulides
et al.| (2017)) for French), others use lexical and syntactic information alone (e.g.,
Marsi et al.| (2003]) for Dutch). |Arnold et al.| (2013]) used GAMs and random forests
to model prosodic prominence in German, with the aim of analyzing and comparing
the contribution of acoustic, linguistic and contextual information. Like |Arnold et al.
(2013), we aim at using random forest models to learn more about the contribution
of the features to prosodic prominence perception. Since we additionally aim at
building a tool that can be incorporated into the annotation process of a not-yet
annotated database, a requirement for the tool is the use of acoustic features alone.

For American English, [Tamburini and Caini| (2004) proposed a tool that classifies
whether a syllable is prominent or not. The prediction was based on the speech
waveforms only, with no higher level linguistic information available to the tool. For
German, only a few prosodic annotation tools have been built that use acoustic
features alone. [Braunschweiler| (2003)), for instance, proposed ProsAlign, a system
that automatically produces GToBI labels. The tool covers 56% of the manually
established labels and can thus be integrated in a semi-automatic annotation
procedure. Since the development of ProsAlign, however, other prosodic annotation
systems than GToBI have been developed for German (e.g., KIM, DIMA) (Kigler
et al., 2019). The tool by [Tamburini and Wagner| (2007)) annotates prominence as a
continuous, rather than a categorical parameter. Their analysis led to the conclusion
that force accents are a more reliable cue to prominence than pitch accents in
German. For Austrian German, no tool is available at this point.

3.1.3 Entropy-based prosodic features

So far, most studies on prosodic prominence analyzing FO/RMS contours considered
features related to specific characteristics of those curves (i.e., mean, maximum,
etc.). To the best of our knowledge, it has not yet been investigated whether entropy-
based FO/RMS features, which directly relate to their distribution distinguishing
prominence levels. In general, entropy-based features have broadly been used in
speech science: For instance, Klabbers and Veldhuis| (2001) use relative entropy to
measure the distance between two speech spectral distributions in concatenative
synthesis applications whereas Misra et al.| (2004) showed that spectral entropy
features which interpret the spectrum as a probability mass function, improved the
performance of an automatic speech recognition (ASR) system. A study on voice
signal characterization tested entropy measures coming from raw audio signals in
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order to extend voice analysis methods (Rogério Scalassara. et al. 2008). With
respect to prosody of emotional expressions, it has been shown that the use of features
capturing FO/RMS variability by calculating entropy from FO/RMS contours helps
to distinguish between arousal conditions in a free-speech setting
2010).
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3.2 Prominence classification in read speech

3.2.1 Materials and methods

GRASS corpus: This study is based on read speech from GRASS (GRRS)
(Schuppler, Hagmiiller, et al., 2014; |Schuppler et all 2017). GRRS comes with
automatically created segmentations using MAUS (Kisler et al., [2017)), which were
corrected manually. GRRS was manually annotated prosodically, using the same
criteria as the Kiel corpus (IPDS, [1997), with prominence ratings 0 (no promi-
nence; PL0), 1 (weak prominence; PL1), 2 (strong prominence) and 3 (emphatic
prominence). In this study, we combined prominence levels 2 and 3, as empathic
prominence occured rarely (PL2). Three phonetically trained transcribers created
the prosodic annotations in the following way: one transcriber created the first ver-
sion of the annotation, which was subsequently corrected by the other transcribers.
This procedure reached a high inter-annotator agreement (Cohen’s kappa: 0.81, 0.76,
0.63, calculated on 269 word tokens from 47 utterances). Prominence classification
results in Sec. are based on a training set of 197 utterances (2919 word tokens)
from two narratives, read by 10 male and 9 female speakers. The test set for the
classification experiments consists of 47 utterances (269 word tokens) annotated by
all three annotators and the prominence ratings for the test set were assigned by
majority decision. In contrast to the training set, the test set primarily consisted of
isolated short sentences (/~ 80% of the utterances in the test set included 5.3 £+ 0.8
word tokens in comparison to the training set with 15.1 + 7.4 word tokens per
utterance).

Acoustic feature extraction: For each word, we extracted 96 features based
on the fundamental frequency FO, the sound intensity (RMS) and durational
characteristics. FO was calculated with the library AMEM decompy (Schmitt, [2018)).
This package contains an implementation of the pitch detection algorithm YAAPT
(Zahorian & Hul 2008). Sound intensity was calculated directly from the waveform
by calculating the root mean square. For FO and RMS, and their respective first
and second derivatives, 10 measurements were extracted: maximum, minimum,
range, relative position of maximum and minimum in the word, mean, median,
first and third quartile and standard deviation (60 features). For the basic FO and
RMS curves, we extracted 12 measurements: left and right slope of the maximum
and minimum, absolute and relative onset and offset within the word, as well as
maximum, minimum, range and mean relative to the utterance (24 features). We
employed the peak detection algorithm (Duarte & Watanabe, |2018) and numpy
(Walt et al.| [2011)) for the statistial features. The 12 durational features were: word
duration, total speech rate (phrase), local speech rate (word), and 9 relative speech
rate measures. The local speech rate is estimated as the ratio of number of segments
to word length.

This section has been reformatted from:
[B] Julian Linke, Anneliese Kelterer, Markus A. Dabrowski, Dina El Zarka, and Barbara
Schuppler. (2020). Towards automatic annotation of prosodic prominence levels in Austrian
German. In Proc. of Speech Prosody (pp. 1000-1004).
My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).
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Figure 3.1: 10 highest x2-scores in case of a classification task with 3 classes. The selected features
are located in the red marked area. A selection of the first 3 features did not result in a satisfying
performance. Adding 2 more features indicated a more reliable classification performance, which
can be compared to the ranking of a RFC with all 96 features included (cf. Sec. .

Classification methods and testing: Two classification methods were imple-
mented in Python with the scikit learn toolkit (version 0.21.3.) (Pedregosa et al.
2011)). First, we modelled a decision tree (DT) with only two classes and the Gini
Impurity (Ig) as an impurity measure. For the purpose of this classification task,
prominence ratings 1, 2 and 3 were combined in the class PL12 (prominent, 1669
tokens). The associated null class is called PLO (non-prominent, 1250 tokens). This
binary classification task has the aim to test how well prominence classification is at
all possible with the given data set compared to prior studies. Parameterization was
done by comparing the results of different DT-models with varying tree depths fitted
with the training set. A comparison of different DT-topologies showed that a depth
of 1, which obviously leads to a highly simplified model, was sufficient to distinguish
between the classes PLO and PL12. Hence, including higher depths resulted in
more complicated models with no improvement in the respective F1-scores.
Second, a Random Forest classifier (RFC) with 1000 decision trees was used for a
classification task with three classes: PLO (no prominence, 1250 tokens), PLI (weak
prominence, 726 tokens), and PL2 (strong prominence, 943 tokens; prominence
ratings 2 and 3 were subsumed to PL2; cf. Sec. . The impurity measure of each
decision tree was the Gini Impurity and the depth of each decision tree was maximal,
resulting in pure leaves or leaves with less than 2 samples. Feature selection based
on x2-statistics of each attribute and comparisons of different feature sets (full set
or sets with 1-20 features with best y2-scores) fitted to unique RFCs showed that a
set of 5 features was sufficient to solve the classification task (cf. Fig.[3.I]). Other
studies have shown that Random Forests have good prediction quality and they
can cope with a feature space including many highly correlated features (Strobl et
. Moreover, the feature importances of the RFC provide a ranking of the
respective features allowing both a better linguistic interpretability of the selected
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Figure 3.2: Confusion matrices showing the respective recalls of the 2 classes (PL0 and PL12) in
the main diagonal for the validation set (left) and the test set (right).

features (e.g., [Arnold et al (2013)) and |[Schuppler and Schrank| (2018))) and a link
to the used x? feature selection algorithm. In both classification experiments, a set
containing 10% of each class of the training set was used for validation. Methods
are evaluated by measuring the F1l-score and by presenting the respective confusion
matrices.

3.2.2 Results

Results of decision tree (2 prominence classes): In the binary classification
task, the feature word duration in the root node of a decision tree obtained a
sufficient separability, which led to a highly simplified model to distinguish between
2 prominence levels (PL12 vs. PL0). If the condition word duration (w__dur)
< 0.25s was fulfilled, the observation was classified as PL0O. Confusion matrices
of the validation and the test set (cf. Fig. showed that non-prominent levels
had similar recalls. Prominence was recognized better in the test set (recall = 93%)
and the corresponding Fl-score was 92%. In both sets, non-prominent words had a
F1l-score > 85%.

Results of Random Forest (3 prominence classes): In the second classifica-
tion task with 3 prominence levels (cf. Sec. [3.2.2), a set of 5 features (cf. Fig.
was chosen. The prominence rating of the final RFC (averaged impurity decrease of
an ensemble of 1000 decision trees) showed that the feature w_dur was rated as
the most important feature (cf. Fig. , followed by the features referring to the
FO0 range (f0_relRange and f0_ Range) and the RMS range (RMS_ relRange and
RMS_ Range). Since the relative ranges of FO and RMS were calculated by relating
the FO or RMS range of the word to the range of the respective utterance, there
was a correlation between the features f0_range and f0_relRange (r = 0.86 (2909),
p < .0001) and RMS_ Range and RMS_ relRange (r = 0.96 (2899), p < .0001)
2005).

Fig. shows the confusion matrices of the classification with three prominence
levels for the test set and validation set. When comparing the recalls (corresponding
to the main diagonal of the confusion matrices) of the two sets, similar results
can be seen for classes PLO and PL2 (recall > 82% in both cases). However, for
PL1, a recall of only 47% was measured for the validation set, while 33% of PL1
was predicted as PL2. In the test set, 19% more observations of class PL1 were
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Figure 3.3: Confusion matrices showing the respective recalls of the 3 classes (PL0O, PL1 and PL2)
in the main diagonal for the validation set (left) and the test set (right).

predicted as class PL2 in comparison to the validation set. This uncertainty of
classifying prominence level PL1 was also represented in the corresponding F1-
scores of the validation set (Fl-score = 51%) and the test set (F1-score = 34%). No
prominence was recognized in both sets with Fl-score > 85%. In contrast, F1-scores
of class PL2 were higher in the validation set (F1l-score = 81%) than in the test set
(Fl1-score = 74%).

3.2.3 Discussion

Classification performance: The binary classification task indicates a good
separability of prominence. A preliminary decision about word prominence could
help in the annotation process by anticipating the distinction between no prominence
and prominence, so the annotators can focus on a simpler manual binary decision
task (between weak and strong prominence) instead of the more complex three-way
decision task. Recalls of classes PL0 and PL2 in the second classification task with
three prominence levels show very good results in both sets. Results of class PL1 in
the confusions matrices, however, indicate more variation in the production or an
uncertainty in the annotation of weak prominence. One reason why the recognition
performance of class PL1 was poorer in the test than in the validation set could be
that acoustic cues are weighted differently in the two data sets (cf. Sec. |3.2.1)).

Contribution of acoustic features to classification and perception: In
both classification methods, word duration was the most important feature for
distinguishing prominence levels. Fig. shows that prominence was represented
by the classical triad of prosodic features in the RFC: duration, two
FO features and two RMS features. Our experiment showed that word duration
was a more important feature than FO range, which was, in turn, more important
than RMS range. These results are in line with the findings by |Arnold et al|(2012).
Similarly, |Tamburini and Wagner| (2007)) found that force-accent parameters were
more important for prominence in German than pitch-accent parameters. However,
other studies of prominence in German found that FO related parameters were more
important (Arnold et al 2013; Niebuhr & Winkler, 2017). Due to methodological
differences, the results of the different studies are however not fully comparable (cf.
|Arnold et al|(2012)). Many studies on word prominence use acoustic measures that
relate to the stressed vowel or syllable (e.g., Baumann and Winter] (2018)); |Cole et al.|
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Figure 3.4: Feature Ranking of the fitted RFC corresponding to the averaged impurity decrease
computed with 1000 decision trees. Black lines indicate the standard deviations referring to the
impurity measurements of each tree of the forest.

(2010)), while we investigated word-level features only. Thus, we cannot conclude
from the importance of word duration in our data that force-accent parameters are
more important than pitch-accent parameters (cf. Tamburini and Wagner| (2007))
as the stressed syllable is the constituent a force/pitch accent is associated with.
Remarkably, the conclusion that duration was more important for perceived word
prominence than FO features was also drawn by one other study that investigated
word prominence by measuring word-level acoustic features (Arnold et al.,2012). An
advantage of our approach over studies measuring acoustic features in the stressed
syllable is that it captures FO excursions related to late peaks which are often
realized outside the stressed syllable. In addition, word-level duration does not only
capture whether the prominent syllable is shortened or lengthened, but also whether
reductions (e.g., segment deletions) shorten non-prominent words as a whole.

The five features in the RFC all had higher values the higher the prominence
level was (cf. Fig. and Fig. |3.6). For prominence level PL0, word duration
values are located in the lower range and are clearly distinct from those of PLI
and PL2, while there is more overlap between PLI and PL2 (cf. Fig.[3.5)). Less
scattering of PL1 and PL2 towards lower values in the test set (cf. Fig also
explains why the recall of PL12 was higher in the test set than the validation set
(cf. Fig. . One reason for non-prominent words being shorter is that 94% of
them were function words, which are generally shorter in terms of syllables as well
as duration. Less prominent words also have a shorter duration because the speech
rate in less prominent words is higher (cf. Fig. . A mixed effects model
, with local speech rate as dependent variable, prominence rating as
independent variable and word as random variable showed that the local speech
rate is significantly higher for class PL0 than class PL1 (Est. =-3.39, t =-11.39, p
< .001) and class PL2 (Est. = -5.18, t = 15.78, p < .001). Thus, words with the
same number of phones are produced faster in less prominent position.
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Figure 3.5: Boxplots of prominence ratings PLO, PL1, and PL2 of duration (left) and local speech
rate (right), for the training set (red) and the test set (grey).

Since the range and the relative range of FO and RMS are correlated and show
similar distributions, only the relative ranges are discussed here. Fig. [3.6] shows that
f0_relRange increases with prominence in both data sets. The higher FO excursion
for class PL2 in the test set could explain the better recall of PL12 in this set
(cf. Fig. . RMS relative range also increases with prominence in both data sets.
However, for RMS_ relRange, the distribution of class PLI in the test set is similar
to the distribution of class PL2 in the training set. This difference in RMS_ relRange
between the two data sets could explain why level PL1 was classified more often as
PL2 in the test set (cf. Fig. [3.3). This could be because the test set includes isolated
short sentences (cf. Sec. , which in turn might result in a different reading
behavior characterized by a different weighting of the acoustic features involved in
expressing prominence.

3.2.4 Conclusions

The aim of this study was to build an annotation tool for prosodic prominence with
as little pre-processing effort as possible. Therefore, the models rely on acoustic
features extracted from the word and its automatically created word and phone-
level segmentations, as this information is usually available first in the resource
development process. We thus chose not to use any other linguistic information
such as the position of the prominent syllable in the word. Based on manual
prominence annotations of a small part of GRRS, we explored the combinations
of different acoustic feature sets and classification methods. Our results show that
both classification methods can distinguish between prominent and non-prominent
words. In a binary classification, 93% of all prominent words were classified as
prominent in the test set. Results with three prominence levels indicate that strong
prominence is recognized well (recall = 82%), but weak prominence tends to be
confused with strong prominence.

In our analysis of the contribution of acoustic features to prosodic prominence
in Austrian German, word duration was the most important feature, followed by
FO range and RMS range. These results are in line with one other study of word
prominence in German, but deviate from most other studies in which F0 features



28 CHAPTER 3. PROSODIC PROMINENCE

fO_ relRange RMS_ relRange

Q Q .
- 8 - o - - ° - -
@] 3 ° g @ | 8
o 8 § ° ° o -

¢ -+ g Bl
©| ¢ i ° ‘ @
o E i ° o
< | j -+ <
o o i
N N
o - o
o —— 4 4 o i 4

PLO PL1 PL2 PLO PL1 PL2 PLO PL1 PL2 PLO PL1 PL2

Figure 3.6: Boxplots of prominence ratings PL0, PL1, and PL2 of duration (left) and local speech
rate (right), for the training set (red) and the test set (grey).

ranked higher than other acoustic features. This discrepancy could be due to different
methodologies, in particular concerning the domain of acoustic feature extraction
(i-e., syllable vs. word).

The presented classifiers will be used in two ways in the future: (1) as part of a
semi-automatic annotation process for the rest of the read speech component of
the GRASS corpus to yield faster and more consistent annotations; (2) as part of a
prosody-dependent ASR. system. For these two purposes, the performances reached
are sufficient. Whereas the specific findings of this study will mainly be relevant for
speech scientists and prosody researchers interested in German, our methodological
approach of analyzing prosodic prominence from a purely acoustic perspective at
the word level will also be interesting for researchers investigating the prosody of
other languages.
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3.3 Prominence classification in conversational
speech

3.3.1 Materials and methods

GRASS corpus: This study is based on conversational speech from GRASS
(GRCS) (Schuppler, Hagmiiller, et al.l [2014; |Schuppler et al.; 2017). GRCS contains
Austrian German conversational speech from 38 Austrian speakers, containing a
total of approx. 19h of speech. Word- and phone level segmentations were created
by means of a forced alignment using a Kaldi-based ASR system with a lexicon
containing on average 5.57 — 6.18 pronunciation variants per word type (Wasserfall,
2020). Phonetically trained transcribers created prosodic annotations and the re-
sulting dataset includes a total of 5112 word tokens from 34 speakers of GRASS.
The prominence annotations distinguished the prominence levels 0 (no prominence;
PL0O), 1 (weak prominence; PL1), 2 (strong prominence) and 3 (emphatic promi-
nence) Prominence levels 2 and 3 were again combined (cf. Sec. , as emphatic
prominence occurred rarely (PL2). Annotations were created in three stages: One
annotator created a first version, which later was corrected by her/him and subse-
quently corrected by one of the other annotators. Based on a small subset annotated
by two different annotators in those stages, the inter-annotator agreement was
calculated: The overall Cohen‘s kappa was 0.72 (598 tokens), 0.72 for level 0 vs. 1
(371 tokens), 0.92 for level 0 vs. 2/3 (446 tokens) and 0.57 for level 1 vs. 2/3 (275
tokens). Other studies obtained similar agreements of 0.53 (Tamburini & Wagner)
2007)) or 0.84 (Baumann & Winter, [2018]).

84 basic FO and RMS features: All features were calculated at the word-level.
We calculated FO with the library AMFM decompy (Schmitt, |2018)) which includes
an implementation of the pitch detection algorithm YAAPT (Zahorian & Hu, 2008).
Intensity features were generated directly from the waveform by calculating the
root mean square. For FO/RMS, and their respective first and second derivatives,
we extracted 10 measurements: maximum, minimum, range, relative position of
maximum and minimum in the word, mean, median, first and third quartile and
standard deviation (60 features). Additionally, we extracted left and right slope

This section is based on:
[C] Julian Linke, Gernot Kubin, and Barbara Schuppler. (2023). Using word-level features for
prosodic prominence detection in conversational speech. In Proc. of ICPhS (pp. 3101-3105).
My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).
The experiments of this section are different from the original paper with respect to the following
aspects: First, instead of interpolated contours we used frame-wise FO/RMS contours for calculating
the entropy-based features and also applied a different normalization technique to these features.
This decision was taken for a better comparison with the methods described in Sec. @ Second,
all cross-validation results refer to models trained on the entire feature sets. Third, the test set
results differ slightly due to a different randomization process. Nonetheless, the cross-validation
results demonstrate the extent to which the results can vary between different test sets. Despite
these modifications, the research continues to produce findings that align closely with the original
study. Finally, it is important to note that, although additional human annotations were available
for the experiments, the utilized prosodic feature extractor encountered difficulties in calculating
features for a substantial amount of the data. This was mainly due to characteristics in the FO
contours that could not be extracted. For this reason, a more detailed discussion of this limitation
is provided in Sec. (Limitations of this study).
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of the maximum and minimum, absolute and relative onset and offset within the
word, as well as the maximum, minimum, range and mean relative to the utterance
(24 features).

12 basic durational features (DUR): We extracted word duration, phrase-
level speech rate (i.e., number of segments per phrase), local speech rate (i.e., the
number of segments per word duration), and relative speech rates (i.e., the ratio of
the local speech rate and the minimum, maximum or median of local speech rates
within a phrase). Additionally, we calculated the minimum, maximum, range, mean,
median and standard deviation of local speech rates within a phrase.

4 entropy-based features: Entropy measures the spread of probability distri-
butions and provides a measure of uncertainty of a random variable X (Cover &
Thomas,, 2006). If the random variable X assumes values x; € X where X is a finite
set, the definition of entropy can be stated as

H(X) = —Zpi -log pi, (3.1)

where p; = Pr{X = z;} describes the probability of X taking the value x;, assuming
that p; - logp; = 0 for p; = 0.

If we observe a sequence of N (non-negative) feature values (f[1], f[2],..., f[N])
within a given word, we can measure the spread of these values also by a formal
entropy where the (pseudo-)probability distribution is defined by normalizing the
feature values

1]

ot f10]

such that the condition for the total probability is fulfilled: vazl p; = 1.

With this definition, the entropy (cf. Eq. achieves its maximum H,,,,. =
log N if the feature sequence is constant f[1] = f[2] = --- = f[N] = const., and its
minimum H,,;, = 0 if all probabilities according to Eq. [3.2] turn out to be close to
either 1 or 0, e.g., for a very non-uniform feature sequence within the given word.
Note that this entropy measures the (relative) feature variability within the word,
but without accounting for the time order of the feature contour. Finally, we also
experimented with a normalized entropy H obtained from division by the logarithm
of the sequence length N:

DPi = (32)

- H
H= .
log N

For our experiments, we applied Eq. to the extracted FO/RMS Contoursﬂ and
calculated four additional entropy-based features (ENT) with Eq. and Eq.
leading to two (pseudo-)entropies H (HPSFO/HPSRMS) and two log-normalized
(pseudo-)entropies H (HPSFON/HPSRMSN) of FO/RMS.

Simulations with uniform and non-uniform distributions indicated that these
entropy-based features depend primarily on the number of possible outcomes

(3.3)

IThis calculation was based on frame-wise FO/RMS contours which were also extracted with
the AMFM decompy library. More precisely, in this case, we used the pitch object attributes
PitchObj.samp_values and PitchObj.energy to extract the FO and RMS contours.



3.3. PROMINENCE CLASSIFICATION CONVERSATIONAL SPEECH 31

010.49 0.36 0.15 0 0.33 0.07
© ©
o] QO
21/0.18 0.42 0.40 21/0.15 049 0.35
=] =]
= [

210.05 0.18 210.03 0.18 joWA)
0 1 2 0 1 2
Predicted label Predicted label
(a) FO+RMS (b) FO+RMS+DUR

Figure 3.7: Confusion matrices (3 classes) with FO and RMS features (a) and all features (b).

N, which in case of FO contours corresponds to voiced segments and in case of
RMS contours to word duration. Nevertheless, for words of similar lengths these
measurements also encode contour variations by capturing deviations from uniform
distributions (cf. a comparison of entropy-based features in Appendix A).

Random Forest: We trained Random Forest classifiers (RFCs) with the scikit
learn toolkit (version 0.21.3) (Pedregosa et al. 2011). RFCs were built with 100
estimators, default maximum depth, a minimum samples split of 2 and the Gini
impurity for measuring the quality of a split. For each of the different feature sets,
we present results from two conditions, one for 2 classes (PL0 vs. PL2), and one
for 3 classes (PLO vs. PL1 vs. PL2). Each classification experiment involved two
steps: First, RFCs were trained with the entire feature set of a training set in order
to learn about the feature’s relative importance. Second, a (final) RFC was trained
with the 15 most important features as given by the first step. The training and
test sets were based on a random 80/20 split and we present associated F1-scores.
Additionally, we provide means and standard deviations of accuracies resulting
from 10-fold cross-validation experiments based on RFCs trained with the entire
feature sets in order to estimate the model’s generalization ability. For the latter
experiments we also tested parameter robustness by comparing the original RFCs
with 100 estimators to RFCs with 10, 20, 30, 40, 50 and 500 estimators.

3.3.2 The role of durational features

In order to learn about the role of durational features for prominence classification,
we conducted two classification experiments. While the first RFC was based on a
selection of all 96 FO, RMS and durational features (FO+RMS+DUR) described in
Sec. the second RFC used a selection of the 84 FO/RMS related features only.
Fig. [3.7 and Fig. 3.8 show the confusion matrices of RFCs which were trained on
the basic feature set (FO+RMS+DUR) and on a subset without durational features
(FO+RMS). We observe that classification performance between non-prominent
and highly prominent words is high in both cases, but that non-prominent words
were better classified when the RFC was trained with the basic feature set than
without DUR (recall 79% vs. 71%). For PL0 the Fl-score increased form 75.2% to
77.9% by adding DUR, and for PL2 from 89.0% to 89.2%. Corresponding cross-
validation accuracies of the RFCs trained with the entire feature sets were 88% +5%
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Figure 3.8: Confusion matrices (2 classes) with FO and RMS features (a) and all features (b)
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Figure 3.9: RFC feature importances for the 3 class problem with FO, RMS and DUR features.

(FO+RMS+DUR) and 85% + 4% (F04+RMS). Furthermore, cross-validation recalls
for the entire basic feature set (FO+RMS+DUR) were 81%+3% (PL0) and 92%+2%
(PL2) and for the entire FO+RMS subset 72% + 4% (PL0) and 92% + 2% (PL2).

RFCs with 3 classes (cf. Fig. showed a similar behaviour since the re-
call for PLO of 60.0% (FO+RMS+DUR) was higher than the recall of 49.0%
(FO+RMS). However, in case of PL1, recalls of only 49.2% (FO+RMS+DUR) and
42.0% (FO+RMS) were achieved, while approx. 35% (F0+RMS) and approx. 40%
(FO+RMS+DUR) of tokens from PLI were predicted as PL2. Respective F1-scores of
PLO/PL1 were 65.2%/48.8% (FO+RMS+DUR) and 54.3%/42.8% (FO+RMS). Inter-
estingly, recalls of highly prominent words were similar in both cases (approx. 78%),
indicating that PL2 was easier to classify. In this case, cross-validation accuracies of
the RFCs trained with the entire feature set were 63% + 7% (FO-+RMS+DUR) and
59% + 4% (FO+RMS). Furthermore, cross-validation recalls for the basic feature set
(FO+RMS+DUR) were 64% + 4% (PLO), 47% £+ 4% (PL1) and 77% £+ 4% (PL2).
For the subset cross-validation recalls were 57% £ 3% (PL0), 41% + 3% (PL1) and
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76% + 3% (PL2).

Fig. [3.9] shows the feature ranking corresponding to the averaged impurity
decrease of the RFC for 3 classes trained with the 15 best features (FO+RMS+DUR).
Word duration (w_dur) has by far the highest importance among all features,
capturing almost 20% of the overall importance. Other durational features (cf.
Sec. , i.e. the local speech rate (Ispr) or relative speech rates (rspr_median and
rspr_max) were also present in the feature ranking and had similar importances as
the relative relationships of the FO/RMS contours. This finding is in line with the
study by |Linke et al.| (2020]), showing that word duration is the most important
feature for prominence classification in read speech (cf. Sec. [3.2.3).

Overall, durational features improve the RFC accuracy for classifying prominent
words of conversational speech. Additionally, the comparison of RFCs across different
estimator counts demonstrated that the model’s performance was not critically
dependent on the number of utilized trees, maintaining consistent cross-validation
accuracies with > 30 estimators for the classification problems with two classes
and > 50 estimators for the classification problems with three classes. Previous
investigations on prominence cues pointed towards different trends. Whereas |Cole et
al.| (2010)) found vowel duration to be an important cue to prominence in spontaneous
speech, Niebuhr and Winkler| (2017) concluded that FO and Baumann and Winter
(2018)) that RMS play a more important role. These studies, however, did not consider
word duration, which in our experiments resulted to be the most important feature
among all durational, FO/RMS features to classify prominence in conversational
Austrian German.

In order to gain insights with respect to the interactions of the features, we
built a cumulative link mixed model (Christensen, 2023) in R (R Core Team,
2021|) with prominence as an ordinal dependent variable, the highest ranked scaled
prosodic features of each category (i.e., word duration, RMS relative range and
FO standard deviation; cf. Fig. as fixed effects and word as well as speaker
identity as random effects. The model included main effects and all possible two-
way interactions between fixed effects, revealing both significant main effects and
interactions. Word duration emerged as the strongest predictor (Est. = 1.78, z =
29.73, p < .001), followed by RMS relative range (Est. = 0.31, z = 6.95, p < .001)
and FO standard deviation (Est. = 0.16, z = 2.55, p < .05). The model showed
significant negative interactions between word duration and RMS relative range
(Est. = -0.20, z = -4.01, p < .001) and between word duration and F0 standard
deviation (Est. = -0.19, z = -2.45, p < .05), indicating that the effect of word
duration diminishes for higher values of these prosodic features. Further analysis of
the model indicated that non-prominent words are predicted more likely for shorter
words (i.e., shorter word durations) with less prosodic variation (i.e., smaller values
of RMS relative range and F0 standard deviation). This systematic pattern suggests
that speakers employ a consistent strategy when marking the absence of prominence,
characterized by short words with less prosodic variability. In contrast, the effect
becomes less systematic for higher prominence levels, indicating that the distinction
between weak and strong prominence levels relies more heavily on word duration
alone. The analysis of random effects showed a substantially stronger effect for
variation of word identity (standard deviation = 1.01) in comparison to variation of
speaker identity (standard deviation = 0.56). Most notably, the estimated threshold
coefficients describing the transitions between prominence levels showed a clear
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categorical boundary between PL0O and PL1 (Est. = -2.72, SE = 0.13, z = -21.29),
but a much weaker boundary between PL! and PL2 (Est. = -0.06, SE = 0.11, z =
-0.51).

3.3.3 The role of entropy-based features

To learn about the role of entropy-based features (ENT) for prominence classi-
fication, and whether they can complement phone-based durational features, we
conducted two classification experiments. While the first RFC uses all 100 features
(FO+RMS+DURHENT), the second RFC does not use any durational features
(FO+RMS+ENT).

The RFC for 3 classes with FO+RMS+DURAENT features resulted in a large
number of confusions of PLI (recall/F1-score: 48%/48.6%) with PL0O or PL2, where
approx. 14% of PL1 was classified as PL0 and 33% as PL2. In contrast, recalls/F1-
scores of 60.0%/65.2% (PL0) and 79.1%/76.4% (PL2) indicated less confusions
with others classes (i.e., only 3 — 8% of non-prominent or highly-prominent words
were classified as highly-prominent or non-prominent words). This result is to
be expected, as also the inter-rater agreement showed to be lowest/highest for
these classes. Overall cross-validation accuracies of the RFCs trained with the
entire feature set reached 62% 4 7%. Furthermore, cross-validation recalls were
66% + 3% (PLO), 48% + 3% (PL1) and 75% + 3% (PL2). Compared to the RFC
without ENT, the classification of weakly-prominent words improves by adding
the ENT features (recall 53% > 49%). The comparison with the RFC trained
without any durational features (FO+RMS+ENT) indicated that developed entropy-
based features compensate for durational information (similar F1-scores for classes
PLO/PL2 of approx. 78%/90%). With respect to the feature importances for the
RFC with features FO+RMS+DUR+ENT, we observed that the four best features
comprised word duration as well as the entropy features HPSFO/HPSRMS and
the log-normalized entropy feature HPSFON, which all had average importances of
> 7% (capturing approx. 40% of the overall importance), while all other features
had importances < 6.4%.

For both the classification problems with two and three classes, prominence
classification was best when adding entropy-based FO/RMS-features to the feature
set. Notably, while RFCs consistently performed well across different numbers
of estimators, cross-validation accuracies stabilized with fewer estimators in the
classification problems with two classes (> 10) compared to the classification
problems with three classes (> 50), indicating greater model robustness in the binary
case. To the best of our knowledge, there exist no earlier studies on prominence
classification using similar entropy-based FO and RMS features.

3.3.4 Conclusion

This section investigated different word-level features to classify prosodic prominence,
to avoid the necessity of creating manual phonetic segmentations for conversational
speech. Overall, the classification performances achieved with our different sets of
features were in the range of the human inter-rater agreements for the respective
classes. We found that durational features (incl. speech rate variations) have a higher
importance than FO/RMS features, and that among them, word duration is by
far the most important feature. Experiments with entropy-based FO/RMS features
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Figure 3.10: Confusion matrices from experiments with 15 best features (FO+RMS+DUR+ENT).

showed that they encode necessary durational information along with information
about the features’ distribution, making them useful for classifying prominence
levels in conversational speech. In future, we will explore whether entropy-based
FO/RMS features are also useful to capture other prosodic characteristics in speech,
both with respect to speech analysis as well as in ASR.

3.3.5 Limitations of this study

The prosodic feature extractor encountered difficulties in calculating features for
a substantial portion of the data, despite the availability of additional human
annotations. The main issues were:

1. Differences between human-annotated prosodic word boundaries and forced-
aligned word boundaries which allowed for the alignment of only 70% of the

data (cf. Sec. [4.5.2)).

2. For the remaining word-aligned data, the peak detector failed to extract all
characteristics in the FO contours for approx. half of the data. More precisely,
the pitch detector failed to find only F0 valleys (minimum) in approx. 10.5%
of cases, only FO peaks (maximum) in approx. 18% of cases, and both F0
peaks/valleys in approx. 21.5% of cases which made it impossible to calculate
certain prosodic features accurately (i.a., relative position of FO maximum
and minimum in the word).

Further analysis revealed that the pitch extractor often failed when word duration
was small (approx. 0.15s) or when the standard deviation of FO was small (approx.
2.5Hz). For word duration of approx. > 0.2s or F0 standard deviation of approx.
> 5 Hz, it was generally feasible to calculate prosodic features for the FO contours.
These findings suggest difficulties in pitch extraction and pitch detection especially
for shorter utterances or for utterances of less FO variation. These limitations are
particularly relevant for conversational speech, where a large portion of the data
consists of short utterances (cf. Fig. , stemming from the lively turn-taking.
While these characteristics make prosodic feature extraction challenging, they are
inherent to the nature of spontaneous dialogue, highlighting the need for robust
methods in analyzing such data, as for instance the use of entropy-based features

presented here which do not rely on algorithms to detect maxima and minima in
FoO.
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Therefore, we explored alternative approaches, such as chroma features, which
do not depend on FO extraction or phone segmentations and encompass aspects
of all DUR+F0+RMS features in a lower-dimensional representation (Linke et al.,
2025). These findings demonstrated, that chroma features achieved comparable
performance to classical prosodic features, without the drawback of data loss
encountered with traditional methods.



Chapter 4
Automatic speech recognition

4.1 Introduction

In recent years, we have observed a rapid advancement of Automatic Speech Recog-
nition (ASR) architectures resulting in increasingly improved performance across
various benchmarks (cf. |Gabler et al. (2023) for an overview). Especially for more
spontaneous speaking styles like conversational speech (CS) there has been an
increasing interest to improve performance for two main reasons: 1) Human-machine
interaction with social robots or speech agents is becoming an integral part of our
everyday lives (e.g., virtual assistants like Amazon’s Alexa, Apple’s Siri, Google
Assistant, Microsoft’s Cortana or speech recognition applications for chatbots like
ChatGPT). 2) The need for applications able to generate high-quality automatic
transcriptions for spontaneous conversations between two or more humans (e.g.,
transcriptions of meeting recordings) in various domains, which may be particu-
larly useful for humans with hearing, speaking or visual disabilites. Hence, the
rapid advancements in speech technology should address the increasing demand for
machines to better adapt to human interactional communication behaviour (Euro,
pean Union, [2024]). This demand also highlights the necessity for the development
of highly performing ASR systems for, from a modelling point of view, complex
conversational speech that occurs in our, from a human point of view, "simplest"
every-day communications.

Despite this necessity for ASR to perform well on conversational speech, most
benchmarks databases mainly contain read, prepared or well pronounced speech
(e.g., Librispech (Panayotov et al., |2015), Common Voice (Ardila et al. [2020]),
Multilingual Librispeech (Pratap et al., [2020)). Likewise, there seems to be an
overly optimistic bias towards interpreting ASR performances through existing
benchmarks when comparing published Word Error Rates (WERs) (Szymanski et
al., [2020). As a result, the best WERs for the frequently used Switchboard corpus
(J. J. Godfrey et al., [1992), a corpus of the well-resourced language American

This introduction has been reformatted from:
[D] Julian Linke, Bernhard C. Geiger, Gernot Kubin, and Barbara Schuppler. (2025). What’s so
complex about conversational speech? A comparison of HMM-based and transformer-based
ASR architectures. Computer Speech and Language, Volume 90, 101738.
My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).
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English, are in the range of 4.3% (Ttuske et al., 2021)) to 5.1% (Xiong et al., |2018]).
In contrast, the OpenASR21 challenge demonstrates that WERs for low-resource
languages fall within the range of 32% (Swahili) to 68% (Farsi) (Peterson et al.),
2022)). At the same time, it is not straightforward to sufficiently define sub-categories
of spontaneous speaking styles, which complicates direct comparisons of reported
WERs for different speaking styles (cf. |[Linke, Wepner, et al.| (2023)) for a detailed
description and categorization of speaking styles). As a consequence, conversational
speech is often subsumed in, or reduced to, spontaneous speech, which may also
lead to an overly optimistic picture. For example, the Switchboard corpus certainly
contains spontaneous speech, but since the recorded conversations took place over
the telephone, several characteristics of conversational speech that complicate
automatic speech recognition are not represented in the corpus.

There is a general requirement for ASR systems to be robust for different
speaking styles and/or different speakers. Modern ASR architectures based on
self-supervised pre-training provide powerful solutions especially in low-resource
scenarios (Baevski, Zhou, et al., 2020; |Conneau et al., [2021)), and the broad study
on domain shifts in self-supervised pre-training by (Hsu et al.| [2021)) demonstrated
how pre-training on more domains improves robustness in general. Our previous
studies on low-resource speech recognition with conversational Austrian German
reinforced the general effectiveness of fine-tuning a pre-trained cross-lingual speech
representation model; the results, however, indicated a lack of robustness with respect
to speaker-dependent and conversation-dependent WER, distributions (Linke et
al., [2022; [Schuppler, Hagmiiller, et al.l |2014])). Surprisingly, we also also discovered
that this lack of robustness is not affected by the amount of utilized training data
(Linke et al.,|2022). This is evident as the reported conversation-dependent WERs in
low-resource scenarios had mean values and standard deviations of 56.19 +5.4% and
57.28 +£6.26%. In a fine-tuning scenario, these WERs were reduced to 25.06 +4.42%,
i.e., the standard deviation computed over different conversations remained at a
similar level as without fine-tuning.

4.1.1 What makes ASR on conversational speech so complex?

In contrast to read speech, conversational speech is inherently more complex because
its production has an entirely different nature which originates from the fact that it is
planned and produced by conversational interlocutors together in real-time (Lopez et
al., [2022)). Characteristics of conversational speech are that interlocutors frequently
produce grammatically incomplete or even grammatically wrong utterances, self-
interruptions, backchannels and that they exhibit disfluencies and speak with a high
degree of acoustic reduction and pronunciation variation (Schuppler, Adda-Decker!
& Morales-Cordovillal 2014). As a result, these spontaneous interactions show
complex inter-speaker and intra-speaker variation which, among other things, is
also reflected in the speaker’s attitude towards the listener (Wrightl 2006)).

In the broader field of speech recognition, the effects on WERs have been studied
from different perspectives. In general, (Lopez et al.| [2022)) found for conversational
speech from three different languages that ASR systems struggle with basic com-
municative events such as conversational non-lexical tokens (e.g., backchannels or
delay markers) and word segments which emerged from self-correction. An older
study from (Hirschberg et al., [2004) revealed that the prosodic features relating to
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FO0 excursion, loudness, and longer duration are significant predictors for recognized
and misrecognized utterances of (task-oriented) spoken dialogue systems. A study
on English telephone conversations found that words with low intensity, high FO
value or shorter duration tend to be more often misrecognized than words of high
intensity, low average word level FO and longer duration (Goldwater et al., 2008)).
(Goldwater et al.| [2008]) also mentioned that the large individual differences across
speakers with respect to WERs might be an indicator for why their ASR systems
did not adapt well to prosodic variation within and across speakers. More recently,
but still with respect to an HMM-based ASR system, the study by (Wepner et al.,
2022) analyzed the effect of prosodic characteristics (i.e., phrase boundaries, position
in the phrase, prominence level and stress accent type) on WERs for conversational
Austrian German and confirmed that words with longer durations were recognized
correctly more often then shorter words, and that WERs were significantly lower
for prominent words.

We emphasize that the challenges posed by conversational speech on ASR do not
only originate in the characteristics that are intrinsically related to the variation in
the speech itself, but that moreover the manual transcription quality, the reference
labels, contain more errors and exhibit lower agreement across different annotators.
In comparison to read speech, where a a reference text is the basis for the produced
speech signal, in spontaneous speech the reference text was transcribed from the
given signal. (Gabler et al., 2023)) hypothesized that this annotation "problem" can
be viewed as a causality problem and should be considered in ASR architectures.
Hence, comparing and analyzing WERs of spontaneous speaking styles should
always be viewed with caution since human word errors cannot be ruled out even
for professional transcribers.

4.1.2 GMM-HMM/DNN-HMM versus transformer-based
ASR

ASR as a research field has a long history of approx. 70 years beginning with a
first publication on a single-speaker digit recognition task (Davis et al., |1952)). The
field has seen a multitude of approaches and methodologies, each with its unique
strengths and challenges. Since our work aims at investigating how different ASR,
architectures deal with different characteristics of conversational speech, we provide
an overview on the three most influential approaches: Hidden Markov Models
with Gaussian mixture models (GMM-HMM), Hidden Markov Models with Deep
Neural Nets (DNN-HMM) and ASR architectures based on Transformers (i.e., with
self-supervised learning or sequence-to-sequence learning).

In general, ASR architectures should predict the optimal word sequence W
given a spoken speech signal X. In this case, the optimality condition relates to
maximizing the a posteriori probability (MAP) of the word sequence:

A

W = argmax P(W|X). (4.1)
W

The posterior probability P(W|X) can either be modelled directly or be transformed
with Bayes’ Rule by formulating the equivalent problem

A

W = argévnaxp(X|W)P(W), (4.2)
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where the likelihood P(X|W) is calculated by an acoustic model (AM) and the prior
P(W) is calculated by a language model (LM). As an example, the prior probability
P(W) of a specific word sequence can be estimated with simple n-grams (Shannon),
1948) but more recent LMs are typically based on deep neural nets (e.g., LSTMs
(Hochreiter & Schmidhuber], |1997)) or transformers (Vaswani et al., [2017))). In the
subsequent paragraphs we focus on providing an overview of significant acoustic
modelling approaches.

There is a long tradition of ASR architectures based on GMM-HMM which are
implemented in tools like HTK (Young et al.l 2002) or Kaldi (Povey et al., 2011]).
In principle, a formulation for the AM likelihood is

P(X|W) = ZpX\s (S|W)

=Y |p(X[S)
S

i)

-

p(s(wz) |wl)]
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where S is a particular sequence of pronunciations with each s(**) being a valid
pronunciation sequence for word w;, and where @ = 61,05, ... 607 is a state sequence
with Markovian dynamics (hence HMM) through the composite model, with g
and fr.1 being non-emitting entry and exit states (Gales & Young, 2007). The
continuous output density is modeled with a GMM where the state output density
of observation x; for a specific state j is

p(x.|0; = 7) Zc p? m@y (4.4)

() : ; ()
./ for Gaussian component i, mean

;. and covariance matrix

with the weight ¢
EEJ ). The estimation of the AM parameters for transitions P(6;+1|60;) and emissions
p(x¢]6;) can be solved with the forward-backward algorithm (Rabiner] [1989) and
the best state sequence can be estimated by applying the Viterbi algorithm (Forney,,
1973). Modeling probability distributions with GMMs has several advantages. For
instance, with enough components, GMMs can model probability distributions to
any required level of accuracy and they can be conveniently fitted to the data
using the expectation-maximization algorithm (Hinton et al.l [2012). In general, the
training of ASR systems with GMM-HMM are based on several training stages:
The first training stage involves a monophone system while subsequent stages are
typically based on triphone systems which can be additionally improved by applying
several feature transformations (e.g., LDA, MLLT (Gopinath) 1998), IMLLR (Gales|,
1998)), etc.).

With the advent of deep learning, context-dependent DNNs replace the GMMs for
acoustic modeling. Hence, instead of modeling the likelihood p(x|6) and computing
the MAP state sequence using the Viterbi algorithm, DNNs directly model the
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posterior p(f]x) to allow for a discriminative estimation of . Note that the DNN
can take a context window around an input vector x. For example, in order to
estimate the posterior distribution of realizations (e.g., monophones, triphones or
senones) for 6;, the DNN might consider five frames: two preceding (x;—2 and x;—_1),
the current frame x;, and two subsequent ones (x;4+1 and X;y2). Furthermore, the
shift from a generative framework (GMM-HMM) to a discriminative framework
(DNN-HMM) enables the exploitation of deep architectures including multiple non-
linear transformations. Hence, this framework enables hierarchical feature learning
which has yielded substantial improvements in ASR performance.

In order to train a DNN-HMM system, a GMM-HMM system first generates
forced alignments (FA). This means that the GMM-HMM model structure is also
reused to specify the HMM topology and the phone set in the output layer. One
possible training criterion is the cross-entropy between the reference posterior
distribution Pe¢(6 = s|x;) which is given by the FAs and the predicted posterior
distribution P(# = s|x;), i.e., one aims to minimize

T N
Fep ==Y Pet(0 = s|x¢)log [P(0 = s|x¢)], (4.5)

t=1 s=1

where N describes the number of possible realizations (usually tens of thousands).
This function can be simplified in the standard cross-entropy case where the reference
posterior distribution is represented as a one-hot vector leading to the negative log
likelihood

FcE = Zlog P(0 = s¢|xy)], (4.6)

where s; describes the reference senone obtained by FA at time t.

Since speech recognition is a sequence classification problem, the frame-based
objective function Fcg is not optimal. For that reason, there exists another well-
known solution for training hybrid DNN-HMM systems which is a lattice-free version
of the maximum mutual information (MMI) criterion, also known as LF-MMI (Povey
et al., [2016)). In general, the maximum mutual information objective is given as

Xu,W PAXu| W) P(W,,)"
fMMI ZIO |: ] Zl |: Wp,\(X |W) (W)K 5 (47)

where U denotes the number of training utterances, A the parameters of the AM (i.e.,
parameters for GMM-HMM systems or DNN-HMM systems) and x a probability
scale (Bahl et al., [1988; [Poveyl [2003)). However, in case of LF-MMI for DNN-HMM
systems the numerator and denominator of Eq. need to be approximated by
the forward-backward algorithm leading to the objective

U
P(X4,|Grum)
FLF- ~ E 1 —_— 4.
LF-MMI 2 0g |:P(Xu|Gden) } ) (4.8)

where G, denotes a composite numerator HMM graph including all possible
state sequences for one training transcription W,, (numerator graph) and Gg., a
denominator HMM graph including all possible state sequences of all possible word
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sequences (denominator graph) (Hadian et al., [2018} Tian et al. |2023). In general,
the LF-MMI objective tries to make the correct transcription of the numerator
graph G,,,,» more probable relative to a large space of possible transcriptions given
by the denominator graph Gge,. Note that the LF-MMI objective function also
relies on an explicit segmentation of the input sequence, created for instance by
means of a forced alignment.

Most recent advances in ASR have been achieved by means of attention-based
models that incorporate a time-dependent scoring mechanism in order to better
capture complex sequential dependencies between the audio input and text output.
First, attention-based models were introduced in the field of machine translation by
including an alignment model into a RNN Encoder-Decoder framework (Bahdanau
et al.l [2015)). Some years later (Vaswani et al., 2017) proposed the transformer,
which in its original form is again an encoder-decoder framework, but now relies
entirely on attention mechanisms to optimally capture global dependencies between
the input and the output sequences.

In the field of speech recognition |Baevski, Zhou, et al.| (2020) proposed wav2vec2
which is based only on the encoder part of the Transformer and thus enables training
of contextualized speech representations. This recent model is of particular interest
in the field, because it learns powerful speech representations from raw audio data
(pre-training) followed by fine-tuning on transcribed speech data. Surprisingly, this
system demonstrates outstanding performance on the Librispeech (Panayotov et
al. |2015)) test set when fine-tuned with just ten minutes of in-domain transcribed
speech data with WERs of 4.8%/8.2% (clean/other). One reason for this outstanding
performance is attributed to the objective function utilized during self-supervised
pre-training. This function is described by a composite loss

L= Lo+ ala, (4.9)

where L,, represents a contrastive loss and L4 denotes a diversity loss. Within this
framework, the contrastive loss is of particular interest since it aims to identify the
true quantized latent speech representation q; given the contextualized representa-
tion c; in a pool of quantized candidate representations q € Q;. This pool includes
the discrete representation q; along with several distractors. Simultaneously approx.
49% of all time steps are masked. Hence, wav2vec2 effectively uses the InfoNCE
loss (van den Oord et all [2018) in order to maximize the similarity between a
contextualized representation c; and a discretized representation q; which has the
practical advantage that negative samples do not need to be sampled from the
same category as the positive samples (Mohamed et al., 2022). As a result, the
contrastive loss can be formulated as

exp (Sec(ct, qt))

Ln,=-1o — ,
| Cacq, &P (Sclcr, @)

(4.10)

where S.(+) denotes the cosine similarity between two vector representations. After
pre-training, the initialized wav2vec2 model can be adapted for several downstream
tasks. For speech recognition, the learned representations can be fine-tuned using
labeled data by minimizing the CTC loss (Graves, Fernandez, et al.l [2006)). This
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loss is given by the objective function

ZP(s|X)] = —log lz [[re= stxt)] , (4.11)

s€S seS t=1

Fore = —log

where S denotes the set of all valid alignment sequences s (including blank tokens
and repetitions). The CTC objective function depends only on the sequence of
labels and not on their segmentation. Hence, there is no explicit segmentation
of the input sequence necessary. Another recent ASR architecture which is built
upon the entire Encoder-Decoder Transformer framework is Whisper (Radford et
al., [2023). In contrast to wav2vec2, which relies on pre-training in order to enable
fine-tuning for a downstream task like speech recognition, Whisper was trained
under weak supervision on 680 000 h of multilingual audio from the internet. Because
of the Encoder-Decoder architecture of Whisper, the system simultaneously learns
powerful contextualized representations of speech through the encoder together with
auto-regressive mappings for sequence generation via the decoder. The transcripts
of Whisper’s training speech data only included the raw text, and all audio files
were segmented into 30s chunks. Rather than extracting features from the raw
audio (e.g., in comparison to wav2vec2), Whisper relies on log-magnitude Mel
Spectrogram features with a frame length of 25 ms and a frame shift of 10 ms. These
features are subsequently processed through two convolutional layers with GELU
activation functions (Hendrycks & Gimpel|, |2016)) before being forwarded to the
Transformer network. The zero-shot results of Whisper on English indicate a close
to human-level performance when compared to transcriptions given by professional
human transcribers and large improvements in robustness when compared to a
supervised model trained only on Librispeech (Radford et al., [2023).
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4.2 What’s so complex about conversational
speech? A comparison of HMM-based and
transformer-based ASR architectures

4.2.1 Motivation

This work aims to analyze WER distributions in detail for different HMM- and
transformer-based ASR architectures in order to better comprehend the robustness
problem, which appears particularly problematic in the case of conversational
speech recognition and seems to be linked to substantial differences in prosody,
pronunciation, and utterance lengths. While ASR architectures continuously improve
over time largely due to the success of memory-based systems (e.g., based on
transformer architectures (Vaswani et al., 2017))) trained on massive amounts
of data, a fundamental question remains: Does the challenge of automatically
recognizing conversational speech naturally resolve itself with time and more data?
Given the high degree of variation in WERs, it is not to be expected that such
challenges disappear on their own accord. Given our earlier mentioned experiments
and experience with conversational speech, we do not believe that this problem will
resolve itself by only using more data. Analyzing conversational speech recognition
results of different ASR architectures does not only seem a valuable, but even a
mandatory step towards a better understanding of the ASR challenges resulting
from this speaking style.

While previous studies have investigated the effects of various factors on WERs in
ASR (i.e., prosodic features or communicative events), they have largely overlooked
the impact of dialectal pronunciation variation. In contrast to formal, task-oriented
dialogues, casual speech corpora are more likely to exhibit pronunciation variation
due to dialectal differences which may significantly affect ASR performance (Linke!
Wepner, et all |2023). This distinction highlights the importance of considering
the interplay between speaking style and variety when evaluating ASR systems,
particularly in informal conversational settings (Linke, Kadar, et al., [2023).

This study extends the existing literature on WER analyses of ASR systems in
the following directions:

o We perform analyses for several ASR systems, i.e., hybrid DNN-HMM models
and transformer-based models.

o We consider how these architectures were leveraged for training with respect
to the utilized speech data (e.g., with in-domain data or without in-domain
data or with both in-domain and out-of-domain data).

o We take into account the learning strategy (e.g., learning based on training
stages and modules or end-to-end training).

This section has been reformatted from:
[D] Julian Linke, Bernhard C. Geiger, Gernot Kubin, and Barbara Schuppler. (2025). What’s so
complex about conversational speech? A comparison of HMM-based and transformer-based
ASR architectures. Computer Speech and Language, Volume 90, 101738.
My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).
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Table 4.1: Overview of all possible combinations of the three aspects A1 (HMM (H) vs. transformer-
based (T)), and A2 (trained or fine-tuned on data from the target language and style) and A3
(incorporation of explicit linguistic knowledge). Unfeasible combinations (i.e., HMM-based systems
without explicit linguistic knowledge) and combinations which were not part of this study are
grayed out (e.g., Kaldi or wav2vec2/Whisper trained or fine-tuned on out-domain and data with
explicit linguistic knowledge).

A1l A2 A3|ASR System Description

H v v |Kaldi trained on in-domain data and with explicit linguistic knowledge

T — — |Whisper fine-tuned/trained on out-domain data and without explicit linguistic knowledge
T v — |wav2vec2 fine-tuned on in-domain data and without explicit linguistic knowledge

T Vv Vv |wav2vec?2 fine-tuned on in-domain data and with explicit linguistic knowledge

e Whereas most studies considering the complexity of conversational speech
analyze ASR performance exclusively on the word level, we consider the
utterance level in order to capture important information coming from the
sequential characteristics of conversational speech (as inspired by [Hirschberg;
et al.| (2004))).

e The design of our WER analysis allows to untangle which factors on WER
stem from conversational speech characteristics, and thus transfer to other
languages, and which stem from variation related to the distance of the
regional variety to the standard pronunciation.

We emphasize that the challenges posed by conversational speech on ASR do
not only originate in the characteristics that are intrinsically related to the variation
in the speech itself, but that moreover the manual transcription quality contain
more errors and exhibit lower agreement across different annotators. In comparison
to read speech, where a reference text is the basis for the produced speech signal,
in spontaneous speech the reference text was transcribed from the given signal.
Gabler et al.| (2023) hypothesized that this annotation "problem” can be viewed
as a causality problem and should be considered in ASR architectures. Hence,
comparing and analyzing WERs of spontaneous speaking styles should always
be viewed with caution, since human word errors cannot be ruled out even for
professional transcribers.

4.2.2 Design of this study

The main aim of this study is to gain insights about which aspects of casual,
conversational speech cause the largest challenges for different ASR architectures.
Specifically, we are interested in analyzing the effects of the following aspects:

A1) HMM vs. transformer-based,
A2) amount of training data from the target language and style, and
A3) incorporation of explicit linguistic knowledge.

For an overview, Tab. [£.I] describes all possible combinations of these three aspects
(2% = 8 aspect combinations). Unfeasible combinations (i.e., HMM-based systems
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without explicit linguistic knowledge) and combinations which were not part of this
study are grayed out (e.g., Kaldi or wav2vec2/Whisper trained or fine-tuned on
out-domain data and with explicit linguistic knowledge). For this purpose, we chose
four ASR systems that are distinct with respect to three aspects: The first ASR
system is Whisper, which provides a zero-shot multilingual ASR system (Radford et
al., 2023)) trained on 680000 h of multilingual and multitask speech data collected
from the web. We use this system as a representative for ASR architectures that
are 1) transformer-based (Relates to A1), 2) do not require any data from the
target language/style (Relates to A2) and 3) do not have any explicit linguistic
knowledge (Relates to A83). The second ASR system is based on the Kaldi
framework (Povey et al., |2011)), which we train on 19h of conversational Austrian
German (i.e., the GRASS corpus, [Schuppler, Hagmiiller, et al. 2014). We use this
system as a representative for ASR architectures that are 1) HMM-based (Relates
to Al), 2) are trained with merely a small amount of data from the target language
and style (Relates to A2), and 3) have explicit linguistic knowledge incorporated
in the form of the AM, a pronunciation lexicon with multiple variants per word and
an n-gram LM (Relates to A3). The third ASR system is based on the wav2vec2
framework (Baevski, Zhou, et al., |2020)). Its XLSR model is pre-trained on 56 000 h
of multilingual speech data (Conneau et al., 2021)), which we fine-tune with the
above mentioned GRASS corpus. We use this ASR system as representative for
ASR architectures that are 1) transformer-based (Relates to A1), 2) fine-tuned
on small amounts of data from the target language and style (Relates to A2),
but 3) do not have any explicit linguistic knowledge (Relates to A3). Since the
wav2vec2 architecture enables also a decoding strategy including a lexicon and LM,
we use that mode of wav2vec2 as our fourth ASR system, representing ASR systems
that are 1) transformer-based (Relates to A1), 2) fine-tuned on target domain
data (Relates to A2) and 3) have explicit linguistic knowledge (Relates to A3).

We chose a zero-shot version of Whisper as a comparative benchmark leading to
one system without explicit linguistic knowledge. This choice was motivated by the
fact that the zero-shot Whisper model achieves near-human-level accuracy in English
but simultaneously performs even better in German with respect to Multilingual
Librispeech (5.5% < 6.2%) or Common Voice 9 (6.4% < 9.5%) (Radford et al.,
2023)). Thus, instead of a comparison with an instance of Whisper fine-tuned on
the target data, we included fine-tuned models based on the wav2vec2 architecture
which also enables different decoding strategies. More precisely, we decided to
compare w2v (with only implicit linguistic knowledge in the AM) and w2vLM
(with implicit linguistic and explicit linguistic knowledge). Additionally, as a low-
resourced representative of HMM-based architectures, we included a Kaldi system,
which compared to the transformer-based architectures, allows the integration of
a pronunciation lexicon with multiple entries per word type. This choice was also
motivated by the evaluation in [Linke, Wepner, et al.| (2023) which reveals that
the acoustic and language modeling of a low-resourced Kaldi system for Austrian
German benefits only slightly from additional speech data from other spontaneous
German corpora with absolute mean WER improvements of approx. 1% — 2%. For
the four remaining ASR systems, this study contributes:

1. A comparison of conversation-dependent WERs of all architectures while
focusing on the general robustness problem and speaker-pair dependency.
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2. The overall correlation of conversation-dependent WERs of all architectures
with acoustic, pronunciation and perplexity features that capture important
characteristics of conversational speech.

3. A more detailed statistical analysis of WERs by means of Interaction Forests
(Hornung & Boulesteix, 2022al) to show how the different ASR architectures
are affected by specific characteristics of the utterances (i.e., combinations of
the features).

The structure of this study is as follows: Sec. describes all materials used
for this study. Sec. presents the experimental results for the four different ASR
systems. Sec. presents the features that represent variation in casual, conver-
sational speech and that show high correlations with the conversation-dependent
WERs. Sec. [£:2.6] then provides a detailed statistical analysis of how the different
characteristics of conversational speech affect conversation-dependent WERs in the
different ASR architectures by means of the recently introduced Interaction Forests
(Hornung & Boulesteix], 2022a).

4.2.3 Materials

All experiments in this study are based on the GRASS corpus (Schuppler, Hagmiiller]
et al.,|2014; |Schuppler et al.,|2017)), which contains a total of approx. 30 h of Austrian
German read speech (RS) and conversational speech (CS) from 38 speakers (19
female and 19 male). All GRASS speakers were born in the same broad dialectal
region (Eastern Austria), had been living in an urban area for several years and
had a higher education degree. Despite controlling for these extralinguistic factors,
studies have provided evidence that there is a high degree of pronunciation variation
in GRASS (Geiger & Schuppler} 2023)).

For ASR experiments with RS, we utilized the RS component and the command
component from the GRASS corpus. In case of the RS component, all speakers
read phonetically balanced sentences, whereas in the command component, the
same speakers read commands and keywords. For both components, we normalized
all numbers to text. Overall, for the RS experiments, we used 4322 utterances
(approx. 117 utterances per speaker, 3767 utterances for the RS component and
565 utterances for the commands component) and a total of approx. 4.7 h of speech
data after pre-processing. The mean utterance duration and standard deviation of
the RS speech data was 3.9s 4+ 1.5s and the mean number of tokens per utterance
and standard deviation was 5.64 & 3.85 (cf. Tab. [4.2).

One important characteristic of GRASS is that the speakers of the RS component
and command component are the same as in the CS component, and that RS and CS
were recorded in the same studio with the same equipment. It is common knowledge
in the ASR community that speaker identity and recording quality are among the
largest factors that affect ASR performance. Using GRASS, we can be sure that
observed performance differences between RS and CS are related only to differences
in speaking style.

The CS component contains conversations between pairs of persons who have
known each other for several years and were either friends, couples or family mem-
bers. In general, each speaker pair was recorded for one hour without interruption
which allowed a fluent and highly spontaneous conversation. During the recording of
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Table 4.2: Overview of the used Austrian German speech data (GRASS) after pre-processing,
separately for read speech (RS) and conversational speech (CS). In this table, utts stands for
utterances, tkns for tokens, spks for speakers, and convs for conversations.

utterance
GRASS hours F#utts durations #tkns #spks #convs
RS 4.7h 4322 39s+1.5s 5.64+3.85 37 -
CS 14.4h 33734 1.54s+142s 5.78+6.11 38 19

the CS component, there was no experimenter present and there was no restriction
with respect to dialogue topics or speaking behaviour which led to natural and
partially dialectal pronunciation including characteristics typical for conversational
speech (e.g., laughter, the use of swear words or regularly occurring overlapping
speech (Schuppler et all 2017)). For all experiments, we excluded utterances con-
taining laughter, singing, imitations/onomatopoeia, unintelligible word tokens (as
tagged by the annotators) and artefacts (e.g., accidental touch of the microphone),
leaving us with approx. 14.4h of CS data for the ASR experiments. Additionally,
we standardized the reference text to lowercase, removed punctuations and unified
different backchannel labels (hm, hmm, mh, mhh, mmh, mhm) to mhm. Overall, the
resulting CS data contains 33734 utterances (approx. 1776 audio files per conversa-
tion). The corresponding mean utterance duration and standard deviation of the
CS speech data was 1.54s £+ 1.42s and the mean number of tokens per utterance
and standard deviation was 5.78 & 6.11 (cf. Tab. [4.2).

4.2.4 ASR Experiments

This section presents the ASR experiments on GRASS with respect to the three
different ASR architectures Whisper, Kaldi and wav2vec2 with and without a
lexicon/LM (w2v and w2vLM). We provide speech recognition results for both the
GRASS RS (GRRS) component and the GRASS CS (GRCS) component in order
to demonstrate that we reach state-of-the art results with our settings and to show
that the performance differences are related to speaking style (and not related to
recording condition or speaker identity).

4.2.4.1 Methods

When training or fine-tuning an ASR system with speech data from GRASS, in
all experiments, we performed leave-p-out cross-validation by measuring WERs for
specific test splits while training with remaining training splits. In particular, each
test split related to one test speaker in case of RS or one test conversation in case
of CS, while ensuring speakers in the test set were completely distinct from those
used for training. In case of RS, we compare WERs from 37 speakers, and in case of
CS, we compare WERs from 19 conversations. In general, if the AM of a proposed
system was trained (or fine-tuned) with a given training split, in case of RS only
the RS component and the command component from GRASS was used and in case
of CS only the CS component of GRASS was used (cf. Sec. [.2.3). Furthermore, in
case of the RS experiments when decoding a specific speaker test split, we excluded
the data from the commands component before scoring — in the sense of calculating
the WERs — by reporting only WERs for the RS component.
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ASR with Whisper (zero-shot): We transcribed Austrian German RS and CS
with the same Whisper model (large-v2) (OpenAl, 2023)) by setting the parame-
ter language to German. Furthermore, we set the parameter suppress_tokens to
-1 and the parameter temperature_increment_on_fallback to None in order to
ensure the suppression of most special characters and the generation of a determin-
istic output. All other parameters had their default values. Radford et al.| (2023)
recommended a specific text standardization of the output transcriptions for non-
English text, but we chose our own standardization since this improved our results
for all conversations. This means that we removed all punctuation (including i.a.
brackets), standardized to lowercase and transformed all numbers to German words.
Additionally, we standardized typical backchannels (mh, hm, mmh, hhm, uh huh)
to mhm.

ASR with Kaldi: In case of ASR for RS with Kaldi, we chose a similar approach
as described in |Linke, Wepner, et al. (2023)). To make the Kaldi experiments
comparable to those of the other ASR systems of this study, we changed the
mentioned recipe in two ways: First, we used a leave-p-out cross-validation with
p = 1 describing one test speaker and, second, we only applied two rules to minimize
the phone set (R1: replacement to devoice alveolar and postalveloar fricatives
and affricatives; R2: splitting of diphthongs) of the standard Austrian German
pronunciation (Schuppler, Adda-Decker, & Morales-Cordovilla, [2014)).

In case of ASR for CS with Kaldi, we build on a recipe earlier described in
Linke, Wepner, et al.| (2023). We achieved the best conversation-dependent WERs
with Kaldi by using a pronunciation lexicon with the most likely pronunciations
per word (average 1.37 — 1.43 variants per word), and a LM including GRASS CS
and additional text from Austrian German subtitles of broadcasts for the deaf and
hard of hearing of an Austrian public television service (approx. 220k sentences)
(Linke, Wepner, et al.l [2023; |ORF-TVithek: Broadcasts for the Deaf and Hard of]
Hearing, n.d.). Apart from that, for this work, the AM was trained entirely with
speech data from GRASS CS but in this case, we performed no LM-rescoring with
a four-gram which was trained on 5M German sentences.

The major difference, however, lay in the training of the hybrid model: Given
the final GMM-HMM system in this case, we trained a DNN-HMM hybrid model
based on another Kaldi recipe (Povey et al., [2022)) which uses the chain2 component
of the Kaldi toolkit (Povey et al., [2011)). This component adopts the LF-MMI crite-
rion (Povey et al.l 2016) by computing posteriors from the numerator graph and
the denominator graph (cf. equation in Sec. . Furthermore, we trained
with speed-pertubed 3-fold augmented data (Ko et al., [2015)), 40-dimensional high
resolution MFCCs+A + AA and 100-dimensional i-vectors in order to perform in-
stantaneous adaption of the neural network (Saon et al.,|2013]). The network included
12 TDNN-F layers (Povey et al.l2018) with time strides (1,1,1,0,3,3,3,3,3,3,3,3)
where a time stride of 3 for a particular layer means that it comprises three time
steps to the left, the central time step, and three time steps to the right given the
preceding layer. We trained the model with the natural gradient SGD optimizer
and set the variable mini-batch size to 128,64. We applied a dynamic dropout rate
starting with a dropout of 0, increasing to 0.5 at the 50% mark of the training,
and then returning to a value of 0. We applied a learning rate schedule which
started at an initial learning rate of 0.0005 and decayed during training to a value
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of 0.00005. The frame-subsampling factor is set to 3 leading to an output frame
rate which is one-third of the regular frame rate. This factor allows some kind of
data augmentation since different versions of the training data can be generated
by shifting the frames by 0, 1, or 2 frames (this is done "on the fly" in Kaldi’s
chain models). Each model was trained with a GeForce GTX 1080 Ti GPU which
provides 11GB of RAM.

ASR with wav2vec2: With the wav2vec2 framework, we conducted two experi-
ments that are based (cf. Sec. on GRASS CS and similar pre-processing steps,
where one experiment was in lexicon-free mode and one incorporated a lexicon and
LM. In general, we trained character-based wav2vec2 models and for the experiment
with lexicon and LM, we utilized a simple character-based lexicon where each word
maps directly to a character sequence and a LM which was trained uniquely with
data from GRASS CS (LMs of order 3 were trained with modified Kneser-Ney
smoothing and default pruning by utilizing the KenLM toolkit (Heafield} 2011)). For
both experiments, we fine-tuned the pre-trained XLSR model (Facebook Research,
2022) which was trained on 56 000 h of multilingual speech data (Conneau et al.,
2021)) with a CTC loss (Graves, Fernandez, et all [2006) (cf. Sec. by utilizing
the fairseq toolkit (Ott et al., |2019)). During fine-tuning, the initial learning rate of
the model was set to 0.00003 accompanied by a tri-stage learning rate scheduler
which divided the training process into three phases with ratios of 0.1, 0.4, and
0.5, culminating in the final phase at 5% of the initial learning rate. The updates
for the multi-layer convolutional feature encoder were disabled during fine-tuning.
Optimization was achieved using the Adam optimizer and each model was trained
with GPUs which provide at least 11GB of RAM due to constrained GPU resources
in our laboratory.

4.2.4.2 Results

We present WERs for read speech (RS), separately for each speaker (cf. Tab.
and separately for each conversation for the CS component (cf. Tab. and Figs
and . Tab. additionally shows the conditions for each ASR architecture
in order to clarify if pre-training (PT), fine-tuning (FT), a lexicon (Lex) or a LM
was involved.

Speaker-dependent WERs for read speech: For the RS component, we
achieved mean speaker-dependent WERs of 11.8% (Whisper), 3.62% (Kaldi), 1.81%
(w2v) and 1.01% (w2vLM) with corresponding standard deviations of 2.77% (Whis-
per), 3.02% (Kaldi), 2.21% (w2v) and 1.61% (w2vLM). Although the absolute
ranges between best and worst WERs exceeded approx. 9% (Whisper), 11% (Kaldi),
10% (w2v) or 7% (w2vLM), the small standard deviations (< 3.02%) suggest that
the worst WERs might be outliers. This observation is further supported by the fact
that only two speakers had comparatively high WERs in case of Whisper (16.19%
and 16.03%), but only one speaker had the worst WERs with all other architectures

(cf. Tab. .

Connection to Speaking Style: Across all ASR architectures, standard de-
viations of WERs were lower than approx. 3%. This observation may indicate
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Table 4.3: Results for speaker-dependent WERs (RS) and conversation-dependent WERs (CS)
coming from different ASR architectures. The table displays the WERs [%] for each architecture
derived from different conditions with respect to pre-training (PT), fine-tuning (FT), utilized
lexicon (Lex), and utilized language model (LM). The best and worst WERs, as well as the
means and standard deviations of WERs (u & o) are also shown. The Whisper architecture was
only pre-trained (zero-shot), while the Kaldi architecture was not pre-trained at all but trained
entirely on low-resourced GRASS (either RS or CS). In case of RS, the Kaldi architecture included
a phonetic Austrian German standard lexicon™ where two rules were applied in order to minimize
the phone set (cf. Sec. . In case of CS, the Kaldi architecture included an advanced phonetic
Austrian German pronunciation lexicon® containing most likely pronunciations and a 3-gram
LM trained with additional Austrian German subtitles*. Decoding of the wav2vec2 architecture
was done by using two methods: lexicon-free decoding (w2v) and decoding with both a simple
character-based lexicon and a 3-gram LM (w2vLM).

ASR Conditions WERs (RS) WERs (CS)
architecture PT FT Lex LM | Best Worst nwto Best Worst pto

Whisper (zero-shot) | v/

- - ‘6‘78 16.19 11.8i2‘77‘26.45 63.83 41.78 £8.23

Kaldi - v vt 067 124  3.62+3.02|33.06 51.58 42.86+4.78
w2v v v - — | 0.15 10.60 1.81+2.21|20.89 38.67 29.81+4.80
w2vLM v v v v’ | 0.00 7.67 1.01£1.61]|15.27 30.47 22.79 +4.02

that all ASR architectures are quite robust to variety-specific pronunciation for
Austrian German read speech, or that most Austrian speakers read close to the
German standard (when leaving aside the few outliers). Note that in read speech,
the Austrian pronunciation is only different to the standard spoken in Germany
with respect to a relatively small set of segmental acoustic characteristics (e.g.,
devoicing of alveolar fricatives, aspiration of plosives, small shifts in the vowel space).
Hence, achieving robust state-of-the-art ASR results on read speech, even of the
low-resourced variety Austrian German, appears feasible with all four ASR systems
presented here (Relates to A2).

Connection to ASR Technology: For RS, we achieved worst WERs with
Whisper (¢ = 11.8%) but better WERs with Kaldi and wav2vec2 (u < 3.84%). This
indicates that the zero-shot approach with Whisper does not generalize sufficiently
well to the Austrian German variety in case of RS (Relates to A3). On the
other hand, the low-resourced Kaldi system (= 4.6 h of training data per speaker)
performs almost as good as a fine-tuned wav2vec2 architecture (XLSR was pre-
trained on 56 000 h of multilingual speech data). This demonstrates that achieving
state-of-the-art ASR results for the RS component of GRASS is also possible with
much less speech data (Relates to A3).

Conversation-dependent WERSs for conversational speech: For the CS
component, we achieved mean conversation-dependent WERs (cf. Tab. and
Fig. of 41.78% (Whisper), 42.86% (Kaldi), 29.81% (w2v) and 22.79% (w2vLM)
with corresponding standard deviations of 8.23% (Whisper), 4.78% (Kaldi), 4.8%
(w2v) and 4.02% (w2vLM). The best WER of 15.27% was achieved with w2vLM
and the worst WER of 63.84% was achieved with Whisper.

Fig. [£.2] shows normalized histograms of the conversation-dependent WER. We
observe a higher standard deviation for Whisper (red: 8.23%) and lower standard
deviations for Kaldi, w2v and w2vLM (< 4.8%). Note that the coefficients of
variation for Whisper (19.7%), w2v (16.1%) and w2vLM (17.6%) were higher than
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Figure 4.1: Conversation-dependent WERs with respect to the 3 ASR architectures Whisper,
Kaldi and wav2vec2 with and without lexicon/LM (w2v and w2vLM). Numbers in circles indicate
conversation IDs from the 19 GRASS conversations.

the coefficient of variation for Kaldi (11.2%). Fig. shows absolute WERs with
respect to the 19 conversation IDs. Interestingly, the same conversation achieved
the best WER across the ASR architectures Kaldi and wav2vec2 (cf. conversation
ID 19). As it can be further seen in Fig. WERs obtained by different ASR
architectures seem to be strongly correlated, i.e., have high Pearson correlation
coefficients (cf. Fig. [4.3a) of 60.4% (Kaldi, Whisper), 89.8% (Kaldi, w2v), 87.2%
(Kaldi, w2vLM), 80.2% (Whisper, w2v), 81.9% (Whisper, w2vLM), and 99.1%
(w2v, w2vLM). The corresponding ranking of the conversation-dependent WERs
of each ASR system allows the calculation of Spearman rank-order correlation
coeflicients (cf. Fig. [4.3b)) which were high in case of w2v and w2vLM (75.8%) but
negative and close zero in case of Kaldi and Whisper (—6.1%). Simultaneously,
the rank-order correlation coefficient was moderately high and positive in case of
Kaldi and w2vLM (40.4%) but moderately low and negative in case of Whisper
and w2v (—21.4%) or Whisper and w2vLM (—18.4%). That Whisper has small or
even negative rank correlations with other ASR systems while still having strong
positive Pearson correlations can be explained by the fact that rankings of Whisper
often disagree with rankings of other ASR systems despite showing similar general
trends (e.g., compare the relative ranks of conversations 12-14 or 3-5). Additionally,
the rank-order correlation coefficient between Kaldi and w2v was lower than the
rank-order correlation coefficient between Kaldi and w2vLM (21.1% < 40.4%) which
we believe can be attributed to the fact that both Kaldi and w2vLM make use of a
LM.

Connection to Speaking Style: We achieved high standard deviations (> 4%)
for conversation-dependent WERs across all ASR architectures, with Whisper
having the highest standard deviation of 8.23%. Simultaneously, Pearson correlation
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Figure 4.2: Normalized histograms estimating the probability density functions of the conversation-
dependent WERs [%] coming from the 3 ASR architectures Whisper, Kaldi and wav2vec2 with
and without lexicon/LM (w2v and w2vLM).

coefficients were high (> 60% in case of Whisper versus all and > 87% in case of
Kaldi versus wav2vec2 architecture) but Spearman rank-order correlation coefficients
were generally lower especially with respect to Whisper and Kaldﬂ (< 122%] in
case of Whisper versus all, < |[41%)| in the case of Kaldi versus all). With respect
to the coefficient of variation, Kaldi had the smallest value (11.2% < 16.1%),
while the values of the other architectures were similarly high (> 16.1%). The
presence of a strong linear relationship (Pearson) coupled with a weak monotonic
relationship (Spearman) between the conversation-dependent WERs demonstrates
a robustness problem in case of conversational speech recognition with Austrian
German which was particularly evident in the case of Whisper. Simultaneously, the
coefficient of variation for Kaldi indicates more robustness in comparison to the
other architectures. Nevertheless, in general, we found a complex variability in ASR,
performance across all architectures which highlights the challenge of achieving
actual robust ASR results with current state-of-the-art ASR architectures. Given
the overall high correlation across ASR systems of which conversations were best
or worst recognized, we conclude that the performance variation is related to
conversation-intrinsic characteristics. The analysis in Sec. [£.2.0|aims at investigating
which features capturing conversation-dependent variation best explain the variation
observed across the four ASR systems.

Connection to ASR Technology: For Whisper and Kaldi, we achieved worst
conversation-dependent WERs with means of 41.78% and 42.86%. However, with the
wav2vec2 architecture, we achieved best results with mean conversation-dependent
WERs lower than 30%. These results demonstrate that a zero-shot ASR system
(Whisper) which was trained on enormous amounts of multilingual (out-of-domain)
speech data (680000h) and a low-resourced ASR system (Kaldi), which was trained

IThe wav2vec2 architecture constitutes an exceptional case since the only difference between
the results from w2v and w2vLM was the decoding strategy.
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Figure 4.3: Comparison of linear (a) and monotonic (b) relationships [%] between the 3 ASR
architectures Whisper, Kaldi, wav2vec2 with and without lexicon/LM (w2v and w2vLM). The
color bar refers to both matrices.

entirely on (in-domain) speech data (a share of approx. 2&20-20.002%), both
achieve poor performance for Austrian German CS (Relates to A2). Simultane-
ously, fine-tuning the wav2vec2 architecure (pre-trained on 56 000 h of multilingual
speech data) with (in-domain) speech data (a share of approx. =£5:31-20.025%)
and decoding with a lexicon/LM improved the mean of the conversation-dependent
WERSs by approx. 20% (Relates to A3). Summing up, our results for Austrian Ger-
man CS indicate that state-of-the-art ASR architectures fail to achieve satisfactory
performance, while showing the benefits of pre-training on a substantial amount of
speech data, subsequent fine-tuning and providing additional linguistic variety and

style specific knowledge (i.e., a LM and a lexicon for Austrian Germanﬂ

4.2.5 Acoustic and lexical feature extraction

We extracted 12 features on utterance level in order to evaluate their relationship
to the observed WERs achieved with each of the four ASR systems. The choice
to extract features at the utterance- and not at the word level was motivated by
the study of [Hirschberg et al| (2004)), which aimed at predicting WERs for turns
in human-machine interaction. The 12 extracted features are related to utterance
length (3), prosody (5), pronunciation variation (2) and perplexity (2). This section
describes in detail how these features were calculated and shows an analysis of how
strongly these features correlate in general with the conversation-dependent WERs
and WERs on utterance level coming from each ASR architecture.

4.2.5.1 Utterance length features

Motivation: In earlier WER analyses on HMM-based systems, it has been shown
that longer turns (as measured in seconds) in human-machine interaction have on
average more WERs than shorter turns (Hirschberg et al., 2004)). We assume that

2We assume that fine-tuning Whisper has the potential to yield additional enhancements in
speech recognition performance.
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this effect will also be seen with respect to utterance-level duration in human-human
conversation, at least with respect to the results from the Kaldi-based ASR system.

Calculation: We calculated three different utterance-length features: The first
feature is the number of word tokens per utterance (#tokens), calculated by
counting the words in the pre-processed reference transcriptions (cf. Sec. . The
second utterance length feature is based on a forced alignment (FA) and counts the
number of realized phones per utterance (#phones). For the Kaldi-based forced
alignment, a lexicon with multiple pronunciation variants per word was used, where
these pronunciation variants included specific variants typical for Austrian German
casual spontaneous speech (for more details cf. [Linke, Wepner, et al.| (2023)). The
third feature (UttDur) is the total duration of each utterance measured in seconds
(including potential short silences and speaker noises such as breathings etc.).

4.2.5.2 Prosodic features

Motivation: Earlier analyses of the performance of HMM-based systems on
spontaneous speech showed that prosodic characteristics correlate with WERSs
(Goldwater et al.l |2008; Hirschberg et al. 2004). As in these studies, we consider
articulation rate and FO- and RMS-related features. Whereas these earlier studies
considered the mean, max, min and range of FO and RMS, we decided to use entropy
measures in order to capture the total variation of FO and RMS over the utterance.

Calculation: The first prosodic feature is the average articulation rate (AR) over
the utterance, i.e.,

AR = #phones/UttDur. A comparable speech rate feature on word level has
earlier been reported to be a strong predictor for WER (Goldwater et al., |2008]).
We calculated the articulation rate by dividing the number of realized phones as
given by the forced alignment (without the silence phones) by the duration of the
utterance. It thus is an articulation rate in the strict sense, not to be confused with
the local speech rate (i.e., including silence durations into the measure).

Second, we calculated FO and RMS related features with a similar approach
described in |[Linke, Kubin, and Schuppler| (2023). For both FO and RMS extraction
at utterance level, we used pyreaper, where for FO, we used the default settings
(Google, [2023; [Yamamoto, 2023) and for RMS extraction, we defined frames with
a frame length of 40 ms and a frame shift of 10 ms. After that, we calculated two
types of entropy measurements for both contours. In general, entropy is a measure
of the spread of probability distributions and reflects the uncertainty associated
with a random variable X (Cover & Thomas, [2006). When the random variable
X takes on values z; € X', where X is a finite set, its entropy is defined as can be
expressed as

H(X) = - sz -log pi, (4.12)

where p; = Pr{X = z;} is the probability of X taking the value z; and where
0log0 := 0 by convention.

Given a sequence of N non-negative feature values ( f[1], f[2],..., f[IN]) observed
within an utterance (such as FO or RMS values), we can quantify the spread of these
values by (a) estimating a probability distribution via a histogram leading to the
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conventional entropy measure or (b) estimating a (pseudo-)probability distribution
leading to a formal (pseudo-)entropy measure. Hence, in the first case (a), we
generated normalized histograms by binning the feature values between 80 Hz and
240 Hz with a width of 5Hz (F0O contours) or between 0 and 1 with a width of 0.05
(RMS contours) which estimates conventional probability distributions. Likewise,
in the second case (b), we estimated (pseudo-)probability distributions which are
defined by normalizing the feature values

fli)
oy f11]

and ensuring that the total probability condition Zf\il p; = 1 is satisfied. Using
this second approach, the entropy attains its maximum value H,,,, = log N
when the feature sequence is constant, i.e., when f[1] = f[2] = --- = f[N] = const.
On the other hand, the minimum value of entropy H,,;, = 0 is achieved when
the probabilities in equation are close to either 1 or 0, which can occur in
the case of a highly non-uniform feature sequence within a utterance. It is worth
noting that this (pseudo-)entropy measure quantifies the (relative) variability of
the features within the utterance, without taking into account the time order of the
feature contour.

pi = (4.13)

Finally, we normalized both entropy measures (a) and (b) by dividing the result-
ing entropies by the logarithm of the number of bins (in case of the conventional en-
tropies) or the logarithm of the sequence lengtlﬂ (in case of the (pseudo-)entropies):

H

H= :
log N

(4.14)

This final normalization results in two FO/RMS features represented as conventional
entropies HFON as well as HRMSN and two FO/RMS features represented as
(pseudo-)entropies HPSFON and HPSRMSN.

4.2.5.3 Pronunciation features

Motivation: Earlier analyses on WERs have rather considered pronunication-
related features motivated by psycholinguistic findings indicating that human
subjects have more difficulty recognizing spoken words that are in dense phonetic
neighborhoods (Goldwater et al., |2008). These works, however, did not deal with
speech from a low-resourced variety of a language containing dialectal data as we
do. For our purposes, we thus chose to extract features that reflect how strongly the
pronunciation of an utterance differs from the canonical, standard pronunciation
of the word sequence spoken. Given that most available German speech material
used to train the models contains speech that is either prepared or not Austrian, we
assume that utterances closer to standard pronunciation are better recognized. We
extracted two pronunciation features that reflect the degree of acoustic reduction
(which has been shown to increase with the degree of spontaneity (Adda-Decker &
Lamel, 2018))), and the extent of dialectal pronunciation.

3In case of FO contours, we calculated the sequence length N by excluding unvoiced segments.
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Calculation: We extract two features, where the first one, PronD, reflects the
degree of reduction of the utterance, and the second one, PronLD, reflects both the
degree of reduction and deviation from the standard pronunciation. In more detail,
PronD was calculated as the mean of the differences between the number of phones
of the not-reduced, canonical pronunciatiorﬁ of a word and the number of phones of
the actually realized pronunciation of the same word. Hence, the resolution of this
feature increases with the number of phones per word and the number of words per
utterance. For the calculation of the second pronunciation feature PronLD, instead
of the mean of ordinary differences, we measured the mean of the Levenshtein
distances (Levenshtein, |1965)) between the realized pronunciation of a word to its
canonical pronunciation in the lexicon for standard Austrian German. The second
pronunciation feature PronLD is more comprehensive as it considers not only
deletions but also substitutions and insertions.

4.2.5.4 Perplexity features

Motivation: In casual, spontaneous interaction, utterances are often short, frag-
ments of sentences, containing repetitions, disfluencies and, as we deal with Austrian
German, dialectal grammatical structures, which all would not be found in written
text nor in prepared speech. In order to measure how strongly the word sequence
of an utterance in the GRASS reference transcriptions ‘comes as a surprise’ to a
LM, we calculated two LM perplexity features, one based on written German, and
one based on spoken Austrian German (inspired by |Goldwater et al. (2008]), who
analzed WERs with respect to the trigram-log-probability). We assume that ASR
architectures that were specifically trained on (even if only small amounts of) data
from conversational speech can better deal with small, fragment-style utterances in
GRASS.

Calculation: We provide two perplexity features pplAGS and pplWIKI. As
earlier described in |Linke, Wepner, et al.|(2023), we measured perplexities with
a trigram LM (pplAGS) trained on 220k sentences from an Austrian German
television service (ORF-TVthek: Broadcasts for the Deaf and Hard of Hearingl n.d.))
and a four-gram LM (pplWIKI) trained on a subset of 5 M German sentences
which originated mainly from German Wikipedia and the European parliament.
In general, perplexities were calculated with the SRILM toolkit (Stolcke, 2002])
which incorporate sentence-beginning (S_B) and sentence-ending (S_E) markers
for the perplexity calculation to fully capture the contextual boundaries of each
utterance. This means that the probability of the first token of an utterance is given
by the probability of the first word w; leading to P(w|S_B). Simultaneously, the
probability of the last token would always refer to the probability of the sentence-
ending. For instance, in case of an utterance including only one word token w; this
probability would be P(S_E|wi,S_B). Thus, in case of an utterance including two
word tokens w; and wsy the probability would be P(S_E|ws, w1, S_B). The perplexity
of an utterance is related to the negative sum of the logarithms of the conditional

4This canonical pronunciation is derived from a pronunciation lexicon for standard Austrian
German, cf. Linke, Wepner, et al.| (2023).
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probabilities via

#tokens

Z loglo P(wl|wl—17 cee 7wl—n+1) (415)
=1

1

log1p PPl = — #tokens + 1
where n is the order of the n-gram model, w¢g is S_B and wxtokens+1 is S_E, and
where P(-) is given by the LM. Note that the perplexity is normalized by the
utterance length while the probability for S_E was also considered. Eq. .15 was
used to measure perplexities pplAGS (order n = 3) and pplWIKI (order n = 4)
for each utterance.

Summing up, we extracted 12 features, falling into the following categories:

1. Utterance length features (3): #tokens, #phones and UttDur.

2. Prosodic features (5): 1 durational feature: AR, 2 FO features: HFON and
HPSFON, 2 RMS features: HRMSN and HPSRMSN

3. Pronunciation features (2): PronD and PronLD

4. Perplexity features (2): pplAGS and pplWIKI.

4.2.6 Analysis: How do acoustic and lexical utterance fea-
tures affect the performance of different ASR systems?

We analyze the relationships between the WERs of GRASS CS on utterance level
(the dependent variable) with respect to each ASR architecture and specific features
(the independent variables) from the different feature categories (cf. Sec. by
performing a statistical analysis.

The remainder of this section is structured as follows: First, we motivate our
methodological approach in Sec. by describing the distribution of the depen-
dent variable, namely the WERs on utterance level, separately for each of the four
ASR systems and as a function of the utterance length. Second, we describe how the
extracted features (i.e., the features capturing spontaneous speech phenomena from
Sec. correlate with the WERSs on utterance level, and third, we describe the
feature selection approach for the independent variables (cf. Sec. . Finally,
we present our statistical analysis by means of Interaction Forests (Hornung &
Boulesteix, 2022a)) in Sec. m where we separately discuss the results from the
importance measurements for univariable effects and quantitative and qualitative
interactions.

In the following, utterances that contain only one word token are referred to as
single-word utterances, those that are between one and four word tokens long are
referred to as short utterances and those that are between 5 and 15 word tokens
long are referred to as long utterances.

4.2.6.1 How do utterance lengths affect WERSs on utterance level?

To get a global picture of how the WERs on utterance level (the dependent variable
of our statistical analysis) were distributed with respect to each ASR architecture, we
computed histograms separately for utterances of different length (cf. Fig. |4.4]). This
was motivated by the fact that, in contrast with other containing less spontaneous
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or less interactional speech, the GRASS CS corpus contains a high number of
single-word utterances (cf. Fig. [4.4a)).

When focusing on the distribution of WERs for short utterances (cf. Fig. [4.4e)
we observe a large difference to the distribution for long utterances (cf. Fig. |4.41)).
For short utterances, the majority of WERs were at 0% or 100%. With respect to
the different ASR architectures, in case of Whisper and Kaldi approx. 10000/12500
utterances led to a WER of 0% and approx. 7500/5000 utterances led to a WER
of 100%. In contrast, in case of the wav2vec2 architecture (i.e., w2v and w2vLM),
approx. 15000/17500 utterances led to a WER of 0% and approx. 2500/2500
utterances led to a WER of 100%. Note that WERs of 90% did not (really) occur
for any ASR system, a phenomenon for which we do not have any data-related nor
methodological explanation.

To determine how often WERs of 0% and 100% resulted from short utterances,
we show a separate histogram for this subset of the corpus in Fig. It can
be seen that of 10000 utterances with a single word, Whisper correctly recognizes
~ 6000 utterances, while the other architectures correctly recognize more than
~ 8000. This shows a remarkable difference between Whisper (zero-shot) and the
other ASR systems that have domain-knowledge.

The histogram of WERs for utterances containing two to four word tokens (cf.
Fig. shows a different behaviour with respect to the WERs at 0% and 100%.
Now, approx. 2000/3000/4000/5000 (Whisper/Kaldi/w2v/w2vLM) utterances had
WERs of 0% and approx. 3000/2000/1000/500 (Whisper/Kaldi/w2v/w2vLM) ut-
terances had WERs of 100%. For utterances of these lengths, the counts were more
or less similar across all ASR architectures for WERs of 20%, 30%, 60% and 70%.

Finally, we also present WERs on utterance level with respect to the data used
in the two experiments of our statistical analysis in Fig. and [£41} In general,
the histogram in Fig. comprises the data of the histograms in Fig. and
[44d] We observe a decreasing trend with respect to the WERs when analyzing the
WERs of long utterances (cf. Fig. . In general, we find that Kaldi achieved
worse WERs for longer utterances (i.e., of more than four word tokens).

Fig. [L.5] gives another representation of the WERSs on utterance level which also
summarizes specific phenomena explained by the histograms [L.4b[.4] in Fig. [£.4]
We plotted the mean WERs on utterance level for specific numbers of word tokens
within an utterance across all ASR architectures. This illustration shows that
Whisper achieved worse WERs for short utterances (mean WER of 43.7%) than for
long utterances (mean WER of 37.5%), while for all other systems this direction
was reversed (30.2% < 43.5%, 22.4% < 30.2% and 16.8% < 23%). Simultaneously,
we also observe that Kaldi and the wav2vec2 architecture seem to be quite robust
for utterances containing 2...15 word tokens since mean WERSs remained almost
constant (approx. 45%/30%/25% in case of Kaldi/w2v/w2vLM). There was only
one slight exception in case of Kaldi because for utterances containing two word
tokens the mean WER was slighly lower (~ 40%). Finally, we report a relevant
observation with respect to the wav2vec2 architecture: The inclusion of linguistic
knowledge (i.e, decoding with a lexicon and LM) led to a substantial improvement
of the mean WER by =~ 5.6% (for short utterances) and =~ 7% (for long utterances).

Connection to Speaking Style: We observe that the GRASS CS corpus shows
a decreasing trend with respect to the counts of word tokens per utterance (=~ 10000
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Figure 4.4: Histograms describing the utterances of GRASS CS. The upper left histogram
shows the counts of utterances per number of word tokens. All other histograms show the counts
of WERs [%] on utterance level with respect to the 3 ASR architectures Whisper, Kaldi and
wav2vec2 with and without lexicon/LM (w2v and w2vLM). In particular, these histograms refer
to utterances containing 1...15 word tokens , one word token (4.4c)), 2...4 word tokens
(4.4d)), 1...4 word tokens and 5...15 word tokens where legends include respective
mean WERs on utterance level and corresponding standard deviations (i.e., p % o).

utterances containing one word token in contrast to less than 450 utterances
containing 15 word tokens). As a consequence, ASR performance for CS is strongly
affected by utterances with less than five word tokens (in case of the zero-shot
Whisper architecture the mean WER improved for utterances containing more word
tokens, potentially due to its transformer architecture exploiting the context better,
and in case of the trained or fine-tuned architectures the mean WER improved
for utterances containing less word tokens which was mainly explained by a better
performance for single-word utterances). Our results indicate that the speaking
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Figure 4.5: Mean WERs [%] on utterance level for specific numbers of word tokens within an
utterance across all ASR architectures. The legend shows again the overall mean and standard
deviation of WERs on utterance level across all 3 ASR architectures Whisper, Kaldi and wav2vec2
with and without lexicon/LM (w2v and w2vLM)

style CS is characterized by utterances containing less than ~ 5 word tokens (e.g.,
backchannels, short response tokens, broken phrases, etc.), a characteristic resulting
from spontaneous speech where two speakers are in constant interaction. Our results
suggest that for conversational speech, ASR performance may be improved if ASR
architectures provide learning strategies to better capture important short-term
dependencies (with short-term dependencies, we mean here mainly the dependencies
with respect to only one, two, three or four word tokens). We also recognize the
benefit of learning the dependencies in two steps, which is basically the concept of
the wav2vec2 architecture (Relates to A3). This architecture is also based on a
context network but in a first stage, it was fine-tuned based solely on a CTC loss
for character sequences (short-term dependencies (bottom-up)) and in a second
stage, it was decoded with a lexicon and LM (long-term dependencies (top-down)).

Connection to ASR Technology: Only in case of Whisper mean WERs on
utterance level were better for less word tokens per utterance (= 43.7%) and worse
for more word tokens per utterance (= 37.5%). A comparison of w2v and w2vLM
demonstrated that the wav2vec2 architecture benefits from linguistic knowledge
provided by a lexicon and LM because mean WERs on utterance level were approx.
5% — 7% better independent of the number of word tokens per utterance. In general,
we found that mean WERS for single-word utterances were much better than all other
mean WERs of utterances containing more word tokens across all ASR architectures
(cf. Fig. [A.5)). We can state that all trained or fine-tuned ASR architectures were
better able to adapt to the speaking style CS which is particularly noticeable in the
mean WERs for fewer word tokens. At the same time, however, we must also note
that optimal robustness would strictly mean that these better mean WERs must
also be available for utterances that contain more word tokens but this is not the
case in any analyzed ASR architecture. We can again note that Whisper behaves
differently than the trained or fine-tuned architectures as the ASR performance
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of Whisper improves with an increased number of word tokens. This may be an
explanation for why Whisper showed higher standard deviations for the mean
conversation-dependent WER. Importantly, regardless of the number of word tokens
within an utterance, a constant performance gain was reached by incorporating
linguistic knowledge to the wav2vec2 (Relates to A3). To conclude, the analysis of
the independent variable reveals that the performance of ASR architectures varies
greatly with the number of word tokens per utterance and that the performance of a
zero-shot architecture improves especially with an increased number of word tokens.
Our results also highlight the importance of linguistic knowledge and the need
for further optimization to achieve consistent robustness across varying utterance
lengths.

4.2.6.2 How do acoustic and lexical features affect WERs? Correlation
analysis and feature selection

This section describes how features on utterance level correlated with WERs with
respect to each ASR architecture and how we selected our features (the independent
variables) for the statistical analysis.

Feature correlation with the WERs? As a next step in our analysis, we
estimate which of the extracted features (cf. Sec. correlate how strongly
with the WERs of the different ASR systems. Fig. shows resulting Pearson
correlation coefficients between the overall WERs of each of the systems Whisper,
Kaldi, wav2vec2 with and without lexicon/LM (w2v and w2vLM) and the extracted
utterance-level features. In order to evaluate correlations which are independent of
the conversation IDs, we compared the features by correlating the feature values
with all WERSs on utterance level.

Consistent with what we have discussed in the previous section, we observe weak
negative correlations between WERs and utterance length features for Whisper
(> —12%), and weak positive correlations for all other systems (< 18%), with
those for Kaldi being the strongest. The durational feature AR also showed the
strongest correlation with the WERs from Kaldi (24.6%) in contrast to Whisper
(9.6%). With respect to the FO features, we observe weak negative (Whisper) or
positive (Kaldi and wav2vec2) correlations in case of HFON (between —9% and
12%) but stronger negative correlations in case of HPSFON (Whisper: —16.8%;
Kaldi/wav2vec2: between —10% and —12%). This is as expected, as pseudo-entropy
is large if the respective contours are flat, while conventional entropy is large
if the respective contours span multiple bins used in estimating the probability
distribution. Therefore, one would expect that a negative correlation between
WERs and pseudo-entropies coincides with positive correlation between WERSs
and conventional entropies, and vice-versa. In comparison to Kaldi and wav2vec,
Whisper’s performance was correlated most strongly with HPSFON (—16.8%). All
RMS features showed weak negative and positive correlations close to 0% with the
exception of Whisper showing negative correlations of —5.6% (HRMSN) and —8%
(HPSRMSN). In contrast, the pronunciation features were strongly positively
correlated to the WERs of Kaldi (= 24%), w2v (= 21%), and w2vLM (= 18%). In
case of Whisper those correlations were also positive but weaker. Finally, correlations
with all perplexity features were positive but weak, and they were weaker in case of
Whisper (< 5%) in comparison to the other architectures (> 5%).
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Connection to Speaking Style: We observed highest correlations with the
durational feature AR as well as the pronunciation features PronD and PronLD
across all ASR architectures (mean correlations of highest correlating features with
respect to each category > 55%/> 19%). The F0 feature HPSFON showed slightly
higher correlations in case of Kaldi (—46.4/ — 10.3) or Whisper (—10.4/ — 16.8).
All of those features represent typical phenomena in complex spontaneous or
conversational speaking styles. Especially the pronunciation features reflect one
noticeable characteristic of GRASS CS since speakers articulated on average up to
1.37 — 1.43 variants per word (Linke, Wepner, et al., [2023)). We conclude that these
features describe common phenomena of the conversational speaking style, which
we further analyze in Sec. 5.

Connection to ASR Technology: In case of Whisper, we observe partly con-
tradictory correlations in contrast to the other architectures (especially with respect
to utterance duration and FO entropy). Whisper is the only zero-shot architecture
in our analysis which leads to intriguing comparisons with the other trained or
fine-tuned architectures since Kaldi and wav2vec2 are regulated by in-domain data.
In general, Whisper performs better on long utterances than the other architectures,
which we explain by its advanced embedding of contextual information.

Feature selection: We selected features for the subsequent analyses based on
the correlations described above. In particular, we considered the correlations
between all WERs on utterance level (the dependent variable) and all prosodic,
pronunciation and perplexity feature values (the independent variables). As the
only exception, in case of the utterance length feature, we manually selected
#tokens because this feature determines the possible resolutions of the WERs
which highly affects the distributions of the WERs on utterance level (cf. Fig.
and Sec. . For all other feature categories, in order to mitigate the effects
of multicollinearity, we restricted our feature selection to only one feature from
each feature category. In case of the durational feature, we selected the only
available feature AR. In case of the remaining features, we calculated mean absolute
correlation values of each feature. This comparison showed that in both cases best
prosodic, pronunciation and perplexity features were HPSFON, HPSRMSN,
PronLD and pplWIKI with mean correlations of 12.05, 3.94, 20.35 and 6.73.
Given that correlations between the entropy features HPSFON and HPSRMSN
were much higher (= 53% for short utterances and ~ 72% for long utterances)
than between other prosodic, pronunciation, and perplexity features (< |28|% and
< |16]% respectively), we addressed the possible issue of multicollinearity in our
statistical analysis by decorrelating the feature HPSRMSN. Therefore, in order
to decorrelate the feature HPSRMSN from HPSFON, we replaced HPSRMSN
with the residuals from the linear model

HPSRMSN = 3y + 8, - HPSFON. (4.16)
This leads to the new feature HPSRMSN g., which can be calculated as

HPSRMSNEg.; = HPSRMSN — HPSRMSN. (4.17)
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Figure 4.6: Correlations [%)] of all feature values with all WERs on utterance level independent of
the conversations. The selected features are from six categories: utterance length (black), prosodic
(red/blue/green), pronunciation (magenta) and perplexity (orange) features.

These residuals explain the deviation of HPSRMSN from the values predicted by
the linear model.

As a result, only the utterance length feature #tokens was moderately corre-
lated with PronLD (37.5%) and AR (31.9%) in case of the first statistical analysis
(utterances with 1...4 word tokens) and a weaker correlation with HPSFON
(16.2%) in case of the second statistical analysis (utterances with 5...15 word
tokens). Overall, the final feature set for both statistical analyses included the
following six features (or independent variables): #tokens (utterance length fea-
ture), AR (durational feature), HPSFON (F0 feature), HPSRMSNg.s (RMS
feature represented as residuals given the response HPSRMSN and the predictor
HPSFON), PronLD (pronunciation feature) and pplWIKI (perplexity feature).

4.2.7 Statistical analysis with Interaction Forests

This section describes the approach for the statistical analysis. In Sec. [£.2.6.1] we
showed that the WERs on utterance level are not normally distributed (cf. Fig.|4.4b)
and that the number of available utterances decreases with an increasing number
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of word tokens, leading to an insufficient amount of data points (cf. Fig. .
The comparison of WERs in Sec. also showed how distributions of short
utterances (cf. Fig. and long utterances (cf. Fig. differ. Hence, in order to
better capture the relationships between the features and the WERs on utterance
level, we restricted our statistical analysis to utterances which have at most 15 word
tokens and divided our data in two sets for the analysis:

1. Statistical analysis of short utterances (analysis of 18326 utterances).
2. Statistical analysis of long utterances (analysis of 13030 utterances).

In general, we based our statistical analysis on Interaction Forests, a recently
introduced variant of Random Forests (Hornung & Boulesteix, 2022al). Interaction
Forests provide effect importance measures (EIMs) for univariable effects as well as
quantitative and qualitative interaction effects. Thus, in contrast to classical variable
importance measures (VIMs), EIM values rank not only univariable effects but also
effects due to quantitative and qualitative interactions which can be communicated
in a comprehensible manner. A short description of these effects can be given as:

1. A univariable effect indicates that the dependent variable changes mono-
tonically with the considered independent variable x. univariable effects are
represented by univariate, binary splits in the trees constituting the random
forest, e.g., x < x5 versus x > x,, where  denotes a variable and z¢ a split
point for this variable z.

2. A quantitative interaction effect indicates that another independent variable y
controls the strength with which the dependent variable changes monotonically
with the independent variable z. E.g., the dependent variable changes strongly
with x if y is small and only weakly if y is large, etc. Quantitative interaction
effects are represented by bivariate, binary splits in the trees. E.g., if a
dependent variable is particularly small if both z and y are small (but not
if they are individually so), then this is represented by a split depending on
the truth value of {z < z;} N{y < ys}. This results in four split types
corresponding to the four quadrants in the interaction space (z and y small,
x and y large, x small and y large, = large and y small).

3. A qualitative interaction effect indicates that the direction of the monotonic
effect of the independent variable z on the dependent variable is controlled by
another independent variable y. E.g., the dependent variable increases with x
for small y but decreases with x for large y. These qualitative interactions are
represented by bivariate, binary splits in the trees that are based on the truth
value of the statement {{z < zs} N{y < ys}}U{{z >z} n{y > ys}}.

Fig. also visualizes these split types (the visualization was taken from the
original paper with a slighlty different notation). EIM values were computed from
the resulting Random Forests by first evaluating the accuracy of the constituting
trees on the subset of data on which the tree was not trained, and then comparing
this accuracy to the one that would be obtained by the same tree if the considered
effect (the one univariable, one of the four quantitative interactions, or the one
qualitative interaction) is not represented (i.e., when the data is not split according
to the learned criterion but randomly assigned to the children of the splitting
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node). Since univariable effects can be detected also as quantitative and qualitative
interactions (and since splits are generated randomly), the EIM values of quantitative
and qualitative interactions are adjusted accordingly. For a more comprehensive
understanding of the algorithms associated with Interaction Forests, we refer to the
paper by [Hornung and Boulesteix| (2022a)) and the corresponding supplementary
material 1 (Hornung & Boulesteix, [2022D)).

For each experiment and for each ASR system (which leads to 4 different
dependent variables), we trained Interaction Forests in R with the R package
diversityForest (Hornung & Wright, [2023) and used a default value of 20000
trees which allows a sufficient calculation of the EIM values for the 3 different effect
types. All other parameters were also set to their default values.

Hornung and Boulesteix| (2022a)) claim that p-values should be analyzed with
caution because they are generally much too optimistic especially in case of small
datasets and large numbers of variables. The cause of this is that tests for interaction
effects with classical linear regression lead to p-values which would not be adjusted
for the circumstance that the data was already used to find variable pairs which
indicated strongest interaction effects (Hornung & Boulesteix, [2022b)). However, in
our analysis, we considered only six features (or independent variables) which allows a
straightforward calculation of Bonferroni-adjusted p-values with only a small number
of (g) = p - 15 possible interactions. Hence, in our statistical analysis, we report
significance levels which are based on Bonferroni-adjusted p-values p, = p-(5) = p-15
which leads to the following updated significance codes: Three stars (***) indicate
that tests for interactions using linear regression resulted in p-values < 0.00006
(or Bonferroni-adjusted p-values p, < 0.001), two stars (**) indicate that tests for
interactions using linear regression resulted in p-values < 0.0006 (or Bonferroni-
adjusted p-values p, < 0.01) and one star (*) indicates that tests for interactions
using linear regression resulted in p-values < 0.003 (Bonferroni-adjusted p-values
pa < 0.05). Note, we interpret the resulting significant levels with caution and
focus in our analysis mostly on the the importance of the effects to the model. We
always provide contour plots of the actual data distributions of specific emerging
interactions for each ASR architecture in order to analyze these more informative
visualizations together with the explicit naming of a quantitative or qualitative
interaction type and the corresponding significance levels.

In the remainder of this study, we will refer to interactions with significance
level (***) as highly significant and interactions with significance level (**) or (¥*)
as significant.

4.2.7.1 Statistical analysis of short utterances:

Given the WERs on utterance level of each ASR system of short utterances, we
compared all EIM values of all six univariable effects and only the 3-best EIM
values of the quantitative and qualitative interaction effects. Tab. [£:4] summarizes
all EIM values with respect to the effect type (rows: univariable effects, quantitative
interaction effects or qualitative interaction effects) and the ASR system (columns:
Whisper, Kaldi, w2v and w2vLM). First, we describe the univariable EIM values (cf.
Fig. and after that we focus more precisely on the 3-best quantitative and the
3-best qualitative interaction effects. Consequently, for a better explanation of the
most important interactions, we compare contour plots which collect mean WERs
on utterance level with respect to specific grid areas and interpolate between values
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Figure 4.7: Split types considered in the Interaction Forest algorithm, figure taken from the original
paper (Hornung & Boulesteix} 2022a)). Split types comprise one univariable split, four quantitative
splits and one qualitative split. Note that we describe our variables more generally as x and y
without considering a particular variable j. Additionally, we describe split points p,, or py as s
(split point for variable x) or ys (split point for variable y).

with respect to equivalent color bars in order to give an easy and direct comparison
between the performances of the ASR systems (to be more precise, this means that
for a specific interaction the WERs on utterance level in the contour plots were all
represented with the same color coding). The necessary grid areas were motivated by
the two-dimensional LOESS fits produced with the R package diversityForest by
capturing specific feature value ranges which where also conditioned on the feature
type. More specifically, in case of the discrete feature #tokens we consider broader
areas surrounding the integer values which enables a smooth interpolation between
the mean WERs on utterance level (e.g., for utterances containing four word tokens
the grid area was specified by a offset of 0.5 capturing the ranges [0.5,1.5), [1.5,2.5),
[2.5,3.5) and [3.5, 4.5) which allows a better readability by preventing blank areas in
the contours plots) and in case of all other continuous features, we consider ranges
which were linearly spaced with 10 steps between a minimum feature value specified
as the 5%-quantile and a maximum feature value specified as the 95%-quantile
(in this case the offsets for the grid areas were half of the difference between two
resulting subsequent feature values). Given these grid areas and corresponding
mean WERs on utterance level, all contour plots were automatically generated with
the functions contourf and contour (only the parameter levels was adjusted
to achieve comparable color bars while all other parameters were kept with the
default settings) given the matplotlib package (version 3.6.2) developed for Python.
As a results, we generated five sets of four contour plots for each ASR system
(cf. Fig. 4.10} [4.11} |4.12} 4.13] and [4.14) when evaluating the 3-best quantitative
interaction effects (cf. Tab. [4.4). Additionally, in case of the 3-best qualitative
interaction effects (cf. Tab. [4.4) we generated another four sets of four contour plots

(cf. Fig. [4.15] [£.16] [£.17| and [4.18)).

Univariable effects for short utterances: Tab. and Fig. summarize
EIM values of the univariable effects of short utterances with respect to each ASR
architecture. In case of Whisper, the feature PronLD was the most important
feature with an EIM value of 182.3, followed by #tokens with an EIM value of 53.7.
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Table 4.4: Summary of all univariable, 3-best quantitative and 3-best qualitative EIM values from
the Interaction Forests (Hornung & Boulesteix| |2022a)) for short utterances. Note that in this table
the descriptions "Univ. Effects", "Quant. Inter." and "Qual. Inter." refer to univariable effects and
the effects of quantitative and qualitative interactions. Additionally, (small) is abbreviated with

(J) and (large) with (7).

‘Whisper Kaldi w2v w2vLM
Feature EIM |Feature EIM |Feature EIM |Feature EIM

a PronLD 182.3 |#tokens 60.8 |#tokens 40.3 |#tokens 27.6
3| #tokens 53.7 |PronLD 34 |PronLD 36 |PronLD 19.1
Eﬂ: HPSFON 339 |AR 25.3 |AR 35.7 |AR 18.4
~|AR 32 |ppIlWIKI 11.4 |pplWIKI 7.9 |ppIWIKI 5
2| ppIWIKI 10 |HPSFON 4.7 |HPSFON 3 HPSRMSNg.s 2.3
P|HPSRMSNpg,, 5.4 |HPSRMSNpg,, 1.4 |HPSRMSNpg,, 1.2 |HPSFON 1.4
+ |#tokens ({) ] #tokens (|) ] #tokens (|) #tokens (|)
£|PronLD (Ij  337"|PronLD (})  232"|PronLD ()  15:5""|PronLD (})  10-2°**
~ | #tokens ( #tokens (]) #tokens (]) #tokens
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In contrast, EIM values were ranked in a different order in case of Kaldi and the
wav2vec2 architecture. Here, in all cases the most important feature was #tokens
followed by the features PronLD and AR. The absolute differences between EIM
values of the 3-best features were higher in case of Kaldi (28.8 and 8.7) in comparison
to w2v (4.3 and 0.3) and w2vLM (8.5 and 0.7). To summarize, we recognize that
the features PronLD and #tokens were the most important features across all
ASR architectures for short utterances. However, in case of Whisper the feature
PronLD had a much higher effect size in comparison to the second best feature
#tokens. Additionally, the feature AR was also more important across all ASR
architectures but the feature HPSFON appeared to play a more important role
only in the case of Whisper. In contrast, across all ASR architectures the remaining
features pplWIKI and HPSRMSNg.s seem be less important than the other
features.

Fig. [£9] provides a visualization of the univariable effects on the WERs on
utterance level, illustrating the relationships between binned WERs on utterance
level (with WER binning regions [0%, 10%], (10%, 20%)], (20%, 30%], (30%, 40%],
(40%, 50%), (50%, 60%], (60%, 70%], (70%, 80%)], (80%, 90%] and (90%, 100%]) and
the mean feature values (rows: AR, HPSFON, HPSRMSNg.,, PronLD and
pPIWIKI) with respect to the number of utterances achieving this WER (specified
by the circle sizes), the number of tokens per utterance (red: one word token, orange:
two word tokens, yellow: three word tokens and green: four word tokens) and each
ASR architecture (columns: Whisper, Kaldi, w2v and w2vLM). For single-word
utterances there are only two WERs (0% and 100%) resolvable. Naturally, WER
resolutions get finer for two word tokens (0%, 50% and 100%), three word tokens
(0%, 33.33%, 66.66% and 100%) or four word tokens (0%, 25%, 50%, 75% and
100%). Due to the fact that the distribution of WERs with respect to the number
of utterances (specified by circle sizes) could be difficult to read, we refer back to
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Figure 4.8: Bar plots of the univariable EIMs for (a) short utterances or (b) 5...15 word tokens
for the 3 ASR architectures Whisper, Kaldi and wav2vec2 with and without lexicon/LM (w2v
and w2vLM). Features were ordered with respect to the rankings of the univariable EIMs of the
Whisper architecture. Note that the description of the feature HPSRMSN actually refers to the
feature HPSRMSN g.s which was derived from residuals.

Fig. and [£.4d) in Sec. [£:2.6.1] which, i.a., showed that single-word utterances
led to approx. 6000 (Whisper) and 8000 (Kaldi and the wav2vec2 architecture)
WERs at 0% in contrast to approx. 4000 (Whisper) and 2000 (Kaldi and the
wav2vec2 architecture) WERs at 100%. Therefore, in the following descriptions, we
focus mainly on the mean feature values for specific WER binning regions instead
of focusing on the WER distributions with respect to the number of utterances
(specified by the circle sizes). One advantage of the visualization in Fig. is that
all features were displayed with respect to the utterance length feature #tokens
which was an important feature across all ASR architectures. Thus, we explain clear
trends of all univariable effects mainly with respect to the specific numbers of word
tokens (i.e., one, two, three or four word tokens) in an utterance.

In case of the (more important) durational feature AR we predominantly observe
positive trends irrespective of the number of word tokens per utterance indicating
that higher articulation rates led to worse WERs. Especially in case of single-word
utterances, we observe that WERs of 0% were achieved for mean articulation rates
of ~ 9s~! across all ASR architectures. In contrast, WERs of 100% were achieved
for mean articulation rates of ~ 10.5s~! (Whisper), ~ 115! (Kaldi) and ~ 11.5s7!
(wav2vec2 architecture). In case of utterances with 2/3/4 word tokens the trends
were similar but WERs of 0% were achieved for higher mean articulation rates of
approx. 11571/12.5571 /13571 across all ASR architectures and WERs of 100% were
achieved for even higher mean articulation rates of approx. 12s71/13.5571 /15571
(Whisper), 12.5571/13.5571/14s7! (Kaldi), 12.5571/14571/14.557! (w2v) and
12.5571 /14571 /1557 (w2vLM). Nevertheless, in case of Whisper and Kaldi, WERs
of 50% were achieved for lower mean articulation rates of approx. 10.5s7%/11s7?
in contrast to the wav2vec2 architecture which achieved a mean articulation rate of
~ 11.557! in both cases (w2v and w2vLM).

In case of the pseudo-entropy of the FO contour HPSFON (which was more
important only in case of Whisper), we observe the opposite trend indicating that
more uniformly distributed FO contours led to better WERs. Indeed, for single-
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Figure 4.9: Relationships between WERs [%] on utterance level and mean feature values of selected
higher correlating features (rows: AR, HPSFON, HPSRMSNg.s, PronLD and pplWIKI)
with respect to each ASR system (columns: Whisper, Kaldi, w2v and w2vLM). WERs of 10%-
intervals are summarized and conditioned on the number of utterances (depicted by circles sizes)
as well as the number of tokens per utterance (i.e., colors red (one word token), orange (two word
tokens), yellow (three word tokens) and green (four word tokens)). For utterances containing one
word token there are only two WERs (0% and 100%) possible. WER resolutions get finer for two
word tokens (0%, 50% and 100%), three word tokens (0%, 33.33%, 66.66% and 100%) or four
word tokens (0%, 256%, 50%, 75% and 100%).

word utterances, WERs of 0% were achieved for higher mean pseudo-entropies of
approx. 0.94/0.93/0.93/0.92 (Whisper/Kaldi/w2v/w2vLM) and WERs of 100%
were achieved for lower mean pseudo-entropies of approx.

0.89/0.88/0.87/0.87 (Whisper/Kaldi/w2v/w2vLM). Hence, this trend indicates
better WERs for more uniformly distributed FO contours (which corresponds to
higher values of HPSFON) in case of single-word utterances. With respect to the
utterances with two word tokens, better WERs across all ASR architectures tended
to occur together with higher mean pseudo-entropies. For utterances with 3 — 4
word tokens, there is no clear trend for whether HPSFON affects the performance
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of any of the ASR architectures.

With respect to the RMS Feature, the residuals HPSRMSN g, from a lin-
ear model (cf. equations and ) showed a clear positive trend merely
in case of single-word utterances. In this case, WERs of 0% were achieved if
HPSRMSNg.s a mean value of ~ 0 across all ASR architectures and WERs of
100% were achieved for slighlty higher mean values of 0.005/0.0075/0.01/0.015
(Whisper/Kaldi/w2v/w2vLM). Note that, in contrast to HPSFON, this feature is
not easy to interpret intuitively, as a large (small) value of the residual of the linear
model does not necessarily imply that the original feature HPSRMSN was large
(small), or that the RMS contour was flat (varying). For utterances with 3 — 4 word
tokens all values of HPSRMSN g.; were < 0 independent of the ASR architecture
and we observe no clear trends.

In case of the (more important) pronunciation feature PronLD (best univariable
effect in case of Whisper and second best in case of Kaldi and the wav2vec2
architecture) which, simply put, describes the degree to which specific words were
spoken dialectically (in the sense of pronunciation reduction), we observe clear
trends independent of the number of word tokens in an utterance. In case of single-
word utterances mean values of PronLD of approx. 0 (Whisper) or 0.25 (Kaldi
and the wav2vec2 architecture) mainly resulted in WERs of 0% in contrast to mean
values of & 0.75 which resulted in WERs of 100%. In case of utterances with 2/3/4
word tokens the trends were also positive but WERs of 0% were achieved for higher
mean values of PronLD of approx. 0.75/1—1.25/1.25 across all ASR architectures
and WERs of 100% were achieved for even higher mean values of PronLD of
approx. 1.25/1.5/1.5 (Whisper), 1.25/1.25/1.25 (Kaldi), 1.25/1.5/1.25 (w2v) and
1.25/1.25/1.25 (w2vLM). Utterances with four word tokens demonstrated a higher
mean value for PronLD of ~ 1.5 (w2v) in comparison to ~ 1.25 (w2vLM) but then
again in case of w2vLM there were also fewer utterances affected (as illustrated via
the smaller circle size).

Finally, for pplWIKI there were stronger differences between the ASR archi-
tectures especially for utterances containing two word tokens, but in general these
trends were positive (indicating worse WERs of higher perplexities) but also weaker
than for other features. Most salient, perhaps, is the behavior for utterances with
two word tokens, where the positive trend of Whisper is much flatter than for other
ASR architectures, and where the wav2vec2 architecture without a lexicon/LM
achieved WERs of 100% primarily for utterances that had very high perplexities
(= 5000 versus ~ 4500).

Quantitative interaction effects for short utterances: Tab.[f.4] summarizes
the 3-best quantitative interactions across all ASR architectures. First, we summarize
the corresponding EIM values of these quantitative interactions and after that,
we analyze all interaction effects individually by describing corresponding contour
plots. The quantitative (and also qualitative) interaction between #tokens (small)
and PronLD (small)ﬂ was the most important interaction effect across all ASR
architectures with EIM values of 33.7 (Whisper), 23.2 (Kaldi), 15.5 (w2v) and 10.2

5Here and subsequently, the additions (small) and (large) indicate where strongest interactions
take place. For example, feature 1 (small) and feature 2 (large) indicates that the WERs change
more strongly with feature 2 if feature 1 is small, or more strongly with feature 1 if feature
2 is large.
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Figure 4.10: Contour plots of the actual data distributions of short utterances. The color map
between 0% ...90% reflects mean WERs on utterance level within a grid area. Visualizations
refer to the quantitative (and qualitative) interaction between #tokens (small) and PronLD
(small) across all ASR architectures. All tests for interaction using linear regression had significant
p-values < 0.00006 (*¥**).

(w2vLM). Additionally, all interactions were highly significant. Interestingly, this first
and best quantitative interaction was also the most important qualitative interaction
for all ASR systems, albeit with a much smaller effect size. With respect to the
EIM value, the quantitative interaction between #tokens (small) and HPSFON
(large) was more important in case of Whisper with an EIM value of 26. Apart
from that, tests for interactions were highly significant for Whisper, Kaldi and w2v
and significant for w2vLM. The quantitative interaction between PronLD (small)
and HPSFON (large) resulted to affect WERs of Whisper with an EIM value of
14.3. Interactions in case of Whisper, Kaldi and w2v were highly significant and for
w2vLM the interaction was not significant. The quantitative interaction between
#tokens (small) and AR (small) showed to significantly affect the performance
of Kaldi (EIM value of 12.9), but less so for w2v and w2vLM (EIM values of 7.7
and 5.1). Here, interactions in case of Whisper and Kaldi were highly significant
and in case of the wav2vec2 architecture the interactions were not significant. The
quantitative interaction between #tokens (small) and ppl WIKI (small) tended to
be stronger for Kaldi (EIM value of 10.2) than for w2v and w2vLM (EIM values of
7.5 and 5). Nevertheless, only the interaction for w2v turned out to be significant.

For all ASR architectures, the performance was most strongly affected by the
quantitative interaction between #tokens (small) and PronLD (small), which was
highly significant. Fig. illustrates that a small number of #tokens (e.g., one
word token) and a small number of PronLD (closer to the canonical pronunciation)
affect the WERs. Simultaneously, the WER tends to change strongly with PronLD
if #tokens is small and only weakly if #tokens is large. Generally, we observe that
all architectures achieved best mean WERs of approx. 20% —30%/10% —20%/10% —
20%/0% — 10% (Whisper/Kaldi/w2v/w2vLM) for single-word utterances and a
PronLD of 0 (note that in case of one word token the feature PronLD has only
integer values). Kaldi and w2v achieved similar mean WERs for lower and higher
values of PronLD for one word token (10% — 20% and 20% — 30%). In contrast to
all other architectures, Whisper achieved high mean WERs of approx. 80% — 90%
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Figure 4.11: Contour plots of the actual data distributions of short utterances. The color map
between 0% . ..60% reflects mean WERSs on utterance level within a grid area. Visualizations refer
to the quantitative interaction between #tokens (small) and HPSFON (large) across all ASR
architectures. All tests for interaction resulted in significant p-values. Tests for interaction in case
of Whisper, Kaldi and w2v using linear regression were significant with p-values < 0.00006 (***).
In case of w2vLM the interaction was also significant with a p-value < 0.003 (*).

for single-word utterances and higher values of PronLD. Kaldi and w2vLM were
more robust and almost independent of PronLD for utterances containing only
two to four word tokens (mean WERs were between 40% — 50% and 20% — 30%).
Finally, both wav2vec2 systems had worse WERs for two to three word tokens and
generally higher values of PronLD (approx. 40% — 50% (w2v) and 30% — 40%
(w2vLM))

The second strongest quantitative interaction effect on the utterance-level WERs
was between #tokens (small) and HPSFON (large), which resulted to be highly
significant for Whisper, Kaldi and w2v and significant for w2vLM. Fig. [£.11] il-
lustrates that for Whisper, the mean WERs for one word token were between
10% — 20% for high values of HPSFON (more uniformly distributed FO contours)
and between 60% — 70% for lower values (less uniformly distributed FO contours).
For Kaldi and w2v, for the same comparison, the differences were between 10% —20%
and 30% — 40% and 10% — 20% and 20% — 30% respectively. For two to three
word tokens Whisper achieved mean WERs between 50% — 70% independent of
HPSFON and for four word tokens between 40% — 60%. For all other architectures,
with a few exceptions, these WERs for two to four word tokens tended to be roughly
between 40% — 50% (Kaldi), 30% — 40% (w2v) and 20% — 30% (w2vLM), with the
distribution of WERSs being particularly uniform for w2vLM.

Fig. shows the third quantitative interaction between PronLD (small) and
HPSFON (large) which resulted to have a highly significant effect for Whisper,
Kaldi and w2v. This quantitative interaction was particularly visible in the case of
Whisper, with best WERs between 20% — 30% for small values of PronLD (closer
to the canonical pronunciation) and large values of HPSFON (more uniformly
distributed FO contours), but only worse WERs between 60% — 90% for higher
values of PronLD (further away from the canonical pronunciation). For all other
architectures, the quantitative interaction related to the specified range also applied
with WERs between 10% —20% (Kaldi/w2v) and 0% — 10% (w2vLM). In contrast, it
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Figure 4.12: Contour plots of the actual data distributions of short utterances. The color map
between 0% . ..90% reflects mean WERSs on utterance level within a grid area. Visualizations refer
to the quantitative interaction between PronLD (small) and HPSFON (large) across all ASR
architectures. Tests for interaction in case of Whisper, Kaldi and w2v using linear regression were
significant with p-values < 0.00006 (***). In case of w2vLM the interaction was not significant
with a p-value > 0.003.
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Figure 4.13: Contour plots of the actual data distributions of short utterances. The color map
between 0% ...80% reflects mean WERs on utterance level within a grid area. Visualizations
refer to the quantitative interaction between #tokens (small) and AR (small) across all ASR
architectures. Tests for interaction in case of Whisper and Kaldi using linear regression were
significant with p-values < 0.00006 (***). In case of the wav2vec2 architecture the interactions
were not significant with p-values > 0.003.

can be stated that for decreasing HPSFON (less uniformly distributed FO contours)
and increasing PronLD (further away from the canonical pronunciation) generally
the WERs were between 40% — 90% (Whisper), 20% — 60% (Kaldi), 20% — 50%
(w2v) and 10% — 40% (w2vLM).

Fig. illustrates the fourth quantitative interaction between #tokens (small)
and AR (small), which was highly significant for Whisper and Kaldi. In general,
WERs were best for articulation rates < 10s~! and one word token (approx.
20% — 30% (Whisper), 10% — 20% (Kaldi/w2v) and 0% — 10% (w2vLM)). However,
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Figure 4.14: Contour plots of the actual data distributions of short utterances. The color map
between 0% . ..70% reflects mean WERSs on utterance level within a grid area. Visualizations refer
to the quantitative interaction between #tokens (small) and pplWIKI (small) across all ASR
architectures. Tests for interaction in case of w2v using linear regression were significant with a
p-value < 0.003 (*). In case of Kaldi, Whisper and w2vLM the interactions were not significant
with p-values > 0.003.

for two and three word tokens, Whisper showed that a kind of sweet spot emerged
for articulation rates between approx. 10s~! — 121257, Regardless of the number
of words, all architectures showed higher WERs for higher articulation rates of
approx. > 12s7! (approx. 40% — 80% (Whisper), 20% — 50% (Kaldi), 10% — 50%
(w2v) and 10% — 40% (w2vLM)). Kaldi achieved WERs of approx. 30% — 40% for
two word tokens and lower articulation rates (< 12s71), but worse WERs of approx.
30% — 50% for three and four word tokens. For wav2vec2, the WERs for two to four
word tokens were more uniformly distributed and the integration of a lexicon/LM
led to a constant performance improvement.

Fig. [d14)illustrates the fifth and final quantitative interaction between #tokens
(small) and pplWIKI (small), which resulted to be significant only for w2v. In
general, WERs were worse for higher perplexities (approx. pplWIKI > 4000) with
approx. 30% — 70% (Whisper), 30% — 60% (Kaldi), 20% — 50% (w2v) and 10% —40%
(w2vLM). In contrast to the other systems, Whisper’s performance was better for
utterances of four word tokens than for those with two and three word tokens.

Qualitative interaction effects for short utterances: Tab. [£.4] summarizes
the 3-best qualitative interactions across all ASR architectures. First, we summarize
the corresponding EIM values of these qualitative interactions and after that, we
analyze all interaction effects individually by describing corresponding contour plots.
As already mentioned the best quantitative interaction between #tokens (small)
and PronLD (small) was also the best qualitative interaction effect with EIM values
of 0.8 (Whisper), 1.5 (Kaldi), 1.2 (w2v) and 1.4 (w2vLM). All other EIM values
indicated less important interactions with values < 0.5. The qualitative interaction
between #tokens and HPSRMSN g, showed an interaction effect only in case
of Whisper with an EIM value of 0.5. These interactions were highly significant
for Whisper and w2v and significant for w2vLM. In case of Kaldi this interaction
was not significant. Likewise, the qualitative interaction between HPSFON and
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Figure 4.15: Contour plots of the actual data distributions of short utterances. The color map
between 0% . ..70% reflects mean WERSs on utterance level within a grid area. Visualizations refer
to the qualitative interaction between #tokens and HPSRMSN g across all ASR architectures.
Tests for interaction in case of Whisper and the wav2vec2 architecture using linear regression were
significant with p-values < 0.00006 (***) in case of Whisper/w2vLM and a p-value < 0.003 (*) in
case of w2v. In case of Kaldi the interaction was not significant with a p-value > 0.003.

AR demonstrated an interaction effect only for Whisper with an EIM value of
0.4. In this case, interactions were highly significant for all ASR architectures. The
qualitative interaction between PronLD and AR showed interaction effects in case
of the trained or fine-tuned architectures with EIM values of 0.2 (Kaldi), 0.5 (w2v)
and 0.3 (w2vLM). The interaction in case of Whisper was highly significant and
for w2vLM significant but for Kaldi and w2v the interactions were not significant.
The final qualitative interaction between PronLD and pplWIKI showed again
interaction effects in case of the trained or fine-tuned architectures with EIM values
of 0.2 (Kaldi), 0.3 (w2v) and 0.2 (w2vLM). In this case, interactions were significant
across all ASR architectures.

Fig. illustrates the first qualitative interaction between #tokens and
HPSRMSNg.s which was highly significant for w2vLM and significant for Whis-
per and w2v. This qualitative interaction effect indicates that the WERs increase
with the number of word tokens for higher values of HPSRMSN g.s but decrease
for lower values of HPSRMSNg.;. We notice a slight effect of this with Whis-
per as the WERs for utterances containing one word token and higher values of
HPSRMSN g, were approx. between 30% — 40% and for four word tokens approx.
between 60% — 70%. Similarly, for utterances containing three word tokens and
some lower values of HPSRMSNg,. s at & —0.05 the WERs were approx. between
60% — 70% and then decreased for four word tokens to 50% — 60%. Nonethe-
less, this effect was rather minimal for Whisper and hardly present in case of the
other architectures. Then again, across all ASR architectures, we generally observe
that the WERs got worse with an increasing number of word tokens independent
of HPSRMSN ;. The only exception was Whisper, where better WERs were
achieved again with four word tokens and average values of HPSRMSN g, between
approx. —0.02...0.02.

Fig. illustrates the second qualitative interaction between HPSFON and
AR which was highly significant in case of all ASR architectures. With respect to
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Figure 4.16: Contour plots of the actual data distributions of short utterances. The color map
between 0% . ..80% reflects mean WERSs on utterance level within a grid area. Visualizations refer
to the qualitative interaction between HPSFON and AR across all ASR architectures. All tests
for interaction using linear regression were significant with p-values < 0.00006 (***).

the contour plots, in this case the qualitative interaction was not really visible in
any of the ASR systems. However, across all ASR architectures for higher values of
HPSFON (more uniformly distributed FO contours) and lower articulation rates
(between approx. 6571 ...10s71) better WERs of 20% — 30% (Whisper), 10% — 20%
(Kaldi) and 0% — 10% (wav2vec2) were achieved (with w2v being a small exception
with articulation rates of ~ 8s71). Generally, in case of Kaldi and the wav2vec2
architecture the WERs got worse with increasing articulation rates and this rather
independently of the distribution of the FO contour. In principle, Whisper also
showed that worse WERs (approx. between 60% — 70%) were achieved for lower
values of HPSFON and this almost independently of the articulation rates. At the
same time, Whisper achieved worse results for large articulation rates and large
values of HPSFON (between 70% — 80%).

Fig. illustrates the third qualitative interaction between PronLD and AR
which was highly significant for Whisper and significant for w2vLM. This qualitative
interaction effect indicates that the WERs tend to increase with the articulation
rate for lower values of PronLD (closer to the canonical pronunciation) but tend
to decrease with a large number of PronLD (further away from the canonical
pronunciation). This qualitative interaction was more or less observable only in case
of Whisper. Across all ASR architectures, WERs were best for articulation rates
between approx. 5s71...10s~! and PronLD close to 0 (with w2v being again a
small exception with articulation rates of approx. 6s~!...8s7!). For Kaldi and
the wav2vec2 architecture, better WERs between 10% — 20% were also achieved
for small articulation rates (approx. < 5s~!) which were further away from the
canonical pronunciation (PronLD = 3). Furthermore, for Kaldi and the wav2vec2
architecture, WERs between 40%—50% (Kaldi), 30%—50% (w2vLM) and 20%—40%
(w2v) were achieved for articulation rates of approx. > 12s~! and PronLD of
approx. > 0.5.

Fig. illustrates the fourth and last qualitative interaction between PronLD
and pplWIKI which was highly significant for Whisper and w2v and significant
for Kaldi and w2vLM. This qualitative interaction was not really visible in any of
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Figure 4.17: Contour plots of the actual data distributions of short utterances. The color map
between 0% . .. 100% reflects mean WERs on utterance level within a grid area. Visualizations refer
to the qualitative interaction between PronLD and AR across all ASR architectures. Tests for
interaction in case of Whisper and w2vLM using linear regression were significant with a p-value
< 0.00006 (***) in case of Whisper and a p-value < 0.0006 (**) in case of w2vLM. In case of Kaldi

and w2v the interactions were not significant with p-values > 0.003.
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Figure 4.18: Contour plots of the actual data distributions of short utterances. The color map
between 0% . ..90% reflects mean WERs on utterance level within a grid area. Visualizations refer
to the qualitative interaction between PronLD and pplWIKI across all ASR architectures. All
tests for interaction using linear regression were significant with p-values < 0.0006 (**) in case of
Whisper and w2v and p-values < 0.003 (*) in case of Kaldi and w2vLM.

the ASR systems but at least for Kaldi and the wav2vec2 architecture, we observed
general trends for lower values of PronLD (closer to the canonical pronunciation)
and lower perplexities as well as higher values of PronLD (further away from the
canonical pronunciation) and higher perplexities. In particular, for lower values the
WERs were better between 10% — 30% (Kaldi), 10% — 20% (wav2vec2) and for
higher values the WERs were worse between 60% — 70% (Kaldi), 50% — 60% (w2v)
and 40% — 50% (w2vLM). In case of Whisper the interaction was more complex
but in general, we found that worse WERs between 60% — 90% were achieved for
pronunciations further away from the canonical pronunciation.
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4.2.7.2 Statistical analysis of long utterances:

Given the WERs on utterance level of each ASR system of long utterances, we
compared all EIM values of all six univariable effects and only the 3-best EIM
values of the quantitative and qualitative interaction effects. Tab. summarizes
all EIM values with respect to the effect type (rows: univariable effects, quantitative
interaction effects or qualitative interaction effects) and the ASR system (columns:
Whisper, Kaldi, w2v and w2vLM). In case of the long utterances our analysis focuses
solely on the univariable EIM values (cf. Fig. . This is because both quantitative
and qualitative interaction effects resulted in very low EIM values and we also found
that corresponding contour plots confirmed less important interactions as general
trends were difficult or even impossible to identify. In particular, it turned out that
EIM values for quantitative and qualitative interaction effects were between 0.4 — 3
and 0.02 — 0.11. This prompted us to take a closer look only at the univariable
effects, as it cannot be ruled out that we might not be able to make generalizable
statements when describing the (rather unimportant) interactions.

Univariable effects for long utterances: Tab.[45and Fig. [£.8b] summarize
EIM values of the univariable effects of long utterances with respect to each
ASR architecture. In this case, Whisper ranked the feature #tokens as the most
important feature with an EIM value of 12.4 (cf. Fig. and the feature PronLD
as the second best feature with an EIM value of 9. All other features were less
important leading to EIM values of 2.9 (AR), 2.2 (ppIWIKI) 0.9 (HPSRMSNg,,)
and 0.2 (pplWIKI). In contrast, best features in case of Kaldi and the wav2vec2
architecture were AR and pplWIKI which achieved EIM values of 9 and 6.3
(Kaldi), 8.8 and 5.3 (w2v) and 6.6 and 2.9 (w2vLM). All other remaining EIM
values were similarly important with EIM values < 0.9. The absolute differences
between EIM values of the 3-best features were higher for Kaldi (28.8 and 8.7) in
comparison to w2v (4.3 and 0.3) and w2vLM (8.5 and 0.7). For Kaldi, w2v and
w2vLM, the features HPSFON and HPSRMSN . had EIM values close to 0.

Fig. illustrates the univariable effects on the WERs on utterance level.
This visualisation is similar to Fig. £.9 and shows again the relationships between
binned WERs on utterance level and the mean feature values (rows: #tokens,
AR, HPSFON, HPSRMSNg.,, PronLD and pplWIKI) with respect to the
number of utterances achieving this WER (specified by the circle sizes) and each
ASR system (columns: Whisper, Kaldi, w2v and w2vLM). Note that here we also
visualized the utterance length feature #tokens since we are no longer visualize
the trends dependent on the number of word tokens, but rather summarizing them
as averages.

In case of the utterance length feature #tokens which was more important
for Whisper the WERs were best (between 0% — 20%) for utterances containing
approx. eight word tokens (Whisper/w2v/w2vLM) or approx. seven to eight word
tokens (Kaldi). In contrast, worst WERs (between 70% — 100%) were achieved for
utterances containing approx. six to eight word tokens (Whisper/Kaldi/w2v) or
approx. five to eight word tokens (w2vLM). However, in the case of the wav2vec2
architecture the worse WERs related to fewer utterances.

For the durational feature AR, which was more important for Kaldi and the
wav2vec2 architecture, we found that in case of w2v and w2vLM the fewer utterances
that were misrecognized had WERs between 40% — 100% for higher articulation
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Table 4.5: Summary of all univariable, 3-best quantitative and 3-best qualitative EIM values from
the Interaction Forests (Hornung & Boulesteix) |2022a)) for long utterances. Note that in this table
the descriptions "Univ. Effects", "Quant. Inter." and "Qual. Inter." refer to univariable effects and
the effects of quantitative and qualitative interactions. Additionally, (small) is abbreviated with
(J) and (large) with (7).

Whisper Kaldi w2v w2vLM

Feature EIM |Feature EIM |Feature EIM |Feature EIM
= #tokens 12.4 |AR 9 |AR 8.8 |AR 6.6
$|PronLD 9 |pplWIKI 6.3 |pplWIKI 5.3 |pplWIKI 2.9
S|AR 2.9 |PronLD 0.9 |PronLD 0.9 |PronLD 0.9
o pPpPIWIKI 2.2 |#tokens 0.1 |#tokens 0.2 |[HPSFON 0.1
‘5|HPSRMSN g, 0.9 |HPSFON 0 |HPSFON 0 |HPSRMSNpg., 0.1
P |HPSFON 0.2 |HPSRMSNg., 0 |HPSRMSNpg., 0 |#tokens 0.1
& |#tokens (]) PronLD (]) PronLD (]) PronLD (])
£|PronLD ([} 3 |ppIWIKI (}) L |ppIWIKI (}) L |ppIWIKI (}) 07
=~ |PronLD (|) AR (| AR (| «x | #tokens ({)
£ [PPIWIKI (1) 18 [peIWiKI ¢ ! DK () OYTIAR (1) 0.6
& |PronLD (]) #tokens (|) #tokens (|) AR (|
O’HPSRMéNReS W 08 IAR (1) 0.7 |AR (1) 0.8 pplWl)KI W 04
: | #£tokens PronLD PronLD AR
gpronLD 0.11 AR 0.03 | ppIWIKI 0.04 | HbpIWIKI 0.03*
= |PronLD PronLD AR PronLD
~ |PPIWIKI 0.06 | ppIWIKI 0.03 | ppIWIKI 0.04**| b LIWIKT 0.03
= | #tokens AR HPSRMSN g, PronLD
C|pplWIKI 0.04 |, pIWIKI 0.03 | ppIWIKI 0.03 |AR 0.02

rates of approx. 14.5571...16s7!. Conversely, for Whisper and Kaldi worse WERs
(between 80% — 100%) were achieved for a slightly higher number of utterances
with articulation rates of approx. 14.5s7!...15s~!. In general, across all ASR
architectures best WERs (between 0% — 40%) were achieved for lower articulation
rates of approx. 13.5s7!...14.5s7 1.

In case of the (rather unimportant) prosodic features HPSFON and
HPSRMSNg,, it was more difficult to observe indicative trends. For HPSFON,
there were at least minor anomalies in case of Kaldi (WERs between 70% — 100% for
HPSFON of approx. < 0.92) and w2v (WERs between 70% — 100% for HPSFON
of approx. < 0.918). In case of HPSRMSN ., there was also a slightly negative
trend. Nevertheless, one should interpret these results with caution because the
mean feature values did not really follow a clear trend. Overall, the prosodic features
for long utterances showed little indication of important relationships with the
WERSs on utterance level.

The pronunciation feature PronLD was most important for Whisper which
can be confirmed by the observation of a clear positive trend. Consequently, for
Whisper the WERs were best between 0% — 20% for PronLD values of approx.
< 1.35 (closer to canonical pronunciation) and worse between 80% — 100% for higher
PronLD values of approx. > 1.6 (further away from the canonical pronunciation).

Finally for the (less important) perplexity feature pplWIKI we also observe
slightly positive trends across all ASR architectures. This trend was weaker for
Whisper where better WERs (< 50%) were achieved for perplexities between
approx. 1500...1750 and worse WERs (> 50%) for perplexities between approx.
2000. ..25000. For Kaldi this trend was similar but also more linear. Conversely,
for the wav2vec2 architecture worse WERs (> 90%) were achieved for higher
perplexities of approx. 3000 (yet again, overall fewer utterances were impacted
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Figure 4.19: Relationships between feature values of selected higher correlating features (rows: AR,
#tokens, HPSFON, HPSRMSNg.s, PronLD and pplWIKI) and WERs [%] on utterance
level with respect to each ASR system (columns: Whisper, Kaldi, w2v and w2vLM). WERs of
10%-intervals are summarized and conditioned on the number of utterances (depicted by circles
sizes) but in this case independent of the number of word tokens.

by these mean values). Interestingly, for Kaldi and w2v best WERs < 10% were
achieved at comparatively low mean perplexities of < 1500, for w2vLM, however,
the corresponding mean perplexity value was higher (at approx. 1500).

4.2.8 Discussion and conclusion

4.2.8.1 Overall performance of DNN-HMM and transformer-based ASR
systems on conversational speech

The main aim of this work was to gain insights about which aspects of casual,
conversational speech cause the largest challenges for different ASR architectures.
We conducted ASR experiments with four systems that are distinct with respect to
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three aspects: (A1) HMM vs. transformer-based, (A2) amount of training data
from the target language and style, and (A3) incorporation of explicit linguistic
knowledge. In the following sections of this discussion, we point towards these
aspects. The four different ASR systems were Whisper, Kaldi and wav2vec2 — with
and without lexicon/LM (w2v and w2vLM). Whereas for Whisper, we performed
no fine-tuning, as an example for a system not having any domain-specific data,
the other architectures were informed with in-domain speech data.

In general, we found that all systems performed well on read speech (with
speaker-dependent WERs of 11.8% (Whisper), 3.62% (Kaldi), 1.81% (w2v) and
1.01% (w2vLM)), in CS they all had troubles with specific conversations and did
exceptionally well on others (overall WERs of 41.78% (Whisper), 42.86% (Kaldi),
29.81% (w2v) and 22.79% (w2vLM)). For the different conversations, we showed
that Pearson correlation coefficients between conversation-dependent WERs were
high (> 60% for Whisper vs. all and > 87% in case of Kaldi vs. wav2vec2). Our
results show that the four ASR systems perform in the range of state-of-the-art
for non-spontaneous speech material, they are however not robust in the task of
recognizing casual conversational speech.

In the original paper of Whisper (Radford et al.| [2023), the authors claimed
that supervised speech recognition models trained entirely on (English) Librispeech
(Panayotov et al.; 2015) have very different robustness properties. This was demon-
strated by the fact that Whisper out-performed earlier ASR results of benchmark
Librispeech models on other English data sets (e.g., Common Voice (Ardila et al.,
2020) or Switchboard (J. J. Godfrey et al., [1992))). Accordingly, they also claim
that Whisper potentially complies with human behavior (they compared ASR
errors with 95% confidence intervals of human errors), at least with respect to the
results on English data sets. Our findings show a different picture with respect
to robustness. Both, speaker-dependent and conversation-dependent means and
standard deviations of WERs show a large range for Whisper (absolute difference
between means and standard deviations were ~ 30% and 5.46%), and this despite
the fact that the utilized Whisper system (large-v2) was also trained with large
amounts of German speech data, for which Whisper even achieved better results
than for English speech data (e.g., WERs of 5.5% < 6.2% (Multilingual Librispeech)
or 6.4% < 9.5% (Common Voice 9)) (Relates to A2).

Szymanski et al.| (2020) expressed their skepticism with respect to low WERs on
benchmark data sets like, e.g., Switchboard (J. J. Godfrey et al., [1992) or Callhome.
They found that on their internal multi-domain benchmarks, their ASR systems
achieved WERs between 13.73% (for an insurance domain) and 22.16% (for booking
and wireless telecommunication calls). Our findings further highlight this robustness
problem of state-of-the-art ASR systems with respect to different unseen speakers
or conversations. To conclude, we demonstrate that there are ongoing robustness
problems of ASR systems that have not been fully resolved. This is one of the main
reasons why we were driven to explore the causes of the challenges in recognizing
conversational speech across different ASR architectures.

4.2.8.2 How WER is affected by utterance length and articulation rate

In our statistical analysis, we identified that the utterance length in number of
#tokens and the articulation rate AR significantly affect utterance-level WERs in
the ASR systems Whisper and Kaldi. The effect size of the quantitative interaction
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of these two variables, as given by the Interaction-Forest EIM values, were the
highest across all ASR, architectures. When analyzing the overall distributions of
the mean WERs at utterance level with respect to #tokens, we observed strong
differences across ASR systems, especially when comparing Whisper with the other
architectures which were trained or fine-tuned on in-domain data. For AR the
picture was different. For utterances containing only one word token, the mean
WERs on utterance level were usually best for lower articulation rates (with a
slight exception in case of Whisper). In case of Whisper, a significant interaction
term between #tokens and AR indicated that for short utterances (containing
one to four word tokens) there is a sweet spot with good WERs for articulation
rates between 10s~! — 1257, For Kaldi, the WERSs on utterance level tended to
be worse as the number of tokens increased, but performance was less affected by
articulation rate than for Whisper. For wav2vec2, we observed that for articulation
rates up to AR ~ 12s~! WERs were better, but for AR > 125! the WERs were
worse for w2v, but this effect was smaller for w2vLM. Thus the two systems having
linguistic information in form of an LM, a pronunciation lexicon (Kaldi) or a simple
word-level lexicon (w2vLM) resulted to be most robust against high articulation
rates (Relates to A3).

Hirschberg et al. (2004) found that HMM-based systems for human-machine
interaction performed on average worse in longer turns (as measured in seconds)
than in shorter turns. With respect to our utterance length feature #tokens, Kaldi
achieved almost constant mean WERs for utterances of 2...15 tokens, indicat-
ing that next-generation hybrid DNN-HMM models are more robust than older
GMM-HMM models with respect to utterance length. Not surprisingly, the same ob-
servation was also true for the up-to-date transformer-based wav2vec2 architecture
(Relates to Al). In contrast, (Wei et al., 2022) found that a transformer-based
conversational ASR system achieved better recognition accuracy when including
more contextual (historic) acoustic and linguistic information. Our results also
show that more context, at least on utterance level, improved recognition results
in case of the zero-shot Whisper system. With respect to tempo, (Goldwater et al.
(2008) analyzed how WERs on word level are affected by speech rate and reported
little effects for words close to the average speech rate, but more errors for “more
extreme values”. Interestingly, they also found fewest errors for words longer than
the average. Their observation on speech rates is in line with our findings, where
especially for Whisper, we found a sweet spot for the interaction of the features
#tokens and AR.

To conclude, our analysis showed that utterance length and high articulation
rate have a significant effect on ASR performance. Especially for short utterances,
we revealed differences between the zero-shot architecture Whisper, which performed
worse than Kaldi and wav2vec (Relates to A2).

4.2.8.3 How WER is affected by the entropies of the RMS and FO
contours

In our study, we used the recently introduced pseudo-entropies (Linke, Kubin, &
Schuppler, 2023) that describe the contour variation of FO and RMS. We found
that WERs on utterance level are highly correlated with the feature HPSFON
for short utterances (one to four word tokens), with the strongest effect observed
for Whisper. Our statistical analysis revealed that WERs tended to be better for
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single-word utterances of a rather uniform F0 contour (corresponding to high values
of HPSFON), and this effect was particularly strong for Whisper. For wav2v
and Kaldi, the WERs were found to become more independent of the FO contour,
especially for utterances containing two to four word tokens, and this effect was
strongest for w2vLM. We also found a significant qualitative interaction between
HPSFON and AR, which indicated best WERs for flat FO contours in combination
with slow speech. Note that the pseudo-entropy features might be less representative
for very long utterances, as the acoustic relationships across words become more
complex. Nevertheless, for half of the data (i.e., for short utterances), FO and RMS
(pseudo-)entropies explained important relationships across all ASR, architectures,
where especially Whisper’s performance was affected by RMS (pseudo-)entropy.

Previous studies have not considered the entropy of FO and RMS contours when
analyzing ASR performance. For an HMM-based ASR system, [Goldwater et al.
(2008) found that "more extreme values" of pitch mean and pitch range were related
to a higher WER. Those results are in line with our findings, as we showed that
higher WERs tended to occur in utterances of less uniform FO contours, or in
other words, lower values of HPSFON. Summing up, the performance of all ASR,
architectures was sensitive to FO variation, especially with respect to single-token
utterances. For utterances containing two to four word tokens, the performance of
the systems trained or fine-tuned on domain-specific data was independent of the
F0 variation (Relates to A2).

4.2.8.4 How WER is affected by pronunciation variation

Given that the conversational speech material used was not only spontaneous but
also spoken by speakers of a regional variety of German, our WER analysis focused
also on gaining insights with respect to whether ASR performance is affected by
how closely an utterance is spoken to the standard, canonical pronunciation of
the words, as captured by the feature PronLD. In general, this feature correlated
especially strongly with WER for Whisper, which is not surprising as this system
did not see any in-domain data nor have access to a knowledge-based pronunciation
lexicon (Relates to A2). Not surprisingly, for all systems, WERs on utterance
level were best for single-word utterances that were produced closer to the standard
pronunciation (low values of PronLD). For Whisper, we observed higher WERs
for short and long utterances produced further away from the standard (high values
of PronLD), whereas for the other systems WERs for short utterances were rather
independent from PronLD. w2v (decoding without lexicon/LM) showed a different
pattern, i.e., WERs were better for utterances with three and four word tokens
and values of PronLD between approx. 1 — 2. This result might be related to
the transformer encoder of the wav2vec2 architecture which benefits from a large
context (Relates to A1l). Furthermore, w2vLM (decoding with lexicon/LM) is
slightly more robust against pronunciation variation as w2v (Relates to A3). For
Whisper, we further found that for utterances spoken far away from the standard
pronunciation, especially when occurring at high values of HPSFON, the WERs
were worse compared to the other architectures that have been trained or fine-tuned
on in-domain data (Relates to A2).

Previous studies emphasized the impact of phonetic neighborhood density on
HMM-based ASR. |Goldwater et al.[(2008) found that dense phonetic neighborhoods
pose recognition challenges. However, our approach diverges as it uses CS from a
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low-resourced variety. We aimed to gauge the deviation of utterance pronunciation
from standard norms, an aspect overlooked in previous works. This approach is
particularly relevant given that the majority of German speech models are trained
on non-Austrian, often prepared speech. We hypothesized that utterances closer to
standard pronunciation would be recognized more accurately. Our findings support
this hypothesis, especially in the context of Whisper’s low performance on utterances
that were spoken with a pronunciation further away from standard German and find
that a knowledge-based lexicon is beneficial on top of a transformer-based system.

4.2.8.5 How WER is affected by utterance-level perplexity

Compared to all other features analyzed, we found that pplWIKI had a generally
weaker effect on the WERSs on utterance level. With respect to the quantitative
interaction between #tokens and pplWIKI, we found that WERs tended to be
lower for single-word utterances and lower perplexities across all ASR architectures.
Note that our analysis also showed that this quantitative interaction effect was
even weaker with increasing values of pplWIKI. For utterances containing two
to four word tokens, our analysis indicated that WERs generally were slightly
worse with increasing perplexity. The (weak) qualitative interaction effect between
PronLD and pplWIKI showed that across all architectures, utterances pronounced
closer to the standard in ‘not surprising’ word sequences led to better WERs than
for utterances spoken further away from the standard and having high values of
pPPIWIKI. This result is as expected, especially from a human speech recognition
point of view. For long utterances, we observed that WERs tended to be worse the
longer they were, which also tended to have higher values of pplWIKI. Interestingly,
this was also the case for wav2vec2, which however had higher absolute WERs on
those utterances than the other systems.

Goldwater et al| (2008]) found for an HMM-based system that there was an
almost linear relationship between trigram-log-probabilities and WERs. In particular,
higher values of the trigram-log-probabilities improved the results. This in line with
our results, where lower perplexities (which is analogue to higher log-probabilites
(cf. Eq. ) led to more or less better WERs. Although we also observed an effect
of LM probabilities on the WERs, this effect was weaker than the effect of the
other features (i.e., #tokens, AR, HPSFON and PronLD), and this was the
case for all ASR architectures. With respect to the calculation of the perplexity
feature pplWIKI, we are aware of its potential limitations given the simple n-gram
modelling approach. In subsequent work, we plan to incorporate neural LMs and
investigate whether they better predict WERs.

4.2.8.6 How well do our results generalize to other corpora?

This study is based uniquely on conversational speech data from Austrian German,
a non-dominant variety of the well-resourced language German. The question thus
arises how well the findings reported here transfer to conversational speech data
from other languages or language varieties. Can we expect similar findings for a
conversational speech corpus of American English or of Scottish English? In order
to allow, at least in principle, for a positive answer to that question, we designed
our analysis such that style-specific and region-specific variation is captured in
separate features. More precisely, we included four features for style-specific variation
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(articulation rate AR, measures of variation for the FO and RMS contours HPSFON
and HPSRMSN ., and language model perplexity ppl WIKI) and one feature
for region-specific variation (distance to the canonical pronunciation PronLD). The
question whether our conclusions transfer to other conversational speech data thus
receives evidence for an affirmative answer if i) the distribution of these features is
similar to what we observed for GRASS and ii) the same features can be shown to
have the same effects on ASR performances.

Addressing the first item, we note that the style of the corpus used here has the
following characteristics: To name a few, utterance durations were 1.54s + 1.425s,
~ % of all utterances were single-word utterances, on average each word was spoken
with 1.37 — 1.43 pronunciation variants, and mean articulation rates were between
9 — 16 phones per second. These numbers are not uncommon also for other corpora
of conversational speech (for a comparison of GRASS with characteristica of other
conversational speech corpora see Schuppler et al.[[2017)). At the same time, we
observed that WERs vary across conversations (between 4% for w2vLM and 8%
for Whisper), which indicates that each conversation creates its own conversational
dynamic. Thus, while there will certainly be quantitative differences between the
feature distributions of different corpora, we believe that the general, qualitative
picture will be similar: namely, that lively, casual face-to-face conversations between
two speakers are characterized by high articulation rate, short utterances, and
substantial pronunciation variation. We thus claim that the respective feature
distributions of GRASS are representative also of conversations in other languages
or language varieties.

This leaves open the second item, namely whether the effects that certain
features have on WERs will remain the same for conversations in other languages.
Providing evidence for an affirmative answer to this question is more difficult. On a
superficial level, such evidence is provided by the fact that our results are in line
with the related literature. For example, with respect to language and style, many
findings in (Goldwater et al., |2008]) are still largely comparable to ours especially
with respect to style-specific features like speech rates, measurements with respect
to the FO contour or LM perplexities, even though their analysis was based on
American English telephone conversations. For a more detailed picture, one has to
consider the same question for each ASR system separately. For example, at the
moment, we have no reason to believe that our results transfer to other languages
or varieties in the case of Whisper. Indeed, Whisper is trained on large amounts
of speech data from multiple languages. The performance of Whisper — and hence
also how this performance is affected by speech with a certain feature distribution
— depends strongly on the amount and type of training data for the considered
language. For example, the performance of Whisper could become independent
of the pronunciation feature PronLD if its training data contained samples from
the same variety as GRASS (or if it was fine-tuned on GRASS, cf. Sec. .
Similarly, if a certain language subset of the training data covers a large range
of articulation rates (e.g., because training data of this language contains a large
portion of CS), the performance of Whisper for this language may not depend as
strongly on AR as it does for Austrian German. At the other extreme, we believe
that our results for Kaldi generalize very well across languages: The training process
for Kaldi relies exclusively on data from the corpus under investigation. Hence,
we have reason to expect that the trained Kaldi model has similar properties as
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for GRASS, given that the respective corpus has a similar distribution of features.
Wav2vec2 will, in our opinion, assume a position in the middle of the spectrum
spanned by Whisper and Kaldi, respectively. Wav2vec2’s self-supervised speech
representations operate on a temporal scale that is shorter than words, which makes
these representations universal for several languages and varieties. ASR systems
based on wav2vec2 take these representations as input, and only the attention
network (encoder) and projection layer (decoder) of the ASR system are fine-tuned
using data from the corpus under consideration. And indeed, it was shown in |[Linke,
Kadar, et al. (2023]) that representations of CS of different varieties of the same
language have similar distributions, indicating that our results for GRASS may
carry over to CS of other German varieties. Since [Linke, Kadar, et al.| (2023)) further
showed that Hungarian CS leads to representations with a different distribution,
we cannot conclude that our results for wav2vec2 carry over from Austrian German
to other languages. This strongly suggests that future research is required that
confirms — or rejects — the hypotheses about factors affecting ASR performance
proposed in this work also for other languages.

4.2.8.7 Conclusion

In recent years, modern transformer-based architectures have shown impressive
improvements for ASR, also for spontaneous speech. In this work, we presented ASR,
results for spontaneous conversations, which are characterized by quick turn changes
(i.e., short utterances) and variety-specific, dialectal pronunciation. If we aim at
making dialogue systems more social, where humans allow themselves to speak more
naturally with the machine, excellent ASR performance on conversational speech
is indispensable. Our analysis showed the importance to understand with which
characteristics of conversational speech novel ASR architectures are struggling, and
with which not. Earlier works have only analyzed how the performance of classical
HMM-GMM-based systems is affected by lexical and prosodic characteristics of
speech, thus this work fills the gap to gain insights with respect to A1 comparing
them to transformer-based architectures, A2 gaining insights in the role of in-
domain training data and A3, the role of linguistic knowledge incorporated into
ASR systems. Related to A2, our analysis reveals that with zero-shot learning
(Whisper), which has most probably not seen speech data similar to our corpus
(i.e., spontaneous speech from a low-resourced variety of German), performance is
poor, especially for short utterances and for large pronunciation variation, despite
being trained on enormous amounts of data. Additionally, only the zero-shot system
seems to be affected by the FO and RMS contours, respectively, while all other
systems seem to be quite robust against FO and RMS variation. Related to A1, we
found that transformer-based architectures that are fine-tuned on the speech corpus
outperform HMM-based architectures that are trained on the same corpus by a large
margin. For very short utterances, however, the HMM-based architectures perform
well and (surprisingly) even outperform Whisper by far. For longer utterances, the
perplexity of the word sequences plays a role too. This is particularly noticeable with
wav2vec2, which tends to perform worse with higher perplexities and better with
lower perplexities (yet, only few utterances were impacted by these values of mean
perplexities). Related to A3, we observed throughout all experiments that the
transformer-based architecture wav2vec2 combined with linguistic knowledge in form
of a word-level language model and lexicon achieved the best performance and, what
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is even more important, achieved highest robustness against acoustic and lexical
variation. We thus see a great potential that for conversational speech produced
in natural interaction, ASR will profit from a hybrid model constructed from a
data-driven and a theory-driven component, including linguistic knowledge that goes
beyond a simple lexicon (e.g., incorporation of pronunciation variants; knowledge
about conversational dynamics and how the relate to syntactically differently formed
utterance fragments).

4.2.8.8 Limitations

Our study has limitations that should be addressed in future research. First, we
did not explore all possible combinations of system configurations as indicated in
Tab. 1] For example, we cannot make a statement about how w2v fine-tuned
on, e.g., a corpus of canonical German read speech performs in the CS setting
of this study. Furthermore, even though the combination of a transformer-based
ASR system without explicit linguistic knowledge that has been fine-tuned on
data from the target language and style is covered by w2v, we admit that the
peculiar performance of Whisper as shown in Fig. 5] suggests an analysis of
Whisper fine-tuned on GRASS. Second, our experiments were limited to one corpus,
which constrains the generalizability of our findings. However, we expect that our
analysis raises the attention to those phenomena that are also relevant for other
conversational speech corpora and that it motivates other researchers working on
conversational speech from other languages and other dialects.
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4.3 Conversational speech recognition needs
data? Experiments with Austrian German

4.3.1 Motivation

Solving ASR tasks for conversational speech is crucial especially for social robots in-
teracting with humans or automatic transcriptions of multimedia meetings (Popescu{
Belis et al. 2012). Two humans who interact spontaneously with each other introduce
complex inter- and intra-speaker variation depending on for instance the speaker’s
attitude towards the listener and the speaking task (Wright| 2006). Especially casual
face-to-face conversations are characterized by a large amount of speaker-dependent
pronunciation variation, by disfluencies, and by broken words or incomplete utter-
ance structures. The resulting high degree of variation on all linguistic levels affects
the acoustic model, the lexicon and language model of an ASR system.

Given the high variation in spontaneous conversations, the amount of annotated
training data needed for ASR experiments to enable generalization for an unseen
test set can sometimes be misleading in the sense that avoiding the data sparseness
problem appears not to be possible, especially in case of spontaneous speech (Furui)
2009} [Furui et al., [2005)). Such studies give insights into the relationship between
data size for acoustic model training and WER in case of Japanese spontaneous
speech recognition: Utilizing 1/8 of available data (63.75h) for acoustic model
training results in a WER of approx. 27% whereby training with the entire data
(510h) gives an improvement of approx. 2%, but still no convergence.

This work deals with conversational speech from the GRASS corpus (cf.
Sec. [2.2.1)), which contains about 19h (or 19 conversations) of Austrian German
conversations introducing a considerable complexity in light of both inter-speaker
and inter-conversation variation (i.e., from conversation to conversation, the amount
of laughter, overlapping speech and disfluencies varies (Schuppler et all [2017))).
Despite German being a well resourced language, for the Austrian variety there are
few resources available. For conversational speech, GRASS is the only resource cur-
rently available. For less spontaneous and less casual speaking styles, using German
Germarﬁ data for training an ASR system still delivers reasonably good results
for recognizing Austrian German (Adda-Decker et al., [2013]), this is, however, not
the case for casual conversations where speakers show a higher degree of dialectal
pronunciations. Hence, with respect to this variation, ASR experiments may require
larger amounts of annotated conversational speech data than for less spontaneous
speaking styles and thus may be viewed as a case of low-resourced (LR) language
processing.

This section has been reformatted from:
[E] Julian Linke, Philip N. Garner, Gernot Kubin, and Barbara Schuppler. (2022). Conversa-
tional Speech Recognition Needs Data? Experiments with Austrian German. In Proc. of
LREC (pp. 4684-4691).
My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).
Note that this section is based on the initial version of GRASS CS, in contrast to all other studies
presented in this thesis, which were based on an updated version of GRASS with partial corrections
of human annotations. However, this did not affect the data’s comparability to other experiments,
as the results described in this section align with all other findings.
SWith German German, we refer to German as spoken by German speakers.
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With wav2vec2.0 (Baevski, Zhou, et all 2020)), a framework for self-supervised
learning of speech representations, powerful ASR models can be built also with
small amounts of annotated data by fine-tuning pre-trained models. With the help
of this modern architecture, it is even possible to come close to state-of-the-art
results with only 10 min of labeled training data in the case of Librispeech (Baevski,
Auli, & Mohamed| 2020; |Conneau et al., [2021} Hsu et al., [2021; |[Panayotov et al.,
2015} [Zhang et al.l 2021)). Hence, we hypothesize this innovative framework also
to be effective in solving a LR speech recognition task for Austrian conversational
speech.

This study presents ASR experiments for Austrian German conversational
speech from two ASR frameworks, the Kaldi speech recognition toolkit (Povey et
al., 2011) and the wav2vec2.0 implementation of fairseq (Ott et al.l [2019)). In case of
wav2vec2.0, we fine-tune a cross-lingual speech representation (XLSR) pre-trained
model (Conneau et al., [2021)) with different training data splits by testing each
of the 19 GRASS conversations individually. Referring back to the problem of
conversational speech complexity, we compare the XLSR experiments with an LR
approach by pre-training and fine-tuning only with available GRASS conversational
speech data. Ultimately, this study aims at investigating three hypotheses to gain
more insight about the role of data for conversational speech:

1. Performing cross-validation by testing each conversation individually points
out conversational speech complexity and reinforces a LR language processing
assumption.

2. Fine-tuning a data-driven pre-trained cross-lingual speech representation
model is effective for Austrian conversational speech.

3. Fine-tuning a LR speech representation model pre-trained only on Austrian
conversational speech is not effective for Austrian conversational speech.

These hypotheses are investigated by the experiments presented in Sec. [1.3.3] After
answering our hypotheses, the corollary in Sec. discusses further findings which
result from comparing the results from our ASR experiments.

4.3.2 Materials

GRASS corpus: The GRASS corpus (Schuppler, Hagmiiller, et al., [2014; [Schup-
pler et al.| [2017) contains about 19h of Austrian conversational speech collected
from 38 Austrian speakers (19f/19m). As language use in conversational speech
varies strongly with educational level, social background and dialect region, GRASS
contains only speakers who were born in the same broad dialect region (Eastern
Austria), have been living in an urban area for years and have a higher education
degree. For the conversational speech component, 19 pairs of speakers who had
been knowing each other for several years were recorded for one hour each without
interruption in order to encourage a fluent, spontaneous conversation. There was no
restriction in terms of chosen topic or speaking behavior leading to the use of au-
thentic, partly dialectal pronunciation with typical characteristics such as frequently
occurring overlapping speech, laughter, or the use of swear words (Schuppler et al.
2017)). No other person was present in the recording studio during the conversation.
Despite the speakers’ awareness of being recorded, they appeared to completely
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Table 4.6: Summary of best and worst conversation-dependent WERs [%] (test set abbreviations
include speaker IDs plus sex): Character-based (CHR) and phone-based (PHN) models with
wav2vec2 are fine-tuned on LR pre-trained models (only GRASS) or XLSR. Kaldi models are also
phone-based and incorporate additional pronunciations in the lexicon. We present results coming
from 3 decoding strategies: Decoding without a lexicon (Lexfree), decoding with a lexicon (Lex)
and decoding with a lexicon and LM (4-gram).

Phone-based

Kaldi Lexfree Lex 4-gram
009M010M - - 65.12
021F022F - - 43.89
nlo - - 56.19/5.4 Character-based
PHN-XLSR | Lexfree Lex 4-gram CHR-XLSR  Lexfree Lex 4-gram
006M007M - 42.03 32.71 006MO07M 41.5 38.95 34.49
038F039F - 26.63 17.44 038F039F 22.37 19.88 17.36
nlo - 33.15/4.32  24.69/4.10 nlo 31.23/4.86  28.06/4.92 25.06/4.42
PHN-LR Lexfree Lex 4-gram CHR-LR Lexfree Lex 4-gram
016M018M - 90.44 73.45 016M018M 95.32 98.11 76.98
021F022F - 64.93 45.14 038F039F 75.61 72.32 48.52
nlo - 75.14/5.86  57.28/6.46 nlo 85.5/4.63  84.75/6.36  62.54/6.36

forget about the studio recording situation after a period of five to ten minutes,
resulting in completely casual conversations.

Lexicon: All words from the GRASS corpus remaining after preprocessing are
included in a lexicon file. For all phone-based experiments, we used the G2P online
tool (Reichel & Kisler 2014) for German German to create canonical German
pronunciations, as a similar resource is not available for Austrian German.

Only for the Kaldi experiments, we derived additional pronunciation variants
from the canonical pronunciations with 29 phonological rules based on findings
from (Schuppler, Adda-Decker, & Morales-Cordovilla, 2014). Some of the rules were
assimilation and deletion rules relevant for conversational speech of all German
varieties, whereas other rules cover pronunciations typical for the Austrian German
variety. We added manually created pronunciation variants in order to capture
specific pronunciations that cannot be generated in an automated way.

For wav2vec2 models, we create simplified lexicons where each word maps only
to one pronunciation. In case of the character-based models, words are directly
mapped to character sequences and in case of the phone-based models, words are
directly mapped to canonical pronunciations.

4.3.3 Experiments
To investigate our three hypotheses, we first present experiments with Kaldi (cf.
Sec. |4.3.3.1)) and then experiments with fairseq (cf. Sec. |4.3.3.2]).

4.3.3.1 Experiments with Kaldi

This section describes our experiments with Kaldi, which serve as a baseline for the
main investigation.
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Methods: When preprocessing GRASS transcriptions files for Kaldi, we excluded
chunks involving artefacts, laughter and noise, resulting in a deletion of approx.
3.3h of all available chunks (= 17.5h of all chunks from GRASS contain lexical
items). In the end approx. 14h of the data were used in the experiments.

We performed leave-p-out cross-validation (with p = 2 speakers of the same
conversation) resulting in approx. 0.75h of test data and 13.5h of training data
per split. Hence, we trained 19 baseline models (Kaldi) where each training split
involves 18 conversations.

We reduced the initial phone set from 65 to 38 target phones by performing phone
set minimization rules based on phonetic studies on Austrian German (Moosmiiller,
2007): First, a replacement rule (silibant devoicing of the alveolar fricative /z/,
as usual in Austrian German); second, a rule which split all diphthongs into two
separate phones; third, a rule which united short vowels and long vowels.

We extracted 13-dimensional MFCCs and performed cepstral mean and variance
normalization (CMVN). For acoustic models (AM), initial GMM-HMM-models
comprised basic monophone and triphone training. On top of the triphone GMM,
a speaker independent GMM model with linear discriminative analysis (LDA)
and maximum likelihood linear transform (MLLT) (Gopinath) [1998) was trained.
This model was the new basis for training with constrained maximum likelihood
linear regression (fMLLR) (Gales, [1998]). Finally, latter triphone alignments were
used to train a TDNN with 13 layers and hidden dimensions of 512 by utilizing a
cross-entropy criterion and only the existing MFCC features.

For Kaldi experiments, the language models (LM) were built using the SRILM
toolkit with a Witten-Bell discounting for N-grams of different orders (Stolcke,
2002). LMs were trained on data coming from one training split. The experiments
with 3-grams and 4-grams indicated a 4-gram model to be superior.

Results: With this Kaldi experiment, we aimed at investigating the hypothe-
sis that testing each conversation individually points out conversational speech
complexity and reinforces a LR language processing assumption. Tab. shows
the WERs achieved with our baseline Kaldi system. They range between 43.89%
and 65.12%, where the resulting mean WER lies at approx. 56%, with a standard
deviation of 5.4%. Hence, we observe a lack of performance and also high variation
between the conversations with respect to the WERs.

The problem with conversational speech in LR scenarios is well-known: Results
from [Laurent et al.| (2016]) give WERs of ~ 40% in case of conversational-like data.
Sriranjani et al.| (2015]), for instance, showed that based on very limited LR Indian
language data (< 3h) recorded in a rural environment WERSs ranged from =~ 10%
to & 34.5%. Furthermore, WERs from baseline experiments described in [Yi et al.
(2020) range from 33.77%...51.54% in case of LR multilingual telephone conversation
data.

We find that performing cross-validation by testing each conversation individually
points out conversational speech complexity and indicates a data sparsity problem.
At this stage, we conclude that our first hypothesis cannot be rejected.

4.3.3.2 Experiments with Fairseq

This section describes our experiments with fairseq in order to further investigate
the research questions.



4.3. CONVERSATIONAL SPEECH RECOGNITION NEEDS DATA? 93

Methods: In comparison to our Kaldi experiments, the preprocessing of GRASS
transcriptions files was slightly different: We additionally had to exclude chunks
involving foreign words and dialect lexemes, resulting in a total deletion of approx.
4h of all available chunks (i.e., approx. 0.7h more than for the Kaldi experiments).
Other chunks which can involve breathings, speaker noise, singing, smacking, laughed
speech, coughing, sighing, broken words or multi-word expressions were maintained.
When parsing the transcriptions, we automatically corrected inconsistent orthog-
raphy of fillers (e.g., hm and hmm), as these tokens can cause a high number of
substitution errors. In the end approx. 13.5h of the data remained for our experi-
ments.

Just as in the Kaldi experiments, we perform cross-validation resulting in 19
training splits where each split results from leaving out 1 conversation. Subsequently,
we receive approx. 0.75h of test data and 12.75h of training data per split. Finally,
we randomly choose 10% of resulting training splits as validation sets (approx.
1.25h) to adjust the LM weights in the decoder.

Training a speech recognition system with wav2vec2 involves two steps: 1) self-
supervised learning from unlabeled speech data (pre-training) and 2) fine-tuning an
obtained pre-trained model with labeled speech data. For all speech representation
models, we used the same architecture with 315 Mparameters parameters containing
24 transformer blocks with model dimensions 1024, inner dimension 4096 and 16
attention heads.

When fine-tuning wav2vec2 models, we compared two basic target sets: 1) a
character-based (CHR) set resulting in 31 characters as targets and 2) a phone-based
(PHN) set resulting in 65 phonetic units as targets. Both target sets included a
white space unit which models silence parts. Similar to our lexicon creation, in case
of the character-based models, the orthographic transcriptions given by GRASS
were directly mapped to character sequences. In case of the phone-based models,
the orthographic transcriptions were mapped to canonical phonetic sequences.

The available pre-trained XLSR model was trained with 56 000 h of multilin-
gual speech data built on top of wav2vec2. The training data of XLSR contains
CommonVoice (36 languages, 3600 h) (Ardila et all 2020), BABEL (17 languages,
1700h) (Gales et al.l |2014) and MLS (8 languages, 50000h) (Pratap et al., |2020]).
We fine-tuned XLSR with our labeled speech data with a CTC loss (Graves, Fer,
nandez, et al., [2006]) after introducing a classification layer representing our targets.
Here, we present results coming from 19 phone-based models (PHN-XLSR) and 19
character-based models (CHR-XLSR), as there are 19 conversations in GRASS.

For our experiments with LR wav2vec2 models, we pre-trained merely with
in-domain GRASS data followed by fine-tuning the pre-trained GRASS models
given the labels from our training splits. Also these models were trained with a
Connectionist Temporal Classification (CTC) loss after introducing a classification
layer representing the two target types. Thus, we view the resulting models as
LR approaches, because we used exactly the same training data (11.5h) for both,
pre-training and fine-tuning. Also for this LR experiment with fairseq, we compare
WERs coming from 19 phone-based (PHN-LR) and 19 character-based (CHR-LR)
models.

For both XLSR and LR experiments with fairseq, we used a greedy decoder
(Lexfree) in case of CHR models and a beam-search decoder without language
model weighting (Lex) or with language model weighting (4-gram) in case of
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CHR and PHN models. The greedy decoder searches the greedy best path by
using only acoustic model predictions. The AM search space of the beam-search
decoder is restricted by a lexicon and we incorporated an LM by providing an LM
weight. Here, when incorporating an LM, we trained LMs of order 4 with modified
Kneser-Ney smoothing and default pruning, which removes singletons of order 3 or
higher by utilizing the KenLLM toolkit (Heafield, |2011)). LMs were trained merely
on data coming from one training split and we choose an LM weight from the set
of LM weights {1,2,3} with respect to best WERs coming from the additional
validation data. In case of beam-search decoding, we chose a beam size of 100. For
the phone-based models, we do not provide results of the greedy decoder, because
reasonable results could only be produced with the help of a lexicon introducing a
target set which allows for word disambiguations.

Results from XLSR Pre-Training and GRASS Fine-Tuning: This ex-
periment investigates the hypothesis that fine-tuning a data-driven pre-trained
cross-lingual speech representation model is effective for Austrian conversational
speech.

The middle row of Tab. [£.6] shows the WERs that achieved with the XLSR
models. When decoding CHR-XLSR without a lexicon, WERs ranged between
22.37% and 41.5%, resulting in a mean value of 31.23% and standard deviation
of approx. 5%. In case of PHN-XLSR, the Lex WERs are more similar to CHR-
XLSR Lexfree results. Lex results of CHR-XLSR, on the other hand, are approx.
5% better with respect to mean value. We note that no big differences between
4-gram PHN-XLSR and CHR-XLSR models can be observed, i.e., mean values and
standard deviations are very similar. We observe that the powerful XLSR models
give satisfactory results considering the high difficulty level of given face-to-face
conversational data. As a matter of fact, all WERs of XLSR models are much lower
than those from the Kaldi experiment, regardless of LM incorporation, and in case
of CHR-XLSR even without utilizing a lexicon.

Wav2vec2 models pre-trained on 50000 h of English data were tested on various
languages showing their effectiveness in LR scenarios (Yi et al.l [2020): Results
with German telephone speech (approx. 13h of training data) demonstrated an
absolute improvement of approx. 20% compared to a baseline system. In general,
they achieve more than 20% relative improvements in case of all six tested LR
languages. Overall, their WERs are in the same range as ours.

We conclude that solving ASR tasks for GRASS conversational speech by fine-
tuning speech representation models pre-trained on a high amount of out-of-domain
data is effective. Thus, our second hypothesis cannot be rejected.

Results from GRASS Pre-Training and GRASS Fine-Tuning: This exper-
iment investigates the last hypothesis that fine-tuning an LR speech representation
model trained only on Austrian conversational speech is not effective for Austrian
conversational speech.

The final row of Tab. 6] shows WERs achieved with the models PHN-LR
and CHR-LR. The PHN-LR 4-gram results were slightly worse than the results
from the LR Kaldi approach, both with respect to mean WERs and to the worst
conversation (i.e., by a difference of 8.33%). All PHN-LR models performed better
than CHR-LR models, resulting in mean WER differences of 8.26% (4-gram) and
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Figure 4.20: Histogram showing speaker-dependent WERs (4-gram). WERs and range of WERs are
lower in case of fine-tuned XLSR models (35.71%...16.09% = 19.62%) in comparison to fine-tuned
LR models (79.37%...43.36% = 36.01%). Kaldi model WERs range from 69.19%...43.42% =
25.77%.

9.6% (Lex). Interestingly, Lexfree and Lex results were similarly bad in case of
CHR-LR, with mean WERs of approx. 85%.

We refer back to Sec. which presents WERs from the literature in case
of LR conversational speech recognition, because the results from this experiment
again demonstrate problems with respect to both, performance and robustness in
case of LR scenarios.

From this experiment, we conclude that fine-tuning a LR speech representation
model which is pre-trained merely on Austrian conversational speech is not effective.
Also our Kaldi results demonstrate similar performance issues. Consequently, for
neither of the two LR ASR approaches presented in this stduy, where models were
trained merely on GRASS conversational speech, resulted in state-of-the-art WERs
for conversational speech. Hence, our third hypothesis is true, and we show that
training on approx. 11.5 h hours of conversational speech emphasizes the data sparsity
problem. Additionally, these results are also reinforcing our first hypothesis, i.e.,
that performing cross-validation by testing each conversation individually points
out conversational speech complexity and certifies the LR language processing
assumption.

4.3.4 Corollary

After answering our hypotheses, this section discusses further findings which result
from our experiments: we discuss the role of linguistic knowledge, the role of targets
and the role of inter-speaker vs. inter-conversation variation.

Role of Linguistic Knowledge: We made several observations when looking
at the influence of incorporating knowledge given by a lexicon or LM in case of
wav2vec2 models.
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Figure 4.21: Histogram showing conversation-dependent WERs (4-gram). WERs and range of
WERS are lower in case of fine-tuned XLSR models (34.49%...17.36% = 17.13%) in compar-
ison to fine-tuned LR models (76.98%...45.14% = 31.84%). Kaldi model WERs range from
65.12% ...43.89% = 21.23%.

Both, lexicon-based PHN/CHR-LR and PHN/CHR-XLSR models benefit from
LM probabilites whereby higher differences in WERs can be observed in case of
LR models (= 20% with respect to mean values). When comparing PHN-models
with CHR-models those improvements are similar in the LR cases, but they differ
more strongly in the XLSR cases, despite the overall WERs being similar. Hence,
we notice that incorporating a LM has an higher impact on lexicon-based PHN
models compared to lexicon-based CHR models in the XLSR case. At the same time,
however, lexicon-free CHR-XLSR solutions are similar to lexicon-based PHN-XLSR
solutions.

The experiments presented in (Conneau et al.| (2021)) showed WER, improvements
of ~ 2...4% due to LM incorporation when fine-tuning a smaller CHR-XLSR
model. Another study showed improvements by adding LM probabilities and more
advanced lexicons via dialect variation modeling (Khosravani et al. 2021). To the
best of our knowledge, comparisons between PHN/CHR-XLSR models showing
varying impacts of LM probabilities, have not yet been reported.

Looking at lexicon-based beam-search decoding results from PHN-XLSR and
knowing that the AM search space is entirely restricted by the lexicon, one might
argue that word mapping ambiguities lead to some substitution errors due to
homophones. However, in case of our small canonical lexicon, only ~ 1.8% of all
words are ambiguous introducing those unpredictable errorsE| and we believe that
those errors are small in comparison to errors which arise from missing Austrian
German pronunciations. Hence, we conclude that the canonical pronunciations in
the lexicon, which introduce 65 target phones, lead to higher amounts of training
errors in comparison to errors occurring from 31 character targets due to more noisy
labels in case of Austrian German. We hypothesize this error to be lower in case of

"We hypothesize that, when introducing ambiguous pronunciations in the lexicon, words are
randomly selected during beam-search decoding.
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character-based systems, because they have only 31 character targets. Nevertheless,
for both phone-based and character-based systems, incorporating LM probabilities
resulted to help to reduce the impact of ambiguities.

Role of Targets: Here, we discuss the role of target labels by comparing our
phone-based and character-based systems. If we look at performances from the LR
models, character-based systems performed worse than phone-based systems in case
of both, Lex and 4-gram, whereby Kaldi WERs were more similar to PHN-LR
4-gram WERs. XLSR models showed similar results when decoding with a LM,
but in case of only lexicon-based decoding, CHR-XLSR models achieved better
performances.

The systematic comparisons between character-based and phone-based ASR
systems by |Basson and Davel| (2012) showed that increasing training data leads to
similar performances in character-based and phone-based ASR systems. [Zeineldeenl
et al.| (2020) compared results for attention-based encoder-decoder models and found
similar performances for character-based and phone-based systems regardless of
lexicon or LM incorporation with more training data in general. Additionally, they
also achieved similar results of 18.2% (PHN) and 18.6% (CHR) with a simplified
decoder without LM nor lexicon by inserting word-disambiguate and end-of-word
symbols in case of their phone-based models.

Our results are in line with results reported in the literature and suggest that
character-based systems give similar performances as phone-based systems if enough
data is available. However, our differences between phone-based and character-based
models in case of lexicon-based decoding results indicate the relevance of knowledge,
and that, for instance, the incorporation of more advanced lexicons might lead to
further improvements.

Inter-Conversation vs. Inter-Speaker Variation: Our results indicate that
variation in WERs with respect to each conversation and with respect to each
speaker differs when comparing LR and XLSR models.

Tab. shows that in case of beam-search decoding standard deviations of
WERS are always higher in the LR scenario with wav2vec2 models than the WERs of
the XLSR scenario. Fig. [£:20] clarifies this variation by comparing speaker-dependent
WERS of 4-gram models. In general, histograms over bins with 5%-width show
that overall WERs and the range of speaker-dependent WERs are lower in case
of XLSR models compared to LR models. Furthermore, when comparing WER,
ranges normalized by mean value, we measured values of 0.79 (PHN/CHR-XLSR),
0.6 (PHN/CHR-LR) and 0.46 (Kaldi). Fig. clearly demonstrates that range of
conversation-dependent WERs is lower in case of Kaldi models (21.23%) compared
to wav2vec2 LR models (31.84%). In case of normalized conversation-dependent
WER ranges, we measured values of 0.69 (PHN/CHR-XLSR), 0.53 (PHN/CHR-LR)
and 0.38 (Kaldi). Corresponding entropy measurements which address directly
to the shape of the distributions are 0.83 (PHN/CHR-XLSR), 0.96 (PHN/CHR-
LR) and 0.79 (Kaldi). Even if absolute WER ranges of XLSR models are lowest,
our measurements demonstrate that Kaldi distributions appear to have the least
unexplained variability, especially in case of conversation-dependent WERs.

A broad study on domain shifts in self-supervised pre-training (Hsu et al.l [2021))
observe that adding more out-of-domain data during pre-training is beneficial and
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simultaneously pre-training on more domains improves robustness in general.

Our findings confirm the effectiveness of fine-tuning GRASS conversational
speech with XLSR with respect to performance, but we still observe lack of robust-
ness with respect to resulting WER distributions. Additionally, in case of Kaldi
models variation per conversation appears to be better modeled than variation per
speaker.

4.3.5 Conclusions

In this work, we presented ASR experiments for Austrian German conversational
speech from two ASR frameworks, the Kaldi speech recognition toolkit and fairseq
(i.e., wav2vec2). We investigated the impact of data size, inter-speaker and inter-
conversation variation, and structural knowledge for ASR performance, and com-
pared phone-based and character-based ASR approaches.

Our results showed the effectiveness of fine-tuning a pre-trained cross-lingual
speech representation model when solving LR ASR tasks with Austrian conversa-
tional speech. Even though performances were already satisfying with the data-
driven approach, we still observed the importance of including structural linguistic
knowledge via a lexicon or LM, as WERs decreased in case of both, LR and XLSR
models. Furthermore, WERs varied strongly from speaker to speaker and from
conversation to conversation, indicating the complexity of conversational speech,
and also indicating the lack of robustness to speaker variation in case of all ASR
approaches shown here.

In future, we will further investigate whether the impact of more advanced
lexicons and LMs is larger for ASR of conversational speech in comparison to ASR
of other less spontaneous and less casual speaking styles. Given our findings from
this study, we hypothesize that better performing systems do not necessarily result
in systems which are also more robust to inter-speaker variation.
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4.4 What do self-supervised speech representa-
tions encode? An analysis of languages, va-
rieties, speaking styles and speakers

4.4.1 Motivation

Research on ASR is strongly domain dependent due to the diversity of its applications
(e.g., keyword spotting, dictation, and human interaction with social robots). Usually,
each application is trained with different task-specific data sets. For continuous
ASR, mostly two speaking styles are distinguished, read (RS) and spontaneous
speech [ﬂ Probably the best-known RS corpus is Librispeech (Panayotov et al.,
2015), where ASR performance already converges to its limit (2.5%) (Chung et
al., 2021). Also for less spontaneous conversational speech (CS) (e.g., Switchboard
corpus (J. Godfrey et all [1992))), performance reaches benchmark limits (4.3%)
(Tiske et all 2021). Nevertheless, for more spontaneous CS (i.e., casual face-to-
face conversations), performance ranges only between 16% and 33%, given high
inter-speaker and inter-conversation variation Kim and Kang| (2021); Linke et al.
(2022]).

One of the reasons for why ASR performance degrades with increasing degree
of spontaneity is the reduced spectral space (Furuil [2009; [Furui et al., |2005). The
same authors also state that one of the most important research issues is how to
train and adapt statistical models for speech recognition. Modern ASR architectures
have a strong focus on adaptation by developing self-supervised learning of speech
representations, such as those provided within the wav2vec2 framework, which make
use of large amounts of unlabeled multilingual data (e.g., XLSR (Baevski, Zhou,
et al [2020; |(Conneau et al., [2021))). The experiments in |Linke et al.| (2022)) and
Khosravani et al.| (2021)) showed that ASR performance improves by fine-tuning the
XLSR model with labeled data coming from a target domain (i.e., in both cases
different varieties of German). For Hungarian conversational speech, [Mihajlik et
al.| (2022)) reached absolute WER improvements of approx. 12%. Furthermore, for
telephone CS from low-resourced languages (BABEL) (Gales et al., 2014} Mary),
n.d.), large WER improvements were reported on out-of-pre-training languages
in comparison to baselines (e.g., absolute WER improvements of 9% on Swahili
or 7.4% on Tagalog). The question arises what kind of information initial XLSR
speech representations encode, as even out-of-pre-training languages seem to be
well represented after fine-tuning. The aim of this work is to analyze initial XLSR
speech representations to gain insights about how they encode data from different
languages, their varieties, different speaking styles and different speakers. We aim
at contributing to a better understanding of self-supervised speech representations,
which is of interest not only to scientists in the field of ASR, but also to speech

This section has been reformatted from:

[F] Julian Linke, Mate Kadar, Gergely Dosinszky, Peter Mihajlik, Gernot Kubin, and Barbara

Schuppler. (2023). What do self-supervised speech representations encode? An analysis of

languages, varieties, speaking styles and speakers. In Proc. of Interspeech (pp. 5371-5375).

My contribution roles were the conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization and writing (original draft and review/editing).

8Note that we further distinguish between more restricted conversational speech (e.g., tele-
phone speech or task-oriented speech) and casual face-to-face conversations without any topical

restrictions.
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scientists interested in acoustic characteristics of different speaking styles.

Our approach towards finding an answer to this question is inspired by the
analysis on similarity matrices of XLSR codebook entries for 12 or 17 different
languages by |Conneau et al.| (2021). Whereas that study demonstrated how the
codebook entries group together related languages, in this work, we take the approach
one step further by analyzing not only different languages, but also different language
varieties, and individual speakers of different speaking styles (i.e., read, spontaneous-
task oriented, and casual conversational speech). More concretely, we compare two
languages from to different languages families, where one is an out-of-pre-training
language (i.e., Hungarian) and one is an in-pre-training language (i.e., German).
In addition, we perform a speaker-wise analysis, allowing us not only to study the
distances of languages, styles and varieties, but also the distances between speakers,
as well as the distance of speakers with themselves when producing different styles.
We aim at answering the more general research question of whether the frequency
usage of shared discrete speech representations (given by XLSR) encode acoustic
properties/characteristics for different languages, varieties, speaking styles and
speakers.

4.4.2 Materials

The following experiments are based on German (G), Austrian German (AG) and
Hungarian (H) corpora (cf. Tab.[L.7)), covering read speech (RS) and conversational
speech (CS) of different degrees of spontaneity: CST for topic-free casual conver-
sations and CS~ for task-oriented/task-restricted conversations. Sec. [2 provides a
more detailed overview of the utilized speech corpora.

GRASS corpus: GRASS (Schuppler, Hagmiiller, et al. 2014} |Schuppler et al.|
2017) contains 6h of read (GRRS) and 19h of conversational speech (GRCS) from
38 Austrian speakers (19f/19m). GRRS and GRCS are spoken by the same 38
speakers. For GRCS, 19 pairs of speakers who have known each other for several
years were recorded for one hour and chosen topics were not restricted leading
to casual speech. For the experiments with GRCS, chunks with artefacts, noise,
whispering, foreign words and dialect lexemes were excluded, resulting in a total
deletion of approx. 4 h, leaving approx. 13.5h for our experiments. Then, filler labels
were unified. We noticed long silence parts at the beginning of all GRRS chunks
which could distort this analysis due to higher amounts of codebook usage relating
to silence parts. Hence, we cut out 1.3s of audio at the beginning of each file.

GECO corpus: The GECO corpus (Schweitzer et al., |2015]) contains 46 spon-
taneous dialogues of approx. 25 minutes between female speakers. The corpus
introduces settings GEMO with 22 dialogues, where participants were separated
by a solid wall, and GEMU with 24 dialogues, with face-to-face conversations
comparable to GRCS. In both settings, speakers were able to freely talk about any
topic they want (thus classified as CS™ in Tab. . For our experiments, GEMO
and GEMU were preprocessed similar as GRCS and almost all chunks were kept.

KIEL corpus: The Kiel Corpus of Spoken German (KIEL) (Kohler et al., |2017)
contains approx. 5h of read and spontaneous speech produced by speakers from
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Table 4.7: Overview of used data sets: Hungarian (H), German (G) and Austrian German (AG)
corpora, containing read (RS) and conversational speech of different degrees of spontaneity (i.e.,
CST for casual face-to-face conversations and CS™ for task-oriented /task-restricted conversations).

Corpus Abbr. Style Vila:r(ig.,/ Hours
BEA Discourse BECS CS™ H 14.2
BEA Readtext BERS RS H 3.8
GECO-Multi GEMU (CS* G 9.8
GECO-Mono GEMO CS™ G 8.92
GRASS CS GRCS Ccs* AG 13.5
GRASS RS GRRS RS AG 4.6
KIEL-Verbmobil KIVM CSs™ G 3.72
KIEL-Videotask KIVT Cs™ G 1.3
KIEL RS KIRS RS G 2.8

Northern Germany. The read speech (KIRS) contains sentences and stories from
53 speakers (26f/27m). KIVM contains approx. 4h of dialogues from 43 speakers
(22f/21m) who were making appointments and KIVT contains approx. 1h of
dyadic conversations. In As KIVM and KIVT contain task-oriented /topic-restricted
dialogues, we classify them as CS™ in Tab. As for GRCS, also for KIVM and
KIVT chunks with laughed speech and noise were excluded and filler annotations
were unified. For KIRS, depending on given transcription material, we utilized
already trimmed audio-files directly or trimmed the audio-files on the basis of the
boundary markers of given annotations. In case of all GECO and KIEL corpus
components, we excluded resulting chunks with durations greater than 20s due to
our limited computational infrastructure.

BEA database: The original BEA database (“BEszélt nyelvi Adatbéazis” in
Hungarian, meaning spoken language database) aimed at collecting studio quality
speech data from 500 speakers (Neuberger et al., |2014)). For the experiments, we
used the BEA-Base subset (Mihajlik et al 2022) of the database, specifically the
Readtext (BERS) and Discourse (BECS) modules of the "train-114" subset. Both,
BERS and BECS included the same speakers while female and male participants
were closely balanced. In case of BECS, each conversation was recorded approx.
45 min and one experimenter guided the casual conversations between the speaker
and an optional discourse partner on various random topics. Conversations from
BECS included recordings which relate to only one speaker which makes it possible
to compare specific speakers between BECS and BERS but, different from GRCS,
it is impossible to compare one speaker pair from BECS with respective speakers
from BERS.

4.4.3 Analysis of self-supervised speech representations

We hypothesize that shared discrete speech representations of different corpora en-
code speaking styles and varieties. Here, we investigate this hypothesis by analyzing
similarity matrices resulting from a comparison of normalized frequency usage of
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Figure 4.22: Speaker-dependent codebook usage with respect to the considered German and
Hungarian corpora in the 3-dimensional PCA space after transforming their similarity matrix
which results from codebook frequency usage of XLSR. BECS (olive) and BERS (pink) as well as
GRCS (red) and GRRS (purple) involve the same speakers and filled circles with black outlines
indicate corpus centroids. Dashed line connections of black rectangles and diamonds in (c) illustrate
distances between BECS and BERS referring to same speakers as well as GRCS and GRRS referring
to same speakers of one GRCS conversation.

discrete XLSR speech representations (introduced by codebooks) from different
data sets. The source code related to our analysis is publicly available and can be
accessed on GitLatf]

From similarity matrix to PCA space: We used wav2vec2 (Baevski, Zhou!
et all [2020) with fairseq (Ott et all 2019) to compute discrete shared speech
representations with a multilingual pre-trained model (XLSR) (Hsu et al., 2021).
XLSR is pre-trained in self-supervision with 56 000 h of speech data coming from
53 languages including German but not Hungarian and comprising approx. 99% of
read speech and 1% of spontaneous speech (BABEL). XLSR has 315 M parameters
containing 24 transformer blocks with model dimensions 1024, inner dimension
4096 and 16 attention heads. Given the pre-trained model, we computed latent
speech representations and utilized the model’s quantizer to obtain respective
codebook indices of shared discrete representations. The quantizer is based on
product quantization introducing G = 2 codebooks with each of them having V =
320 entries, resulting in a total number of 102400 possible codebook combinations.

In order to compare the frequency usage of speech representations coming from
XLSR with respect to speakers, we quantized the utterances of each speaker of
each preprocessed corpus and counted the utilized codebook entries. Then, we
normalized each speaker’s frequency usage with the total number of features per
speaker, resulting in speaker-dependent prior distributions of codebook usage. Given
these priors, we generated a similarity matrix by computing similarities of resulting
distributions with a Jensen-Shannon divergence. Finally, the similarity matrix was
transformed to a 3-dimensional PCA space.

Interpretation of three PCA dimensions: Fig.[£:22]shows 3 speaker-dependent
scatter plots (PCA1/PCA2, PCA1/PCA3 and PCA2/PCA3) from the resulting
3-dimensional PCA-space. Speakers of each corpus are depicted in a different
color. First thing, we notice is that PCA1 describes language, where component

9https://gitlab.tugraz.at/speech/speechcodebookanalysis
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values > 0 categorize Hungarian speech and component values < 0 (Austrian)
German speech. Second thing, we notice is that PCA2 separates the same GRASS
speakers in different clusters based on speaking style. In general, we observe that
PCA2 characterizes our degree of spontaneity within (Austrian) German where
components > 0 visualize almost non-overlapping RS corpora. In the opposite
direction, conversational components of higher spontaneity may overlap. Third
thing, we notice is that PCA3 distinguishes Hungarian speaking styles where
components > 0 define Hungarian read speech and components < 0 Hungarian
conversational speech.

Centroids and their distances: At first, we compare resulting Hungarian
centroids and (Austrian) German centroids in the 3-dimensional PCA-space (cf.
filled circles with black outlines) with respect to Euclidean distances. In case of
Hungarian centroids, we measured a distance of 1.3 between BECS and BERS
which is mainly described by PCA3. In order to gain more insights into how speech
representations differ between BECS and BERS, we randomly selected two speakers
within BECS and measured their Euclidean distance to BERS resulting in 2.47 and
0.35 (cf. black dashed lines between olive and pink diamonds in Fig. . In general,
mean and standard deviation of distances between same Hungarian speakers were
1.3+0.7. In case of (Austrian) German centroids, we compared the resulting centroid
of GRCS with the other 6 German-speaking centroids. We observe the smallest
Euclidean distance between GRCS and GEMO (0.46) followed by distances with
KIVM (0.53), GEMU (0.58), KIVT (1.19) and KIRS (1.77). The highest distance
was between GRCS and GRRS (2.3), which is to some extent surprising as these
two corpora contain speech from the same speakers. In order to gain more insights
into how speech representations differ between GRCS and GRRS, we measured the
Euclidean distance between a speaker pair within GRCS and to GRRS. We find
that their distance in GRCS is approx. 0.07, whereas distances between the same
speaker in GRCS and GRRS are considerably higher, i.e., approx. 2.56 and 2.4
(cf. black dashed lines between red and purple rectangles in Fig. . In general,
mean and standard deviation of distances between same Austrian German speakers
were 2.3 + 0.4. Overall, when comparing the distances of all 19 speaker pairs, we
found no correlation between GRCS and GRRS (Pearson Correlation Coefficient:
r 7 0.02, p =~ 0.93). These results show that the speech representations are more
sensitive to the speech characteristics typical for read vs. conversational speech
than to speaker specific characteristics. Finally, we compared the resulting centroid
of BECS with German-speaking centroids and resulting centroid of GRCS with
Hungarian-speaking centroids. We observe high Euclidean distances > 7.1 between
BECS and the 6 (Austrian) German centroids with the smallest distance to KIVT
(7.18) and the highest distance to GRCS (7.96). Overall, distances between GRCS
and Hungarian centroids were > 7.4 since distance to BERS was 7.46.

Clustering of the 3-dimensional PCA space: Next, we performed k-Means
clustering by using the resulting 3-dimensional PCA space with 6 clusters. This
clustering enables classification by evaluating Euclidean distances to the 6 generated
cluster centroids. We only measured the 2-dimensional distances with respect to
projections in PCA2/PCA3, because those dimensions describe (Austrian) German
(PCA2) and Hungarian (PCA3) speaking styles which is the focus of this study.



104 CHAPTER 4. AUTOMATIC SPEECH RECOGNITION

CS+0.07 0 0 0 0.19

CS-10.24 0.39 0.02 0.02 0.12 0.20

KIRS{ O 0 |wAN 0.05 0.04 0.20

GRRSq 0 0 O0.05KkEy O

True label

BECS{ 0 0.17 O

BERS{ 0 0 0
R
nwn J £ xx O x
© ¥ & o @

Predicted label

Figure 4.23: Resulting confusion matrix when clustering the 3-dimensional PCA space of the
speaker-dependent similarity matrix (cf. Fig. [4.22) with k-Means introducing 6 centroids.

Fig. shows the resulting confusion matrix. The clusters correlate with the
degree of (Austrian) German spontaneity (CS™ and CS™), correlate for (Austrian)
German read speech with variety (GRRS and KIRS) and for Hungarian speech
with speaking style (BERS and BECS). Interestingly, for German, clustering did
not separate variety, but only the degree of spontaneity.

With respect to the confusions that occur, nearly all speakers from both (Aus-
trian) German RS corpora were assigned correctly (KIRS: approx. 70%; GRRS:
90%), whereas only approx. 40% of speakers from CS™ corpora were correctly
assigned as CS™, while approx. 20% of them were confused with CS™, 2% of them
were confused with KIRS and GRRS, 10% of them were confused with BECS and
20% of them were confused with BERS. In general, confusions of CS™, CS™ and
KIRS with BEA (approx. 20% in case of BERS) can be explained by our analysis
approach which compares only distances within the dimensions PCA2 and PCAﬂ
Likewise, assigning speakers from speaking style CS* was easier in general leading
to a confusion with CS™ of only approx. 7%. Fl-scores of CS™ and CS™ were 0.77
and 0.45. In case of BECS approx. 80% of the speakers were correctly assigned, while
approx. 20% of them were confused with CS™ and approx. 7% of them were confused
with BERS. Likewise, in case of BERS approx. 80% of the speakers were correctly
assigned, while approx. only 7% of them were confused with BECS. Corresponding
F1-scores of BECS and BERS were 0.78 and 0.74. These clustering results are in
line with our earlier observation, as there is no confusion between GRCS (CS™)
and GRRS. Simultaneously, confusions between Hungarian speaking styles, namely
BECS and BERS, were also small.

10Note that we could easily implement a condition on PCA1 if the aim of our study would be a
better performing classification task
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4.4.4 Discussion and conclusion

The main aim of this work was to test the hypothesis that shared discrete speech
representations from speakers of different corpora encode languages, varieties and
speaking styles. To analyze this hypothesis, we performed a clustering experiment
with XLSR codebook entries from the different data sets, demonstrating that,
in addition to languages, read and spontaneous speaking styles are indeed also
distinguished in this feature space. Based on a 3-dimensional PCA space, independent
of language (PCA1) almost all speakers from the read speech corpora were assigned
correctly to the corresponding clusters, for the spontaneous corpora, however,
this was only the case with CS* and BECS with corresponding Fl-scores of
0.77 and 0.78. We observed that speech representations of German spontaneous
speaking style showed variety-independence, which we explain by the strongly
varying speech representation usage. For read speech, we can distinguish between
the German and Austrian German variety. In general, our findings are in line with
those in the literature: The study by (Conneau et al [2021) used similar methods to
cluster discrete speech representations of multilingual pre-trained wav2vec2 models,
demonstrating the possibility of grouping related languages. Another study on
dialect clustering with sentence vector representations based on character-based
metrics also generated plausible clusters (Sato & Hefternan, [2020)). They found three
emerging noticeable clusters in case of Japanese varieties, namely Tohoku dialect,
Tokyo dialect and a combination of three Western dialects (Kansai, Chugoku and
Kyushu).

Another focus of our analysis was on how the speech representations of the
same speakers behave and whether they explain different degrees of spontaneity. We
found that Austrian German speakers differ the most between different styles since
mean distance of same Austrian German speakers was high (2.3). In contrast, mean
distance of same Hungarian speakers was smaller (1.3). Furthermore, we found that
Austrian German speakers also differ more from themselves within different styles,
indicating speaker identity independence of the speech representations. Overall, our
results indicate that speech representations vary the most among Austrian German
speakers. Also (Asami et al., 2014) found that GMM supervectors based on utter-
ances can discriminate read and spontaneous speech with less speaker-dependency.
Simultaneously, the authors state that clustering spontaneous utterances is more
difficult than read utterances.

To conclude, the results suggest that distance calculation based on shared
quantized latent speech representations is also meaningful on a much finer granularity
level (i.e., per speaker per speaking style) than it was introduced in (Conneau et
al.| (2021)) for languages. This may open new perspectives in speech data selection
both for supervised and self-supervised learning, as speech sections matching the
desired development set (or speaking style) could be collected at a relative low
cost, requiring only a pre-trained wav2vec2 model but without the need of any
additional information beyond the waveform. Furthermore, it may be worth exploring
meaningful acoustic correlates that could shed more light on the nature of elusive
self-supervised speech representations. We are going to extend our investigations in
these directions in the future.
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4.5 Prominence-aware automatic speech recogni-
tion

4.5.1 Motivation

Prominence classification experiments (cf. Chap. have demonstrated the abil-
ity to distinguish between prominent and non-prominent words in conversational
speech, highlighting word duration as the most important feature. However, these
approaches currently require word alignments to allow the training of classification
models. Additionally, the ASR results and analysis as described in Sec. indicate
that prosodic features impact ASR performance with respect to different ASR
architectures. This section explores a novel approach that combines prominence
detection and speech recognition by training a prominence-aware ASR system. First,
we investigate whether automatic prominence detection by means of a fine-tuned
transformer-based system achieves a performance in the range of the inter-annotator
agreements. Second, we explore the potential of integrating prosodic information
in terms of word-level prominence levels into ASR systems. The incorporation
of prosodic information into ASR systems opens up new possibilities for the de-
velopment of future applications, particularly for linguistic annotations and for
prosody-informed dialogue systems.

4.5.2 Prominence Detection

4.5.2.1 Materials and Methods

Data preparation: For training and testing of the prominence detectors, we
used data from the prosodically annotated subset of GRASS CS. The prominence-
annotated subset includes prosodic annotations created by phonetically trained
transcribers for a total of 4944 utterances including 15664 word tokens from 34
speakers (cf. Sec. The prominence annotations distinguished the prominence
levels 0 (no prominence; PL0), 1 (weak prominence; PL1), 2 (strong prominence)
and 3 (emphatic prominence). Prominence levels 2 and 3 were combined as PL2.

Prominence detection: Prominence detectors were developed by fine-tuning
the wav2vec2 XLSR model (Baevski, Zhou, et al., |2020; Conneau et al., [2021])
(cf. Sec. [4.2] and with the prominence-annotated utterances and a CTC loss
(Graves, Fernandez, et al.,2006). More precisely, we trained two separate prominence
detectors PDETys and PDET (2, where the first detector classified two prominence
levels (PLO vs. PL2) and the second detector classified three prominence levels
(PLO vs. PL1 vs. PL2). Tab. gives an overview of the data with respect to the
two types of models. The reference text for training included only the resulting
prominence levels as single numbers plus word boundary markers (”|”). Note that
prominence annotations referred to prosodic words (e.g., the prosodic word ”| sie
hat |” was annotated as PL0). For a more detailed view of available transcriptions,

11Note that there was more data available for this experiment in comparison to the prominence
classification experiment as described in Sec. [3:3] This is because the current experiment extracts
features directly from raw audio data while the prominence classification experiment relied on
a feature extractor for more specific prosodic features (FO, RMS and DUR) which occasionally
resulted in missing values.
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Table 4.8: Overview of the used Austrian German speech data for the prominence detectors
PDETp2 and PDETp12. The table shows orthography and corresponding reference examples while
the prominence detectors were exclusively trained using the references. The table also indicates the
number of utterances (#utts) and the mean number of tokens plus standard deviation (#tkns).

Type ‘ Orthography ‘Reference ‘ #utts‘ #tkns

PDET(s | | sie hat | erzihlt | | |02 | 1770 | 2.09 +1.39
PDETo12 | | wah | voll |nett | | [0]2]1] | 4944 | 3.17+2.13

|
2

Fig. [£:24] shows corresponding forced alignments and human annotations of the
utterance with orthography ”| sie hat | erzdhlt |”. For each type of detector, we
performed 10-fold cross-validation in order to test the generalization ability of the
prominence detectors and provide corresponding accuracy means and standard
deviations. Additionally, we trained models for one held-out test conversation
(i.e., conversation with ID 004M024F). For evaluation, we compare 1) prominence
detection error rates (PER) calculated similarly as word error rates while considering
only prominence levels and word boundary markers and 2) accuracies, F1-scores
and recalls for prominent words but only if an alignment between human-annotated
word boundaries and detection-annotated word boundaries was possible with respect
to each utterance.

In a final step, the entire GRCS component was automatically annotated twice
with the final prominence detectors PDETys and PDET5. For each utterance, if
the detection results aligned with the word boundaries of given forced alignments
of a Kaldi system (cf. Sec. only these words were automatically annotated
with a prominence level (i.e., with respect to each speaker approx. 52.06% =+ 8.57%
(PDETy12) and 42.3% 4+ 8.4% (PDETy2) of the utterances were aligned). These
automatically annotated words were then utilized as additional information for
prominence-aware ASR training.

4.5.2.2 Results for prominence detection

Tab. shows prominence detection results for all types of models. For PDET s
we achieved PERs of 24.83% £1.79% (10-fold CV) and 29.58% (004M024F). For this
model, it was possible to align 69.56% + 3.00% (10-fold CV) or 63.48% (004M024F)
of the utterances with respect to the detected word boundaries. For these words,
we achieved accuracies of 89.72% =+ 3.26% (10-fold CV) or 87.40% (004MO024F).

In contrast, for PDETg;2 we achieved worse PERs of 36.54% + 0.92% (10-fold
CV) and 41.02% (004M024F). This time, it was possible to align 66.80% + 1.66%
(10-fold CV) or 64.34% (004MO024F) of the utterances with respect to the detected
word boundaries. Furthermore, we achieved worse accuracies of 69.45% + 2.11%
(10-fold CV) or 64.97% (004M024F).

Confusion matrices in Fig. [£:25] illustrate in more detail results for conversation
with ID 004M024F. With respect to recalls of PDETy (for 119 aligned words out of
73 utterances), it can be seen that 84% of PL0 were correctly classified as PL0 and
87% of PL2 were correctly classified as PL2. Respective Fl-scores were 83%/88%
(PLO/PL2). For PDET(;2, recalls (for 451 aligned words out of 184 utterances)

12For consistency, the automatic annotation of the entire GRASS CS component was based on
word boundaries coming from forced alignments as human-annotated word boundaries are only
available for the smaller prominence-annotated subset.
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sle hat erzihlt

si at eOts Elt

S iJa t eb ts E | t

siatebtsElt

sie hat erzihlt

0 2|

Figure 4.24: Transcriptions of one utterance from the prominence-annotated subset with forced
alignments (rows 1-4) and human annotations (rows 5-6). The first four rows illustrate the output
of the forced alignments, including: 1) word alignments with word text, 2) word alignments with
realized pronunciations, 3) phone alignments, and 4) realized pronunciation without any boundaries.
The subsequent two rows represent human annotations: 5) prosodic words with boundaries and 6)
corresponding stress levels with boundaries. This example shows that boundaries of the prosodic
words can be different from word boundaries of the forced alignments: The first prosodic word "|
sie hat |" was annotated as PL0, while the second prosodic word "| erzahlt |" was annotated as
PL2. Note that the stress label "2|" indicates that the word was also annotated with a flat pitch
contour.

of PLO/PL2 were worse with 79%/62%. There were also strong confusions with
respect to PL1 where only 49% of PL1 were correctly classified as PL1 but 30% as
PL0O and 21% as PL2.

For conversation with ID 004M024F, it was also possible to evaluate promi-
nence detection results with respect to the human-annotated labels by keeping
only the prominence level information plus word boundary markers in the hypoth-
esis text of the Lexfree modelﬂ This results in worse PERs of 65.42%/73.52%
for ASRO2(PDET02)/ASR012(PDET012) compared to PDET02/PDET012, partly
because not every hypothesis necessarily contains prominence information. This
is also reflected in the quality of the alignments for which only 52.17%/43.01%
(ASRp2(PDETg2)/ASRp12(PDETy12)) of the utterances were aligned with re-
spect to word boundaries. Nevertheless, the accuracies of 85.53%/64.57%
(ASRo2(PDET(2)/ASRg12(PDETy12)) showed comparable results to the original

prominence detection models.
4.5.3 Prominence-aware ASR

4.5.3.1 Materials and Methods

Data preparation: Prominence-aware ASR systems were based on labeled speech
data from the entire GRASS CS component. Pre-processing involved the exclusion

13More precisely, prominence levels were assigned bymajority voting of strings between word
boundaries (e.g., the hypothesis "|d0 i0 e0|" becomes the string "000" which was assigned as PL0
but the hypothesis "|d0 il e|" becomes the string "01" which was assigned as an empty string
because no clear assignment of a prominence level can be made due to the ambiguity).
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Table 4.9: Concept of character-based prominence-aware ASR training. Generally, each character
in the reference text was assigned with a detected prominence level if possible or desired. ASR
systems based on PDET(2 allow training with a maximum number of two prominence levels (i.e.,
leading to the systems ASRo(PDETo2), ASR2(PDETo2) and ASRp2(PDETp2)). ASR systems
based on PDETy12 allow training with a maximum number of three prominence levels (i.e., leading
to the systems ASRo(PDETolg), ASRQ(PDETOlQ), ASRoz(PDETolz) and ASROlg(PDETolz)).

Type ‘ Orthography ‘ Reference
ASRp2(PDETy2) | die | waren | alle | |d0i0ed | waren|a2l212e2 |
ASRo12(PDETo12) | | die | waren | alle | | | d0Oi0 e0 | wl al rl el nl | a21212 €2 |

of utterances containing laughter, singing, imitations/onomatopoeia, unintelligible
word tokens and artefacts which resulted in approx. 14.4h (relating to 33734
utterances) of CS data. We standardized typical backchannels to mhm, removed
punctuation marks and standardized the text to lowercase (cf. Sec. .

Prominence-aware ASR: For ASR, we again fine-tuned the pre-trained XLSR
model (Baevski, Zhou, et al., |2020; (Conneau et al.| |2021) with a CTC loss (Graves!
Ferndndez, et al. [2006]) but in this case with additional information of prominence
levels derived from the prominence detectors PDETy; and PDETg5. Tab. @ shows
how the automatic annotations were incorporated into the character-based models
by modifying the reference text. For ASR systems based on automatic annotations
from PDETq2, we trained models which include

« only prominence level PLO (ASRy with ~ 69 character tokensIED7
o only prominence level PL2 (ASRz with ~ 69 character tokens!4),
o or both prominence levels PL0O/PL2 (ASRg2 with a2 102 character tokens!4).

For ASR systems based on automatic annotations from PDETy;2, we trained models
which include

« only prominence level PL0O (ASRg with ~ 69 character tokens'4),
o only prominence level PL2 (ASRy with = 69 character tokens'?),
e two prominence levels PLO/PL2 (ASRg2 with ~ 102 character tokens'?),

o or all three prominence levels PLO/PL1/PL2 (ASRg12 with =~ 134 character
tokens'4).

For decoding, we used a greedy decoder (Lexfree) and a beam-search decoder
with (Lex) and without language model weighting (3-gram). We used the same
lexicon for all models by simply mapping all GRCS words to their character
sequences. The 3-gram LMs were trained with data from each training split with
the KenLM toolkit (Heafield, [2011) by using modified Kneser-Ney smoothing
and default pruning. We evaluated ASR results on two conversations, namely
conversation with ID 003M023F (which was not part of the prominence-annotated
subset) and conversation with ID 004MO024F (which was also part of the prominence-
annotated subset). All ASR results are compared to a wav2vec2 baseline as described
in Sec. (= 37 character tokens'?).

14Note that the number of character tokens can vary with respect to a given training set.
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Table 4.10: Prominence detection results of prominence detectors PDETg2 and PDET12 for two
test conditions. The prominence error rates (PER) [%] and accuracies [%] of 10-fold CV results
are shown with mean and standard deviations. The PER was calculated for all utterances of a test
split. The ratio of possible alignments given correct word boundaries of an utterance for each test

split (%Aligned) explains for which amount of utterances the word-level accuracy measurements
could be calculated (Accuracy).

Type | Testset | PER | %Aligned | Accuracy
10-fold CV | 24.834+1.79 | 69.56 + 3.00 | 89.72 + 3.26
PDETs
004M024F 29.58 63.48 87.40
ASRo2(PDETy2) | 004MO24F | 65.42 | 5217 | 8553
PDET 10-fold CV | 36.54 +0.92 | 66.80 + 1.66 | 69.45 + 2.11
012 004MO024F 41.02 64.34 64.97
ASRo12(PDETq12) | 004MO024F | 7352 |  43.01 |  64.57
oWAN 0.15 0.062
Ko Ko,
o) o)
=2 2491 0.3 BREN 0.21
(0] Q
2 2
(= =
2{0.099 0.28 NK¥
0 1 2
Predicted label Predicted label

Figure 4.25: Confusion matrices derived from prominence detectors PDETps and PDET2 for
conversation with ID 004M024F. Results refer only to words of utterances where alignment between
human-annotated word boundaries and detection-annotated word boundaries was possible.

4.5.3.2 Results for prominence-aware ASR

Tab. shows resulting WERs of a baseline and prominence-aware ASR systems
for conversations with IDs 003M023F and OO4M024F For the baseline experiments
without prominence information (cf. Sec. , WERs ranged between 18.57% —
26.04% (003M023F) and 23.71% — 31.25% (003M023F ] In general, WERs of
prominence-aware ASR systems were worse than the baseline systems with absolute
maximum deterioration of 2.1% — 2.3% in case of ASRg2(PDET2) and Lex. An
exception was the WER of ASRq(PDET012), which was better than the baseline
at 18.23%, but this improvement occurred only when decoding with a lexicon
and LM (003M023F). Worse WERs with detoriations of approx. 1.6% — 2.3% were
more likely to occur for systems ASRg2(PDET(2) and ASRg2(PDET(12) which were
based on ~ 65 more character tokens in comparison to the baseline systems. Overall,
the results indicate that the prominence-aware ASR systems have comparable
performance to the baseline systems.

15Note that these WERs are also similar to conversation-dependent mean WERs of 22.79% —
29.81% as described in Sec.
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Table 4.11: WERSs [%)] of two conversations (003M023F /004M024F) for 1) baseline experiments (cf.
Sec. |4.2.4), 2) ASR experiments based on prominence annotations from the prominence detector
PDETo2 and 3) ASR experiments based on prominence annotations from prominence detector
PDETg12.

Lexfree Lex 3-gram

Type 003MO023F/004MO024F | 003MO023F/004M024F | 003MO023F/004M024F

Baseline ‘ 26.04 / 31.25 ‘ 21.78 / 27.52 ‘ 18.57 / 23.71
ASRo(PDETy2) 26.54 / 32.32 22.31 / 28.64 18.58 / 24.50
ASR2(PDETq2) 26.27 / 32.34 22.24 / 28.31 18.50 / 24.32
ASRo2(PDET(2) 26.66 / 33.33 23.92 / 29.84 18.95 / 25.61
ASRo(PDETy12) 26.88 / 32.48 21.86 / 29.03 18.23 / 24.88
ASR2(PDETo12) 27.21 / 32.26 22.20 / 28.16 18.75 / 24.42
ASRo2(PDETo12) 26.87 / 32.85 22.67 / 29.16 18.68 / 24.80

4.5.4 Discussion and conclusion

In this section, we demonstrated our efforts to develop a prominence-aware ASR
system by integrating prosodic prominence information. We began by training
prominence detectors with human-annotated data (cf. Fig. to classify word
prominence levels, which then formed the basis for developing ASR models that
incorporate this prosodic information.

The prominence detection results show similar trends as the prominence clas-
sification results described in Sec. even though the results are not directly
comparable because of differences in the utilized data (cf. Sec. and the evalu-
ation methods. However, the main advantage of our prominence detection approach
presented here is that no forced alignments are necessary, as word boundaries
are detected automatically. Our results show that PERs and accuracies were best
in case of the PDETyy model (with PERs of 24.83% + 1.79% and accuracies of
89.72% =+ 3.26% for the word-aligned data) indicating that promising detection
results can be achieved for both prominence levels. However, the PDET(;2 model
achieved worse PERs of 36.54% + 0.92% and accuracies of 69.45% + 2.11% for
the word-aligned data which also illustrates the issues seen in the inter-annotator
agreements which had Cohen’s kappa of 0.72 and 0.57 with respect to PL1 (cf.
Sec. [3.3.1)). In comparison, [Heckmann et al] (2014) found that despite using dif-
ferent HMM-based alignment strategies for prominence detection, the unweighted
accuracies for distinguishing prominent from non-prominent words with prosodic
features were approx. 80% — 82%, which is consistent with our findings. Whereas our
prominence detector aligns speech directly to a sequence of prominence levels, the
methods described in [Heckmann et al.| (2014)) rely on forced alignments that require
text transcriptions as input in order to train prominence classification models. This
also implies that their evaluation assumes that all words can be consistently aligned
with the human annotations. In conclusion, prominence detection on conversational
speech with wav2vec2 works well even without requiring forced alignments to detect
phone or word boundaries. More precisely, our results indicate that fine-tuned
speech representation models automatically extract representations that capture
prosodic information. This prosodic information can then be used for downstream
ASR tasks.

The incorporation of the detected prominence information did not lead to im-
provements in ASR performance, but enabled the training of prominence-aware
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ASR systems which also output prosodic information. Independent of the decoding
strategy (without/with lexicon/LM), the additional word-level prominence infor-
mation mapped onto the character-level in general led to consistent results when
comparing the WERs to the baseline. However, slightly worse results were achieved
for those ASR models where more character tokens were involved.

To conclude, our study demonstrates that prominence detection in conversational
speech using wav2vec? is feasible without relying on forced alignments, as the model
effectively extracts prosodic information automatically. When using wav2vec2 for
transcribing words and prominence levels simultaneously, the explicit information
about prominence levels did neither enhance nor deteriorate ASR, performance, while
additionally providing labels for prominence levels. To the best of our knowledge,
this kind of prosody-enhanced ASR transcript is a novel contribution to the field,
with high relevance to both speech science and speech technology. In future work,
it would be interesting to examine the models including only the strong/empathic
prominence information (i.e., PL2), as this could be useful for applications such as
automatic annotation for linguistic research, and prosody-informed natural language
understanding (NLU) components for dialogue systems or comprehension aids.



Chapter 5

(General discussion and
conclusion

This discussion addresses the two research aims and their corresponding research
questions formulated in the introduction (cf. Sec. [1.1)) and summarizes the main
contributions and findings from my thesis.

5.1 Analysis of acoustic representations and mod-
els for conversational speech with explainable
machine learning methods

For the first aim of this thesis, we addressed several research questions related
to the analysis of acoustic representations and models for conversational speech
with explainable machine learning methods (cf. Sec. . At first, we focused on
analyzing the main acoustic cues of prosodic prominence for conversational speech
(RQ1; cf. Sec. . Second, we examined whether WERs of conversational speech
are affected by utterance-level features (RQ2; cf. Sec. . Third, we explored
what shared discrete speech representations encode with respect to language varieties,
speaking styles, and speakers (RQ3; cf. Sec. . Finally, we investigated whether
the fine-tuning of self-supervised speech representations implicitly encodes prosody

(RQ4; cf. Sec. .

5.1.1 Main acoustic cues for prosodic prominence

In Sec. we conducted an analysis of prominence classification tools by training
explainable random forest models. The findings highlighted the critical role of
durational characteristics for prominence classification. Moreover, we proposed
entropy-based features that allow the models to maintain the same level of accuracy
without relying on the calculation of more sophisticated durational features, thereby
simplifying the classification process while preserving performance.

The role of durational features: The study presented in Sec. demonstrated
that durational features are necessary for word-level prominence classification in

113
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conversational speech. The comparison between a basic prosodic feature set and a
subset without any durational features showed that cross-validation recalls of non-
prominent words improved in case of the basic feature set (81% + 3% > 72% + 4%).
Furthermore, the results also indicates that word duration has by far the highest
importance with respect to the impurity-based feature ranking of the random forest.
Previous studies on prosodic prominence pointed towards different trends. |Cole et
al.| (2010) found that listeners perceive words as prominent when corresponding
stressed vowels had longer durations. In contrast, research by Niebuhr and Winkler
(2017) demonstrated that, when manipulating FO and duration, FO serves as a
stronger indicator of perceived prominence in German than duration. Then again,
the analysis of variable importance in |Baumann and Winter| (2018) showed that
RMS is the most important feature among all continuous-valued acoustic variables.
In summary, our results emphasize that especially word duration plays an important
role in classifying word-level prosodic prominence.

The role of entropy-based features: We show that novel entropy-based features
(i.e., pseudo-entropies) based on FO and RMS contours encode necessary durational
information in order to classify word-level prominence in conversational speech
(cf. Sec. Sec. or Appendix A). Our cross-validation results demonstrate
that classification performance remained consistent across three feature sets: a
basic prosodic feature set (96 features), a subset in which entropy-based features
replaced durational features (88 features), and an expanded prosodic feature set
that included additional entropy-based features (100 features). To the best of our
knowledge, no prior studies have investigated comparable entropy-based FO and
RMS features for prominence classification. To conclude, classifying prominence
levels in conversational speech using novel pseudo-entropies show that the calculation
of phone-based durational features can be omitted, as the necessary durational
information is encoded within these entropy measures.

5.1.2 Effects on WERs in conversational speech

In Sec. [f:2) we compared the ASR performances in conversational speech with respect
to the ASR architectures Kaldi, wav2vec2 and Whisper. To gain a deeper under-
standing of the factors influencing their performance, we investigated the impact
on utterance-level WERs with respect to utterance length, prosodic, pronunciation
and perplexity features.

The role of utterance length and articulation rate: We identified that the
utterance length in number of word tokens and the articulation rate significantly
affect utterance-level WERs in the ASR systems Whisper and Kaldi. When com-
paring the overall distributions of the mean WERSs at utterance level with respect
to the number of word tokens, we observed that Whisper achieved worse WERs
for short utterances (mean WER of 43.7%) and better WERs for long utterances
(mean WER of 37.5%). In contrast, this direction was reversed for all other ASR
systems (Kaldi: 30.2% < 43.5%; wav2vec2 without lexicon/LM: 22.4% < 30.2%;
wav2vec2 with lexicon/LM: 16.8% < 23%). With respect to articulation rates,
the mean WERs on utterance level for single-word utterances were usually best
for lower articulation rates, except for Whisper. Notably, in case of the zero-shot
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Whisper system, there was a sweet spot with good WERs for articulation rates
between 10s~! — 125~ 1. For the other architectures, mean WERs were generally
better in case of shorter utterances with articulation rates < 125! (with slight
exceptions in case of Kaldi for three or four word tokens). Overall, the systems
having linguistic information in form of an LM, a pronunciation lexicon (Kaldi) or
a simple word-level lexicon (wav2vec2 with lexicon/LM) are most robust against
high articulation rates. Hirschberg et al.| (2004) found that HMM-based systems
performed worse on longer turns than shorter ones. However, our results indicate
that modern hybrid DNN-HMM (Kaldi) and transformer-based (wav2vec2) models
are more robust to utterance length with respect to the number of word tokens.
ASR systems based on Kaldi and wav2vec2 achieved nearly constant mean WERs
for utterances of 2...15 word tokens (Kaldi: ~ 40%; wav2vec2 without lexicon/LM:
~ 30%; wav2vec2 with lexicon/LM: ~ 25%). Furthermore, [Wei et al| (2022) demon-
strated that a transformer-based conversational ASR system benefited from more
contextual information which is in line with our findings. We observe that increased
context at the utterance level improved recognition results for the zero-shot Whisper
system. Regarding articulation rate, (Goldwater et al.| (2008) reported little effect on
WERSs for words close to the average speech rate but more errors for extreme values.
They also found the fewest errors for words longer than average. Their observations
on HMM-based systems align with our findings, particularly for Whisper, where we
identified a highly significant interaction between the number of word tokens and
the articulation rate. Specifically, for two and three word tokens, Whisper exhibited
a sweet spot at utterance-level WERs of 50% for articulation rates between approx.
10s~! — 125~ !. In summary, our analysis revealed that utterance length and high
articulation rate have a noticeable effect on ASR performance. The zero-shot Whis-
per system performed worse than Kaldi and wav2vec2, especially in case of short
utterances.

The role of entropy-based FO and RMS features: In Sec. we introduced
entropy-based features (Linke, Kubin, & Schuppler, 2023) that encode contour
variation of FO and RMS (i.e., pseudo-entropies). Our statistical analysis revealed a
strong negative correlation between utterance-level WERs and the pseudo-entropies
of FO for short utterances (one to four word tokens), with Whisper exhibiting the
strongest effect. Specifically, utterances with fewer word tokens and more uniform
FO contours (lower pseudo-entropies) tended to have lower WERs. This trend was
most pronounced for single-word utterances and for Whisper in particular, where
a more uniform FO contour corresponded to notably lower WERs. In contrast,
wav2vec2 and Kaldi demonstrated greater independence from the F0O contour,
especially for utterances containing two to four word tokens. Furthermore, we
discovered a significant interaction between pseudo-entropies of FO and articulation
rates, revealing that the best WERs were achieved when flat FO contours were
combined with slow speech. To the best of our knowledge, the influence of FO and
RMS contour entropies on ASR performance has not been investigated in previous
studies. (Goldwater et al.| (2008]) analyzed errors of an HMM-based ASR system and
discovered that "more extreme values" of pitch mean and range were associated
with higher WERs. Their findings align with our results, which demonstrated that
utterances with less uniform FO contours were associated with higher WERs. In
summary, all ASR architectures exhibited sensitivity to FO variation, particularly in



116 CHAPTER 5. GENERAL DISCUSSION AND CONCLUSION

case of single-word utterances. However, for utterances containing two to four word
tokens, the performance of ASR systems trained or fine-tuned on domain-specific
data was unaffected by FO variation.

The role of pronunciation variation: Since the speakers in the conversational
speech material spoke a regional variety of the German language, our WER analysis
investigated the impact of pronunciation variations on ASR performance. We
measured the mean Levenshtein distance between the realized pronunciation of a
word to its canonical pronunciation in the lexicon for standard Austrian German.
This feature exhibited a strong correlation with WERs of the zero-shot Whisper
system, which can be attributed to its lack of fine-tuning on in-domain data and the
absence of a pronunciation lexicon. For all ASR systems, utterance-level WERs were
best when pronunciations were closer to standard Austrian German. Whisper had
higher WERs for both short and long utterances when pronunciations were further
away from the standard. In contrast, for shorter utterances the WERs of the other
ASR systems were less affected by pronunciation variation. Interestingly, wav2vec2
without lexicon/LM performed better for utterances with three to four words and
mean Levenshtein distances between approx. 1 — 2, possibly due to its transformer
encoder which benefits from larger context. As expected, wav2vec2 with lexicon/LM
was slightly more robust against pronunciation variation than without a lexicon/LM.
Prior research has highlighted the influence of phonetic neighborhood density on the
performance of HMM-based ASR systems. |Goldwater et al.| (2008) discovered that
high phonetic neighborhood density can lead to increased recognition difficulties.
However, our study takes a different approach by focusing on conversational speech
from a low-resourced language variety. We aimed to assess the extent to which the
pronunciation of utterances deviated from standard norms, a factor that has not
been extensively explored in earlier studies. This perspective is especially important
considering that most German speech models are trained on non-Austrian data,
often using prepared speech. We hypothesized that utterances with pronunciations
closer to the standard would be recognized with greater accuracy. Our results
confirm this hypothesis, particularly in light of Whisper’s reduced performance on
utterances spoken with a pronunciation that diverged more from standard Austrian
German. Furthermore, we observe that incorporating a knowledge-based lexicon on
top of a transformer-based system is beneficial.

The role of perplexity: We analyzed the effect of utterance-level perplexities
(calculated with a four-gram LM trained on a subset of 5M German sentences
from Wikipedia and the European parliament) on WERs but found weaker effects
in comparison to all other features referring to utterance length, prosody and
pronunciation. Nevertheless, our analysis indicated that WERs tended to be lower
for short utterances with lower perplexities across all ASR architectures. Moreover,
our analysis revealed a slight deterioration in WERs with increasing perplexity for
utterances containing two to four word tokens. Unsurprisingly, we also discovered
that ‘not surprising’ word sequences spoken closer to the standard pronunciation led
to better WERs in comparison to utterances with 'more surprising’ word sequences
spoken further away from the standard. In their study, Goldwater et al.| (2008) also
found an almost linear relationship between trigram-log-probabilities and WERs.
Our findings are consistent with this, as we found that lower perplexities (equivalent
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to higher log-probabilities) generally resulted in better WERs. However, while we
did observe an effect of LM probabilities on WERs, it was weaker compared to the
influence of other utterance-level features such as utterance length, articulation
rate, pseudo-entropies of FO, and pronunciation Levenshtein distance. This trend
was consistent across all ASR architectures investigated. We recognize that the
simple n-gram language modeling approach used to calculate the perplexity feature
has limitations and may not be the most effective method for estimating language
model probabilities, particularly when it comes to capturing the nuances of the
conversational speaking style.

5.1.3 Towards the encodings of shared discrete speech repre-
sentations

In Sec. [£:4) we analyzed self-supervised pre-trained shared discrete speech represen-
tations with respect to different speech corpora. Driven by the success of fine-tuning
self-supervised representations for ASR in low-resource settings (Baevski, Zhou, et
al., 2020) and their cross-language sharing capabilities (Conneau et all [2021)), our
research aimed to investigate their broader encoding potential. Our investigations
revealed that these representations encode not only different languages but also
language varieties and speaking styles. Additionally, we demonstrated that the same
speakers exhibit different behaviors across speaking styles, highlighting the nuanced
capabilities of these representations in capturing diverse speech characteristics.

The role of languages, varieties and speaking styles: We analyzed shared
discrete speech representations from speakers of different corpora with respect to
languages, varieties and speaking styles. The clustering experiment with XLSR
codebook entries from the different data sets showed that, in addition to languages,
read and spontaneous speaking styles are effectively differentiated in this feature
space. In summary, we found that read speech allows for effective differentiation
between German and Austrian German varieties, independent of language. However,
spontaneous speech proved more challenging to classify by variety, with only the
German face-to-face conversations and Hungarian task-oriented/task-restricted
conversations showing good clustering performance (F1-scores of 77% and 78%).
We attribute this variety-independence in spontaneous German speech to the highly
varied usage of speech representations. Our results align with previous research, such
as |Conneau et al.| (2021]), who successfully clustered discrete speech representations
from multilingual pre-trained wav2vec2 models to group related languages using
similar methods. Similarly, |Sato and Heffernan| (2020)) successfully clustered Japanese
dialects using sentence vector representations based on character-based metrics,
identifying three distinct clusters: Tohoku dialect, Tokyo dialect, and a combination
of three Western dialects (Kansai, Chugoku, and Kyushu). In conclusion, our study
analyzed the speaker-dependent usage of discrete shared speech representations
and we found that they effectively differentiate languages (German vs. Hungarian),
German and Hungarian speaking styles (read speech vs. spontaneous speech) and
German varieties in read speech (Austrian German vs. Northern German). The
clustering of German varieties in spontaneous speech proved to be more challenging
and indicated a degree of variety-independence.
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The role of same speakers in different styles: Another focus of our analysis
was on how the speech representations of the same speakers behave and whether they
explain different degrees of spontaneity. We found that Austrian German speakers
differ the most between different styles since mean distance of same Austrian
German speakers was high (2.3). In contrast, mean distance of same Hungarian
speakers was smaller (1.3). Furthermore, we found that Austrian German speakers
also differ more from themselves within different styles, indicating speaker identity
independence of the speech representations. Overall, our results indicate that speech
representations vary the most among Austrian German speakers. Also [Asami et
al. (2014) found that GMM supervectors based on utterances can discriminate
read and spontaneous speech with less speaker-dependency. Simultaneously, the
authors state that clustering spontaneous utterances is more difficult than read
utterances. To conclude, the results suggest that distance calculation based on
shared quantized latent speech representations is also meaningful on a much finer
granularity level (i.e., per speaker per speaking style) than it was introduced in
Conneau et al. (2021) for languages. This may open new perspectives in speech
data selection both for supervised and self-supervised learning, as speech sections
matching the desired development set (or speaking style) could be collected at a
relative low cost, requiring only a pre-trained wav2vec2 model but without the need
of any additional information beyond the waveform. Furthermore, it may be worth
exploring meaningful acoustic correlates that could shed more light on the nature of
elusive self-supervised speech representations. We plan to extend our investigations
in these directions in the future.

5.1.4 Towards prosody of fine-tuned speech representations

In Sec. [£5] we introduced prominence-aware ASR systems designed to incorporate
prosodic information into the speech recognition process. By integrating auto-
matically detected prominence levels into transformer-based ASR systems, the
results suggest that these systems process and interpret prosodic conversational
speech patterns. While the results did not show an improvement in overall ASR
performance, we have demonstrated that it is possible to train prominence-aware
ASR systems without compromising the quality of the output. Hence, our ASR
results indicated that prominence-aware ASR systems remained consistent with the
baseline, regardless of the decoding method employed (with/without lexicon/LM).
This consistency suggests that the integration of prominence information does not
adversely affect the core functionality of fine-tuned transformer-based ASR systems.
Furthermore, the findings indicate that the self-attention mechanisms and context
networks employed by transformer-based ASR systems may be capable of implicitly
modeling and processing prosodic patterns. To the best of our knowledge, this re-
search represents a novel contribution to the field which bridges the fields of speech
science and speech technology. Thus, the integration of prominence information into
ASR systems opens up exciting future directions, enabling researchers to explore
the potential benefits of this approach in linguistic research, dialogue systems, and
comprehension aids.
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5.1.5 Future work

The insights gained from this thesis open future directions for several areas of
research in speech science and speech technology. Future work should focus on
further refining the entropy-based prosodic features and investigating their potential
for improving ASR performance, especially for conversational speech with high
articulation rates and regional pronunciation variations.

The clustering analysis of shared discrete speech representations should be ex-
tended to a wider range of languages, varieties, and speaking styles. Our clustering
approach can also be applied to investigate other speech phenomena such as prosodic
prominence or pitch patterns. Recent work on Hungarian speech recognition has
already employed our analysis approach to visualize the speech data composition
and differentiate between spontaneous and non-spontaneous speech styles (Mihajlik
et al.l 2023). Furthermore, we are collaborating with experts from language docu-
mentation (Alexander Zahrer, University of Miinster) with whom we analyze speech
representations of speakers from Papua, a region known for its linguistic diversity.
This joint effort aims to uncover speaker-, language- and variety-dependent patterns
that could potentially enhance annotation strategies and guide future fieldwork in
this area.

Our prominence-aware ASR approach shows the feasibility of integrating prosodic
information into ASR systems. Future work should explore more sophisticated
methods for incorporating this information and assess its potential impact on lin-
guistic research and dialogue systems. Our studies on prominence detection are
ongoing and currently applied to charisma research, i.e., to the analysis on how
prosodic prominence correlates with perceived speaker charisma (in collaboration
with Oliver Niebuhr, University of Southern Denmark). Finally, to better compre-
hend the underlying nature of (fine-tuned) self-supervised speech representations or
transformer-based ASR architectures in general, future work should explore their
relationship with other prosodic phenomena, potentially uncovering insights into
their internal mechanisms and representations of prosody, following the research
line examplified by [Shim et al.| (2022)), ten Bosch et al.| (2023) or |de Heer Kloots
and Zuidema, (2024).

5.2 Evaluation of acoustic representations and
models for conversational speech with stan-
dard performance measurements

The second aim of this thesis addressed several research questions related to the
evaluation of acoustic representations and models for conversational speech using
standard performance measurements (cf. Sec. . We began by investigating
whether word-level prominence classification results with prosodic features or word-
level prominence detection results with fine-tuned speech representations align
with inner-annotator agreements (RQ5; cf. Sec. [5.2.1)). Subsequently, we explored
how low-resourced HMM-based ASR systems compare to low-resourced or data-
driven transformer-based ASR systems in terms of their effectiveness for recognizing
Austrian German conversational speech (RQ6; cf. Sec. .
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5.2.1 Automatic annotation of prosodic prominence for con-
versational speech

In Sec. 33| we introduced a prominence classification tool for conversational speech,
which utilized prosodic features as its foundation. Building upon this work, we
advanced our approach in Sec. by developing a more sophisticated prominence
detection tool that operates directly on raw audio data. Our results indicate that
the performance of both of these annotation tools align with human inter-rater
agreements.

Automatic Prominence Classification Our prominence classification results
using prosodic features and random forest models are consistent with human
inter-rater agreements. The model’s best performance for three prominence levels
(cross-validation accuracy: 63% + 7%) can be attributed to the agreements between
non-prominent and weakly-prominent words (0.72) and between weakly-prominent
and highly-prominent words (0.57). Similarly, the model’s best results for the two
classes (cross-validation accuracy: 88%=+5%) can be explained by the high agreement
between non-prominent and highly-prominent words (0.92). The overall Cohen‘s
kappa of these human inter-rater agreement was 0.72 which is similar to those
reported in other studies, such as 0.53 by [Tamburini and Wagner| (2007)) and 0.84 by
Baumann and Winter| (2018). The strong performance of our models with two classes
suggests that prominence classification can be used as an automatic annotation tool.
Additionally, our results suggest that carefully designed feature sets can eliminate
the need for more complex durational features relying on forced alignments. However,
our results also highlight that pitch detection can be problematic in conversational
speech with shorter utterances (cf. Sec. . This emphasizes the importance of
focusing on features that can be extracted and calculated robustly, to subsequently
also ensure robust prominence classification in various speech contexts.

Automatic Prominence Detection The prominence detectors based on
wav2vec2 show results that follow similar trends to the prominence classification
results, although the results are not directly comparable (cf. Sec. . Notably,
these prominence detection results also align with human inter-rater agreements.
The prominence detector for three classes achieved prominence detection error rates
of 36.54% + 0.92% and cross-validation accuracies of 69.45% + 2.11% for the word-
aligned data. These results illustrate the issues observed in the agreements between
non-prominent and weakly-prominent words (0.72) and between weakly-prominent
and highly-prominent words (0.57). In contrast, our best results of the two-level
prominence detector showed prominence detection error rates of 24.83% 4-1.79% and
cross-validation accuracies of 89.72% =+ 3.26% for the word-aligned data, which can
be attributed to the high agreement between non-prominent and highly-prominent
words (0.92). Heckmann et al.| (2014) found that despite using different HMM-based
alignment strategies for prominence detection, the unweighted accuracies for distin-
guishing prominent from non-prominent words with prosodic features were approx.
80% — 82%, consistent with our findings. However, our prominence detector directly
aligns speech to a sequence of prominence levels, whereas the methods described by
Heckmann et al.| (2014) rely on forced alignments that require text transcriptions as
input to train prominence classification models. This implies that their evaluation
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assumes that all words can be consistently aligned with human annotations. In
conclusion, prominence detection on conversational speech using wav2vec2 performs
well without requiring forced alignments to detect phone or word boundaries.

5.2.2 A comparison of ASR architectures for conversational
speech

This thesis investigated the performance of different automatic speech recognition
architectures when processing conversational speech in Austrian German. Our
research revealed that a low-resourced language processing assumption is supported
for Austrian German conversational speech (cf. Sec. . Additionally, we examined
the robustness of different ASR systems with distinct characteristics by comparing
their performance on read vs. conversational Austrian German (cf. Sec. [£.2.4).

How much training data does ASR for conversational speech require?
In general, this thesis provides conversation-dependent WERs with respect to
three different ASR architectures (Kaldi, wav2vec2 and Whisper) and four different
training approaches. When training HMM-based systems solely with GRASS CS and
a cross-entropy loss (Kaldi), the best WERs were 51.87% = 4.83% or 56.19% = 5.4%[1]
(cf. Sec. and Sec. . Then again, when training HMM-based systems
with the LF-MMI criterion (Kaldi), we achieved better WERs of 42.86% =+ 4.78%
(cf. Sec. [4.2.4). When using the same GRASS CS speech corpus for both pre-
training and fine-tuning of the wav2vec2 architecture, we observed differences in
performance with respect to the target sets: For the phone-based model, WERs were
57.28 + 6.46% while the character-based model yielded WERs of 62.54% = 6.36%*
(cf. Sec. . In contrast, fine-tuning wav2vec2 models pre-trained on 56 000 h of
multilingual speech data resulted in WERs of 25.06% =+ 4.42%" or 22.79% =+ 4.02%
(cf. Sec. and Sec. . Interestingly, a zero-shot Whisper system pre-trained
on enormous amount of multilingual (out-of-domain) speech data achieved WERs
of only 41.78% + 8.23% (cf. Sec. [4.2.4). Hence, independent of the utilized data
and independent of the ASR architecture, all results showed different means and
especially high standard deviations for the conversation-dependent WERs. Likewise,
these results demonstrate that a zero-shot ASR system (Whisper) which was trained
on enormous amounts of multilingual (out-of-domain) speech data (680000h) and
low-resourced ASR systems, which were trained entirely on (in-domain) speech
data (a share of approx. 6§§b5()gh£0.002%), both achieve poor performance for
Austrian German conversational speech (means of conversation-dependent WERs
were > 40%). Simultaneously, fine-tuning the wav2vec2 architecture (pre-trained
on 56 000 h of multilingual speech data) with (in-domain) speech data (a share of
approx. sl £0.025%) improved the mean of the conversation-dependent WERs

56000h
by approx. 20% but the standard deviation was still high at approx. 4%.

INote that experiments described in Sec. were based on the initial version of GRASS CS,
in contrast to the other experiments, which were based on an updated version of GRASS with
partial corrections of human annotations. However, this did not affect the data’s comparability
to other experiments, as the results align with all other findings. For instance, the Kaldi results
presented in Sec. were based on a lexicon with many pronunciation variants which yielded
to similar results as the Kaldi results presented in Sec. [2.3.2] which were also based on a similar
lexicon (i.e., allPVs).
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In conclusion, our findings show that a) performing cross-validation by testing
each conversation individually points out conversational speech complexity (i.e., large
standard deviations for all ASR systems), b) fine-tuning a data-driven pre-trained
cross-lingual speech representation model is effective for Austrian conversational
speech (cf. fine-tuned wav2vec2 results), c¢) fine-tuning a low-resourced speech
representation model pre-trained only on Austrian conversational speech is not
effective for Austrian conversational speech and d) decoding with a zero-shot
Whisper model is not effective for Austrian conversational speech. These findings
from a) to d) together support a low-resourced language processing assumption for
the Austrian German conversational speaking style.

How robust are ASR systems? In our comparison of the four different ASR
systems (Kaldi, wav2vec2 and Whisper), Whisper was the only ASR system that
was not fine-tuned, making it an example of a system not having any in-domain
data. In contrast, the other systems were informed with in-domain speech data, with
wav2vec2 employing two distinct decoding strategies: w2v (without lexicon/LM) and
w2vLM (with lexicon/LM). Our analysis revealed that all ASR systems performed
well on Austrian read speech, with speaker-dependent WERSs ranging from 1.01%
to 11.8%. Specifically, we observed mean WERs of 11.8% (Whisper), 3.62% (Kaldi),
1.81% (w2v), and 1.01% (w2vLM). However, in Austrian conversational speech the
systems exhibited varying performance across different conversations, with mean
WERs of 41.78% (Whisper), 42.86% (Kaldi), 29.81% (w2v), and 22.79% (w2vLM).
A closer examination of individual conversations revealed high Pearson correlation
coefficients between conversation-dependent WERs, with values > 60% for Whisper
compared to all other systems, and > 87% for Kaldi versus wav2vec2 comparisons.
These results indicate that while the four ASR systems achieve state-of-the-art per-
formance for non-spontaneous speech material, they lack robustness in recognizing
casual conversational speech. The robustness of ASR systems across diverse speech
contexts remains a crucial area of investigation. Radford et al.|(2023]) claimed that
supervised speech recognition models trained exclusively on English Librispeech
(Panayotov et al.} 2015 exhibit very different robustness properties. They supported
this claim by demonstrating Whisper’s superior performance over previous ASR
benchmarks on various English datasets, including Common Voice (Ardila et al.
2020) and Switchboard (J. J. Godfrey et al.,[1992). Furthermore, they suggested that
Whisper’s error patterns potentially align with human annotation behavior, at least
for English datasets, based on comparisons with 95% confidence intervals of human
errors. However, our findings present a more nuanced perspective with respect to
robustness. In our study, the Whisper system (large-v2), despite being trained on
substantial German speech data, exhibited considerable variability in performance.
We observed large variations in both speaker-dependent and conversation-dependent
WERs, with absolute differences between means and standard deviations of approx.
30% and 5.46%. This variability is particularly noteworthy given that Whisper had
previously achieved impressive results on German speech data, outperforming its
English speech recognition capabilities (e.g., WERs of 5.5% < 6.2% for Multilingual
Librispeech and 6.4% < 9.5% for Common Voice 9). [Szymanski et al.| (2020]) raised
concerns about low WERs on benchmark data sets like, e.g., Switchboard (J. J. God;
frey et al.| [1992)) or Callhome. Their research on internal multi-domain benchmarks
revealed considerably higher WERs, ranging from 13.73% (for an insurance domain)
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to 22.16% (for booking and wireless telecommunication calls). These findings align
with our observations, further emphasizing the persistent challenge of robustness
in state-of-the-art ASR systems when confronted with diverse, unseen speakers or
conversation types. In conclusion, our research underscores the ongoing robustness
issues in ASR systems which have not been fully resolved. This is one of the main
reasons why we were driven to explore the causes of the challenges in recognizing
conversational speech across different ASR architectures.

5.2.3 Future work

The insights gained from this thesis open future directions for several areas of
research in speech technology. First, future work can explore more sophisticated
methods for the prominence-aware ASR systems. This should potentially improve
performance and robustness, especially for casual conversational speech which
often contains many short utterances. Second, future research should investigate
the causes of the robustness issues observed in ASR systems when recognizing
conversational speech. For instance, future work can extend our evaluation to other
common spontaneous speech corpora by examining the variability of conversation-
dependent WERs or comparing utterance-level WERs. This comprehensive approach
would provide valuable insights into the factors affecting ASR performance across
different conversational contexts and speaking styles. Finally, our work suggests that
future work should focus on developing ASR architectures and training strategies
specifically tailored for low-resourced languages in casual conversational speaking
styles. Our study opens up several avenues for future research. First, future work
should explore all possible combinations of system configurations. For example,
researchers could investigate how wav2vec2 fine-tuned on a corpus of canonical
German read speech performs in the conversational speech setting. Furthermore,
given the peculiar performance of Whisper, an analysis of Whisper fine-tuned on
GRASS is recommended. This would provide insights into the performance of a
transformer-based ASR system without explicit linguistic knowledge that has been
fine-tuned on data from the target language and style. Second, future experiments
should extend beyond one corpus to enhance the generalizability of the findings.
We anticipate that our analysis will draw attention to phenomena relevant for other
conversational speech corpora and motivate researchers to work on conversational
speech from various languages and dialects. This expansion of scope will contribute to
a more comprehensive understanding of ASR systems in diverse linguistic contexts.

5.3 Conclusion

This thesis set out to analyze and evaluate acoustic representations and models for
conversational speech for two tasks: prosodic prominence classification and ASR.
My research was guided by two main aims: 1) to analyze acoustic representations
and models using explainable machine learning methods, and 2) to evaluate these
representations and models using standard performance measurements. The key
contributions of my thesis are:

1. The most important cues to prosodic prominence in conversational speech are
related to word duration and speech rate, and not to pitch (as has earlier been



shown for controlled experiments; cf. |Arnold et al.|(2013]) or |Niebuhr and Win-
kler| (2017))). Entropy-based prosodic features encode these durational aspects
along with FO and RMS. When these are used for prominence classification,
human-level performance was achieved.

2. A comprehensive analysis of the factors affecting ASR performance showed
that HMM-based systems perform better than transformer-based systems for
short utterances of large pronunciation variation, whereas transformer-based
systems can deal better with long utterances independent of speech rate and
F0 and RMS variation.

3. When clustering shared discrete speech representations, we can effectively
differentiate not only languages (as shown before; cf. |Conneau et al.| (2021))),
but also varieties, speaking styles and individual speakers performing different
speaking styles.

4. Self-supervised representations encode information relevant to prosodic promi-
nence. This thesis presents the first transformer-based prominence aware ASR
system.

This thesis contributes to understanding the complexities of conversational speech
processing and recognition, with implications for improving ASR systems, particu-
larly for low-resourced languages and conversational speaking styles. My work may
hopefully open new avenues for incorporating prosodic information into speech tech-
nology, not only the novel acoustic prosodic features developed, but also the analysis
methods. As conversational Al continues to evolve, the insights gained from this
research will hopefully inform the development of future robust speech recognition
systems for natural, spontaneous dialogues between humans and machines.
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Appendices

Appendix A: Comparison of entropy-based features

This Appendix compares the conventional entropy (as described in the literature)
with the pseudo-entropies used in Sec. [3:3] Sec. [£:2) and Sec. .5 of this thesis. At
first, the calculations of the two entropies are compared. Second, the resulting
measurements are described by comparing different FO contours of female GRASS
speakersﬂ Finally, correlation matrices with respect to the data used for the CS
prominence classification experiment (cf. Sec. are shown.

Conventional entropy: Entropy describes the received information of the re-
alization z; of a random variable X. In general, entropy describes the degree of
surprise by allocating very unlikely events with more information and very likely
events with no information. Hence, the resulting information measure

H(X) = _Zpi - log pi, (5.1)

depends on a probability distribution where p; = Pr{X = z;} describes the
probability of the random variable X taking the value z;. The maximum is

M1 1
Higo = — Y — - log — 5.2
=— l10 i+ +l10 1
TV %N N %N
1 1
= — (= . N log—
(2 x)
= —(logl —log N) = log N.
The minimum can be derived for py =1 and p; =0 for alli € {2,...,N}:

H,in = —p1 -logp; = 0. (5.3)

In case of the conventional entropy, we estimated probability distributions by
creating histograms for FO contours (by binning the feature values between 80 Hz

2Note that in the description of those contours, conventional entropies are referred to as HFO
while pseudo-entropies are referred to as HPSFO.
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and 240Hz with a width of 5Hz) and RMS contours (by binning the feature
values between 0 and 1 with a width of 0.05). In both cases the probabilities were
normalized such that the Zi\;l p; = 1.

Pseudo-entropy: We defined the entropy-based features by utilizing again the
entropy formula as described in Eq. . In contrast to estimating a probability
distribution via binning, we can define the (pseudo-)probability distribution for a
sequence of N (non-negative) feature values f[i] by calculating

f1i)
sy fln]

These (pseudo-)probabilities also fulfill the total probability condition. The maxi-
mum relates to a constant contour (i.e., a uniform distribution) with p; = % which
also results in Hi,q, = log N (see Eq. . The theoretical minimum can be derived
for a sequence of N (non-negative) feature values with

pi =

1, i=1

5.4
0, i>1 (54)

f[i]—5[1'1]—{

which leads to the (pseudo-)probabilities

)L i=1
Pi= Yo, i>1.
These probabilities essentially describe the minimum for a sequence with N =1
which also results in H,,;,, = 0 (see Eq. . Nevertheless, for prosody experiments
the theoretical minimum of the (pseudo-)entropy is not realistic because the sequence
of feature values f[i] represent FO/RMS contours which are generally not related to
an impulse [5.4] In a more realistic scenario the minimum could refer to a power law
of the form f[i] = i¢ which leads to (pseudo-)probabilites of the form

id

Pi= N g
ZnZI nd
Note that p; is non-negative since ¢ > 1 and that p; has its maximum at ¢ =

N. Furthermore, the order of the feature values does not influence the entropy
calculation.

(5.5)
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Entropy measurements for exemplary FO contours: Fig. [A.1]shows exem-
plary FO contours with flat and medial peak pitch types of female GRASS speakers.
For FO contours with duration = 0.1 s both conventional entropy values were 0. In
contrast, pseudo-entropy values HPSFO were 1.386294 for the flat FO contour and
0.693147 for the FO contour annotated with a medial peak. In the first case, the
higher value of HPSFO can be explained by the fact that more FO values were
detected. In case of words with longer durations of = 0.5s we observe a different
trend. Here conventional entropies HFO had values of 1.539157 (flat) and 1.940843
(medial peak) indicating a higher degree of variation especially in the latter case. In
contrast, corresponding pseudo-entropies HPSFO had values of 3.509627 (flat) and
3.123620 (medial peak). This reduction in HPSFO value for the latter case can be
explained by the fact that fewer FO values were detected.
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(a) Flat FO contour with duration =~ 0.1s (Ger- (b) Flat FO contour with duration ~ 0.5s (Ger-
man word “reden”). man word arbeiten”).
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(c) FO contour with duration &~ 0.1s and medial (d) FO contour with duration = 0.5 s and medial
peak (German word "zur”). peak (German word ”freibad”).

Figure A.1: Exemplary FO contours (blue) from female GRASS CS speakers. (a) shows a FO
contour annotated as a flat pitch type with duration & 0.1s and entropy values of 0 (HFO0) and
1.386294 (HPSFO). (b) shows a FO contour annotated as a flat pitch type with duration ~ 0.5s
and entropy values of 1.539157 (HFO0) and 3.509627 (HPSFO0). (c) shows a FO contour annotated
as a medial-peak pitch type with duration & 0.1s and entropy values of 0 (HFO0) and 0.693147
(HPSFO). (d) shows a FO contour annotated as a medial-peak pitch type with duration = 0.5s
and entropy values of 1.940843 (HFO0) and 3.123620 (HPSFO).
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Correlation matrices: Fig. shows correlation matrices with respect to
Pearson and Spearman correlations between word prominence level (prominence),
word duration (w__dur), the standard deviation of FO (f0__StdDev), the conventional
entropy (HFO0) of FO and the pseudo-entropy of FO (HPSFO0). Interestingly, with
respect to Pearson, the feature f0_ StdDev had no linear relationship with all other
features. However, we observe that HPSFO0 correlates more strongly with word
prominence (0.62 > 0.53) and w_dur (0.75 > 0.61) than HFO0. The Spearman
correlations showed similar trends, but the difference between HF0 and HPSFO
was even greater for w_dur (0.85 > 0.65). Furthermore, this time the Spearman
correlation between f0_ StdDev and all other features was larger, with f0_ StdDev
correlating most strongly with HFO0 (0.81).
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(a) Pearson correlations
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(b) Spearman correlations
Figure A.2: Correlation matrices showing the (a) Pearson and (b) Spearman correlations between

word prominence level (prominence), word duration (w_dur), the standard deviation of FO
(f0_StdDev), the conventional entropy (HFO0) and the pseudo-entropy (HPSFO0).
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