TU

Grazm

Felix Wallner', BSc

Development of a
Robust Active Automata Learning Algorithm for
Automotive Measurement Devices Avoiding Resets

MASTER’S THESIS
to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard K. Aichernig

Institute of Software Technology (IST)

Graz, May 19, 2022

' E-mail: felix.wallner @ist.tugraz.at
© Copyright 2022 by the author

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the
present master’s thesis.

Date Signature

Abstract

Testing and verifying industrial devices is often an elaborate process, as such sys-
tems are frequently restricted to certain locations and their operating time is valu-
able. Therefore, the efficiency and fast generation of behavioral models is of great
importance. With model learning we can learn a system’s behavior automatically.
The learned models can then easily be used for system verification instead.

This thesis presents an active automata learning algorithm for learning Moore ma-
chines. Differently from commonly used active learning techniques, the presented
algorithm does not require the system to be reset during learning. We want to avoid
the usage of resets, as they might be costly in terms of time for the kind of physical
devices we aim to learn. Additionally, we exploit the structure of Moore machines
in our algorithm to perform fewer input sequences to distinguish states. To learn the
models of industrial measurement devices, we extend our algorithm to handle sys-
tems with time-triggered transitions by only learning partial models. This prevents
the occurrence of non-deterministic behavior due to race conditions during execution.

In our evaluation we show that our algorithm can learn most strongly-connected mod-
els, but that its success rate and performance is strongly correlated to the number of
unique outputs of the system we want to learn. A limitation of the algorithm is that
in the case where the system has no unique outputs, our algorithm is unable to learn
it entirely. The evaluation includes test runs of our algorithm on over 75 000 differ-
ent, randomly generated, Moore machines with different combinations of number of
states, number of unique outputs, and algorithm parameters. The results show that
the algorithm learns small to medium sized automata with a high number of unique
outputs well. We also learn a majority of the other combinations, however, with a
lower number of unique outputs it suffers from outliers that decrease its consistency
overall.

We show in our case study that the algorithm successfully learns the behavior of a
measurement device that is used in the automotive industry. We also learn a model
of an existing digital twin, i.e., a virtual behavioral copy, of said device. We manage
to find differences between both models of the devices and use our automatically
learned model of the real device to improve the digital twin.

Keywords: Active Automata Learning, Reset-less Learning, Moore Machines,
Model Learning, Conformance Testing, AALpy.

ii

Kurzfassung

Das Testen und Priifen von industriellen Geriten ist oft ein aufwendiger Prozess, da
diese Gerite haufig an einen gewissen Standort gebunden sind oder ihre Verwendung
teuer ist. Die effiziente und schnelle Erzeugung von Modellen ist deshalb von grof3er
Wichtigkeit. Mit Modell-Lernen konnen diese automatisch kreiert und fiir System-
priifungen eingesetzt werden.

Diese These prisentiert einen aktiven Automaten-Lernansatz, der Moore Maschinen
ohne Resets lernen kann. Wir wollen die Verwendung von Resets vermeiden, da sie
potentiell teuer im Sinne des Zeitaufwandes fiir die Art von Geriten, die wir lernen
wollen, sein konnen. Zusitzlich wollen wir die Struktur von Moore Maschinen fiir
unseren Algorithmus ausnutzen, um weniger Inputfolgen fiir die Unterscheidung von
Zustinden verwenden zu miissen. Um die Modelle von industriellen Messgeriten
zu lernen, erweitern wir unseren Algorithmus sodass er auch mit zeit-ausgeldsten
Zustandsiiberginge zurechtkommt, indem wir nur partielle Modelle lernen. Dies ver-
hindert das Auftreten von nichtdeterministischen Verhalten durch Wettlaufsituatio-
nen wihrend der Ausfiihrung des Algorithmus.

In unserer Auswertung zeigen wir, dass unser Algorithmus die meisten stark zusam-
menhingende Modelle lernen kann, dass aber seine Erfolgswahrscheinlichkeit und
seine Leistung mit der Anzahl an eindeutigen Ausgabewerten des zu lernenden Sy-
stems zusammenhéngt. Je mehr eindeutige Ausgabewerte das System beinhaltet, de-
sto besser kann es gelernt werden. Eine Einschrinkung unseres Algorithmus ist, dass
in Fillen in denen ein System keine eindeutigen Ausgabewerte hat, der Algorithmus
nicht in der Lage ist das Modell zu lernen. Unsere Auswertung umfasst Testldufe
unseres Algorithmus auf {iber 75 000 verschiedenen, zufillig generierten Moore Ma-
schinen mit unterschiedlichen Kombinationen aus der Anzahl von Zustinden und
eindeutigen Ausgabewerten, sowie die Wahl unterschiedlicher Werte fiir weitere Pa-
rameter. Diese Resultate zeigen, dass der Algorithmus in der Lage ist kleine bis mit-
telgroBe Automaten mit hoher Anzahl an eindeutigen Ausgabewerten gut zu lernen,
dass er aber mit geringerer Anzahl selbiger eine betrichtliche Anzahl an Ausreifer
aufzeigt und dadurch seine Verlisslichkeit sinkt.

Wir zeigen in unserer Fallstudie, dass der Algorithmus unser Fahrzeug-Messgeriit
erfolgreich unter praktischen Bedienungen lernt. Er lernt auch einen bereits existie-
renden Digitalen Zwilling, eine virtuelle Kopie unseres Messgerits. Wir finden Un-
terschiede zwischen den beiden Gerédten und verwenden unser automatisch gelerntes
Modell des echten Geridtes um den Digitalen Zwilling zu verbessern.

Schlagworte: Aktives Automaten-Lernen, Reset-freihes Lernen, Moore Machinen,
Modell-Lernen, Konformititstesten, AALpy.

il

Acknowledgements

I would like to thank everyone who accompanied me during my studies, who sup-
ported and motivated me, and who made this part of my life an exciting and ed-
ucational time. Especially, I want to thank those with whom I shared interesting
conversations and amazing times.

A special thank you to my supervisor Bernhard K. Aichernig, who initially aroused
my interest in the topics of automata learning and formal methods. I would like to
thank him for the opportunity of allowing me to initially join his team as a tutor,
teaching one of my favorite subjects during my entire studies, Logic and Logical
Programming. I also want to thank him for his comprehensive support for first my
Bachelor’s thesis and now this one. I would like to thank him for the opportunity of
working in the LearnTwins project and our thought provoking discussions.

A big thanks goes to Christian Burghard, who not only provided the inspiration for
the algorithm, but who made the time for brainstorming, checking and applying the
algorithm in practice. I would like to thank him for always answering my questions
promptly and having the patience to help me throughout the entire development of
the algorithm, from start to finish.

I would also like to thank Martin Tappler for his excellent support on my scientific
journey. His backing and guidance on the topic of my Bachelor’s thesis led to the
release of our research on the International Conference on Tests and Proofs (TAP),
which was a big achievement as my first publication. Without this success I might
have turned my attention to other topics and this thesis would probably not exist in
this form without him.

Furthermore, I would like to thank both Martin Tappler and Andrea Pferscher for
being always open for answering my questions and giving explanations to a wide
variety of topics, which helped me immensely during the writing of this thesis.

Special thanks to my parents, Ulrike and Dieter Wallner, who always supported me in
my studies, even though they still believe this thesis deals exclusively with the learn-
ing of coffee-machines, and made it possible for me to study this way. I would like to
thank my brother, Andreas Wallner, who always supported me and for proof-reading
this thesis. Finally, I would like to give an especially big thank you to my grand-
mother, Doris Schwarz. She always supported me, but also pushed me to achieve my
best in all aspects of life but notably in my studies and education.

This work was funded by the LearnTwins project (No 880852) from the Austrian
Research Promotion Agency (FFG).

Felix Wallner
Graz, Austria, May 19, 2022

v

Danksagung

Ich mochte mich herzlich bei allen bedanken, die mich iiber mein Studium hinweg
begleitet haben, die mich unterstiitzt und motiviert haben und mein Leben in dieser
Zeit spannend und lehrreich mitgestaltet haben.

Ein besonderer Dank gilt meinem Betreuer Bernhard K. Aichernig, der mein Interes-
se fiir das Gebiet des Automaten-Lernen und der Formalen Methoden geweckt hat.
Ich mochte ihm fiir die Gelegenheit danken, dass ich seinem Team urspriinglich als
Tutor beitreten durfte, um eines meiner Lieblingsfiacher wihrend meines Studiums
zu unterrichten, Logik und Logisches Programmieren. Ebenfalls mochte ich ihm fiir
seine umfassende Unterstiitzung danken, zuerst wihrend meiner Bachelorarbeit und
nun auch wihrend dieser Masterarbeit. Ich bedanke mich fiir die Gelegenheit am
LearnTwins Projekt teilnehmen zu diirfen und fiir die interessanten Gespriche, die
wir gefiihrt haben.

Grofler Dank geht auch an Christian Burghard, der nicht nur die urspriingliche Inspi-
ration fiir den Algorithmus geliefert hat, sondern sich auch Zeit fiir das Brainstorming
sowie die Uberpriifung und Anwendung des Algorithmus genommen hat. Ich mochte
ihm danken, dass er immer meine Fragen schnell beantwortete und sehr geduldig tiber
den gesamtem Entwicklungsprozess hinweg war.

Ich mochte mich auch bei Martin Tappler fiir seine ausgezeichnete Unterstiitzung auf
meiner wissenschaftlichen Reise bedanken. Seine Betreuung und Beratung fiir meine
Bachelorarbeit haben zu der Veroffentlichung unserer Forschungsergebnisse auf der
International Conference on Tests and Proofs (TAP) gefiihrt, was als meine erste Pu-
blikation ein groBer Erfolg fiir mich war. Ohne diesen Schritt hitte ich mich vielleicht
anderen Themen zugewendet und diese Arbeit wiirde in dieser Form wahrscheinlich
nicht existieren.

Weiters mochte ich sowohl Martin Tappler als auch Andrea Pferscher dafiir danken,
dass sie mir immer offene Fragen beantwortet oder Konzepte erklirt haben, welche
mir fiir das Verfassen dieser Arbeit ungemein geholfen haben.

Ein spezielles Dankeschon an meine Eltern, Ulrike und Dieter Wallner, die mich
immer in meinem Studium unterstiitzt haben, auch wenn sie noch immer glauben,
dass meine Arbeit ausschlieBlich aus dem Lernen von Kaffeemaschinen besteht, und
die mir mein Studium in dieser Form ermdglicht haben. Ich mochte mich bei mei-
nem Bruder, Andreas Wallner, bedanken, der mich immer unterstiitzt hat und fiir
das Korrekturlesen dieser Arbeit. Zuletzt mochte ich ein groes Dankeschon meiner
GroBmutter, Doris Schwarz, aussprechen. Sie hat mich nicht nur immer in allem un-
terstiitzt, sondern mich auch immer angespornt neue Leistungen in meinem Leben zu
erbringen, besonders aber im Bereich meines Studiums und meiner Ausbildung.

Diese Arbeit wurde vom LearnTwins Projekt (No 880852) der Osterreichische For-
schungsforderungsgesellschaft (FFG) finanziert.

Felix Wallner
Graz, Osterreich, 19.5.2022

Contents

1 Introduction

1.1 Motivation o e e e e e e e e e e e e e e e e
1.2 Research Problemand Goals,
1.3 Contextofthis Thesis e
1.4 Structure e e e e e e e e e e

2 Preliminaries

2.1 Active Automata Learning
2.2 Minimally Adequate Teacher Framework without Resets
23 UseofResets e
24 Moore Machines e
2.5 Reset-lessLearning

3 Methodology and Algorithm

3.1 OVervIewo e e e e e e e
3.2 DataStructures e e e e e e e
33 Definitions L e e e e e e e e e e
3.3.1 Abandoning States e e
3.3.2 Defining Determinism e
3.3.3 Defining Input Completeness
3.3.4 Constructing Deterministic Hypothesis
3.3.5 Output Specific Characterization Sets
34 Main Algorithm
3.5 Finding Counterexamples L e
3.6 State Exploration
3.7 Navigatingthe SUL e
3.8 Updating Context i e e e
3.9 Calculating Output Specific W-sets from Trace
3.10 Distinguishing States e e e

4 Illustrative Examples
4.1 Example 1 o e
42 Example2 e e

5 Extension: Time-Triggered Behavior
5.1 Time-Triggered Behavior
5.2 Modifications to the Algorithm Lo oL

vi

10
10
11
11
11
12
12
12
12
13
14
15
17
20
22
24

29
29
35

6 Evaluation
6.1 Performance of Base Algorithm o oo L.
6.1.1 Benchmarking Setup
6.1.2 Influence of lenmar - -« - v« o o o e
6.1.3 Influence of Unique Outputs
6.1.4 Fixed leNmaz - - « « « « v o v e e e e
6.1.5 Comparison with L* e
6.1.6 Outliers e e
6.2 Case Study: Smoke Meter e
6.2.1 System Under Learning: the Smoke Meter
6.2.2 System Under Learning: the Digital Twin

6.2.3 Results

7 Concluding Remarks

7.1 Summary . . .
7.2 Related Work .
7.3 Conclusion . .
7.4 Future Work . .
Appendices

A Learning Metrics

Bibliography

vii

45
45
45
46
47
50
52
52
52
52
54
55

59
59
59
61
62

65

72

List of Figures

2.1

2.2
23

3.1
32
33
34

4.1
4.2
4.3
4.4

4.5
4.6
4.7

5.1
5.2

53

54

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Minimally Adequate Teacher (MAT) framework without automatic resets from output
oracle. e

Example of a Moore machine.,

Example Moore machine for sequences in Table 2.1.

Initial hypothesis before distinguishing.
First iteration with newly split State 2.
Second iteration with newly splitState 3.

Resulting deterministic hypothesis.

Moore Machine for Example 1. o o
Non-deterministic hypothesis after initial exploreMissing for Example 1.
Hypothesis after first loop of Algorithm 11 for Example 1.

Hypothesis in second loop of Algorithm 11 in Line 20 before removing unreachable
states for Example 1. L

Hypothesis after completing Algorithm 11 for Example 1.
Completely learned hypothesis for Example 1.

Moore Machine for Example 2. oo

Partial Moore machine with waiting input “wait” where State 1 is timed.

Sequence diagram of a possible interaction between output oracle and SUL during ex-
ploration without waiting input of Figure 5.1, triggering before output.

Sequence diagram of a possible interaction between output oracle and SUL during ex-
ploration without waiting input of Figure 5.1, triggering before input.

Sequence diagram of a possible interaction between learner, output oracle and SUL dur-
ing exploration with waiting input of Figure 5.1, detecting State 1 as timed.

Learning success rate depending on len,,q; over 1000 fully-connected, random Moore
machines with 8 states from Table A.1.

Learning success rate depending on the number of states = [en,,4, and unique outputs
over 1000 fully-connected, random Moore machines from Table A.2.

Mean of steps during learning depending on the number of states = len,,q, and unique
outputs over 1000 fully-connected, random Moore machines from Table A.2.

Median of steps during learning depending on the number of states = len,,q, and unique
outputs over 1000 fully-connected, random Moore machines from Table A.2.

Learning success rate depending on the number of states and unique outputs over 1000
fully-connected, random Moore machines with fixed len,,,q,, = 10 from Table A.3.

Mean of steps during learning depending on the number of states and unique outputs over
1000 fully-connected, random Moore machines with fixed len,q,; = 10 from Table A.3.

Median of steps during learning depending on the number of states and unique outputs
over 1000 fully-connected, random Moore machines with fixed len,,q, = 10 from Ta-
ble A3, . L L

Partial learned model of the AVL Smoke Meter measurement device with timings.

viii

28

47

48

6.9 Partial learned model of the digital twin of the AVL Smoke Meter measurement device
with timings. e e e e

List of Tables

2.1 Output sequences *(s,) from given starting state s and input sequence o for Moore
machine shown in Figure 2.3.

3.1 Example trace repeating states with output ¢ until finally reaching

3.2 Example trace alternating output a and others. L.

4.1 Changes during the execution of the initial call of Algorithm 2 for Example 1.
4.2 Changes during the execution of Algorithm 11 for Example 1.
4.3 Changes during the equivalence query for Example 1.

4.4 Changes during first two iterations of Algorithm 1 for Example2.

6.1 Comparison between selected data points of L* and base algorithm performance, taken
from Tables A2 and A4. e e e

A.1 Algorithm learning results over 1000 strongly-connected, random Moore machines with
8 states, of which a certain number have unique outputs, and a given lengz.

A.2 Algorithm learning results over 1000 strongly-connected, random Moore machines with
a given number of states = len,q2, of which a certain number have unique outputs. . . .

A.3 Algorithm learning results with len,,q, = 10 over 1000 strongly-connected, random
Moore machines with a given number of states, of which a certain number have unique
OULPULS. & o v o e e e e e e e e e e e e e e e e e

A.4 Learning results of L* with resets over 1000 strongly-connected, random Moore ma-
chines with a given number of states, of which a certain number have unique outputs, for
COMPATISOML. . « . v v v v e v e e e e et e e e e e e e e e e e e

List of Algorithms

Main Algorithm.
State Exploration. e e e e
Abandon Unreachable States.
Navigate to target, first trying the direct path then trying different paths recorded in the
trace. Stop if the target is reached, unexpected behavior occurs or all possible words for
astate have beentried.
5 Breadth first search for a word from s°7¢ to any state in set Sg.,; ignoring transitions over
abandoned States. e e e e e e
6 Find all words in trace leading from observed output A(s.) to A(s%*!) with a maximum
length of lerpay. . . -« o o o o o e

AW N =

ix

23

52

10
11
12

Navigate a word € I* stopping if any unexpected behavior occurred and returning if the
state 575t was reached and the response sequence of observed outputs.
Take a single step with the sul with ¢ € I, update context appropriately and return if the
transition was expected, i.e., a state with the correct output was already in the transition
function of the current state. L.
Update the context to reflect a single step taken with ¢ € I and the newly observed output
o € O and return if the transition was expected, i.e., a state with the correct output was
already in the transition function of the current state.
Calculate output specific W-sets according to trace andextend R.
Distinguish and split states accordingto R.
Split a state, copy its distinguishers and responses in D except for d and change the
transition taken in Line 11 of Algorithm 11 to the newly splitstate.

List of Acronyms

DFA Deterministic Finite Automata
DT Digital Twin

FSM Finite State Machine

MAT Minimally Adequate Teacher
QA Quality Assurance

SUL System Under Learning

X1

1 Introduction

1.1 Motivation

In our modern world new software systems are developed rapidly with ever increasing requirements and
demands on their functionality, which results in more and more complex software systems. Especially
reliability of these systems is of great importance. To this effect, the field of quality assurance (QA) is
responsible for the validation and verification of such systems, however, the testing and maintenance of
such systems with ever increasing complexity is difficult and time consuming.

Not only does this affect software systems, but also physical devices. Testing the latter is even
more elaborate, as the devices are often confined to a certain location and are expensive to use. Time
that is spent testing or verifying a physical device is time that is not spent in production, which may
be costly. Especially, the automotive industry uses a large number of measuring devices that have the
aforementioned properties. It is therefore desirable to acquire a virtual copy of the physical device, which
is called digital twin (DT), that mirrors the behavior of the device as close as possible. Working on DTs
for QA avoids most of the downsides of working on the physical device, as described above, if the DT is
close enough to the real system.

DTs of such devices can be created by hand, based on the instruction manual or personal experience
with the device, however, this method does not only require the effort of qualified personnel but is
also error-prone, if the manual is incorrect or the device has undocumented behavior, but may actually
sometimes be impossible, if no instruction manual or high-level code exists of the device. Therefore, a
more sophisticated approach to gain insight into the logic and workings of such devices is the automatic
exploration and learning of the black-box device from the outside using intelligent trying of inputs and
observing of outputs.

Pelet et al. [31] were among the first to present a method to infer models from black-box systems
using active automata learning. Partially due to their work, this developed into an active area of research
in the field of QA in which many different approaches are created and improved upon as shown in a
recent survey by Aichernig et al. [4]. One solution that supplies methods and tools in learning models
in such a way is provided by the open-source Python [17] framework AALpy [28]. Among others it
provides an implementation of common learning algorithms, such as L* by Angulin [10], which is one
of the most established learning algorithms introduced and, although created in the 1980s, is still a staple
in active automata learning today.

A caveat to most commonly used active automata learning algorithms is that they require the ability
to reset a system. Resetting a system means bringing it back into a known state on which the learning
observations can be based. However, some systems are difficult or time consuming to reset, e.g., the
Smoke Meter [11] device contains a heater that would require a substantial amount of time to turn off
and on again. Considering that such resets would be required in large numbers, this approach becomes
infeasible.

Instead, we want to use an approach that does not require the resetting of the system in order to
learn it. While a number of algorithms that work reset-less do exist, such as the one by Rivest and
Schapire [34] or by Groz et al. [19], these work on deterministic finite automata (DFAs) and Mealy
machines respectively. One of the advantages of the industrial measurement devices is that they are not
fully black-box systems. They have some internal state variables and sensor values which we can access
using queries. We want to take advantage of these and model our devices as Moore machines instead,
as they represent the capabilities of these devices better. Therefore, we develop our own algorithm that
works reset-less while exploiting the structure of Moore machines to learn the models of systems such
as the automotive industrial measurement devices.

2 Chapter 1. Introduction

1.2 Research Problem and Goals

The goal is to develop a new active automata learning algorithm that works without resets and to adapt
it to specifically learn the models of measurement devices from the automotive industry such as the
ones described by Aichernig et al. [3]. Especially the reset-less nature of the algorithm was an impor-
tant requirement, as the industrial measurement devices may not easily be resettable or may require an
impractically long time to do so.

In literature there are a variety of active automata learning algorithms, such as, most prominently,
Angluin’s L* algorithm [10] and other learning approaches such as the TTT algorithm by Isberner et
al. [21] or the KV algorithm by Kearns and Vazirani [24]. However, all of these require the resetting of
the system and while reset-less algorithms do exist, such as the one by Rivest and Schapire [34] or the
hW-inference algorithm by Groz et al. [19], we wanted to specifically take advantage of the structure of
Moore machines, which our industrial measurement devices were modeled as.

Specifically, the AVL 415SE Smoke Meter [11] was chosen as a representative for the type of mea-
surement devices we wanted to learn and presented additional challenges in the form of time-triggered
behavior that we solved with an extension to the base algorithm. We also wanted to compare our learned
model of the Smoke Meter with an already existing DT to ascertain if we could detect differences in
behavior between them and to potentially enhance the DT with information that we learned from the real
device.

Additionally, we wanted to create a concrete implementation of the algorithm [39] that could also be
used on any number of other measurement devices from the automotive industry. The implementation
should be created in an established framework to allow the use of a wide variety of testing algorithms and
to take advantage of existing infrastructure developed for this framework. We chose AALpy [28] as the
framework and implemented our algorithm and its extension for time-triggered behavior in Python [17].

Finally, the algorithm should be evaluated in its successful learning rate and its general performance.
We did this by testing the algorithm on over 75 000 different randomly generated Moore machines and
aggregating the resulting metrics, which we analyzed in-depth.

1.3 Context of this Thesis

The algorithm and methods presented in this thesis were developed as part of the LearnTwins' project
from the Austrian Research Promotion Agency (FFG), a collaboration between AVL List GesmbH, AIT
Austrian Institute of Technology GmbH and Graz University of Technology. The project goal is the learn-
ing of DTs for validation, verification, and testing of cyber-physical systems through the development of
tools and methods to enable these processes.

The LearnTwins project aims to create trustable DTs, which should be correct, reliable and cost-
effective. Hence, they should be created automatically via learning methods. To accomplish this goal
the project aims to combine a number of different methods such as automata learning, classical machine
learning, and deep learning among others.

As part of this effort, and to specifically learn automotive industrial measurement devices such as
the Smoke Meter presented in Section 6.2, this algorithm and its extension for time-triggered behavior
was developed. This thesis was written to document the algorithm, analyze its performance and present
a comprehensive review of its workings and results. It provides a formal framework for the algorithm
and represents the basis for future improvements and extensions to this algorithm in creating new, and
further enhancing existing, DTs.

"Information about the project and the publications created as part of it can be found on the project website:
https://learntwins.ist.tugraz.at

https://learntwins.ist.tugraz.at

Chapter 1. Introduction 3

1.4 Structure

This thesis is structured as follows:

Chapter 2 consists of the preliminaries for this thesis. It introduces concepts such as active automata
learning and Moore machines, which our algorithm will learn, as well as our modified adequate teacher
framework and the use of resets, or the lack thereof, in this thesis.

The methodology and the base algorithm is presented in Chapter 3. We define the data structures
and methods our algorithm uses to learn Moore machines reset-less. Additionally, we also explain the
limitations of this approach.

In Chapter 4 we then show two illustrative examples in depth, detailing the workings of the algorithm
and present the intermediate results to demonstrate the base algorithm from the previous chapter.

Chapter 5 presents an extension for the base algorithm that we required to deal with the time-triggered
behavior that the industrial measurement devices exhibit. This behavior would otherwise introduce non-
determinism into the learning process, which the base algorithm cannot handle. We demonstrate what
exactly this behavior is, why it occurs and how we elected to enhance the base algorithm to work with it.

Chapter 6 contains the evaluation of the base algorithm, showing its success rate and performance, as
well as the case study performed on the Smoke Meter industrial measurement device, which we learned
successfully. Additionally, we compare the learned model of the Smoke Meter industrial measurement
device to an existing digital twin of said device and show that we can find differences in behavior between
them, which we then used to improve the DT.

Finally, in Chapter 7 we discuss related work. We also state future work, potential directions in which
the algorithm could be extended as well as enhancement that could be added in the future. We present a
summary of this thesis and close with a conclusion about our work.

2 Preliminaries

2.1 Active Automata Learning

Automata learning is the act of deducing the behavior and logic of a system based on observations. We
distinguish between two variants of automata learning: passive and active.

In the passive approach the system is learned from a given set of execution traces, records of ob-
servations about single executions of the system. Based on these execution traces, the observed inputs
and outputs, the system can be modeled if enough such traces exist and if they cover every aspect of the
systems behavior. Due to the execution traces already existing no further access to the system is required
during the learning. In fact, the generation of execution traces and the learning process are completely
independent.

In contrast, activate automata learning provides the inputs to the system directly and may generate
new learning data as required. These questions are asked of an oracle that can correctly answer certain
questions or perform operations on the system usually in real time. This approach requires less data in
advance as knowledge is retrieved on demand and the learning algorithm may only generate the data that
is actually required to model the system, thus often requiring fewer tests. One of the first active learning
algorithms, L*, was introduced by Angluin [10] and is still consulted for many modern activate learning
methods.

A black-box system is one where the assumptions about its behavior may only stem from the inputs
applied to the system and the outputs observed to them. The system is considered “opaque” to the
observer as one cannot look inside the ”black-box” to see its internal workings thus requiring the act of
learning its behavior in the first place. In contrast to a black-box system would be a white-box system
where the internal structure of the system is known in advance such as the source code. There is generally
more interest in testing white-box systems, as described by [29], but not so much in learning them, as
their behavior is already known, so they are of no further interest to this thesis. Learning the behavior of
a black-box system requires no domain specific knowledge and can be based exclusively on its observed
outputs. Only the input alphabet must be known in advance. Everything else, such as outputs, can be
observed during the learning process.

2.2 Minimally Adequate Teacher Framework without Resets

The Minimally Adequate Teacher (MAT) framework first introduced by Angluin [10] is a system in
which a learner may learn a black-box system from a teacher. The teacher communicates with the system
under learning (SUL) directly while the learner only communicates with the teacher using queries. The
learner uses the information from these queries to form and then refine a so called hypothesis, a model
of the internal behavior and logic of the SUL, which might not be complete yet as some behavior might
not have been observed or incorporated yet.

In Figure 2.1 we present the modified version of the MAT used in this thesis. The two major changes
compared to the classical version of the MAT are that the output oracle cannot and is not required to reset
the SUL after each output query and that the learner may observe all output queries performed during
equivalence queries.

Chapter 2. Preliminaries 5

Learner Minimally Adequate Teacher
Equivalence Query
>
Equivalence
Equivalent or Oracle
Counterexample
Learning A R
Algorithm 1 }---- >
Output Query | .
npu
> " Cmde || Su
Output Sequence [—
Output

Figure 2.1: Minimally Adequate Teacher (MAT) framework without automatic resets from output
oracle.

Output Query

A question about which sequence of outputs corresponds to a given sequence of inputs. In the classical
framework these types of queries are also called membership queries and can be used to determine if a
given sequence of inputs is part of the language of the SUL. This is generally done by providing an input
word to the teacher who then answers with a response sequence of equal length composed of the outputs
of the SUL. These queries, the provided inputs, and their corresponding outputs, may then be used by
the learner to form a hypothesis about the structure of the SUL.

Normally, the teacher resets the SUL before executing an input sequence on the SUL either by
providing a reset sequence, a word of inputs known in advance, or by performing a special procedure,
like opening a new connection or restarting a device, that will always result in bringing the SUL into
the same known state. In this thesis, as will be explained in Section 2.3, we do not know any such reset
sequence in advance, nor can we use a special procedure to reset the SUL. Therefore, we do not require
an output query to start at the same state but instead perform it from the state the SUL is currently in.

Equivalence Query

A question about whether or not a given hypothesis provided by the learner is equivalent to the SUL. The
teacher may conclude that the provided hypothesis is equivalent or alternatively provides a counterex-
ample composed of some inputs and outputs of the SUL which shows a difference in behavior compared
to the hypothesis. The counterexample may then be used to improve the hypothesis further.

In the case of the SUL being a black-box, general equivalence cannot be checked by the teacher.
Instead a so called equivalence oracle may resolve such queries by checking for conformance, whether
the SUL conforms to the hypothesis, via a series of output queries.

It is important to note that in our setup of the MAT in Figure 2.1 the learner may observe all output
queries that the equivalence oracle performs. It is not sufficient to only receive a counterexample because
all intermediate inputs and outputs will be used by the learner in addition to any counterexample to
enhance the hypothesis. More formally, we require that the equivalence oracle answers with the full
trace of inputs and outputs that it performed on the SUL which is equivalent to observing the output
queries.

As the output oracle cannot directly reset the SUL, the equivalence oracle must compute a sequence
of inputs to navigate the SUL to a chosen starting state of the hypothesis using an output query every
time a classical membership query should be performed during the equivalence checking.

6 Chapter 2. Preliminaries

2.3 Use of Resets

Most active automata learning algorithms assume the existence of, and depend on, the ability to reliably
reset a SUL, i.e., bringing the SUL into its initial state. The queries described in the classical MAT and
the learning algorithms using it depend on such a reset, thus allowing them to process all observations in
relation to this static, initial known state of the SUL.

However, the ability to reset a SUL is not always given or might be very expensive. For example, re-
setting an industrial machine may require long startup times because the device requires certain operating
temperatures or other resources. In some cases it might actually be impossible to reset the SUL.

For this reason the development of reset-less activate automata learning algorithms is of interest
especially in the case of industrial automata devices as the time needed to reset them could be immense.

Working from within the MAT comes with a number of advantages, most importantly the usage of
established testing algorithms in equivalence oracles such as the W-method by Chow [16] that comes
with a number of very useful guarantees such as the guarantee to find any sequencing errors up to a
bounded number of states. We would still like to use these established procedures, however, as already
stated, we cannot use resets in the classical way. Instead, when the equivalence oracle wants to reset
the SUL, we will navigate to a chosen starting state within our strongly-connected component using our
best knowledge of the current hypothesis. As we will only ever perform an equivalence query while our
hypothesis is deterministic (see 3.3.4) detecting a discrepancy during a reset sequence while performing
an equivalence query can be used directly as a counterexample. Aside from these reset sequences the
testing algorithm can proceed as normal.

Outside of equivalence queries the learner will operate from the current state or navigate to states
that it can reach using output queries as described above, i.e., without performing resets between output
queries. Most of these inputs are performed step-wise with output queries of length one, as the learner
adapts to unexpected behavior from the SUL. Classical membership queries (with reset) are not required
during normal learning and potentially not even possible if the starting state is either not reachable or the
hypothesis is non-deterministic.

2.4 Moore Machines

Moore machines as first described by Moore [27] are a type of Finite State Machine (FSM) which can
classically be defined as a 6-tuple, where the Moore machine M is:

M = (1,0, 5, s0,6,\) @2.1)

where

* [is the finite, non-empty set of input symbols

* O is the finite, non-empty set of output symbols
* S'is the finite, non-empty set of states

* 50 is the initial state € S

* §:.5 x I — S is the state transition function

* A : 5 — O is the output function.

An example of a Moore machine can be seen in Figure 2.2.

Chapter 2. Preliminaries 7

Figure 2.2: Example of a Moore machine.

Drawing Convention of Moore Machines. In this thesis, Moore machines are depicted with unique
state numbers on the left and output on the right of every state. The transitions are labeled with the
corresponding inputs. The unique state numbers are chosen based on the order in which the states were
created, i.e., state 0 would be the very first state created. This convention will be useful later when states
will be split, merged and deleted, to keep track of the order they were created in.

Formal Notation of Sequences. For a given input sequence ax € I*, where o € I*,x € [and
o -x = ax, and a state s € S we define the notation for sequences similar to Giantamidis et al. [18]: For
0%+ S x I* — S we define §*(s,€) = s as well as 0* (s, ax) = §(6* (s, «), z). We furthermore define
the notation for * : S x I* — O™ as *(s,€) = A(s) and *(s, azx) = * () A(6* (s, ax)).

Transfer Sequence. A transfer sequence is an input sequence o« € I* which, according to ¢, leads
from a source state s € S to a target state s’ € S, i.e., 6*(s,a) = s’. We also call transfer sequences
words for short.

Most commonly used learning algorithms work on Mealy machines instead of Moore machines. The
difference between Mealy and Moore machines is that output of the former depends on the current state
and a give input, while the latter only depends on the current state. Formally, the output function of a
Mealy machine is A : S x I — O and is otherwise identical to the Moore machine. Furthermore, there
does exist a general method for transforming a Moore machine into a Mealy machine and vice verse, i.e.,
it is possible to transform a Moore machine into a Mealy machine of equal size while a transformation
of a Mealy machine into a Moore machine might increase its number of states in the process which was
explored in detail by Klimovich and Solov’ev [25].

We chose to model the industrial measurement devices, which we are interested in learning, as Moore
machines instead of Mealy machines, as their behavior is closer to the former than the latter. We explain
this in detail in Section 6.2.1, but in short, we have access to some of the internal state variables of the
industrial measurement devices, which may be queried at any time. Because we may query this internal
state we model the SUL as Moore machines instead, which we take advantage of in our algorithm.

2.5 Reset-less Learning

Normally, a reset would bring a system into the same known state so the learner could never get "lost”
and could always orient itself by said starting state. Not having access to such a reset also means not
being able to “anchor” our observations to a known starting state. One of the greatest challenges in reset-
less learning, therefore, is to identify the state the SUL is currently in to correctly infer state transitions
and states from the produced outputs to input queries.

In identifying states using a certain sequence of inputs and observing the corresponding outputs there
are three types of special sequences which we differentiate:

8 Chapter 2. Preliminaries

Homing Sequence. A homing sequence is a sequence of inputs h € I* that, when applied to the
SUL, uniquely determines the reached stated by the produced outputs, that is, the reached state after the
homing sequence is performed. Formally, & is a homing sequence iff

Vs,s' € S AN*(s,h) = N (s',h) = 8" (s,h) = 6*(s', h) (2.2)

A homing sequence is similar to a reset sequence as the state after it is applied is known, in contrast to
such, however, the end state is not always the same.

Distinguishing Sequence. In contrast to a homing sequence a distinguishing sequence d € I'* uniquely
determines the starting state from which a distinguishing sequence is applied instead of the end state,
by producing a different sequence of outputs for every starting state. Formally, d is a distinguishing
sequence iff

Vs, s €S :s# 8 — XN(s,d) #\(5,d) (2.3)

It should be noted that every distinguishing sequence is necessarily a homing sequence in a deterministic
machine as identifying the starting state before a given input sequence also determines the end state,
however the inverse is not true.

Reset Sequence. Finally, a reset sequence r € I*, which is also called a synchronizing sequence in
Rivest and Schapire [34] and others, brings the SUL into the same known state after it is applied to the
SUL. Formally, r is a reset sequence iff

s’ € S,Vs € S: 6 (s,r) =5 2.4

Every reset sequence is necessarily a homing sequence while the inverse is not true.

Figure 2.3: Example Moore machine for sequences in Table 2.1.

Table 2.1: Output sequences A*(s, o) from given starting state s and input sequence « for Moore
machine shown in Figure 2.3.

s ale = Yy xx
1 a aa aa aaa
2 a aa ab aaa
3 b ba ba baa

To better illustrate the different types of sequences discussed above we provide some examples in
Table 2.1 corresponding to the Moore machine in Figure 2.3. The table contains the output sequences
A*(s,) given the starting state s € S and an input sequence «« € [*. In this case, = is a homing
sequence, ¥y a distinguishing sequence and xx a reset sequence:

The sequence x is homing, as applying = and observing aa is guaranteed to end in state 2 while
observing ba ends in state 1. It is however neither distinguishing, as observing aa might have started in
states 1 or 2, nor a reset, as there are different end states depending on the observed outputs.

Chapter 2. Preliminaries 9

The sequence y is distinguishing as applying it to each state results in a unique output sequence.

Finally, applying sequence zx is guaranteed to end in state 2 and is thus both a homing sequence and
a reset sequence.

Kohavi and Jha [26] explain the different types of sequences in more detail in addition to differenti-
ating between preset and adaptive versions of each: A preset sequence is one known in advance which
can be applied in one single query while an adaptive sequence changes based on the observed outputs
and may therefore be executed in multiple queries or steps.

Generally, every FSM always has a homing sequence, however, there is no guarantee that an FSM
has a distinguishing sequence. If none exists, then identifying a starting state may not be possible by
providing a single input word. Instead, a state may be identified by applying multiple input sequences to
said state until the set of corresponding outputs is unique:

Characterization Set. We follow the definitions of Groz et al. [20], namely, that two states s, s’ € S
are distinguishable by the input sequence o € I* if A*(s,) # *(s’, @) and that they are distinguishable
by a set W C I* if there exists such an o € W. This set W, commonly called a W-set as introduced
by [38], is the characterization set if W distinguishes every pair of states in an FSM. Mapping every
input sequence of such a W-set to its corresponding output sequences for a given state is called its state
characterization and can be used to uniquely identify any state. By definition, every state characteri-
zation must be different between each pair of states in an FSM similar to how states can be uniquely
determined by the output of the execution of a distinguishing sequence. An FSM for which all states can
be distinguished from each other in this form is called minimal.

Finally, an important tool for reset-less algorithms is the information about previous queries and
sequences of observed outputs given certain inputs. To keep track of these and the current state of the
SUL we use the following:

Global Trace. Most reset-less learning algorithms, ours included, maintain a sequence of inputs and
their corresponding outputs from the beginning of the learning procedure. This sequence, the global
trace or just the trace, is continuously updated with all inputs/outputs that the SUL is queried with. It
represents the entire history of queries to the SUL and can be used to compare behavior at different points
during learning or, in our case, to infer distinguishing sequences between states with the same output. In
our case the global trace includes the inputs/outputs of all queries including the ones performed by the
equivalence oracle as described in Section 2.2.

3 Methodology and Algorithm

3.1 Overview

Assumptions. Some core assumptions are required to meaningfully learn the behavior of a system
using our method of active automata learning:

* The system behaves like a Moore machine, i.e., its current output is only determined by its internal
state and not by any other factors.

* The input alphabet is known

* The system is input-complete. It must always accept any input from the input alphabet and cannot
refuse one.

¢ The system is deterministic.
* The system has a finite number of states.

* The system cannot be reset using an external mechanism as stipulated by the classical MAT by
Angluin [10] as explained in Section 2.2. A reset may still be simulated by navigating to a certain
chosen starting state using a reset sequence as described in Section 2.5.

While it is not necessarily a core assumption for the algorithm itself, the nature of reset-less learning
allows us only to learn strongly-connected components of the system because there is potentially no way
to reach a state again after we left it if there are no transitions back to it. In the case of a system that is
not strongly-connected the algorithm would only learn a strongly-connected subset of the system. In that
case the algorithm would not fail due to the required robust nature however. If learning the entire system
is the goal then we postulate the additional requirement that the underlying system is strongly-connected.

Task Definition. Our task can be described as:

With a given system under the assumptions above, find a minimal Moore machine to which the system
conforms, i.e., the system and the model should produce the same input/output sequences, if the starting
state is known.

The reason we are not able to guarantee that the starting state of the Moore machine will be identified
goes back to the explanation in Section 2.5, namely that there might not exist a distinguishing sequence
for any given Moore machine. Additionally, because we may not return to the starting state, it might be
impossible to identify the correct starting state of the machine.

Known Limitations. Due to the nature of how the distinguishing of different states with the same
output is performed in Algorithm 11, we require at least one reachable state with a unique output. We
can use such uniquely identified states to then distinguish other states with duplicated outputs using the
input sequences from their corresponding W -set, which is explained in more detail in Section 3.10.

For the usage of this algorithm with industrial measurement devices, such as the Smoke Meter in Sec-
tion 6.2, this limitation has not impaired us yet as these devices have a central ready state, or equivalent
thereof, which is ordinarily identifiable by its unique output.

It might be possible to remove this limitation in the future in a more refined version of the algorithm
as addressed in Section 7.4.

10

Chapter 3. Methodology and Algorithm 11

3.2 Data Structures

The majority of the algorithms work is done on a number of different data structures, most of them
comprised of sets, mappings and sequences. These data structures are mostly required to be used together
because changes are done to a number of data structures at once. To simplify the passing of arguments
to different functions we pack all the required data structures into one larger data structure we will call
context. Passing context to any function as an argument will be equivalent to passing the individual data
structures to it instead.

We define context as the following 9-tuple:

context = (1,0,8,0,, \, 8¢, R, A, Tr) (3.1)

where its individual parts are:

*] is the finite, non-empty set of input symbols
* O is the set of observed output symbols
S the set of states

* 0 : S x I — P(S) is the non-deterministic state transition function mapping each state and input
to a set of possible transition states

* X\ : S — O is the output function
* 5. € S'is the current state which the SUL is believed to occupy at the moment

* R: O — W where W is an output specific characterizing set (see Section 3.3.5) which can be
used to distinguish between all states with the same output S[o] = {s | s € S A A(s) = o} fora
given o € O

* A C S containing all abandoned states

o Tr: (O x I x O)*is the global frace which is the sequence of steps taken during the algorithm
from a state with output 0*" € O using an input i € I to a state with a given output 0%*** € O.
Tr = ((0§7¢, i1, 0865, (057¢, ia, 09°%1), ..., (057¢, iy, 02¢5!)) where each 0{" is the output of a state
from which the input ¢;, led to a state with output oze“. Every step and their corresponding input
and outputs are recorded in the trace such that the number of steps observed during the algorithm

isn

3.3 Definitions

3.3.1 Abandoning States

Abandoning states is a mechanism to preserve states that are seemingly unreachable. Instead of simply
deleting the states and potentially losing information that was already gathered about them, we abandon
them by adding them to the set A. Abandoned states are for all intents and purposed ignored, whether in
the definitions about the transition function or in the navigation of the SUL. They are only of interest if
we find one of these abandoned states again at a later point. In that case we recover an abandoned state
by removing it from the set A and using it again going forward.

The reasons why a state might be unreachable are that a state might not be part of the strongly-
connected component we are currently learning, in which case the state will stay abandoned, or we
simply do not know enough about the SUL to navigate back to a given state. We might at a later point
rediscover the abandoned state, either stumbling about the state by chance or finding a path to it via an
equivalence query.

12 Chapter 3. Methodology and Algorithm

3.3.2 Defining Determinism

We consider a state s € S to be deterministic if its transition function maps to at most one state for each
input, i.e., there is no ambiguity to which state any transition leads from that state.

s € S is deterministic <= Vi € I : |0(s,7)| <1 (3.2)

We can use this property to decide if the entire transition function is deterministic:
0p, is deterministic <= Vs € (S \ A) : s is deterministic (3.3)

We ignore abandoned states for such decisions as they are for all intents and purposes not part of
the hypothesis at this moment as described in Section 3.3.1. Knowing whether the transition function is
deterministic is important for deciding if a hypothesis can be extracted from context.

3.3.3 Defining Input Completeness
Similarly we can define if a state is input-complete:
s € S is input-complete <= Vi € I,3s" € §,(s,i): s’ ¢ A (3.4)

A state is input-complete if there is at least one transition to a not abandoned state for every input. It
is not enough to simply have any state in the transition function as only having abandoned states would
indicate that we do not know where this transition leads to (as the target could not be reached at an earlier
point.)

Again, we can define this property for the entire transition function while ignoring abandoned states:

Oy, is input-complete <= Vs € (S'\ A) : s is input-complete (3.5)

3.3.4 Constructing Deterministic Hypothesis

At any point, if §,, is deterministic and input-complete, a Moore machine may be extracted from context
as a hypothesis which may then be evaluated by the equivalence oracle.

The hypothesis is the Moore machine M = (I,0,5’, so, 0, \) where I,0 and X can be directly
taken from context. S’ is simply the set S\ A while dj is defined as:

0 =Vse (S\A),Viel Aked,(s,i):d(s,i)=k (3.6)

The initial state s(can freely be chosen from among the reachable states sy € (S\ A), although there
are different strategies of selecting it. We could, for example, use information from the trace to restrict
the choice of sg or alternatively to choose a state that is well-connected to other states in order to have
the shortest possible reset sequence for a majority of states.

During each equivalence query it is important to navigate the SUL to the same initial state sq that
was chosen for the hypothesis when the equivalence oracle requires a reset as described in Section 2.2.

3.3.5 Output Specific Characterization Sets

The classical W-set was already introduced in Section 2.5, which can distinguish any two states from
each other based on their different responses to its input sequences. Distinguishing two states requires
applying all input sequences of the W -set and observing the responses to them, so a small W -set is
desirable, as a large W -set would mean performing many more queries for every state.

Chapter 3. Methodology and Algorithm 13

Therefore, instead of building one large W -set with sequences for all states, we maintain one output
specific characterizing set or W,-set for each unique observed output. A W,-set contains input sequences
called distinguishers d € I which can distinguish all states with the same output S[o] = {s | s €
S A A(s) = o} for any o € O. The W,-sets are maintained in R of context as shown in Section 3.2.

The advantage that a mapping of W-sets, like R, has over a single classical W-set is that we only
perform the distinguishers necessary to differentiate between states with the same output, which results
in fewer queries during the distinguishing process. For example, if some output o € O was unique,
i.e., we do not have distinguishers for it as R(0) = (), then any state with that output would not have to
be distinguished as its output o makes it uniquely identifiable already. In contrast, if we were to use a
classical W-set we would have to perform all distinguishers on every state no matter if its output was
unique or not.

3.4 Main Algorithm

The main learning procedure is depicted in Algorithm 1. The high-level idea described by it can be
summarized in the following steps:

1. Explore the SUL such that 6,, is input-complete
2. If 4, is deterministic we query the equivalence oracle

3. Otherwise we calculate the differences between our observations and the hypothesis and refine it
by splitting states with identical outputs as required

These steps can then be repeated until either the equivalence oracle does not find a counterexample
to the provided hypothesis, in which case we return the result, or we fail to refine the hypothesis further,
in which case we terminate the algorithm.

Algorithm 1 requires the following arguments:

* The input alphabet I

e The sul object which provides us with an interface to the actual system under learning by sup-
plying the init and step methods

* An equivalence oracle which can find counterexamples, i.e., differences in behavior between
the SUL and a provided hypothesis

* The parameter len,,,, which decides the maximum length of words that we extract from the trace
to navigate to certain states

SUL and Oracle Arguments. The sul argument provided as input is the interface to the system under
learning in the form of the output oracle described in the MAT framework in Section 2.2. It provides the
following two interactions:

* init which is an empty output query and returns the output of the current state without changing
the state of the underlying SUL

* step which takes a single input 7 € I, provides it to the underlying SUL and returns the output
of the new state. In effect, it is an output query of size one without reset.

The oracle argument provided is a wrapper for an equivalence oracle. It provides the findCex
method which wraps an implementation of any testing algorithm, e.g., the W-method by Chow [16], with
the following changes:

14 Chapter 3. Methodology and Algorithm

Algorithm 1 Main Algorithm.

1: function MAINALGORITHM(I, sul, oracle, len,,)

2 0g < sul.init() > Provide initial output without changing state
3 context < (O « {oo}, S < {so},0n < 0, A < {so — 0o},

4 Se 80, R+ {og—= 0}, A+ 0, Tr + () > Create so with context
5: changedTransitions, changedW, changedStates, changedLastRound <— True
6
7
8
9

while changedTransitions \ changedW V changedStates \V changedLastRound do
changedLastRound < changedTransitions \/ changedW \V changedStates
(changedTransitions, context) <— exploreMissing(sul, context, len;q,) > See Algorithm 2

: A < abandonUnreachableStates({, S, 6, S¢, A) > See Algorithm 3
10: if not deterministic d,, then > See Section 3.3.2
11: (changedW, R) < calculateSpecificWsets(R, Tr) > See Algorithm 10
12: (changedStates, context) < distinguish(sul, context, len,qz) > See Algorithm 11
13: else
14: hypothesis < constructHypothesis(context) > See Section 3.3.4
15: (cex, context) <— oracle.findCex(sul, hypothesis, context) > See Section 3.5
16: if cex = () then
17: return hypothesis

return () > No further changes detected. Possibly increase len,;,

» Before the testing algorithm performs an output query, we perform a reset sequence using Algo-
rithm 5 to find a transfer sequence to the chosen starting state so of the hypothesis and perform
Algorithm 7 to navigate to it.

* For each input of every output query that the equivalence oracle performs, we use Algorithm 9
updatesStep to update our context to reflect the changes in the underlying SUL.

* If at any point during a reset sequence or an output query we observe unexpected behavior from
Algorithm 9 we may stop the equivalence check as this means that we found a difference between
the context, which is at that point equivalent to the constructed hypothesis, and the SUL.

* Finally, it returns the updated context.

Termination. The main algorithm terminates if the equivalence oracle cannot find a counterexample
anymore in which case the constructed hypothesis will be returned. This is the successful termination of
the algorithm. Alternatively, there are two failing cases in which the algorithm also terminates:

It is possible that the algorithm gets stuck in a state where distinguishing states is not successful,
e.g., if navigation to a state is not possible with the given len,,,y, in which case no further changes would
be made. This can be detected by the changedTransitions, changedW and changedStates variables in
Line 7 which would all be false after one iteration of the loop and thus terminate with no hypothesis
being returned. Most such cases can be prevented by choosing a large enough len, ..

The algorithm also terminates if during the distinguishing of states in Algorithm 11 in Line 7 the
hypothesis does not have a reachable state with a unique output. As explained in Section 3.1 this is one
of the known limitations of the algorithm.

3.5 Finding Counterexamples

In Algorithm 1 in Line 15 we query the equivalence oracle, which is a wrapper for the implementation
of a testing algorithm as explained in Section 3.4, to find a counterexample to the provided deterministic
hypothesis. Equivalence queries are implemented via a sequence of steps on the SUL and resets. To
keep our context synchronized with the current state of the SUL we perform the updateStep method

Chapter 3. Methodology and Algorithm 15

(Algorithm 9) every time the equivalence oracle takes a step with the SUL. This allows us to keep track
of the current state of the SUL, detect inconsistencies with the hypothesis immediately and allows us to
navigate the SUL into the initial state of the hypothesis when a reset is required.

Whenever the equivalence oracle wants to reset the SUL we execute navigateToTarget (Al-
gorithm 4) with the initial state of the hypothesis sg that we chose when constructing the hypothesis in
Line 14. If at any point during the navigation to the initial state or during any of the steps performed by
the equivalence oracle we detected unexpected behavior via the updateStep method (Algorithm 9)
then we found a counterexample. Because we perform the updateStep method for every single step
during the counterexample finding, thus updating the trace Tr with every step, we already processed
any counterexample and incorporated it into the trace from which new distinguishing sequences can be
computed later using Algorithm 10. This applies to normal counterexamples found during output queries
but also for unexpected behavior found during the reset sequences.

One of the upsides of performing a reset sequence as described above is that we may use any testing
algorithm for our equivalence oracle, even if it uses resets. In fact, the equivalence oracle does not even
realize that anything is amiss, as the resets are simulated whenever they are required.

Counterexample Processing. The reason why there is no algorithm specifically to process a coun-
terexample is because we detect unexpected behavior online due to the usage of Algorithm 9 during
every step of the equivalence check. In fact, the counterexample is not really needed for our algorithm
and we use only the absence of a counterexample to determine if we should return the finished hypothesis
in Line 16.

Instead we use the mechanism of unexpected behavior, which is introduced in Section 3.8, to identify
new states and transitions using Algorithm 9. The unexpected observation is integrated into the transition
function é,, and the trace 1'r on every step, such that our model reflects the new outputs immediately.
Finding unexpected behavior, i.e., making an observation that does not fit our current model of the SUL,
during an equivalence query is not treated differently than finding it during exploration or navigation,
in that the newly discovered state or transition must be explored and/or distinguished, i.e., until the
hypothesis is deterministic and input-complete again. In short, we use the £ indCex method not find a
counterexample directly, but for the testing strategy and the observations that we can make during the
equivalence query.

We still use the £ indCex method, even though we do not need the counterexample, because most
common equivalence oracles, such as the ones implemented by automata learning libraries AALpy [28]
or LearnLib [22], provide this method by default. We wanted to allow the usage of any of these equiva-
lence oracles in place, with only the changes described in Section 3.4, which can be done with a wrapper
without modifying the actual testing algorithm.

3.6 State Exploration

The state exploration performed in Algorithm 2 can be described in the following steps:

1. While the transition function is not input-complete according to Equation 3.5
2. Navigate to a state that is not input-complete and perform a step to explore a yet unexplored input

3. Alternatively, abandon the target state if it could not be navigated to

The target states are chosen by performing a breadth first search on the known states, targeting the
closest non input-complete state every time until no further targets can be found. States with the same
output will be treated as the same state, thus seeming non-deterministic behavior can occur during the
algorithm, e.g., multiple transitions on the same input from the same state to different targets. This may
lead to the case were navigation to a target state fails. If a target cannot be reached, either because no path

16 Chapter 3. Methodology and Algorithm

is known to that state or because of this seeming non-determinism, it is instead abandoned in Algorithm 4
in Line 11. Abandoned states are ignored as targets but may be found at a later point during navigation
in which case they are restored.

Algorithm 2 State Exploration.

1: function EXPLOREMISSING(sul, context, ler,;,,)

2 changed <+ False

3 repeat

4 targets < {s | s € (S'\ A) A —(s is input-complete) } > As defined in Section 3.3.3
5: (word, st979t) < BFS(s,, targets, I, 6,, A) > See Algorithm 5
6: > Find a word to a state with missing transitions or to only abandoned
7 if (s'979¢! - None) then

8 context < navigateToTarget(s**"9¢, sul, context, len,,q) > See Algorithm 4
9: changed < True
10: if s, = s%79¢ then
11 choose i € I : (0,(8c,i) =0V Vs € 6,(5e,7) : 8" € A)

12: (expected, context) < takeStep(i, sul, context) > See Algorithm 8
13: until (529" = None)
14: return (changed, context)

Termination. Let M be the underlying Moore machine of the SUL which has n states in total. In each
iteration of the loop in Line 3 we try finding a path to one of the states that are not input-complete yet.
Let the size of that set be t = |targets| in Line 4. The set of states that we can actually find a path to in
our graph using Algorithm 5 is potentially smaller if the graph is not strongly-connected, or if we have
not found any transitions to some states yet. Let this set be reachable C targets with r = |reachable|
and r < t. Finally, let m be the number of transitions which still have to be explored in order to make &,
input-complete as described in Equation 3.5. If m = 0 the loop terminates and d,, will be input-complete.

Firstly, m is bounded by ¢ * |I| and ¢ is in turn bounded by n. If we discover new outputs and
generate new states with Algorithm 9 then m and ¢ may temporarily grow but only until all outputs have
been discovered. Additionally, the number of new transitions that can be discovered is bounded by n x| I|
which means that unknown transitions cannot be discovered without end.

Secondly, an important insight is that reaching any state s € reachable, which will in turn lead to
trying a new input on s in Line 11 and 12, will always bring s closer to input-completeness as m will
decrease by 1.

Discovering new outputs and reaching states to try their inputs will eventually lead to an m = 0.
The special cases that have to be taken into account occur when a state was not reached via Algorithm 4
in Line 8. If a state cannot be reached it is abandoned in Line 11 and no longer counts towards input-
completeness of d,, thus decreasing ¢ by 1.

Abandoning a state s, will change m in two ways:
1. m will increase by the number of transitions of other states that had s, as target and have no other
reachable states on that input

2. m will decrease by the number of transitions that were still missing on s,
Restoring a state s, will do the opposite, namely:

1. m will decrease by the number of transitions of other states that have s, as target which now count
towards input-completeness again

2. m will increase by the number of transitions that we now have to explore on the newly restored
state s,

Chapter 3. Methodology and Algorithm 17

Abandoning s, may lead to an increase in m as described in Case 1. If s, is not restored again
then we simply have one less target to explore. We may have to visit some other states again but just
abandoning states will eventually lead to input-completeness, as at most ¢ — 1 states can be abandoned
at the same time.

Otherwise, to restore an abandoned state we have to actually visit that state as can be seen in Algo-
rithm 9 in Line 5, which is the only place were states are restored. If we do restore a state via Case 2
and still have missing inputs in said state we may now try one of them and decrease m by 1. Therefore,
abandoning and restoring the same state multiple times will at some point leave that state input-complete
while recovering a state that is already input-complete will never increase m. Only non-input complete
states may be targeted, and only targeted states may be abandoned, which prevents endlessly looping
between abandoning a state and restoring it again.

Thus at some point abandoning a targeted state s,, which must have missing transitions as it would
not have been targeted otherwise, will no longer increase m via Case 1 but only decrease it via Case 2.
Similarly, restoring an input-complete state s,, and it will be input-complete after restoring it often
enough, will not increase m via Case 2 but only decrease it via Case 2, guaranteeing the termination of
Algorithm 2.

Abandoning Remaining States. Once Algorithm 2 terminates some states may be unreachable which
were not abandoned yet. Specifically, if Algorithm 2 terminates by abandoning a state, i.e., a state is
abandoned which makes the transition function input-complete, then all states that are only reachable
through this abandoned state are not reachable anymore and should thus be abandoned as well. This
special case is dealt with by Algorthm 3 which is performed in the main algorithm after the execution of
Algorithm 2 in Line 9.

Note that performing Algorithm 3 while the transition function is input-complete, as described in

Equation 3.5, will not change this property of the transition function as only states which cannot be
reached will be abandoned.

Algorithm 3 Abandon Unreachable States.

1: function ABANDONUNREACHABLESTATES(I, S, 0y, S¢, A)

2 foralls € (S\ A) do > For all non-abandoned states

3: (word, target) < BFS(s.,{s}, I, 0p, A) > Breadth first search, see Algorithm 5

4 if target = None then > No path exists from s, to s

5 A+ AU {s} > Abandon unreachable state
return A

3.7 Navigating the SUL

In Algorithm 4 we show the main procedure of reaching a state s%** from our current state s.. If at any
point during the navigation we encounter unexpected behavior, either finding a new transition to a state
with a new output or to an existing state, or by recovering an abandoned state as shown in Algorithm 9,
we stop the navigation and return. This is because we want to take special action, especially during
Algorithm 11 where we stop and return to the main algorithm, when we encounter unexpected behavior.
There are two different methods of how navigation to a state is performed:

The first method, and the one always tried initially, is to directly navigate to the target using the
shortest path calculated in Line 7. We search through the transition function using breadth first search
with Algorithm 5 and try navigating the resulting sequence of inputs step by step.

However, due to é,, potentially being non-deterministic, there is no guarantee that the shortest path
actually leads us to our target state, i.e., there might be multiple transitions on any given state and input.
In this case, we may try an alternative navigation method using words from the trace instead which are

18 Chapter 3. Methodology and Algorithm

Algorithm 4 Navigate to target, first trying the direct path then trying different paths recorded in the
trace. Stop if the target is reached, unexpected behavior occurs or all possible words for a state have been
tried.

1: function NAVIGATETOTARGET(s%5¢, sul, context, len,y)
2: P:S — words > Contains all words from trace for a given s € .S to all states with output of

s%st with a maximum length of len,
3: expected <— True
4: while s, # s%5tA expected do
5: if P(s.) = undefined then
6: P(s.) + findAllWords(s,, s%5¢, X, T'r, lenpax) > See Algorithm 6
7: (directWord, st%79¢%) <— BFS(s%°uree {s9est) T 5, A) > See Algorithm 5
8: if starget = gdest then > Found a path
9: (expected, _, context) <— navigateWord(directWord, sdest syl context)
10: else if | P(s.)| = 0 then
11: A AU {sdest) > All words tried but could not be reached, so abandon
12: return conftext
13: else
14: choose word : word € P(s,)
15: P(sc) < P(sc) \ {word}
16: (expected, _, context) <— navigateWord(word, sdest eyl context) > See Algorithm 7
17: if —expected then return context
18: return context

calculated in Line 6. Hereby we find words that resulted in sequences starting with the output of our
current state and ending in the output of the target state with a maximum length of /en,,,,. One of these
sequences should lead us back to the target state as we observed these sequences of inputs and outputs
before.

If both navigation methods do not lead us back to the target state, we abandon it instead. This
allows us to ignore it for now. It is possible to recover it at a later point either by chance or during an
equivalence query. Reasons why a state cannot not be reached could be that the target is not part of
a strongly-connected component, in which case the state will stay abandoned, or we did not observe a
sequence yet which leads us to the state or the sequence that does lead us there is longer than len,,,, and
was thus not tried.

Finding Direct Word. Algorithm 5 performs breadth first search on the non-deterministic transition
function §,, and returns the shortest word from s°7 to any of the states in Sg.5; as well as to which target
the word leads. Abandoned states are ignored while every other reachable state is only visited once.
If none of the target states are reachable via normal transitions then an empty sequence and None are
returned instead.

Due to the nature of the non-deterministic transition function d,, there is no guarantee that the shortest
word will actually lead to the target state as there could potentially be multiple possible transitions on
the same input. Therefore, Algorithm 4 uses the direct word first and then tries an alternative method of
extracting words from the trace as explained in Section 3.7 if the direct word does not successfully reach
the target.

Finding Words from Trace. Algorithm 6 searches through the trace to find sequences that have led to
states with the output of the target state from a state with the current output in the past. This alternative
method of finding a word, i.e., transfer sequence, that leads to a target state is sometimes necessary if
the direct word to the target state does not work, potentially because of seeming non-determinism, i.e.,

Chapter 3. Methodology and Algorithm 19

Algorithm 5 Breadth first search for a word from s°7 to any state in set Sges; ignoring transitions over
abandoned states.
1: function BFS(s"¢, Syest, I, 0y A)

2: V0 > Set of visited states

3: qs < (s°7°) > Queue of states to check next

4: qw < (()) > Queue of built words

5: while |gs| > 0 do

6: Sneat, (s < dequeue(qs) > Return and remove from ¢ the first element

7: word, ¢, < dequeue(qy)

8: if Spext € Sgest then return (word, Speqt)

9: V VU {Snext}

10 forall: € I do

11 forall s € {s|s € 0n(Spext, 1) Ns ¢ ANs ¢ V}do

12: ds < qs + (s) > Append s to g

13: Guw < qu + (word + (7)) > Append word extended by i to gy,
return ((), None) > No path found from s°7¢ to any Sgest

multiple transitions on the same input in the transition function d,,.

The maximum length of these words is restricted to len,,,,, which is given as an argument to Algo-
rithm 1. An example where just the direct word to the target, i.e., len,,,, = 0, is not sufficient to learn a
Moore machine correctly is shown in 4.2.

Algorithm 6 Find all words in trace leading from observed output A(s.) to A(s%%!) with a maximum
length of len;; y.

function FINDALLWORDS(S.., %t X, T'r, lenmqy)

1:
2 words + ()
3 for k = |Tr|to 2 do
4: (057¢ iy, 0est) < Tr (k)
5: if ofest = X\(s?¢st) then
6 word < ()
7 for [= 0 to min(lengy, k — 1) do
8 (057¢, iy, ofest) < Tr(l)
9: word < (i) + word
10: if o' = A(s.) then
11: words < words U {word}

return words

Navigate Word. Algorithm 7 applies an input sequence word to the SUL step-wise, aborting the pro-
cedure if unexpected behavior occurs or if the target state could not be reached, and returns its response.
Every step is taken via Algorithm 8, which in turn updates context and keeps track of the current state.
The procedure is similar to a step-wise performed output query, with the exception that the navigation
can be aborted before the entire input sequence was applied.

Applying an Input. Algorithm 8 applies a single input to the SUL, updates the context appropriately
in Line 3 and returns if the observed output is consistent with our existing hypothesis. Note that sul.step
is equivalent to an output query of length 1 without reset as described in Section 3.4, in that it applies
the provided input to the SUL and returns the output of the newly reached state. Algorithm 8 is the only
procedure that performs sul.step directly, all other algorithms use this one instead and so automatically
update context with every step.

20 Chapter 3. Methodology and Algorithm

Algorithm 7 Navigate a word € I* stopping if any unexpected behavior occurred and returning if the
state 5%t was reached and the response sequence of observed outputs.

1: function NAVIGATEWORD(word, s%5t, sul, context)

2 response < ()

3 for k = 1 to |word| do

4 i < word(k) > k" element of sequence word
5: (expected, context) < takeStep(i, sul, context) > See Algorithm 8
6 response < response +(\(s.))
7 if not expected then return (False, response, context)
8

return (s, = sdest, response, context)

Algorithm 8 Take a single step with the sul with ¢ € I, update context appropriately and return if the
transition was expected, i.e., a state with the correct output was already in the transition function of the
current state.

1: function TAKESTEP(%, sul, context)

2: 0c + sul.step() > Take step, observe output
3: (expected, context) <— updateStep(z, o., context) > See Algorithm 9
4: return (expected, context)

3.8 Updating Context

Algorithm 9 takes the input and corresponding output of a single step on the SUL and updates context
appropriately. It is one of the central procedures and will not only update the current state but add
new transitions, states, outputs as required in addition to recording steps in the trace T'r. Not only is
this procedure performed after every step during the learning process in Algorithm 8 but also while
equivalence testing as explained in Section 3.5. In short, every step taken on the SUL must have a
corresponding update of context via Algorithm 9.

An important part of the algorithm is that it chooses the new current state s.. It is guaranteed that
after its execution s, has the newly observed output o, = A(s.) even though the state itself might
not be the correct one as it could have been chosen in Line 9. It is then the task of Algorithm 11 to
actually distinguish the states with the same outputs. Note that if we visit an abandoned state then it will
immediately be restored in Line 5. We only abandon states because we cannot reach them at some point
in time and reaching it later might let us reach it in the future as well.

Expected and Unexpected Behavior. There are two different cases, namely expected and unexpected
behavior, for observing a new step and updating context using Algorithm 9. Expected behavior means
that a step was consistent with the existing hypothesis while unexpected behavior refers to a new discov-
ery, like a new transition or state, or the restoration of a previously abandoned state.

Generally, if there already is a state in the transition function of the current state with the given input
which leads to a state that has the observed output then the observation does not change anything for our
hypothesis, i.e., it was expected. More formally, a step is expected iff

s € 0p(8c,1) i AN(s) =0ANs ¢ A (3.7)

where s, is the current state, ¢ € [is the input provided to the SUL and o € O the corresponding output
of the new state. In this case, only the current state will be updated in Line 4 and an entry added to the
trace in Line 18.

Otherwise, if the observation is not consistent with our current hypothesis then we have to change
it in order to match the observation. The possible observations that require changes to context, and are
therefore unexpected, are:

Chapter 3. Methodology and Algorithm 21

Algorithm 9 Update the context to reflect a single step taken with ¢ € I and the newly observed output
0c € O and return if the transition was expected, i.e., a state with the correct output was already in the
transition function of the current state.

1: function UPDATESTEP(%, 0., context)

2: slast s, > Last state before taking step is s,
3: if 3s € 6, (5%t i) : A\(s) = o, then

4: Se < S

5: expected < s. ¢ A

6: else > No transition from s'®* to state with output o, using 7 exists
7: expected <— False > A new transition not expected
8: if o. € O then

9: Se < S[oc] first > Choose the first state with output o, see Case 3
10: else > 0. was never observed before
11: O« OU{o.} > Extend output alphabet
12: Se 4— sV L gnew ¢ § > Create a new state s™"
13: S« SU{s.}
14: R+ RU{o.+— 0}
15: A= AU{sc— o.}
16: On 4 6n U {(8'%3) > 5.} > Add s, to the set of target states
17: A< A\ {s.} > Recover state if abandoned
18: Tr« Tr+ (\(s'%%),4,0.) > Add new step to trace
19: return expected, context

1. Restoring a previously abandoned state in the transition function of the current state in Line 5
2. Observing a never before seen output after Line 10

3. Observing an output that is not in the transition function of the current state in Line 8

All of these cases require that our current model of the SUL, represented by context, must be changed
in order to reflect the new observation:

For Case 1, we simply restore an abandoned state again if it is in the transition function of the current
state. We prefer restoring an abandoned state to adding an additional transition to a state with the same
output as we do not want to have multiple states with the same output in a single transition. More
formally, we require that the following property holds

Vse S, Vie I,Voe O:|{s' |5 €d,(s,i) ANs") =0} <1 (3.8)

By trying this case first we never have the situation that there could be multiple states with the same
output in Line 3.

Regarding Case 2, if we observe a new output, that has never been seen before, then we have to
construct a new state with said output and add it to the transition function of the current state, extending
the output alphabet O in the process. The existence of a new state must also be reflected in S, A, d,
and R. Observing a new output will happen especially often in the first iteration of Algorithm 2 where
outputs are discovered frequently.

Finally, in Case 3, if we observe an output which is not in the transition function of the current state,
i.e., we have not observed this output to the given input from this state, then we create a new transition to
an existing state with the observed output. Generally, the algorithm assumes, if possible, that an existing
state was instead of a new state being found. Therefore, if there is at least one state with the observed
output already, the transition is added to the existing state. The exact state that should be chosen from
the set of states with the same output S[o] in Line 9 with the observed output o € O should be the same
across different executions of Algorithm 9.

22 Chapter 3. Methodology and Algorithm

This is important for Algorithm 11 as during the exploration of transitions of a newly split state in
Line 17 we require that new transitions are made to the states that were created during the merge in
Line 5. These are the states that we gradually split up and not forming transitions to these states would
leave newly found ones incorrectly distinguished.

There are two methods of choosing these states out of the set S[o]:

The chosen state s/"! € S[o] should be the earliest created state from the states in S[o]. If every
state has a unique identifier that corresponds to the order in which they were created then the state
with the lowest identifier should be chosen first. This has the intended result because all states split in
Algorithm 11 in Line 16 will have been created after the states in Line 5 and so will not be chosen as
target states.

Alternately, s/t € S[o] may be chosen to have the highest transition number which is defined for
any state s € S as) ;. [0n(s,4)|. Using the state with the highest transition number as the target for
new transitions which also corresponds to the merged states in Line 5 which have the most transitions
after the merge.

3.9 Calculating Output Specific W-sets from Trace

Algorithm 10 Calculate output specific W-sets according to trace and extend R.

1: function CALCULATESPECIFICWSETS(R, Tr)
2 R «+ R
3 C+ 10 > Set of pairs of indices for which trace entries match in 0°” and i but not in 0?5
4: for k = 1to |Tr| do
5: fori=Fk+1to|Tr|do
6 (057, ik, 08°5Y), (057¢, iy, o) «— Tr(k), Tr(l)
7 if 057 = 07 N iy = i A 085! £ ofest then
8 C+ C U{(k,1)}
9: for all (k,l) € C do
10: d <+ () > Distinguisher d initially empty
11: (057¢ iy, 0%est), (057, iy, 0f¢st) < Tr(k), Tr(l)
12: while k >= 1 A1 >=1A 0" = 0" Aiy, = i do
13: d< (i) +d > Extend d by input i, = 7;
14: R+ R'U{oj ¢ — d} > Add d to Wj,-set of output 07
15: kl<+—k—1,1—-1 > Now check predecessor
16: (057¢ i, 09e5t) | (057, iy, 085t «— Tr(k), Tr(l)

return (R # R’ R') > Return if R’ changed compared to R

Algorithm 10 calculates the output specific W-sets, W,-sets, as explained in Section 3.3.5, from
observations of the trace T'r and updates 2, the mapping of each output to such a corresponding WW,,-set,
appropriately.

It does so by initially calculating C' which is the set of all entries of the trace that show visible differ-
ences in their target state output 0%** but are identical in their source state output 0*"® and transition input
1. Observing such a difference means that the source states of the two observed trace entries cannot be
the same as our underlying Moore machine is deterministic which requires that there must exists multiple
states that have the same output 0°"“. Furthermore, these two states can in the future be distinguished by
applying the input 7 as it resulted in a visible difference in output 0%t. This distinguisher i is added to
the W,-set of 0°" in the first iteration of the loop in Line 12.

Intuitively, if we observed the trace entries t; = (07,4, 0§¢%!) and to = (0°7¢, i, 0¢st) with of¢st #

03¢t then we can conclude that there must be at least two states with the output 0°™¢, as the same
deterministic state could not have two different transitions on the same input. Therefore, the source states

Chapter 3. Methodology and Algorithm 23

Table 3.2: Example trace alternat-

Table 3.1: Example trace repeating ing output a and others.

states with output a until

finally reaching b. Index | 0 | i [%
Index | o57¢ | 4 | odest 1 a |x b
1 a €T a 2 b T a
2 a x a 3 a X C
. a €T a 4 C X a
t a |z b odd a |z
even r| a

in t1 and 2 cannot be the same, even though they have the output 0°"¢

two states in the future by applying the distinguisher ¢ to them.

, and that we may distinguish these

Additionally, we can also calculate distinguishers for the outputs in preceding entries of the pairs in
C if they are identical. Similar to how having a visible difference between two trace entries ¢; and t2 lets
us distinguish the source states, having observed an identical sequence o € Tr™ preceding the entries
lets us do the same for all outputs in . More formally, if there are two sequences at; and aito in the
trace, then every output 0*" for any entry w in o, where a« = vwz with v, z € T'r* and w € T'r, can be
distinguished by the sequence of inputs from wzt;.

This can be seen in the example trace in Table 3.1 where the output a was observed ¢ times, counting
the starting state, followed by b, always applying the same input z. It can easily be reasoned that none
of the states with output a can be the same and that the underlying Moore machine must have at least
t states with the output a as any machine with fewer than ¢ states with output a could not produce a
sequence that changes only after ¢ identical inputs. We can in fact distinguish every state s; with output
0°"¢ = a corresponding to Index & in that trace where 1 < k < ¢ with a distinguisher (z, ..., z) of length
t — k. In this special case, where every distinguisher shorter than ¢ — 1 is a prefix of the distinguisher of
length ¢ — 1, we can even skip all but the longest distinguisher as explained in Section 3.9.

Runtime. We can easily define an upper bound for the runtime of Algorithm 10. Let ¢ = |T'r| and
¢ = |C|. In Line 4 and 5 where both the outer and inner loop iterate through the entire trace thus
performing ¢ * (¢ — 1) operations in total. With this loop our best case scenario for the runtime without
any of the optimizations discussed in Section 3.9 is already up to O(¢?).

These almost 2 loops could theoretically! result in ¢2 entries in C' if every pair of entries in the
trace starts with the same output but ends in a different one thus resulting in ¢ = #2. Then performing ¢
iterations in Line 9 with an inner loop in Line 12 which may in the worst case generate a distinguishing
sequence d of length ¢ — 1 if the second to last and last entry in the trace have to run backwards through
the entire trace. Thus we can liberally define the upper bound at O(t3).

In practice the runtime will be much lower, being closer to O(t2). This is the case because there is a
relation between ¢ and how many iterations the loop in Line 12 can run. Generally, the larger c the fewer
iterations Line 12 will perform and vice versa.

Table 3.1 and 3.2 contain two example traces 1T'r of length ¢ that should illustrate this relation.

Table 3.1 has ¢ = t as every entry up to ¢ is added in combination with entry ¢t. However, it has the
largest number of iterations possible in Line 12 namely ¢ — 1 up to 1. So the runtime for the trace in
Table 3.1 would be ¢ % (t — 1) for calculating C' and Y% _,(t — k) = %(t — 1)t for a total runtime of
O(t?).

In contrast, Table 3.2 has a much larger ¢ but the maximum number of iterations in Line 12 are 1 as
odest differs every other entry. This leaves the calculation of C' as the primary factor of runtime which

! Actually, at most half of the entries can start with the same output and lead to a different one as at least one step is required
to get back to a state with the original output, see Table 3.2

24 Chapter 3. Methodology and Algorithm

also results in O(t2).

Optimizations. The runtime of the algorithm can be decreased drastically with these optimizations
which can all be implemented at the same time. The first two reducing runtime of Algorithm 10 and the
last one for Algorithm 11 instead.

* Introduction of buckets for the building of C' which separate all entries in 7'r into buckets with
identical 0°"¢ and ¢ such that each trace entry must only be compared within a single bucket instead
of comparing it with all entries of the entire trace. Constructing the buckets takes linear time as
a single iteration over the trace can separate out all entries into their corresponding buckets. This
optimization works especially well if there are very few entries with the same 0°"“ and i, so it
would, for example, not improve the runtime of Table 3.1.

* As distinguishers are only ever added to 2 and never removed, it is unnecessary to re-compare
old parts of the trace with each other as this will result in the same distinguishers again. Instead
maintain a variable ¢, that tracks the length of the trace at the moment when Algorithm 10
was last called. Then when creating C' every entry of the trace must only be compared to the
newly added parts, i.e., entries with their index greater than t;,s;. Additionally, this optimization
is possible in conjunction with the bucket strategy. Buckets should only be created for entries
of the trace with their index greater than ?;,, followed by comparing every entry of the trace
to its corresponding bucket. This optimization does reduce the runtime for every execution of
Algorithm 10 except the first one.

* A new distinguisher d should only be added to the corresponding W,-set if it is not a prefix of
any existing w € W,. Similarly, adding a new d to a W, allows for the removal of all w for
which w is a prefix of d. Intuitively, if w distinguishes between some states and d is a prefix of
w: |d| < |w| and w = da, then w must ar least distinguish everything that d does, if not more,
as any response sequence to d will be a prefix to the response sequence of w. While this does not
reduce the runtime for Algorithm 10 itself, producing fewer distinguishers, i.e., smaller W-sets,
will speed up Algorithm 11 instead.

3.10 Distinguishing States

Algorithm 11 takes the W,-sets calculated in Algorithm 10 and applies their distinguishers to the corre-
sponding states, splitting states whenever a new distinguisher is applied and finally merging states with
the same responses to their applied W,-set. If at any point during the navigation new unexpected be-
havior occurs, except during the exploration in Line 17, then the algorithm is stopped and returns to the
main algorithm for another round of exploration and calculation of distinguishers. The algorithm works
on context but not before creating a copy of it in context’ in order to restore the original if the execution
is aborted. This allows for liberal changes, adding and deleting states, because we retain a copy and may
roll back to the original if we encounter difficulties such as unexpected behavior. To make sure that the
copy context’ reflects the operations performed on the underlying SUL, Algorithm 9 will be executed on
context’ whenever it is used on context using the same input and observed output as arguments. This way,
the trace and other data structures are updated in the copy as well. If the algorithm is aborted at any point
during the execution, state exploration can be performed on newly found outputs or new distinguishers
can potentially be extracted from the now longer trace.

A state s is fully distinguished iff
[R(A(s))| = [D(s)] (3.9)

which means that all distinguishers in the W,-set of R(\(s)) were tried and their responses recorded in
D(s). Note that while the TW,-sets are identical across states with the same output every state may have
a different number of observed responses in D.

Chapter 3. Methodology and Algorithm 25

Algorithm 11 Distinguish and split states according to R.

1: function DISTINGUISH(sul, context)

2:
3:

&

context’<— context > Make a copy of context
whenever updateStep(..., context) — updateStep(..., context’) > Whenever Algorithm 9 is

performed on context it will also be performed on context’ with the same arguments otherwise

D:S— (W —=0*)«10 > D returns a partial mapping that is able to distinguish between

states with equivalent output symbols if its domain W = R(A(s)) with s € S. Each input sequence
w € W maps to an observed response sequence.

(S, On, A) < mergeStatesWithEquivalentOutput(O, S, d,,, A) > See Section 3.10
while 3s € S : |[R(A(s))| # |D(s)| do
assert 3s € (S\ A) : |[R(A(s))] =0 > See Section 3.1
choose s,i,5" : 5,5 ¢ AN|R(A(s))| =0A S € 0,(s,4) A|R(A(S))| > |D(s)]
context < navigateToTarget(s, sul, context) > See Algorithm 4

if s. # s then return (False, context’)

(expected, context) < takeStep(s, sul, context) > Enter state which we want to distinguish
if —expected V s. # s’ then return (False, context’)

choose d : d € R(\(s')) ANd ¢ D(s)

(expected, response, context) <— navigateWord(d, None, sul, context) > See Algorithm 7
if —expected then return (False, context’)

(s°P D, S, 6, \) < splitState(s’, d, response, s, i, D, S, 6, \) > See Algorithm 12
(_, context) < exploreMissing(sul, context) > See Algorithm 2
(D, S, 6, \) < mergeldenticalDistinguishedStates(s*P!*, D, S, 5,,,\) > See Section 3.10
context <— navigateToTarget(s, sul, context) > See Algorithm 4
if s. # s then return (False, context’)

(D, S, 6y, A) + removeUnreachableStates(D, S, 0., A, S¢, A) > See Section 3.10

return (True, context)

Algorithm 11 does the following until d,, is deterministic or until unexpected behavior occurs:

. Initially, copy context and merge all states with the same outputs in Lines 2 and 5.

. Navigate to a state s’ that is not fully distinguished, i.e., for which any distinguisher from its

corresponding W,-set was not yet tried, and enter it from a fully distinguished state s in Lines 8
to 12.

. Apply said distinguisher to s, split off a new state s*P!* and add the applied distinguisher and its

response to D(s*P!""). This new state is then one step closer to being distinguished as one more
input sequence was observed for s*P/** than for s’ from Lines 13 to 16.

. Make é,, input-complete again by exploring the transitions of the newly added state and merge it if

it has identical transition outputs and distinguishers as an already existing state in Lines 17 and 18.

. Finally, remove s’ once it was entered via every available transition, eventually leaving only fully

distinguished states in Line 21.

The algorithm terminates once all states with an non-empty W,-set have been fully distinguished, which
leaves d,, deterministic again or unexpected behavior occurred, in which case new distinguishers can be
calculated using Algorithm 10. A short example is presented later in this Section to better visualize how
Algorithm 11 works.

Distinguishing States. To distinguish states we require WW,-sets, which are calculated in Algorithm 10.
When a distinguisher d is applied to a state with output o € O it may then be differentiated from others in
S[o] comparing the response to d between them. To keep track of all responses obtained from applying

26 Chapter 3. Methodology and Algorithm

distinguishers to states, D is introduced. D is a partial mapping that contains the responses for each
distinguisher of every state as shown in Line 4. Once the response to every distinguisher R(A(s)) was
observed for s € S and recorded in D, as described in Definition 3.9, s is fully distinguished. The aim
of Algorithm 11 is to fully distinguish all reachable states and thus return a deterministic d,,.

Splitting States. Algorithm 12 is used to split states in Line 16. The split state s°P'* has the same
output and distinguishers as the original except that additionally d was applied to it. We may add the
response to d into D(s°P!") which means that s°P"* is more distinguished than the state it was split off
from. Because we entered 57! from a fully distinguished state s with input 7 we may now redirect the
transition, which originally led to s/, to s°P** instead. This can be seen in the example in Section 3.10 in
Figure 3.2 where State 0 originally lead to State 1 with input 2 but was then changed to lead to the newly
split State 2 instead.

Algorithm 12 Split a state, copy its distinguishers and responses in D except for d and change the
transition taken in Line 11 of Algorithm 11 to the newly split state.

1: function SPLITSTATE(s', d, response, s, 1, D, S, 5, \)

2 sl ¢ gnew . gnew ¢ g > Create a copy of s’
3 S« SuU {s°Plit}

4: A<= AU {sP s \(s))} > With the same output as s’
5: On + 0n U {(5°P d(1)) + response(1)} > With only the first observation from d in transition
6 D + DU {s*lit s {D(s") U {d + response}}} > And add d and its response to D
7 On < 0n \ {(s,7) — &'} > Remove old transition from s
8 O < 0 U {(s,14) r> s°PliL} > And replace with transition to new state s*P'
9 return (s D, S, 5,, \)

It is important that s is already fully distinguished, which leaves us with the limitation in Line 7 of
Algorithm 11 as mentioned in Section 3.1. Otherwise, if s was not fully distinguished, we could not be
sure if we identified s correctly and thus if we changed the the appropriate transitions in Lines 7 and 8.
This would break Algorithm 11 as it stands at the moment, although it might be possible to remove this
limitation in the future (see Section 7.4).

Merging States. Two states s, s’ € S may only be merged if they have the same output, i.e., A\(s) =
A(s"). One of the states is chosen arbitrarily to be merged into the other state. For example, we may
merge s’ into s by adding all outgoing transitions from s’ to s and by replacing all incoming transitions
to s’ with transitions to s instead. If s’ is also the current state then it should be change to s instead. In
other words, performing the following procedure:

o Viel:d,(s,1) <« dn(s,i)Udn(s,1)
* Vs € S,Vi € I : replace s’ € §,,(s¢,4) with s
e if s, = s’ then s. + s

¢ Finally, s’ may be deleted as described in Section 3.10

Initially, we use this merging procedure in Line 5 where all states with the same output are merged
together, i.e., 3s € S : Vs’ € S : s # s = merge s into s, which leaves us with a single state for
each output |.S| = |O|. We do this to prevent choosing a wrong target state with Algorithm 9 in Line 9,
where unexpected behavior could occur should both states not allow for the same transitions. This may
happen if we distinguished two states in an earlier iteration of Algorithm 11 but with an incomplete
W,-set such that we missed some state with the same output. Merging all states before the loop prevents
this.

Chapter 3. Methodology and Algorithm 27

The second point where merging is used is in Line 18. Once we create a new state with Algorithm 12
we cannot be sure which transitions this specific state will have. After these transitions were explored in
Line 17 we might find out that the same state, identical in transition outputs and distinguishers, already
exists. In this case, the newly split state will be merged into the already existing one. If we would not
re-merge the split states in Line 18 we would endlessly split off identical states, never realizing that the
split state already exists and thus producing a chain of identical states.

In the procedure in Line 18, two states s, s’ € S may only be merged if they have the same output,
the same number of transitions to states with the same outputs and all responses to their distinguishers
are identical. More formally, the newly created state in Line 16, s’, may be merged into s iff

A(s) = A(s)
AV €T : (|0n(s,4)] = |0,(8",9)| AVsy € 8,(5,4),Ts) € ,(8',4) : M(s¢) = A(s})) (3.10)
A D(s) = D(s")

We only check for the outputs of the target states on the transitions because the existing state may already
have transitions to more distinguished states compared to the newly created one. In this case, we still
allow the merge.

Deleting States. A state s’ may be deleted if it was merged as explained in Section 3.10 or in Line 21,
where all states are removed that are no longer reachable via Algorithm 5 but are also not abandoned,
i.e., states that have the following property:

BFS(s¢, {s'}, 1,00, A) = ((,None) A s’ ¢ A (3.11)

This happens once all incoming transitions of any not fully distinguished state were all split off in Algo-
rithm 12.

In any case, deleting the state s’ simply requires removing all of its entries from the affected data
structures of context:

S« S\ {5}

S0 {(5,1) > (Buls, D)\ () | s € (S\ [N nie)
A{s—=As)|se(S\{sH}

A+ A\ {5}

O is not affected as it is not possible to remove all states with a given output. Removing a state is only
possible after a new state with that output was split off, therefore, at least one state with each output will
remain even if it might be an abandoned one.

Similarly, s. is also not affected as we navigate to the already fully distinguished state s in Line 19
before we delete any states in Line 21.

Example. To better visualize what Algorithm 11 precisely does, we present the smallest possible ex-
ample in Figures 3.1, 3.2, 3.3 and 3.4. The drawing convention of Moore machines is explained in
Section 2.4.

Figure 3.4 shows how the underlying SUL actually behaves, i.e., two states with the output b and
three states in total, while Figure 3.1 shows the current model, which is seemingly non-deterministic at
the moment as there are two transitions from State 1 on input z.

b}, S = {0,1},

O = {a
={aw— 0,b — {z}} and

At the beginning of the algorithm context looks like this: I = {x
o = {(0,2) = {1}, (1,2) = {0,1}}, A = {0 = a,1 = b}, sc = 0,

A=0.

b
R

28 Chapter 3. Methodology and Algorithm

—>(0 —>| 0
Figure 3.1: Initial hypothesis before dis- Figure 3.2: First iteration with newly
tinguishing. split State 2.

DG D
Figure 3.3: Second iteration with newly Figure 3.4: Resulting deterministic hy-
split State 3. pothesis.

Important to note is that we already calculated a distinguisher, namely z, for the output b as can be
seen in R, which we can now use to distinguish State 1.

Starting the algorithm with Figure 3.1, we first initialize D = (). We can ignore Line 5, as there
are no states with duplicated outputs in Figure 3.1, and start directly with the loop in Line 6. We enter
the loop because there is one distinguisher for State 1 that has not yet been applied and recorded in D,
ie., |[R(A(1))| > |D(1)], therefore we choose s = 0, i = z, and s’ = 1 in Line 8. We do not have to
navigate to State 0, because we are already there, and enter State 1 via the step in Line 11. Applying the
distinguisher d = z in Line 14 gives us the response sequence (b) . We then split off a new State 2 in
Algorithm 12 and add the observed response to D, which looks like D = {2 — {x + b}}, which results
in Figure 3.2.

As Figure 3.2 is already input-complete, no exploration is required. Likewise, there are no identical
states, i.e., 1 and 2 do not have the same entries in D, and there are no unreachable states, which lets us
skip Line 18 and 21 respectively. We start the loop from the top again in Line 6, choosing s = 2,1 = =,
and s’ = 1 in Line 8. Note that State 2 is fully distinguished as D has a corresponding mapping for every
entry in R(b) for State 2. We navigate to 2, apply step = and enter State 1, this time splitting off the new
State 3 which results in Figure 3.3 with D = {2 — {z — b},3 — {z — a}}.

Subsequently, State 1 is now unreachable and will be removed in Line 21, which results in Fig-
ure 3.4. All states are now fully distinguished and we terminate Algorithm 11, returning the new context,
which will in turn lead to the termination of the main algorithm once no counterexample is found by the
equivalence oracle.

Termination. Algorithm 11 will terminate after a finite number of iterations in Line 6, if not earlier
due to unexpected behavior:

Any not fully distinguished state s’ with m = |D(s")|, w = |R(A(s"))| and m < w will be chosen
as the target s’ in Line 8 exactly ts times, whereby t; is the number of incoming transitions to s’. This
process may produce up to t5 newly split states. However, if some of these split states have the same
transition output behavior and the same responses to distinguishers then they are merged again in Line 18.
Thus we only keep the number of states with different responses, which will never exceed the number
of real underlying SUL states with that output as otherwise some of the responses to distinguishers must
be identical, i.e., with n underlying states there cannot be more than n different responses on the same
input sequence. Each of the remaining states would then have to be itself chosen as s’ but with m + 1
compared to the original m of s’. At some point all remaining states will have their m = w which leads
to the termination of the algorithm.

4 Illustrative Examples

To better show the workings of the algorithm we provide some examples which show in detail how the
algorithm can learn particular Moore machines.

We classify the examples according to some of the properties the underlying Moore machine M has
that we want to learn:

» We say M is trivial if all of its states have unique outputs, i.e., |O| = |S].

* Contrary M being non-trivial means that at least two states have the same output, i.e., |O| < |S|.

* A non-trivial example in which no states have a unique output will be called indistinct ie. Vs €
S,3s" € S:s# S ANs) = A(S).

* Finally, a normal example would be a non-trivial one which is not indistinct, i.e., has at least one
state that has a unique output: 3s € S,Vs' € S: s £ 5 = A(s) # A(¢).

All provided examples are input-complete but may or may not be strongly-connected.

4.1 Example 1

X

Figure 4.1: Moore Machine for Example 1.

Example 1 as shown in Figure 4.1 is a typical example that can be solved by the algorithm. It is
normal as the two states 2 and 6 as well as 3 and 7 have identical outputs, d and e respectively, but there
are also states with unique outputs. Furthermore, the example is strongly-connected.

We start the main algorithm (Algorithm 1) with the arguments I = {z, y} and len,,,, = 0 as well as
a SUL corresponding to Figure 4.1 and an appropriate equivalence oracle. The output of the initial state
0p is a and the context is initialized as described in Line 4. In this example no states will be abandoned
so A can be ignored as it will stay empty. Additionally, because len,,,, = 0, only the direct transfer
sequences from Algorithm 4 will be used which is sufficient to learn this example.

Learning Round 1

Explore Missing. Table 4.1 shows the changes to confext which occur during the first call to Algo-
rithm 2 through Algorithm 8 which is itself called in Line 12 and in Algorithm 4.

We use A4 X to denote an addition to the set, mapping or sequence X in a given step:

29

30 Chapter 4. Illustrative Examples

Table 4.1: Changes during the execution of the initial call of Algorithm 2 for Example 1.

Index | Input Step | Observed | Actual | s. | ALO | ALS ALy, A AyTr
0 a 0 S0 a S0 So— a
1 x b 1 s1 b s1 | (sg,x)—>s1 | s1—=b | (a,z,b)
2 z d 2 S92 d S9 (s1,z) > s2 | sa—d | (b,z,d)
3 x e 3 S3 e s3 | (s2,x) > s3 | sg—e | (d,z,e)
4 x f 4 S4 f Sg | (s3,x) > s4 | sa—= f | (e,z, f)
5 x a 0 50 (s4,) — so (f,z,a)
6 Yy a 0 50 (s0,Y) — so (a,y,a)
7 x b 1 51 (a,z,b)
8 Yy c 5 S5 c S5 (s1,y)— 85 | ss—=c | (byy,c)
9 x d 6 S9 (s5,%) — S2 (c,z,d)
10 Yy d 6 S9 (s2,Y) > s2 (d,y,d)
11 T e 7 83 (d,x,e)
12 y e 7 s3 (s3,y) — s3 (e,y,e)
13 x a 0 50 (s3,x) — so (e,z,a)
14 x b 1 s1 (a,z,b)
15 Yy c 5 S5 (b,y,c)
16 Yy a 0 S0 (s5,y) — S0 (c,y,a)
17 x b 1 s1 (a,z,b)
18 x d 2 S9 (b, z,d)
19 T e 3 83 (d,x,e)
20 x f 4 S4 (e,z, f)
21 Y f 4 | s (54,y) > 84 (fsy, f)

o AiSet = Set + Set U{A}}
* Ay Mapping = Mapping < Mapping U {A;}
* A Seq= Seq <+ Seq+ {A}}

In Line 11 of Algorithm 2 we decide to always choose ¢ € I in alphabetical order, i.e., first the input
x, if it has no transition, and only then y.

Figure 4.2: Non-deterministic hypothesis after initial exploreMissing for Example 1.

During the calls to navigateToTarget (Algorithm 4) on Line 7 the target state is either already
reached or the direct word in Line 9 of Algorithm 4 succeeds in navigating to the target state. In fact, in
this example navigation always succeeds with the direct word in Line 9 and navigating via words from
the trace is not used as len,, 4, = 0.

Chapter 4. Illustrative Examples 31

After all steps in Table 4.1, all transitions have one transition for every input except for 0, (s3,x) =
{s0, s4} which has two transition on the same input which can be seen in Figure 4.2, i.e., at this point J,,
is non-deterministic (see Section 3.3.2). This is the case because we wrongly assumed to be in State 2
after Index 9 on Table 4.1 when we actually visited State 6. From there we entered State 3 at Index 11
which was actually State 7, which lead to the additional entry for = at Index 13, i.e., looking at the
additions to the trace from Index 4 and 13 will show the conflicting entries. Comparing Figure 4.1 and
Figure 4.2 one can see that the states with duplicated outputs are merged in the hypothesis because of
this wrong assumption, that we believed to have visited State 3 when in reality it was State 7. At this
point, there was however no way for us to have known that these two states are different.

Because ¢, is input-complete, i.e., has at least one transition for every input, Algorithm 2 will termi-
nate.

Next Algorithm 3 is called. However, as all states are reachable from the current State s4 nothing
changes and no states are abandoned.

Calculate W,-sets. After Algorithm 2 finishes, we next calculate the W,-sets in Algorithm 10 using
the following arguments:

The trace T'r is the concatenation of each entry of the column A 7T'r in Table 4.1. As Algorithm 8
was called 21 times during Algorithm 2 that means the trace has 21 entries.

The mapping of W,-sets to their responses, 12, was not explicitly tracked in Table 4.1 but it can
be easily seen that R only changes in Line 14 in Algorithm 9 every time a new output is observed.
Consequently, all W,-sets in R are still empty, i.e., R ={o— 0 | 0 € O}.

Calculating C' from Line 3 to Line 8 will result in a set of all pairs of indices which are identical in
source output and input but different in output of the destination state. For the current example this set
will be: C' = {(4,13),(13,20)}. Taking a look at the entries AT at indices 4 and 13 in Table 4.1
one can see that they are (e, z, f) and (e, z, a) respectively. These pairs of indices in C' are the “visible”
differences that could also be directly observed from the graph in Figure 4.2.

We only have a single state with output e, namely s3, in our context. With the same input z two
different target states (s4 and sg) were seemingly reached with output f and a respectively. This seeming
non-determinism results from the fact that s3 must be composed of at least two states with the same
output instead of a single state. These states can be at least partially distinguished with the input = such
that one state always transitions to s4 and another to sg. This distinguisher will be recorded in R like so:
R={a—0,b—0,c—0,d—0,e— {(x)}, f — 0}.

Distinguish. Algorithm 11 is now executed with the distinguisher calculated in Section 4.1. Because
we only have a distinguisher for output e and not yet for d we cannot produce the correct hypothesis
in this learning round. This example was chosen specifically because the shortest transfer sequence to
a state with output d is always shorter via state input x from State 1 than from State 5. Therefore, the
transition to State 6 in Figure 4.1 will not be taken at all during this execution, which will result in us not
encountering any unexpected behavior in this round.

All 27 steps taken during this execution of Algorithm 11 are recorded in Table 4.2 with comments
about where exactly in the algorithm the step was produced.

Initially, we navigate to State s = so, which was chosen in Line 8, where we enter s’ = s3 in Line 11.
This corresponds to the Indices up to 25 in Table 4.2. Then we apply the distinguisher x, which leads
us to State s4 after which we split off a new State s¢ with D(sg) = {z — f}. The newly split State sg
is still missing the transition on y, so we navigate back to it, explore it and find the transition on y to s3
in Index 31. The reason why we chose s3 as the target and not sg is explained in detail in Section 3.8 in
Case 3. This now results in the hypothesis in Figure 4.3.

Next we do the same again, this time choosing s = sg in Line 8, as sg is now fully distinguished, and
s' = s3, which we enter via input y in Index 37, and split off a new State s; with D(s7) = {z — f}.

32 Chapter 4. Illustrative Examples

Table 4.2: Changes during the execution of Algorithm 11 for Example 1.

Index | Input Step | Observed | s, | Comment | A, S Ay by JAWIDY AyTr
22 T a 50 (f,z,a)
23 x b s1 (a,x,b)
24 x d S9 (b, z,d)
25 T e s3 | apply x (d,x,e)
26 x f sq4 | split s3 s¢ | (sg,x) >4 | s¢—>e | (ex,f)
27 x a 50 (f,z,a)
28 x b 51 (a,z,b)
29 x d 52 (b, z,d)
30 x e S6 (d,z,e)
31 Yy e s3 | explore sg (s6,y) — S3 (e,y,e)
32 x f S4 (e,z, f)
33 T a S0 (f,xz,a)
34 x b s1 (a,x,b)
35 x d 52 (b,z,d)
36 x e 56 (d,z,e)
37 Y 2 s3 | apply z (e,y,e)
38 T f S4 split s3 s7 (s6,y) — s7 | s—=e | (e, f)
39 T a 50 (f,z,a)
40 x b s1 (a,x,b)
41 T d 89 (b,x,d)
42 T e S6 (d,x,e)
43 y e s7 (e,y,e)
44 Yy e sg | explore s7 (s7,y) — s3 (e,y,e)
45 x f S0 | merge sy (e,z, f)
46 x a 50 (f,z,a)
47 x b 50 (a,z,b)
48 x d 50 (b,x,d)
49 x e 50 (d,x,e)

Again we need to explore the missing transition on y, which we do in Index 44 in Table 4.2, but this time
se¢ and s7 are equivalent according to Definition 3.10, which allows us to immediately merge s7 into sg,
deleting s7 in the process. This now leaves the hypothesis looking like in Figure 4.4.

Finally, we remove the now unreachable State s3 which leaves the hypothesis, which is subsequently
returned to the main algorithm, just as in Figure 4.5.

Chapter 4. Illustrative Examples 33

X

Figure 4.3: Hypothesis after first loop of Algorithm 11 for Example 1.

Figure 4.4: Hypothesis in second loop of Algorithm 11 in Line 20 before removing unreachable
states for Example 1.

Figure 4.5: Hypothesis after completing Algorithm 11 for Example 1.

34 Chapter 4. Illustrative Examples

Learning Round 2

We enter the second learning round, iteration two of Algorithm 1, with the result from Algorithm 11 in
Figure 4.5. No state exploration is performed because J,, is input-complete and we perform an equiv-
alence query, in Line 15, because §,, is deterministic. We assume that the equivalence oracle produces
the steps shown in Table 4.3. At Index 56 we encounter unexpected behavior due to finally finding the
transition via State 5 again. This leads to the immediate termination of the equivalence query and the
start of the next learning round.

Table 4.3: Changes during the equivalence query for Example 1.

Index | Input Step | Observed | Actual | s. | ALO | ALS ALyd, AL | AyTr
50 x f 4 S4 (e,z, f)
51 T a 0 S0 (f,z,a)
52 x b 1 s1 (a,z,b)
53 Yy c 5 S5 (b,y,c)
54 x d 6 S9 (c,z,d)
55 x e 7 56 (d,z,e)
56 x a 0 50 (s6,x) — so (e,z,a)

Learning Round 3

Calculate 1W,-sets. After the equivalence query in Round 2 our hypothesis now looks like Figure 4.2
again with the difference that State 3 is now replaced with State 6. However, during the distinguishing in
Section 4.1 in Round 1 and and the equivalence query in Section 4.1, we acquired a longer trace, which
will now produce new distinguishers in Algorithm 10:

The set C'is produced first, which we split for demonstration purposes like this:

. C1 = {(4,56), (20, 56), (26,56), (50, 56)}
. Cy ={(13,32),(13,38), (13,45)}
. Cy = {(13,50), (13, 26), (32, 56), (38, 56), (45, 56)}

where C = C7; U Cy U Cs.

Note that the elements of preceding C-sets, like (4, 13) or (13, 20) from Section 4.1, are not included
in the current set C' due to the optimization in Section 3.9.

(' contains the pairs of indices that produce the distinguisher (x, z) for output d, and consequently
(x) for output e, Cy contains the pairs that produce the distinguisher (z, y, x) for output d, and conse-
quently (y, z), and C5 contains the pairs that produce only (z) for output e.

This leaves us with a mapping R like this:
R={a—0,b—=0,c—0,d—{(z,2),(z,y,2)}, e = {(x),{y,2)}, f = O}.

Distinguish. As we now have distinguishers for outputs d in addition to e the states with output d will
be distinguished first, as we require a fully distinguished state as s in Line 8, before the respective suc-
ceeding state with output e can be distinguished. Algorithm 11 will produce the hypophysis in Figure 4.6
after 16 iterations and 196 steps. Even one distinguisher per output would have been sufficient in this
case, however, because we have two per state we require more iterations.

Chapter 4. Illustrative Examples 35

Learning Round 4

The hypothesis at this point in time looks like Figure 4.6. As d,, is deterministic an equivalence query
will be performed. Because Figure 4.6 is equivalent to the original Moore machine in Figure 4.1 no
counterexample or unexpected behavior is found, thus the algorithm terminates with the correct result.

Figure 4.6: Completely learned hypothesis for Example 1.

4.2 Example 2

Example 2 is normal and also the smallest model that requires navigation via Algorithm 6 in order to
correctly learn the model. In fact, this example will successfully terminate with len,,,, > 1 but will run
into the alternative endless loop prevention in Line 7 in Algorithm 1 if len,,,, = 0. The example Moore
machine is shown in Figure 4.7.

Figure 4.7: Moore Machine for Example 2.

Table 4.4 shows the first 11 steps taken for Example 2. Initially, we do not even discover State 1
without the equivalence oracle, which we query at Index 3. In Iteration 2 of Algorithm 1 we then
correctly find the distinguisher for output a, namely (y), and apply it on State sq at Index 7. However,
here is were the problem occurs. Due to how the splitting works we end up confusing states 2 and 0
which, when navigating back to State s1, results in us not reaching s; with the direct transfer sequence
of (y) at Index 11.

There are two possible scenarios now depending on len,y. If len,,,, = 0 then not reaching State s;
leads to abandoning s; in Line 11 of Algorithm 4 which in turn leads us to terminating Algorithm 11
in Line 19. We would then run into the exact same sequence of step again and again, however, after
one more iteration, in which the distinguishing fails in precisely the same way, the algorithm terminates
with the alternative condition in Line 7 in Algorithm 1. In reaction to such a termination len,,,, can be
increased.

36 Chapter 4. Illustrative Examples

Table 4.4: Changes during first two iterations of Algorithm 1 for Example 2.

Index | Input Step | Observed | Actual | s | Comment | A4S ALdy, ALTr
0 a 0 S0 init S0
1 x a 2 50 explore (s0,x) — so | (a,x,a)
2 Y a 0 50 (s0,y) — so | (a,y,a)
3 y b 1 |s1| eq-query | s1 | (s0,y) 51| (a,9,b)
4 x b 1 s1 explore (s1,2) — s1 | (byx,b)
5 Y a 0 50 (s1,y) — so | (b,y,a)
6 Yy b 1 s1 | distinguish (a,y,b)
7 Y a 0 50 apply y (b,y,a)
8 Yy a 1 51 split s 59 (s1,y) — s2 | (a,y,b)
9 Yy a 0 $9 (b,y,a)
10 x a 2 so | explore so (s2,x) = so | (a,z,a)
11 Yy a 0 S0 | navigate sy (a,y,a)

The second scenario is with len,,,, > 1. After failing to reach State s; directly in Line 19 additional
transfer sequences are generated from the trace with Algorithm 6. In this case, (y) is found as a transfer
sequence from a state with output a to b, e.g. at Indices 3, 6 and 8 in Table 4.4, which is then tried after
Index 11 as the next step. Because (y) is now applied from State sy, we reach s; and may continue with
the distinguishing process, which eventually results in a correct hypothesis after three learning rounds

and 121 steps.

This example is very small but still illustrates how sometimes, through confusion of states, navigation
does not always succeed using the shortest transfer sequence. In such cases additional potential transfer
sequences from the trace may help to find target states again.

S Extension: Time-Triggered Behavior

5.1 Time-Triggered Behavior

Some of the measurement devices that the algorithm was developed for could not be modeled only as
Moore machines. It turns out that some of their states have transitions that are taken after a certain
amount of time passed without any input being required to trigger the transitions. We call such behavior
time-triggered, as the transition is not triggered by an input to the SUL but instead by the elapsing of a
certain amount of time. Furthermore, we call a state timed if it exhibits such time-triggered behavior.

Usually, timed states on the measurement devices are actions, such as measurements or checks, that
require a certain amount of time. The state is entered when the measurement is started and the state is
left again after a certain period of time. During the measurements most other inputs are mostly ignored
as we will see during the case study of the Smoke Meter in Section 6.2. Enabling our algorithm to deal
with such behavior was important for learning the more complex measurement devices, which led to this
extension of the base algorithm.

Such time-triggered behavior for automotive measurement devices was already encountered by Aich-
ernig et al. [3] under similar circumstances, where it was dealt with in a more elaborate fashion using
sink states. In our case, as will be explained below, we will primarily ignore other inputs in timed states
and thus learn a partial model instead of a complete one.

Issues. Experiencing time-triggered behavior during the learning process can lead to a number of prob-
lems that might range in their severity from negligible up to the termination of the algorithm via one of
the alternative termination conditions described in Section 3.4.

For one, time-triggered behavior introduces non-determinism into the learning process. Some tran-
sitions are taken only due to timing race conditions, depending on delays in messages or in the learning
process. The main problem is that we receive the result of an output query at a time where we believe
to be in a certain state, which might have changed earlier. Two examples of possible race conditions are
demonstrated in the sequence diagrams in Figures 5.2 and 5.3.

Additionally, recording wrong transitions in the trace, due to time-triggered behavior, may lead to
the generation of redundant distinguishers in Algorithm 10. Not only will this unnecessarily increase
the runtime of the algorithm, but worse, some distinguishers may be generated for states that would
otherwise have unique outputs. This may lead to the termination of Algorithm 11 in Line 7, if too many
outputs wrongly gain distinguishers in this way.

Attempting to learn machines with time-triggered behavior with only the base algorithm usually
resulted in either the premature termination of the algorithm due to lack of outputs without distinguishers
or the generation of ever more distinguishers which slowed the algorithm significantly. Furthermore, the
nature of race conditions would make it hard or even impossible to recreate earlier runs as the timings
may be different between each learning process, such that we could not guarantee that the outcomes of
different runs would be the same.

Solution. The solution we chose to deal with time-triggered behavior is twofold:

Firstly, we introduce a special input, the waiting input explained below in this Section, which is not
passed to the SUL but instead results in a waiting action by the output oracle, i.e., when the output oracle
receives this input it should actually wait for a certain amount of time. This input is added the input
alphabet and signifies if states have time-triggered transitions or not.

Additionally, to actually detect state changes, during the waiting process the output oracle should
periodically poll the current state of the SUL in order to detect when a state change actually happens
time-triggered.

37

38 Chapter 5. Extension: Time-Triggered Behavior

Secondly, we decided to not fully explore timed states with provided inputs because the trying of said
inputs in a timed state may produce the issues described above. Instead, timed states will, when entered,
only be left via their time-triggered transition and no other inputs are performed in them.

Not fully exploring some of the states will result in a partial model, such as the one in Figure 5.1. A
partial model is a FSM that is not input-complete and may be missing transitions for multiple inputs on
some states. In our case, all timed-states have only a single outgoing transition on their waiting input.

This prevents us from purposefully exploring inputs in states that might be interrupted by their time-
triggered transitions to other states and, in addition to the detecting of state changes during waiting,
enables us to mostly deal with time-triggered behavior. The limitations of this approach are described
below.

The downside of this approach is that we only produce a partial model anymore, meaning that we do
not explore the entire system but only a part of it. It also limits us in choice for testing algorithms, as
described in Section 5.2, and requires some changes to the base algorithm, as detailed in Section 5.2.

Waiting Input. A specific input ¢;, which we subsequently call waiting input, which may not be part
of the normal input alphabet, is chosen before the algorithm is started. This input ¢, is then added to the
input alphabet. If this special input is received by the output oracle in Figure 2.1 it is not forwarded to
the SUL.

Instead, upon receiving i, the output oracle starts waiting for a specified amount of time, ¢,,4, While
also polling the output of the current state from the SUL for changes. If during the waiting process a
change in output is detected by the output oracle then the waiting is stopped and the changed output is
returned from the output query. Otherwise, if the output does not change, the current output is returned
after t,,4, time. An example depicting this behavior is also shown in Figure 5.4.

In short, the waiting input corresponds to the action of waiting for a certain amount of time, or a
change of outputs, instead of a real input provided to the SUL.

wait

Figure 5.1: Partial Moore machine with waiting input ”wait” where State 1 is timed.

In Figure 5.1 we see a small example of a partial Moore machine with waiting input ¢; = wait. As
can be seen, the waiting input of State 1 leads to a different state, namely State 0, which makes it a timed
state. Furthermore, because State 1 is timed, no other inputs are accepted in it, which makes this Moore
machine partial as it is not input-complete. State 0 also has the waiting input on a transition, however, it
is not a timed state as the waiting input leads to a self transition. This corresponds to no change in output
if we wait in this state, i.e., the definition of a normal state.

Example without Waiting Input. The sequence diagram in Figure 5.2 shows a possible race condition
during the exploration process of Figure 5.1 if the waiting input is not added or at least not performed
first. For this example, we imagine that inputs = and y are ignored in State 1, which we would interpret
as self transitions during the learning process, and that the transition back to State 0 is triggered after a
fixed time interval ¢,,. The sequence diagram also shows that inputs and outputs as well as state changes
are not instantaneous. In the theoretical model time is ignored, in practice, however, tiny delays in state

Chapter 5. Extension: Time-Triggered Behavior 39

changes and in execution speed of the algorithm itself can change the behavior of the system as shown
here.

Output Oracle SuUL
input x € Starting: State 0
P
<— Change: State 1
output b
N input x
P
> fixed time interval
output b
N input y
> . -
L) Time-Trigger:
< OUtpUt a [\ State 0

Figure 5.2: Sequence diagram of a possible interaction between output oracle and SUL during
exploration without waiting input of Figure 5.1, triggering before output.

Starting in State 0 we reach State 1 with the input x, to which the SUL returns the output b of State 1.
The moment we enter State 1 a process is started that takes a certain amount of time to finish, ¢,,. Once t,,
time has passed we change back to State 0 via a time-triggered transition. In this example, we continue
sending inputs to the SUL, which are ignored in State 1, which leads us to wrongly assume that x is a
self transition and y is a transition back to State 0. This conclusion is entirely based on the order in which
the inputs were tried. If we had attempted input y first and x second we might have concluded that = led
back to State O instead.

There is, of course, no guarantee that subsequent visits to State 1 would result in the same transitions.
Dependent on the time delay between messages and the order in which inputs are performed on the
states, different observations would be made which would result in either a wrongly learned model, the
premature termination of the algorithm or, in the worst case, an endless loop.

The sequence diagram in Figure 5.3 shows an even more problematic race condition in the timing of
the time-triggered state transition. In this case, we still believe to be in State 1 when we send the input y.
However, the time-triggered state change has already happened, which means that input y could have led
us to a completely different state, which would have resulted in potentially multiple incorrect transitions.

Example with Waiting Input. In Figures 5.2 and 5.3 we did not have to make a distinction between
the learner and the output oracle, as there was no difference between their received inputs and outputs,
i.e., all inputs were passed directly through to the SUL and all outputs were passed directly back to the
learner. In Figure 5.4 we now show the successful identification of State 1 as timed, which now requires
the differentiation between learner and output oracle.

The learner uses the waiting input 7; = wait exactly like any other input, with the exception that it
is tried first as explained in Section 5.2. On the other hand, the output oracle does not pass the waiting
input to the SUL. Instead, it waits for a maximum waiting time t,,4, and polls the current state of the
SUL instead. The polling is the periodic sending of the empty input €, to which Moore machines will
respond with the output of the current state without changing it. While the output stays the same, in this

40 Chapter 5. Extension: Time-Triggered Behavior

Output Oracle SUL
input x € Starting: State 0
>
< Change: State 1
output b
N input x
>
> fixed time interval
output b
<
. . Time-Trigger:
nputy > A State 0
output b < Change: State 1
<

Figure 5.3: Sequence diagram of a possible interaction between output oracle and SUL during
exploration without waiting input of Figure 5.1, triggering before input.

Learner Output Oracle SUL
input x <€ Starting: State 0
>
< Change: State 1
output b
< . -
input wait
. input € >
< output b — fixed time interval
maximum _{
iti i input € : :
waiting time >) Time-Trigger:
< output a < State 0

N 1

Figure 5.4: Sequence diagram of a possible interaction between learner, output oracle and SUL
during exploration with waiting input of Figure 5.1, detecting State 1 as timed.

case, output b was the last observed output to the initial input x, we continue polling the state. Only if
we receive a new output, in this case a, do we stop the waiting prematurely and return the new output to
the learner.

Alternatively, if we do not observe any changes in input during the waiting period, we return after
the maximum waiting time ¢,,, expires with the last observed output.

Chapter 5. Extension: Time-Triggered Behavior 41

Limitations. It is clear from the example in Section 5.1 how the incorrect transitions can occur, if the
time-triggered behavior is not dealt with. However, the extended method’s success depends on a number
of variables that we have to choose carefully before the algorithm starts:

The maximum waiting time, ¢,,4,, Which can be seen in Figure 5.4, represents the longest amount
of time the output oracle will wait for a state change. It is quite intuitive that we can only catch time-
triggered behavior that we actually wait for, meaning that if we choose %,,,, to be smaller than the
longest actual time-triggered waiting time ¢,, we cannot detect it. This may in turn lead to all the issues,
described in Section 5.1, which we wanted to prevent with this approach in the first place. In contrast,
we also do not want to choose t,,4; to be too large, as this would increase the runtime of the algorithm
because we have to wait for up to ¢,,,, on every waiting input transition. An additional complication
may also be that the actual waiting time for the same transition varies. In that case, we have to choose
tmaz to still catch the longest outliers in waiting times.

The polling interval, ¢, is another variable that must be chosen with care. This is the time between
receiving an output from the SUL and querying the current state during waiting. If ¢, is too large, i.e.,
there are long waiting times between state queries, then it might happen that we miss an entire time-
triggered transition. The exact scenario may start with the query of the output during waiting, which is
not changed, then in the time it takes the output oracle to query the state again, we have two time-triggered
state changes for which both take less time than ¢,,. To prevent such a scenario, we recommend to choose
t,, as small as feasible. However, if the time-triggered transitions of the system are very fast then this may
still happen even with a small 7,,, as ¢, may be bound by network speed or other hardware limitations.
There is a bound on the minimum required sampling rate depending on the bandwidth of the connection
that was established by Shannon [35] that can be determined for such types of communication.

A fundamental limitation of this approach is that, due to only learning partial models, we do not
explore the entire behavior of the system anymore. One possible solution for working around this is to
explore the unused inputs outside of the learning process. For example, we used fuzzing methods on the
partial hypothesis after we finished the learning process to discover more about the behavior of other
inputs in timed states.

Additionally, learning only partial models restricts us in our choice of testing algorithm for the equiv-
alence oracle or at least requires us to modify the testing algorithms beforehand, as described in Sec-
tion 5.2.

In the future, some of the problems encountered due to time-triggered behavior could probably be
resolved by modeling the SUL not as a Moore machine but as a timed automata, as proposed by Alur and
Dill [9] and in the Uppaal model checker by Behrmann et al. [12]. We describe this possibility further
in Section 7.4. Of course, this would probably require the redesign of the entire algorithm, as it was
constructed specifically with Moore machines in mind.

5.2 Modifications to the Algorithm

In order to handle time-triggered behavior as described in Section 5.1 some changes had to be made to
the oracles, introduced in Section 2.2, as well as to the base algorithm, presented in detail in Chapter 3.

Definition Timed State. We formally define the concept of a timed state, as described in Section 5.1,
for a given waiting input 7; as

s € Sistimed <= 35’ € §,,(s,i;) : s’ # s (5.1

In short, states that have a transition to a different state on waiting input ¢; are timed, while states
with a self transition on said input are considered normal states, e.g., in Figure 5.1 State 1 is timed in
contrast to State 0.

42 Chapter 5. Extension: Time-Triggered Behavior

Redefining Input-Completeness. We earlier defined input-completeness of a state, in Definition 3.4
in Section 3.3.3, as having at least one transition to a non-abandoned state for every input ¢ € I in the
transition function d,,. We chose this definition because we required our hypothesis to accept any input
in every state and thus had to explore every single transition in Algorithm 2.

However, now that we are learning a partial model, which is by definition not input-complete,
and do not want to explore other inputs in timed states, we provide the following definition for input-
completeness instead

s € S is input-complete <= s is timed V Vi € I,3s’ € §,(s,i): 8" ¢ A (5.2)

The definition for input-completeness stays the same for states that are not timed, however, all timed
states are automatically considered input-complete, as we do not want to explore any other inputs in said
states. In short, for the purpose of the algorithm, timed states are treated as input-complete.

This definition is used in Algorithm 2 in Line 4 where targets are chosen for exploration of inputs.
With the new stipulations regarding input-completeness in Definition 5.2 we now do not target timed
states for exploration anymore, which may leave these states only partially explored as described in
Section 5.1.

Trying Waiting Input First. In order to determine if a state is timed, and to make sure to not run into
the issues described in Section 5.1, we must perform the waiting input 4; first before any other input is
tried. This is especially important for Line 11 in Algorithm 2 where all inputs are tried one after the
other. We must now always choose i; first, if the rest of the condition in Line 11 holds, and only then
choose the other inputs. If we did not try the waiting input first then we might run into the same issues
that we wanted to prevent, as we can only know if a state is timed once we performed the waiting input,
similar to the examples shown in Figures 5.2 and 5.3.

No Other Inputs in Timed States. Once a state is identified as timed we do not want to perform any
other inputs in that state except the waiting input. We already described the changes necessary to prevent
the purposeful exploration of other inputs in Algorithm 2 above.

Furthermore, we are already protected against accidentally performing other inputs in timed states
due to the concept of unexpected behavior. If during navigation in Algorithm 7 we enter any state
unexpectedly then the navigation is immediately halted before any other input can be performed in Line 7.
This prevents us from stubbornly performing input queries even though we entered a timed state.

Additionally, because timed states only have a single transition, all words purposefully navigating
through timed states will only use the waiting input, as that is the only explored input available for
Algorithm 5 and 6 to find.

Timing Aware Equivalence Oracle. Similar to how no other input may be tried in a timed state during
the algorithm, they may also not be performed during an equivalence query. In fact, trying a different
input in a timed state would lead to unexpected behavior in Algorithm 9, which would in turn terminate
the equivalence query. Additionally, it would also lead to all the issues described in Section 5.1. This
means that the testing algorithms have to apply the rule from Section 5.2, namely, that no other inputs
may be performed in timed states. In other words, the testing algorithm must be able to work with a
partial hypothesis.

A strong point of the base algorithm is that any conventional testing algorithm may be used by the
equivalence oracle, as stated in Section 3.5. With these restrictions, that the hypothesis is partial and that
only the waiting output may be performed in timed states, this is not the case anymore for the extended
algorithm. Most testing algorithms would have to be adapted to follow these rules, while some might not
be suitable for testing under these conditions.

Chapter 5. Extension: Time-Triggered Behavior 43

In our examples with time-triggered behavior, such as the Smoke Meter in Section 6.2, we used a
modified random walk equivalence oracle. A random walk oracle usually performs a certain number of
steps with completely random inputs and has a certain chance to reset after every step. The modified
version simply uses Definition 5.1 on every state in the hypothesis to detect if it is timed and only allows
the waiting input on timed states. For all other states random inputs are still chosen from the input
alphabet.

Timing Aware Output Oracle. The heart of this extension lies the correct interpretation of the waiting
input by the output oracle as described in Section 5.1, namely, that the waiting input is not forwarded to
the SUL but instead the state of the SUL is polled and that the query returns the last output either after
a state change or after the maximum waiting time ¢,, elapsed. An example of this behavior is shown in
Figure 5.4.

How this behavior is implemented may vary. Either the output oracle itself provides this functionality
or a wrapper for the output oracle does. In any case, the following three parameters have to be known
by the output oracle before the learning process is started, namely the waiting input %,,, the maximum
waiting time ¢,, and the polling interval ¢,. The choice of ¢,, and ¢, is pivotal for the success of the
extended algorithm as choosing either ¢,, or ¢, to be too large or too small may result in a number of
issues and limitations, as explained in Section 5.1. By contrast, the only important restriction about the
choice of i,, is that it may not be contained in the normal input alphabet.

Leaving Timed States. In order to deal with the time-triggered behavior as described in Section 5.1 we
must actively be waiting for a state change with the timing input. Otherwise, if we are “not looking” at a
time were a state change happens, then we will miss it, which would lead to all the particular problems
described above. To prevent us from accidentally missing a state change while we are doing an intense
computation, and not currently interacting with the SUL, we may navigate to a known not-timed state
before starting the computation.

In practice, Algorithm 10 turned out to be the only place where such an exception occurred. It is the
most computationally expensive task, which also does not interact with the SUL. Especially as the trace
gets longer its runtime might increase to the point where we would leave states via their timed-triggers
while doing the computations. A detailed explanation of the runtime can be found in Section 3.9. We
would like to run Algorithm 10 while the SUL is not in a timed state. This means that in Algorithm 1
in Line 11 before we start Algorithm 10 we determine all not-timed states, i.e., {s | s € (S \ 4) A
—(s is timed) }, and navigate to any one of them by using Algorithm 4 if possible.

Record Timings. Additionally to the mandatory modifications in Section 5.2, the learner may want
to time each step performed and record the timings, either in the trace or in a separate data structure.
This information can later be used to enhance the partial model with data points of interest, such as the
average time taken or the standard deviation on each time-triggered transition. These can be analyzed to
make statements about the length of the waiting period in general and about the regularity of the timings,
i.e., do they vary wildly or are they stable, in particular.

Caching Timing Results. A last optional change for this extension is the caching of outputs for which
the waiting time t,,,, elapsed without any state changes. If an output was observed that had no state
change on the waiting output then future waits on that output can be returned immediately. This has
the advantage of potentially increasing the speed of the learning process by a lot, because states that
are known not have time-triggered behavior do not require any waiting anymore. However, it has the
potential downside of failing to differentiate between timed and not-timed states with the same output.
If there are multiple states with the same output, they must either all be timed or not, but not a mixture
of both.

44 Chapter 5. Extension: Time-Triggered Behavior

In other words, caching should not be done if there are multiple states with the same output of which
some are timed and others are not. Furthermore, it should only be implemented if some knowledge about
this property of the SUL is already available.

In case of the Smoke Meter in Section 6.2, it turned out that all states with the same outputs also have
the same timing, such that this optimization was possible. We did, however, also perform the learning
process without caching for all devices we tested.

6 Evaluation

6.1 Performance of Base Algorithm

Evaluating the performance of the algorithm is not as straight forward as with some other learning algo-
rithms, primarily because it is so dependent on the exact shape of the model, but also because there might
appear be sizable outliers even among models with the same number of states and unique outputs. We
tested the algorithm with different combinations of number of states, unique outputs and len 44, all of
which are provided in full in Appendix A. All metrics are generated over 1000 different randomly gener-
ated Moore machines with the input alphabet I = (z, y) for each data point as will be further explained
below.

Implementation. The algorithm was implemented in Python 3.10 [17] in the AALpy framework of
Muskardin et al. [28]. All performance metrics and learned examples as well as the use case in Sec-
tion 6.2 were conducted with this implementation of the algorithm [39].

6.1.1 Benchmarking Setup

All benchmarks were performed over 1000 randomly generated examples with the input alphabet I =
(x,y) for each data point provided in this Section. An example in our case is a randomly generated
Moore machine that we consider as a black-box system. We then relearn the generated Moore machine
and compare the learned model to the originally generated one to determine its correctness, i.e., if we
relearned an equivalent version of the original Moore machine. We generated 1000 such examples for
every combination of states and the corresponding amount of unique outputs, between 3 and 15 states.
This produced over 75000 different examples, which were used for testing a variety of combinations
between number of states, unique outputs and len,,q, values, resulting in over 150 000 tests performed
in total.

To better compare the different tables in Appendix A, the same 1000 example were used for the same
number of states and unique outputs, i.e., the examples used in Table A.1 with len,,,q, = 10 are the same
ones used for the corresponding rows in Table A.3 with 8 states.

Tables A.1, A.2 and A.3 were all generated using metrics from the performance of the base algorithm
from Section 3. In contrast, for sake of comparison, Table A.4 was generated using Angluin’s L* using
resets algorithm [10] using the existing implementation in AALpy [28]. Each row of every table is the
accumulation of runs over 1000 examples as explained above.

The columns in Tables A.1 to A.4 have the following meaning:

* states - the number of states of the generated Moore machines

* unique - the number of unique outputs

* leNmaz - the value of the len,,q, parameter for the 1000 runs

* SUCCESS - the number of successfully and correctly learned models (from 1000)

e TERM - the number of runs (from 1000) that terminated via the no-change condition in Line 7 in
Algorithm 1

e LIMIT - the number of runs (from 1000) that terminated because of the limitations described in
Section 3.1 via Line 7 in Algorithm 11

* LONG - the number of runs (from 1000) that took longer than 10 seconds to learn or performed
more than 100 learning rounds and were aborted to allow for faster testing

* u-steps - the mean number of steps during all successfully learned runs

45

46 Chapter 6. Evaluation

* n-steps - the median number of steps during all successfully learned runs

* o-steps - the standard deviation over all steps during successfully learned runs

A step for our algorithm is a single input and its response performed by the output oracle. The metrics
u-steps, n-steps and o-steps are calculated for only the successfully learned runs, with at maximum all
1000 if all examples were successfully learned. They do include steps taken during the equivalence
queries, however, these have little impact on the metrics because of the usage of a perfect equivalence
oracle as described below.

We decided to add the median in addition to the mean because our algorithm tends to have large out-
liers regarding the number of steps, which can become apparent by comparing the mean to the median
or by observing the large standard deviation. Of additional interest are the different types of termina-
tion during the algorithm. We will discuss this in more detail below, but generally, TERM is strongly
correlated with len,,q, compared to the number of states, while LIMIT is correlated with the number of
unique outputs.

Equivalence Oracle. For all benchmarks in Appendix A we used a perfect equivalence oracle. A per-
fect equivalence oracle is one that has access to the underlying Moore machine inside the, normally,
black-box SUL and may simply compare the provided hypothesis with the underlying system. It can
generate a counterexample simply by determining an input sequence that distinguishes any two states in
the automaton and perform the exact sequence afterwards to induce the unexpected behavior in our algo-
rithm. This allows us not to influence the metrics via our choice of equivalence oracle during benchmark-
ing and focus solely on the steps taken during the actual learning process, and not during the equivalence

query.

6.1.2 Influence of len,,,,

One factor that plays a big role in the runtime and the successful learning of the algorithm is the
lenymaqe parameter. It determines the maximum length of words generated from the trace in Algorithm 6
(findAllwords) to navigate to target states using Algorithm 4 (navigateToTarget). If the direct
navigation to a target state does not succeed, words are taken from the trace that led us to states with the
correct output before. In cases were we choose a too small [eny, 4, if words from the trace are not suffi-
cient to lead us to the target state, we will abandon the target state. This can result in a termination of first
Algorithm 11 (distinguish) and in consequently, if we should reach the state but cannot, we might
terminate the entire algorithm via the alternative condition in Line 7 in Algorithm 1 (mainAlgorithm),
which is described in Section 3.4. The smaller len,,,q, the more likely this scenario is.

Figure 6.1 shows the success rate of learning Moore machines with 8 states, of which a certain
number have unique outputs, given a len,,,,. The learning data was aggregated by measuring metrics
on 1000 fully-connected, randomly generated Moore machines and observing the number of correctly
learned models. Fixating the number of states to exactly 8 allows us to better show the correlation
between len,q, and said number of states of the model. The entire data set for this figure is provided in
Table A.1.

As expected, a lower len,,,q, leads to the scenario described above more often, which in turn means
fewer models will be learned correctly. Further, the combination few unique outputs and lower len,
is especially bad in terms of success rate. Of course, it is not affected in case of a trivial model, i.e.,
all states have unique outputs, as we do not require navigation via the trace for such cases. The success
rate increases with len,,., and levels out at some point but does not reach 100% as there are other
factors that may lead to a termination. In Table A.1 the TERM value indicates the number of models that
were terminated according to the condition in Line 7 in Algorithm 1. LIMIT indicates how many runs
terminated due to the limitations described in Section 3.1 and enforced in Line 7 in Algorithm 11, while
LONG are outliers and indicate the number of runs that took longer than 10 seconds to learn and were
aborted.

Chapter 6. Evaluation 47

100 N K o o~ OO

80

> —k— unique: 3

g 60 - —fk—unique: 4

= unique: 5

3 40 - +un?que: 6

é’ unique: 8
20

0 T T T T T I

I I
o 2 4 6 8 10 12 14

lenmax

Figure 6.1: Learning success rate depending on len,,, 4, over 1000 fully-connected, random Moore
machines with 8 states from Table A.1.

In short, choosing len, ., equal to the number of states or higher seems like a good value. In case
the algorithm terminates via said condition, len,,,, can always be increased further.

6.1.3 Influence of Unique Outputs

One of the big factors on runtime and the success rate of the algorithm is the number of unique outputs
among the states. As we assessed above, len,,q, should be about equal to the number of states to start
leveling out success rate. This is exactly what we did in Table A.2 were we adjusted len,,q; to the
number of states. The results are visualized in Figures 6.2 to 6.4.

As expected, the number success rate decreases with the number of unique outputs, i.e., 2 unique
outputs has the lowest success rate while 12 unique outputs has the highest, as can be seen in Figure 6.2.
This makes sense as this is one of the limitations of the algorithm, explained in Section 3.1, which
makes 0 unique outputs impossible to learn for the algorithm. But even with a few outputs this limitation
can lead to the termination of the algorithm, as not the absolute number of states with unique outputs
is required to be greater than zero, but the number of reachable states must be. Sometimes during
Algorithm 11 it is possible that all other states with unique outputs are unreachable or abandoned, which
will trigger the termination via Line 7 even if there would be unique outputs in the machine.

Ideally, the SUL should have as many unique outputs as possible to increase the performance of the
algorithm. It works best when only a small percentage of outputs is duplicated.

48

Chapter 6. Evaluation

80
s
o 60 -
<
" —k—unique: 2
§ 40 4 —F unique: 4
é’ —k—unique: 6
—k— unique: 8
20 7 —+—unique: 10
—k—unique: 12
0 I I I I I

I
4 6 8 10 12 14
number of states / len, a4z

Figure 6.2: Learning success rate depending on the number of states = len,, ., and unique outputs
over 1000 fully-connected, random Moore machines from Table A.2.

| —k—unique: 2

104 4 —+ unique: 4
2 1 ——unique: 6
o] .
8] —k—unique: 8
% 103 4 —fF unique: 10
@ 1 —k—unique:
Q .
2]
5 10°
=

101 E

\ \ ‘ ! ‘ ‘
4 6 8 10 12 14
number of states / len,,qz

Figure 6.3: Mean of steps during learning depending on the number of states = len,,,4, and unique
outputs over 1000 fully-connected, random Moore machines from Table A.2.

Chapter 6. Evaluation

| —k—unique:

104 4 —F unique:
8 4 —k—unique:
Q 4 .
2] —k—unique:
£ 1p8 4 —F unique:
a. 1 —k—unique:
o]
« —
g 102
5 1077
Q m
=]

10! 5

T T T \ ‘ ‘
4 6 8 10 12 14
number of states / len,qx

Figure 6.4: Median of steps during learning depending on the number of states = len,,q, and
unique outputs over 1000 fully-connected, random Moore machines from Table A.2.

49

50 Chapter 6. Evaluation

6.1.4 Fixed len,, ..

More often during black-box testing, we have no prior knowledge about the SUL and its states. If the
number of states is not known in advance, len,q, is mostly chosen as some fixed value. This of course
has negative repercussions in form of success rate and performance decrease if the number of states turns

out to be larger than the chosen len,.,. However, this is the more realistic example during black-box
testing.

100
80 -
S
g 60
” —k—unique: 2
§ 40 unique: 4
% —k—unique: 6
—k— unique: 8
20 1 ——unique: 10
—k—unique: 12
0 T T T

T T
4 6 8 10 12 14
number of states

Figure 6.5: Learning success rate depending on the number of states and unique outputs over 1000
fully-connected, random Moore machines with fixed len,,,q,, = 10 from Table A.3.

We provide such metrics with a fixed len,,,, = 10 in Table A.3, which we visualize in Figures 6.5
to 6.7. While the changes compared to Table A.2 are not that large, there is a notable trend with better
success rate for smaller number of states, as [en,q, is comparatively higher, and a lower one for larger
number of states, i.e., more than 10 states.

Chapter 6. Evaluation

| —k—unique: 2

104 4 —F unique: 4
2 1 —k—unique: 6
=9] .
3] —k—unique: 8
3 103 4 —F unique: 10
@ 1 —k—unique:
Q_‘ .
2]
5 10°
=

101 E

I I I I I I
4 6 8 10 12 14
number of states

Figure 6.6: Mean of steps during learning depending on the number of states and unique outputs
over 1000 fully-connected, random Moore machines with fixed len,,q, = 10 from

Table A.3.
| —k—unique: 2

104 4 —F unique: 4
& 1 —k—unique: 6
%] —k—unique: 8
£ ¢34 —F unique: 10
§ 1 —k—unique:
5 107 5
Q m
=]

101 E

T T T T T T
4 6 8 10 12 14
number of states

Figure 6.7: Median of steps during learning depending on the number of states and unique outputs
over 1000 fully-connected, random Moore machines with fixed len,,q, = 10 from
Table A.3.

52 Chapter 6. Evaluation

6.1.5 Comparison with L*

The comparison between L* and the base algorithm should be taken with a grain of salt, as L* is allowed
to use resets while our base algorithm does not. Additionally, one should keep in mind that fewer runs
were successful for the base algorithm than for L*, especially for lower numbers of unique outputs, and
that these do not appear in the metrics about the number of steps. We show the comparison between
performance metrics for 8 states in Table 6.1, which were taken from Tables A.2 and A 4.

L* is much more consistent and is hardly influenced by the number of unique outputs, while the
base algorithm is strongly influenced by them, as shown above. That said, even though we do not use
resets, our algorithm performs better for trivial examples and for examples with many unique outputs,
in this case, 8 and 6 unique outputs. On the other hand, the number of required steps explodes with a
small number of unique outputs. However, comparing the medians instead of the means, i.e., ignoring
the outliers, we achieve a much more satisfactory performance.

Table 6.1: Comparison between selected data points of L* and base algorithm performance, taken

from Tables A.2 and A 4.

Examples Learning L* with resets Learning Base Algorithm
states/len,q; | unique | p-steps | n-steps | o-steps | p-steps | n-steps | o-steps

8 8 129.9 | 126.0 10.4 25.4 25.0 3.3

8 6 129.9 | 126.0 11.2 78.0 66.0 40.9

8 5 131.0 | 126.0 154 152.9 | 133.0 111.9

8 4 131.8 | 126.0 16.0 442.8 | 168.0 | 5695.7

8 3 135.6 | 130.0 21.6 17472 | 281.5 | 28588.2

8 2 137.5 | 130.0 26.1 6796.0 | 349.0 | 73021.9

6.1.6 Outliers

One of the weak spots of our algorithm are the outliers in terms of performance. Although all 1000
examples have the same number of states, unique outputs and len,,, there are a few examples that take
a disproportionally large amount of steps and time to complete. This appears to be due to the exact form
of the example, i.e., the transitions and order of duplicated inputs, which is hard to quantify.

In the future, it would be of great interest, and would increase the utility of the algorithm, if the
outliers could be reduced and therefore the performance would become more stable and predictable. We
discuss this further in Section 7.4.

6.2 Case Study: Smoke Meter

6.2.1 System Under Learning: the Smoke Meter

The AVL 415SE Smoke Meter device, which we will call Smoke Meter from now on, is an automo-
tive measurement device designed for measuring the soot content of exhaust fumes of combustion en-
gines [11]. It does so by sucking the exhaust fumes through a strip of paper, which is stained by the soot,
and measuring the change in reflectivity of the paper. Depending on the strength and length of the suc-
tion process, this allows for the analysis of the exhaust fumes and in turn the workings of the combustion
engine.

AK-Protocol. The Smoke Meter can be controlled remotely using the AK protocol, a simple Ether-
net based communication protocol presented by Jogun [23]. An interaction with the Smoke Meter is
always initialized by the oracle by sending an AK telegram to the Smoke Meter, to which it immediately

Chapter 6. Evaluation 53

responds with its own AK telegram. This interaction is only limited by the speed of the Ethernet connec-
tion and the tiny delay the Smoke Meter requires to process the command, which in our setup amounted
to about 0.12 seconds on average. Each AK telegram contains a four letter AK command followed by
potentially other values depending on the type of command sent. AK commands starting with the letter S
perform actions on the device and may lead to state transitions, which we call S-commands, while ones
starting with A only query device parameters and never result in state changes, called A-commands.

Input Alphabet. The input alphabet, with which the device was learned, consists of a range of dif-
ferent S-commands, as we are interested in observing state transitions, which are only performed on
S-commands. It does not include all possible S-commands but a selected subset, which we constructed
jointly with AVL, based on what we believed to be most interesting or are composed of commands that
we believe to be used more often during ordinary device usage. The only exception is the WAIT input,
which is not an AK command but is instead the waiting input introduced in Section 5.1. The WAIT
command is not sent to the Smoke Meter, as it starts neither with S nor A, but is processed by the output
oracle.

* SRDY - Stops all current activities and sets the device to Standby mode.

* SMES - Starts a measurement cycle, sucking in exhaust fumes and measuring the amount of soot
on the paper.

* SPUL - Starts a purging cycle, cleaning the air ducts.

e SFPF - Starts a paper feed.

* SVOP - Starts a volume check, testing the air flow through the device.
* SMKA - Starts a measurement head calibration.

* SMRE - Starts a reflection measurement on the current paper segment.
e SLEC - Starts a leakage check.

* SASB - Prepares the device for a synchronized measurement by readying it for sucking on the next
SMES command.

* SBSZ - Reset operating hours of device.
¢ SKOR - Calibrate volume correction factor.

* WAIT - The waiting input, which is not an AK command and instead performs the waiting action
described in Section 5.1.

Internal State. 'The Smoke Meter responds to any S-command immediately with a payload containing
the information about the success of the operation, in the form of either a code Ok or Error!. This
response is mostly not useful for determining the state of the device, as all S-commands return the same
Ok and Error codes independent of the states they are in. To clarify, there might be a difference between
states if one operation returns Ok in one state and Error in another, but this information is not enough to
differentiate between most states. For example, the success response Ok is identical for all S-commands
in all states, which does not provide any relevant state information.

Of much greater interest are the internal state variables that can be accessed with A-commands.
These return a wide variety of sensor data or internal data points about the current state of the device.
Additionally, A-commands do not change the state of the SUL and may be performed at any time, no
matter which state the device is in or which process is currently executed on the device.

'This is a simplified explanation. The response to S-commands is actually either a zero for success or the number of a
specific error code.

54 Chapter 6. Evaluation

Similar to how Aichernig et al. [3] determined the state for their industrial measurement devices,
we will use selected A-commands to query the state of the device. We will interleave these and the S-
commands to first change the state of the SUL, using an S-command, directly followed by querying the
device state, using an A-command. The response to any input, i.e., S-command, will then be the response
of the subsequently performed A-command instead, which provides the state information.

For this use case, we chose the ATZU command. More specifically, the ATZU command contains a
number of different values in its response, one of which is the internal state of the device as described
in the manual of the Smoke Meter [11]. This internal state variable is a number which gives information
about what the device is currently doing. However, the state information provided by AIZU is not
extensive enough to provide unique outputs for every single state code, i.e., the values of the internal
state variable are too coarse to differentiate between some of the states for a state machine, which is the
reason learning is required in the first place.

The potential state codes provided by the ATZU command are:

: power up - Before the device is fully turned on.

: error - An error occurred which should be acknowledged using the SRDY command.

: set ready - Stopping operations and preparing for return to Standby mode.

: ready - Standby mode, in which the device is ready for measurements or other commands.
: ready with purge - Purging the air vents and preparing for return to Standby mode.

: device check - Performing some device performance or calibration check.

: volume check - Testing the air flow through the device.

: paper measurement - Measuring the reflection of the paper and calibrating the device.

: measurement - Performing a standard measurement.

.
© 0 N O Ot s W N = O

: set suction ready - Preparing for synchronized measurement.
* 10: suction ready - Ready for synchronized measurement.
* 11: synchronized measurement - Performing a synchronized measurement.

* 13: paper feed - Advancing the paper feed.

These internal state codes are used at the output to the states of our Moore machine for the Smoke Me-
ter. We assume that not observing a difference in the response to a query, i.e., sending an S-command
followed by AIZU, means that no state change took place, which results in a self transition on that input.
Furthermore, the polling of the state in response to the waiting input WAIT, explained in Section 5.1 and
visualized in Figure 5.4, is performed using the ATZU command, i.e., the empty input € is replaced by
ATI7U, which returns the current state.

Equivalence Oracle. For equivalence queries we used a modified random walk oracle. A classical
random walk oracle performs up to step,,q, random inputs from the input alphabet and has a certain
probability of performing a reset, p,reset, after every step. Additionally, our modified version of the
random walk oracle was aware about the definition of timed states in Section 5.2 and only performed
waiting inputs in such states while still choosing random inputs in all others. This prevents us from
performing any missing inputs in a timed state of the partial hypothesis provided to the equivalence
oracle, which was explained in detail in Section 5.2.

6.2.2 System Under Learning: the Digital Twin

In addition to learning the physical Smoke Meter device we also learned a model from a digital twin
(DT) of the Smoke Meter. A DT is a virtual model, i.e., a simulation, that represents and behaves as a

Chapter 6. Evaluation 55

physical device, which is one of the definitions provided by Preuveneers et al. [33]. Additionally, Tao et
al. [36] explain common uses and applications of DTs in industry as well as show different views on the
concept of DTs. One of the goals of the LearnTwins Project is to improve said DTs through the use of
automata learning.

The DT of the Smoke Meter is used by the company AVL in-house for testing, among others, and
was at some point manually created based on the product guide of the Smoke Meter. It responds to AK
telegrams and can be interfaced with exactly like the real Smoke Meter in Section 6.2.1. Under ideal
circumstances, the DT should not be differentiable from the real device, except that the waiting times
defined for the DT were much shorter than the once on the real device to facilitate faster testing. As will
be shown in our results in Section 6.2.3, we managed to find further subtle differences in the behavior
between the real device and the DT, which were then used to enhance and improve the existing DT of
AVL.

As the DT mirrors the behavior of the Smoke Meter, can be interacted with the AK protocol and
otherwise provides the same responses, all commands and settings explained for the real Smoke Meter
in Section 6.2.1 are also applicable for the DT.

6.2.3 Results

The learned model of the Smoke Meter, explained in Section 6.2.1, and the provided DT, explained in
Section 6.2.2, are shown in Figure 6.8 and 6.9 respectively.

We enhanced both models with timing information from the learning process. The WAIT transition
on timed states has three additional values in parenthesis next to it, namely m, d and N, where N is the
number of times this transition was taken during the learning process, while m and d are the mean and
the standard deviation of times waited on this transition respectively. For example, if a transition was
taken three times, N = 3, while waiting 3, 5 and 7 seconds respectively, we would label the transition
with a mean m = 5 and a standard deviation d = 2.

Learning Parameters. For the learning of the models we chose the following parameters:

* stepmas = 150 - the maximum number of steps for the equivalence oracle
* preset = 0 - the reset probability for the equivalence oracle

* 4, = WAIT - the waiting input

* typ = 200 - the maximum waiting time in seconds

* t, = 0.2 - the polling interval in seconds

* leNmaz = 10 - the maximum word length generated from the trace

* [- the input alphabet provided in Section 6.2.1

* Finally, the internal state codes provided by the ATIZU command are used as the outputs of our
Moore states as described in Section 6.2.1.

The equivalence queries took a disproportionally long time, primarily because most steps taken were
waiting actions, which of course could take up to t,, = 200 seconds. We chose only a small step,,qx
to keep the time of our equivalence queries short. Similarly, we decided to reduce the reset probability,
Dreset> 10 0%, as navigating the reset sequence would take additional time for every reset performed and
did otherwise not make a big difference for these fully-connected models, especially with a random walk.

The maximum waiting time ¢,, had to be chosen so high because some of the transitions in the
Smoke Meter took a comparatively long time. Especially, the transition from State 16 to State 4 took two
minutes on average. We did perform one single learning round with a waiting time of 5 minutes before
choosing t,, = 200 to make sure that no longer transitions existed in most of the explored states.

Chapter 6. Evaluation

56

(8=N'S"Tv=P1'901=W) LIVAY

() Apearias

AQYS|

‘s3uTW YIIm 9OTAIP JUSWIAINSEIW JOJQJA OWS TAVY U JO [opowl paured] [enied :8°9 ainbi4

AQds (L=N'8"€=P"0"L=W)LIVA

(9) Yo9yo dwnjoA m 1) Juowanseaw 1oded

TNdSSTNSE R BN N

(01) Apear uonons w

(9=N'T'0=P‘€’s=W)LIVM

Q mov Apea1 uonons 19s

(T=N'T°0=P'€’ I=W)LIVM) 9SVS

(I=N"1-=P'€'y1=W)LIVM

Mw mt JuowaInseaw roded

(T=N"0"0=P"0'y=W) LIV \J IS

)

Qm: pagy 1oded

(T=N'T'0=P'T'9L=W)LIVM

_Q 1NdS

VIINS/DATS/ (9=N"9"€=P'9'8=U) LIVA\,

)

mmv O3y D1AP

)

(T=N‘1'0=P'8"L=U) LIVAA \\ dOAS

QE OYd dWInjoA mwv JUSWAINSBIW

=

(¢) Apear

57

Chapter 6. Evaluation

"sSuTI) YIIm 99TASP JUSWAINSLAW IS AOWS TAV U} JO UIm) [E)ISIp oy} Jo [opowr paured] [enied :6°9 ainbi4

mvv a8ind yum Apear | 4

(TI=N‘1°0=P'¢'T=W) LIVM

(8) WowdInseawW | ¢

SHN

(LI=N'E€T=P'S" 1 1=W) LIVA 1ndS| dOASQ ASVSERVA= () Apear uonons @

(0T=N'€’0=P'0'z=W)LIVM) SHIN'S

(S) YooyD 201A3p | 9 (¢1) pavy 1oded w AQAS m@ Apea1 uornons 39s Q
VINS\ DATS\ (6T=N'T'0=P°0'ST=WIIVM \dOAS\ (€=N'T0=P'T'Z=WLIVM) AddS dsvs
AQys IS (¢) Apear |

q

58 Chapter 6. Evaluation

Finally, the polling time ¢, was picked as small as possible to get more accurate waiting times for the
models.

Differences. As can be seen from comparing Figures 6.8 and 6.9, some differences can be observed,
the biggest being that the state suction ready (10) is a timed state for the Smoke Meter in Figure 6.8,
which in turn leads to the state error (1), while it is not timed for the DT in Figure 6.9. This behavior
was not documented in the product guide and, because the DT was created by hand from descriptions
from the product guide, was therefore not included in the DT. Without this additional error state, the DT
turned out to be trivial, i.e., all of its outputs are unique, which resulted in only a single learning round
for exploring the DT.

Another difference is that some commands like SVOP do not lead to the correct state in Figure 6.9,
in this case it leads to device check (5) instead of volume check (6), while other commands do not lead to
state transitions at all, such as SMRE.

Lastly, as already mentioned in Section 6.2.2, the DT does wait for a significantly shorter time on
transitions than the real device, which was done by design to improve tests that did not require exact
times on the waiting transitions.

Implications. Altogether, the results obtained from learning the models were satisfactory and pre-
sented some opportunities for us to enhance and improve the DT. The missing or incorrect state tran-
sitions, as explained above, were added to the DT. In addition to that a new timing profile was created
based on the timings obtained from the real device in Figure 6.8. This profile can be exchanged for the
one with shorter waiting times in the DT whenever there is a special interest in simulating the device as
close as possible, in comparison to performing the tests faster. Additionally, the learned models were
validated by AVL and seem to be correct representations of the device.

7 Concluding Remarks

7.1 Summary

In this thesis we presented an active automata learning algorithm which learns Moore machines reset-
less. We extended the base algorithm to handle time-triggered state transitions in order to learn industrial
measurement devices that exhibit such time-triggered behavior.

The algorithm first engages in state exploration, in which all missing inputs are tried and processed. It
then calculates distinguishers for the IW,-sets, which are then split up into output specific classical W -sets
used by the algorithm, by finding inconsistencies in the trace. These can then be used to distinguish states
with the same output until our hypothesis is deterministic, which will then be given to the equivalence
oracle to ensure its correctness. These steps are then repeated as necessary.

We provide the formal data structures, methods and analysis of both in great detail. In addition,
we demonstrate the workings of the algorithm on two illustrative examples, presenting every step the
algorithm performs in-depth.

We explain time-triggered behavior, that it introduces non-deterministic behavior into the algorithm,
and that we can extend our base algorithm to deal with it by defining a special waiting input. It is used
to wait for timed transitions while polling the current state to detect sudden state changes. Where we
encounter time-triggered behavior we only explore said behavior and learn a partial model instead, which
prevents us from encountering said non-deterministic behavior during the exploration of other inputs in
timed states. The instructions to extend the base algorithm are provided in full.

We implemented the base algorithm and the extension in Python [17] using the AALpy frame-
work [28] and provided it here [39]. We used this implementation to test the success rate and performance
of our algorithm on over 75 000 different randomly generated Moore machines with a variety in number
of states and unique outputs. Furthermore, we provide an in-depth analysis about these metrics depend-
ing on the size of the automaton, the number of unique outputs and the [en, 4, parameter. The algorithm
learns well for small to medium sized automata and works better when the number of unique outputs is
higher. On the other hand, while most automata can be learned in normal time there are a considerable
amount of outliers that make the algorithm overall less consistent than desirable.

Finally, we performed a case study on our algorithm used on an industrial measurement device. We
were able to successfully learn the Smoke Meter, an automotive industrial measurement device by AVL,
and its digital twin and found differences in their behavior. These results were then used to improve the
digital twin and extend it with more precise timing information.

7.2 Related Work

In the domain of automata learning, we differentiate between passive and active learning approaches.
Passive automata learning is the learning of a model from existing traces, without interacting with the
SUL at all. Examples for prominent passive learning algorithms, as mentioned by the survey of Aichernig
et al. [4], are the RPNI [30] and ALERGIA [14] algorithms, both using a state-merging method to
construct the models from the traces.

In contrast to this is the active automata learning approach, which interacts with the SUL via queries
to learn the model. Among the most prominent active learning algorithms are Angluin’s L* [10], Is-
berner et al.’s TTT [21], as well as Kearns and Vazirani’s algorithm [24], all of which were evaluated
in Aichernig et al. [8]. Both AALpy [28] and LearnLib [22] are libraries that support a variety of the
aforementioned algorithms.

59

60 Chapter 7. Concluding Remarks

First Reset-less Learning Approach. The first procedure that allowed for reset-less active automata
learning was described by Rivest and Schapire [34]. The key technique they use for it is the inference of
a homing sequence (see Section 2.5). They use the L* algorithm introduced by Angluin [10] but replace
the required reset with said homing sequence instead. Because a homing sequence is not guaranteed to
end in a particular state, just a known one, they simulate up to n different versions of L*, one for each
state after a homing sequence. L* learns the SUL correctly if the homing sequence is indeed correct,
however, the homing sequence is not known in advance and must be constructed during the learning of
the algorithm. The homing sequence will be improved every time some inconsistency is detected in L*,
in which case a more general homing sequence is generated and then the L* procedure may be started
again with this better homing sequence.

Reset-less Passive Learning. Chen et al. [15] present an approach on passively learning Markov chains
from a single trace of observations. Their approach only requires a single trace because their focus lies
on learning devices for which it is difficult to obtain multiple independent execution traces. Such a trace
may be generated without any resets and thus presents a viable method for passive, reset-less learning.

hW-inference Algorithm. Another modern approach to reset-less learning is the newly developed hW-
inference algorithm proposed by Groz et al. [19], which can learn Mealy machines by assuming a bound
on the number of states. The hW-inference works by constructing a characterization set as well as a
homing sequence and gradually refining both until all states can be differentiated. The main algorithm
assumes a perfect homing sequence and W-set. Using these, a hypothesis can be built by progressively
exploring the SUL. If the homing sequence and W-set are indeed perfect, then no non-determinism will
occur and no counterexample is required to refine the hypothesis. If non-determinism does occur, then
either the homing sequence or the W-set or both are not yet correct. They use a number of methods and
heuristics to then improve the homing sequence or the W-set respectively and repeat this process as long
as necessary until the main algorithm terminates. Bremond and Groz [13] assess the performance of the
hW-inference algorithm on a number of case studies.

Our own algorithm is somewhat similar to hW-inference in some aspects but differentiates itself
through the following points:

Firstly, our algorithm works specifically on Moore machines. We exploit the structure of said Moore
machines multiple times. Once during the polling of the state information to deal with time-triggered
behavior, as explained in Section 5.1. Another time we benefit from the form of Moore machines, as it
allows us to split the classical W -set into multiple smaller 1W,-sets, leading to fewer distinguishers per
state overall, as described in Section 3.3.5.

Additionally, our algorithm does not use homing sequences for navigating the SUL, but generates
potential transfer sequences from the trace instead in Algorithm 6. We also use the trace to generate
distinguishers for our W,-sets in Algorithm 10.

Learning Industrial Measurement Devices. Finally, others have worked with the types of measure-
ment devices, which we aimed to learn with our algorithm, before:

Aichernig et al. [3] are among the most closely related one. They learned a different device but with
the same AK protocol and, in their work, encountered sporadic non-determinism from the device, which
they were able to mask using sink-states.

Additionally, Aichernig et al. [1] also tested the same device using a model-based mutation test-
ing approach. In said approach they check for conformance between a test model of the systems and
generated mutations, i.e., changes induced in the model, to potentially detect discrepancies and bugs.
However, for this a model must first be created, potentially using model learning techniques, which is
where our algorithm could be used.

Chapter 7. Concluding Remarks 61

Also, Aichernig and Burghard [2] demonstrate a mapping from domain-specific models to Moore
machines for use in model-based testing. They work on similar industrial devices and use a domain-
specific language called the Measurement Device Modeling Language, which they use to transform the
previously mentioned models into partial Moore machines.

7.3 Conclusion

The research problem of this thesis was to develop a new active automata learning algorithm that works
without resets and models the systems as Moore machines. The developed algorithm was then adapted
to specifically learn the models of measurement devices from the automotive industry such as described
by Aichernig et al. [3], by building an extension for the algorithm that allowed it to handle time-triggered
behavior during execution. We model these devices as Moore machines because they represent their
capabilities better. They have some internal state variables and sensor values which we can access using
queries. This corresponds to the output of a Moore state. We exploit the structure of Moore machines
in our algorithm to perform fewer input sequences to distinguish states, by splitting the classical W -set
into output specific W,-sets, explained in Section 3.3.5.

Resetting the learned system is sometimes difficult or infeasible due to constraints or would otherwise
require an untenable amount of time. Therefore, the reset-less nature of the algorithm was an especially
important aspect of the development process. The developed algorithm does in fact not require resets at
all, but is still able to simulate resets for testing algorithms during equivalence checking by navigating
to a chosen starting state. This allows us to use any established testing algorithm, such as the W-method
by Chow [16], the mutation testing approach by Aichernig and Tappler [7] or other ones evaluated in
Aichernig et al. [8], in combination with the base form of our learning algorithm.

Using the extension to deal with time-triggered behavior requires some changes to the exploration
and testing aspects of the algorithm. In the extension we define a waiting input that represents the waiting
on a timed state transition for a certain amount of time. Once a time-triggered state transition is recorded
no other inputs are tried in that state, which prevents the occurrence of non-determinism due to race
conditions. Otherwise, these race conditions could lead us to observing transitions incorrectly, which
would prevent the base algorithm from learning devices with such behavior, e.g., the Smoke Meter [11].
Using the extension, we learn partial models instead, as only the waiting input is performed in states with
time-triggered behavior.

We evaluated our base algorithm on a number of different combinations of amount of states, unique
outputs and the len,,,q, parameter. We did this on over 75 000 randomly generated models, performing
each data point on 1000 of them to increase the validity of our results. Our evaluation shows that our
algorithm learns small to medium sized automata well for a high number of unique outputs. Furthermore,
it shows that the success rate and performance of the algorithm is strongly correlated to the number
of unique outputs in the SUL. The fewer unique outputs the lower the success rate and the worse the
performance and vice versa. In fact, one of the limitations of our algorithm is that it requires at least
one reachable state with a unique output to distinguish between states. If this requirement is not fulfilled
the algorithm terminates without learning the model. On the other hand, trivial systems, i.e., SULs
with only unique outputs, can be learned with a 100% success rate while outperforming Angluin’s L*
algorithm [10] with resets.

Another factor in success rate and performance is the len,,q, parameter. It determines the maximum
length of words extracted from the trace that we use for navigating the SUL. A larger len,q, generally
means a higher success rate, but also more required steps to learn the model and vice versa. We de-
termined that len,,q, equal to the number of states of the SUL generally gives quite good results, but
increasing it further is the safest option.

Finally, we also present our case study about the Smoke Meter [11]. We successfully learned the
device in a practical setting. Additionally, we learned the model of an existing DT of it. We managed to
find differences in behavior between the two devices, showing that our learned model of the real device

62 Chapter 7. Concluding Remarks

was more thorough than the implementation of the DT. The learned model of the Smoke Meter device
was ultimately used to improve the DT and outfit it with more precise timing information about the
time-triggered transitions.

In summary, we developed a reset-less active automata learning algorithm that works on Moore
machines. Our algorithm can learn most Moore machines depending on the number of unique outputs of
the SUL. There are multiple ways in which our existing algorithm can be improved, chief among them
the removal of the limitation and the dependency on the number of unique outputs. Finally, we can say
that our algorithm fulfills the given requirements and accomplishes the task of learning the industrial
measurement device, the Smoke Meter, successfully.

7.4 Future Work

There are broadly three different directions in which future work could lean: Performing an extended
evaluation or adding additional case studies, improvements to success rate and performance, or adapting
the algorithm to work with a different class of automata.

Extended Evaluation. We did present our evaluation in Chapter 6 where we presented the results of
performing the algorithm on over 75 000 randomly generated Moore machines and a case study with an
industrial measurement device. However, extending the evaluation or presenting new scenarios in which
to analyze the success rate and performance of the algorithm would be potential tasks for the future, as
this would allow for more insight into the possible applications of the algorithm.

Our algorithm could be tested with a variety of different testing algorithms, such as the benchmarking
presented by Aichernig et al. [8]. In our own evaluation in Section 6.1 we were only interested in the
performance of our learning algorithm and chose a perfect equivalence oracle for our tests, which does
not exist for real black-box systems. Therefore, a performance analysis about combining our learning
algorithm with different testing ones could be a good next step in establishing our algorithm.

We presented our case study about the Smoke Meter [11] device in Section 6.2. While we did manage
to successfully learn the device, we only presented a single real world example. Additional case studies
on other devices could help establish if our algorithm is suitable for learning practical examples in the
field, which is already planned in the LearnTwins project.

Improvement of Existing Algorithm. In the evaluation in Chapter 6 we analyze the success rate and
performance of our algorithm. While the algorithm performs adequately for the majority of examples
there are some outliers that make the algorithm less consistent than desirable. Some improvements
regarding the success rate, performance or general behavior of the algorithm could make it more viable
overall.

At the moment, the algorithm is very strongly tied to the number of unique outputs of the underlying
system. Not only is there a hard requirement that there exists at least one unique output, as stated
in Section 3.1, but the performance is also strongly coupled to it, with a much lower success rate and
increased runtime for systems with few unique outputs. One of the major future goals would be to ideally
remove this limitation entirely or to at least mitigate the effects it has on the runtime and success rate.
Improving this would allow the algorithm to be used in a more general setting and make it more viable
and consistent for usage with a wider range of devices.

Our algorithm calculates the distinguishers for our W,-sets in Algorithm 10 by extracting the ob-
served differences from the trace. At the moment, all such observed sequences are actually used as
distinguishers, with the exception of ones that are already prefixes of existing distinguishers as presented
in the optimizations in Section 3.9. This may result in large W,-sets, which in turn increase the algo-
rithm’s runtime as more distinguishers have to be tried in Algorithm 11 (distinguish). Rivest and
Schapire [34] introduce a method that allows them to efficiently find sequences to distinguish states from

Chapter 7. Concluding Remarks 63

received counterexamples. They use their method to improve upon the L* algorithm. Their approach
could potentially be useful for more efficiently selecting distinguishers in Algorithm 10 and thus reducing
the size of the W,-sets and in turn the runtime of the algorithm.

One of the downsides of our approach in Chapter 5 is that we only learn a partial model and are miss-
ing all other outputs for timed states. We do not perform other inputs because we do not want to perform
a time-triggered transition during the sending of another input, as this would introduce non-deterministic
behavior. We could improve our algorithm by measuring the time until the time-triggered transitions oc-
cur in each state and then perform other inputs while we have enough time. This could work, with some
changes, within our existing extension from Chapter 5. Another approach would be to explore these
other inputs in timed states through fuzzing, either during the learning process or afterwards. Aichernig
et al. [5] present a method to perform learning-based fuzzing of black-box systems that could be adapted
to work on our algorithm.

Adaption to other Classes of Automata. In addition to the improvements that could be made to the
algorithm there are a number of extensions that could transform the algorithm to work on a different
class of automata or to allow it to work under more general circumstances.

For example, a potential next step could be to adapt the algorithm to run on Mealy machines, such as
the hW-inference by Groz et al. [19] among others. The current methods presented in this paper do take
advantage of the Moore machines that are currently used, so it is an open question if the methods from
our algorithm can be adapted in such a way without entirely discarding the structure of our algorithm.

Among the most interesting of the possible extensions is the idea of adapting the algorithm to work
on timed automata. Tappler et al. [37] propose an approach to learn models from timed traces using
real-valued clocks, which is then adapted to an active approach by Aichernig et al. [6]. We currently use
the time-triggered extension presented in Chapter 5 to deal with the timed transitions, which leaves us
only with partially learned models. Embracing the timed behavior and modeling our underlying systems
as timed automata could allow us to achieve fully explored models instead of only partial ones.

Finally, a possible extension includes the handling of non-deterministic behavior. Originally, this
was one of the planned requirements for this algorithm but turned out to be outside the scope of this
thesis” work. Aichernig et al. [3] learned very similar industrial measurement devices with sporadic non-
deterministic behavior by masking the occurring non-determinism with sink-states. Such an extension
could be a potential next step by combining this method with our algorithm. Pferscher and Aichernig [32]
present another approach that works on non-deterministic automata. By merging akin states they learn
a more general model of the black-box system, which also allows them to learn models with large input
and output alphabets. This poses another potential way in which our algorithm could be extended in the
future.

Appendices

64

A Learning Metrics

Table A.1: Algorithm learning results over 1000 strongly-connected, random Moore machines with
8 states, of which a certain number have unique outputs, and a given len,qz.

Examples Learning Success/Failure Learning Steps
unique | lenyq; | SUCCESS | TERM | LIMIT | LONG | p-steps | n-steps | o-steps
8 0 1000 0 0 0 254 25.0 3.3
6 0 761 191 26 22 68.3 60.0 28.8
) 0 386 490 106 18 102.8 91.0 44.6
4 0 331 562 96 11 132.0 | 120.0 56.2
3 0 127 714 148 11 178.6 | 156.0 80.6
8 1 1000 0 0 0 25.4 25.0 3.3
6 1 839 122 20 19 70.8 62.0 30.5
) 1 651 252 72 25 131.8 | 119.0 80.5
4 1 533 389 69 9 158.7 | 142.0 106.9
3 1 327 535 122 16 231.6 | 208.0 120.7
8 2 1000 0 0 0 254 25.0 3.3
6 2 908 73 7 12 74.1 64.0 33.2
5 2 816 134 38 12 143.5 127.5 93.1
4 2 718 234 43) 178.8 | 158.0 136.4
3 2 o967 343 78 12 369.6 | 243.0 | 2129.1
8 3 1000 0 0 0 254 25.0 3.3
6 3 948 40 7 5 76.8 65.0 42.1
5 3 881 74 36 9 146.7 | 129.0 94.4
4 3 819 136 42 3 205.8 | 163.0 357.0
3 3 733 192 69 6 586.0 | 266.0 | 3664.3
8 4 1000 0 0 0 25.4 25.0 3.3
6 4 971 20 7 2 79.7 66.0 65.0
5 4 904 o4 36 6 149.6 | 130.0 101.7
4 4 874 84 38 4 423.2 166.0 | 5839.5
3 4 802 133 59 6 1565.1 | 273.5 | 29463.1
8) 1000 0 0 0 25.4 25.0 3.3
6) 975 16 7 2 78.4 66.0 45.2
5 5 921 39 36 4 149.0 | 133.0 95.4
4 5 896 62 38 4 616.9 | 166.0 | 7978.7
3 5 844 95 58 3 1686.8 | 275.5 | 28901.5
8 6 1000 0 0 0 25.4 25.0 3.3
6 6 975 17 7 1 78.0 66.0 44.4
5 6 937 23 36 4 152.8 | 135.0 104.6
4 6 907 52 37 4 4277 | 167.0 | 57378
3 6 867 75 58 0 1791.6 | 278.0 | 28854.5
8 7 1000 0 0 0 254 25.0 3.3
6 7 978 15 6 1 77.4 66.0 37.1
5 7 942 19 36 3 155.4 | 133.5 152.6
4 7 914 43 37 6 427.1 167.0 | 5715.8
3 7 875 67 o8 0 1756.4 | 281.0 | 28702.3
8 8 1000 0 0 0 25.4 25.0 3.3

65

66 Appendix A. Learning Metrics

6 8 982 12 6 0 78.0 66.0 40.9
) 8 943 18 36 3 152.9 133.0 111.9
4 8 926 31 37 6 442.8 168.0 | 5695.7
3 8 882 60 58 0 1747.2 | 281.5 | 28588.2
8 9 1000 0 0 0 254 25.0 3.3

6 9 982 12 6 0 77.9 66.0 40.8
5 9 944 18 36 2 153.0 133.0 112.0
4 9 927 30 37 6 439.9 168.0 | 5691.3
3 9 885 o7 58 0 1746.6 | 281.0 | 28539.9
8 10 1000 0 0 0 25.4 25.0 3.3

6 10 983 11 6 0 77.8 66.0 40.6

) 10 945 17 36 2 153.8 133.0 115.9
4 10 930 28 37 5 439.0 168.0 | 5682.0
3 10 888 54 58 0 3454.0 | 283.0 | 58562.2
8 11 1000 0 0 0 254 25.0 3.3

6 11 983 11 6 0 77.8 67.0 40.6

5 11 951 12 36 1 154.2 134.0 113.3
4 11 933 25 37 5 439.1 168.0 | 5672.9
3 11 896 47 o7 0 3437.1 | 284.5 | 58300.8
8 12 1000 0 0 0 254 25.0 3.3

6 12 983 11 6 0 77.9 67.0 40.7
5 12 951 12 36 1 154.2 134.0 1134
4 12 936 24 37 3 441.0 168.0 | 5664.4
3 12 897 46 57 0 3435.6 | 285.0 | 58268.3
8 13 1000 0 0 0 254 25.0 3.3

6 13 984 10 6 0 78.3 67.0 43.3
) 13 952 12 36 0 154.3 135.0 113.5
4 13 937 23 37 3 436.1 168.0 | 5657.1
3 13 899 44 o7 0 3426.4 | 285.0 | 58203.6
8 14 1000 0 0 0 254 25.0 3.3

6 14 984 10 6 0 78.6 67.0 46.4
5 14 953 11 36 0 153.9 134.0 112.6
4 14 938 23 37 2 435.4 168.0 | 5654.1
3 14 902 41 57 0 3416.9 | 286.0 | 58106.9
8 15 1000 0 0 0 254 25.0 3.3

6 15 984 10 6 0 77.9 67.0 39.7
) 15 953 11 36 0 153.9 134.0 112.6
4 15 939 23 37 1 441.3 168.0 | 5653.7
3 15 903 41 56 0 3413.6 | 286.0 | 58074.7

Table A.2: Algorithm learning results over 1000 strongly-connected, random Moore machines with
a given number of states = len,,,q,, of which a certain number have unique outputs.

Examples Learning Success/Failure Learning Steps
states/len,q, | unique | SUCCESS | TERM | LIMIT | LONG | u-steps | n-steps | o-steps
3 3 1000 0 0 0 8.1 8.0 1.2

945 19 36 53.6 44.0 35.7

4 2 0
4 4 1000 0 0 0 11.3 11.0 1.6
) 2 888 31 80 1 289.4 122.0 2138.5

Appendix A. Learning Metrics 67

5 3 958 16 26 0 68.1 48.5 91.3

5) 1000 0 0 0 14.7 15.0 2.1

6 2 891 52 56 1 514.3 159.0 3444.0
6 3 910 34 53 3 153.1 119.0 182.4
6 4 963 19 17 1 92.0 56.0 656.7
6 6 1000 0 0 0 18.3 18.0 2.4

7 2 841 61 96 2 4447.3 | 283.0 | 78616.3
7 3 941 23 32 4 1587.2 | 161.0 | 28984.0
7 4 932 26 42 0 179.3 122.0 840.6
7) 974 17 9 0 89.4 62.5 299.5
7 7 1000 0 0 0 22.0 22.0 2.8

8 2 853 56 79 12 6796.0 | 349.0 | 73021.9
8 3 882 60 o8 0 17472 | 281.5 | 28588.2
8 4 926 31 37 6 442.8 168.0 5695.7
8 5 943 18 36 3 152.9 133.0 111.9
8 6 982 12 6 0 78.0 66.0 40.9
8 8 1000 0 0 0 25.4 25.0 3.3

9 2 808 87 86 19 6959.1 | 518.0 | 59018.6
9 3 875 65 56 4 3421.2 | 353.0 | 623444
9 4 898 o1 48 3 509.7 276.0 1796.6
9) 939 22 38 1 291.9 173.0 1162.0
9 6 948 19 28 5 174.9 139.0 238.8
9 7 988 7 5 0 102.7 73.0 298.5
9 9 1000 0 0 0 29.3 29.0 3.9
10 2 795 92 85 28 7029.9 | 628.0 | 69938.1
10 3 824 91 75 10 6791.1 | 496.5 | 56218.8
10 4 908 o4 35 3 5113.3 | 340.5 | 68951.9
10) 906 o7 32 5 3324.5 | 268.5 | 53317.8
10 6 950 26 22 2 372.5 178.0 3871.2
10 7 965 15 19 1 310.9 151.0 2785.4
10 8 986 7 7 0 95.1 77.0 89.9
10 10 1000 0 0 0 33.4 33.0 4.5
11 2 759 111 84 46 13680.2 | 857.0 | 94690.5
11 3 828 102 45 25 6696.1 | 617.0 | 55815.2
11 4 868 7 41 14 5638.7 | 483.0 | 47450.6
11) 924 47 22 7 2136.6 | 350.5 | 31410.9
11 6 921 43 34 2 763.9 279.0 8670.8
11 7 950 33 15 2 793.9 184.0 | 13774.1
11 8 978 11 10 1 186.8 153.0 221.6
11 9 985 7 8 0 745.3 83.0 19224.5
11 11 1000 0 0 0 36.6 36.0 5.0
12 2 715 155 69 61 20906.2 | 1154.0 | 115203.1
12 3 815 109 45 31 11284.2 | 857.0 | 72984.7
12 4 859 87 41 13 8464.9 | 602.0 | 80871.7
12) 889 63 36 12 4027.8 | 454.0 | 52024.0
12 6 909 62 23 6 2822.8 | 356.0 | 26295.9
12 7 940 36 19 5 1966.4 | 292.0 | 22543.3
12 8 964 25 10 1 377.1 192.0 3012.6
12 9 974 10 14 2 235.7 160.0 1493.1

68

Appendix A. Learning Metrics

12 10 990 4 6 0 110.3 87.0 153.9
12 12 1000 0 0 0 40.9 40.0 5.9
13 2 700 150 75 75 27949.2 | 1432.0 | 145050.7
13 3 795 111 54 40 16317.3 | 1047.0 | 107682.1
13 4 801 118 o8 23 8451.3 | 767.0 | 82289.9
13 5 868 90 29 13 5394.4 | 590.0 | 49898.1
13 6 880 76 31 13 4518.9 | 487.0 | 81579.9
13 7 915 54 19 12 3733.3 | 352.0 | 37381.2
13 8 944 33 21 2 586.0 293.0 3308.9
13 9 968 19 12 1 779.4 196.0 8188.5
13 10 967 20 10 3 276.9 169.0 2277.0
13 11 983 11 5 1 134.6 93.0 696.4
13 13 1000 0 0 0 44.9 44 6.2
14 2 683 155 66 96 32967.3 | 1632.0 | 146131.6
14 3 768 136 50 46 18404.7 | 1204.5 | 109410.5
14 4 769 154 45 32 9413.4 | 974.0 | 67997.0
14 5 836 99 36 29 9393.0 | 770.5 | 69971.6
14 6 869 84 26 21 6010.1 | 587.0 | 62506.3
14 7 906 o8 24 12 o871.3 | 496.0 | 71601.3
14 8 921 49 23 7 2833.8 | 359.0 | 38408.6
14 9 940 38 19 3 1814.3 | 293.0 | 23762.8
14 10 973 17 7 3 458.3 201.0 5491.3
14 11 975 14 7 4 244.7 181.0 755.7
14 12 991 7 2 0 206.4 100.0 2328.3
14 14 1000 0 0 0 48.7 48 6.2

Table A.3: Algorithm learning results with len,q, = 10 over 1000 strongly-connected, random
Moore machines with a given number of states, of which a certain number have unique

outputs.

Examples Learning Success/Failure Learning Steps

states | unique | SUCCESS | TERM | LIMIT | LONG | p-steps | n-steps | o-steps
3 3 1000 0 0 0 8.1 8.0 1.2
4 2 949 15 36 0 54.0 44.0 36.1
4 4 1000 0 0 0 11.3 11.0 1.6
5 2 889 29 80 2 441.8 121.0 5180.7
5 3 961 13 26 0 67.2 49.0 87.3
) 5 1000 0 0 0 14.7 15.0 2.1
6 2 904 39 56 1 926.5 160.5 3434.7
6 3 919 28 53 0 152.3 119.0 173.0
6 4 970 13 17 0 75.0 56.0 98.5
6 6 1000 0 0 0 18.3 18.0 24
7 2 851 51 95 3 4403.0 | 284.0 | 78153.5
7 3 943 22 32 3 816.4 160.0 | 10279.0
7 4 938 19 43 0 205.0 122.0 1063.8
7 5 978 13 9 0 89.7 63.0 298.9
7 7 1000 0 0 0 22.0 22.0 2.8
8 2 864 46 79 11 9883.4 | 350.0 | 96995.5
8 3 888 54 58 0 3454.0 | 283.0 | 58562.2

Appendix A. Learning Metrics

8 4 930 28 37 5 439.0 168.0 5682.0
8 5 946 17 36 1 153.8 133.0 115.9
8 6 983 11 6 0 77.8 66.0 40.6

8 8 1000 0 0 0 254 25.0 3.3

9 2 813 83 86 18 7220.7 | 519.0 | 59390.3
9 3 886 54 56 4 3748.7 | 355.0 | 62660.2
9 4 901 48 48 3 493.9 276.0 1653.9
9) 941 20 38 1 290.8 174.0 1159.5
9 6 951 18 28 3 174.2 139.0 238.2
9 7 990 5) 0 102.8 73.0 298.2
9 9 1000 0 0 0 29.3 29.0 3.9
10 2 795 92 85 28 7029.9 | 628.0 | 69938.1
10 3 824 91 75 10 6791.2 | 496.5 | 56218.8
10 4 909 54 35 2 5115.9 | 340.5 | 68952.1
10) 907 57 32 4 3324.5 | 268.5 | 53317.8
10 6 951 26 22 1 372.5 178.0 3871.2
10 7 965 15 19 1 310.9 151.0 2785.4
10 8 986 7 7 0 95.1 77.0 89.9
10 10 1000 0 0 0 33.4 33.0 4.5
11 2 752 118 84 46 11921.0 | 851.0 | 84526.8
11 3 822 109 45 24 6746.4 | 613.0 | 56050.6
11 4 863 84 41 12 5672.7 | 483.0 | 47632.4
11 5 918 53 22 7 2210.8 | 351.0 | 31691.4
11 6 915 48 34 3 769.7 277.0 8707.3
11 7 947 36 15 2 792.3 185.0 | 13778.1
11 8 975 12 10 3 190.4 153.0 247.2
11 9 984 7 8 1 133.1 83.0 871.3
11 11 1000 0 0 0 36.6 36.0 5.0
12 2 700 173 72 95 19409.2 | 1138.5 | 110705.4
12 3 806 120 45 29 11782.0 | 857.0 | 68553.9
12 4 842 103 41 14 8600.5 | 598.5 | 81660.4
12) 878 76 36 10 4047.7 | 451.5 | 52042.0
12 6 898 73 23 6 1626.3 | 356.0 | 13062.5
12 7 934 43 19 4 1919.6 | 291.0 | 24849.1
12 8 962 28 10 0 352.5 192.0 2910.8
12 9 968 17 14 1 235.4 161.0 1498.4
12 10 991 3 6 0 109.8 87.0 142.0
12 12 1000 0 0 0 40.9 40.0 5.9
13 2 682 176 75 67 25126.9 | 1410.0 | 135174.8
13 3 760 145 55 40 12466.9 | 1023.5 | 75514.6
13 4 775 148 58 19 7214.0 | 752.0 | 56161.1
13 5 847 111 30 12 4426.4 | 584.0 | 42466.8
13 6 863 91 32 14 6199.6 | 484.5 | 94792.1
13 7 902 69 19 10 5264.4 | 351.0 | 59586.7
13 8 936 39 21 4 667.2 291.0 4257.4
13 9 962 25 12 1 672.0 196.0 7166.8
13 10 966 23 11 0 278.4 169.5 2282.2
13 11 979 14 5 2 137.3 93.0 703.5
13 13 1000 0 0 0 44.9 44 6.2

69

Appendix A. Learning Metrics

14 2 640 202 66 92 32351.0 | 1538.5 | 141014.8
14 3 730 177 50 43 18741.7 | 1177.5 | 113230.5
14 4 732 194 45 29 9252.4 | 969.5 | 68722.7
14 5 793 140 36 31 9950.7 | 756.0 | 88847.2
14 6 834 116 29 21 3812.2 | 577.0 | 31517.4
14 7 880 87 24 9 5657.7 | 496.0 | 72711.1
14 8 907 64 23 6 3308.9 | 355.0 | 41287.3
14 9 929 48 19 4 2183.5 | 292.0 | 25813.8
14 10 959 33 7 1 469.7 201.0 5561.4
14 11 973 18 7 2 236.3 182.0 657.4
14 12 989 8 2 1 194.5 99.5 1949.2
14 14 1000 0 0 0 48.7 48 6.2

Table A.4: Learning results of L* with resets over 1000 strongly-connected, random Moore ma-
chines with a given number of states, of which a certain number have unique outputs,
for comparison.

Examples Learning Success/Failure Learning Steps
states | unique | SUCCESS LONG p-steps | n-steps | o-steps
3 3 1000 0 36.0 34.0 2.0
4 2 1000 0 50.8 50.0 4.8
4 4 1000 0 51.9 50.0 2.8
5 2 999 1 74.0 70.0 15.1
5 3 1000 0 69.3 66.0 5.7
5 5 1000 0 69.8 70.0 4.8
6 2 999 1 92.0 86.0 15.7
6 3 997 3 91.3 86.0 15.3
6 4 999 1 87.8 86.0 6.8
6 6 1000 0 88.8 86.0 6.3
7 2 998 2 118.0 | 110.0 23.1
7 3 996 4 111.7 | 106.0 16.1
7 4 1000 0 110.9 | 106.0 14.5
7 5 1000 0 108.4 | 106.0 9.0
7 7 1000 0 109.2 | 106.0 8.5
8 2 988 12 137.5 | 130.0 26.1
8 3 1000 0 135.6 | 130.0 21.6
8 4 994 6 131.8 | 126.0 16.0
8 5 997 3 131.0 | 126.0 15.4
8 6 1000 0 129.9 | 126.0 11.2
8 8 1000 0 129.9 | 126.0 10.4
9 2 981 19 163.8 | 150.0 32.8
9 3 996 4 158.9 | 150.0 25.8
9 4 997 3 157.1 150.0 23.4
9 5 999 1 154.1 150.0 18.4
9 6 995 5 153.4 | 146.0 18.5
9 7 1000 0 151.8 | 146.0 13.3
9 9 1000 0 152.5 | 150.0 13.0
10 2 972 28 182.9 | 170.0 314
10 3 990 10 183.6 | 170.0 32.3

Appendix A. Learning Metrics

10 4 997 3 178.2 170.0 22.9
10 5 995) 179.0 170.0 24.3
10 6 998 2 176.0 170.0 19.3
10 7 999 1 174.9 170.0 18.4
10 8 1000 0 175.0 170.0 15.9
10 10 1000 0 174.4 170.0 14.8
11 2 954 46 211.3 198.0 37.0
11 3 975 25 205.5 194.0 31.2
11 4 986 14 206.2 194.0 324
11 5 993 7 201.5 194.0 254
11 6 998 2 199.2 194.0 22.3
11 7 998 2 197.5 194.0 18.1
11 8 999 1 198.3 194.0 18.8
11 9 1000 0 198.5 194.0 18.3
11 11 1000 0 197.2 194.0 16.7
12 2 939 61 237.1 222.0 39.6
12 3 969 31 233.7 | 218.0 37.2
12 4 987 13 2294 | 218.0 33.2
12) 988 12 226.0 218.0 31.2
12 6 994 6 2234 | 214.0 24.7
12 7 995) 224.9 218.0 26.3
12 8 999 1 222.7 | 218.0 23.1
12 9 998 2 220.8 214.0 20.8
12 10 1000 0 222.2 218.0 19.5
13 2 925 75 261.1 242.0 43.7
13 3 960 40 257.7 | 242.0 41.5
13 4 977 23 256.2 242.0 37.3
13 5 987 13 252.9 242.0 32.7
13 6 987 13 250.5 242.0 30.5
13 7 988 12 250.3 242.0 27.6
13 8 998 2 249.0 242.0 26.7
13 9 999 1 246.4 | 242.0 23.2
13 10 997 3 246.8 242.0 24.5
13 11 999 1 247.0 242.0 21.6
14 2 904 96 290.1 270.0 50.7
14 3 954 46 284.3 266.0 45.9
14 4 968 32 280.9 266.0 41.0
14) 971 29 279.2 266.0 38.6
14 6 979 21 276.2 266.0 33.7
14 7 988 12 276.0 266.0 32.3
14 8 993 7 275.6 266.0 31.6
14 9 997 3 271.6 266.0 27.9
14 10 997 3 270.7 | 262.0 25.9
14 11 996 4 272.8 266.0 27.7
14 12 1000 0 271.9 266.0 24.1

71

Bibliography

[1]

(2]

[4]

[5]

[6]

[8]

[10]

[11]

Bernhard K. Aichernig, Jakob Auer, Elisabeth Jobstl, Robert Korosec, Willibald Krenn, Rupert
Schlick, and Birgit Vera Schmidt. Model-based mutation testing of an industrial measurement
device. In Martina Seidl and Nikolai Tillmann, editors, Tests and Proofs - Sth International Con-
ference, TAP@STAF 2014, York, UK, July 24-25, 2014. Proceedings, volume 8570 of Lecture Notes
in Computer Science, pages 1-19. Springer, 2014. (Cited on page 60.)

Bernhard K. Aichernig and Christian Burghard. Giving a model-based testing language a formal
semantics via partial MAX-SAT. In Valentina Casola, Alessandra De Benedictis, and Massimil-
iano Rak, editors, Testing Software and Systems - 32nd IFIP WG 6.1 International Conference,
ICTSS 2020, Naples, Italy, December 9-11, 2020, Proceedings, volume 12543 of Lecture Notes in
Computer Science, pages 35-51. Springer, 2020. (Cited on page 61.)

Bernhard K. Aichernig, Christian Burghard, and Robert Korosec. Learning-based testing of an
industrial measurement device. In Julia M. Badger and Kristin Yvonne Rozier, editors, NASA
Formal Methods - 11th International Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019,
Proceedings, volume 11460 of Lecture Notes in Computer Science, pages 1-18. Springer, 2019.
(Cited on pages 2, 37, 54, 60, 61 and 63.)

Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, Martin Tappler, and Ma-
soumeh Taromirad. Model learning and model-based testing. In Amel Bennaceur, Reiner Hihnle,
and Karl Meinke, editors, Machine Learning for Dynamic Software Analysis: Potentials and Lim-
its - International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised
Papers, volume 11026 of Lecture Notes in Computer Science, pages 74—100. Springer, 2018. (Cited
on pages 1 and 59.)

Bernhard K. Aichernig, Edi Muskardin, and Andrea Pferscher. Learning-based fuzzing of IoT
message brokers. In /4th IEEE Conference on Software Testing, Verification and Validation, ICST
2021, Porto de Galinhas, Brazil, April 12-16, 2021, pages 47-58. IEEE, 2021. (Cited on page 63.)

Bernhard K. Aichernig, Andrea Pferscher, and Martin Tappler. From passive to active: Learning
timed automata efficiently. In Ritchie Lee, Susmit Jha, and Anastasia Mavridou, editors, NASA
Formal Methods - 12th International Symposium, NFM 2020, Moffett Field, CA, USA, May 11-15,
2020, Proceedings, volume 12229 of Lecture Notes in Computer Science, pages 1-19. Springer,
2020. (Cited on page 63.)

Bernhard K. Aichernig and Martin Tappler. Efficient active automata learning via mutation testing.
Journal of Automated Reasoning, 63(4):1103-1134, 2019. (Cited on page 61.)

Bernhard K. Aichernig, Martin Tappler, and Felix Wallner. Benchmarking combinations of learn-
ing and testing algorithms for active automata learning. In Wolfgang Ahrendt and Heike Wehrheim,
editors, Tests and Proofs - 14th International Conference, TAP@STAF 2020, Bergen, Norway,
June 22-23, 2020, Proceedings, volume 12165 of Lecture Notes in Computer Science, pages 3—
22. Springer, 2020. (Cited on pages 59, 61 and 62.)

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994. (Cited on page 41.)

Dana Angluin. Learning regular sets from queries and counterexamples. Information and Compu-
tation, 75(2):87-106, 1987. (Cited on pages 1, 2, 4, 10, 45, 59, 60 and 61.)

AVL List GmbH. AVL 415SE Smoke Meter - product guide, Sep. 2013. (Cited on pages 1, 2, 52,
54,61 and 62.)

72

Bibliography 73

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal. In Marco Bernardo
and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems: International
School on Formal Methods for the Design of Computer, Communication, and Software Systems,
Bertinora, Italy, September 13-18, 2004, Revised Lectures, pages 200-236, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg. (Cited on page 41.)

Nicolas Brémond and Roland Groz. Case studies in learning models and testing without reset. In
2019 IEEE International Conference on Software Testing, Verification and Validation Workshops,
ICST Workshops 2019, Xi’an, China, April 22-23, 2019, pages 40-45, 2019. (Cited on page 60.)

Rafael C. Carrasco and José Oncina. Learning stochastic regular grammars by means of a state
merging method. In Rafael C. Carrasco and José Oncina, editors, Grammatical Inference and
Applications, Second International Colloquium, ICGI-94, Alicante, Spain, September 21-23, 1994,
Proceedings, volume 862 of Lecture Notes in Computer Science, pages 139-152. Springer, 1994.
(Cited on page 59.)

Yingke Chen, Hua Mao, Manfred Jaeger, Thomas Dyhre Nielsen, Kim Guldstrand Larsen, and
Brian Nielsen. Learning Markov models for stationary system behaviors. In Alwyn E. Goodloe
and Suzette Person, editors, NASA Formal Methods, pages 216-230, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg. (Cited on page 60.)

Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions on
Software Engineering, 4(3):178-187, 1978. (Cited on pages 6, 13 and 61.)

Python Software Foundation. Python language reference, version 3.10. https://www.python.
org, 2022. Last accessed on May 19, 2022. (Cited on pages 1, 2, 45 and 59.)

Georgios Giantamidis, Stavros Tripakis, and Stylianos Basagiannis. Learning Moore machines
from input—output traces. International Journal on Software Tools for Technology Transfer,
23(1):1-29, 2021. (Cited on page 7.)

Roland Groz, Nicolas Brémond, Adenilso Simao, and Catherine Oriat. hW-inference: A heuris-
tic approach to retrieve models through black box testing. Journal of Systems and Software,
159:110426, 2020. (Cited on pages 1, 2, 60 and 63.)

Roland Groz, Catherine Oriat, and Nicolas Brémond. Inferring non-resettable Mealy machines
with n states. In International Conference on Grammatical Inference, pages 30-41. PMLR, 2017.
(Cited on page 9.)

Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm: A redundancy-free ap-
proach to active automata learning. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Runtime
Verification, pages 307-322, Cham, 2014. Springer International Publishing. (Cited on pages 2
and 59.)

Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source LearnLib. In Daniel Kroen-
ing and Corina S. Pasireanu, editors, Computer Aided Verification, pages 487-495, Cham, 2015.
Springer International Publishing. (Cited on pages 15 and 59.)

Kurt Jogun. A universal interface for the integration of emissions testing equipment into engine
testing automation systems: The VDA-AK SAMT-interface. Technical report, SAE Technical Pa-
per, 1994. (Cited on page 52.)

Michael J. Kearns and Umesh V. Vazirani. An introduction to computational learning theory. MIT
Press, 1994. (Cited on pages 2 and 59.)

https://www.python.org
https://www.python.org

74 Bibliography

[25] A.S. Klimovich and V.V. Solov’ev. Transformation of a Mealy finite-state machine into a Moore

finite-state machine by splitting internal states. Journal of Computer and Systems Sciences Inter-
national, 49(6):900-908, 2010. (Cited on page 7.)

[26] Zvi Kohavi and Niraj K. Jha. Switching and finite automata theory. Cambridge University Press,
3rd edition, 2009. (Cited on page 9.)

[27] Edward F. Moore. Gedanken-experiments on sequential machines. In C. E. Shannon and J. Mc-
Carthy, editors, Automata Studies. (AM-34), Volume 34, pages 129-154. Princeton University Press,
2016. (Cited on page 6.)

[28] Edi Muskardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher, and Martin Tappler. AALpy:
An active automata learning library. In Automated Technology for Verification and Analysis - 19th
International Symposium, ATVA 2021, Gold Coast, Australia, October 18-22, 2021, Proceedings,
Lecture Notes in Computer Science. Springer, 2021. (Cited on pages 1, 2, 15, 45 and 59.)

[29] Srinivas Nidhra and Jagruthi Dondeti. Black box and white box testing techniques - a literature
review. International Journal of Embedded Systems and Applications (IJESA), 2(2):29-50, 2012.
(Cited on page 4.)

[30] José Oncina and Pedro Garcia. Inferring regular languages in polynomial update time, volume Vol-
ume 5 of Series in Machine Perception and Artificial Intelligence, pages 99-108. World Scientific,
Feb 1993. (Cited on page 59.)

[31] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. Journal of Au-
tomata, Languages and Combinatorics, 7(2):225-246, 2002. (Cited on page 1.)

[32] Andrea Pferscher and Bernhard K. Aichernig. Learning abstracted non-deterministic finite state
machines. In Valentina Casola, Alessandra De Benedictis, and Massimiliano Rak, editors, Testing
Software and Systems - 32nd IFIP WG 6.1 International Conference, ICTSS 2020, Naples, Italy,
December 9-11, 2020, Proceedings, volume 12543 of Lecture Notes in Computer Science, pages
52-69. Springer, 2020. (Cited on page 63.)

[33] Davy Preuveneers, Wouter Joosen, and Elisabeth Ilie-Zudor. Robust digital twin compositions for
Industry 4.0 smart manufacturing systems. In 2018 IEEE 22nd International Enterprise Distributed
Object Computing Workshop (EDOCW), pages 6978, 2018. (Cited on page 55.)

[34] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103(2):299-347, 1993. (Cited on pages 1, 2, 8, 60 and 62.)

[35] Claude E. Shannon. Communication in the presence of noise. Proceedings of the IEEE, 86(2):447—
457, 1998. (Cited on page 41.)

[36] Fei Tao, He Zhang, Ang Liu, and A. Y. C. Nee. Digital twin in industry: State-of-the-art. /EEE
Transactions on Industrial Informatics, 15(4):2405-2415, 2019. (Cited on page 55.)

[37] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. Time to learn
— learning timed automata from tests. In Etienne André and Mariélle Stoelinga, editors, Formal
Modeling and Analysis of Timed Systems, pages 216-235, Cham, 2019. Springer International Pub-
lishing. (Cited on page 63.)

[38] M.P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653-665, Jul 1973. (Cited on
page 9.)

[39] Felix Wallner. w-moore — reset-less active automata learning algorithm for Moore machines devel-
oped in Python with the AALpy framework. https://gitlab.com/felixwallner/w-moore,
2022. Last accessed on May 19, 2022. (Cited on pages 2, 45 and 59.)

https://gitlab.com/felixwallner/w-moore

	1 Introduction
	1.1 Motivation
	1.2 Research Problem and Goals
	1.3 Context of this Thesis
	1.4 Structure

	2 Preliminaries
	2.1 Active Automata Learning
	2.2 Minimally Adequate Teacher Framework without Resets
	2.3 Use of Resets
	2.4 Moore Machines
	2.5 Reset-less Learning

	3 Methodology and Algorithm
	3.1 Overview
	3.2 Data Structures
	3.3 Definitions
	3.3.1 Abandoning States
	3.3.2 Defining Determinism
	3.3.3 Defining Input Completeness
	3.3.4 Constructing Deterministic Hypothesis
	3.3.5 Output Specific Characterization Sets

	3.4 Main Algorithm
	3.5 Finding Counterexamples
	3.6 State Exploration
	3.7 Navigating the SUL
	3.8 Updating Context
	3.9 Calculating Output Specific W-sets from Trace
	3.10 Distinguishing States

	4 Illustrative Examples
	4.1 Example 1
	4.2 Example 2

	5 Extension: Time-Triggered Behavior
	5.1 Time-Triggered Behavior
	5.2 Modifications to the Algorithm

	6 Evaluation
	6.1 Performance of Base Algorithm
	6.1.1 Benchmarking Setup
	6.1.2 Influence of lenmax
	6.1.3 Influence of Unique Outputs
	6.1.4 Fixed lenmax
	6.1.5 Comparison with L*
	6.1.6 Outliers

	6.2 Case Study: Smoke Meter
	6.2.1 System Under Learning: the Smoke Meter
	6.2.2 System Under Learning: the Digital Twin
	6.2.3 Results

	7 Concluding Remarks
	7.1 Summary
	7.2 Related Work
	7.3 Conclusion
	7.4 Future Work

	A Learning Metrics
	Bibliography

