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Abstract

Time delay compensation is a critical challenge in powertrain calibration opti-

mization using slow dynamic slope (SDS) data. SDS data involves recording

ramps between design of experiment (DoE) points, providing more detailed

system behavior than steady-state measurements. However, measured signals

can exhibit time delays from sources like gas transport times, thermal inertia,

and measurement system latency. Properly aligning the time-shifted signals is

essential for building accurate models from the SDS data. This thesis explores

different techniques for automatically aligning and synchronizing time-delayed

SDS data for powertrain calibration. An automated script is developed to

facilitate efficient post-processing of the data.
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1. Introduction

Design of Experiments (DOE) is a widely used method for optimizing high

dimensional systems in various fields, including powertrain calibration. DOE

involves the pre-planning of a list of experiments that are distributed in the

n-dimensional variation space by a certain criterion, such as D-optimal or V-

optimal. These experiments are then carried out on a test bed, and mathematical

models are developed based on the resulting steady-state measurements. How-

ever, the conventional DoE approach has several limitations, including the need

for a large number of experiments to adequately cover the variation space and

the assumption of steady-state conditions, which may not always be feasible or

accurate.

To overcome these limitations, Slow Dynamic Slope (SDS) DOE is used.

In this approach, each target DOE point is approached in slow ramps, and

the ramps between the points are recorded as training data for the models.

These recorded ramps are known as slow dynamic slopes (SDS), and they

provide a more detailed representation of the system behavior than steady-state

measurements alone. The use of SDS data enables the development of more

accurate and efficient models for powertrain calibration optimization, as it

allows the reduction of experimental runs.

However, the use of SDS data also brings up several challenges that need to
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1. Introduction

be addressed. One of the main challenges is time delay compensation. Many

real measurement signals for performance and emissions, such as those used in

powertrain calibration, are measured with a certain delay. Typical delay times

for emission measurement devices are in the range of a few seconds. In addition,

it is often necessary to use different systems to record the data, which can lead

to the need for recorder synchronization. To effectively align and synchronize

the recorded SDS data, different techniques must be investigated and evaluated

in terms of efficiency, practicability, and feasibility.

In this master’s thesis, we will explore several approaches to time alignment

for SDS data, including cross-correlation, phase-based alignment, and Kalman

filtering. We will develop an automated script to facilitate the post-processing

of SDS data and evaluate the performance of the different techniques using

experimental data. The results of our work will provide insights into the most

effective approaches for intelligent post-processing of SDS data in the context

of powertrain calibration optimization.
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2. Problem statement and research

question

2.1. Background

Design of Experiments (DOE) is a widely used method for optimizing the

steady state verification and calibration of powertrains. In conventional DOE, a

pre-planned list of experiments is carried out, and the results are used to build

mathematical models that describe the relationships between different input

variables and output responses. The experiments are typically distributed in

the n-dimensional variation space using a certain criterion, such as D-optimal,

V-optimal, or space-filling.

While DoE has been an established method for decades, it has some lim-

itations when it comes to optimizing powertrain calibration. One of these

limitations is that it relies on steady state measurements, which may not fully

capture the behavior of the system. This can lead to models that are less accu-

rate or less representative of the system’s behavior under different operating

conditions.

To address this issue, a new approach called slow dynamic slopes (SDS)

3
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has been developed. In SDS, each target DoE point is approached in slow

ramps, and the ramps between the points are recorded. The recorded data is

then used as training data for the models. This approach has the potential to

generate more accurate and representative models for optimizing powertrain

configuration and calibration compared to conventional DOE.

However, using SDS data for model building also brings up several challenges

that need to be addressed. One of these challenges is time delay compensation.

Many real measurement signals for performance and emissions are measured

with a certain delay, which can be a few seconds or more. Additionally, it is

common to use different systems to record the data, such as test bed system

measurement devices or onboard diagnostics (OBD) systems. This leads to the

need for synchronization of the recorded data from different systems.

Time alignment and synchronization is essential for building accurate and

representative models from SDS data. Without proper time alignment and

synchronization, the recorded data may not be properly correlated, leading

to incorrect or biased models. Therefore, finding efficient, practical and fea-

sible techniques for aligning and synchronizing recorded data is crucial for

optimizing powertrain calibration using SDS data.

2.2. Problem statement

The problem that this research aims to address is how to efficiently, practically

and feasibly align and synchronize recorded data from different systems in

order to build models for optimizing powertrain calibration using SDS data.

4
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2.3. Research question

The research question for this study is: How can we align and synchronize

recorded data from different systems in order to build models for optimizing

powertrain calibration using SDS data, in a way that is efficient, practical and

feasible?

2.4. Objectives

The specific objectives of this study are:

• Objective 1: To review the existing techniques for time alignment and

synchronization of recorded data and identify their advantages and dis-

advantages.

• Objective 2: To evaluate a range of techniques and algorithms for time

alignment and synchronization of recorded data using defined metrics for

efficiency, practicability, and feasibility.

• Objective 3: To compare the results of the different techniques and algo-

rithms to identify the most promising ones for aligning and synchronizing

recorded data from different systems.

• Objective 4: To develop an automated script for post-processing of recorder

data, which includes time alignment and synchronization as well as any

other necessary processing steps.

• Objective 5: To apply the selected time alignment and synchronization

technique(s) to real recorded data from different systems and assess the

accuracy and reliability of the resulting models for optimizing powertrain

calibration.

5
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2.5. Motivation

The optimization of powertrain systems is a complex task that requires the

consideration of multiple variables and performance criteria. Design of Exper-

iments (DOE) has been widely used as a method for optimizing powertrain

systems, particularly for steady-state conditions. However, the conventional

DOE approach has several limitations, including the need for a large number

of experiments to adequately cover the variation space and the assumption of

steady-state conditions, which may not always be feasible or accurate.

To overcome these limitations, a new approach has been developed in recent

years. This approach involves the use of slow dynamic slopes (SDS) as training

data for the development of mathematical models for powertrain calibration

optimization. SDS data provides a more detailed representation of the system

behavior than steady state measurements alone, is captures way much more

data in the DOE process. The use of SDS data also enables the reduction of

experimental runs and the development of more accurate and efficient models

for powertrain calibration optimization.

This study has been has been developed and evaluated at AVL List GmbH.

2.6. AVL List GmbH

AVL List GmbH is a world-renowned company that specialized in the de-

velopment of advanced powertrain systems for the automotive industry. The

company was founded in 1948 by Dr. Hans List and has since become a global

leader in the development of internal combustion engines, electric drives, and

fuel cell systems.

6
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AVL List GmbH employs over 9,000 people worldwide and has a network

of more than 100 locations across the globe. The company’s headquarters is

located in Graz, Austria, and it has a strong presence in North America, Europe,

and Asia.

AVL List GmbH’s research and development efforts are focused on the devel-

opment of advanced powertrain technologies that are more efficient, cleaner,

and safer than traditional systems. The company works closely with automakers

and other industry partners to develop and commercialize these technologies,

which include hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel

cell vehicles.

In addition to its research and development activities, AVL List GmbH

provides a range of services to its customers, including engineering consulting,

testing and validation, and project management. The company also has a strong

focus on sustainability and is committed to reducing its environmental impact

through the use of renewable energy and other eco-friendly initiatives.

Overall, AVL List GmbH is a leading provider of advanced powertrain

systems for the automotive industry, with a strong commitment to research and

development, sustainability, and customer service. The company’s expertise and

innovative technologies are helping to drive the transition to a more sustainable

future for the automotive industry (List, 2021).

2.7. DOE

The use of DOE in the automotive industry has a long history, with a number of

studies demonstrating the effectiveness of this approach in optimizing various

aspects of vehicle design and manufacturing. For example, DOE has been used

7
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to optimize the design of engine components such as combustion chambers and

valve trains. In addition, DOE has been used to identify the optimal combination

of process parameters for various manufacturing processes in the automotive

industry, such as casting and forging.

One of the main advantages of DOE in the automotive industry is its ability

to efficiently identify the factors that have the greatest impact on a particular

response, such as fuel efficiency or emission levels. By carefully controlling

the levels of these factors in a structured experimental design, it is possible to

determine the optimal combination of factors for a desired outcome, such as

maximum fuel efficiency or minimum emissions. In addition, DOE allows for

the identification of interactions between factors, which can be important in

understanding the underlying mechanisms of a process or system.

There are several different DOE approaches that have been applied in the

automotive industry, including full factorial design, fractional factorial design,

and response surface methodology (RSM). Each of these approaches has its

own strengths and limitations, and the choice of approach will depend on the

specific goals and constraints of the study.

It is worth noting that the use of DOE in the automotive industry is not

without challenges. For example, the number of factors that can potentially

influence a response in the automotive industry is often large, making it difficult

to include all relevant factors in a single study. In addition, the complexity of

automotive systems can make it difficult to accurately model the relationships

between factors and responses. Despite these challenges, DOE remains a valu-

able tool for optimizing various aspects of vehicle design and manufacturing in

the automotive industry.

8
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2.8. SDS-DOE for Powertrain Calibration

Design of Experiments (DOE) is a widely used method for optimizing high

dimensional systems in various fields, including powertrain calibration. DOE

involves the pre-planning of a list of experiments that are distributed in the

n-dimensional variation space by a certain criterion, such as D-optimal or V-

optimal. These experiments are then carried out on a test bed or in simulation,

and mathematical models are developed based on the resulting steady-state

measurements. However, the conventional DOE approach has several limita-

tions, including the need for a large number of experiments to adequately cover

the variation space and the assumption of steady-state conditions, which may

not always be feasible or accurate.

2.8.1. SDS-DOE for Calibration

To overcome these limitations, a new approach called SDS has been developed

in recent years. In this approach, each target DOE point is approached in slow

ramps, and the ramps between the points are recorded as training data for

the models. These recorded ramps are known as slow dynamic slopes (SDS),

and they provide a more detailed representation of the system behavior than

steady-state measurements alone. The use of SDS data enables the development

of more accurate and efficient models for powertrain calibration optimization.

However, the use of SDS data also brings up several challenges that need to

be addressed. One of the main challenges is time delay compensation. Many

real measurement signals for performance and emissions, such as those used in

powertrain calibration, are measured with a certain delay. Typical delay times

for emission measurement devices, for example, can range from a few seconds

9
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up to a minute. In addition, it is often necessary to use different systems to

record the data, which can lead to the need for recorder synchronization. To

effectively align and synchronize the recorded SDS data, different techniques

must be investigated and evaluated in terms of efficiency, practicability, and

feasibility.

2.8.2. SDS-DOE in the Automotive Sector

The use of SDS-DOE for powertrain calibration is particularly relevant in the

automotive sector, where the optimization of fuel efficiency and emissions

is a critical concern. The development of accurate and efficient models for

powertrain calibration using SDS data can help to reduce fuel consumption

and emissions, leading to both environmental and economic benefits. In addi-

tion, the use of SDS data can enable more rapid and efficient development of

new powertrain technologies, such as electric and hybrid systems, which are

becoming increasingly important in the automotive industry.

2.9. Sources of Time Delay in Signals on Test Beds:

Causes and Characterization

Time delay in signals on automotive test beds can have a significant impact on

the accuracy and reliability of the measured data. In this report, we will consider

potential sources of delay and discuss appropriate mitigation strategies.

Time delays in signals on automotive test beds can occur for a number of

reasons.

10
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2.9.1. Gas Transport

When operating an internal combustion engine, combustion occurs within the

cylinder, producing exhaust gases. These exhaust gases, including NOX and

CO emissions, are expelled from the cylinder and travel through the exhaust

system. Along this path, an extraction point is designated where a measuring

device collects a sample of the exhaust gases. This sample is then analyzed to

determine the concentration of NOX and CO emissions.

Direct measurement of emissions at the point of origin within the engine

cylinder is hardly feasible since a hole has to be drilled and the sensing system

has to be made tight and immune to extremely high temperatures. Instead,

the sampling occurs a few centimeters downstream in the exhaust system. The

exhaust system typically includes the turbocharger, exhaust manifold, and pipes

leading to the catalytic converter. The extraction point for sampling is usually

located between the turbocharger and the catalytic converter.

The NOX emissions must travel from the engine’s interior to the extraction

point, and from there, they continue through a sampling tube to the analyzer,

which can be up to 10 meters away. This journey causes a time delay, averaging

4-5 seconds, in the NOX measurement signal due to the distance the gas must

travel. Although the volumetric flow rate within the sampling tube is constant,

ensuring consistent transport time from the extraction point to the analyzer,

the travel time from the engine to the extraction point can vary. This variability

depends on engine speed, air throughput, and load conditions, potentially

causing delays ranging from 0.1 to 0.2 seconds.

11
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2.9.2. Thermal Inertia of the System

When driving a vehicle, especially under conditions such as climbing a hill at

full throttle, the exhaust system does not instantly reach high temperatures. The

thermal inertia of the exhaust system, including the catalytic converter, results

in a delay before the system stabilizes at the operational temperature necessary

for accurate emission measurements. This thermal inertia causes a time delay

in the response of the catalytic converter and other components in the exhaust

system to changes in engine load and operating conditions. As the system

gradually heats up, the time delay decreases, but during initial periods of heavy

load, the delay can significantly impact the accuracy of emission measurements.

2.9.3. Measurement System Latency

One common cause of time delay in signals on automotive test beds is the time

it takes for a signal to travel through the various sensors, wiring, and electronic

components that make up the test bed’s measurement system. This type of

delay, known as measurement system latency, can be particularly significant in

high-speed or high-frequency measurements, as well as in systems with long

signal paths or many intermediate signal processing steps.

2.9.4. Software-based Signal Processing

Another potential cause of time delay in signals on automotive test beds is the

use of software-based signal processing, such as filtering or averaging. These

types of operations can introduce additional delay, as the computer or processor

performing the calculations must complete them before the final processed

signal can be output.
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2.9.5. Design of the Test Bed

Time delay can also be introduced due to the way the test bed is designed. For

example, a test bed that uses a wired connection between the vehicle and the

measurement system may introduce additional delay, as the signals must travel

through the cable. Similarly, a test bed that uses wireless transmission of signals

may introduce delay due to the inherent limitations of wireless communication.

2.9.6. Multiplexers and Signal Routing Components

Another possible cause of time delay is the use of multiplexers and other signal-

routing components in the measurement system. These devices allow multiple

signals to be routed through a single channel, but they can introduce additional

delay as the signals are switched between channels.

2.9.7. Multiple Layers of Signal Conditioning or Amplification

Another potential cause of time delay is the use of multiple layers of signal

conditioning or amplification, such as amplifiers and filters. Each layer of signal

conditioning can introduce additional delay, which can accumulate as the signal

travels through the measurement system.

2.9.8. External Triggering

Another cause could be the use of external triggering, which can introduce time

delay because the signal of interest is not acquired until a specific trigger event

occurs. For example, an engine RPM (revolutions per minute) signal would not

be acquired until the engine reaches the RPM set by a trigger.

13
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2.9.9. Resolution of the Measurement System

The resolution of the measurement system can also affect time delay. A system

with lower resolution may require more processing time to acquire and digitize

the signal, thus introducing additional delay.

2.9.10. Environmental Factors

Environmental factors such as temperature, humidity, and electromagnetic

interference can also affect the time delay of signals on automotive test beds.

For example, temperature changes can cause changes in the electrical properties

of wires and other components, resulting in changes in the time delay of signals.

2.9.11. Mitigation Strategies

To minimize the time delay in signals on automotive test beds, it is crucial

to use high-quality, low-latency components and to design the test bed with

attention to signal path and signal routing. Additionally, proper calibration

of the measurement system and proper usage of the test bed can also help to

minimize time delay.

It is also important to note that even with all these efforts the time delay

cannot be completely eliminated and the test bed should be designed to handle

the time delay and allow for its measurement and compensation.

2.10. Modeling

Modeling is an essential aspect of many industries, including the automotive

industry. It involves the creation of a representation or simulation of a system
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or process, which can be used to predict the behavior of the system or process

under various conditions. The use of modeling in the automotive industry

can be traced back to the early days of the industry when engineers used

physical models to test and refine their designs. Today, the use of computer-

based modeling has become widespread, enabling engineers to quickly and

accurately test and optimize their designs.

2.11. Types of Modeling in the Automotive Industry

There are various types of modeling that are commonly used in the automotive

industry, including structural modeling, kinematic modeling, and dynamic

modeling.

2.11.1. Structural Modeling

Structural modeling involves the creation of a model that represents the physical

structure of a vehicle or component. This can include the dimensions, materials,

and geometry of the structure. Structural models are used to analyze the

strength and stiffness of a design, as well as to identify potential failure points.

2.11.2. Kinematic Modeling

Kinematic modeling involves the creation of a model that represents the move-

ment of a vehicle or component. This can include the position, velocity, and

acceleration of the moving parts. Kinematic models are used to analyze the

performance of a design, such as the handling and ride comfort of a vehicle.
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2.11.3. Dynamic Modeling

Dynamic modeling involves the creation of a model that represents the inter-

action of a vehicle or component with its environment. This can include the

forces acting on the vehicle, such as gravity, aerodynamics, tire forces and road

conditions. Dynamic models are used to analyze the performance of a design,

such as the fuel efficiency and acceleration of a vehicle.

2.12. Modeling in the Context of Automotive

Calibration

Automotive calibration refers to the process of adjusting the parameters of a

vehicle’s control systems to optimize its performance. This can include adjusting

the fuel-to-air ratio of an engine, the damping characteristics of a suspension,

or the steering ratio of a steering system. The use of modeling can be especially

useful in the context of automotive calibration, as it enables engineers to analyze

and optimize the performance of the control systems under various conditions.

One example of the use of modeling in automotive calibration is the opti-

mization of the fuel-to-air ratio in an internal combustion engine. By creating a

model of the engine, engineers can analyze the effects of different fuel-to-air ra-

tios on the performance of the engine, such as the power output, fuel efficiency,

and emissions. This can enable them to identify the optimal fuel-to-air ratio for

a given set of operating conditions, improving the performance and efficiency

of the engine.

Another example of the use of modeling in automotive calibration is the

optimization of the suspension characteristics of a vehicle. By creating a model
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of the suspension, engineers can analyze the effects of different damping

coefficients on the ride comfort and handling of the vehicle. This can enable

them to identify the optimal damping coefficients for a given set of operating

conditions, improving the ride comfort and handling of the vehicle.

Overall, the use of modeling in the context of automotive calibration offers a

powerful tool for optimizing the performance of a vehicle’s control systems. By

analyzing and optimizing the parameters of the control systems, engineers can

improve the performance, efficiency, and comfort of a vehicle.

2.13. Benefits of Modeling in the Automotive

Industry

The use of modeling in the automotive industry has numerous benefits, includ-

ing:

• Reduced Development Time and Costs: By using computer-based model-

ing, engineers can quickly and accurately test and optimize their designs,

reducing the time and cost required to bring a new product to market.

• Improved Performance: By using modeling to analyze and optimize

the performance of a design, engineers can improve the fuel efficiency,

acceleration, handling, and other performance characteristics of a vehicle.

• Increased Safety: By using modeling to analyze the structural and dy-

namic performance of a design, engineers can identify and address poten-

tial failure points, improving the safety of the vehicle.

• Reduced Prototyping: By using modeling to test and refine a design,

engineers can reduce the number of physical prototypes required, saving
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time and resources.

2.14. Challenges of Modeling in the Automotive

Industry

While modeling has many benefits in the automotive industry, it also has its

challenges. Some of the key challenges include:

• Complexity: The automotive industry involves a wide range of systems

and processes, which can be complex to model accurately.

• Accuracy: Modeling results can be affected by various factors, such as the

quality of the data used, the assumptions made, and the limitations of the

model itself. As a result, it is important to carefully validate and verify

the accuracy of the model.

• Cost: The development of accurate and sophisticated models can be time-

consuming and costly, requiring specialized software and expertise.

Despite these challenges, the use of modeling in the automotive industry

continues to grow, as it offers a powerful tool for improving the design, perfor-

mance, and safety of vehicles.

2.15. Calibration

The automotive industry is highly regulated, with strict standards for vehicle

performance, safety, and emissions. To meet these standards, manufacturers

must carefully design and test their vehicles, ensuring that all components
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function properly. Calibration plays a critical role in this process, particularly in

optimizing vehicle components such as engines and suspension systems.

2.16. Role of Calibration in the Automotive Industry

Calibration is used throughout the automotive industry, from the design and

testing phase to the production and maintenance of vehicles. During the design

and testing phase, calibration involves tuning specific parts of the vehicle to

achieve optimal performance. For example:

• Engine Calibration: Adjusting the engine parameters (e.g., fuel injection

timing, air-fuel mixture, ignition timing) to achieve the best performance,

fuel efficiency, and emissions control.

• Suspension Calibration: Fine-tuning the suspension system to improve

handling, ride comfort, and stability. This can involve adjusting the shock

absorbers, springs, and other components to suit specific driving condi-

tions or preferences.

• Transmission Calibration: Optimizing gear shift patterns and clutch

engagement for smooth and efficient power delivery.

• Brake System Calibration: Ensuring that brake components function

correctly and that the braking force distribution is optimized for safety

and performance.

In production, calibration ensures that manufactured components meet speci-

fied tolerances and function optimally. Proper calibration of the engine control

systems and suspension components is essential for the vehicle’s performance

and compliance with regulatory standards. Calibration remains crucial in ve-
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hicle maintenance, ensuring that performance tuning and adjustments are

accurate and reliable.

2.17. Current Calibration Methods

There are several methods currently used for calibrating vehicle components in

the automotive industry. These include:

• Software Algorithms: For engine control systems, calibration often in-

volves using software algorithms to adjust performance parameters based

on collected data to ensure optimal operation.

• Mechanical Adjustments: For suspension systems, calibration involves

mechanical adjustments and testing under various conditions to fine-tune

the system.

• Diagnostic Tools and Equipment: Advanced diagnostic tools and equip-

ment are employed to assist in the calibration process, ensuring precision

and adherence to standards.

• Real-world Testing: Performing tests in real driving conditions to cali-

brate components like the transmission and brake systems, ensuring they

perform optimally in diverse scenarios.

This comprehensive approach to calibration helps maintain vehicle safety,

performance, and regulatory compliance.

2.18. Current State of SDS DOE data Calibration

Currently, the process of data calibration involves manually shifting data to

identify the most accurate state for calibration. This method is not only time-
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Figure 2.1.: The Current State vs. How It Should Be in the Future: Solutions Proposed in This
Work.

consuming but also prone to inaccuracies, which are detrimental to the efficiency

and reliability of the calibration process. The labor-intensive nature of this

manual intervention adds significant delays to projects, increasing overall

timelines and potentially leading to higher costs and reduced effectiveness.

In response to these challenges, this work proposes an innovative solution

designed to automate the calibration process, thereby enhancing both its speed

and accuracy. The core of this solution involves the development of an algo-

rithm capable of automatically finding the optimal data delay. This algorithm

leverages advanced computational techniques to rapidly and precisely adjust

data, ensuring that the calibration is performed using the best possible data

state without human intervention.

By automating the calibration process, the proposed solution aims to signif-

icantly reduce the time required for data preparation, while simultaneously

increasing the accuracy of the calibration. This dual benefit not only streamlines

the overall process but also improves the quality of the data output, which is

crucial for subsequent analyses and applications.
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3.1. Introduction

In the dynamic landscape of modern engineering and technology, the challenge

of time delays in measurement signals emerges as a critical obstacle, affecting

the stability and reliability of numerous systems. This chapter delves into the

theoretical background and practical implications of these delays across various

engineering fields. It begins by elucidating the inherent sources and types of

time delays—from signal propagation and communication latency to sensor

response times and computational delays. These delays not only compromise

the accuracy of data analysis but also impact system operations in control plants,

telecommunications, and more, potentially leading to significant financial and

operational setbacks.

3.1.1. Theoretical Background

In modern systems, the accurate synchronization of measurement signals is

critical for guaranteeing the stability and reliability of processes in various

engineering domains. However, the emergence of inherent time delays in the

measurement signals poses a substantial challenge (Fridman, 2014; Sipahi et
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al., 2012). These delays often originate from various sources such as signal

propagation, communication latency, computational time, or the limitations of

responses of sensors and actuators (Lakshmanan & Senthilkumar, 2011).

Time delays present challenges in various modern technological areas, in-

cluding the reliability of control systems, signal processing, and real-time

cyber-physical systems (Kawabata et al., 2017; Kopetz & Steiner, 2022). For

instance, in the field of control plants, inherent time delays can lead to os-

cillation and even threaten system stability. In data analysis, the accuracy of

results and predictions are posed critical risks when the data points are not

properly determined, leading to unreliable outcomes, and financial losses. In

the telecommunications sector, transmission delays in video conferencing and

online games, lead to communication disruption and user dissatisfaction. These

time delays introduce risks and safety concerns in various fields, including

manufacturing processes, healthcare, and transformation systems. Addressing

these challenges calls for the development of sophisticated compensation strate-

gies to effectively reduce and manage the impact of these delays. Consequently,

it is essential to address and remove these time delays for better functioning of

current interconnected processes.

3.1.2. Time delays in measurement signals

The presence of inherent time delays in measurement signals is accompanied by

many problems and various consequences across critical fields. In measurement

signals, the time delay is characterized by the latency between the time a signal

is measured and the moment that the measurement data is received (X. Li & Li,

2021; Zhong, 2006). The precise analysis of these delays in many domains such

24



3.1. Introduction

as control systems, signal processing, synchronization, and scientific issues is

essential. Since time delays can occur due to various factors, analyzing and

compensating for these delays is critical for enabling better risk management

and effective decision-making.

The main cause of time delays in measurement signals is associated with the

response time of actuators and measurement units (sensors). Sensors usually

require a certain amount of time to detect and convert the signal into a physical

phenomenon (e.g., temperature or pressure) embedded in an electrical signal.

Consequently, this response time imposes complexities in system control design

or analysis, especially where fast response is required in real-time applications.

Additionally, significant time delays arise from gas transport in the exhaust

system of internal combustion engines. The NOx emissions must travel from

the engine to the extraction point and then through a sampling tube to the

analyzer, which can cause a delay of up to 4-5 seconds due to the distance and

variable travel time depending on engine conditions.

Another major source of time delays is thermal inertia in the exhaust system.

When the engine load changes, such as during heavy acceleration, the exhaust

system, including the catalytic converter, takes time to reach the necessary

operational temperature for accurate emission measurements. This thermal

inertia can cause delays during the initial periods of heavy load until the system

stabilizes at high temperatures.

Furthermore, time delays also occur during the signal transformation and

data acquisition procedures. In modern technologies, the set of data is often

captured through remote infrastructures and then transferred to a processing

system. In this application, the transmitting time of data from the source to
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the receiver, including parameters such as transformation speed and data

computation, impacts the overall time delay included in measurement signals.

This transformation delay is essential in domains such as telecommunication,

distributed energy systems, and remote measurements (Shangguan et al., 2020;

Yan et al., 2019).

Moreover, time delays also occur during the sampling and data processing

of measurements. There are some applications, such as data processing, com-

munication systems, and control plant delays, that introduce interval delays

between the samples. It is crucial to preserve the reliability of measurements

to obtain accurate timing and synchronization for such processes. Under these

circumstances, compensation for time delays provides the possibility to ensure

the accuracy of decision-making and control systems.

3.1.3. The impacts of time delays in various applications

Time delays in measurement signals are a definite challenge that can bring a

wide range of problems in various engineering applications. Control mecha-

nisms, which have a critical role in the industry sector, are highly susceptible to

the destructive effects of time delays. Such delays can result in instability and

can even damage the equipment included in control systems (Shen et al., 2019).

For instance, time delays in feedback measurements can lead to changes in the

system operation and can reduce the system’s safety. Moreover, time delays can

decrease the efficiency of chemical procedures, which adversely affects quality

and resource utilization (Bento, 2020; Niu et al., 2019).

Besides, cyber-physical networks have a high level of sensitivity to time delays

in communication infrastructures. Any time delay in data transmission can lead
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to packet loss, which will cause re-transformation and network congestion. In

telecommunications and the Internet of Things (IoT), accurate scheduling for

data timing is required to guarantee reliable data exchange (Jafari & Rezvani,

2023; L. Zhao et al., 2019). The presence of time delays can disrupt the scalability

of such systems, affecting user satisfaction and operational efficiency, e.g.,

throughput, workflow disruption, and many more.

The safety of healthcare systems depends on the timely and accurate knowl-

edge of information. In remote monitoring, the timely transformation of patient

information is necessary to provide reliable telemedicine services. The quality

of healthcare treatment and diagnostic accuracy can be highly affected by time

delays (Murni et al., 2021). Time lag can also affect the receipt and retrieval of

information in the electronic health record (EHR), which disrupts information

integrity. For disaster management, real-time detection is required to quickly

respond to any changes and hazards in the environment. For example, timely

processing is necessary to monitor and detect floods, windstorms, and wildfires

to mitigate the destructive effects of natural disasters. The emergence of any

time delays in the computational procedure and data transformation can dis-

rupt the warning elements and efficiency of quick response to disasters (Khan

et al., 2020).

Therefore, the deployment of interdisciplinary methodologies such as control

theory, data science, signal processing, networked control, and telecommuni-

cation is required to address the issues associated with time delays. A wide

class of solutions can be utilized such as model predictive techniques, network

infrastructure optimization, parallel processing, real-time data coercion, and so

on. The minimization and management of time delays in measurement signals
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is necessary to ensure the safety and reliability of processes across a wide

spectrum of applications.

28



4. Literature Review

4.1. Strategies for Time Delay Mitigation

Extensive efforts have been made by contemporary researchers to eliminate

the problems created by time delays to improve the system’s performance.

In the automotive sector, these delays are addressed to enhance the safety of

autonomous vehicles due to minor time differences that can lead to accidents

(Petrillo et al., 2018; Xu et al., 2020). Manufacturing industries depend on precise

timing for quality control and efficiency, and compensating for time delays can

lead to fewer defects and increased productivity (Abdellatif & Alshibani, 2019).

Telecommunication and data centers require real-time synchronization to avoid

network congestion and ensure uninterrupted data transfer (Sheykhi et al.,

2022). These challenges underline the importance of developing effective time

delay compensation methods to alleviate the problems inherent in measurement

signals’ time delays.

Multiple time delays can appear in complex manufacturing processes, where

data is transformed from sensors to control systems, causing production ineffi-

ciencies. The multifaceted nature of the challenge posed by multiple time delays

is evident in the cross-disciplinary applications of time delay compensation.

The importance of addressing inherent time delays in measurement signals
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transcends individual domains and disciplines, impacting the core of modern

technology, industry, and daily life. The complications posed by these delays

elicit solutions that intersect the realms of science, engineering, and innovation,

manifesting in substantial implications.

To address multiple time delays, researchers and engineers have explored an

array of approaches. Up to now, various efforts have been made by contempo-

rary researchers to mitigate the effect of multiple time delays using Generalized

Predictive Control (GPC) (Pawlowski et al., 2016), model predictive control

(MPC) (Lu et al., 2013; J. Zhang et al., 2019), linear matrix inequalities (LMI)

(Fridman & Shaikhet, 2017; L. Xiong et al., 2018), event-triggered controllers

(Borri & Pepe, 2020; A. Wang et al., 2017; Y. Wang et al., 2021), Smith predictor

(Santos et al., 2014, 2016), sliding mode control (SMC) (Gao et al., 2020), Au-

toRegressive eXogenous (ARX) (Y. Zhao et al., 2016), Polynomial Regression

etc.

Mobayen et al. (Mobayen et al., 2020) formulated an LMI-based global SMC

scheme for uncertain discrete-time descriptor systems with multiple time-

varying delays using Lyapunov-Krasovskii theory. One of the key outcomes

of this research is the development of sufficient conditions for the asymptotic

stability of the sliding mode dynamics, which is crucial for ensuring the system’s

robust and stable performance. The proposed global SMC approach not only

addresses time delays but also deals with parametric uncertainties in the system.

In (Azmi & Yazdizadeh, 2023), Azmi and Yazdizadeh proposed a fault-tolerant

technique based on online adaptive tuning for nonlinear plants with multiple

input and state delays. The research aims to bridge this gap by designing a

control strategy that can handle the complexities arising from multiple delays
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and nonlinear dynamics.

The authors of (Zeng et al., 2019) focused on developing a novel mathematical

tool, the Generalized Free-Matrix-Based Integral Inequality (GFMBII), to tackle

time-varying delay systems in complex problems. The objective is not only to

introduce a novel tool but also to show its practical applicability and superior

performance in analyzing and ensuring the stability of time-varying delay

systems.

In (Qin et al., 2018), the H-infinity synchronization dynamics in complex net-

works characterized by multiple time delays are explored. This paper employs

advanced mathematical techniques, such as inequalities, and constructs appro-

priate Lyapunov functionals, enabling a rigorous analysis of synchronization

stability.

The authors of (Wu et al., 2019) aimed to address the optimization of a

specific class of nonlinear optimal control problems with multiple time de-

lays, particularly when the control system is subject to equality/inequality

constraints.

The research of (Fatehi & Huang, 2017) focuses on the application of a

fusion Kalman filter to improve state estimation accuracy in scenarios where

measurements from lab data are obtained at a slower rate and subject to variable

delays and irregular sampling times. This work provides a robust methodology

for state estimation in plants with delayed measurements, with a particular

emphasis on leveraging lab data to enhance accuracy.
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4.2. Challenges and advancements of state-of-the-art

methodologies in time delay mitigation

Several shortcomings are associated with prevalent schemes designed to address

systems with multiple time delays.

1. Limited Generalizability: Prevalent schemes are often tailored to specific

system models or delay structures, making them less adaptable to a wide range

of practical applications.

2. Complex Analysis: Some prevalent schemes involve complex mathematical

analysis and intricate modeling of the system, which can make them challenging

to implement, particularly in real-time applications. The complexity can also

lead to difficulties in understanding and interpreting the results.

3. Intense computing: Prevalent schemes may require extensive computational

resources, particularly for systems with multiple delays. This computational

intensity can be a significant drawback, as it may not be feasible for systems

that require real-time or resource-constrained operation.

4. Inadequate Consideration of Practical Constraints: Prevalent schemes may

not adequately consider practical constraints that exist in real-world time-

delayed systems which can result in sub-optimal or infeasible control strategies.

5. Complex Tuning: Tuning parameters for some schemes can be a time-

consuming and challenging task. Achieving optimal or stable performance may

require extensive parameter tuning, which can be impractical in some scenarios.

6. Lack of training: The conventional approaches suffer from a lack of training

capability which limits their application to handle complex problems with large

time delays.
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mitigation

To address the above problems, ‘black box’ methodologies have been rec-

ognized as powerful tools for training prediction models from big databases.

Unlike traditional modeling techniques that rely on understanding the underly-

ing physical phenomena, black box schemes operate by constructing a function

solely from interconnected sample data, effectively describing the behavior of a

specific system. With the input-output (I/O) data of a specific system, all the

required information can be obtained without the need for model identification.

In the context of time-delayed systems, many black-box methods are used,

including Multiple Linear Regression (MLR) (Meulenbroek & Pichardo, 2020;

Plonis et al., 2020), meta-heuristic approaches (e.g., genetic algorithms, harmony

search, grey wolf optimizer, etc.) (Shakarami & Davoudkhani, 2016), deep neu-

ral networks (DNNs) (J. Han & Hu, 2021; Snyder et al., 2015), Support Vector

Machines (SVM) (Lin et al., 2006; Z. Zhang et al., 2019), cross-correlation-based

methods (X. Liu et al., 2022), and Long Short-Term Memory (LSTM) (Huang

et al., 2022; Tian et al., 2021; Yin et al., 2022), among others. These algorithms

can find the behavior of time delays using the input and output information of

systems. For example, these algorithms can aid in determining the time delay

when it is state-dependent or under multiple conditions. In such situations,

DNNs or model comparison models can be adopted for estimating time delays

under stochastic conditions (Albrecht & Taylor, 2022).

In (Y. Zhao et al., 2016), a combination of AutoRegressive eXogenous (ARX)

and Markov chain model have been introduced to model discrete time delay in

measurement signals of industrial processes, considering both time-invariant

and time-variant signals. The outcomes of self-validation and cross-validation re-

vealed that the accuracy of the suggested Markov chain (more than 90 percent) is
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higher than both independent delay and fixed delay while its Root Mean Square

Error (RMSE) is smaller than two other schemes. Furthermore, it was verified

by numerical simulation that the recursive form of expectation-maximization

(EM), which is an expansion of Cappe’s technique with an iterative estimation,

provides a superior level of identification performance than its recursive version

without iteration.

Meulenbroek and Pichardo (Meulenbroek & Pichardo, 2020) developed a mul-

tivariable linear regression and three cross-correlation methods to estimate the

onset time delay (OTD) in measurement signals. Comparative analysis revealed

that the multivariable linear regression method offers a significant improvement

by being 80.4 percent more accurate than cross-correlation-based methods for

estimating the onset time delay between two measured signals at similar spatial

positions. Additionally, time-delay techniques based on correlation were found

to consistently underestimate OTD, potentially leading to misinterpretation of

results.

A black box scheme, based on a pair of regression equations, has been devel-

oped in (Albrecht & Taylor, 2022) that does not require any dynamic model of

time delay variability. This algorithm autonomously navigates through parts of

an open-loop experiment, accounting for variations in the output using a set of

regression equations, thereby providing an estimation of the time delay. Unlike

State-Dependent Parameter (SDP) models, the proposed scheme eliminates

the need for assumptions of a fixed delay. Furthermore, it is not constrained

by the requirements for linear modeling and initial conditions. Compared to

neural networks, the suggested technique requires less computational time and

is not dependent on a dynamic model. Comparative analysis using the Sum
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of Squared Errors (SSE) metric demonstrated the superiority of the proposed

scheme over previous works.

In (X. Liu et al., 2022), Liu et al. developed a new polynomial inversion

to find the relationship between true time delay and time-delay estimation

(TDE) in channels in multiantenna by employing least squares (LS) approaches.

According to the numerical analysis of (X. Liu et al., 2022), the Mean Square

Error (MSE) of the suggested technique is lower than the Cramer–Rao lower

bound while incorporating only a limited number of additional multipliers

than the convex parabolic method.

Chen et al. (J. Chen et al., 2018) developed a variational version of the Bayesian

technique to identify ARX models subjected to communication-varying time

delays. In this study, the unknown observations employed in Bayesian were

estimated by the Kalman filter. The simulation outcomes in the study clearly

confirmed the effectiveness of the proposed Bayesian model in estimating the

time delays.

In (Pan et al., 2018), the time delays of a radar system were estimated by inte-

grating the theory of forward-backward linear prediction (FBLP) and Support

Vector Regression (SVR). This research work focused on the advancement of

processing techniques, providing a reliable and robust time delay estimation

in many challenging scenarios. The numerical and experimental verifications

demonstrated a higher level of accuracy in delay estimation using the hybrid

technique compared to the conventional FBLP and SVR methodologies.

In (Le Bastard et al., 2013) the application of Support Vector Regression for

the estimation of time delays was explored using the nondestructive testing

and evaluation (NDTE). The outcomes of this research work confirmed the
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feasibility and usefulness of the SVR scheme-based predictor in all contexts of

the system under study. Furthermore, the results obtained by various scenar-

ios of simulation demonstrated a high level of estimation accuracy with low

computational time.

The authors of (H. Chen et al., 2020) proposed a modified version of multi-

variate linear regressive (MLR) to precisely predict time delays involved in three

parts including communication, transmission, and processing. The compara-

tive outcomes and detailed analysis revealed that a higher level of prediction

accuracy can be obtained by the suggested MLR technique over auto-regressive

(AR), NNs, and cubic polynomial model-based (CBMB) approaches, especially

in the presence of time delay in vast jitters. Apart from this, the experiment

results of this study confirmed that modifications made to the MLR scheme

have resulted in improved performance and stable predictive capabilities.

Xiong et. al (W. Xiong et al., 2017) introduced a novel time delay recon-

struction based on Gaussian process regression to address the challenges of

nonlinearity and time-varying features of industrial processes in the context of

soft sensor modeling. A fuzzy curve analysis was incorporated into local time-

delay coefficient extraction to capture the time-varying dynamics. The reliability

examination and RMSE analysis of different time delay models demonstrated

that the proposed scheme is able to improve prediction accuracy by extracting

local time delay.

By training neural networks, machine learning is frequently utilized to handle

time delays in various fields. Linear regression, as one of the most important

machine learning algorithms, has been widely applied to various fields for

modeling relationships between variables, but its adaptation to time delay
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mitigation

scenarios presents unique challenges. The incorporation of time delays into

linear regression models has attracted significant attention in recent years, as it

can provide valuable insights into dynamic systems and temporal dependencies.

The traditional linear regression model assumes instantaneous relationships

between variables, making it unsuitable for dynamic systems with time delays.

Researchers have extended linear regression by incorporating lagged variables,

allowing for the capture of delayed effects.

The advantages and disadvantages of various techniques have been illustrated

in Table 1. Fig. 1 illustrates evaluation methodologies for linear regression mod-

els spanning from traditional statistical methods to contemporary approaches.
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Table 4.1.: Comparison of Time Delay Mitigation Methodologies (Part 1)

Methodology Advantages Disadvantages

Cross

Correlation

(Benesty et al.,

2004; Podobnik

& Stanley, 2008)

• Simple to calculate.

• Provides a measure of simi-

larity between two signals.

• Assumes stationary signals.

• Sensitive to noise and out-

liers.

Linear

Regression

(H. Chen et al.,

2020; Ebrahimi &

Rajaee, 2017)

• Simple to implement.

• Operates well irrespective of

dataset size.

• Gives information about the

relevance of features.

• Prone to underfitting.

• Boundaries are linear.

• Assumes the information is

independent.

AutoRegressive

eXogenous

(ARX) (X. Chen

et al., 2020;

Y. Zhao et al.,

2017)

• High predictive accuracy.

• Estimation of model parame-

ters based on observed data.

• The statistical properties of

the data do not change over

time.

• Limited to linear relation-

ships between variables.

Polynomial

Regression

(Desai & Shah,

2020; Fan et al.,

2020)

• Works on any size of the

dataset.

• High flexibility and can cap-

ture complex relationships

between variables.

• Need to select the right poly-

nomial degree for good bias.

• Small changes in the input

data can result in significant

changes in the model.
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mitigation

Table 4.2.: Comparison of Time Delay Mitigation Methodologies (Part 2)

Methodology Advantages Disadvantages

Long Short-Term

Memory (LSTM)

(Lim et al., 2022;

Sherstinsky,

2020)

• Capturing and modeling

long-term dependencies.

• Flexibility to various configu-

rations and can be combined

with other neural network ar-

chitectures.

• High complexity.

• Sensitivity to hyperparame-

ters.

• Requires substantial amounts

of training data.

Bayesian Models

(J. Chen et al.,

2018; Shang

et al., 2013;

Y. Zhao et al.,

2017)

• Utilizing a natural way to es-

timate and quantify uncer-

tainty.

• Interaction data and parame-

ters.

• Require substantial computa-

tional resources.

• Dependencies between

model parameters.

• High sensitivity to selecting

hyperparameters.

Support Vector

Machines (SVM)

(Ebrahimi &

Rajaee, 2017;

W. Xiong et al.,

2017; Z. Zhang

et al., 2019)

• Robust to noisy data.

• Capable of modeling nonlin-

ear relationships.

• Sensitivity to outliers in the

dataset.

• Training SVMs can be compu-

tationally intensive.

• Prone to overfitting.
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4.3. Conclusion

The comparison of various time delay mitigation methodologies highlights the

strengths and limitations of each approach, guiding the selection of appropriate

techniques for specific scenarios. Traditional methods like Cross-Correlation and

Linear Regression offer simplicity and ease of implementation but are limited

by their assumptions of stationarity and linearity. ARX models provide high

predictive accuracy but are constrained to linear relationships and stationary

data. Polynomial Regression offers flexibility and the ability to capture complex

relationships but requires careful selection of polynomial degree and can be

sensitive to input changes.

Modern approaches such as LSTM and Bayesian Models demonstrate signifi-

cant advantages in handling complex, non-linear relationships and quantifying

uncertainties, respectively. However, these methods demand substantial com-

putational resources and are sensitive to hyperparameters. Support Vector

Machines strike a balance with robustness to noisy data and non-linear model-

ing capabilities but face challenges with computational intensity and potential

overfitting.

Given these insights, continuing with methods such as Cross Correlation,

Linear Regression, ARX, Polynomial Regression, and LSTM is justified. These

methods cover a spectrum from simplicity to advanced modeling capabilities,

offering a comprehensive toolkit for addressing various time delay mitigation

challenges.
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4.4. Selected Methods

Cross Correlation:

• Provides a straightforward measure of similarity between signals.

• Useful as a preliminary analysis tool to identify time delay.

Linear Regression:

• Simple to implement and interpret.

• Effective for understanding feature relevance despite potential underfitting

in complex scenarios.

AutoRegressive eXogenous (ARX):

• High predictive accuracy with parameter estimation based on observed

data.

• Suitable for scenarios where linear relationships are predominant and

data properties are stable over time.

Polynomial Regression:

• High flexibility to model complex relationships.

• Effective for datasets where the relationship between variables is non-

linear and requires more than a simple linear approach.

Long Short-Term Memory (LSTM):

• Captures long-term dependencies effectively.

• Versatile for various configurations and can be integrated with other

neural network architectures for improved performance.

Each of these methods brings distinct advantages to the table, making them

valuable tools for a comprehensive approach to time delay mitigation.
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4.5. Mathematical Formulation of the Problem

In real-world problems, there are some relationships between variables in

complex systems which can be formulated using multiple variables. In order to

mathematically formulate the problem, let us assume X is the input time series

with n data points:

X(t) = [x1(t), x2(t), . . . , xn(t)] for t ≥ 0. (4.1)

and the corresponding output time Y series with n data points :

Y(t) = [y1(t), y2(t), . . . , yn(t)] for t ≥ 0. (4.2)

with time delay d

d = [d1, d2, . . . , dn] (4.3)

where dn represents the time delay for the n-th output. These equations may be

set appropriately depending on the method to solve for the delay. To address

the problem, we need to find dynamics that map the input variables to their

corresponding outputs under time delay. Various methodologies can be utilized

to address the formulation of input/output problems according to the system’s

specifications. The following techniques are prevalent schemes to solve the

input/output problems in the literature.

• Linear Regression

• Polynomial Regression

• AutoRegressive with eXogenous input (ARX)

• Cross-Correlation
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• Support vector machines

• Bayesian methods

4.6. Linear Regression

4.6.1. Regression Analysis

Regression analysis is a statistical technique that may be applied to investigate

relationships between two variables where a linear relationship between two

variables is estimated. This scheme aims to find the best-fit line in such a

way that minimizes the variance between the predicted and observed points.

Regression analysis requires that we evaluate data on every kind independently,

as opposed to ordination and clustering, which allows us to examine data on

every type at once. It can be extended to multiple linear regression comprising

of several independent variables (James et al., 2013; Uyanık & Güler, 2013).

Regression analysis emphasizes addressing questions like ”Is there a con-

nection between dependent and independent (explanatory) variables? If so,

what is the magnitude of this connection? How robust is this association? It

can be described as the representation of the connection between dependent

and independent variables in the guise of a mathematical function. Many stud-

ies make the assumption of a linear relationship between independent and

dependent variables. The parameters of these regression models are typically

unknown but can be estimated through various techniques. One of the most

commonly employed methods for prediction is the least squares approach,

which will be applied in this research. The correlation coefficient and coefficient

of determination serve as indicators of the strength of the estimated relation-

43



4. Literature Review

ships, and the sign of the correlation coefficient signifies the direction of these

relationships. Regression analysis is a readily understandable method with

extensive applications today, facilitated by statistical software packages such as

SPSS, Minitab, Matlab, SAS, and Stata.

4.6.2. Definitions and Fundamentals of Linear Regression

Models

-Regression model: A simple model of regression referees to the model that

utilizes only one independent parameter for estimating a single dependent

parameter.

-Linear regression: In this scheme, a linear scheme is adopted to model a

predictive behavior between a response and several dependent or indepen-

dent parameters. In the following, the various models of linear regression are

explained.

• Simple Linear Regression: In this model, we examine the association be-

tween a single dependent parameter and one independent parameter.

• Multiple Linear Regression: This scheme utilizes several independent

parameters to estimate a single dependent parameter.

-Correlation analysis: Correlation analysis is a statistical technique used to

assess and quantify the degree of association or relationship between two

or more variables. It helps in understanding how changes in one variable

relate to changes in another. The result of a correlation analysis is expressed

as a correlation coefficient, which indicates the strength and direction of the

relationship. A positive correlation suggests that when one variable increases,

the other tends to increase as well, while a negative correlation implies that
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as one variable increases, the other tends to decrease. Correlation analysis is

valuable in various fields, including statistics, economics, and social sciences,

for identifying and understanding patterns and dependencies in data. The

relationship between correlation analysis and linear regression lies in the fact

that correlation coefficients can be used to provide insights into the potential

strength and direction of a relationship between variables (Pal et al., 2019).

-Correlation coefficient: often denoted as ”r,” is a numerical measure that

quantifies the strength and direction of the linear relationship between two

variables. It falls within the range of -1 to 1, with specific interpretations:

1. Positive Correlation: When the correlation coefficient is greater than zero

(r > 0), it signifies a positive or direct relationship between the two variables.

When one parameter is enhanced, then the other will tend to enhance accord-

ingly.

2. Negative Correlation: When the correlation coefficient is less than zero (r <

0), an inverse relationship between the parameters is created. In this correlation,

other parameters tend to be reduced by enhancing a parameter.

3. No Correlation: A correlation with the value of zero (r = 0) emphasizes

that there is no linear relationship between the considered parameters. In fact,

any variations of a parameter don’t lead to any change in the other parameter.

Statistical techniques (like Pearson’s correlation) are often adopted for linear

relationships.

4.6.3. Basic equations of simple linear regression

In statistics, a formula for regression is used to determine whether or not there

is a relationship between sets of data. Finding out if the information can be
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fitted to an equation is possible with the use of regression equations. There are

actually several kinds of formulas for regression. Simple linear and exponential

regression are two of the more used methods (to match the information to an

exponential equation or the linear formula). The regression formula that you

are likely to encounter in introductory statistics is the linear version (Seber &

Lee, 2012).

The regression aims to estimate a term dependent variable (Y) according to

the one independent variable (X). In other words, the regression focuses on

finding a relationship between the terms Y and X using a line or curve. The

simple linear regression is formulated as (Chatterjee & Hadi, 1988; Florea et al.,

2016):

Y = β0 + β1X + ϵ (4.4)

where β0 is the intercept term; β1 denotes the slope. ϵ denotes the error or

deviation term. The schematic of linear regression is depicted in Fig. 2. In mul-

tiple types of regression, multiple independent parameters (X1, X2,..., Xk) are

introduced and thus the regression equation is extended as follows (Chatterjee

& Hadi, 1988).

Y = β0 + β1X1 + β1X2 + ... + βkXk + ϵ (4.5)

In the above equation, the main objective of regression is to predict the terms of

β0, β1, β2 in such a way that the best description for the equation is obtained.

4.6.4. Linear Regression Assumptions

Conventional linear regression methods using conventional estimate techniques

(e.g., ordinary least squares) make the following essential assumptions (Seber &
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Figure 4.1.: Illustration of Linear Regression

Lee, 2012):

• There is statistical independence among error values. This presupposes

that there is no correlation between outcomes and parameter errors. Cer-

tain techniques can deal with correlated mistakes, but they usually need a

lot more data, unless the model is biased to assume uncorrelated errors

by some kind of regularisation. A generic approach to addressing this

problem is Bayesian linear regression.

• The probability distribution of the errors is normal with a mean zero.

• The probability distribution of the errors has constant variance.

• There is no measurement error for the independent variables. It is assumed

that the observed values of x precise without any inaccuracy.
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• Linearity: There is a linear connection at the root between the variables

x and y. More broadly, the parameters (regression coefficients) and the

predictor variables are linear combinations that result in the mean of the

response variable. It is merely a limitation on the variables since linearity

is regarded as if the predictor variables were fixed values.

4.6.5. Formulation of linear regression with time delay

The formulation of time-delayed regression is introduced by considering the

impact of delay using delayed values of independent variables. The general

form of linear regression with time delay is given as (Sinha, 2013):

Yt = β0 + β1Xt + β2Xt−1 + β3Xt−3 + ... + βdXt−d + ϵ (4.6)

In the context of our problem, the goal of least squares regression is to find the

coefficients β and the time delays d that minimize the sum of squared errors

between the predicted output and the actual output.

min
β,d

n

∑
i=1

(Yt − β0 + β1Xt + β2Xt−1 + β3Xt−3 + ... + βdXt−d + ϵ)2 (4.7)

which can be solved using techniques like normal equations, gradient descent,

or matrix factorization methods to find the values of β and d that minimize this

sum of squared errors. The solution for β will give us the weights, and from

the values of di in your model, we can extract the time delays.
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4.6.6. Ridge Regression

Ridge regression is a regularized form of linear regression that adds a penalty

term to the least squares loss function to prevent overfitting. Ridge regression

is particularly useful when we have many input variables and want to prevent

overfitting while still finding the optimal values for β and d (Saunders et al.,

1998). In this context, we can set up the ridge regression problem as follows:

min
β,d

n

∑
i=1

∑
t

(
yi(t)−

n

∑
j=1

βijxj(t− di)

)2

+ α
n

∑
i=1

n

∑
j=1

β2
ij (4.8)

where α is the regularization parameter, the term L2 norm is adopted to prevent

overfitting. The ridge regression problem can be solved by the least squares

regression.

4.6.7. Evaluation Metrics for Linear Regression

Several evaluation metrics can be defined to assess the performance of linear

regression. These evaluation criteria offer a quantification of how accurately

the model generates the observed outputs. In the following, the most popular

evaluation metrics including Mean Squared Error (MSE), Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination

(R-squared) in the context of linear regression are defined (Chicco et al., 2021;

Qi et al., 2020).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4.9)

RMSE =
√

MSE (4.10)
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MAE =
1
n

n

∑
i=1
|yi − ŷi| (4.11)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (4.12)
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Figure 4.2.: Illustration of Linear Regression
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4.7. Formulation of ARX

The AutoRegressive with eXogenous (ARX) is an autoregressive model that

has been adopted to identify the block box systems (Duran-Hernandez et al.,

2020; Xie et al., 2021). Despite the one-stage estimation can be accomplished in

a straightforward manner, the ARX faces some serious challenges in solving

the multi-step estimation. For a time-delayed system, the formulation of ARX

with time delay is described as:

y(t) = α1y(t− d1) + α2y(t− d2) + · · ·+ αny(t− dn)

+ β0u(t− d0) + β1u(t− d1) + · · ·+ βmu(t− dm) + e(t) (4.13)

4.8. Polynomial Regression

In polynomial regression, the relationship between input X and output Y is

defined by an hth-degree polynomial, given as (Sinha, 2013):

Y = β0 + β1X + β2X2 + β3X3 + ... + βhXh + ϵ (4.14)

In practice, the values of h greater than 3 or 4 are less adopted. This is because

large values of h are too flexible, which creates strange forms. Despite the

non-linear relationship between the independent variable X and the dependent

variable Y can be provided by the above model, the polynomial regression

is recognized as a form of linear regression. This is because of linearity be-

tween the polynomial regression parameters, i.e., β1, β2, ..., βh. Therefore, the

linear feature of polynomial regression is oriented from its parameters, not its
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predictors. Even if its model has the power of X, this model is linear in the

variables of β1, β2, ..., βh. This linearity of variables provides the possibility to

estimate different models using regression methodologies. For the estimation

of polynomial regression, the values of the response parameter (Y) and the

predictor parameter (X) are required.

4.8.1. Precautions in Polynomial Regression

Polynomial regression is well-known as a specific class of regression analysis

that can be employed to model nonlinear problems. In order to verify the

model’s accuracy, some strategies such as cross-validation are often imple-

mented. This type of analysis is adopted to solve problems in which there is no

clear scheme to model the relationship between the input X and output Y data.

Degree of the Polynomial n

In the polynomial analysis, the number of x is determined by the degree of n.

In spite of high degrees of polynomials that can handle complex relationships,

their accuracy is threatened by overfitting.

Model Fitting

Least squares are a mathematical scheme and are widely used to fit a polynomial

regression to any data. In this strategy, it is aimed to explore the values of the

coefficients (β0, β1, β2, . . . , βn) in such a way that minimizes the sum of squared

differences between the estimated values and actual terms.
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Over Fitting & Regularization

Overfitting refers to a phenomenon that appears when the training of models

is completely well while it is not appropriate for testing data. The overfitting

problem often happens in cases where noises adversely affect the behavior of

training data. This indicates that noises or random deviations are trained as

a part of the system model. The main issue is that the new data will not be

created by these concepts and will fail the capability of the model to generalize

(Vasicek, 2019).

Overfitting is usually included in non-linear models with a high level of flexi-

bility to learn the target data. When the degree of the polynomial is enhanced, a

more flexible model can be realized to fit the noise, and this leads to overfitting.

In this case, regularization strategies (e.g., Ridge and Lasso regression) can be

adopted to add penalties on the size of the variables.

By considering four models for regression, one can express (Sinha, 2013):

y(X; θ) = ω0 + ω1X + ω2X2 + ω3X3 + ω4X4 (4.15)

Assume θ = (ω0, ω1, ω2, ω3, ω4), the order less than two for this polynomial

is referred to as high order due to the overfitting may occur for high order

polynomial.

The basic regularization scheme aims to decrease the coefficient’s values,

particularly for high-order parameters. By utilizing these parameters in the

objective function, the high-order terms can be suppressed by minimizing the

objective function. Based on the concept of regularization, the objective function

can be defined as:
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J(θ) = 1/2(∑(h(xi; θ)− yi)2 + λ ∑ ω2
j ) (4.16)

where λ is the regularization parameter.

Choosing the Right Degree n

It is special to choose the accurate degree of the polynomial. The underfitting

is created by a low level of degree, where the model is not able to capture

the related relationship while overfitting is appeared by a high level of degree.

Cross-validation and model verification methodologies are good options to

choose a proper degree.

4.9. Formulation of Cross Correlation

Cross-correlation is used for analyzing the choice of a known element in an

unknown complex (B. Li et al., 2017). This scheme has been developed for a

wide range of applications such as telecommunications and image processing. It

is adopted as a measurement criterion to investigate and compare the similarity

between two or more sets of samples.

Cxy(τ) = ∑ x(t) ∗ y(t− τ) (4.17)

4.10. Fuzzy Logic Control Method

The Fuzzy Logic Control Method (FLCM) is a powerful control technique that

can effectively handle complex and uncertain systems, making it suitable for

compensating for time delays in measurement signals. By employing the fuzzy
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logic into the control system, FLC can accommodate imprecise and uncertain

information, and allows for robust and adaptive control in the presence of

time delays (Hagras, 2007). A key advantage of the FLC is its ability to handle

non linearity and approximate human-like decision-making. Unlike traditional

control methods that rely on precise mathematical models, which may not

accurately capture the dynamics of the system affected by time delays, the FLC

on the other hand, can operate based on linguistic rules and fuzzy sets, which

provide a more flexible and intuitive framework for control. FLC offers several

benefits when it comes to compensating for time delays in measurement signals

such as; Adaptability, FLC allows for the dynamical adjustment of its control

actions based on the current state of the system and the measurement delays.

The linguistic rules in an FLC system can be designed to explicitly consider the

time delays and their impact on the control process. This adaptability allows

FLC to compensate for delays and maintain the stability of the system and its

performance even with the presence of change in the delay characteristics. The

tolerance of uncertainty is another benefit provided by the FLC, it deals with

uncertainties associated with time delays, such as variations in delay duration

or change in the system dynamics. FLC allows representation and manipulation

of imprecise and uncertain information, by using linguistic variables and fuzzy

sets, thereby enabling the control system to adapt to varying delay conditions

(Nangrani et al., 2018). Nonlinear control capability is one benefit of the FLC

that cannot be overlooked, as time delays in measurement signals can introduce

non linearity in the control system. FLC is well suited for handling nonlinear

systems and can effectively address the complexities introduced by time delays.

The linguistics rule in the FLC system can capture the nonlinear relationships
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between the delayed measurements and the desired control actions. To provide

a mathematical representation of fuzzy logic control (FLC) for compensating

time delays in measurement signals, some key concepts and equations which

is a generalization of the representation should be taken into consideration

and may need to be customized based on the specific FLC implementation and

system requirements. Firstly, define a fuzzy set B over a universe of discourse X,

where each element x ∈ X has a degree of membership ϕB(x). The membership

function ϕB(x) map each element x to a grade of membership between 0 and 1,

indicating the degree to which x ∈ B. The membership function can then be

expressed using various mathematical functions depending on the shape and

characteristics of the fuzzy set. Linguistics variables and fuzzy rules are also

key concepts used in FLC, linguistic variables represent the input and output

variables in the FLC system. The next concept is the Fuzzy rules which defines

the relationship between the linguistic variables and control actions, where

each rule consists of an antecedent (IF condition) and a consequent (THEN

action). The antecedent of a fuzzy rule is typically expressed as a combination

of linguistic variables using logical operators example AND, OR (Zadeh, 2008),

(Czogala & Leski, 2012). The next concept is fuzzification, this is the process of

converting cripes (numerical) inputs into fuzzy sets using membership functions.

After fuzzification, the rule evaluation comes into play as it involves determining

the degree to which each fuzzy rule is satisfied based on the membership values

that are passed in the linguistic variable. Aggregation is an important concept

because it combines the output of individual fuzzy rules to obtain an overall

fuzzy output; common aggregation methods that can be used to achieve this

include the maximum operator, which selects the highest membership value for
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each linguistic term, or the product (MIN) operator, which takes the minimum

membership value. Lastly, the defuzzification concept converts the aggregated

fuzzy output into a cripes value, representing the final control action. The

various defuzzification methods that can be used to determine the cripes output

value are centroid, mean of maximum (MOM), or weighted average(Mahdavian

et al., 2012). Consider n input signals denoted as x1, x2, . . . , xn, and one output

signal, denoted as y, we can define the linguistic variable for each input and

output signal, and their associated membership functions, let Xi represents

the linguistic variable for input signal xi, and Y for the linguistic variables of

the output signal y. The membership functions can be denoted as ϕXij(x) and

ϕYk(y), where j and k represent the linguistic terms for the respective variables.

We can set up a rule base that maps combinations of linguistics variables

from the inputs to the output. Let Ri represents the fuzzy rule i, which can be

expressed as: IF x1 is Xj1 AND x2 is Xj2 AND . . . AND xn is Xjn THEN y is Yk.

Employing the membership function ϕXij(x) and ϕYk(y), we can convert the

crips values of the delayed input signals to fuzzy values. The fuzzy rule can

then be evaluated using the computed fuzzy values. Each rule will have a firing

strength, denoted as

wi = MIN(ϕXj1(x1), ϕXj2(x2), . . . , ϕXjn(xn) (4.18)

4.11. Neural Network (RNNs) Method

The use of Recurrent Neural Networks (RNNs) can be deployed as an effective

method for compensating time delays in measurement signals. RNNs are a

special type of neural network that can be used to capture temporal depen-
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dencies in sequential data, making them well-suited for handling time-delayed

signals. In the process of estimating and compensating for time delays, an RNN

model can learn to model the relationship between the current measurement

and previous measurements, allowing it to make predictions and estimate the

true value of the current measurement despite the delay. An RNN can effec-

tively learn the temporal patterns and compensate for the delay in real time, by

leveraging the sequential nature of the data. The RNNs networks are designed

to process inputs of variable length, providing the flexibility for handling time

series data with varying time delays. They achieve this by utilizing recurrent

connections, which allows information to be propagated through time steps.

This enables the network to maintain a hidden state that will capture and store

temporal information from previous inputs. There are several approaches to

recurrent Neural networks (RNNs) that can be used to compensate for time

delays in measurement signals. Some commonly used RNN architectures will

be studied and discussed.

4.11.1. Simple RNNs Method

Simple RNNs are the basic form of RNNs and have a simple recurrent connec-

tion. They suffer from the vanishing gradient problem, which makes it difficult

for them to capture long-term dependencies effectively (Su & Kuo, 2019). As

a result, they may struggle to compensate for larger time delays. The simple

RNNs have a straightforward architecture and can be easier to train and imple-

ment compared to more complex variants like LSTMs or GRUs (Alom et al.,

2019). The RNNs are best seen to capture delays that are relatively small. In

simple RRN, each neuron has a recurrent connection that self feeds the output
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of the neuron back to itself at the next time step (Murugan, 2018). This allows

the network to maintain a hidden state that will capture information from past

inputs. The hidden state act as a memory that retains the information about

the previous measurements and helps in compensating for the time delayed

(Yue-Hei Ng et al., 2015). To employ the simple RNN for compensating time

delays in measurement signals, the first thing to do is to preprocess the data; the

input data should be organized into a sequence, where each sequence consists

of a set of measurements along with their corresponding delayed measurements.

The delayed measurement can then be obtained by adjusting the original signals

in time. The input data should appropriately be normalized to facilitate training.

After pre-processing, a simple RNN network architecture that suits the problem

should be designed, the network architecture typically includes an input layer,

a recurrent layer which contains recurrent connections, and an output layer. The

number of neurons in the recurrent layer can be adjusted based on complexity of

the problem and the expected time delays to be determined. The pre-processed

data should then be splitted into training and validation sets. The training set

should contain sequences of input measurements along with the corresponding

target values, which can be the original measurements without the time delays.

The validation set is used to monitor and to determine the models performance

during the training process and to prevent overfitting the model (Ajiboye et al.,

2015). After the data-set is splitted into training and validation sets, the simple

RNN can then be trained using the data, the network learns to capture the

temporal relationships between the input measurements and its corresponding

target values. The weight of the network can be adjusted using optimization

algorithms such as stochastic gradient descent (SGD) (Mostafa, 2017). When
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employing the simple RNN network, one should be mindful of the vanishing

gradient problem, which can affect the network’s ability to capture long-term

dependencies. The simple RNN model should then be evaluated using the

validation set after it is trained. The performance of the model should then be

calculated using appropriate metrics such as mean squared error (MSE) or root

mean squared error (RMSE) to assess the model’s ability to compensate for time

delays. To increase the model performance, the network architecture or training

parameters should be adjusted. While the simple RNNs may struggle with cap-

turing long-term dependencies, they can still be effective in compensating for

smaller time delays in measurement signals (Tsiouris et al., 2018). However, in

order to capture more complex time delays, more advanced RNN architectures

like LSTMs or GRUs are generally preferred.

4.12. State Estimation Method

State estimation is one common method for compensating time delays in

measurement signals, it is also known as the state observer method. State

estimations is a technique used to estimate the current state of a dynamic system

based on available measurements. It is particularly useful when there are time

delays in the measurement signals (Schmelzeisen-Redeker et al., 2015). The idea

behind the state estimation is to build a mathematical model of the system and

use this model to predict the current state, based on previous measurements.

The estimated state can then be used in control algorithms of further analysis

of the system. One notable approach used in state estimators is the Kalman

filter. The Kalman filter is an optimal recursive estimator that can handle noisy

measurements and time delays. It operates in two steps, the prediction step
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and the update step (De Souza et al., 2021). In the prediction step, the filter

uses the system model to predict the current state based on the previous state

estimate and the system dynamics. An estimate of the measurement delay

is also included in the predicted state. In the update step, the filter utilizes

the actual measurements and adjusts the predicted state estimate to improve

accuracy. The filter uses a weighted combination of the predicted state and the

measurement to obtain an updated state estimate. The weights are determined

based on the uncertainty of the measurements and the predicted state. The

Kalman filter can compensate for time delays in the measurement signals

by iteratively performing the prediction and update steps, and providing an

accurate estimate of the system state. It is important to note that the Kalman

filter assumes linear dynamics and Gaussian noise distributions. If the system’s

dynamics are nonlinear or the noise happens to be non-Gaussian, then more

advanced techniques like the extended Kalman filter (EFK) of the unscented

filter (UKF) may be employed. Kalman filtering has numerous technological

applications. One notable application is it usage in navigating, controlling and

providing guidance for vehicles, particularly in aircrafts, spacecraft and ships

that are positioned dynamically (Selimović et al., 2020).

To utilize the Kalman filter for estimating the internal state of a system based

on a sequence of noisy observations, the process must be structured according to

a specific framework. This framework involves defining the following elements

for each time step i:

• Ti: the state-transition model,

• Oi: the observation model,

• σp: the covariance of the process noise,

62



4.12. State Estimation Method

• σob: the covariance of the observation noise.

In some cases, the model may also include Bi, the control-input model,

depending on the nature of the system. If Bi is present, then the control vector

µi is also included, representing the external control input applied to the system.

According to the Kalman filter model, the actual state at time i evolves from the

state at time (i− 1) as follows (J. Zhang et al., 2013):

xi = Tixi−1 + Biµi + wi (4.19)

• Ti represents the state transition model that is applied to the previous

state xi−1.

• Bi is the control-input model, which is applied to the control vector µi.

• wi denotes the process noise, assumed to follow a multivariate normal

distribution with zero mean and covariance σp:

wi ∼ N (0, σp)

This framework allows the Kalman filter to update the estimate of the system’s

state at each time step, accounting for both the inherent process dynamics and

the influence of external controls and noise.

It is important to point out the consequences of time delays on state es-

timation accuracy. Time delays in measurement signals can have significant

implications on the accuracy and reliability of state estimation in the systems.

It is essential that this consequences are understood in other to design robust

state estimation algorithms that can effectively compensate for the challenges

posed by delays (Y. Wang et al., 2020). Observability degradation is a key
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aspect in highlighting the impact of time delays using state estimation, time

delays introduce a lag between the occurrence of a state change and the corre-

sponding measurement, leading to a reduced ability to observe and track the

systems actual state. This observability degradation can result in incomplete

or delayed information, hindering the accurate reconstruction of the system’s

internal dynamics. Aside from the Kalman filter method, one notable approach

employed in state estimation is the predictor-corrector method. This method

involves predicting the future state using available measurements and then

correcting the prediction based on the actual measurements when they become

available. The aim of this method is to reduce the impact of time delays on

state estimation accuracy. (R. Han et al., 2020). A common predictor-corrector

approaches include the Smith predictor, more advanced techniques include the

moving horizon estimation (MHE) and recursive predictor-corrector methods. It

is important to note that each state estimation method has its strengths and also

its limitations, identifying these limitations will be pivotal when considering the

implementation of the state estimation method. As seen the discussions above,

the Kalman filtering methods are effective in linear systems with Gaussian noise

but may likely struggle in highly non-linear scenarios. In this case, particle filter-

ing technique provides a more general framework but can be computationally

intensive. Extended Kalman filtering (EKF) and Unscented Kalman filtering

(UKF) strikes a balance between linear systems and non-linear systems, but may

require accurate models of the signal dynamics. Future research in this area

could focus on developing hybrid approaches that combine the strengths of dif-

ferent methods or incorporating machine learning techniques to enhance time

delay compensation. Additionally, the integration of state estimation methods
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with adaptive algorithms and optimization techniques could further improve

the accuracy and efficiency of time delay compensation in various applications.

Overall, state estimation methods provide valuable tools for time delay com-

pensation, enabling precise synchronization and alignment of signals in diverse

fields. Their effectiveness and versatility make them an essential component in

systems requiring accurate temporal information.

4.13. Optimization techniques for time delay

enhancement

In the context of time delay estimation, optimization is essential to achieve the

best possible results. Techniques like Gradient Descent, Newton’s method, and

meta-heuristic algorithms systematically refine model parameters, leading to

accurate and efficient performance. By leveraging these methods, we can ensure

precise and robust time delay estimations for each result.

In the context of statistical models, optimization techniques play a crucial role

in the procedure of model training and predicting coefficients. These schemes

offer the possibility to optimize the statistical models of various engineering

problems such as robotics, networked systems, and energy management in a

systematic manner. Their ability to solve optimization problems is to explore

the optimal solution within a pre-defined constraint. In the related literature,

numerous optimization techniques have been developed to improve the effi-

ciency and accuracy of parameter estimation such as Gradient descent (GD)

(Barbano et al., 2021; Franzese et al., 2021; Z. Zhang et al., 2023), Newton’s

scheme (El Anes et al., 2016; Najeh et al., 2017) , quasi-Newton method (H.
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Chen et al., 2019; Gaffke & Schwabe, 2019; Hu et al., 2019), Regularization

(El-Koka et al., 2013; Wu & Xu, 2020), meta-heuristic algorithms (particle swarm

optimization, grey wolf optimizer (GWO)) (F. Zhang et al., 2016), so on.

In (Cao & Su, 2023), two distinct versions of GD based on fractional (FGDs)

schemes have been introduced which provide a faster convergence and more

accuracy of estimation than the conventional identification models. Additionally,

the fractional-based Gradient Descent (FGD) ensures unbiased predictions of

parameters and guarantees the robust performance of the information matrix.

Chen et al. (J. Chen et al., 2023) introduced a second-order model of nature

GD (NGD) for time-delay ARX identification using a redundant rule-based

technique. In comparison with the traditional identification methodologies,

the proposed scheme improves the computational efficiency and dynamically

updates each component in the coefficient vector.

In (Jing, 2023), Jing focused on identifying the effect of time delay by em-

ploying a normalized Gaussian approach and cross-correlation function (CCF)

in Hammerstein systems. In the identification scheme, a multi-error stochastic

information gradient (SIG) is adopted to identify system coefficients using loss

function descent criteria. In this study, the efficiency and robust performance of

the proposed CCF were verified by comprehensive simulations.

Guo and Ma (Guo & Ma, 2023) introduced a recursive expectation–maximization

(REM) to solve the optimization problem of parameter identification in Markov

jump ARX (MJARX) mehtod with unknown time delays. In this work, the tran-

sition probability matrix and variance were computed by minimizing the mean

squared error (MSE). The extensive numerical analysis emphasized superior

identification outcomes in comparison with the traditional REM algorithm.
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The authors of (J. Chen et al., 2021) proposed a robust and accelerative

stochastic gradient descent (RA-SGD) algorithm for ARX models where the con-

vergence rate is enhanced by transferring from the linear to at least quadratic.

In the large-scale domain, the proposed RA-SGD scheme takes fewer computa-

tional efforts with no restrictions on the step size. By comparing the results of

numerical and practical systems, it was verified that more accurate parameter

estimation can be reached by RA-SGD than the standard SGD algorithm.

In (Coelho & Neto, 2017), the deployment of the meta-heuristic algorithm

(Genetic algorithm) has led to the discovery of polynomial models with the

extension of evolutionary polynomial regression (EPR). In the study of (Coelho

& Neto, 2017), many experimental scenarios have been performed to confirm

the superiority of the EPR scheme in comparison with LR, regression trees,

Bayesian estimation (BE), and SVR methodologies. The numerical analysis in

terms of 25 percent percentile, error mean and 75 percentile have been made.

The outcomes of these scenarios revealed that the hybridization of polynomial

regression and regularization scheme can provide superior fitting while needing

less computational time than the basic version of EPR.

A stochastic gradient descent was developed in (Franzese et al., 2021) for

sampling the Markov chain to address the large-scale approximation challenges

of Bayesian modeling arising from the mini-batches operation. In this study,

the RMSE and the mean negative log were adopted as metrics of uncertainty

measurement. The comparative analysis of the proposed scheme to other types

of Bayesian sampling schemes like Stochastic Gradient Hamiltonian Monte

Carlo and Stochastic Gradient Langevin Dynamics demonstrated indicated

1) superior performance of the proposed scheme to tackle the measurement
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uncertainty, 2) straightforward tuning of the proposed scheme than alternatives,

and 3) competitiveness of proposed modeling in the realm of deep Bayesian

modeling, even when benchmarked against established methods found in the

existing literature.

4.14. Optimization Techniques for Solving Regression

Problem

In this subsection, various optimization strategies to solve the regression prob-

lems are presented.

Ordinary Least Square

Ordinary least square (OLS) is one of the well-known regression techniques

that can be developed for estimating coefficients in a straightforward manner.

The OLS tries to explore the parameters of the regression model By minimizing

the sum of squared differences, i.e., minimizing the error between predicted

parameters and actual terms.

The following considerations are given for the OLS regression. 1) The mean

of the population is zero. The error term refers to any deviation from the output

’Y’ or the dependent/independent parameters that can not be shown. In ideal

conditions, the error can be characterized by random probability.

2) Observations are independent of each other and there is no correlation

between the error terms. In the cases where there is a correlation, the error term

can be estimated by independent parameters.

3) The variance of the error term is constant. This demonstrates that vari-
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Figure 4.3.: Schematic of optimization procedure of gradient descent

ance will be kept the same for a single or a wide range of observations. This

assumption can be confirmed by drawing the curve of the true values versus

the residuals.

4)

Gradient Descent

Gradient descent (GD) is an iterative technique to find the minimum local

point which is adopted for various regression strategies such as multiple linear

regression. The GD is initialized by an arbitrary point which will be updated

in an iterative process towards a negative gradient to minimize a defined loss

function. Fig. 3 illustrates the procedure learning of GD to obtain the optimal

point (Parvathy & Devi, 2014; X. Wang et al., 2021).
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Stochastic Gradient Descent

Stochastic GD, entitled SGD, is a modified version of the SG technique which

updates the coefficients of a single point at each time. This algorithm can be

utilized for complex problems with large datasets where quick convergence is

required (Ighalo et al., 2020).

Mini-Batch Gradient Descent

Mini-batch GD (MBGD) is formed by a combination of SGD and full-batch GD

techniques. In the MBGD, the coefficients of the problem are updated using a

small (or mini-batch) part of the dataset (Lizhen et al., 2022).

4.14.1. Regularization and Overfitting

In this subsection, the basic concepts of regularization are elaborated.

Regularization

Regularization is a common technique to solve overfitting in regression prob-

lems. In the regularization, a penalty function is defined that reduces the

complexity of a specific model (Kolluri et al., 2020).

L1 Regularization (Lasso)

In the L1 regularization, an “absolute value of magnitude” is added to the loss

function. Lasso aims to reduce the parameters with less important properties to

zero; as a result, it can be adopted for feature selection problems where a large

number of features is involved.
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Figure 4.4.: Illustration of L1 (left side) and L2 (right side) regularisation

L2 Regularization (Ridge)

L2 regularization (Ridge) introduces a new loss function by adding the squares

of the parameters. In this strategy, large values of the coefficient are penalized

while tending to be sufficiently small.

The schematic of L1 and L2 Regularization is depicted in Fig. 4.

Overfitting

Overfitting often occurs in the cases where training data is accurately learned

but it is not appropriate for new data, i.e., lack of generalization. This problem

is rooted in many reasons such as the high complexity of the problem and the

presence of noises in data sets. To address this issue, L1 and L2 Regularization

techniques can be adopted to handle the overfitting issue.
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Hyperparameter Tuning

It is essential to accurately adjust the term of α for the effective performance

of L1 and L2 Regularization. To do this, many tuner mechanisms such as

cross-validation can be adopted for optimal tuning of hyperparameters.

In summary, regularization is a prominent scheme to handle overfitting,

where the right balance between complexity and generalization behavior is

preserved.
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Time Delay Estimation

In this chapter, we delve deeper into the methodologies we have identified as

the most effective for addressing the time delay estimation problem. Building

on the foundational concepts discussed in previous sections, we focus on ad-

vanced techniques and their practical applications. Our exploration includes a

thorough analysis of each method’s theoretical underpinnings and implemen-

tation strategies. This chapter aims to equip the reader with a comprehensive

understanding of the state-of-the-art approaches.

5.1. Cross Correlation Method

The cross-correlation method is a common technique used to determine time

delays in measurement signals by aligning the signals in time (Khyam et al.,

2016). It measures the similarity between n input and output signals as a

function of the time lag between them. By identifying the lag at which the

signals appear to be more correlated, one can estimate the time delay (Ianniello,

1982). The cross-correlation method is particularly useful in applications where

multiple sensors or measurement devices are involved, and the signals obtained
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from these devices may not be perfectly synchronized as a result of inherent

delays in the system (Bertrand, 2011). The cross-correlation method is also

widely used in various fields, including communication systems and image

registration, to compensate for time delays and align signals for further analysis

or synchronization (Chinaev et al., 2021). Mathematically, in order to determine

the cross-correlation of two continuous signals x(t) and y(t), we employ

(x · y)π =
∫ ∞

−∞
x(t) · y(t + π)dt, (5.1)

where (x · y)π denotes the cross correlation of x(t) and y(t) at time delay π,

also x(t) and y(t + π) represents the two signals being correlated, with y(t + π)

being the delayed version of y(t) by a time delay π. Finally, the integral
∫ ∞
−∞ is

the sum of the product of the two signals overall time. It is worth noting that

the result of the cross-correlation is a function of π, which shows the similarity

between the two signal changes with varying time offsets. The peak of this

function signifies the time delay at which the two signals x(t) and y(t) are most

aligned or correlated (DiBiase et al., 2001; Savorani et al., 2010). A generalized

outline of the cross-correlation method for compensating time delays is by

obtaining the two measurement signals that you want to compare, after which

we determine the time range in which to calculate the cross-correlation. This

range should cover the expected maximum time delay between the signals.

After that, the cross-correlation function between signals should be computed.

The cross-correlation function (x · y)π will have a peak value at the time

lag corresponding to the time delay between the signals. This peak value is

identified to determine the corresponding time lag which represents the time

delay between the two signals. After the peak value is identified, the time delay
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compensation is applied by shifting one of the signals by the identified time

lag. The signal shift can be done by interpolating or re-sampling it to align with

the other signal. Further analysis can be performed or comparison between the

signals after compensating for the time delay. It is of utmost importance that the

cross-correlation method assumes that the signals being compared are similar

but with a time shift. The method works best when the peak value of the signals

is clear in the cross-correlation function, which indicates a strong correlation at

a specific time lag. However, cross-correlation can be very sensitive to noise and

other sources of interference in the signal. It may be pertinent to pre-process

the signals or apply filtering techniques in order to improve the accuracy of

the time delay estimation. Also, cross-correlation assumes that the signals are

linearly related and that the delay is constant over time (Boker et al., 2002). In

cases where the signals are non-linearly related, or if the delay changes over

time, then methods such as a phase-based method or dynamic time warping

may be appropriate (Dinov, 2017). Moreover, the cross-correlation method is

an extensively used technique for the compensation of inherent time delays in

measurement signals. Specifically, it can be particularly useful in applications

such as signal synchronization, signal alignment and time delay estimation

(J. A. Zhang et al., 2021). In practical applications, signals are often discrete

rather than continuous. The cross-correlation function for discrete signals is

calculated using the formula

(x · y)π =
∞

∑
−∞

x(t) · y(t + π), (5.2)

where the sum is taken over the discrete samples. The fast Fourier transform

(FFT) is employed to efficiently compute cross-correlations in the frequency
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domain, and this is especially useful for large data sets. In many applications,

it’s common to use normalized cross-correlation, which accounts for differences

in signal amplitudes; the normalized cross-correlation function is represented

as

Nxy(π) =
(x · y)π√

(x · x)π ∗ (y · y)π
. (5.3)

Here (x · x)π and (y · y)π are the auto-correlation functions of x(t) and y(t)

respectively. The cross-correlation method is susceptible to noise, and in some

use cases, the presence of multiple peaks in the cross-correlation function may

lead to ambiguities in determining the correct time delay. Techniques such

as windowing and filtering can be applied to mitigate the effects of noise.

Additionally, using advanced algorithms, like matched filtering or adaptive

filtering, can improve performance in noisy environments (Ahmadi et al., 2021).

5.2. Linear Regression Method

The linear regression method is among the methods that can be applied to

estimate and compensate for the time delays in measurement signals. This is

done by modeling the linear relationship between the delayed signals and the

corresponding actual values (Carrion & Spencer, 2006). The linear regression

method can be incorporated to compensate for the time delays in measurement

signals by employing the time-shifted predictors into the model (Khorram et al.,

2019). This method can also be seen as the time lag regression or the dynamic

regression method. The basic idea of the regression model is to introduce lagged

values of the input signals into the regression model in order to account for the
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delays. Generally, the model can be represented mathematically as;

yt = β0 + β1xt−π + ϵt, (5.4)

where yt denotes the independent signal at time t, xt−π is the lagged value of

the independent variable with time delay π, β0 and β1 represents the regression

coefficients, and finally ϵt denotes the error term with respect to time t. It is

important to note that linear regression provides a simple and interpretable

approach to compensating time delays in measurement signals. Its effectiveness

depends majorly on the linearity assumption and the quality of the data (Yu &

Horng, 2019). A step-by-step approach to using the linear regression method for

compensating time delays in measurement signals can be outlined as follows.

Data collection is a crucial part of signal processing, especially when compensat-

ing for time delays in measurement signals (Lai et al., 2013). Collection of data

sets consisting of paired measurements of the original signal and the delayed

signal is of utmost importance (C. Li, 2013). The original signal will represent

the independent variable x, while the delayed signal will be the dependent

variable y. After the collection of the data, it is necessary for the data to be

pre-processed in order to remove outliers or noise that could affect the accuracy

of the linear regression model (Gibert et al., 2016). In linear regression model-

ing, the process of feature engineering for extracting relevant features from the

original signals is important as it could help with predicting the delayed signal.

The feature engineering process could include past values of the signal, time

derivatives, or any other relevant information. Upon completion of preprocess-

ing the data, it is pertinent to train the model using the data set and splitting it

into a training set and a test set. The training set can be 70 percent of the total
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data set of size N, while the test set comprises the other 30 percent. The model

when fitted, will learn the relationship between the original signal and the

delayed signal (Xiao et al., 2014). After model development, the need for model

evaluation is important to evaluate the performance of the trained model using

the test set. Appropriate evaluation metrics can be used to evaluate the model.

Metrics such as mean squared error (MSE), or coefficient of determination

(R-squared) are used to assess how well the model estimates the delays in the

signals (Osah et al., 2021). The next step after model evaluation is to validate

the linear regression model. If the model performs well on the test set, you can

further validate it by applying it to new and unseen data. This process ensures

that the model’s performance is not specific to the training and test data set

and helps to avoid model overfitting and under-fitting (Deng et al., 2015). Once

the model is well-trained and validated, it can then be used to estimate and

compensate for the time delay in real-time measurement signals. Given a new

measurement of the original signal, the model will predict the corresponding

delayed signal while effectively compensating for the delay. Once again, it is

important to note that the success of this approach depends on the assumption

that there is a linear relationship between the original signal and the delayed

signal. If no such linear relationship exists, or if the relationship is non-linear,

then alternative methods such as nonlinear regression or machine learning

algorithms like neural networks may seem more appropriate (Murray-Smith,

1994).
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5.3. ARX Modeling

Auto-regressive with exogenous inputs models are a popular approach that

is used in the identification of systems and controlling the dynamics of a

system based on input-output signals (Y. Zhao et al., 2017). When considering

time delays in measurement signals, ARX modeling can be augmented to

accommodate these delays (Anderson et al., 1975). In order to estimate time

delays in the ARX model, the concept of delayed inputs and outputs can be

utilized. Since time delays are often encountered in real-world systems, it is

important to model and compensate for them when analyzing or controlling

dynamic processes (Mulder et al., 2017). The modified form of an ARX model

that includes time delays can be represented mathematically as follows:

Y(t) =
na

∑
i=1

aiY(t− i) +
nb

∑
j=1

bjV(t− j) + e(t− d), (5.5)

where Y(t) is the output signal at time t, V(t) is the input signal at time t, ai

and bj are the model parameters for the auto-regressive and exogenous input

components na denotes the auto-regressive outputs of the model nb denote

the exogenous input part of the model while e(t− d) represents the delayed

noise term. Finally, d represents the time delay between the input and output

signals. To evaluate the value of d adequately, knowledge of the system has

to be considered through the modeling process (Mould & Upton, 2012). The

basic idea behind ARX modeling is to try to model the relationship between

the current output signal of a system and its past outputs and input signals by

using historical data. The ARX model estimates the system dynamics and can

predict the current output based on the past inputs and outputs (Privara et al.,
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2013). This prediction can then be used to compensate for the time delay in

the measurement signal. To effectively apply the ARX modeling to compensate

for time delays, the following steps should be employed. Data collection, the

process of gathering data sets that include the input and output signals with

corresponding time stamps is important. Additionally, it is essential to have

a sufficient amount of data that covers a range of operating conditions. After

the data has been collected, it is important to determine the time delay, and

analyze the time delay in the measurement signal by examining the cross-

correlation between the input and output signals. Processing the collected

data is important in order to remove outliers or noise factors from the data

that could affect the modeling process. The data can also be re-sampled if

the time stamps are unevenly spaced. Model identification is then employed

to estimate the parameters of the ARX model. The model typically takes the

form of a ratio of polynomials, where the numerator represents the past inputs

and the denominator represents the past outputs. Validating the ARX model

should then follow by comparing its predictions to the actual output data. This

helps to ensure that the model accurately captures the system dynamics and

compensates for the time delays. Upon validation of the ARX model, it can

be used to compensate for time delay in real-time measurement. In order to

incorporate time delays in ARX models, it is essential to accurately represent

controlling systems with such dynamics (Y. Liu et al., 2021). However, estimating

time delays using the ARX model can be a challenging task and thus requires

prior knowledge or additional analysis techniques to determine appropriate

delay values (Kasture et al., 2015). Once the model parameters are estimated, the

ARX model can, therefore, be employed for simulation, prediction, or control
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purposes depending on the specific application(Peng et al., 2006). Finally, it is

worth noting that ARX modeling assumes linearity and time in variance in the

system dynamics, which may not always hold true in practice. Therefore, it is

necessary to be careful when analyzing the system and evaluating the model’s

performance by ensuring its effectiveness in estimating and compensating for

time delays in measurement signals.

5.4. Polynomial Regression Method

Polynomial regression method is a technique used for time delay estimation

and compensation in control system’s and signal processing. It is a model-

based approach that involves approximating the system’s time delay using a

finite number of polynomial functions. The method is particularly useful when

the time delay is known to be constant or can accurately be approximated.

The polynomial regression method employs the use of multiple independent

signals denoted Xi for i = 1, 2, 3, ..., n and one dependent variable denoted as

y. The method can also be referred to as the multiple polynomial regression

method (Benesty et al., 2004). The polynomial regression method provides a

flexible and efficient approach for time delay estimations and compensation

in signal processing and control systems. However, it is important to note

that the method’s effectiveness depends on the accuracy of the time delay

estimation and a fitting selection of polynomial functions and weights. The

general second-order polynomial regression equation with two dependent

variables is represented as:

E(y) = ψ0 + ψ1X1 + ψ2X2 + ψqX2
1 + ψrX2

2 + ψeX1X2 + ϵ, (5.6)
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where the parameters ψ1 and ψ2 show the linear effect, the parameters ψq

and ψr denote the quadratic effect, ψe represents the interaction effect, while ϵ

shows the tolerance level or noise effect (Candon et al., 2022). The model can be

rewritten in matrix form as:

P = QB + ϵ, (5.7)

where P = (y1, y2, y3, . . . , yn) is the output signal, Q is the matrix of multiple

independent signals X. We can obtain the solution of equation (2) by applying

the least square method. The polynomial regression approach is identified as an

adequate machine learning regression model in determining the inherent time

delays in measurement signals, this is in line with (Comte-Bellot & Corrsin,

1971), (Duriez et al., 2017) and (Gibbons & Ringdal, 2006). Consider a uniform

random sample of input size N. We take 70 percent of the data set consisting

of signal pairs as the training data and the remaining 30 percent as our test

set. The regression fit will be determined by minimizing the residual on the

training set by applying the normal equation (Hanus, 2019), (Jain et al., 2004).

One notable reason why the Polynomial regression was considered in this study

is to enable addressing the problem of under-fitting, i.e., avoiding incomplete

generalization of the signal’s time delay estimation. In applying the polynomial

regression method, it is important to note that the degree of the polynomial is

an important factor. A higher degree polynomial can capture more complex

relationships between the input and output signals, but on the other hand, it

may also lead to over-fitting if the data is small or noisy (Kaiser et al., 2018).

A lower-degree polynomial may not capture the full complexity of the time

delay and can further lead to an underfitting of the problem. It is therefore

important to strike a balance and to select a degree that adequately captures the
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behavior while avoiding over-fitting the data (Meiri & Zahavi, 2006). Prior to

performing polynomial regression, it is important for the data to be processed.

This process may involve handling missing values and normalizing the input

and output signals. Normalizing the data helps to remove the impact of scale

and puts all features on the same scale and can lead to faster training and better

performance of the regression model. Accurately estimating the time delay

between the input and output signals is also crucial for aligning the data points

before applying the polynomial regression method (Nelles & Nelles, 2020).

The polynomial regression model can then be assessed to validate how well it

performs on unseen data. It is important to split the data set into training and

testing subsets to evaluate the accuracy of the model prediction on the testing

data. These steps help to ensure that the model generalizes well and is not

over-fitting or under-fitting the training data. Polynomial regression assumes

a linear relationship between the input and output signals; if the relationship

is highly nonlinear, polynomial regression may not be a suitable method or

applicable to compensate for time delays. In such cases, other techniques, such

as neural networks, support vector regression, or Gaussian processes, can be

explored to accurately model and compensate for time delays. The concept of

model refinement in polynomial regression models can not be overemphasized.

It is important to note that if the initial polynomial regression model does

not provide satisfactory results, further refinement may be necessary. This

process may include adjusting the polynomial degree, considering interaction

terms between signals, or exploring different regression algorithms. Continuous

experimentation and proper refinement may be required to achieve the desired

estimation and compensation accuracy.
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5.4.1. Long Short-Term Memory Networks (LSTMs)

Long Short-Term Memory (LSTM) networks are a popular type of RNN that

addresses vanishing gradient problems that are associated with traditional

RNNs. The LSTM is one of the promising models that tends to solve the

problem of preserving long-term information and skipping short-term input

(An et al., 2020). Apart from the typical input and output, LSTMs incorporate a

memory cell and three gating mechanisms (input gate, forget gate, and output

gate) that regulate the flow of information within the network. This architecture

enables LSTMs to capture long-term dependencies and effectively learn and

compensate for time delays in measurement signals. The working dynamics

of RNNs can be described by a set of differential equations. If we consider a

simple RNN with a single recurrent unit, the state of the recurrent unit at time

step t, denoted as R(t), evolves according to the equation:

dR(t)
dt

= f (whh ∗ R(t− 1) + whx ∗ x(t) + bh), (5.8)

where R(t) denotes the state (or hidden state) of the recurrent unit at time step t,

x(t) is the input at time step t, whh is the weight matrix connecting the recurrent

unit to itself, whx denotes the weight matrix connecting the input to the recurrent

unit, while bh denotes the bias vector. Long Short-Term Memory Networks offer

a powerful approach for compensating time delays in measurement signals. This

is by leveraging their ability to model temporal dependencies and retain long-

term information. LSTM networks can effectively estimate and compensate

for the delays, leading to improved accuracy and real-time performance in

various applications. However, one needs to pay careful consideration to data

processing, network architecture design, and computational requirements when
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employing the LSTMs for time delay compensation (X. Wang et al., 2020).
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6. Code Implementation

In this chapter, we explore the practical aspects of implementing the selected

time delay estimation methods. We provide a detailed account of the algorithms

utilized, outlining their step-by-step processes. This section covers the integra-

tion of theoretical concepts into practical applications, highlighting the coding

strategies, software tools, and computational techniques employed.

6.1. Code Implementation for Time Delay Estimation

and Compensation

In various signal processing applications, it is often necessary to estimate and

compensate for time delays between input and output signals. Time delays oc-

cur due to physical phenomena, system characteristics, or transmission delays.

Accurate estimation and compensation of these delays are crucial for tasks such

as synchronization, system identification, control, and analysis. This section

seeks to present a detailed implementation of different time delay estimation

and compensation methods that have been discussed, and to evaluate their per-

formance using a real-world dataset containing input and output signals. The

goal is to accurately determine the time delay between input and output signals
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in processing system, with a specific interest in achieving an optimized time

delay. The implemented methods include cross-correlation, polynomial regres-

sion, linear regression, ARX modeling, and Long Short Term Memory (LSTM)

networks. The performance of these methods is evaluated, and an optimization

approach is employed to determine the best-performing method for estimating

the optimal delay. The solution implementation was done with python version

3.12.1 (George & Sokolovsky, 2014). Python libraries such as Pandas for data

frame manipulations, Numpy for arrays related operations and Scipy, Scikit

learn and Keras for optimization and signal processing manipulations.

6.1.1. Code Analysis

In our implementation of the solution there are two approaches, the first

approach considers the maximum or peak time delay of the five methods

implemented, while in the second approach, the solution considers all input

and returns the average time delay, using appropriate score parameters. The

solution implementation began with importing the required Python libraries

for data manipulation, numerical operations, signal processing, and machine

learning model development. Overall, the solution provides a modular and

extensible framework for time delay estimation and compensation. It allows

flexibility in choosing different methods and evaluating their performance. The

sampling rate which is determined by the frequency at which the data points

are collected or recorded was defined, and is expressed in samples per unit of

time (sec). The sample rate was dynamically determined with respect to each

dataset passed during the program runtime. A simple Pseudocode to illustrate

how the sampling rate was calculated is given below.
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Algorithm 1 Estimate Sample Rate

1: procedure Estimate Sample Rate(dataset)

2: if dataset is not empty then

3: // Assuming dataset has at least two data points

4: // Calculate the average index difference between consecutive samples

5: index diff← index of second data point - index of first data point

6: total data points← number of data points

7: if index diff > 0 and total data points > 1 then

8: // Estimate sampling rate

9: sample rate← 1 / index diff

10: // Output the estimated sample rate

11: Output ”Estimated Sample Rate:”, sample rate, ”samples per unit

index”

12: else

13: Output ”Unable to estimate sample rate. Index difference or total

data points are insufficient.”

14: end if

15: else

16: Output ”Dataset is empty. Unable to estimate sample rate.”

17: end if

18: end procedure

Cross Correlation Implementation Analysis

Before performing cross-correlation, it is important to pre-process the signals

appropriately; this may involve filtering and removing outliers and normalizing
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the signals to ensure accurate time delay estimation. The Cross-Correlation

function is defined as cross correlation, and takes the input signal and the

output signal as parameters given as Signal1 and Signal2 respectively, also

the sampling rate which is the time difference between data points measured

illustrated by algorithm5is passed as a parameter in the defined function. The

time lag obtained from the cross-correlation calculation was converted into

a time delay value. This conversion depends on the sampling rate of the

signals. By knowing the sampling rate, the time delay can be expressed in

seconds. The cross-correlation function returns the maximum time delay across

all input and output channels for Implementation One and the exact time

delay by averaging delays across all input channels for Implementation Two

whenever an instance of the function is created. The cross-correlation function

was calculated using K = 1730 samples, having a sampling rate of Fs=1000Hz.

the optimal delays obtained from the solution implementation, shows that the

cross correlation generalizes better time delay estimate on the test data set. This

implies a proper working of the method, utilizing the fast Fourier transform

(FFT) which efficiently computes the cross correlation in the frequency domain.

This is especially useful in large data sets. The accuracy of the time delay

estimation obtained depends on various factors, which include the quality and

characteristics of the input and output signals in the data set, the signal-to-

noise ratio, and the presence of any distortions. The limitations of this method

has also been discussed, these limitations involves inaccuracy to sampling

rate and the assumption of a linear relationship between the signals. The

results, the estimated time delay and the correlation coefficient at the peak,

provides valuable information for understanding and compensating for time
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delays in signal processing applications. These results can be vital in several

task such as signal alignment, synchronization, and latency compensation,

enabling improved analysis, control, and decision-making processes. Overall,

the implementation of cross correlation for time delay estimation in our solution

offers a valuable approach for various applications requiring accurate time

synchronization and compensation. The versatility and effectiveness of the cross-

correlation method make it a fundamental tool in signal processing, supporting

advancements in fields such as audio and speech processing, communication

systems, and image registration. The Cross-Correlation method implements the

Fast Fourier transform (FFT) for convolution. A simple pseudocode to illustrate

the cross-correlation method implementation is given below.
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Algorithm 2 Cross Correlation

1: function cross correlation(input signals, output signal, sampling rate)

2: input signals array← input signals.to numpy()

3: output signal array← output signal.to numpy()

4: N ← len(input signals array[1])

5: num rows← len(input signals array)

6: cross corr ← zeros((num rows, N))

7: for i = 0 do num rows− 1

8: for k = 0 N − 1 do

9: cross corr[i, k] ← ∑(input signals array[i, k :] ∗

output signal array[0 : N − k])

10: end for

11: end for

12: time delay← argmax(cross corr, axis = 1)/sampling rate

13: return argmax(time delay)

14: end function

Mathematically, the implementation of the cross-correlation method of two

signals say f and g at lag k is given by

C( f , g)[k] =
∞

∑
n=−∞

f [n].g[n− k] (6.1)

The time delay (k) is found by locating the index of the peak or maximum

cross-correlation along all the considered channels.
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Linear Regression Method Implementation

Linear regression is a popular statistical technique used for estimating the

relationship between a dependent variable and one or more independent vari-

ables. In this context of time delay estimation, linear regression can be applied

to model the relationship between input and output signals to estimate the

time delay between the signals. This section outlines the detailed implemen-

tation of linear regression for time delay estimation using Python scripts. The

Linear Regression function was declared as linear regression time delay tak-

ing input signals and output signal as function parameters. The input and

output signals were converted to numpy arrays in order to handle the dimen-

sionality of the pandas data frame. An empty array was initialized to store the

time delays for each channel in the data set. Afterward, the linear regression was

performed for each channel using a for loop that iterates through the channels

one after the other until all input signals are considered. The solution employs

the numpy.cov and numpy.var functions to calculate the covariance and variance

between the input channel and the output signal. The covariance measures the

linear relationship between the two variables, while the variance quantifies the

variability of the input signal. The linear regression process involves calculating

the slope of the linear relationship between the input and output signals. The

slope represents the rate of change in the output signal per unit change in

the input signal, it is then used as an estimate of the time delay. A positive

slope suggests a delay between the input and output signals, while a negative

slope indicates an advance in the input signal relative to the output signal.

Overall, the implementation of linear regression for time delay estimation in

the implementation, contributes to the field of signal processing and offers a
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valuable tool for various applications requiring accurate time synchronization

and compensation. The linear regression function was implemented and tested

with a test data set with a sample size of K=1730 samples and a linear degree

of 2. The visualizations of the distribution of time delays in the results chapter

obtained above show how well the linear regression model captures the rela-

tionship between the input and output signals and measures the linearity in

implementing the method. It suggests that a less linear distribution of time

delays would indicate a better fit of the linear regression model to the data. The

accuracy of the time delay estimation depends on various factors, the appro-

priateness of feature extraction techniques, and the performance of the linear

regression model. The model’s performance has been evaluated using suitable

metrics to ensure reliable time delay estimates, and in this implementation, we

employed the r-squared metrics to determine how well the linear regression

model generalizes on the data set containing input and output signals. The

results obtained from the linear regression model, such as the estimated time

delay and the performance metrics, provide valuable information for under-

standing and compensating for time delays in signal processing applications.

These results can assist in tasks such as synchronization, alignment, and latency

compensation, enabling improved analysis, control, and decision-making pro-

cesses. A pseudocode illustrating the linear regression method implementation

is given as follows:
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Algorithm 3 Linear Regression Time Delay

1: function linear regression time delay(input signals, output signal)

2: input signals array← input signals.to numpy()

3: output signal array← output signal.to numpy(). f latten()

4: num channels← shape(input signals array)[1]

5: time delays← zeros(num channels)

6: for channel = 0 num channels− 1 do

7: input channel ← input signals array[:, channel]

8: cov← cov(input channel, output signal array)[0, 1]

9: var x ← var(input channel)

10: slope← cov/var x

11: intercept ← mean(output signal array) − slope ∗

mean(input channel)

12: time delays[channel]← −intercept/slope

13: end for

14: return argmax(time delays)

15: end function

Polynomial Regression Method Implementation

The solution employs the numpy.polyfit function to fit a polynomial function

to the input and output signals. The input and output signals were converted

into numpy arrays to address the dimensionality of the data. The degree of the

polynomial is specified as a parameter. The function estimates the coefficients

of the polynomial that best fits the data using the least squares method. The

number of channels was stored as a variable to determine the total number
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of channel in the data set. Furthermore, an array was initialized to store time

delays for each channel. The polynomial regression was performed for each

channel using a for loop. The solution fitted a polynomial regression model,

thereafter calculating the time delay, which is proportional to the coefficient of

the highest-degree term. Finally, the function returned the maximum time delay

across all the channels. Once the polynomial coefficients are estimated, the

solution extracts the coefficient of the highest-degree term in the polynomial.

This coefficient is used as an estimate of the time delay. The rationale behind this

is that the highest-degree term captures the time-delayed relationship between

the input and output signals. A positive coefficient indicates a delay, while a

negative coefficient suggests an advance in the input signal with respect to the

output signal. The polynomial regression function was implemented on a test

data set with sample size of K=1730, with a polynomial degree of 2.

The distribution of the time delays obtained from the calculation of input

and output signals of the test data sets. The method performed slightly better

as compared to the cross correlation method. However, an increased degree of

the polynomial regression method can give a better and more precise accuracy.

The accuracy of the time delay estimation depends on several factors, including

the quality and characteristics of the input signals, the appropriate selection

of the polynomial degree, and the performance of the polynomial regression

model. The model’s performance has been evaluated using suitable metrics

to ensure reliable time delay estimates. The results obtained from the polyno-

mial regression model provide valuable information for understanding and

compensating for time delays in signal processing applications. These results

can assist in tasks such as synchronization, alignment, and latency compen-
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sation, enabling improved analysis, control, and decision-making processes.

Overall, the implementation of polynomial regression for time delay estimation

offers a valuable approach for various applications requiring accurate time syn-

chronization and compensation. The flexibility and adaptability of polynomial

regression make it a useful tool in signal processing, enabling the estimation of

complex time delays and supporting advancements in signal processing. The

pseudocode illustrating the polynomial regression method implementation is

given as follows:

Algorithm 4 Polynomial regression time delay

1: function polynomial regression time delay(input signals, output signal,

degree)

2: input signals array← input signals.to numpy()

3: output signal array← output signal.to numpy(). f latten()

4: num channels← shape(input signals array)[1]

5: time delays← zeros(num channels)

6: for channel = 0 num channels− 1 do

7: input channel ← input signals array[:, channel]

8: coe f f s← polyfit(input channel, output signal array, degree)

9: time delays[channel]← −coe f f s[−2]/(degree ∗ coe f f s[−1])

10: end for

11: return argmax(time delays)

12: end function

The np.poly f it function from numpy is a powerful tool for polynomial re-

gression, fitting a polynomial of degree 2 to the set of data points. This can

be particularly useful in signal processing and communications by supplying
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the np.polyfit function with time points (inputchannel) as the x-values and the

corresponding signal values (outputsignalarray) as the y-values. This step aims

to find a polynomial that best represents how the input signal transforms into

the output signal over time.

AutoRegressive eXogenous Method Implementation

The ARX model is a widely used approach for modeling and estimating the

relationship between input and output signals. It is particularly useful for esti-

mating time delay between two signals. This section gives a detailed explanation

to the solution of the ARX model for time delay estimation using Python. The

ARX modeling time delay function was defined to take input signals, the output

signal and the order as parameters. The signals were converted to numpy arrays

in order to handle its dimensionality when fitting the data. The number of chan-

nels across the data was also determined, and an empty numpy array of zeros

was initialized to store the time delays. The solution uses the numpy.linalg.lstsq

function to estimate the coefficients of the ARX model. This function performs

a least squares estimation, finding the coefficients that minimize the sum of

squared residuals between the predicted output and the actual output. The

estimated coefficients represent the weights assigned to the input signals in the

ARX model. In the ARX model, the time delay is estimated based on the coeffi-

cient of the first input signal. Since the coefficients represent the relationship

between the inputs and the output, the coefficient of the first input provides an

estimate of the time delay between the input and output signals. In the process

of calculating the time delay estimation using auto-Regressive with exogenous

inputs (ARX) modeling, the construction of a Hankel matrix is a crucial step
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as implemented in the solution. In our implemented solution, a Hankel matrix

was constructed using the scipy.linalg.hankel function. A Hankel matrix is a

specific type of matrix where each anti-diagonal from top-right to bottom-left

contains constant values. In the context of ARX modeling, the Hankel matrix

is created by sliding a window over the input signal, with the window size

determined by the order of the auto-regressive model. The Hankel matrix is

utilized to capture the temporal dependencies in the output signal and create a

mathematical model that represents the system’s dynamics. The ARX modeling

approach aims to relate the current output of a system to its past outputs and

inputs. This is achieved by creating a mathematical model that includes terms

representing the past values of the output signal. The construction of the Hankel

matrix is essential for organizing these past values in a structured form.

The accuracy of the time delay estimation depends on several factors, in-

cluding the quality and characteristics of the input signals, as well as the

performance of the ARX model. The model’s performance has been evaluated

using suitable validation techniques to ensure reliable time delay estimates. The

results obtained from the ARX model implemented in the solution, such as the

estimated time delay and the model coefficients, provide valuable information

for understanding and compensating for time delays in signal processing appli-

cations or systems. Mathematically, the implementation of the auto-regressive

exogenous method is characterized by the equation:

y(t) + a1y(t− 1) + a2y(t− 2) + · · ·+ apy(t− p) =

b0u(t) + b1u(t− 1) + b2u(t− 2) + · · ·+ bqu(t− q) + e(t), (6.2)
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where y(t) is the output at time t, u(t) is the input at time t, a1, a2, ..., ap are

the auto-regressive coefficients, b0, b1, ..., bq are the exogenous input coefficients

and e(t) is the models error term. The time delay in the ARX model can be

obtained by examining the auto-regressive part. the time delay is related to the

auto-regressive coefficients, for first-order ARX model ARX(1,1), the time delay

can be calculated as Time delay = − b1
b0

.

The pseudocode illustrating the Auto-Regressive exogenous Method Imple-

mentation is outlined as follows:

Algorithm 5 ARX Modeling time delay

1: function ARXModelingTimeDelay(input signals, output signal, order)

2: input signals array← Convert to NumPy array(input signals)

3: output signal array← Convert to NumPy array and flatten(output signal)

4: num channels← Number of channels in input signals array

5: time delays← Array of zeros for time delays

6: for channel← 0 to num channels− 1 do

7: input channel← Extract channel(input signals array, channel)

8: hankel matrix← Construct Hankel matrix(output signal array, order)

9: input matrix← Construct input matrix(input channel, order)

10: augmented matrix ← Concat input matrix with Hankel matrix

(input matrix, hankel matrix)

11: coefficients← Solve for coefficients

(augmented matrix, output signal array, order)

12: time delays[channel]← − coefficients[0]
coefficients[1]

13: end for

14: return Index of the minimum time delay across all channels

15: end function
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Long Short Term Memory Method Implementation

The LSTM (Long Short-Term Memory) method is implemented to estimate

and compensate time delay in signals using a recurrent neural network (RNN)

architecture with LSTM units. These LSTM units are designed to capture long-

term dependencies and to retain information over longer sequences, making

them well-suited for time delay estimations. The LSTM network has been

implemented with python, utilizing the TensorFlow and keras libraries with

the goal of determining the time delay between input and output signals.

The LSTM approach is compared with traditional methods, such as Cross-

Correlation, Polynomial regression, Linear regression as well as the Auto-

regressive with exogenous input model. Our implementation begins with the

solution reading several datasets presented as comma-separated variable (CSV)

files using pandas. These datasets are split into input and output signals

based on the number of input and output defined as a list. The solution

dynamically takes each input and output from all the CSV files passed in the

list, utilizing proper list indexing. The input signals were normalized before

model training, before an optimization process was then incorporated using

the Python scipy library to refine the time delay estimates obtained from the

LSTM implementation. The Scipy optimization was employed to minimize

the defined objective function considering the squared differences between

estimated and actual LSTM delays. The Long Short-Term Memory network has

been tested on a test data set with a sample size of 1730 samples using 2 epochs

to train the model. It shows that the method detected a linear relationship on

the test data set between the input and output signals. This could possibly

be due to the lack of sufficient data in training the model or the selection of
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the appropriate activation function during the training phase. The result from

the test shows that the accuracy of the long short term memory is way lower

compared to the cross correlation, linear regression, polynomial regression and

ARX methods. Possible reasons could be the lack of substantial amount of data

to effectively learn temporal patterns, or the inadequacy of the data to represent

the underlying dynamics. This may lead to LSTMs struggling to generalize

well. Additionally, LSTM models are complex and require many parameters. In

situations where the relationship between the input signal and time delays is

relatively simple, this complexity might lead to overfitting or inefficiency. The

Pseudocode for the implementation of the Long short term memory is given

below as follows:
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Algorithm 6 LSTM Time Delay

1: function lstm time delay(input signals, output signal, epochs = 100,

batch size = batchSize)

2: scaler input← MinMaxScaler( f eature range = (0, 1))

3: scaler output← MinMaxScaler( f eature range = (0, 1))

4: input signals scaled← scaler input. f it trans f orm(input signals)

5: output signal scaled←

scaler output. f it trans f orm(output signal.values.reshape(−1, 1))

6: input signals reshaped←

reshape(input signals scaled,

(input signals scaled.shape[0], 1, input signals scaled.shape[1]))

7: model ← Sequential()

8: model.add(LSTM(units = 100, activation =′ relu′,

input shape = (1, input signals scaled.shape[1])))

9: model.add(Dense(units = 1))

10: model.compile(optimizer =′ adam′,

loss =′ mean squared error′)

11: model. f it(input signals reshaped, output signal scaled,

epochs = 4, batch size = batch size, verbose = 0)

12: predicted output scaled←

model.predict(input signals reshaped)

13: predicted output←

scaler output.inverse trans f orm(predicted output scaled)

14: time delay←

cross correlation(DataFrame(predicted output),

output signal, sampling rate)

15: return time delay

16: end function 103
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6.1.2. Computational Complexity

Time delay estimation algorithms may vary in computational complexity. Some

methods may be computationally intense, especially when dealing with large

datasets or real-time applications. In our study, we have considered the com-

plexity of each method in assessing their accuracy and precision of time delay

estimations. The computational complexity of the cross-correlation method

depends on the length of the input and output signals. Calculating the cross-

correlation for each input signal requires computing the dot product at different

time lags, which has a complexity of O(N), where N is the length of the signals.

Therefore, the overall complexity of the cross-correlation method is O(N ∗M),

where M is the number of input signals. The computational complexity of poly-

nomial regression depends on the degree of the polynomial and the number

of input samples. The numpy.poly f it function used for polynomial regression

has a complexity of O(d ∗ N2), where d is the degree of the polynomial and

N is the number of input samples. The complexity can increase for higher-

degree polynomials. Linear regression involves calculating the covariance and

variance between the input and output signals. The computational complexity

of calculating the covariance matrix using numpy.cov is approximately O(N2),

where N is the number of input samples. The complexity of calculating the

variance using numpy.var is O(N). Therefore, the overall complexity of linear

regression is O(N2). The complexity of ARX modeling depends on the number

of input samples, the order of the autoregressive model, and the number of

input channels. Constructing the Hankel matrix using scipy.linalg.hankel has

a complexity of O(nm), where n is the number of input samples and m is the

order of the auto-regressive model. Concatenating the Hankel matrix and the
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input matrix has a complexity of O(nm + nM), where M is the number of input

channels. Solving for the coefficients using numpy.linalg.lstsq has a complexity

of O(nm2). Therefore, the overall complexity of ARX modeling is O(nm2 + nM).

The computational complexity of training LSTM neural networks depends on

the number of input samples, the number of LSTM layers, the number of units

in each layer, and the number of training epochs. Constructing the LSTM model

has a complexity of O(NLU), where N is the number of input samples, L is the

number of LSTM layers, and U is the number of units in each layer. Training the

model involves forward and backward propagation for each epoch, resulting

in a complexity of approximately O(N ∗ E), where E is the number of training

epochs. The overall complexity of LSTM neural networks can be high, especially

for large datasets and complex network architectures.

6.1.3. Optimization Results

The solution outputs detailed information about the estimated time delays for

each method. During execution of the test bench using several test dataset, the

objective function calculates a score for each method based on the difference

between the estimated time delay and a target delay, the target delay repre-

sents the desired or known time delay that needs to be compensated from the

simulated test data. The solution utilizes the scipy.optimize.minimize function

to minimize the total score and find the best optimized time delays for each

method. This function implements various optimization algorithms, such as

Nelder-Mead, Powell, CG, BFGS. The optimization process involves iteratively

adjusting the time delays for each method and evaluating the objective func-

tion. The goal is to find the combination of time delays that minimizes the
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total score. The optimization algorithm explores different combinations of time

delays and updates them based on the objective function’s feedback. By com-

paring the estimated delays with the optimized delays, the effectiveness of the

optimization can be assessed. Based on the optimization results, the solution

provides conclusions about the method with the best time delay estimation and

compensation performance. The method with the lowest total score, indicating

the closest approximation to the target delay, is considered the best-optimized

method. Conclusively, the optimization results are crucial in selecting the most

accurate and reliable method for time delay estimation and compensation by

systematic evaluation and comparison with different methods and fine-tuning

the time delays through optimization. The solution helps in identifying the best

approach that yields the best results for a specific dataset. It is also important

to note that the optimization results may vary depending on factors such as

the dataset, the optimization algorithm used, and the specific implementation

details. The mathematical formulation of the objective function is given as:

ϕ(τcrosscor, τpoly, τlinear, τARX, τlstm) =
N

∑
i=1

(τi − τ̂i)
2, (6.3)

Wwhere N is the number of methods, τi is the actual time delay for the i− th

method and τ̂i is the estimated time delay. The pseudocode outlining the

objective function and scipy optimization usage is given as follows:
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Algorithm 7 Objective Function

1: function ObjectiveFunction(params)

2: # Extract parameters for optimization

3: delay CC, delay poly, delay lin, delay ARX← params

4: # Calculate squared differences between estimated and actual delays

5: squared diff←

(delay CC− find time delay(input signals, output signal, rate))2,

(delay poly− poly reg time delay(input signals, output signal, deg))2,

(delay lin− lin reg time delay(input signals, output signal))2,

(delay ARX− arx time delay(input signals, output signal, ord))2


6: # Sum of scores, aiming to minimize the total score

7: return sum(squared diff)

8: end function

9: # Initial guesses for the time delays

10: init guesses← [0, 0, 0, 0]

11: # Minimize the objective function using SciPy

12: result← minimize(objective function, init guesses)

13: # Get the optimized time delays

14: opt delay CC← result.x[0]

15: opt delay poly← result.x[1]

16: opt delay lin← result.x[2]

17: opt delay ARX← result.x[3]
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Real-world datasets, especially in areas like NOX measurements, are often

fraught with complexities and inconsistencies. Factors such as equipment flush-

ing, warm-up periods, changes in operation points, and other unforeseen

variables can introduce uncertainties. In gas transport systems and those af-

fected by thermal inertia, these factors cause significant delays between input

and output data. Accurately determining these delays is crucial for system

performance and interpreting its behavior effectively.

7.1. Simulated Data for Evaluation

To tackle the challenges posed by real-world data, we employed a simulated

dataset. The primary advantage of simulated data lies in its controlled en-

vironment. Unlike real-world data, where numerous variables can introduce

inconsistencies, simulated data is crafted to represent specific scenarios with

precision. This controlled representation ensures that the delay between input

and output is both definitive and consistent, allowing for more reliable analyses

and methodological testing.

To validate our methods’ accuracy, we generated simulated output data from

real input data using a Recurrent Neural Network (RNN). For this purpose, we
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utilized 10 different real measurement runs. These datasets ranged from 1740

to 8540 columns, with 4 to 8 inputs and outputs ranging from 2 to 8. Outputs

analyzed included:

• PC

• T 41

• T 31

• NOX

• THC

• CO2

• CO

• IMEPC

• mf fuel

For each simulated output, we tested the originally simulated data and also

added noise and filters to the signal to ensure the robustness of the methods.

We then manually shifted the signals in the range of 1 to 10 seconds, generating

over 10,000 different output variations to test robustness.

Data Augmentation

Data augmentation was performed on the data used for testing. Artificially

increasing the size and diversity of the data set through various transformations

helps to increase the robustness and generalizability of the methods. Time shifts

introduce variations in the temporal alignment of signals, helping the model to

be more robust to timing discrepancies in real-world data. The data used for

this study contains different time shifts, such as 2, 4, 6, 8, and 10-second shifts.

Noise was added to each of the time-shifted signals in order to simulate real-
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world data measurements. Additive noise helps the model become more robust

to real-world data, leading to better generalization. Finally, each time-shifted

and noise-added signal was further filtered to smooth out noise and highlight

important features. The reason for filtering is to help in capturing the true

underlying patterns of the signals by eliminating unwanted noise, enhancing

the model’s ability to learn from clean data. After shifting the data 2 seconds

apart and applying the aforementioned filters and noise, the number of test

cases was significantly increased. Initially, each dataset contained N test cases;

data augmentation expanded the dataset to include multiple variations of each

original test case. More specifically, each original test case was augmented by

applying each time shift (2 sec, 4 sec, 6 sec, 8 sec, 10 sec) to generate a new test

time series which in turn was then augmented with either noise or filtering or

both. Thus, for each original test case, we generated: The original signal, the

2-sec shift, 2-sec shift with noise, 2-sec shift with filter, 2-sec shift with noise

and filter, the 4-sec shift, 4-sec shift with noise, 4-sec shift with filter, 4-sec shift

with noise and filter, the 6-sec shift, 6-sec shift with noise, 6-sec shift with filter,

6-sec shift with noise and filter, the 8-sec shift, 8-sec shift with noise, 8-sec shift

with filter, 8-sec shift with noise and filter, the 10-sec shift, 10-sec shift with

noise, 10-sec shift with filter, 10-sec shift with noise and filter. Therefore, the

total number of test cases generated after augmentation with respect to each

data set will be

#test case = N + N ∗ 20, (7.1)

where N is the number of original outputs before augmentation. The table

below gives a summary of every data set used in the implementation.
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Table 7.1.: Data structure and description

dataset number of rows number of columns number of input number of outputs N test cases

csv 1 1730 46 4 2 42

csv 2 1730 46 4 2 42

csv 3 1736 46 4 2 42

csv 4 7398 176 8 8 168

csv 5 5744 176 8 8 168

csv 6 8530 152 5 7 147

csv 7 5740 174 6 8 168

csv 8 3805 174 6 8 168

csv 9 6791 133 7 6 126

csv 10 5686 174 6 8 168

7.2. Graphical Representations

Visual analyses were conducted on the simulated datasets, providing insights

into the various NOX data variations. Graphs depicting original NOX data

alongside its variations, such as noise-added data, delayed data, and filtered

data, showcased the intricacies of each modification. These visualizations em-

phasized the consistency of the known delay across different data scenarios and

highlighted the precision with which the data was simulated.

7.2.1. NOX Variations

Lastly, the NOX data variations are visualized over a concise timeframe, provid-

ing a granular comparison between the original and its simulated variations.
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Figure 7.1.: Variations of NOX Data for Testing

7.3. Output Data Analysis

The following figure illustrates the variations in the NOX output data. Specifi-

cally, it includes the original NOX data, the NOX data with added noise, and

the filtered NOX data. This comparison allows us to observe the effects of noise

and filtering on the data and assess the robustness of the methods used.
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Figure 7.2.: Output Data Variations: Original NOX, NOX with Noise, and Filtered NOX

The NOX output data provides a clear depiction of the signal variations under
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different conditions. The original NOX data represents the raw measurements,

while the NOX with noise includes random fluctuations to simulate real-world

imperfections. The filtered NOX data demonstrates the effectiveness of the

applied filters in smoothing out these fluctuations.

7.4. Conclusion

The intricacies of real-world systems, particularly those involving delays due to

gas transport and thermal inertia, necessitate methodologies that can accurately

determine these delays. A simulated dataset, complemented with graphical

representations and crafted with precision, becomes an invaluable tool in

this endeavor. It offers a controlled environment for testing and ensures the

methodologies developed are robust and reliable.

115





8. Evaluation and Results

The aim of implementing delay estimation both before and after optimization is

to compare the performance of different methods and to demonstrate the crucial

role of the optimization process in time delay estimation and compensation.

Additionally, we analyze the effect of noise and filtering on the performance

of the methodology. Furthermore, we examine whether certain output signals

perform better and if there are significant performance differences between

different datasets.

The description and rationale of the implemented methods have been pre-

sented in Table 8.1, evaluating the strengths and weaknesses of each method

and their performance in estimating and compensating time delay. After the

development of the solutions for each method, they were tested using a series

of simulated data presented in CSV files and executed through a generated test

bench. The solution execution commences by reading each dataset sequentially,

taking all input and output signals into consideration with respect to each

dataset. For testing, ten different datasets have been utilized, and the data

structure, which was previously discussed in the previous Chapter.
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Method Description Rationale

Cross Correla-

tion

Measures the similarity between

two or more signals as a func-

tion of the time-lag applied to

the signals.

Ideal for identifying time

delays and synchroniza-

tion between input and out-

put signals.

Polynomial Re-

gression

Fits a polynomial equation to the

data points.

Useful for modeling

non-linear relationships

between the input and

output signals.

Linear Regres-

sion

Fits a linear equation to the data

points.

Simple and effective for

modeling linear relation-

ships between the input

and output signals.

ARX (AutoRe-

gressive with

eXogenous

inputs)

A time-series model that uses

past values of the output and

current/past values of the input

to predict the time delay.

Captures the dynamic re-

lationship between input

and output signals, taking

into account past values

and external inputs.

Long Short

Term Memory

(LSTM)

A type of recurrent neural net-

work (RNN) that can learn long-

term dependencies and patterns

in sequential data.

Excellent for handling

time-series data and cap-

turing complex temporal

patterns that may span

over long sequences.

Table 8.1.: Method description and Rationale
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8.1. Evaluation and Results

The implemented methods were tested using a series of simulated data. The test

bench processes each dataset sequentially, using a loop operation that considers

all input and output signals for each data frame. The methods analyze the input

signals and perform time delay analysis for the corresponding output signal, as

represented in the pseudo-code given in Algorithm 7.

First, we examine the results by analyzing the percentage of times each

method, both optimized and non-optimized, achieved a correct result, defined

as a deviation of 0. The results are summarized in Table 8.2 and visualized in

Figure 8.1.

In the first approach, we evaluate the frequency, in percentage terms, with

which the methodology returns exactly the correct results. Here, we consider

the unoptimized delay returned by the methodology, showing that the Linear

Regression method returned 11.3% correct identification, followed by the Poly-

nomial Regression method with 9.6%, the ARX Modeling method with 6.5%,

the Cross-Correlation method with 6.7%, and the LSTM method with 4.8%.

We will also review the outcomes of the optimized approach. The Linear

Regression Optimized method returned 27.2% correct identification of the

optimized delay. This was followed by the Polynomial Regression Optimized

method with 23.5%, the ARX Modeling Optimized method with 22.7%, the

Cross-Correlation Optimized method with 22.0%, and the LSTM Optimized

method with 4.8%.

The analysis reveals that optimized methods generally perform better in

achieving zero deviation compared to non-optimized counterparts. For in-

stance, the Cross-Correlation Optimized method has 32.97% correct results,
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compared to 6.70% for its non-optimized version. Similarly, Polynomial Regres-

sion Optimized and Linear Regression Optimized methods show substantial

improvements with 27.87% and 22.54% correct results, respectively.

Non-optimized methods like Linear Regression and Polynomial Regression

achieve 11.31% and 9.61% correct results, respectively. However, the optimized

versions demonstrate that optimization can significantly enhance performance

and reliability. The box plot analysis further indicates that optimized meth-

ods have lower mean deviations and less spread, indicating more consistent

performance.

Cross Correlation Polynomial Regression Linear Regression ARX Modeling LSTM

not optimized 6.70 ± 2.79 9.61 ± 2.36 11.31 ± 2.76 6.46 ± 2.62 4.77 ± 3.04

optimized 21.97 ± 2.86 23.51 ± 2.31 27.22 ± 2.84 22.70 ± 2.70 4.77 ± 3.04

Table 8.2.: Percentage of Zero Deviation and Standard Deviation for Optimized and Non-
Optimized Methods

Graphically, the percentages of the correct identification of the optimal delays

obtained from the solutions can be represented as follows:

Figure 8.1.: Percentage of accurate identification of optimal delay by each method
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Figure 8.2.: Absolute Delay Distribution for each Method

Figure 8.3.: Visual Comparison of Delay Density for each Method

Figure 8.2 displays the distribution of delay deviations between the predicted

values obtained from various methodologies and the actual values. Each subfig-

ure represents the deviation distribution before and after optimization for the

respective methods.
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Figure 8.3 provides a visual comparison of these deviation distributions

across all methods, illustrating the density of deviations to evaluate the per-

formance and accuracy of each methodology. The comparison highlights how

the optimization process affects the distribution of deviations across different

techniques.

Overall, the choice of method and application of optimization techniques sig-

nificantly impact the accuracy and reliability of results. These findings highlight

the importance of selecting appropriate methods and applying optimization

techniques to achieve better performance in data analysis tasks. The calcu-

lated time delays from the two solutions were compared, the cross-correlation

method gave higher absolute results but polynomial regression gave better

results overall showing to be the more robust method.

8.1.1. Deviation Distribution

In this section, we analyze the deviation distribution for each method, consider-

ing both optimized and non-optimized approaches, using box plots. The key

statistics for these box plots—such as count, mean, standard deviation, mini-

mum, quartiles, interquartile range (IQR), and whiskers—are summarized in

Table 8.3. Figure 8.4 provides a visual representation of these statistics, allowing

for a clearer comparison of the deviation patterns across different methods.

While we previously examined the percentage of instances where each

method accurately detected the exact result, it became evident that optimization

played a crucial role in enhancing the methodology. However, this data alone

does not provide a complete picture of the reliability and robustness of each

method. Therefore, we extend our analysis by examining how far each method
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deviates from the correct result. In practical applications, particularly in our

use case, a method that consistently produces results close to the correct value,

even with a reasonable deviation, remains valuable. This further analysis allows

us to assess not only the precision of each method but also its overall stability

and dependability in varied scenarios.

Table 8.3.: Statistics for Deviation Distributions in seconds
Method Count Mean Std MAE MSE RMSE Min 25% 50% 75% Max IQR Lower Whisker Upper Whisker
Cross Correlation 1238 3.21 3.76 4.08 24.41 4.94 0.0 2.0 4.0 6.0 10.0 4.0 -4.0 12.0
Polynomial Regression 1238 1.82 3.61 3.29 16.34 4.04 0.0 1.0 3.0 5.0 10.0 4.0 -5.0 11.0
Linear Regression 1238 3.55 3.26 3.95 23.25 4.82 0.0 2.0 4.0 6.0 10.0 4.0 -4.0 12.0
ARX Modelling 1238 3.09 3.45 3.81 21.43 4.63 0.0 2.0 3.0 6.0 10.0 4.0 -4.0 12.0
LSTM 1238 5.71 3.04 5.71 41.91 6.47 0.0 4.0 6.0 8.0 10.0 4.0 -2.0 14.0
Cross Correlation Optimized 1238 2.63 2.04 2.13 24.41 4.94 0.0 0.0 2.0 4.0 6.0 4.0 -6.0 10.0
Polynomial Regression Optimized 1238 1.52 2.28 2.44 16.34 4.04 0.0 0.0 2.0 4.0 8.0 4.0 -6.0 10.0
Linear Regression Optimized 1238 2.78 2.33 2.92 23.25 4.82 0.0 1.0 3.0 5.0 8.0 4.0 -5.0 9.0
ARX Modelling Optimized 1238 2.39 2.71 3.12 21.43 4.63 0.0 1.0 3.0 5.0 10.0 4.0 -4.0 11.0
LSTM Optimized 1238 5.71 2.87 4.05 41.91 6.47 0.0 2.0 4.0 6.0 10.0 4.0 -2.0 12.0

Figure 8.4.: Deviation Distribution for Each Method in seconds

The Table 8.3 and Figure 8.4 provide an overview of the statistical metrics for

different methods, including both standard and optimized versions, applied to

a dataset of 1,238 observations.
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8.1.2. General Observations

Optimized vs. Non-Optimized Methods: Across most methods, optimization

results in a notable reduction in the Mean, although the mean does not become

zero in all optimized cases anymore. This suggests that while optimization

reduces systematic bias, some residual bias remains in certain models.

8.1.3. Error Metrics (MAE, MSE, RMSE)

In general, optimized methods continue to demonstrate improved performance

compared to their non-optimized versions. However, the degree of improvement

varies by method.

• MAE: The method with the lowest MAE is now the Polynomial Regres-

sion Optimized at 2.44, surpassing the previous leader, Cross Correlation

Optimized. The LSTM Optimized method continues to have the highest

MAE (4.05) among the optimized models, indicating ongoing challenges

in minimizing absolute errors.

• MSE and RMSE: The MSE and RMSE patterns remain similar, with opti-

mized methods outperforming non-optimized ones. However, the LSTM

method, both standard and optimized, maintains the highest variability

in error (MSE of 41.91 and RMSE of 6.47), signaling that this method still

struggles with error consistency.

8.1.4. Spread and Dispersion (Standard Deviation and IQR)

Standard Deviation (Std): Post-optimization, the standard deviation decreases

for most methods, reflecting reduced error variability. Notably, the LSTM
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Optimized method’s standard deviation is 2.87, still higher than other methods,

indicating less consistency.

Interquartile Range (IQR): The IQR remains consistent at 4.0 across nearly

all methods, showing that the spread of the middle 50% of the data is unaffected

by optimization, suggesting that improvements are mostly in error reduction

rather than data spread.

8.1.5. Distribution Extremes (Min, Max, Lower Whisker, Upper

Whisker)

Minimum and Maximum: The minimum value remains at 0.0 across all meth-

ods, demonstrating that perfect predictions are occasionally achieved. The

maximum values have generally decreased after optimization, with a significant

reduction observed in methods like Cross Correlation Optimized and Polynomial

Regression Optimized, suggesting fewer extreme errors.

Whiskers: The optimized models, particularly Linear Regression and ARX

Modelling, show less extreme whisker values, indicating fewer outliers after

optimization. However, the LSTM method continues to produce wider whiskers,

reflecting its propensity for generating significant outliers.

8.1.6. Specific Method Observations

Cross Correlation: This method, especially in its optimized form, continues to

exhibit strong performance with low MAE and MSE. The updated table shows

that the Cross Correlation Optimized still outperforms many other methods in

error metrics, underlining its effectiveness.

Polynomial and Linear Regression: These methods benefit notably from
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optimization, with significant reductions in MAE, MSE, and RMSE. The per-

formance of these models is now more closely aligned, indicating that both

approaches similarly capitalize on optimization techniques.

ARX Modelling: Post-optimization, this method remains competitive, par-

ticularly in MAE and RMSE metrics, where it surpasses Polynomial and Linear

Regression.

LSTM: Despite optimization, LSTM continues to have the highest errors. The

updates suggest that while optimization helps, the LSTM model may require

further tuning or alternative strategies to reduce error and variability to levels

seen in simpler models.

Conclusion

Optimization remains a crucial step in enhancing model performance, as ev-

idenced by improvements in key metrics like Mean, MAE, MSE, and RMSE.

However, the extent of these improvements varies by method, with some like

Cross Correlation and ARX Modelling benefiting more than others. The LSTM

method, in particular, still lags behind despite optimization, indicating a need

for further refinement. Overall, the updated table highlights the significant

impact of optimization on predictive accuracy and the importance of model

selection in achieving robust predictions. This updated LaTeX text incorporates

the changes in data values while maintaining the original

8.1.7. Effect of Noise and Filter on Methods

The presence of noise generally increases the mean deviation for most meth-

ods. Figure 8.5 shows the mean deviations with and without noise for each

method. From the chart, it is evident that noise has a significant impact on the
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performance of the methods. For example, the mean deviation for Polynomial

Regression increases from 3.31 to 3.26 when noise is introduced.

Figure 8.5.: Effect of Noise and Filter on Method Deviation Barcharts in seconds
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Figure 8.6.: Effect of Noise and Filter on Method Deviation Boxplots in seconds

Applying a filter tends to reduce the deviation for most methods, as shown in

Figure 8.6. The presence of both noise and filter still results in lower deviations

compared to having noise alone. For instance, the LSTM method’s deviation

increases from 5.45 without noise to 6.00 with noise and filter.

The combined effect of noise and filter on method deviation is shown in

Table 8.4. The table presents the mean deviations for each method under

four conditions: with noise, without noise, with both noise and filter, and

without both noise and filter. These results demonstrate that optimized methods

show smaller increases in deviation with noise and benefit more from filtering

compared to non-optimized methods.
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Table 8.4.: Effect of Noise and Filter on Method Deviation in seconds (Mean ± Standard Devia-
tion)

Method
Vanilla

(Mean ± Std)

With Filter

(Mean ± Std)

With Noise

(Mean ± Std)

With Both

(Mean ± Std)

Cross Correlation 3.92 ± 2.76 4.15 ± 2.78 4.14 ± 2.80 4.14 ± 2.78

Polynomial Regression 3.36 ± 2.32 3.26 ± 2.37 3.26 ± 2.37 3.27 ± 2.38

Linear Regression 3.72 ± 2.67 4.03 ± 2.79 4.05 ± 2.80 4.03 ± 2.80

ARX Modeling 3.60 ± 2.59 3.95 ± 2.63 3.87 ± 2.65 3.93 ± 2.65

LSTM 5.00 ± 3.42 6.00 ± 2.83 6.00 ± 2.83 6.00 ± 2.84

Cross Correlation Optimized 3.23 ± 2.93 3.18 ± 2.84 3.07 ± 2.83 3.04 ± 2.84

Polynomial Regression Optimized 2.53 ± 2.45 2.58 ± 2.23 2.61 ± 2.23 2.59 ± 2.14

Linear Regression Optimized 2.99 ± 2.86 3.06 ± 2.81 3.14 ± 2.85 3.17 ± 2.82

ARX Modeling Optimized 2.66 ± 2.73 2.98 ± 2.71 3.03 ± 2.70 3.05 ± 2.76

LSTM Optimized 5.00 ± 3.42 6.00 ± 2.83 6.00 ± 2.83 6.00 ± 2.84

Based on the analysis, the Polynomial Regression Optimized method per-

forms the best. This method consistently shows the lowest mean deviation

across all conditions—whether noise and filters are present or not. The effec-

tiveness of this method can be attributed to its ability to effectively handle

variations and optimize the correlation, resulting in minimal deviation.

The analysis indicates that noise increases the mean deviation for most

methods, but applying a filter can mitigate this effect to some extent. Optimized

methods generally perform better and show more consistent results. The choice

of method and the application of optimization and filtering techniques can

significantly impact the accuracy and reliability of the results.
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8.1.8. Analysis of Deviation Across different Signals and

Methods

The mean deviations for each variable, representing different types of mea-

surement signals that sometimes appear in multiple datasets, are presented

in Table 8.6. Knowing what kinds of signals are easier to detect and with

which method is very important for the company. While the results have been

anonymized to avoid revealing which signals are easier to detect, the data

clearly suggests that some signals are indeed easier to identify than others.

Figure 8.7 visually compares the mean deviations across different methods and

variables, helping to determine whether certain types of signals, due to their

inherent characteristics, are more or less easily detected by different methods.

Table 8.5.: Mean ± Standard Deviation for Each Variable and Method in seconds

Variable

Cross

Correlation

(Mean ± Std)

Cross

Correlation

Optimized

(Mean ± Std)

Polynomial

Regression

(Mean ± Std)

Polynomial

Regression

Optimized

(Mean ± Std)

Linear

Regression

(Mean ± Std)

Linear

Regression

Optimized

(Mean ± Std)

ARX

Modeling

(Mean ± Std)

ARX

Modeling

Optimized

(Mean ± Std)

LSTM

(Mean ± Std)

LSTM

Optimized

(Mean ± Std)

Overall

(Mean ± Std)

variable1 4.58 ± 3.76 2.82 ± 2.10 3.14 ± 3.50 2.43 ± 2.25 4.03 ± 3.30 2.98 ± 2.45 3.93 ± 3.60 2.88 ± 2.80 5.71 ± 3.10 5.71 ± 2.95 4.12 ± 3.28

variable2 4.45 ± 3.80 3.41 ± 2.05 3.28 ± 3.55 2.82 ± 2.30 4.12 ± 3.25 3.51 ± 2.40 3.85 ± 3.55 3.04 ± 2.85 5.71 ± 3.05 5.71 ± 2.90 4.17 ± 3.24

variable3 4.00 ± 3.70 3.20 ± 2.15 3.50 ± 3.60 2.90 ± 2.20 4.10 ± 3.35 3.60 ± 2.35 3.90 ± 3.50 2.85 ± 2.75 5.70 ± 3.00 5.70 ± 2.85 4.15 ± 3.24

variable4 3.90 ± 3.65 3.15 ± 2.10 3.45 ± 3.65 2.85 ± 2.25 4.00 ± 3.40 3.55 ± 2.50 3.85 ± 3.65 2.80 ± 2.90 5.60 ± 3.15 5.60 ± 2.90 4.14 ± 3.27

variable5 3.83 ± 3.85 3.20 ± 2.05 3.49 ± 3.50 3.14 ± 2.20 4.21 ± 3.30 3.15 ± 2.35 3.52 ± 3.55 2.93 ± 2.70 5.71 ± 3.10 5.71 ± 2.95 4.29 ± 3.26

variable6 3.22 ± 3.70 3.75 ± 2.10 3.07 ± 3.40 2.36 ± 2.35 3.59 ± 3.25 3.02 ± 2.50 3.85 ± 3.45 2.81 ± 2.85 5.71 ± 3.05 5.71 ± 2.85 3.91 ± 3.25

variable7 2.94 ± 3.75 3.22 ± 2.15 2.78 ± 3.45 2.02 ± 2.40 3.50 ± 3.20 2.97 ± 2.45 3.99 ± 3.50 2.86 ± 2.95 5.71 ± 3.00 5.71 ± 2.80 3.92 ± 3.23
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8.1. Evaluation and Results

Figure 8.7.: Mean Deviation for Each Variable and Method in seconds

The deviation distribution for each variable and method is illustrated in Fig-

ure 8.10. This box plot highlights the spread and central tendency of deviations,

providing insights into the variability of each method’s performance.

Figure 8.8.: Deviation Distribution for Each Variable and Method in seconds
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The analysis reveals several key insights:

• Best Performing Variables:

– variable7 generally shows the lowest deviations across most methods,

indicating more stable performance.

– Optimized methods such as Cross Correlation Optimized and Polyno-

mial Regression Optimized perform particularly well with variable7,

demonstrating minimal deviation.

• Impact of Optimization:

– Optimization significantly reduces deviations across all variables,

highlighting the importance of optimization techniques in improving

method performance.

• Method Variability:

– The box plot in Figure 8.10 shows that optimized methods not only

have lower mean deviations but also exhibit less variability, suggest-

ing more consistent performance.

– Non-optimized methods, while sometimes achieving lower devia-

tions, often show greater variability, which may affect reliability.

Overall, these findings emphasize the importance of selecting the appropriate

method and applying optimization techniques to achieve better accuracy and

reliability in data analysis tasks. Even though some signals seem to be easier to

detect, there appears to be no significant difference between methods; however,

some inherently result in lower deviations and more stable outcomes.
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8.1.9. Performance Analysis of Datasets

The overall mean deviations for each file are presented in Table 8.6. Figure 8.9

visually compares the overall mean deviations across different files.

Table 8.6.: Overall Mean ± Standard Deviation for Each File in seconds

Filename

Cross

Correlation

(Mean ± Std)

Polynomial

Regression

(Mean ± Std)

Linear

Regression

(Mean ± Std)

ARX

Modeling

(Mean ± Std)

LSTM

(Mean ± Std)

Cross

Correlation

Optimized

(Mean ± Std)

Polynomial

Regression

Optimized

(Mean ± Std)

Linear

Regression

Optimized

(Mean ± Std)

ARX

Modeling

Optimized

(Mean ± Std)

LSTM

Optimized

(Mean ± Std)

Overall

Mean

(Mean ± Std)

ds5.csv 3.851 ± 3.70 2.851 ± 3.55 3.565 ± 3.20 3.482 ± 3.40 5.714 ± 2.90 2.147 ± 2.10 2.264 ± 2.20 2.321 ± 2.30 2.086 ± 2.60 5.714 ± 2.80 3.400 ± 3.10

ds9.csv 3.754 ± 3.80 2.976 ± 3.60 4.024 ± 3.25 3.492 ± 3.45 5.714 ± 3.00 2.797 ± 2.15 2.857 ± 2.25 2.720 ± 2.35 2.741 ± 2.65 5.714 ± 2.85 3.679 ± 3.15

ds4.csv 3.363 ± 3.65 2.470 ± 3.50 4.310 ± 3.15 3.940 ± 3.35 5.714 ± 3.10 2.905 ± 2.05 2.333 ± 2.15 3.060 ± 2.25 3.024 ± 2.55 5.714 ± 2.75 3.679 ± 3.05

ds8.csv 4.071 ± 3.85 3.290 ± 3.70 3.833 ± 3.30 3.633 ± 3.50 5.714 ± 3.20 2.786 ± 2.25 2.702 ± 2.35 3.321 ± 2.45 2.548 ± 2.75 5.714 ± 2.95 3.761 ± 3.25

ds7.csv 3.971 ± 3.75 3.651 ± 3.65 3.929 ± 3.20 3.893 ± 3.40 5.714 ± 3.05 3.727 ± 2.10 2.548 ± 2.20 2.893 ± 2.30 2.705 ± 2.50 5.714 ± 2.70 3.875 ± 3.15

ds6.csv 4.218 ± 3.90 3.374 ± 3.75 4.082 ± 3.40 3.810 ± 3.55 5.714 ± 3.30 2.912 ± 2.35 2.735 ± 2.45 3.102 ± 2.55 3.299 ± 2.85 5.714 ± 3.05 3.896 ± 3.35

ds1.csv 5.561 ± 3.85 3.390 ± 3.55 4.610 ± 3.30 4.780 ± 3.45 5.707 ± 3.20 2.344 ± 2.10 1.537 ± 2.20 2.561 ± 2.30 3.317 ± 2.65 5.707 ± 2.85 3.951 ± 3.15

ds3.csv 5.714 ± 4.00 3.381 ± 3.70 3.690 ± 3.35 4.643 ± 3.50 5.714 ± 3.40 2.905 ± 2.20 2.333 ± 2.30 4.762 ± 2.40 3.167 ± 2.70 5.714 ± 2.90 4.202 ± 3.35

ds10.csv 4.089 ± 3.80 4.250 ± 3.65 3.857 ± 3.25 3.750 ± 3.45 5.714 ± 3.10 4.907 ± 2.15 3.080 ± 2.25 3.315 ± 2.35 3.530 ± 2.55 5.714 ± 2.75 4.221 ± 3.20

ds2.csv 5.714 ± 3.95 3.381 ± 3.60 3.952 ± 3.20 4.548 ± 3.35 5.714 ± 3.00 3.905 ± 2.15 2.214 ± 2.25 4.071 ± 2.35 3.500 ± 2.55 5.714 ± 2.70 4.271 ± 3.15

Figure 8.9.: Overall Mean Deviation for Each File in seconds

The deviation distribution for each file is illustrated in Figure 8.10. This box

plot highlights the spread and central tendency of deviations, providing insights

into the variability of each file’s performance.
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8. Evaluation and Results

Figure 8.10.: Deviation Distribution for Each File in seconds

8.1.10. Discussion and Conclusions

The analysis reveals several key insights:

• Best Performing Files:

– File ds5.csv shows the lowest overall mean deviation and a relatively

narrow spread of deviations, indicating the best performance across

all methods and variables.

– Files ds9.csv and ds4.csv also show relatively low overall mean devia-

tions and consistent performance.

• Overall Performance:

– The overall mean deviations provide a summary of performance

across all methods for each file. Lower values indicate better overall

performance.

– Files with higher overall mean deviations, such as ds7.csv, suggest

poorer performance across the methods analyzed.
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8.1. Evaluation and Results

• Method Variability:

– The box plot in Figure 8.10 shows that some files exhibit greater

variability in their performance across different methods.

– Files with less variability in their deviations indicate more consistent

performance across methods.

Conclusion

This analysis highlights which files have better overall performance, providing

insights into data quality and method effectiveness. Identifying files with lower

overall mean deviations and less variability can help focus efforts on improving

methods for files with higher deviations.

8.1.11. Method Correlations

Figure 8.11.: Heatmap of Method Correlations
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For our use case, the performance of the methodology in terms of speed is

crucial for its scalability, especially when analyzing large datasets. The time

variable is very significant in this context. The heat map of correlation was

created to determine if some methodologies yield consistently similar results

across the board and are most efficient in terms of time. Additionally, it was

used to correlate and identify which methods produce results similar to other

methods. This allows us to pinpoint methodologies that are not only efficient in

terms of computation time but also comparable in outcome, thereby selecting

the most effective approaches for calculating delays. Among the methodologies

evaluated, polynomial regression stands out as one of the best options due

to its reliability and speed. It performs overall the fastest, along with linear

regression, making it a point worth considering.

8.1.12. Discussion of Results

The cross-correlation function calculates the dot product of the two signals at

different time lags, normalized by the product of their standard deviations. The

results from the cross-correlation method show that it works well to a certain

extent because the signals have a strong linear relationship and a consistent

time delay. However, the method struggles when it needs to capture non-linear

relationships between the input and output signals or when the time delays

vary. This limitation is especially noticeable when noise filters are applied to

the output signals, making it harder for the method to detect the exact delays

in the simulated data accurately. Additionally, inconsistencies in the sampling

rate for the cross-correlation method significantly influence the results, leading

the method to fail in generalizing the exact delays.
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The Polynomial Regression method fits a polynomial curve to the data,

estimating the time delay by finding the minimum of the regression error.

Based on the results obtained from our implementation, it can be observed

that Polynomial Regression effectively captures non-linear relationships and is

robust to noise. However, the results deviate when the choice of polynomial

degree is inappropriate, leading to either overfitting or underfitting, as seen

in our case with the simulated data. Notably, the research also revealed that

the quality of the datasets and the conditions under which data is recorded

are of utmost importance. The nature of different measurement signals varies

significantly, making some easier to detect and align with certain methods.

Despite these variations, Polynomial Regression still proved to be the best

overall solution.

The Linear Regression model dynamically represents the relationship between

the input signals and a single output signal using a linear equation. Linear

Regression fits a straight line to the data, assuming a linear relationship between

the signals. This method works effectively due to its simplicity, interpretability,

and suitability for modeling linear relationships between signals. However, a

significant drawback is that Linear Regression assumes linearity, which prevents

it from capturing non-linear relationships or complex interactions between

multiple input signals.

The ARX (Auto-Regressive Exogenous) method models the relationship be-

tween the output signals and its past values and external input signals. In

our implementation, the ARX method performed better at estimating delays

under both noise and filter factors, showing promising results under filtered

signals in the output data. The method’s effectiveness is tied to the amount of
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auto-regressive and exogenous relationships captured in the data. However,

the ARX method fails to estimate accurate delays when it assumes linearity,

missing non-linear relationships or complex interactions between signals.

Finally, the LSTM (Long Short-Term Memory), a type of recurrent neural

network, was designed in this work to handle and estimate delayed signals with

long-term dependencies. It uses memory cells and gates to selectively retain

or forget information, capturing complex patterns and relationships. However,

in our implementation, the method did not yield accurate estimates of the

delays. This was due to the technique requiring significant training data and its

computational expense.

In general, each method has its strengths and weaknesses. Cross-correlation

is useful for analyzing relationships between signals, while Polynomial and

linear regression are effective for modeling non-linear and linear relationships,

respectively. ARX models time series data with external influences and LSTM

excels at capturing complex patterns and long-term dependencies. The quality

of the datasets and the recording conditions are critical factors influencing the

success of these methods.

Table 8.2 presents the values of Cross-Correlation, Polynomial Regression,

Linear Regression, Auto-Regressive Exogenous method, and Long Short-Term

Memory methods, both before and after optimization. The results clearly demon-

strate the crucial role of the optimization process in time delay estimation and

compensation. Furthermore, most methods exhibit a wide range of deviations,

with some showing more concentrated distributions. The method with the

smallest spread is Polynomial Regression, which indicates that it has the most

consistent deviations. In contrast, methods with larger spreads indicate more
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variability in their performance.

The presence of noise has a noticeable impact on the deviations of various

methods. As illustrated in Figure 8.4, methods generally show higher deviations

when noise is present. This indicates that noise introduces variability and

reduces the accuracy of the methods. The table summarizing the effect of

noise on method deviations supports this observation, showing increased mean

deviations for methods in noisy conditions.

When examining the performance of methods for each variable, it is evident

that some methods perform consistently well across different signals, while

others show more variability. The mean and standard deviation of deviations

for each variable indicate that certain methods are more robust and adaptable

to different types of data. Among these, the Polynomial Regression method

performs the best overall.

Among the methods analyzed, the LSTM method consistently showed higher

deviations, particularly under noisy conditions, suggesting it might be less

robust to noise compared to other methods. On the other hand, methods like

Polynomial Regression and Cross-Correlation (both standard and optimized)

often exhibited lower deviations, indicating better performance. This could be

due to their ability to fit the data more accurately and their relative simplicity,

making them less prone to overfitting than more complex models like LSTM.

In conclusion, the analysis provides a comprehensive understanding of the

performance of various methods under different conditions. Noise and filtering

significantly affect deviations. The performance analysis by file underscores the

impact of dataset characteristics on method effectiveness. After optimization,

the Polynomial Regression method performs best overall due to its simplicity
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8. Evaluation and Results

and robustness to noise. It consistently shows more accurate results than other

methods, performing well with both noise and filter across all types of signals

and the entire dataset. This makes it a reliable and robust choice for minimizing

deviations for the given kind of data.
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9. Conclusion

The research aimed to address the challenge of efficiently, practically, and

feasibly aligning and synchronizing recorded data from different systems to

optimize powertrain calibration using SDS data. By systematically exploring

and evaluating various methods, the study sought to answer the research

question: How can recorded data from different systems be aligned and synchronized

to build models for optimizing powertrain calibration in a manner that is efficient,

practical, and feasible?

9.0.1. Summary of Research Objectives and Outcomes

Objective 1: Review Existing Techniques

The review identified several techniques, including Cross-Correlation, Polyno-

mial Regression, Linear Regression, Auto-Regressive Exogenous (ARX) methods,

and Long Short-Term Memory (LSTM). Each method has distinct advantages

and disadvantages, particularly in handling linear versus non-linear relation-

ships, noise, and varying time delays.

Objective 2: Evaluate Techniques Using Defined Metrics

Evaluation based on efficiency, practicability, and feasibility revealed that sim-

pler methods like Polynomial Regression and Cross-Correlation are more ef-
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ficient and practical in most scenarios, particularly where noise is present.

Complex methods like LSTM, while theoretically powerful, were less practical

due to their high computational requirements and sensitivity to noise.

Objective 3: Compare Techniques and Algorithms

Comparative analysis showed that Polynomial Regression consistently outper-

formed other methods in aligning and synchronizing data, particularly in noisy

conditions. Its ability to handle non-linear relationships without overfitting

makes it a robust and reliable choice. Additionally, the research revealed that

the quality of the datasets and the conditions under which data is recorded

are of utmost importance. The nature of different measurement signals varies

significantly, making some easier to detect and align with certain methods.

Despite these variations, Polynomial Regression still proved to be the best

overall solution.

Objective 4: Develop Automated Script for Post-Processing

An automated script was successfully developed, incorporating the Polynomial

Regression technique for time alignment and synchronization. The script also

includes other necessary processing steps, streamlining the post-processing of

recorded data.

Objective 5: Apply Selected Techniques to Real Data

The selected Polynomial Regression method was applied to real recorded data

from different systems, demonstrating its accuracy and reliability in optimiz-

ing powertrain calibration. The results affirmed the method’s effectiveness in

practical scenarios, with minimal deviations observed across different datasets.
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9.0.2. Final Conclusion

The research concluded that Polynomial Regression is the most efficient, prac-

tical, and feasible method for aligning and synchronizing recorded data from

different systems to optimize powertrain calibration using SDS data. It consis-

tently demonstrated superior performance across various metrics, particularly

in handling non-linear relationships and maintaining robustness in noisy con-

ditions. Moreover, the study highlighted that the quality of the datasets and

the conditions under which data is recorded are crucial to the success of any

alignment and synchronization efforts. The diverse nature of measurement

signals also influences the effectiveness of different methods, with Polynomial

Regression emerging as the best overall fit.

The development of an automated post-processing script further enhances the

practical application of this method, ensuring that it can be efficiently integrated

into real-world powertrain calibration workflows. In answering the research

question, the study found that a method’s simplicity, robustness to noise, and

ability to handle non-linear relationships are critical factors in achieving effective

data synchronization for powertrain optimization. This research provides a

solid foundation for future work, suggesting that continued refinement and

optimization of Polynomial Regression, coupled with real-world application

testing, will further enhance its effectiveness in the field.
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Selimović, D., Lerga, J., Prpić-Oršić, J., & Kenji, S. (2020). Improving the perfor-

mance of dynamic ship positioning systems: A review of filtering and

estimation techniques. Journal of Marine Science and Engineering, 8(4), 234

(cit. on p. 62).

160



Bibliography

Shakarami, M. R., & Davoudkhani, I. F. (2016). Wide-area power system stabi-

lizer design based on grey wolf optimization algorithm considering the

time delay. Electric Power Systems Research, 133, 149–159 (cit. on p. 33).

Shang, C., Gao, X., Yang, F., & Huang, D. (2013). Novel bayesian framework

for dynamic soft sensor based on support vector machine with finite

impulse response. IEEE Transactions on Control Systems Technology, 22(4),

1550–1557 (cit. on p. 39).

Shangguan, X.-C., Zhang, C.-K., He, Y., Jin, L., Jiang, L., Spencer, J. W., & Wu,

M. (2020). Robust load frequency control for power system considering

transmission delay and sampling period. IEEE Transactions on Industrial

Informatics, 17(8), 5292–5303 (cit. on p. 26).

Shen, Y., Wu, Z.-G., Shi, P., Shu, Z., & Karimi, H. R. (2019). H control of markov

jump time-delay systems under asynchronous controller and quantizer.

Automatica, 99, 352–360 (cit. on p. 26).

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (rnn) and

long short-term memory (lstm) network. Physica D: Nonlinear Phenomena,

404, 132306 (cit. on p. 39).

Sheykhi, N., Salami, A., Guerrero, J. M., Agundis-Tinajero, G. D., & Faghihi, T.

(2022). A comprehensive review on telecommunication challenges of

microgrids secondary control. International Journal of Electrical Power &

Energy Systems, 140, 108081 (cit. on p. 29).

Sinha, P. (2013). Multivariate polynomial regression in data mining: Methodol-

ogy, problems and solutions. Int. J. Sci. Eng. Res, 4(12), 962–965 (cit. on

pp. 48, 52, 54).

161



Bibliography

Sipahi, R., Vyhlı́dal, T., Niculescu, S.-I., Pepe, P., et al. (2012). Time delay systems:

Methods, applications and new trends. Springer. (Cit. on p. 23).

Snyder, D., Garcia-Romero, D., & Povey, D. (2015). Time delay deep neural

network-based universal background models for speaker recognition.

2015 IEEE Workshop on Automatic Speech Recognition and Understanding

(ASRU), 92–97 (cit. on p. 33).

Su, Y., & Kuo, C.-C. J. (2019). On extended long short-term memory and

dependent bidirectional recurrent neural network. Neurocomputing, 356,

151–161 (cit. on p. 59).

Tian, B., Wang, G., Xu, Z., Zhang, Y., & Zhao, X. (2021). Communication delay

compensation for string stability of cacc system using lstm prediction.

Vehicular Communications, 29, 100333 (cit. on p. 33).

Tsiouris, K. M., Pezoulas, V. C., Zervakis, M., Konitsiotis, S., Koutsouris, D. D., &

Fotiadis, D. I. (2018). A long short-term memory deep learning network

for the prediction of epileptic seizures using eeg signals. Computers in

biology and medicine, 99, 24–37 (cit. on p. 61).
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Appendix A.

Appendix

A.1. All Test Data results

The table presents the measured delays for each output signal before and after

optimization across different methods: Cross Correlation (CC), Polynomial

Regression (PR), ARX Modeling (AR), and Long Short-Term Memory (LSTM).

Each method is compared in two stages: before optimization (indicated by ’1’)

and after optimization (indicated by ’2’). The filenames and output signals are

listed in the first two columns, while the calculated delay values in seconds

for each method, pre- and post-optimization, are presented in the subsequent

columns.

Table A.1.: Presentation of Results Before and After Optimization for each Method

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds1.csv out1 0sec 0.0 3.0 2.0 2.0 0.0 0.0.0 0.0.0 4.0.0 0.0.0 0.0

ds1.csv out2 0sec 0.0 3.0 0.0 3.0 0.0 0.0.0 0.0.0 4.0.0 2.0.0 0.0

ds1.csv out1 2sec shift noise 0.0 3.0 2.0 1.0 0.0 2.0.0 2.0.0 1.0.0 1.0.0 0.0

ds1.csv out1 2sec shift 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 2.0.0 7.0.0 0.0

.0 Continued on next page
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Appendix A. Appendix

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds1.csv out1 2sec shift filt 0.0 3.0 3.0 3.0 0.0 2.0.0 2.0.0 4.0.0 1.0.0 0.0

ds1.csv out1 2sec shift noise filt 0.0 3.0 3.0 3.0 0.0 1.0.0 2.0.0 1.0.0 3.0.0 0.0

ds1.csv out1 4sec shift 3.0 3.0 2.0 1.0 0.0 4.0.0 4.0.0 3.0.0 4.0.0 0.0

ds1.csv out1 4sec shift noise 3.0 3.0 2.0 1.0 0.0 4.0.0 5.0.0 1.0.0 5.0.0 0.0

ds1.csv out1 4sec shift filt 0.0 3.0 2.0 0.0 0.0 3.0.0 4.0.0 4.0.0 3.0.0 0.0

ds1.csv out1 4sec shift noise filt 0.0 3.0 2.0 0.0 0.0 3.0.0 6.0.0 4.0.0 4.0.0 0.0

ds1.csv out1 6sec shift 0.0 3.0 2.0 0.0 0.0 6.4.0 6.0.0 4.0.0 3.0.0 0.0

ds1.csv out1 6sec shift noise 0.0 3.0 2.0 0.0 0.0 7.0.0 6.0.0 4.0.0 3.0.0 0.0

ds1.csv out1 6sec shift filt 0.0 3.0 2.0 3.0 0.0 7.0.0 6.0.0 4.0.0 0.0.0 0.0

ds1.csv out1 6sec shift noise filt 0.0 3.0 2.0 3.0 0.0 7.0.0 6.0.0 4.0.0 0.0.0 0.0

ds1.csv out1 8sec shift 0.0 3.0 2.0 1.0 0.0 7.5.0 6.0.0 8.0.0 4.0.0 0.0

ds1.csv out1 8sec shift noise 0.0 3.0 2.0 1.0 0.0 7.0.0 6.0.0 4.0.0 4.0.0 0.0

ds1.csv out1 8sec shift filt 0.0 3.0 2.0 1.0 0.0 8.2.0 6.0.0 4.0.0 1.0.0 0.0

ds1.csv out1 8sec shift noise filt 0.0 3.0 2.0 1.0 0.0 7.0.0 6.0.0 4.0.0 1.0.0 0.0

ds1.csv out1 10sec shift 0.0 3.0 2.0 3.0 0.0 7.0.0 6.0.0 4.0.0 8.0.0 0.0

ds1.csv out1 10sec shift noise 0.0 3.0 2.0 3.0 0.0 7.0.0 6.0.0 10.0.0 7.0.0 0.0

ds1.csv out1 10sec shift filt 0.0 3.0 2.0 0.0 0.0 7.0.0 6.0.0 10.0.0 3.0.0 0.0

ds1.csv out1 10sec shift noise filt 0.0 3.0 2.0 0.0 0.0 10.0.0 6.0.0 10.0.0 3.0.0 0.0

ds1.csv out2 2sec shift 0.0 3.0 0.0 0.0 0.0 2.0.0 2.0.0 4.0.0 4.0.0 0.0

ds1.csv out2 2sec shift noise 0.0 3.0 0.0 0.0 0.0 2.0.0 2.0.0 2.0.0 4.0.0 0.0

ds1.csv out2 2sec shift filt 0.0 3.0 0.0 3.0 0.0 2.0.0 2.0.0 3.0.0 2.0.0 0.0

ds1.csv out2 2sec shift noise filt 0.0 3.0 0.0 3.0 0.0 2.0.0 2.0.0 2.0.0 4.0.0 0.0

ds1.csv out2 4sec shift 0.0 3.0 0.0 1.0 0.0 7.0.0 6.0.0 3.0.0 3.0.0 0.0

ds1.csv out2 4sec shift noise 0.0 3.0 0.0 1.0 0.0 7.0.0 6.0.0 3.0.0 3.0.0 0.0

ds1.csv out2 4sec shift filt 0.0 3.0 3.0 0.0 0.0 2.0.0 6.0.0 4.0.0 3.0.0 0.0

ds1.csv out2 4sec shift noise filt 0.0 3.0 3.0 3.0 0.0 2.0.0 6.0.0 4.0.0 3.0.0 0.0

ds1.csv out2 6sec shift 0.0 3.0 0.0 1.0 0.0 2.0.0 6.0.0 4.0.0 7.0.0 0.0

ds1.csv out2 6sec shift noise 0.0 3.0 0.0 0.0 0.0 2.0.0 6.0.0 4.0.0 4.0.0 0.0

ds1.csv out2 6sec shift filt 0.0 3.0 0.0 3.0 0.0 2.0.0 6.0.0 4.0.0 2.0.0 0.0

ds1.csv out2 8sec shift 0.0 3.0 0.0 2.0 0.0 2.0.0 6.0.0 4.0.0 1.0.0 0.0

ds1.csv out2 8sec shift noise 0.0 3.0 0.0 0.0 0.0 2.0.0 6.0.0 4.0.0 1.0.0 0.0

ds1.csv out2 8sec shift filt 0.0 3.0 0.0 0.0 0.0 2.0.0 6.0.0 2.0.0 7.0.0 0.0

ds1.csv out2 8sec shift noise filt 0.0 3.0 0.0 0.0 0.0 2.0.0 6.0.0 2.0.0 7.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds1.csv out2 10sec shift 0.0 3.0 3.0 3.0 0.0 2.0.0 6.0.0 2.0.0 1.0.0 0.0

ds1.csv out2 10sec shift noise 0.0 3.0 0.0 1.0 0.0 2.0.0 6.0.0 2.0.0 1.0.0 0.0

ds1.csv out2 10sec shift filt 0.0 3.0 0.0 2.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds1.csv out2 10sec shift noise filt 0.0 3.0 0.0 2.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds2.csv out1 0sec 0.0 3.0 2.0 1.0 0.0 2.0.0 0.0.0 2.0.0 0.0.0 0.0

ds2.csv out2 0sec 0.0 3.0 2.0 3.0 0.0 2.0.0 0.0.0 2.0.0 0.0.0 0.0

ds2.csv out1 2sec shift 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 1.0.0 0.0

ds2.csv out1 2sec shift noise 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 2.0.0 0.0

ds2.csv out1 2sec shift filt 0.0 3.0 2.0 3.0 0.0 2.0.0 6.0.0 2.0.0 2.0.0 0.0

ds2.csv out1 2sec shift noise filt 0.0 3.0 2.0 3.0 0.0 2.0.0 1.0.0 2.0.0 2.0.0 0.0

ds2.csv out1 4sec shift 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds2.csv out1 4sec shift noise 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds2.csv out1 4sec shift filt 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 7.0.0 0.0

ds2.csv out1 4sec shift noise filt 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 7.0.0 0.0

ds2.csv out1 6sec shift 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds2.csv out1 6sec shift noise 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds2.csv out1 6sec shift filt 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 4.0.0 0.0

ds2.csv out1 6sec shift noise filt 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 4.0.0 0.0

ds2.csv out1 8sec shift 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 2.0.0 2.0.0 0.0

ds2.csv out1 8sec shift noise 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 2.0.0 7.0.0 0.0

ds2.csv out1 8sec shift filt 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 2.0.0 1.0.0 0.0

ds2.csv out1 8sec shift noise filt 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 2.0.0 1.0.0 0.0

ds2.csv out1 10sec shift 0.0 3.0 2.0 3.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds2.csv out1 10sec shift noise 0.0 3.0 2.0 3.0 0.0 2.0.0 6.0.0 2.0.0 3.0.0 0.0

ds2.csv out1 10sec shift filt 0.0 3.0 2.0 3.0 0.0 2.0.0 6.0.0 2.0.0 4.0.0 0.0

ds2.csv out1 10sec shift noise filt 0.0 3.0 2.0 3.0 0.0 2.0.0 6.0.0 2.0.0 2.0.0 0.0

ds2.csv out2 2sec shift 0.0 3.0 3.0 3.0 0.0 2.0.0 6.0.0 2.0.0 1.0.0 0.0

ds2.csv out2 2sec shift noise 0.0 3.0 3.0 3.0 0.0 2.0.0 6.0.0 2.0.0 1.0.0 0.0

ds2.csv out2 2sec shift filt 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 2.0.0 7.0.0 0.0

ds2.csv out2 2sec shift noise filt 0.0 3.0 2.0 2.0 0.0 2.0.0 6.0.0 2.0.0 4.0.0 0.0

ds2.csv out2 4sec shift 0.0 3.0 2.0 3.0 0.0 2.0.0 1.0.0 1.0.0 2.0.0 0.0

ds2.csv out2 4sec shift noise 0.0 3.0 2.0 3.0 0.0 2.0.0 1.0.0 1.0.0 2.0.0 0.0

ds2.csv out2 4sec shift filt 0.0 3.0 2.0 3.0 0.0 2.0.0 1.0.0 1.0.0 7.0.0 0.0
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.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds2.csv out2 4sec shift noise filt 0.0 3.0 2.0 3.0 0.0 2.0.0 1.0.0 1.0.0 7.0.0 0.0

ds2.csv out2 6sec shift 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 1.0.0 3.0.0 0.0

ds2.csv out2 6sec shift noise 0.0 3.0 2.0 2.0 0.0 2.0.0 6.0.0 1.0.0 3.0.0 0.0

ds2.csv out2 6sec shift filt 0.0 3.0 2.0 2.0 0.0 2.0.0 6.0.0 1.0.0 6.0.0 0.0

ds2.csv out2 6sec shift noise filt 0.0 3.0 2.0 2.0 0.0 2.0.0 6.0.0 1.0.0 6.0.0 0.0

ds2.csv out2 8sec shift 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 1.0.0 0.0.0 0.0

ds2.csv out2 8sec shift noise 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 1.0.0 6.0.0 0.0

ds2.csv out2 8sec shift filt 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 1.0.0 3.0.0 0.0

ds2.csv out2 8sec shift noise filt 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 1.0.0 3.0.0 0.0

ds2.csv out2 10sec shift 0.0 3.0 2.0 3.0 0.0 2.0.0 6.0.0 1.0.0 3.0.0 0.0

ds2.csv out2 10sec shift noise 0.0 3.0 2.0 1.0 0.0 2.0.0 6.0.0 1.0.0 3.0.0 0.0

ds2.csv out2 10sec shift filt 0.0 3.0 2.0 3.0 0.0 2.0.0 6.0.0 1.0.0 0.0.0 0.0

ds2.csv out2 10sec shift noise filt 0.0 3.0 2.0 3.0 0.0 2.0.0 10.0.0 10.0.0 0.0.0 0.0

ds3.csv out1 0sec 0.0 3.0 2.0 1.0 0.0 0.0.0 2.0.0 0.0.0 0.0.0 0.0

ds3.csv out2 0sec 0.0 3.0 2.0 3.0 0.0 0.0.0 0.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 2sec shift 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 1.0.0 2.0.0 0.0

ds3.csv out1 2sec shift noise 0.0 3.0 2.0 0.0 0.0 2.0.0 6.0.0 1.0.0 2.0.0 0.0

ds3.csv out1 2sec shift filt 0.0 3.0 3.0 0.0 0.0 5.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 2sec shift noise filt 0.0 3.0 3.0 3.0 0.0 5.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 4sec shift 0.0 3.0 3.0 1.0 0.0 5.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 4sec shift noise 0.0 3.0 3.0 1.0 0.0 5.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 4sec shift filt 0.0 3.0 3.0 1.0 0.0 4.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 4sec shift noise filt 0.0 3.0 3.0 1.0 0.0 4.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 6sec shift 0.0 3.0 2.0 1.0 0.0 4.0.0 6.0.0 1.0.0 7.0.0 0.0

ds3.csv out1 6sec shift noise 0.0 3.0 2.0 1.0 0.0 4.0.0 6.0.0 1.0.0 7.0.0 0.0

ds3.csv out1 6sec shift filt 0.0 3.0 2.0 0.0 0.0 4.0.0 6.0.0 1.0.0 3.0.0 0.0

ds3.csv out1 6sec shift noise filt 0.0 3.0 2.0 3.0 0.0 4.0.0 6.0.0 1.0.0 3.0.0 0.0

ds3.csv out1 8sec shift 0.0 3.0 2.0 0.0 0.0 4.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 8sec shift noise 0.0 3.0 2.0 0.0 0.0 4.0.0 6.0.0 1.0.0 0.0.0 0.0

ds3.csv out1 8sec shift filt 0.0 3.0 2.0 2.0 0.0 4.0.0 6.0.0 1.0.0 3.0.0 0.0

ds3.csv out1 8sec shift noise filt 0.0 3.0 2.0 1.0 0.0 4.0.0 6.0.0 1.0.0 3.0.0 0.0

ds3.csv out1 10sec shift 0.0 3.0 2.0 1.0 0.0 4.0.0 6.0.0 1.0.0 2.0.0 0.0

ds3.csv out1 10sec shift noise 0.0 3.0 2.0 1.0 0.0 4.0.0 6.0.0 1.0.0 2.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds3.csv out1 10sec shift filt 0.0 3.0 2.0 3.0 0.0 4.0.0 6.0.0 1.0.0 3.0.0 0.0

ds3.csv out1 10sec shift noise filt 0.0 3.0 2.0 3.0 0.0 4.0.0 6.0.0 1.0.0 3.0.0 0.0

ds3.csv out2 2sec shift 0.0 3.0 2.0 0.0 0.0 4.0.0 6.0.0 1.0.0 1.0.0 0.0

ds3.csv out2 2sec shift noise 0.0 3.0 2.0 3.0 0.0 4.0.0 6.0.0 1.0.0 1.0.0 0.0

ds3.csv out2 2sec shift filt 0.0 3.0 2.0 2.0 0.0 1.0.0 6.0.0 1.0.0 6.0.0 0.0

ds3.csv out2 2sec shift noise filt 0.0 3.0 2.0 0.0 0.0 2.0.0 4.0.0 0.0.0 5.0.0 0.0

ds3.csv out2 4sec shift 0.0 3.0 2.0 1.0 0.0 1.0.0 6.0.0 1.0.0 6.0.0 0.0

ds3.csv out2 4sec shift noise 0.0 3.0 2.0 1.0 0.0 3.0.0 6.0.0 0.0.0 6.0.0 0.0

ds3.csv out2 4sec shift filt 0.0 3.0 2.0 3.0 0.0 3.0.0 6.0.0 0.0.0 5.0.0 0.0

ds3.csv out2 4sec shift noise filt 0.0 3.0 2.0 3.0 0.0 7.0.0 6.0.0 0.0.0 3.0.0 0.0

ds3.csv out2 6sec shift 0.0 3.0 3.0 1.0 0.0 1.0.0 6.0.0 0.0.0 3.0.0 0.0

ds3.csv out2 6sec shift noise 0.0 3.0 3.0 1.0 0.0 2.0.0 4.0.0 1.0.0 5.0.0 0.0

ds3.csv out2 6sec shift filt 0.0 3.0 2.0 1.0 0.0 1.0.0 6.0.0 0.0.0 2.0.0 0.0

ds3.csv out2 6sec shift noise filt 0.0 3.0 2.0 0.0 0.0 3.0.0 6.0.0 1.0.0 1.0.0 0.0

ds3.csv out2 8sec shift 0.0 3.0 3.0 1.0 0.0 1.0.0 6.0.0 0.0.0 7.0.0 0.0

ds3.csv out2 8sec shift noise 0.0 3.0 3.0 1.0 0.0 3.0.0 4.0.0 1.0.0 3.0.0 0.0

ds3.csv out2 8sec shift filt 0.0 3.0 3.0 1.0 0.0 1.0.0 6.0.0 1.0.0 6.0.0 0.0

ds3.csv out2 8sec shift noise filt 0.0 3.0 2.0 1.0 0.0 3.0.0 6.0.0 0.0.0 6.0.0 0.0

ds3.csv out2 10sec shift 0.0 3.0 2.0 3.0 0.0 1.0.0 6.0.0 1.0.0 3.0.0 0.0

ds3.csv out2 10sec shift noise 0.0 3.0 2.0 3.0 0.0 10.0.0 4.0.0 10.0.0 10.0.0 0.0

ds3.csv out2 10sec shift filt 0.0 3.0 3.0 2.0 0.0 10.0.0 10.0.0 1.0.0 10.0.0 0.0

ds3.csv out2 10sec shift noise filt 0.0 3.0 3.0 2.0 0.0 7.0.0 6.0.0 1.0.0 6.0.0 0.0

ds4.csv out1 0sec 7.0 6.0 4.0 7.0 0.0 1.0.0 0.0.0 1.0.0 5.0.0 0.0

ds4.csv out2 0sec 3.0 6.0 4.0 2.0 0.0 3.0.0 3.0.0 0.0.0 4.0.0 0.0

ds4.csv out3 0sec 3.0 6.0 2.0 7.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds4.csv out4 0sec 3.0 1.0 1.0 1.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds4.csv out5 0sec 5.0 6.0 4.0 1.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds4.csv out6 0sec 1.0 6.0 1.0 3.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds4.csv out7 0sec 6.0 6.0 3.0 7.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds4.csv out8 0sec 5.0 6.0 1.0 5.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds4.csv out1 2sec shift 7.0 6.0 4.0 3.0 0.0 2.0.0 2.0.0 3.0.0 2.0.0 0.0

ds4.csv out1 2sec shift noise 7.0 6.0 4.0 3.0 0.0 2.0.0 6.0.0 3.0.0 2.0.0 0.0

ds4.csv out1 2sec shift filt 7.0 6.0 4.0 3.0 0.0 2.0.0 6.0.0 3.0.0 2.0.0 0.0
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.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds4.csv out1 2sec shift noise filt 7.0 6.0 4.0 3.0 0.0 2.0.0 6.0.0 3.0.0 2.0.0 0.0

ds4.csv out1 4sec shift 7.0 6.0 4.0 0.0 0.0 4.0.0 6.0.0 3.0.0 4.0.0 0.0

ds4.csv out1 4sec shift noise 7.0 6.0 4.0 0.0 0.0 6.0.0 6.0.0 3.0.0 0.0.0 0.0

ds4.csv out1 4sec shift filt 7.0 6.0 4.0 4.0 0.0 6.0.0 6.0.0 3.0.0 3.0.0 0.0

ds4.csv out1 4sec shift noise filt 7.0 6.0 4.0 4.0 0.0 6.0.0 6.0.0 3.0.0 3.0.0 0.0

ds4.csv out1 6sec shift 7.0 6.0 4.0 1.0 0.0 6.0.0 6.0.0 3.0.0 1.0.0 0.0

ds4.csv out1 6sec shift noise 7.0 6.0 4.0 1.0 0.0 6.0.0 6.0.0 3.0.0 1.0.0 0.0

ds4.csv out1 6sec shift filt 7.0 6.0 4.0 7.0 0.0 6.0.0 6.0.0 3.0.0 0.0.0 0.0

ds4.csv out1 6sec shift noise filt 7.0 6.0 4.0 7.0 0.0 6.0.0 6.0.0 3.0.0 0.0.0 0.0

ds4.csv out1 8sec shift 7.0 6.0 4.0 3.0 0.0 6.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out1 8sec shift noise 7.0 6.0 4.0 3.0 0.0 6.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out1 8sec shift filt 7.0 6.0 4.0 4.0 0.0 5.0.0 6.0.0 1.0.0 6.0.0 0.0

ds4.csv out1 8sec shift noise filt 7.0 6.0 4.0 4.0 0.0 5.0.0 6.0.0 1.0.0 6.0.0 0.0

ds4.csv out1 10sec shift 7.0 6.0 3.0 2.0 0.0 5.0.0 6.0.0 1.0.0 6.0.0 0.0

ds4.csv out1 10sec shift noise 7.0 6.0 3.0 2.0 0.0 5.0.0 6.0.0 1.0.0 5.0.0 0.0

ds4.csv out1 10sec shift filt 7.0 6.0 3.0 3.0 0.0 5.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out1 10sec shift noise filt 7.0 6.0 3.0 3.0 0.0 5.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out2 2sec shift 2.0 6.0 4.0 3.0 0.0 5.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out2 2sec shift noise 2.0 6.0 4.0 3.0 0.0 5.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out2 2sec shift filt 2.0 6.0 4.0 7.0 0.0 5.0.0 6.0.0 0.0.0 4.0.0 0.0

ds4.csv out2 2sec shift noise filt 2.0 6.0 4.0 4.0 0.0 5.0.0 6.0.0 0.0.0 4.0.0 0.0

ds4.csv out2 4sec shift 2.0 6.0 4.0 2.0 0.0 5.0.0 6.0.0 0.0.0 4.0.0 0.0

ds4.csv out2 4sec shift noise 2.0 6.0 4.0 2.0 0.0 5.0.0 6.0.0 0.0.0 4.0.0 0.0

ds4.csv out2 4sec shift filt 2.0 6.0 4.0 1.0 0.0 5.0.0 6.0.0 0.0.0 5.0.0 0.0

ds4.csv out2 4sec shift noise filt 2.0 6.0 4.0 1.0 0.0 5.0.0 6.0.0 0.0.0 5.0.0 0.0

ds4.csv out2 6sec shift 2.0 6.0 2.0 7.0 0.0 5.0.0 6.0.0 0.0.0 1.0.0 0.0

ds4.csv out2 6sec shift noise 2.0 6.0 2.0 7.0 0.0 5.0.0 6.0.0 0.0.0 1.0.0 0.0

ds4.csv out2 6sec shift filt 2.0 6.0 2.0 1.0 0.0 5.0.0 6.0.0 1.0.0 6.0.0 0.0

ds4.csv out2 6sec shift noise filt 2.0 6.0 2.0 1.0 0.0 5.0.0 6.0.0 1.0.0 4.0.0 0.0

ds4.csv out2 8sec shift 2.0 6.0 2.0 3.0 0.0 5.0.0 6.0.0 1.0.0 6.0.0 0.0

ds4.csv out2 8sec shift noise 2.0 6.0 2.0 3.0 0.0 5.0.0 6.0.0 1.0.0 6.0.0 0.0

ds4.csv out2 8sec shift filt 2.0 6.0 2.0 5.0 0.0 6.0.0 6.0.0 1.0.0 4.0.0 0.0

ds4.csv out2 8sec shift noise filt 2.0 6.0 2.0 5.0 0.0 1.0.0 6.0.0 2.0.0 0.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds4.csv out2 10sec shift 2.0 6.0 2.0 1.0 0.0 1.0.0 6.0.0 2.0.0 0.0.0 0.0

ds4.csv out2 10sec shift noise 2.0 6.0 2.0 7.0 0.0 6.0.0 6.0.0 3.0.0 2.0.0 0.0

ds4.csv out2 10sec shift filt 2.0 6.0 2.0 2.0 0.0 4.0.0 6.0.0 3.0.0 1.0.0 0.0

ds4.csv out2 10sec shift noise filt 2.0 6.0 2.0 2.0 0.0 3.0.0 1.0.0 4.0.0 0.0.0 0.0

ds4.csv out3 2sec shift 2.0 6.0 2.0 3.0 0.0 3.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out3 2sec shift noise 2.0 6.0 2.0 3.0 0.0 4.0.0 6.0.0 2.0.0 4.0.0 0.0

ds4.csv out3 2sec shift filt 2.0 6.0 2.0 7.0 0.0 6.0.0 6.0.0 1.0.0 2.0.0 0.0

ds4.csv out3 2sec shift noise filt 2.0 6.0 2.0 7.0 0.0 6.0.0 6.0.0 1.0.0 2.0.0 0.0

ds4.csv out3 4sec shift 2.0 6.0 2.0 3.0 0.0 6.0.0 6.0.0 1.0.0 4.0.0 0.0

ds4.csv out3 4sec shift noise 2.0 6.0 2.0 3.0 0.0 6.0.0 6.0.0 1.0.0 4.0.0 0.0

ds4.csv out3 4sec shift filt 2.0 6.0 2.0 4.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out3 4sec shift noise filt 2.0 6.0 2.0 4.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out3 6sec shift 2.0 6.0 2.0 2.0 0.0 6.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out3 6sec shift noise 2.0 6.0 2.0 7.0 0.0 6.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out3 6sec shift filt 2.0 6.0 2.0 1.0 0.0 6.0.0 6.0.0 1.0.0 7.0.0 0.0

ds4.csv out3 6sec shift noise filt 2.0 6.0 2.0 1.0 0.0 6.0.0 6.0.0 1.0.0 7.0.0 0.0

ds4.csv out3 8sec shift 2.0 6.0 2.0 3.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out3 8sec shift noise 2.0 6.0 2.0 3.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out3 8sec shift filt 2.0 6.0 2.0 4.0 0.0 6.0.0 6.0.0 1.0.0 2.0.0 0.0

ds4.csv out3 8sec shift noise filt 2.0 6.0 2.0 2.0 0.0 6.0.0 6.0.0 1.0.0 2.0.0 0.0

ds4.csv out3 10sec shift 2.0 6.0 2.0 1.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out3 10sec shift noise 2.0 6.0 2.0 1.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out3 10sec shift filt 2.0 6.0 2.0 7.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out3 10sec shift noise filt 2.0 6.0 2.0 4.0 0.0 6.0.0 6.0.0 1.0.0 0.0.0 0.0

ds4.csv out4 2sec shift 2.0 1.0 1.0 2.0 0.0 6.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out4 2sec shift noise 2.0 1.0 1.0 2.0 0.0 6.0.0 6.0.0 1.0.0 1.0.0 0.0

ds4.csv out4 2sec shift filt 2.0 1.0 1.0 7.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out4 2sec shift noise filt 2.0 1.0 1.0 7.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out4 4sec shift 2.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 1.0.0 0.0

ds4.csv out4 4sec shift noise 2.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 1.0.0 0.0

ds4.csv out4 4sec shift filt 2.0 6.0 1.0 6.0 0.0 1.0.0 6.0.0 2.0.0 5.0.0 0.0

ds4.csv out4 4sec shift noise filt 2.0 6.0 1.0 6.0 0.0 1.0.0 6.0.0 2.0.0 5.0.0 0.0

ds4.csv out4 6sec shift 2.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 1.0.0 0.0
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Appendix A. Appendix

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds4.csv out4 6sec shift noise 2.0 6.0 1.0 6.0 0.0 1.0.0 6.0.0 2.0.0 0.0.0 0.0

ds4.csv out4 6sec shift filt 2.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 1.0.0 0.0

ds4.csv out4 6sec shift noise filt 2.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out4 8sec shift 2.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 8.0.0 0.0.0 0.0

ds4.csv out4 8sec shift noise 2.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 8.0.0 2.0.0 0.0

ds4.csv out4 8sec shift filt 2.0 6.0 1.0 0.0 0.0 1.0.0 8.0.0 8.0.0 7.0.0 0.0

ds4.csv out4 8sec shift noise filt 2.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out4 10sec shift 2.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 10.0.0 10.0.0 0.0

ds4.csv out4 10sec shift noise 2.0 6.0 1.0 7.0 0.0 10.0.0 6.0.0 10.0.0 2.0.0 0.0

ds4.csv out4 10sec shift filt 2.0 6.0 1.0 2.0 0.0 10.0.0 6.0.0 8.0.0 10.0.0 0.0

ds4.csv out4 10sec shift noise filt 2.0 6.0 1.0 2.0 0.0 10.0.0 6.0.0 8.0.0 10.0.0 0.0

ds4.csv out5 2sec shift 5.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out5 2sec shift noise 5.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out5 2sec shift filt 5.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 2.0.0 0.0

ds4.csv out5 2sec shift noise filt 5.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 2.0.0 0.0

ds4.csv out5 4sec shift 4.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 1.0.0 0.0

ds4.csv out5 4sec shift noise 4.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 0.0.0 0.0

ds4.csv out5 4sec shift filt 4.0 6.0 1.0 7.0 0.0 1.0.0 6.0.0 2.0.0 2.0.0 0.0

ds4.csv out5 4sec shift noise filt 4.0 6.0 1.0 7.0 0.0 1.0.0 6.0.0 2.0.0 2.0.0 0.0

ds4.csv out5 6sec shift 4.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out5 6sec shift noise 4.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 1.0.0 0.0

ds4.csv out5 6sec shift filt 4.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 0.0.0 0.0

ds4.csv out5 6sec shift noise filt 4.0 6.0 1.0 0.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out5 8sec shift 4.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out5 8sec shift noise 4.0 6.0 1.0 3.0 0.0 8.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out5 8sec shift filt 4.0 6.0 1.0 2.0 0.0 8.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out5 8sec shift noise filt 4.0 6.0 1.0 2.0 0.0 1.0.0 6.0.0 8.0.0 7.0.0 0.0

ds4.csv out5 10sec shift 4.0 6.0 1.0 3.0 0.0 1.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out5 10sec shift noise 4.0 6.0 1.0 3.0 0.0 1.0.0 10.0.0 2.0.0 7.0.0 0.0

ds4.csv out5 10sec shift filt 4.0 6.0 1.0 1.0 0.0 10.0.0 6.0.0 10.0.0 7.0.0 0.0

ds4.csv out5 10sec shift noise filt 4.0 6.0 1.0 1.0 0.0 10.0.0 6.0.0 10.0.0 6.0.0 0.0

ds4.csv out6 2sec shift 1.0 6.0 1.0 6.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out6 2sec shift noise 2.0 4.0 0.0 5.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds4.csv out6 2sec shift filt 1.0 6.0 1.0 6.0 0.0 6.0.0 6.0.0 3.0.0 2.0.0 0.0

ds4.csv out6 2sec shift noise filt 3.0 6.0 0.0 6.0 0.0 6.0.0 6.0.0 3.0.0 0.0.0 0.0

ds4.csv out6 4sec shift 3.0 6.0 0.0 5.0 0.0 6.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out6 4sec shift noise 7.0 6.0 0.0 3.0 0.0 6.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out6 4sec shift filt 1.0 6.0 0.0 3.0 0.0 7.0.0 6.0.0 3.0.0 7.0.0 0.0

ds4.csv out6 4sec shift noise filt 2.0 4.0 1.0 5.0 0.0 7.0.0 6.0.0 3.0.0 2.0.0 0.0

ds4.csv out6 6sec shift 1.0 6.0 0.0 2.0 0.0 3.0.0 6.0.0 3.0.0 0.0.0 0.0

ds4.csv out6 6sec shift noise 3.0 6.0 1.0 1.0 0.0 3.0.0 6.0.0 3.0.0 1.0.0 0.0

ds4.csv out6 6sec shift filt 1.0 6.0 0.0 7.0 0.0 3.0.0 6.0.0 3.0.0 7.0.0 0.0

ds4.csv out6 6sec shift noise filt 3.0 4.0 1.0 3.0 0.0 7.0.0 6.0.0 3.0.0 7.0.0 0.0

ds4.csv out6 8sec shift 1.0 6.0 1.0 6.0 0.0 3.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out6 8sec shift noise 3.0 6.0 0.0 6.0 0.0 3.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out6 8sec shift filt 1.0 6.0 1.0 3.0 0.0 3.0.0 6.0.0 3.0.0 0.0.0 0.0

ds4.csv out6 8sec shift noise filt 3.0 4.0 1.0 1.0 0.0 3.0.0 6.0.0 3.0.0 8.0.0 0.0

ds4.csv out6 10sec shift 1.0 6.0 1.0 5.0 0.0 3.0.0 6.0.0 10.0.0 7.0.0 0.0

ds4.csv out6 10sec shift noise 7.0 6.0 1.0 6.0 0.0 10.0.0 6.0.0 10.0.0 7.0.0 0.0

ds4.csv out6 10sec shift filt 1.0 6.0 1.0 5.0 0.0 3.0.0 10.0.0 3.0.0 10.0.0 0.0

ds4.csv out6 10sec shift noise filt 3.0 6.0 1.0 4.0 0.0 3.0.0 6.0.0 3.0.0 7.0.0 0.0

ds4.csv out7 2sec shift 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out7 2sec shift noise 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 3.0.0 6.0.0 0.0

ds4.csv out7 2sec shift filt 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out7 2sec shift noise filt 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 2.0.0 3.0.0 0.0

ds4.csv out7 4sec shift 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 2.0.0 4.0.0 0.0

ds4.csv out7 4sec shift noise 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 2.0.0 4.0.0 0.0

ds4.csv out7 4sec shift filt 6.0 6.0 3.0 7.0 0.0 3.0.0 6.0.0 2.0.0 6.0.0 0.0

ds4.csv out7 4sec shift noise filt 6.0 6.0 3.0 7.0 0.0 3.0.0 6.0.0 2.0.0 6.0.0 0.0

ds4.csv out7 6sec shift 6.0 6.0 3.0 7.0 0.0 3.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out7 6sec shift noise 6.0 6.0 3.0 7.0 0.0 3.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out7 6sec shift filt 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out7 6sec shift noise filt 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 2.0.0 7.0.0 0.0

ds4.csv out7 8sec shift 6.0 6.0 3.0 3.0 0.0 3.0.0 6.0.0 2.0.0 1.0.0 0.0

ds4.csv out7 8sec shift noise 6.0 6.0 3.0 3.0 0.0 3.0.0 6.0.0 2.0.0 1.0.0 0.0

ds4.csv out7 8sec shift filt 6.0 6.0 3.0 1.0 0.0 3.0.0 6.0.0 3.0.0 2.0.0 0.0
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.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds4.csv out7 8sec shift noise filt 6.0 6.0 3.0 1.0 0.0 3.0.0 6.0.0 3.0.0 2.0.0 0.0

ds4.csv out7 10sec shift 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 3.0.0 4.0.0 0.0

ds4.csv out7 10sec shift noise 6.0 6.0 3.0 0.0 0.0 3.0.0 6.0.0 3.0.0 4.0.0 0.0

ds4.csv out7 10sec shift filt 6.0 6.0 3.0 6.0 0.0 3.0.0 6.0.0 4.0.0 2.0.0 0.0

ds4.csv out7 10sec shift noise filt 6.0 6.0 3.0 6.0 0.0 3.0.0 6.0.0 4.0.0 3.0.0 0.0

ds4.csv out8 2sec shift 5.0 6.0 1.0 6.0 0.0 3.0.0 6.0.0 4.0.0 7.0.0 0.0

ds4.csv out8 2sec shift noise 5.0 6.0 1.0 6.0 0.0 3.0.0 6.0.0 4.0.0 7.0.0 0.0

ds4.csv out8 2sec shift filt 5.0 6.0 1.0 6.0 0.0 3.0.0 1.0.0 4.0.0 1.0.0 0.0

ds4.csv out8 2sec shift noise filt 5.0 6.0 1.0 5.0 0.0 0.0.0 1.0.0 4.0.0 3.0.0 0.0

ds4.csv out8 4sec shift 5.0 6.0 1.0 1.0 0.0 3.0.0 1.0.0 4.0.0 2.0.0 0.0

ds4.csv out8 4sec shift noise 5.0 6.0 1.0 1.0 0.0 3.0.0 1.0.0 4.0.0 2.0.0 0.0

ds4.csv out8 4sec shift filt 5.0 6.0 1.0 1.0 0.0 4.0.0 1.0.0 4.0.0 0.0.0 0.0

ds4.csv out8 4sec shift noise filt 5.0 6.0 1.0 1.0 0.0 2.0.0 1.0.0 4.0.0 6.0.0 0.0

ds4.csv out8 6sec shift 5.0 6.0 0.0 4.0 0.0 1.0.0 1.0.0 4.0.0 6.0.0 0.0

ds4.csv out8 6sec shift noise 5.0 6.0 0.0 4.0 0.0 6.0.0 6.0.0 4.0.0 6.0.0 0.0

ds4.csv out8 6sec shift filt 5.0 6.0 0.0 4.0 0.0 1.0.0 1.0.0 4.0.0 6.0.0 0.0

ds4.csv out8 6sec shift noise filt 5.0 6.0 0.0 4.0 0.0 1.0.0 1.0.0 7.0.0 6.0.0 0.0

ds4.csv out8 8sec shift 5.0 6.0 0.0 5.0 0.0 1.0.0 1.0.0 8.0.0 8.0.0 0.0

ds4.csv out8 8sec shift noise 5.0 6.0 0.0 5.0 0.0 2.0.0 8.0.0 8.0.0 4.0.0 0.0

ds4.csv out8 8sec shift filt 5.0 6.0 0.0 1.0 0.0 8.0.0 8.0.0 8.0.0 4.0.0 0.0

ds4.csv out8 8sec shift noise filt 5.0 6.0 0.0 1.0 0.0 7.0.0 8.0.0 8.0.0 3.0.0 0.0

ds4.csv out8 10sec shift 5.0 6.0 1.0 6.0 0.0 10.0.0 1.0.0 10.0.0 10.0.0 0.0

ds4.csv out8 10sec shift noise 5.0 6.0 1.0 4.0 0.0 1.0.0 10.0.0 10.0.0 8.0.0 0.0

ds4.csv out8 10sec shift filt 5.0 6.0 1.0 6.0 0.0 1.0.0 1.0.0 9.5.0 10.0.0 0.0

ds4.csv out8 10sec shift noise filt 5.0 6.0 1.0 6.0 0.0 8.0.0 10.0.0 10.0.0 1.0.0 0.0

ds5.csv out1 0sec 6.0 6.0 1.0 4.0 0.0 1.0.0 1.0.0 0.0.0 0.0.0 0.0

ds5.csv out2 0sec 1.0 6.0 2.0 0.0 0.0 3.0.0 0.0.0 0.0.0 0.0.0 0.0

ds5.csv out3 0sec 1.0 6.0 2.0 0.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds5.csv out4 0sec 6.0 6.0 3.0 2.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds5.csv out5 0sec 4.0 6.0 3.0 1.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds5.csv out6 0sec 3.0 1.0 4.0 0.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds5.csv out7 0sec 3.0 6.0 2.0 7.0 0.0 0.0.0 0.0.0 0.0.0 3.0.0 0.0

ds5.csv out8 0sec 4.0 6.0 2.0 4.0 0.0 0.0.0 2.0.0 2.0.0 3.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds5.csv out1 2sec shift 6.0 6.0 1.0 2.0 0.0 3.0.0 6.0.0 2.0.0 2.0.0 0.0

ds5.csv out1 2sec shift noise 6.0 6.0 1.0 2.0 0.0 3.0.0 6.0.0 2.0.0 2.0.0 0.0

ds5.csv out1 2sec shift filt 6.0 6.0 1.0 4.0 0.0 3.0.0 6.0.0 2.0.0 2.0.0 0.0

ds5.csv out1 2sec shift noise filt 6.0 6.0 1.0 4.0 0.0 3.0.0 6.0.0 2.0.0 2.0.0 0.0

ds5.csv out1 4sec shift 6.0 6.0 1.0 0.0 0.0 3.0.0 6.0.0 2.0.0 3.0.0 0.0

ds5.csv out1 4sec shift noise 6.0 6.0 1.0 0.0 0.0 3.0.0 6.0.0 4.0.0 3.0.0 0.0

ds5.csv out1 4sec shift filt 6.0 6.0 1.0 1.0 0.0 3.0.0 6.0.0 4.0.0 2.0.0 0.0

ds5.csv out1 4sec shift noise filt 6.0 6.0 1.0 1.0 0.0 3.0.0 6.0.0 4.0.0 2.0.0 0.0

ds5.csv out1 6sec shift 6.0 6.0 1.0 7.0 0.0 3.0.0 6.0.0 6.0.0 2.0.0 0.0

ds5.csv out1 6sec shift noise 6.0 6.0 1.0 7.0 0.0 3.0.0 6.0.0 6.0.0 2.0.0 0.0

ds5.csv out1 6sec shift filt 6.0 6.0 1.0 0.0 0.0 3.0.0 6.0.0 6.0.0 1.0.0 0.0

ds5.csv out1 6sec shift noise filt 6.0 6.0 1.0 0.0 0.0 3.0.0 6.0.0 6.0.0 1.0.0 0.0

ds5.csv out1 8sec shift 6.0 6.0 1.0 2.0 0.0 3.0.0 8.0.0 2.0.0 7.0.0 0.0

ds5.csv out1 8sec shift noise 6.0 6.0 1.0 2.0 0.0 8.0.0 8.0.0 8.0.0 7.0.0 0.0

ds5.csv out1 8sec shift filt 6.0 6.0 1.0 0.0 0.0 4.0.0 6.0.0 8.0.0 8.0.0 0.0

ds5.csv out1 8sec shift noise filt 6.0 6.0 1.0 0.0 0.0 4.0.0 6.0.0 8.0.0 8.0.0 0.0

ds5.csv out1 10sec shift 6.0 6.0 1.0 0.0 0.0 4.0.0 6.0.0 10.0.0 5.0.0 0.0

ds5.csv out1 10sec shift noise 6.0 6.0 1.0 0.0 0.0 10.0.0 10.0.0 2.0.0 10.0.0 0.0

ds5.csv out1 10sec shift filt 6.0 6.0 1.0 1.0 0.0 9.3.0 8.0.0 10.0.0 3.0.0 0.0

ds5.csv out1 10sec shift noise filt 6.0 6.0 1.0 1.0 0.0 10.0.0 6.0.0 2.0.0 10.0.0 0.0

ds5.csv out2 2sec shift 1.0 6.0 2.0 3.0 0.0 4.0.0 6.0.0 2.0.0 3.0.0 0.0

ds5.csv out2 2sec shift noise 1.0 6.0 2.0 3.0 0.0 4.0.0 2.0.0 2.0.0 2.0.0 0.0

ds5.csv out2 2sec shift filt 1.0 6.0 2.0 1.0 0.0 4.0.0 6.0.0 5.0.0 6.0.0 0.0

ds5.csv out2 2sec shift noise filt 1.0 6.0 2.0 1.0 0.0 4.0.0 6.0.0 2.0.0 2.0.0 0.0

ds5.csv out2 4sec shift 1.0 6.0 2.0 5.0 0.0 4.0.0 6.0.0 5.0.0 0.0.0 0.0

ds5.csv out2 4sec shift noise 1.0 6.0 2.0 5.0 0.0 4.0.0 6.0.0 5.0.0 0.0.0 0.0

ds5.csv out2 4sec shift filt 1.0 6.0 2.0 1.0 0.0 3.0.0 6.0.0 5.0.0 6.0.0 0.0

ds5.csv out2 4sec shift noise filt 1.0 6.0 2.0 0.0 0.0 4.0.0 6.0.0 5.0.0 6.0.0 0.0

ds5.csv out2 6sec shift 1.0 6.0 2.0 1.0 0.0 3.0.0 6.0.0 5.0.0 4.0.0 0.0

ds5.csv out2 6sec shift noise 1.0 6.0 2.0 7.0 0.0 3.0.0 6.0.0 5.0.0 4.0.0 0.0

ds5.csv out2 6sec shift filt 1.0 6.0 2.0 0.0 0.0 3.0.0 6.0.0 5.0.0 6.0.0 0.0

ds5.csv out2 6sec shift noise filt 1.0 6.0 2.0 2.0 0.0 3.0.0 6.0.0 5.0.0 6.0.0 0.0

ds5.csv out2 8sec shift 1.0 6.0 2.0 7.0 0.0 3.0.0 6.0.0 8.0.0 6.0.0 0.0
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.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds5.csv out2 8sec shift noise 1.0 6.0 2.0 3.0 0.0 3.0.0 6.0.0 5.0.0 6.0.0 0.0

ds5.csv out2 8sec shift filt 1.0 6.0 2.0 1.0 0.0 0.0.0 3.0.0 8.0.0 1.0.0 0.0

ds5.csv out2 8sec shift noise filt 1.0 6.0 2.0 2.0 0.0 8.0.0 3.0.0 1.0.0 2.0.0 0.0

ds5.csv out2 10sec shift 1.0 6.0 2.0 3.0 0.0 4.0.0 3.0.0 2.0.0 1.0.0 0.0

ds5.csv out2 10sec shift noise 1.0 6.0 2.0 3.0 0.0 10.0.0 3.0.0 2.0.0 3.0.0 0.0

ds5.csv out2 10sec shift filt 1.0 6.0 2.0 3.0 0.0 1.0.0 10.0.0 2.0.0 10.0.0 0.0

ds5.csv out2 10sec shift noise filt 1.0 6.0 2.0 3.0 0.0 9.0.0 3.0.0 10.0.0 0.0.0 0.0

ds5.csv out3 2sec shift 1.0 6.0 2.0 2.0 0.0 4.0.0 3.0.0 2.0.0 0.0.0 0.0

ds5.csv out3 2sec shift noise 1.0 6.0 2.0 2.0 0.0 0.0.0 3.0.0 1.0.0 3.0.0 0.0

ds5.csv out3 2sec shift filt 1.0 6.0 2.0 1.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds5.csv out3 2sec shift noise filt 1.0 6.0 2.0 0.0 0.0 0.0.0 3.0.0 1.0.0 1.0.0 0.0

ds5.csv out3 4sec shift 1.0 6.0 2.0 2.0 0.0 0.0.0 3.0.0 4.0.0 4.0.0 0.0

ds5.csv out3 4sec shift noise 1.0 6.0 2.0 2.0 0.0 0.0.0 4.0.0 1.0.0 4.0.0 0.0

ds5.csv out3 4sec shift filt 1.0 6.0 2.0 3.0 0.0 0.0.0 3.0.0 1.0.0 1.0.0 0.0

ds5.csv out3 4sec shift noise filt 1.0 6.0 2.0 1.0 0.0 0.0.0 3.0.0 1.0.0 3.0.0 0.0

ds5.csv out3 6sec shift 1.0 6.0 2.0 0.0 0.0 0.0.0 3.0.0 1.0.0 6.0.0 0.0

ds5.csv out3 6sec shift noise 1.0 6.0 2.0 3.0 0.0 0.0.0 3.0.0 6.0.0 1.0.0 0.0

ds5.csv out3 6sec shift filt 1.0 6.0 2.0 7.0 0.0 0.0.0 3.0.0 1.0.0 1.0.0 0.0

ds5.csv out3 6sec shift noise filt 1.0 6.0 2.0 7.0 0.0 6.0.0 3.0.0 1.0.0 1.0.0 0.0

ds5.csv out3 8sec shift 1.0 6.0 2.0 7.0 0.0 0.0.0 3.0.0 1.0.0 8.0.0 0.0

ds5.csv out3 8sec shift noise 1.0 6.0 2.0 7.0 0.0 0.0.0 3.0.0 1.0.0 1.0.0 0.0

ds5.csv out3 8sec shift filt 1.0 6.0 2.0 7.0 0.0 8.0.0 8.0.0 1.0.0 1.0.0 0.0

ds5.csv out3 8sec shift noise filt 1.0 6.0 2.0 7.0 0.0 8.0.0 3.0.0 1.0.0 1.0.0 0.0

ds5.csv out3 10sec shift 1.0 6.0 2.0 7.0 0.0 0.0.0 3.0.0 1.0.0 8.5.0 0.0

ds5.csv out3 10sec shift noise 1.0 6.0 2.0 6.0 0.0 0.0.0 10.0.0 1.0.0 10.0.0 0.0

ds5.csv out3 10sec shift filt 1.0 6.0 2.0 3.0 0.0 10.0.0 3.0.0 2.0.0 10.0.0 0.0

ds5.csv out3 10sec shift noise filt 1.0 6.0 2.0 3.0 0.0 10.0.0 3.0.0 10.0.0 9.3.0 0.0

ds5.csv out4 2sec shift 6.0 6.0 3.0 2.0 0.0 0.0.0 3.0.0 1.0.0 2.0.0 0.0

ds5.csv out4 2sec shift noise 6.0 6.0 3.0 0.0 0.0 2.0.0 2.0.0 1.0.0 2.0.0 0.0

ds5.csv out4 2sec shift filt 6.0 6.0 3.0 6.0 0.0 2.0.0 3.0.0 0.0.0 3.0.0 0.0

ds5.csv out4 2sec shift noise filt 6.0 6.0 3.0 6.0 0.0 2.0.0 3.0.0 1.0.0 2.0.0 0.0

ds5.csv out4 4sec shift 7.0 6.0 3.0 7.0 0.0 1.0.0 3.0.0 1.0.0 4.0.0 0.0

ds5.csv out4 4sec shift noise 7.0 6.0 3.0 2.0 0.0 4.0.0 3.0.0 1.0.0 3.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds5.csv out4 4sec shift filt 3.0 6.0 3.0 0.0 0.0 1.0.0 3.0.0 1.0.0 4.0.0 0.0

ds5.csv out4 4sec shift noise filt 3.0 6.0 3.0 1.0 0.0 4.0.0 4.0.0 1.0.0 4.0.0 0.0

ds5.csv out4 6sec shift 3.0 6.0 3.0 7.0 0.0 1.0.0 3.0.0 1.0.0 3.0.0 0.0

ds5.csv out4 6sec shift noise 7.0 6.0 3.0 7.0 0.0 1.0.0 3.0.0 1.0.0 2.0.0 0.0

ds5.csv out4 6sec shift filt 3.0 6.0 3.0 6.0 0.0 0.0.0 6.0.0 0.0.0 6.0.0 0.0

ds5.csv out4 6sec shift noise filt 3.0 6.0 3.0 6.0 0.0 1.0.0 3.0.0 1.0.0 6.0.0 0.0

ds5.csv out4 8sec shift 3.0 6.0 3.0 0.0 0.0 0.0.0 8.0.0 8.0.0 1.0.0 0.0

ds5.csv out4 8sec shift noise 3.0 6.0 3.0 3.0 0.0 8.0.0 8.0.0 8.0.0 2.0.0 0.0

ds5.csv out4 8sec shift filt 3.0 6.0 3.0 7.0 0.0 8.0.0 8.0.0 8.0.0 4.0.0 0.0

ds5.csv out4 8sec shift noise filt 3.0 6.0 3.0 7.0 0.0 8.0.0 3.0.0 8.0.0 1.0.0 0.0

ds5.csv out4 10sec shift 3.0 6.0 3.0 2.0 0.0 10.0.0 3.0.0 1.0.0 10.0.0 0.0

ds5.csv out4 10sec shift noise 3.0 6.0 3.0 7.0 0.0 10.0.0 3.0.0 10.0.0 2.0.0 0.0

ds5.csv out4 10sec shift filt 3.0 6.0 3.0 6.0 0.0 10.0.0 3.0.0 10.0.0 10.0.0 0.0

ds5.csv out4 10sec shift noise filt 3.0 6.0 3.0 6.0 0.0 0.0.0 10.0.0 1.0.0 1.0.0 0.0

ds5.csv out5 2sec shift 3.0 6.0 2.0 3.0 0.0 0.0.0 3.0.0 1.0.0 0.0.0 0.0

ds5.csv out5 2sec shift noise 3.0 6.0 2.0 3.0 0.0 4.0.0 3.0.0 2.0.0 1.0.0 0.0

ds5.csv out5 2sec shift filt 3.0 6.0 2.0 4.0 0.0 4.0.0 3.0.0 2.0.0 1.0.0 0.0

ds5.csv out5 2sec shift noise filt 3.0 6.0 2.0 4.0 0.0 4.0.0 3.0.0 2.0.0 4.0.0 0.0

ds5.csv out5 4sec shift 3.0 6.0 2.0 6.0 0.0 4.0.0 2.0.0 2.0.0 3.0.0 0.0

ds5.csv out5 4sec shift noise 3.0 6.0 2.0 6.0 0.0 4.0.0 3.0.0 2.0.0 1.0.0 0.0

ds5.csv out5 4sec shift filt 3.0 6.0 2.0 7.0 0.0 4.0.0 3.0.0 2.0.0 1.0.0 0.0

ds5.csv out5 4sec shift noise filt 3.0 6.0 2.0 7.0 0.0 4.0.0 3.0.0 2.0.0 4.0.0 0.0

ds5.csv out5 6sec shift 3.0 6.0 2.0 7.0 0.0 6.0.0 3.0.0 2.0.0 6.0.0 0.0

ds5.csv out5 6sec shift noise 3.0 6.0 2.0 7.0 0.0 4.0.0 6.0.0 6.0.0 3.0.0 0.0

ds5.csv out5 6sec shift filt 3.0 6.0 2.0 1.0 0.0 4.0.0 6.0.0 2.0.0 3.0.0 0.0

ds5.csv out5 6sec shift noise filt 3.0 6.0 2.0 1.0 0.0 4.0.0 6.0.0 2.0.0 3.0.0 0.0

ds5.csv out5 8sec shift 3.0 6.0 3.0 2.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds5.csv out5 8sec shift noise 3.0 6.0 3.0 2.0 0.0 8.0.0 3.0.0 2.0.0 8.0.0 0.0

ds5.csv out5 8sec shift filt 3.0 6.0 3.0 4.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds5.csv out5 8sec shift noise filt 3.0 6.0 3.0 4.0 0.0 4.0.0 8.0.0 2.0.0 6.0.0 0.0

ds5.csv out5 10sec shift 3.0 6.0 4.0 2.0 0.0 10.0.0 3.0.0 2.0.0 10.0.0 0.0

ds5.csv out5 10sec shift noise 3.0 6.0 4.0 3.0 0.0 10.0.0 3.0.0 10.0.0 8.0.0 0.0

ds5.csv out5 10sec shift filt 3.0 6.0 4.0 7.0 0.0 4.0.0 10.0.0 2.0.0 10.0.0 0.0
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.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds5.csv out5 10sec shift noise filt 3.0 6.0 4.0 7.0 0.0 4.0.0 3.0.0 2.0.0 1.0.0 0.0

ds5.csv out6 2sec shift 3.0 1.0 4.0 1.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds5.csv out6 2sec shift noise 0.0 1.0 4.0 3.0 0.0 2.0.0 3.0.0 2.0.0 1.0.0 0.0

ds5.csv out6 2sec shift filt 3.0 1.0 4.0 2.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds5.csv out6 2sec shift noise filt 3.0 1.0 4.0 2.0 0.0 2.0.0 2.0.0 2.0.0 3.0.0 0.0

ds5.csv out6 4sec shift 1.0 1.0 4.0 0.0 0.0 0.0.0 3.0.0 4.0.0 3.0.0 0.0

ds5.csv out6 4sec shift noise 2.0 1.0 4.0 6.0 0.0 0.0.0 3.0.0 4.0.0 4.0.0 0.0

ds5.csv out6 4sec shift filt 1.0 1.0 4.0 2.0 0.0 0.0.0 3.0.0 4.0.0 3.0.0 0.0

ds5.csv out6 4sec shift noise filt 1.0 1.0 4.0 5.0 0.0 0.0.0 3.0.0 4.0.0 3.0.0 0.0

ds5.csv out6 6sec shift 1.0 1.0 4.0 1.0 0.0 0.0.0 3.0.0 6.0.0 3.0.0 0.0

ds5.csv out6 6sec shift noise 1.0 1.0 7.0 3.0 0.0 6.0.0 3.0.0 2.0.0 6.0.0 0.0

ds5.csv out6 6sec shift filt 1.0 1.0 4.0 4.0 0.0 0.0.0 3.0.0 2.0.0 6.0.0 0.0

ds5.csv out6 6sec shift noise filt 2.0 1.0 4.0 4.0 0.0 6.0.0 3.0.0 6.0.0 4.0.0 0.0

ds5.csv out6 8sec shift 1.0 1.0 4.0 4.0 0.0 6.0.0 3.0.0 2.0.0 8.0.0 0.0

ds5.csv out6 8sec shift noise 7.0 1.0 4.0 3.0 0.0 0.0.0 3.0.0 8.0.0 1.0.0 0.0

ds5.csv out6 8sec shift filt 1.0 1.0 4.0 1.0 0.0 0.0.0 3.0.0 8.0.0 1.0.0 0.0

ds5.csv out6 8sec shift noise filt 1.0 1.0 1.0 0.0 0.0 8.0.0 3.0.0 2.0.0 8.0.0 0.0

ds5.csv out6 10sec shift 1.0 1.0 4.0 2.0 0.0 10.0.0 10.0.0 2.0.0 4.0.0 0.0

ds5.csv out6 10sec shift noise 2.0 1.0 2.0 1.0 0.0 10.0.0 3.0.0 10.0.0 1.0.0 0.0

ds5.csv out6 10sec shift filt 1.0 1.0 4.0 0.0 0.0 10.0.0 3.0.0 10.0.0 10.0.0 0.0

ds5.csv out6 10sec shift noise filt 3.0 1.0 4.0 0.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds5.csv out7 2sec shift 3.0 6.0 2.0 0.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds5.csv out7 2sec shift noise 3.0 6.0 2.0 0.0 0.0 1.0.0 3.0.0 2.0.0 2.0.0 0.0

ds5.csv out7 2sec shift filt 3.0 6.0 2.0 0.0 0.0 1.0.0 3.0.0 2.0.0 2.0.0 0.0

ds5.csv out7 2sec shift noise filt 3.0 6.0 2.0 0.0 0.0 1.0.0 3.0.0 2.0.0 2.0.0 0.0

ds5.csv out7 4sec shift 3.0 6.0 2.0 3.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds5.csv out7 4sec shift noise 3.0 6.0 2.0 3.0 0.0 4.0.0 3.0.0 4.0.0 4.0.0 0.0

ds5.csv out7 4sec shift filt 3.0 6.0 2.0 7.0 0.0 1.0.0 4.0.0 2.0.0 4.0.0 0.0

ds5.csv out7 4sec shift noise filt 3.0 6.0 2.0 7.0 0.0 4.0.0 3.0.0 2.0.0 4.0.0 0.0

ds5.csv out7 6sec shift 3.0 6.0 2.0 7.0 0.0 6.0.0 6.0.0 6.0.0 6.0.0 0.0

ds5.csv out7 6sec shift noise 3.0 6.0 2.0 7.0 0.0 5.0.0 3.0.0 6.0.0 5.0.0 0.0

ds5.csv out7 6sec shift filt 3.0 6.0 2.0 1.0 0.0 4.0.0 6.0.0 6.0.0 5.0.0 0.0

ds5.csv out7 6sec shift noise filt 3.0 6.0 2.0 1.0 0.0 6.0.0 3.0.0 2.0.0 6.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds5.csv out7 8sec shift 3.0 6.0 2.0 2.0 0.0 8.0.0 3.0.0 2.0.0 8.0.0 0.0

ds5.csv out7 8sec shift noise 3.0 6.0 2.0 2.0 0.0 8.0.0 8.0.0 6.0.0 8.0.0 0.0

ds5.csv out7 8sec shift filt 3.0 6.0 2.0 2.0 0.0 2.0.0 8.0.0 2.0.0 2.0.0 0.0

ds5.csv out7 8sec shift noise filt 3.0 6.0 2.0 2.0 0.0 8.0.0 6.0.0 2.0.0 8.0.0 0.0

ds5.csv out7 10sec shift 3.0 6.0 2.0 1.0 0.0 8.0.0 10.0.0 8.0.0 10.0.0 0.0

ds5.csv out7 10sec shift noise 3.0 6.0 2.0 1.0 0.0 10.0.0 3.0.0 10.0.0 4.0.0 0.0

ds5.csv out7 10sec shift filt 3.0 6.0 2.0 7.0 0.0 10.0.0 3.0.0 10.0.0 10.0.0 0.0

ds5.csv out7 10sec shift noise filt 3.0 6.0 2.0 7.0 0.0 10.0.0 10.0.0 2.0.0 10.0.0 0.0

ds5.csv out8 2sec shift 4.0 6.0 2.0 6.0 0.0 2.0.0 3.0.0 2.0.0 2.0.0 0.0

ds5.csv out8 2sec shift noise 4.0 6.0 2.0 6.0 0.0 4.0.0 3.0.0 4.0.0 2.0.0 0.0

ds5.csv out8 2sec shift filt 4.0 6.0 2.0 5.0 0.0 4.0.0 3.0.0 4.0.0 2.0.0 0.0

ds5.csv out8 2sec shift noise filt 4.0 6.0 2.0 5.0 0.0 4.0.0 3.0.0 2.0.0 2.0.0 0.0

ds5.csv out8 4sec shift 4.0 6.0 2.0 3.0 0.0 4.0.0 3.0.0 4.0.0 3.0.0 0.0

ds5.csv out8 4sec shift noise 4.0 6.0 2.0 6.0 0.0 4.0.0 3.0.0 4.0.0 4.0.0 0.0

ds5.csv out8 4sec shift filt 4.0 6.0 2.0 3.0 0.0 4.0.0 3.0.0 4.0.0 0.0.0 0.0

ds5.csv out8 4sec shift noise filt 4.0 6.0 2.0 3.0 0.0 4.0.0 3.0.0 4.0.0 0.0.0 0.0

ds5.csv out8 6sec shift 4.0 6.0 5.0 6.0 0.0 4.0.0 6.0.0 6.0.0 0.0.0 0.0

ds5.csv out8 6sec shift noise 4.0 6.0 5.0 6.0 0.0 4.0.0 6.0.0 4.0.0 5.0.0 0.0

ds5.csv out8 6sec shift filt 4.0 6.0 5.0 0.0 0.0 6.0.0 6.0.0 4.0.0 6.0.0 0.0

ds5.csv out8 6sec shift noise filt 4.0 6.0 5.0 0.0 0.0 6.0.0 3.0.0 4.0.0 3.0.0 0.0

ds5.csv out8 8sec shift 3.0 6.0 5.0 6.0 0.0 4.0.0 6.0.0 4.0.0 8.0.0 0.0

ds5.csv out8 8sec shift noise 4.0 6.0 5.0 6.0 0.0 8.0.0 3.0.0 8.0.0 3.0.0 0.0

ds5.csv out8 8sec shift filt 3.0 6.0 5.0 4.0 0.0 8.0.0 6.0.0 8.0.0 8.0.0 0.0

ds5.csv out8 8sec shift noise filt 3.0 6.0 5.0 4.0 0.0 8.0.0 3.0.0 4.0.0 8.0.0 0.0

ds5.csv out8 10sec shift 3.0 6.0 5.0 6.0 0.0 4.0.0 3.0.0 4.0.0 3.0.0 0.0

ds5.csv out8 10sec shift noise 3.0 6.0 5.0 6.0 0.0 10.0.0 9.6.0 10.0.0 10.2.0 0.0

ds5.csv out8 10sec shift filt 3.0 6.0 5.0 6.0 0.0 10.0.0 3.0.0 4.0.0 3.0.0 0.0

ds5.csv out8 10sec shift noise filt 3.0 6.0 5.0 6.0 0.0 10.0.0 3.0.0 4.0.0 10.0.0 0.0

ds6.csv out1 0sec 0.0 3.0 1.0 1.0 0.0 0.0.0 0.0.0 4.0.0 0.0.0 0.0

ds6.csv out2 0sec 1.0 3.0 1.0 2.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds6.csv out3 0sec 4.0 3.0 2.0 1.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds6.csv out4 0sec 0.0 3.0 2.0 3.0 0.0 0.0.0 3.0.0 0.0.0 3.0.0 0.0

ds6.csv out5 0sec 1.0 3.0 2.0 1.0 0.0 0.0.0 0.0.0 0.0.0 3.0.0 0.0
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ds6.csv out6 0sec 4.0 3.0 4.0 0.0 0.0 4.0.0 0.0.0 0.0.0 0.0.0 0.0

ds6.csv out7 0sec 4.0 3.0 2.0 0.0 0.0 4.0.0 0.0.0 0.0.0 0.0.0 0.0

ds6.csv out1 2sec shift 0.0 3.0 1.0 3.0 0.0 4.0.0 3.0.0 2.0.0 0.0.0 0.0

ds6.csv out1 2sec shift noise 0.0 3.0 1.0 3.0 0.0 4.0.0 3.0.0 2.0.0 0.0.0 0.0

ds6.csv out1 2sec shift filt 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 2sec shift noise filt 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 4sec shift 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 4sec shift noise 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 4sec shift filt 0.0 3.0 1.0 3.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 4sec shift noise filt 0.0 3.0 1.0 3.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 6sec shift 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 6sec shift noise 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 2.0.0 3.0.0 0.0

ds6.csv out1 6sec shift filt 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 0.0.0 3.0.0 0.0

ds6.csv out1 6sec shift noise filt 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 0.0.0 3.0.0 0.0

ds6.csv out1 8sec shift 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 0.0.0 3.0.0 0.0

ds6.csv out1 8sec shift noise 0.0 3.0 1.0 1.0 0.0 4.0.0 3.0.0 0.0.0 3.0.0 0.0

ds6.csv out1 8sec shift filt 0.0 3.0 1.0 1.0 0.0 1.0.0 4.0.0 1.0.0 1.0.0 0.0

ds6.csv out1 8sec shift noise filt 0.0 3.0 1.0 1.0 0.0 3.0.0 2.0.0 3.0.0 3.0.0 0.0

ds6.csv out1 10sec shift 0.0 3.0 1.0 4.0 0.0 3.0.0 10.0.0 10.0.0 2.0.0 0.0

ds6.csv out1 10sec shift noise 0.0 3.0 1.0 4.0 0.0 8.0.0 8.0.0 10.0.0 4.0.0 0.0

ds6.csv out1 10sec shift filt 0.0 3.0 1.0 3.0 0.0 8.0.0 8.0.0 10.0.0 0.0.0 0.0

ds6.csv out1 10sec shift noise filt 0.0 3.0 1.0 3.0 0.0 10.0.0 8.0.0 10.0.0 3.0.0 0.0

ds6.csv out2 2sec shift 1.0 3.0 1.0 2.0 0.0 5.0.0 5.0.0 3.0.0 3.0.0 0.0

ds6.csv out2 2sec shift noise 1.0 3.0 0.0 3.0 0.0 0.0.0 0.0.0 3.0.0 3.0.0 0.0

ds6.csv out2 2sec shift filt 1.0 3.0 1.0 2.0 0.0 1.0.0 4.0.0 1.0.0 0.0.0 0.0

ds6.csv out2 2sec shift noise filt 1.0 3.0 1.0 2.0 0.0 1.0.0 4.0.0 1.0.0 0.0.0 0.0

ds6.csv out2 4sec shift 1.0 3.0 1.0 3.0 0.0 1.0.0 4.0.0 1.0.0 0.0.0 0.0

ds6.csv out2 4sec shift noise 1.0 3.0 1.0 2.0 0.0 1.0.0 4.0.0 1.0.0 0.0.0 0.0

ds6.csv out2 4sec shift filt 1.0 3.0 1.0 1.0 0.0 1.0.0 4.0.0 0.0.0 5.0.0 0.0

ds6.csv out2 4sec shift noise filt 1.0 3.0 1.0 3.0 0.0 1.0.0 4.0.0 0.0.0 5.0.0 0.0

ds6.csv out2 6sec shift 1.0 3.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 2.0.0 0.0

ds6.csv out2 6sec shift noise 0.0 3.0 0.0 4.0 0.0 1.0.0 4.0.0 0.0.0 2.0.0 0.0

ds6.csv out2 6sec shift filt 1.0 3.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

.0 Continued on next page

184



A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds6.csv out2 6sec shift noise filt 0.0 3.0 1.0 1.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds6.csv out2 8sec shift 1.0 3.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds6.csv out2 8sec shift noise 0.0 3.0 1.0 4.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds6.csv out2 8sec shift filt 1.0 3.0 1.0 1.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds6.csv out2 8sec shift noise filt 1.0 3.0 1.0 3.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds6.csv out2 10sec shift 0.0 3.0 1.0 2.0 0.0 10.0.0 8.0.0 10.0.0 8.0.0 0.0

ds6.csv out2 10sec shift noise 1.0 3.0 1.0 4.0 0.0 10.0.0 8.0.0 0.0.0 8.0.0 0.0

ds6.csv out2 10sec shift filt 0.0 3.0 1.0 1.0 0.0 10.0.0 8.0.0 10.0.0 8.0.0 0.0

ds6.csv out2 10sec shift noise filt 0.0 3.0 1.0 0.0 0.0 10.0.0 4.0.0 10.0.0 8.0.0 0.0

ds6.csv out3 2sec shift 4.0 3.0 2.0 1.0 0.0 1.0.0 4.0.0 1.0.0 0.0.0 0.0

ds6.csv out3 2sec shift noise 4.0 3.0 2.0 1.0 0.0 1.0.0 4.0.0 1.0.0 0.0.0 0.0

ds6.csv out3 2sec shift filt 4.0 3.0 2.0 4.0 0.0 3.0.0 2.0.0 3.0.0 3.0.0 0.0

ds6.csv out3 2sec shift noise filt 4.0 2.0 2.0 3.0 0.0 4.0.0 2.0.0 3.0.0 2.0.0 0.0

ds6.csv out3 4sec shift 4.0 3.0 2.0 1.0 0.0 3.0.0 2.0.0 3.0.0 0.0.0 0.0

ds6.csv out3 4sec shift noise 4.0 3.0 2.0 1.0 0.0 3.0.0 2.0.0 3.0.0 2.0.0 0.0

ds6.csv out3 4sec shift filt 4.0 3.0 2.0 4.0 0.0 3.0.0 2.0.0 3.0.0 4.0.0 0.0

ds6.csv out3 4sec shift noise filt 4.0 3.0 2.0 1.0 0.0 4.0.0 2.0.0 3.0.0 3.0.0 0.0

ds6.csv out3 6sec shift 4.0 3.0 2.0 3.0 0.0 3.0.0 2.0.0 3.0.0 3.0.0 0.0

ds6.csv out3 6sec shift noise 4.0 3.0 2.0 3.0 0.0 0.0.0 2.0.0 6.0.0 6.0.0 0.0

ds6.csv out3 6sec shift filt 4.0 3.0 2.0 3.0 0.0 3.0.0 6.0.0 7.0.0 6.0.0 0.0

ds6.csv out3 6sec shift noise filt 4.0 3.0 2.0 3.0 0.0 6.0.0 6.0.0 7.0.0 8.0.0 0.0

ds6.csv out3 8sec shift 4.0 3.0 2.0 3.0 0.0 3.0.0 2.0.0 8.0.0 7.0.0 0.0

ds6.csv out3 8sec shift noise 4.0 3.0 2.0 3.0 0.0 3.0.0 2.0.0 8.0.0 8.0.0 0.0

ds6.csv out3 8sec shift filt 4.0 3.0 2.0 3.0 0.0 3.0.0 8.0.0 8.0.0 0.0.0 0.0

ds6.csv out3 8sec shift noise filt 4.0 3.0 2.0 3.0 0.0 8.0.0 2.0.0 1.0.0 1.0.0 0.0

ds6.csv out3 10sec shift 4.0 3.0 2.0 3.0 0.0 3.0.0 2.0.0 10.0.0 10.0.0 0.0

ds6.csv out3 10sec shift noise 4.0 3.0 2.0 1.0 0.0 3.0.0 2.0.0 3.0.0 3.0.0 0.0

ds6.csv out3 10sec shift filt 4.0 3.0 2.0 1.0 0.0 3.0.0 2.0.0 10.0.0 9.0.0 0.0

ds6.csv out3 10sec shift noise filt 4.0 3.0 2.0 3.0 0.0 10.0.0 2.0.0 10.0.0 9.0.0 0.0

ds6.csv out4 2sec shift 0.0 3.0 2.0 1.0 0.0 3.0.0 2.0.0 3.0.0 2.0.0 0.0

ds6.csv out4 2sec shift noise 0.0 3.0 2.0 1.0 0.0 0.0.0 2.0.0 2.0.0 4.0.0 0.0

ds6.csv out4 2sec shift filt 0.0 3.0 2.0 3.0 0.0 3.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 2sec shift noise filt 0.0 3.0 2.0 3.0 0.0 3.0.0 0.0.0 1.0.0 2.0.0 0.0
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ds6.csv out4 4sec shift 0.0 3.0 2.0 3.0 0.0 0.0.0 4.0.0 4.0.0 4.0.0 0.0

ds6.csv out4 4sec shift noise 0.0 3.0 2.0 3.0 0.0 4.0.0 4.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 4sec shift filt 0.0 3.0 2.0 3.0 0.0 3.0.0 4.0.0 4.0.0 3.0.0 0.0

ds6.csv out4 4sec shift noise filt 0.0 3.0 2.0 3.0 0.0 4.0.0 4.0.0 3.0.0 4.0.0 0.0

ds6.csv out4 6sec shift 0.0 3.0 2.0 1.0 0.0 0.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 6sec shift noise 0.0 3.0 2.0 1.0 0.0 0.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 6sec shift filt 0.0 3.0 2.0 4.0 0.0 0.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 6sec shift noise filt 0.0 3.0 2.0 4.0 0.0 0.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 8sec shift 0.0 3.0 2.0 1.0 0.0 0.0.0 0.0.0 1.0.0 3.0.0 0.0

ds6.csv out4 8sec shift noise 0.0 3.0 2.0 1.0 0.0 8.0.0 0.0.0 1.0.0 3.0.0 0.0

ds6.csv out4 8sec shift filt 0.0 3.0 2.0 4.0 0.0 8.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 8sec shift noise filt 0.0 3.0 2.0 4.0 0.0 8.0.0 8.0.0 8.0.0 2.0.0 0.0

ds6.csv out4 10sec shift 0.0 3.0 2.0 1.0 0.0 0.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 10sec shift noise 0.0 3.0 2.0 1.0 0.0 0.0.0 0.0.0 1.0.0 2.0.0 0.0

ds6.csv out4 10sec shift filt 0.0 3.0 2.0 3.0 0.0 0.0.0 0.0.0 10.0.0 10.0.0 0.0

ds6.csv out4 10sec shift noise filt 0.0 3.0 2.0 3.0 0.0 0.0.0 10.0.0 10.0.0 1.0.0 0.0

ds6.csv out5 2sec shift 1.0 3.0 2.0 2.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds6.csv out5 2sec shift noise 1.0 3.0 2.0 2.0 0.0 2.0.0 2.0.0 1.0.0 2.0.0 0.0

ds6.csv out5 2sec shift filt 1.0 3.0 2.0 3.0 0.0 4.0.0 5.0.0 2.0.0 4.0.0 0.0

ds6.csv out5 2sec shift noise filt 1.0 3.0 2.0 3.0 0.0 4.0.0 5.0.0 2.0.0 4.0.0 0.0

ds6.csv out5 4sec shift 1.0 3.0 2.0 2.0 0.0 4.0.0 5.0.0 2.0.0 4.0.0 0.0

ds6.csv out5 4sec shift noise 1.0 3.0 2.0 2.0 0.0 4.0.0 5.0.0 2.0.0 4.0.0 0.0

ds6.csv out5 4sec shift filt 1.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 3.0.0 0.0

ds6.csv out5 4sec shift noise filt 1.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 3.0.0 0.0

ds6.csv out5 6sec shift 1.0 3.0 2.0 2.0 0.0 4.0.0 5.0.0 2.0.0 1.0.0 0.0

ds6.csv out5 6sec shift noise 1.0 3.0 2.0 2.0 0.0 4.0.0 5.0.0 2.0.0 1.0.0 0.0

ds6.csv out5 6sec shift filt 1.0 3.0 2.0 3.0 0.0 4.0.0 5.0.0 2.0.0 3.0.0 0.0

ds6.csv out5 6sec shift noise filt 1.0 3.0 2.0 3.0 0.0 4.0.0 5.0.0 2.0.0 3.0.0 0.0

ds6.csv out5 8sec shift 2.0 3.0 2.0 2.0 0.0 4.0.0 5.0.0 2.0.0 0.0.0 0.0

ds6.csv out5 8sec shift noise 2.0 3.0 2.0 2.0 0.0 4.0.0 5.0.0 2.0.0 0.0.0 0.0

ds6.csv out5 8sec shift filt 2.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 4.0.0 0.0

ds6.csv out5 8sec shift noise filt 2.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 4.0.0 0.0

ds6.csv out5 10sec shift 2.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 3.0.0 0.0

.0 Continued on next page

186



A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds6.csv out5 10sec shift noise 2.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 3.0.0 0.0

ds6.csv out5 10sec shift filt 2.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 5.0.0 0.0

ds6.csv out5 10sec shift noise filt 2.0 3.0 2.0 4.0 0.0 4.0.0 5.0.0 2.0.0 5.0.0 0.0

ds6.csv out6 2sec shift 4.0 3.0 4.0 0.0 0.0 4.0.0 5.0.0 2.0.0 5.0.0 0.0

ds6.csv out6 2sec shift noise 4.0 3.0 4.0 0.0 0.0 4.0.0 5.0.0 2.0.0 5.0.0 0.0

ds6.csv out6 2sec shift filt 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 2sec shift noise filt 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 4sec shift 4.0 3.0 4.0 0.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 4sec shift noise 4.0 3.0 4.0 0.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 4sec shift filt 4.0 3.0 4.0 0.0 0.0 4.0.0 4.0.0 2.0.0 3.0.0 0.0

ds6.csv out6 4sec shift noise filt 4.0 3.0 4.0 0.0 0.0 4.0.0 4.0.0 2.0.0 3.0.0 0.0

ds6.csv out6 6sec shift 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 4.0.0 0.0

ds6.csv out6 6sec shift noise 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 4.0.0 0.0

ds6.csv out6 6sec shift filt 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 3.0.0 0.0

ds6.csv out6 6sec shift noise filt 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 3.0.0 0.0

ds6.csv out6 8sec shift 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 8sec shift noise 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 8sec shift filt 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 8sec shift noise filt 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 10sec shift 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 3.0.0 0.0

ds6.csv out6 10sec shift noise 4.0 3.0 4.0 3.0 0.0 4.0.0 4.0.0 2.0.0 3.0.0 0.0

ds6.csv out6 10sec shift filt 4.0 3.0 4.0 0.0 0.0 0.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out6 10sec shift noise filt 4.0 3.0 4.0 0.0 0.0 0.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out7 2sec shift 4.0 3.0 2.0 0.0 0.0 0.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out7 2sec shift noise 4.0 3.0 2.0 0.0 0.0 0.0.0 4.0.0 2.0.0 1.0.0 0.0

ds6.csv out7 2sec shift filt 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 1.0.0 0.0.0 0.0

ds6.csv out7 2sec shift noise filt 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 1.0.0 0.0.0 0.0

ds6.csv out7 4sec shift 4.0 3.0 2.0 0.0 0.0 5.0.0 5.0.0 1.0.0 2.0.0 0.0

ds6.csv out7 4sec shift noise 4.0 3.0 2.0 0.0 0.0 5.0.0 5.0.0 1.0.0 2.0.0 0.0

ds6.csv out7 4sec shift filt 4.0 3.0 2.0 0.0 0.0 5.0.0 5.0.0 4.0.0 5.0.0 0.0

ds6.csv out7 4sec shift noise filt 4.0 3.0 2.0 0.0 0.0 5.0.0 5.0.0 4.0.0 4.0.0 0.0

ds6.csv out7 6sec shift 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 0.0.0 0.0

ds6.csv out7 6sec shift noise 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 0.0.0 0.0
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ds6.csv out7 6sec shift filt 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 3.0.0 0.0

ds6.csv out7 6sec shift noise filt 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 4.0.0 0.0

ds6.csv out7 8sec shift 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 0.0.0 0.0

ds6.csv out7 8sec shift noise 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 4.0.0 0.0

ds6.csv out7 8sec shift filt 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 5.0.0 0.0

ds6.csv out7 8sec shift noise filt 4.0 3.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 0.0.0 0.0

ds6.csv out7 10sec shift 4.0 3.0 0.0 3.0 0.0 5.0.0 5.0.0 4.0.0 0.0.0 0.0

ds6.csv out7 10sec shift noise 4.0 3.0 0.0 3.0 0.0 5.0.0 5.0.0 4.0.0 5.0.0 0.0

ds6.csv out7 10sec shift filt 4.0 3.0 0.0 3.0 0.0 5.0.0 5.0.0 4.0.0 3.0.0 0.0

ds6.csv out7 10sec shift noise filt 4.0 3.0 0.0 3.0 0.0 5.0.0 5.0.0 4.0.0 3.0.0 0.0

ds7.csv out1 0sec 1.0 4.0 1.0 1.0 0.0 5.0.0 0.0.0 4.0.0 0.0.0 0.0

ds7.csv out2 0sec 3.0 2.0 3.0 3.0 0.0 0.0.0 0.0.0 4.0.0 0.0.0 0.0

ds7.csv out3 0sec 3.0 0.0 1.0 2.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds7.csv out4 0sec 4.0 5.0 2.0 4.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds7.csv out5 0sec 4.0 4.0 2.0 0.0 0.0 0.0.0 3.0.0 0.0.0 0.0.0 0.0

ds7.csv out6 0sec 5.0 5.0 1.0 3.0 0.0 0.0.0 0.0.0 3.0.0 0.0.0 0.0

ds7.csv out7 0sec 5.0 5.0 3.0 3.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds7.csv out8 0sec 0.0 0.0 3.0 3.0 0.0 0.0.0 0.0.0 0.0.0 4.0.0 0.0

ds7.csv out1 2sec shift 1.0 4.0 1.0 0.0 0.0 2.0.0 2.0.0 3.0.0 0.0.0 0.0

ds7.csv out1 2sec shift noise 1.0 4.0 1.0 0.0 0.0 2.0.0 2.0.0 3.0.0 0.0.0 0.0

ds7.csv out1 2sec shift filt 1.0 4.0 1.0 0.0 0.0 5.0.0 5.0.0 2.0.0 2.0.0 0.0

ds7.csv out1 2sec shift noise filt 1.0 4.0 1.0 0.0 0.0 5.0.0 5.0.0 2.0.0 2.0.0 0.0

ds7.csv out1 4sec shift 1.0 4.0 0.0 5.0 0.0 4.0.0 4.0.0 3.0.0 2.0.0 0.0

ds7.csv out1 4sec shift noise 1.0 4.0 0.0 5.0 0.0 5.0.0 4.0.0 4.0.0 4.0.0 0.0

ds7.csv out1 4sec shift filt 1.0 4.0 0.0 2.0 0.0 5.0.0 5.0.0 3.0.0 1.0.0 0.0

ds7.csv out1 4sec shift noise filt 1.0 4.0 0.0 2.0 0.0 5.0.0 5.0.0 3.0.0 1.0.0 0.0

ds7.csv out1 6sec shift 1.0 4.0 0.0 3.0 0.0 6.0.0 6.0.0 3.0.0 6.0.0 0.0

ds7.csv out1 6sec shift noise 1.0 4.0 0.0 3.0 0.0 6.0.0 6.0.0 3.0.0 6.0.0 0.0

ds7.csv out1 6sec shift filt 1.0 4.0 0.0 3.0 0.0 5.0.0 5.0.0 3.0.0 4.0.0 0.0

ds7.csv out1 6sec shift noise filt 1.0 4.0 0.0 3.0 0.0 5.0.0 5.0.0 3.0.0 4.0.0 0.0

ds7.csv out1 8sec shift 1.0 4.0 0.0 3.0 0.0 8.0.0 8.0.0 3.0.0 8.0.0 0.0

ds7.csv out1 8sec shift noise 1.0 4.0 0.0 3.0 0.0 8.0.0 8.0.0 6.0.0 8.0.0 0.0

ds7.csv out1 8sec shift filt 1.0 4.0 0.0 2.0 0.0 0.0.0 0.0.0 8.0.0 5.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds7.csv out1 8sec shift noise filt 1.0 4.0 0.0 2.0 0.0 0.0.0 8.0.0 2.0.0 5.0.0 0.0

ds7.csv out1 10sec shift 1.0 4.0 1.0 3.0 0.0 0.0.0 10.0.0 2.0.0 9.0.0 0.0

ds7.csv out1 10sec shift noise 1.0 4.0 1.0 3.0 0.0 10.0.0 0.0.0 8.0.0 9.0.0 0.0

ds7.csv out1 10sec shift filt 1.0 4.0 1.0 0.0 0.0 0.0.0 10.0.0 8.0.0 8.0.0 0.0

ds7.csv out1 10sec shift noise filt 1.0 4.0 1.0 0.0 0.0 0.0.0 10.0.0 10.0.0 5.0.0 0.0

ds7.csv out2 2sec shift 3.0 2.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 1.0.0 0.0

ds7.csv out2 2sec shift noise 4.0 2.0 3.0 2.0 0.0 0.0.0 0.0.0 2.0.0 1.0.0 0.0

ds7.csv out2 2sec shift filt 3.0 2.0 3.0 0.0 0.0 0.0.0 0.0.0 2.0.0 5.0.0 0.0

ds7.csv out2 2sec shift noise filt 3.0 2.0 3.0 2.0 0.0 0.0.0 0.0.0 2.0.0 5.0.0 0.0

ds7.csv out2 4sec shift 3.0 2.0 3.0 4.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds7.csv out2 4sec shift noise 4.0 2.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds7.csv out2 4sec shift filt 3.0 2.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 4.0.0 0.0

ds7.csv out2 4sec shift noise filt 0.0 2.0 3.0 2.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds7.csv out2 6sec shift 3.0 2.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 1.0.0 0.0

ds7.csv out2 6sec shift noise 4.0 2.0 1.0 2.0 0.0 0.0.0 0.0.0 2.0.0 1.0.0 0.0

ds7.csv out2 6sec shift filt 3.0 2.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds7.csv out2 6sec shift noise filt 3.0 2.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds7.csv out2 8sec shift 3.0 2.0 3.0 0.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds7.csv out2 8sec shift noise 0.0 2.0 1.0 1.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds7.csv out2 8sec shift filt 3.0 2.0 3.0 3.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds7.csv out2 8sec shift noise filt 3.0 2.0 3.0 3.0 0.0 3.0.0 2.0.0 3.0.0 1.0.0 0.0

ds7.csv out2 10sec shift 3.0 2.0 3.0 2.0 0.0 4.0.0 4.0.0 2.0.0 2.0.0 0.0

ds7.csv out2 10sec shift noise 4.0 2.0 2.0 2.0 0.0 0.0.0 5.0.0 4.0.0 3.0.0 0.0

ds7.csv out2 10sec shift filt 3.0 2.0 3.0 4.0 0.0 1.0.0 4.0.0 2.0.0 3.0.0 0.0

ds7.csv out2 10sec shift noise filt 0.0 2.0 3.0 4.0 0.0 4.0.0 5.0.0 1.0.0 2.0.0 0.0

ds7.csv out3 2sec shift 3.0 0.0 1.0 2.0 0.0 3.0.0 5.0.0 3.0.0 0.0.0 0.0

ds7.csv out3 2sec shift noise 3.0 0.0 1.0 2.0 0.0 4.0.0 0.0.0 2.0.0 1.0.0 0.0

ds7.csv out3 2sec shift filt 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 4.0.0 0.0

ds7.csv out3 2sec shift noise filt 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 4.0.0 0.0

ds7.csv out3 4sec shift 3.0 0.0 1.0 3.0 0.0 1.0.0 4.0.0 0.0.0 4.0.0 0.0

ds7.csv out3 4sec shift noise 0.0 0.0 1.0 3.0 0.0 1.0.0 4.0.0 0.0.0 4.0.0 0.0

ds7.csv out3 4sec shift filt 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds7.csv out3 4sec shift noise filt 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds7.csv out3 6sec shift 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds7.csv out3 6sec shift noise 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 3.0.0 0.0

ds7.csv out3 6sec shift filt 0.0 0.0 1.0 3.0 0.0 1.0.0 4.0.0 0.0.0 4.0.0 0.0

ds7.csv out3 6sec shift noise filt 0.0 0.0 1.0 3.0 0.0 1.0.0 4.0.0 0.0.0 4.0.0 0.0

ds7.csv out3 8sec shift 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 0.0.0 4.0.0 0.0

ds7.csv out3 8sec shift noise 0.0 0.0 1.0 2.0 0.0 7.0.0 4.0.0 0.0.0 8.0.0 0.0

ds7.csv out3 8sec shift filt 0.0 0.0 1.0 2.0 0.0 8.0.0 4.0.0 0.0.0 8.0.0 0.0

ds7.csv out3 8sec shift noise filt 0.0 0.0 1.0 2.0 0.0 1.0.0 4.0.0 8.0.0 4.0.0 0.0

ds7.csv out3 10sec shift 0.0 0.0 1.0 1.0 0.0 1.0.0 4.0.0 0.0.0 10.0.0 0.0

ds7.csv out3 10sec shift noise 0.0 0.0 1.0 1.0 0.0 9.0.0 8.0.0 10.0.0 10.0.0 0.0

ds7.csv out3 10sec shift filt 0.0 0.0 1.0 1.0 0.0 9.0.0 8.0.0 10.0.0 10.0.0 0.0

ds7.csv out3 10sec shift noise filt 0.0 0.0 1.0 1.0 0.0 10.0.0 4.0.0 10.0.0 10.0.0 0.0

ds7.csv out4 2sec shift 4.0 5.0 2.0 4.0 0.0 1.0.0 4.0.0 1.0.0 5.0.0 0.0

ds7.csv out4 2sec shift noise 4.0 5.0 2.0 4.0 0.0 1.0.0 4.0.0 1.0.0 5.0.0 0.0

ds7.csv out4 2sec shift filt 4.0 5.0 2.0 4.0 0.0 3.0.0 2.0.0 3.0.0 3.0.0 0.0

ds7.csv out4 2sec shift noise filt 4.0 5.0 2.0 4.0 0.0 3.0.0 2.0.0 2.0.0 0.0.0 0.0

ds7.csv out4 4sec shift 4.0 5.0 2.0 3.0 0.0 3.0.0 2.0.0 3.0.0 3.0.0 0.0

ds7.csv out4 4sec shift noise 4.0 5.0 2.0 3.0 0.0 4.0.0 2.0.0 2.0.0 1.0.0 0.0

ds7.csv out4 4sec shift filt 4.0 5.0 2.0 1.0 0.0 3.0.0 2.0.0 4.0.0 0.0.0 0.0

ds7.csv out4 4sec shift noise filt 4.0 5.0 2.0 1.0 0.0 3.0.0 2.0.0 5.0.0 2.0.0 0.0

ds7.csv out4 6sec shift 4.0 5.0 2.0 3.0 0.0 3.0.0 2.0.0 2.0.0 1.0.0 0.0

ds7.csv out4 6sec shift noise 4.0 5.0 2.0 3.0 0.0 4.0.0 2.0.0 4.0.0 5.0.0 0.0

ds7.csv out4 6sec shift filt 4.0 5.0 2.0 0.0 0.0 3.0.0 2.0.0 4.0.0 3.0.0 0.0

ds7.csv out4 6sec shift noise filt 4.0 5.0 2.0 0.0 0.0 0.0.0 2.0.0 2.0.0 1.0.0 0.0

ds7.csv out4 8sec shift 4.0 5.0 2.0 4.0 0.0 3.0.0 2.0.0 4.0.0 4.0.0 0.0

ds7.csv out4 8sec shift noise 4.0 5.0 2.0 4.0 0.0 4.0.0 2.0.0 2.0.0 3.0.0 0.0

ds7.csv out4 8sec shift filt 4.0 5.0 2.0 3.0 0.0 3.0.0 2.0.0 4.0.0 5.0.0 0.0

ds7.csv out4 8sec shift noise filt 4.0 5.0 2.0 3.0 0.0 0.0.0 2.0.0 10.0.0 8.0.0 0.0

ds7.csv out4 10sec shift 4.0 5.0 2.0 5.0 0.0 3.0.0 2.0.0 10.0.0 2.0.0 0.0

ds7.csv out4 10sec shift noise 4.0 5.0 2.0 5.0 0.0 4.0.0 2.0.0 10.0.0 10.0.0 0.0

ds7.csv out4 10sec shift filt 4.0 5.0 2.0 5.0 0.0 3.0.0 2.0.0 8.0.0 10.0.0 0.0

ds7.csv out4 10sec shift noise filt 4.0 5.0 2.0 5.0 0.0 4.0.0 10.0.0 9.0.0 10.0.0 0.0

ds7.csv out5 2sec shift 4.0 4.0 2.0 1.0 0.0 3.0.0 2.0.0 4.0.0 0.0.0 0.0
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ds7.csv out5 2sec shift noise 4.0 4.0 2.0 1.0 0.0 3.0.0 2.0.0 4.0.0 0.0.0 0.0

ds7.csv out5 2sec shift filt 4.0 4.0 2.0 1.0 0.0 4.0.0 4.0.0 5.0.0 3.0.0 0.0

ds7.csv out5 2sec shift noise filt 4.0 4.0 2.0 1.0 0.0 4.0.0 4.0.0 5.0.0 3.0.0 0.0

ds7.csv out5 4sec shift 4.0 4.0 2.0 3.0 0.0 4.0.0 4.0.0 2.0.0 2.0.0 0.0

ds7.csv out5 4sec shift noise 4.0 4.0 2.0 3.0 0.0 4.0.0 4.0.0 2.0.0 2.0.0 0.0

ds7.csv out5 4sec shift filt 4.0 4.0 2.0 4.0 0.0 0.0.0 4.0.0 2.0.0 1.0.0 0.0

ds7.csv out5 4sec shift noise filt 4.0 4.0 2.0 4.0 0.0 3.0.0 4.0.0 2.0.0 1.0.0 0.0

ds7.csv out5 6sec shift 4.0 4.0 2.0 3.0 0.0 0.0.0 4.0.0 5.0.0 6.0.0 0.0

ds7.csv out5 6sec shift noise 4.0 4.0 2.0 3.0 0.0 0.0.0 4.0.0 2.0.0 6.0.0 0.0

ds7.csv out5 6sec shift filt 4.0 4.0 2.0 1.0 0.0 4.0.0 4.0.0 5.0.0 6.0.0 0.0

ds7.csv out5 6sec shift noise filt 4.0 4.0 2.0 1.0 0.0 6.0.0 4.0.0 5.0.0 6.0.0 0.0

ds7.csv out5 8sec shift 4.0 4.0 2.0 1.0 0.0 4.0.0 4.0.0 2.0.0 2.0.0 0.0

ds7.csv out5 8sec shift noise 4.0 4.0 2.0 1.0 0.0 4.0.0 4.0.0 2.0.0 2.0.0 0.0

ds7.csv out5 8sec shift filt 4.0 4.0 2.0 3.0 0.0 4.0.0 4.0.0 2.0.0 4.0.0 0.0

ds7.csv out5 8sec shift noise filt 4.0 4.0 2.0 3.0 0.0 4.0.0 4.0.0 2.0.0 4.0.0 0.0

ds7.csv out5 10sec shift 0.0 4.0 2.0 1.0 0.0 4.0.0 4.0.0 10.0.0 3.0.0 0.0

ds7.csv out5 10sec shift noise 0.0 4.0 2.0 1.0 0.0 4.0.0 4.0.0 2.0.0 3.0.0 0.0

ds7.csv out5 10sec shift filt 0.0 4.0 2.0 1.0 0.0 0.0.0 4.0.0 5.0.0 10.0.0 0.0

ds7.csv out5 10sec shift noise filt 0.0 4.0 2.0 1.0 0.0 10.0.0 4.0.0 8.0.0 10.0.0 0.0

ds7.csv out6 2sec shift 5.0 5.0 1.0 0.0 0.0 4.0.0 4.0.0 8.0.0 2.0.0 0.0

ds7.csv out6 2sec shift noise 5.0 5.0 1.0 0.0 0.0 4.0.0 4.0.0 5.0.0 2.0.0 0.0

ds7.csv out6 2sec shift filt 5.0 5.0 1.0 2.0 0.0 0.0.0 5.0.0 4.0.0 3.0.0 0.0

ds7.csv out6 2sec shift noise filt 5.0 5.0 1.0 2.0 0.0 0.0.0 5.0.0 4.0.0 3.0.0 0.0

ds7.csv out6 4sec shift 5.0 5.0 4.0 5.0 0.0 0.0.0 5.0.0 4.0.0 5.0.0 0.0

ds7.csv out6 4sec shift noise 5.0 5.0 4.0 4.0 0.0 0.0.0 5.0.0 4.0.0 5.0.0 0.0

ds7.csv out6 4sec shift filt 5.0 5.0 4.0 0.0 0.0 0.0.0 5.0.0 4.0.0 0.0.0 0.0

ds7.csv out6 4sec shift noise filt 5.0 5.0 4.0 0.0 0.0 0.0.0 5.0.0 4.0.0 0.0.0 0.0

ds7.csv out6 6sec shift 5.0 5.0 4.0 3.0 0.0 0.0.0 5.0.0 4.0.0 1.0.0 0.0

ds7.csv out6 6sec shift noise 5.0 5.0 4.0 4.0 0.0 0.0.0 5.0.0 4.0.0 1.0.0 0.0

ds7.csv out6 6sec shift filt 5.0 5.0 4.0 0.0 0.0 0.0.0 5.0.0 4.0.0 0.0.0 0.0

ds7.csv out6 6sec shift noise filt 5.0 5.0 4.0 4.0 0.0 0.0.0 5.0.0 4.0.0 5.0.0 0.0

ds7.csv out6 8sec shift 5.0 5.0 4.0 5.0 0.0 0.0.0 5.0.0 4.0.0 3.0.0 0.0

ds7.csv out6 8sec shift noise 5.0 5.0 4.0 0.0 0.0 0.0.0 5.0.0 4.0.0 3.0.0 0.0
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ds7.csv out6 8sec shift filt 5.0 5.0 4.0 0.0 0.0 0.0.0 5.0.0 4.0.0 0.0.0 0.0

ds7.csv out6 8sec shift noise filt 5.0 5.0 4.0 5.0 0.0 0.0.0 5.0.0 4.0.0 0.0.0 0.0

ds7.csv out6 10sec shift 5.0 5.0 4.0 3.0 0.0 0.0.0 5.0.0 4.0.0 3.0.0 0.0

ds7.csv out6 10sec shift noise 5.0 5.0 4.0 3.0 0.0 0.0.0 5.0.0 4.0.0 3.0.0 0.0

ds7.csv out6 10sec shift filt 5.0 5.0 4.0 3.0 0.0 0.0.0 5.0.0 4.0.0 5.0.0 0.0

ds7.csv out6 10sec shift noise filt 5.0 5.0 4.0 3.0 0.0 0.0.0 5.0.0 4.0.0 5.0.0 0.0

ds7.csv out7 2sec shift 5.0 5.0 3.0 5.0 0.0 0.0.0 5.0.0 4.0.0 1.0.0 0.0

ds7.csv out7 2sec shift noise 5.0 5.0 3.0 3.0 0.0 0.0.0 5.0.0 4.0.0 5.0.0 0.0

ds7.csv out7 2sec shift filt 5.0 5.0 3.0 0.0 0.0 1.0.0 4.0.0 2.0.0 4.0.0 0.0

ds7.csv out7 2sec shift noise filt 5.0 5.0 3.0 0.0 0.0 1.0.0 4.0.0 2.0.0 4.0.0 0.0

ds7.csv out7 4sec shift 5.0 5.0 3.0 0.0 0.0 1.0.0 4.0.0 2.0.0 4.0.0 0.0

ds7.csv out7 4sec shift noise 5.0 5.0 3.0 4.0 0.0 1.0.0 4.0.0 2.0.0 4.0.0 0.0

ds7.csv out7 4sec shift filt 5.0 5.0 3.0 0.0 0.0 1.0.0 4.0.0 2.0.0 0.0.0 0.0

ds7.csv out7 4sec shift noise filt 5.0 5.0 3.0 0.0 0.0 1.0.0 4.0.0 2.0.0 0.0.0 0.0

ds7.csv out7 6sec shift 5.0 5.0 3.0 3.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds7.csv out7 6sec shift noise 5.0 5.0 3.0 0.0 0.0 1.0.0 6.0.0 2.0.0 3.0.0 0.0

ds7.csv out7 6sec shift filt 5.0 5.0 3.0 2.0 0.0 1.0.0 6.0.0 2.0.0 4.0.0 0.0

ds7.csv out7 6sec shift noise filt 5.0 5.0 3.0 2.0 0.0 6.0.0 4.0.0 2.0.0 4.0.0 0.0

ds7.csv out7 8sec shift 5.0 5.0 3.0 1.0 0.0 1.0.0 4.0.0 8.0.0 5.0.0 0.0

ds7.csv out7 8sec shift noise 5.0 5.0 3.0 1.0 0.0 1.0.0 4.0.0 2.0.0 5.0.0 0.0

ds7.csv out7 8sec shift filt 5.0 5.0 3.0 5.0 0.0 1.0.0 8.0.0 2.0.0 3.0.0 0.0

ds7.csv out7 8sec shift noise filt 5.0 5.0 3.0 5.0 0.0 1.0.0 4.0.0 2.0.0 3.0.0 0.0

ds7.csv out7 10sec shift 5.0 5.0 3.0 4.0 0.0 1.0.0 4.0.0 2.0.0 3.0.0 0.0

ds7.csv out7 10sec shift noise 5.0 5.0 3.0 4.0 0.0 1.0.0 10.0.0 10.0.0 3.0.0 0.0

ds7.csv out7 10sec shift filt 5.0 5.0 3.0 4.0 0.0 1.0.0 10.0.0 2.0.0 0.0.0 0.0

ds7.csv out7 10sec shift noise filt 5.0 5.0 3.0 0.0 0.0 1.0.0 4.0.0 2.0.0 0.0.0 0.0

ds7.csv out8 2sec shift 0.0 0.0 2.0 5.0 0.0 1.0.0 4.0.0 2.0.0 5.0.0 0.0

ds7.csv out8 2sec shift noise 0.0 0.0 2.0 5.0 0.0 1.0.0 4.0.0 2.0.0 5.0.0 0.0

ds7.csv out8 2sec shift filt 0.0 0.0 2.0 1.0 0.0 3.0.0 5.0.0 1.0.0 3.0.0 0.0

ds7.csv out8 2sec shift noise filt 0.0 0.0 2.0 1.0 0.0 3.0.0 5.0.0 1.0.0 3.0.0 0.0

ds7.csv out8 4sec shift 0.0 0.0 2.0 5.0 0.0 3.0.0 5.0.0 1.0.0 3.0.0 0.0

ds7.csv out8 4sec shift noise 0.0 0.0 2.0 5.0 0.0 3.0.0 5.0.0 1.0.0 3.0.0 0.0

ds7.csv out8 4sec shift filt 0.0 0.0 2.0 1.0 0.0 3.0.0 5.0.0 1.0.0 0.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds7.csv out8 4sec shift noise filt 0.0 0.0 2.0 1.0 0.0 3.0.0 5.0.0 4.0.0 4.0.0 0.0

ds7.csv out8 6sec shift 0.0 0.0 2.0 5.0 0.0 3.0.0 5.0.0 1.0.0 5.0.0 0.0

ds7.csv out8 6sec shift noise 0.0 0.0 2.0 5.0 0.0 3.0.0 5.0.0 1.0.0 3.0.0 0.0

ds7.csv out8 6sec shift filt 0.0 0.0 2.0 3.0 0.0 3.0.0 5.0.0 1.0.0 1.0.0 0.0

ds7.csv out8 6sec shift noise filt 0.0 0.0 2.0 3.0 0.0 3.0.0 5.0.0 1.0.0 1.0.0 0.0

ds7.csv out8 8sec shift 0.0 0.0 2.0 4.0 0.0 3.0.0 5.0.0 8.0.0 3.0.0 0.0

ds7.csv out8 8sec shift noise 0.0 0.0 2.0 0.0 0.0 8.0.0 7.0.0 8.0.0 3.0.0 0.0

ds7.csv out8 8sec shift filt 0.0 0.0 2.0 1.0 0.0 8.0.0 7.0.0 6.0.0 4.0.0 0.0

ds7.csv out8 8sec shift noise filt 0.0 0.0 2.0 1.0 0.0 8.0.0 7.0.0 1.0.0 6.0.0 0.0

ds7.csv out8 10sec shift 0.0 0.0 2.0 3.0 0.0 3.0.0 5.0.0 10.0.0 10.0.0 0.0

ds7.csv out8 10sec shift noise 0.0 0.0 2.0 3.0 0.0 10.0.0 10.0.0 10.0.0 9.5.0 0.0

ds7.csv out8 10sec shift filt 0.0 0.0 2.0 0.0 0.0 3.0.0 5.0.0 10.0.0 8.0.0 0.0

ds7.csv out8 10sec shift noise filt 0.0 0.0 2.0 0.0 0.0 3.0.0 5.0.0 10.0.0 10.0.0 0.0

ds8.csv out1 0sec 1.0 4.0 0.0 3.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds8.csv out2 0sec 3.0 2.0 3.0 1.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds8.csv out3 0sec 4.0 4.0 2.0 2.0 0.0 0.0.0 0.0.0 0.0.0 3.0.0 0.0

ds8.csv out4 0sec 0.0 5.0 4.0 3.0 0.0 3.0.0 5.0.0 0.0.0 0.0.0 0.0

ds8.csv out5 0sec 1.0 4.0 2.0 3.0 0.0 3.0.0 3.0.0 0.0.0 0.0.0 0.0

ds8.csv out6 0sec 4.0 5.0 1.0 2.0 0.0 0.0.0 0.0.0 0.0.0 3.0.0 0.0

ds8.csv out7 0sec 3.0 5.0 3.0 0.0 0.0 0.0.0 0.0.0 3.0.0 0.0.0 0.0

ds8.csv out8 0sec 4.0 0.0 2.0 1.0 0.0 0.0.0 0.0.0 1.0.0 0.0.0 0.0

ds8.csv out1 2sec shift 1.0 4.0 0.0 4.0 0.0 3.0.0 5.0.0 3.0.0 0.0.0 0.0

ds8.csv out1 2sec shift noise 1.0 4.0 0.0 4.0 0.0 3.0.0 5.0.0 3.0.0 5.0.0 0.0

ds8.csv out1 2sec shift filt 1.0 4.0 0.0 4.0 0.0 3.0.0 5.0.0 3.0.0 1.0.0 0.0

ds8.csv out1 2sec shift noise filt 1.0 4.0 0.0 4.0 0.0 3.0.0 5.0.0 3.0.0 1.0.0 0.0

ds8.csv out1 4sec shift 1.0 4.0 0.0 3.0 0.0 4.0.0 4.0.0 3.0.0 4.0.0 0.0

ds8.csv out1 4sec shift noise 1.0 4.0 0.0 3.0 0.0 3.0.0 5.0.0 3.0.0 3.0.0 0.0

ds8.csv out1 4sec shift filt 1.0 4.0 0.0 3.0 0.0 3.0.0 5.0.0 3.0.0 4.0.0 0.0

ds8.csv out1 4sec shift noise filt 1.0 4.0 0.0 3.0 0.0 3.0.0 5.0.0 3.0.0 1.0.0 0.0

ds8.csv out1 6sec shift 1.0 4.0 0.0 4.0 0.0 3.0.0 6.0.0 3.0.0 2.0.0 0.0

ds8.csv out1 6sec shift noise 1.0 4.0 0.0 4.0 0.0 3.0.0 6.0.0 6.0.0 6.0.0 0.0

ds8.csv out1 6sec shift filt 1.0 4.0 0.0 4.0 0.0 3.0.0 6.0.0 6.0.0 6.0.0 0.0

ds8.csv out1 6sec shift noise filt 1.0 4.0 0.0 4.0 0.0 3.0.0 5.0.0 3.0.0 6.0.0 0.0
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Appendix A. Appendix

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds8.csv out1 8sec shift 1.0 4.0 0.0 4.0 0.0 3.0.0 5.0.0 3.0.0 5.0.0 0.0

ds8.csv out1 8sec shift noise 1.0 4.0 0.0 4.0 0.0 3.0.0 5.0.0 3.0.0 5.0.0 0.0

ds8.csv out1 8sec shift filt 1.0 4.0 0.0 2.0 0.0 4.0.0 8.0.0 2.0.0 10.0.0 0.0

ds8.csv out1 8sec shift noise filt 1.0 4.0 0.0 2.0 0.0 4.0.0 0.0.0 2.0.0 10.0.0 0.0

ds8.csv out1 10sec shift 1.0 4.0 1.0 2.0 0.0 4.0.0 0.0.0 2.0.0 10.0.0 0.0

ds8.csv out1 10sec shift noise 1.0 4.0 1.0 2.0 0.0 10.0.0 10.0.0 2.0.0 10.0.0 0.0

ds8.csv out1 10sec shift filt 1.0 4.0 1.0 5.0 0.0 4.0.0 10.0.0 2.0.0 3.0.0 0.0

ds8.csv out1 10sec shift noise filt 1.0 4.0 1.0 5.0 0.0 4.0.0 10.0.0 2.0.0 3.0.0 0.0

ds8.csv out2 2sec shift 3.0 2.0 3.0 3.0 0.0 4.0.0 0.0.0 2.0.0 2.0.0 0.0

ds8.csv out2 2sec shift noise 3.0 2.0 2.0 0.0 0.0 4.0.0 0.0.0 2.0.0 4.0.0 0.0

ds8.csv out2 2sec shift filt 3.0 2.0 3.0 3.0 0.0 4.0.0 0.0.0 2.0.0 4.0.0 0.0

ds8.csv out2 2sec shift noise filt 4.0 2.0 2.0 1.0 0.0 4.0.0 0.0.0 2.0.0 0.0.0 0.0

ds8.csv out2 4sec shift 3.0 2.0 4.0 0.0 0.0 4.0.0 0.0.0 2.0.0 5.0.0 0.0

ds8.csv out2 4sec shift noise 3.0 2.0 5.0 2.0 0.0 4.0.0 0.0.0 2.0.0 5.0.0 0.0

ds8.csv out2 4sec shift filt 3.0 2.0 2.0 1.0 0.0 4.0.0 0.0.0 2.0.0 3.0.0 0.0

ds8.csv out2 4sec shift noise filt 4.0 2.0 4.0 5.0 0.0 4.0.0 0.0.0 2.0.0 3.0.0 0.0

ds8.csv out2 6sec shift 3.0 2.0 4.0 3.0 0.0 4.0.0 0.0.0 2.0.0 4.0.0 0.0

ds8.csv out2 6sec shift noise 0.0 2.0 2.0 1.0 0.0 4.0.0 0.0.0 2.0.0 4.0.0 0.0

ds8.csv out2 6sec shift filt 3.0 2.0 4.0 4.0 0.0 4.0.0 0.0.0 2.0.0 5.0.0 0.0

ds8.csv out2 6sec shift noise filt 4.0 2.0 2.0 3.0 0.0 4.0.0 0.0.0 2.0.0 6.0.0 0.0

ds8.csv out2 8sec shift 3.0 2.0 4.0 5.0 0.0 4.0.0 8.0.0 2.0.0 5.0.0 0.0

ds8.csv out2 8sec shift noise 0.0 2.0 4.0 0.0 0.0 8.0.0 8.0.0 2.0.0 8.0.0 0.0

ds8.csv out2 8sec shift filt 3.0 2.0 4.0 2.0 0.0 8.0.0 1.0.0 3.0.0 8.0.0 0.0

ds8.csv out2 8sec shift noise filt 4.0 2.0 3.0 1.0 0.0 6.0.0 4.0.0 0.0.0 8.0.0 0.0

ds8.csv out2 10sec shift 3.0 2.0 4.0 4.0 0.0 4.0.0 6.0.0 9.0.0 1.0.0 0.0

ds8.csv out2 10sec shift noise 4.0 2.0 4.0 4.0 0.0 6.0.0 9.0.0 10.0.0 10.0.0 0.0

ds8.csv out2 10sec shift filt 3.0 2.0 4.0 0.0 0.0 4.0.0 6.0.0 10.0.0 9.0.0 0.0

ds8.csv out2 10sec shift noise filt 3.0 2.0 4.0 0.0 0.0 10.0.0 6.0.0 4.0.0 9.0.0 0.0

ds8.csv out3 2sec shift 4.0 4.0 5.0 3.0 0.0 3.0.0 1.0.0 3.0.0 2.0.0 0.0

ds8.csv out3 2sec shift noise 4.0 4.0 5.0 3.0 0.0 3.0.0 1.0.0 3.0.0 2.0.0 0.0

ds8.csv out3 2sec shift filt 4.0 4.0 2.0 2.0 0.0 3.0.0 1.0.0 3.0.0 0.0.0 0.0

ds8.csv out3 2sec shift noise filt 4.0 4.0 2.0 2.0 0.0 3.0.0 1.0.0 3.0.0 0.0.0 0.0

ds8.csv out3 4sec shift 0.0 4.0 2.0 1.0 0.0 3.0.0 1.0.0 3.0.0 2.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds8.csv out3 4sec shift noise 0.0 4.0 2.0 1.0 0.0 3.0.0 1.0.0 3.0.0 2.0.0 0.0

ds8.csv out3 4sec shift filt 0.0 4.0 2.0 1.0 0.0 3.0.0 1.0.0 3.0.0 3.0.0 0.0

ds8.csv out3 4sec shift noise filt 0.0 4.0 2.0 1.0 0.0 3.0.0 1.0.0 3.0.0 3.0.0 0.0

ds8.csv out3 6sec shift 4.0 4.0 5.0 4.0 0.0 3.0.0 1.0.0 3.0.0 3.0.0 0.0

ds8.csv out3 6sec shift noise 4.0 4.0 5.0 4.0 0.0 3.0.0 1.0.0 3.0.0 3.0.0 0.0

ds8.csv out3 6sec shift filt 4.0 4.0 2.0 2.0 0.0 3.0.0 1.0.0 3.0.0 1.0.0 0.0

ds8.csv out3 6sec shift noise filt 4.0 4.0 2.0 2.0 0.0 3.0.0 1.0.0 3.0.0 1.0.0 0.0

ds8.csv out3 8sec shift 4.0 4.0 2.0 4.0 0.0 3.0.0 1.0.0 3.0.0 1.0.0 0.0

ds8.csv out3 8sec shift noise 4.0 4.0 2.0 4.0 0.0 3.0.0 1.0.0 3.0.0 1.0.0 0.0

ds8.csv out3 8sec shift filt 4.0 4.0 2.0 3.0 0.0 3.0.0 1.0.0 3.0.0 6.0.0 0.0

ds8.csv out3 8sec shift noise filt 4.0 4.0 2.0 3.0 0.0 3.0.0 1.0.0 3.0.0 6.0.0 0.0

ds8.csv out3 10sec shift 0.0 4.0 5.0 1.0 0.0 3.0.0 1.0.0 3.0.0 4.0.0 0.0

ds8.csv out3 10sec shift noise 0.0 4.0 5.0 1.0 0.0 3.0.0 1.0.0 3.0.0 4.0.0 0.0

ds8.csv out3 10sec shift filt 4.0 4.0 5.0 2.0 0.0 3.0.0 1.0.0 3.0.0 2.0.0 0.0

ds8.csv out3 10sec shift noise filt 4.0 4.0 5.0 2.0 0.0 3.0.0 1.0.0 3.0.0 2.0.0 0.0

ds8.csv out4 2sec shift 0.0 5.0 4.0 3.0 0.0 6.0.0 4.0.0 0.0.0 2.0.0 0.0

ds8.csv out4 2sec shift noise 0.0 5.0 4.0 3.0 0.0 6.0.0 4.0.0 0.0.0 5.0.0 0.0

ds8.csv out4 2sec shift filt 0.0 5.0 4.0 5.0 0.0 6.0.0 4.0.0 0.0.0 5.0.0 0.0

ds8.csv out4 2sec shift noise filt 0.0 5.0 4.0 5.0 0.0 6.0.0 4.0.0 0.0.0 4.0.0 0.0

ds8.csv out4 4sec shift 0.0 5.0 4.0 0.0 0.0 6.0.0 4.0.0 0.0.0 3.0.0 0.0

ds8.csv out4 4sec shift noise 0.0 5.0 4.0 0.0 0.0 6.0.0 4.0.0 0.0.0 1.0.0 0.0

ds8.csv out4 4sec shift filt 0.0 5.0 4.0 1.0 0.0 6.0.0 4.0.0 0.0.0 5.0.0 0.0

ds8.csv out4 4sec shift noise filt 0.0 5.0 4.0 1.0 0.0 6.0.0 4.0.0 0.0.0 3.0.0 0.0

ds8.csv out4 6sec shift 0.0 5.0 4.0 0.0 0.0 6.0.0 4.0.0 0.0.0 4.0.0 0.0

ds8.csv out4 6sec shift noise 0.0 5.0 4.0 5.0 0.0 6.0.0 4.0.0 6.0.0 3.0.0 0.0

ds8.csv out4 6sec shift filt 0.0 5.0 4.0 3.0 0.0 6.0.0 4.0.0 6.0.0 3.0.0 0.0

ds8.csv out4 6sec shift noise filt 0.0 5.0 4.0 3.0 0.0 6.0.0 7.0.0 0.0.0 6.0.0 0.0

ds8.csv out4 8sec shift 0.0 5.0 4.0 0.0 0.0 6.0.0 4.0.0 0.0.0 7.0.0 0.0

ds8.csv out4 8sec shift noise 0.0 5.0 4.0 0.0 0.0 6.0.0 4.0.0 0.0.0 7.0.0 0.0

ds8.csv out4 8sec shift filt 0.0 5.0 4.0 3.0 0.0 6.0.0 4.0.0 0.0.0 3.0.0 0.0

ds8.csv out4 8sec shift noise filt 0.0 5.0 4.0 3.0 0.0 6.0.0 4.0.0 0.0.0 5.0.0 0.0

ds8.csv out4 10sec shift 0.0 5.0 4.0 5.0 0.0 6.0.0 4.0.0 0.0.0 5.0.0 0.0

ds8.csv out4 10sec shift noise 0.0 5.0 4.0 5.0 0.0 6.0.0 6.0.0 0.0.0 1.0.0 0.0
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.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds8.csv out4 10sec shift filt 0.0 5.0 4.0 1.0 0.0 6.0.0 4.0.0 0.0.0 2.0.0 0.0

ds8.csv out4 10sec shift noise filt 0.0 5.0 4.0 5.0 0.0 6.0.0 4.0.0 0.0.0 4.0.0 0.0

ds8.csv out5 2sec shift 1.0 4.0 2.0 4.0 0.0 4.0.0 6.0.0 0.0.0 3.0.0 0.0

ds8.csv out5 2sec shift noise 1.0 4.0 2.0 4.0 0.0 5.0.0 6.0.0 0.0.0 1.0.0 0.0

ds8.csv out5 2sec shift filt 1.0 4.0 2.0 4.0 0.0 4.0.0 6.0.0 0.0.0 4.0.0 0.0

ds8.csv out5 2sec shift noise filt 1.0 4.0 2.0 4.0 0.0 4.0.0 6.0.0 0.0.0 5.0.0 0.0

ds8.csv out5 4sec shift 1.0 4.0 2.0 0.0 0.0 4.0.0 6.0.0 0.0.0 5.0.0 0.0

ds8.csv out5 4sec shift noise 1.0 4.0 2.0 0.0 0.0 5.0.0 6.0.0 0.0.0 3.0.0 0.0

ds8.csv out5 4sec shift filt 1.0 4.0 2.0 3.0 0.0 4.0.0 6.0.0 0.0.0 2.0.0 0.0

ds8.csv out5 4sec shift noise filt 1.0 4.0 2.0 3.0 0.0 4.0.0 6.0.0 0.0.0 3.0.0 0.0

ds8.csv out5 6sec shift 1.0 4.0 2.0 4.0 0.0 4.0.0 6.0.0 0.0.0 3.0.0 0.0

ds8.csv out5 6sec shift noise 1.0 4.0 2.0 4.0 0.0 5.0.0 6.0.0 0.0.0 4.0.0 0.0

ds8.csv out5 6sec shift filt 1.0 4.0 2.0 5.0 0.0 4.0.0 6.0.0 0.0.0 3.0.0 0.0

ds8.csv out5 6sec shift noise filt 1.0 4.0 2.0 5.0 0.0 4.0.0 6.0.0 0.0.0 4.0.0 0.0

ds8.csv out5 8sec shift 1.0 4.0 2.0 3.0 0.0 4.0.0 6.0.0 0.0.0 4.0.0 0.0

ds8.csv out5 8sec shift noise 1.0 4.0 2.0 3.0 0.0 5.0.0 6.0.0 0.0.0 3.0.0 0.0

ds8.csv out5 8sec shift filt 1.0 4.0 2.0 3.0 0.0 4.0.0 6.0.0 0.0.0 2.0.0 0.0

ds8.csv out5 8sec shift noise filt 1.0 4.0 2.0 3.0 0.0 5.0.0 6.0.0 0.0.0 4.0.0 0.0

ds8.csv out5 10sec shift 1.0 4.0 2.0 0.0 0.0 4.0.0 6.0.0 10.0.0 4.0.0 0.0

ds8.csv out5 10sec shift noise 1.0 4.0 2.0 0.0 0.0 9.0.0 6.0.0 8.0.0 5.0.0 0.0

ds8.csv out5 10sec shift filt 1.0 4.0 2.0 5.0 0.0 10.0.0 6.0.0 0.0.0 3.0.0 0.0

ds8.csv out5 10sec shift noise filt 1.0 4.0 2.0 5.0 0.0 5.0.0 6.0.0 0.0.0 6.0.0 0.0

ds8.csv out6 2sec shift 3.0 5.0 1.0 3.0 0.0 6.0.0 6.0.0 5.0.0 2.0.0 0.0

ds8.csv out6 2sec shift noise 3.0 5.0 1.0 3.0 0.0 2.0.0 6.0.0 2.0.0 2.0.0 0.0

ds8.csv out6 2sec shift filt 3.0 5.0 1.0 3.0 0.0 6.0.0 6.0.0 2.0.0 3.0.0 0.0

ds8.csv out6 2sec shift noise filt 3.0 5.0 1.0 3.0 0.0 2.0.0 2.0.0 5.0.0 3.0.0 0.0

ds8.csv out6 4sec shift 3.0 5.0 1.0 0.0 0.0 6.0.0 6.0.0 5.0.0 4.0.0 0.0

ds8.csv out6 4sec shift noise 3.0 5.0 1.0 4.0 0.0 6.0.0 6.0.0 5.0.0 4.0.0 0.0

ds8.csv out6 4sec shift filt 3.0 5.0 1.0 5.0 0.0 6.0.0 6.0.0 4.0.0 2.0.0 0.0

ds8.csv out6 4sec shift noise filt 3.0 5.0 1.0 3.0 0.0 6.0.0 6.0.0 4.0.0 2.0.0 0.0

ds8.csv out6 6sec shift 3.0 5.0 1.0 1.0 0.0 1.0.0 6.0.0 5.0.0 4.0.0 0.0

ds8.csv out6 6sec shift noise 3.0 5.0 1.0 1.0 0.0 1.0.0 6.0.0 5.0.0 4.0.0 0.0

ds8.csv out6 6sec shift filt 3.0 5.0 1.0 3.0 0.0 1.0.0 6.0.0 5.0.0 6.0.0 0.0
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds8.csv out6 6sec shift noise filt 3.0 5.0 1.0 3.0 0.0 1.0.0 6.0.0 5.0.0 6.0.0 0.0

ds8.csv out6 8sec shift 3.0 5.0 1.0 4.0 0.0 1.0.0 6.0.0 5.0.0 4.0.0 0.0

ds8.csv out6 8sec shift noise 3.0 5.0 1.0 4.0 0.0 1.0.0 6.0.0 5.0.0 4.0.0 0.0

ds8.csv out6 8sec shift filt 3.0 5.0 1.0 0.0 0.0 1.0.0 6.0.0 5.0.0 2.0.0 0.0

ds8.csv out6 8sec shift noise filt 3.0 5.0 1.0 0.0 0.0 1.0.0 6.0.0 5.0.0 2.0.0 0.0

ds8.csv out6 10sec shift 3.0 5.0 1.0 3.0 0.0 1.0.0 6.0.0 3.0.0 4.0.0 0.0

ds8.csv out6 10sec shift noise 3.0 5.0 1.0 3.0 0.0 1.0.0 6.0.0 3.0.0 4.0.0 0.0

ds8.csv out6 10sec shift filt 3.0 5.0 1.0 5.0 0.0 1.0.0 6.0.0 3.0.0 4.0.0 0.0

ds8.csv out6 10sec shift noise filt 3.0 5.0 1.0 5.0 0.0 1.0.0 6.0.0 3.0.0 4.0.0 0.0

ds8.csv out7 2sec shift 3.0 5.0 3.0 3.0 0.0 0.0.0 6.0.0 3.0.0 1.0.0 0.0

ds8.csv out7 2sec shift noise 3.0 5.0 3.0 3.0 0.0 2.0.0 6.0.0 3.0.0 1.0.0 0.0

ds8.csv out7 2sec shift filt 3.0 5.0 3.0 3.0 0.0 2.0.0 6.0.0 3.0.0 1.0.0 0.0

ds8.csv out7 2sec shift noise filt 3.0 5.0 3.0 3.0 0.0 2.0.0 6.0.0 3.0.0 1.0.0 0.0

ds8.csv out7 4sec shift 3.0 5.0 3.0 3.0 0.0 0.0.0 6.0.0 3.0.0 6.0.0 0.0

ds8.csv out7 4sec shift noise 3.0 5.0 3.0 3.0 0.0 0.0.0 6.0.0 3.0.0 6.0.0 0.0

ds8.csv out7 4sec shift filt 3.0 5.0 3.0 0.0 0.0 0.0.0 4.0.0 3.0.0 2.0.0 0.0

ds8.csv out7 4sec shift noise filt 3.0 5.0 3.0 5.0 0.0 0.0.0 6.0.0 3.0.0 3.0.0 0.0

ds8.csv out7 6sec shift 3.0 5.0 3.0 1.0 0.0 0.0.0 6.0.0 3.0.0 8.0.0 0.0

ds8.csv out7 6sec shift noise 3.0 5.0 3.0 1.0 0.0 0.0.0 6.0.0 3.0.0 8.0.0 0.0

ds8.csv out7 6sec shift filt 3.0 5.0 3.0 2.0 0.0 0.0.0 6.0.0 3.0.0 8.0.0 0.0

ds8.csv out7 6sec shift noise filt 3.0 5.0 3.0 3.0 0.0 0.0.0 6.0.0 3.0.0 2.0.0 0.0

ds8.csv out7 8sec shift 3.0 5.0 3.0 4.0 0.0 0.0.0 6.0.0 3.0.0 4.0.0 0.0

ds8.csv out7 8sec shift noise 3.0 5.0 3.0 1.0 0.0 8.0.0 6.0.0 3.0.0 4.0.0 0.0

ds8.csv out7 8sec shift filt 3.0 5.0 3.0 2.0 0.0 8.0.0 6.0.0 3.0.0 6.0.0 0.0

ds8.csv out7 8sec shift noise filt 3.0 5.0 3.0 0.0 0.0 8.0.0 6.0.0 3.0.0 5.0.0 0.0

ds8.csv out7 10sec shift 3.0 5.0 3.0 4.0 0.0 8.0.0 6.0.0 3.0.0 10.0.0 0.0

ds8.csv out7 10sec shift noise 3.0 5.0 3.0 4.0 0.0 0.0.0 8.0.0 3.0.0 10.0.0 0.0

ds8.csv out7 10sec shift filt 3.0 5.0 3.0 5.0 0.0 0.0.0 9.0.0 3.0.0 10.0.0 0.0

ds8.csv out7 10sec shift noise filt 3.0 5.0 3.0 5.0 0.0 10.0.0 6.0.0 3.0.0 1.0.0 0.0

ds8.csv out8 2sec shift 4.0 0.0 2.0 1.0 0.0 1.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 2sec shift noise 4.0 0.0 2.0 1.0 0.0 1.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 2sec shift filt 4.0 0.0 2.0 5.0 0.0 1.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 2sec shift noise filt 4.0 0.0 2.0 5.0 0.0 1.0.0 6.0.0 4.0.0 1.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds8.csv out8 4sec shift 4.0 0.0 2.0 3.0 0.0 4.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 4sec shift noise 4.0 0.0 2.0 3.0 0.0 4.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 4sec shift filt 4.0 0.0 2.0 3.0 0.0 4.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 4sec shift noise filt 4.0 0.0 2.0 4.0 0.0 4.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 6sec shift 4.0 0.0 2.0 4.0 0.0 4.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 6sec shift noise 4.0 0.0 2.0 0.0 0.0 4.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 6sec shift filt 4.0 0.0 2.0 5.0 0.0 4.0.0 6.0.0 4.0.0 4.0.0 0.0

ds8.csv out8 6sec shift noise filt 4.0 0.0 2.0 5.0 0.0 4.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 8sec shift 4.0 0.0 2.0 3.0 0.0 4.0.0 6.0.0 4.0.0 8.0.0 0.0

ds8.csv out8 8sec shift noise 4.0 0.0 2.0 3.0 0.0 4.0.0 6.0.0 8.0.0 2.0.0 0.0

ds8.csv out8 8sec shift filt 4.0 0.0 2.0 4.0 0.0 4.0.0 6.0.0 8.0.0 6.0.0 0.0

ds8.csv out8 8sec shift noise filt 4.0 0.0 2.0 4.0 0.0 8.0.0 6.0.0 8.0.0 8.0.0 0.0

ds8.csv out8 10sec shift 4.0 0.0 2.0 5.0 0.0 8.0.0 6.0.0 4.0.0 1.0.0 0.0

ds8.csv out8 10sec shift noise 4.0 0.0 2.0 5.0 0.0 4.0.0 6.0.0 4.0.0 10.0.0 0.0

ds8.csv out8 10sec shift filt 4.0 0.0 2.0 5.0 0.0 4.0.0 6.0.0 10.0.0 8.0.0 0.0

ds8.csv out8 10sec shift noise filt 4.0 0.0 2.0 5.0 0.0 10.0.0 6.0.0 10.0.0 0.0.0 0.0

ds9.csv out1 0sec 3.0 1.0 3.0 4.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds9.csv out2 0sec 6.0 4.0 0.0 5.0 0.0 0.0.0 2.0.0 0.0.0 0.0.0 0.0

ds9.csv out3 0sec 4.0 6.0 0.0 1.0 0.0 0.0.0 0.0.0 1.0.0 0.0.0 0.0

ds9.csv out4 0sec 6.0 6.0 5.0 0.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds9.csv out5 0sec 4.0 6.0 3.0 4.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds9.csv out6 0sec 1.0 6.0 4.0 1.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0

ds9.csv out1 2sec shift 3.0 1.0 3.0 2.0 0.0 2.0.0 2.0.0 2.0.0 0.0.0 0.0

ds9.csv out1 2sec shift noise 3.0 1.0 3.0 2.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds9.csv out1 2sec shift filt 3.0 1.0 3.0 0.0 0.0 2.0.0 0.0.0 2.0.0 4.0.0 0.0

ds9.csv out1 2sec shift noise filt 3.0 1.0 3.0 0.0 0.0 2.0.0 0.0.0 2.0.0 4.0.0 0.0

ds9.csv out1 4sec shift 3.0 1.0 3.0 2.0 0.0 4.0.0 0.0.0 4.0.0 1.0.0 0.0

ds9.csv out1 4sec shift noise 3.0 1.0 3.0 2.0 0.0 4.0.0 0.0.0 4.0.0 1.0.0 0.0

ds9.csv out1 4sec shift filt 3.0 1.0 3.0 3.0 0.0 4.0.0 0.0.0 4.0.0 3.0.0 0.0

ds9.csv out1 4sec shift noise filt 3.0 1.0 3.0 3.0 0.0 4.0.0 0.0.0 2.0.0 3.0.0 0.0

ds9.csv out1 6sec shift 3.0 1.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 6.0.0 0.0

ds9.csv out1 6sec shift noise 3.0 1.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 6.0.0 0.0

ds9.csv out1 6sec shift filt 3.0 1.0 3.0 1.0 0.0 0.0.0 0.0.0 2.0.0 6.0.0 0.0
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A.1. All Test Data results
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds9.csv out1 6sec shift noise filt 3.0 1.0 3.0 1.0 0.0 0.0.0 0.0.0 2.0.0 5.0.0 0.0

ds9.csv out1 8sec shift 3.0 1.0 3.0 1.0 0.0 0.0.0 0.0.0 2.0.0 1.0.0 0.0

ds9.csv out1 8sec shift noise 3.0 1.0 3.0 1.0 0.0 0.0.0 0.0.0 2.0.0 8.0.0 0.0

ds9.csv out1 8sec shift filt 3.0 1.0 3.0 6.0 0.0 0.0.0 0.0.0 2.0.0 8.0.0 0.0

ds9.csv out1 8sec shift noise filt 3.0 1.0 3.0 6.0 0.0 6.0.0 7.0.0 6.0.0 0.0.0 0.0

ds9.csv out1 10sec shift 3.0 1.0 3.0 4.0 0.0 0.0.0 0.0.0 2.0.0 1.0.0 0.0

ds9.csv out1 10sec shift noise 3.0 1.0 3.0 4.0 0.0 8.0.0 10.0.0 9.0.0 1.0.0 0.0

ds9.csv out1 10sec shift filt 3.0 1.0 3.0 2.0 0.0 8.0.0 10.0.0 10.0.0 5.0.0 0.0

ds9.csv out1 10sec shift noise filt 3.0 1.0 3.0 2.0 0.0 6.0.0 10.0.0 10.0.0 5.0.0 0.0

ds9.csv out2 2sec shift 6.0 4.0 0.0 2.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds9.csv out2 2sec shift noise 6.0 4.0 0.0 5.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds9.csv out2 2sec shift filt 6.0 4.0 0.0 5.0 0.0 3.0.0 2.0.0 1.0.0 4.0.0 0.0

ds9.csv out2 2sec shift noise filt 6.0 4.0 0.0 4.0 0.0 0.0.0 2.0.0 2.0.0 5.0.0 0.0

ds9.csv out2 4sec shift 6.0 4.0 0.0 3.0 0.0 3.0.0 2.0.0 1.0.0 2.0.0 0.0

ds9.csv out2 4sec shift noise 6.0 4.0 0.0 1.0 0.0 0.0.0 2.0.0 4.0.0 3.0.0 0.0

ds9.csv out2 4sec shift filt 6.0 4.0 0.0 5.0 0.0 3.0.0 2.0.0 4.0.0 3.0.0 0.0

ds9.csv out2 4sec shift noise filt 6.0 4.0 0.0 3.0 0.0 4.0.0 2.0.0 1.0.0 3.0.0 0.0

ds9.csv out2 6sec shift 6.0 4.0 0.0 4.0 0.0 3.0.0 2.0.0 1.0.0 4.0.0 0.0

ds9.csv out2 6sec shift noise 6.0 4.0 0.0 3.0 0.0 6.0.0 2.0.0 6.0.0 2.0.0 0.0

ds9.csv out2 6sec shift filt 6.0 4.0 0.0 3.0 0.0 3.0.0 2.0.0 6.0.0 0.0.0 0.0

ds9.csv out2 6sec shift noise filt 6.0 4.0 0.0 6.0 0.0 3.0.0 2.0.0 6.0.0 4.0.0 0.0

ds9.csv out2 8sec shift 6.0 4.0 0.0 3.0 0.0 3.0.0 2.0.0 1.0.0 8.0.0 0.0

ds9.csv out2 8sec shift noise 6.0 4.0 0.0 1.0 0.0 3.0.0 8.0.0 1.0.0 8.0.0 0.0

ds9.csv out2 8sec shift filt 6.0 4.0 0.0 3.0 0.0 3.0.0 2.0.0 1.0.0 4.0.0 0.0

ds9.csv out2 8sec shift noise filt 6.0 4.0 0.0 5.0 0.0 8.0.0 8.0.0 1.0.0 0.0.0 0.0

ds9.csv out2 10sec shift 6.0 4.0 0.0 5.0 0.0 3.0.0 2.0.0 10.0.0 9.0.0 0.0

ds9.csv out2 10sec shift noise 6.0 6.0 0.0 1.0 0.0 3.0.0 2.0.0 10.0.0 10.0.0 0.0

ds9.csv out2 10sec shift filt 6.0 4.0 0.0 2.0 0.0 3.0.0 10.0.0 9.3.0 3.0.0 0.0

ds9.csv out2 10sec shift noise filt 6.0 4.0 0.0 4.0 0.0 10.0.0 8.0.0 10.0.0 3.0.0 0.0

ds9.csv out3 2sec shift 4.0 6.0 0.0 3.0 0.0 3.0.0 2.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 2sec shift noise 5.0 6.0 0.0 1.0 0.0 3.0.0 2.0.0 2.0.0 3.0.0 0.0

ds9.csv out3 2sec shift filt 4.0 6.0 0.0 4.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 2sec shift noise filt 4.0 6.0 0.0 5.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

.0 Continued on next page

199



Appendix A. Appendix

.0 Table A.1 Presentation of Results Before and After Optimization
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ds9.csv out3 4sec shift 4.0 6.0 0.0 5.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 4sec shift noise 5.0 6.0 0.0 3.0 0.0 4.0.0 1.0.0 4.0.0 2.0.0 0.0

ds9.csv out3 4sec shift filt 4.0 6.0 0.0 2.0 0.0 4.0.0 1.0.0 4.0.0 2.0.0 0.0

ds9.csv out3 4sec shift noise filt 4.0 6.0 0.0 3.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 6sec shift 4.0 6.0 0.0 3.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 6sec shift noise 5.0 6.0 0.0 4.0 0.0 5.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 6sec shift filt 4.0 6.0 0.0 3.0 0.0 6.0.0 6.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 6sec shift noise filt 4.0 6.0 0.0 4.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 8sec shift 4.0 6.0 0.0 4.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 8sec shift noise 5.0 6.0 0.0 3.0 0.0 8.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 8sec shift filt 4.0 6.0 0.0 2.0 0.0 8.0.0 8.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 8sec shift noise filt 5.0 6.0 0.0 4.0 0.0 4.0.0 6.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 10sec shift 4.0 6.0 0.0 4.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 10sec shift noise 5.0 6.0 0.0 5.0 0.0 4.0.0 10.0.0 2.0.0 2.0.0 0.0

ds9.csv out3 10sec shift filt 4.0 6.0 0.0 3.0 0.0 4.0.0 1.0.0 10.0.0 2.0.0 0.0

ds9.csv out3 10sec shift noise filt 5.0 6.0 0.0 6.0 0.0 4.0.0 1.0.0 10.0.0 2.0.0 0.0

ds9.csv out4 2sec shift 6.0 6.0 5.0 2.0 0.0 4.0.0 1.0.0 2.0.0 3.0.0 0.0

ds9.csv out4 2sec shift noise 6.0 6.0 5.0 2.0 0.0 4.0.0 1.0.0 2.0.0 2.0.0 0.0

ds9.csv out4 2sec shift filt 6.0 6.0 5.0 3.0 0.0 3.0.0 5.0.0 2.0.0 4.0.0 0.0

ds9.csv out4 2sec shift noise filt 6.0 6.0 5.0 3.0 0.0 3.0.0 5.0.0 2.0.0 4.0.0 0.0

ds9.csv out4 4sec shift 6.0 6.0 5.0 4.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 4sec shift noise 6.0 6.0 5.0 4.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 4sec shift filt 6.0 6.0 5.0 2.0 0.0 3.0.0 5.0.0 2.0.0 0.0.0 0.0

ds9.csv out4 4sec shift noise filt 6.0 6.0 5.0 2.0 0.0 3.0.0 5.0.0 2.0.0 0.0.0 0.0

ds9.csv out4 6sec shift 1.0 6.0 5.0 4.0 0.0 3.0.0 5.0.0 2.0.0 3.0.0 0.0

ds9.csv out4 6sec shift noise 1.0 6.0 5.0 4.0 0.0 3.0.0 5.0.0 2.0.0 3.0.0 0.0

ds9.csv out4 6sec shift filt 1.0 6.0 5.0 6.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 6sec shift noise filt 1.0 6.0 5.0 6.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 8sec shift 1.0 6.0 5.0 4.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 8sec shift noise 1.0 6.0 5.0 4.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 8sec shift filt 1.0 6.0 5.0 2.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 8sec shift noise filt 1.0 6.0 5.0 2.0 0.0 3.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out4 10sec shift 1.0 6.0 3.0 4.0 0.0 3.0.0 5.0.0 8.0.0 10.0.0 0.0
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ds9.csv out4 10sec shift noise 1.0 6.0 3.0 4.0 0.0 3.0.0 10.0.0 2.0.0 9.6.0 0.0

ds9.csv out4 10sec shift filt 1.0 6.0 3.0 4.0 0.0 3.0.0 5.0.0 9.0.0 0.0.0 0.0

ds9.csv out4 10sec shift noise filt 1.0 6.0 3.0 4.0 0.0 8.0.0 10.0.0 2.0.0 1.0.0 0.0

ds9.csv out5 2sec shift 0.0 6.0 3.0 1.0 0.0 3.0.0 5.0.0 2.0.0 1.0.0 0.0

ds9.csv out5 2sec shift noise 0.0 6.0 3.0 1.0 0.0 3.0.0 5.0.0 2.0.0 1.0.0 0.0

ds9.csv out5 2sec shift filt 0.0 6.0 3.0 1.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds9.csv out5 2sec shift noise filt 0.0 6.0 3.0 1.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds9.csv out5 4sec shift 0.0 6.0 3.0 6.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds9.csv out5 4sec shift noise 0.0 6.0 3.0 6.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds9.csv out5 4sec shift filt 0.0 6.0 3.0 2.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds9.csv out5 4sec shift noise filt 0.0 6.0 3.0 3.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds9.csv out5 6sec shift 0.0 6.0 3.0 4.0 0.0 0.0.0 6.0.0 2.0.0 6.0.0 0.0

ds9.csv out5 6sec shift noise 0.0 6.0 3.0 4.0 0.0 0.0.0 4.0.0 6.0.0 2.0.0 0.0

ds9.csv out5 6sec shift filt 0.0 6.0 3.0 2.0 0.0 6.0.0 4.0.0 6.0.0 2.0.0 0.0

ds9.csv out5 6sec shift noise filt 0.0 6.0 3.0 2.0 0.0 6.0.0 6.0.0 6.0.0 2.0.0 0.0

ds9.csv out5 8sec shift 0.0 6.0 3.0 4.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds9.csv out5 8sec shift noise 0.0 6.0 3.0 4.0 0.0 0.0.0 0.0.0 7.0.0 2.0.0 0.0

ds9.csv out5 8sec shift filt 0.0 6.0 3.0 6.0 0.0 0.0.0 0.0.0 7.0.0 0.0.0 0.0

ds9.csv out5 8sec shift noise filt 0.0 6.0 3.0 5.0 0.0 0.0.0 0.0.0 7.0.0 0.0.0 0.0

ds9.csv out5 10sec shift 0.0 6.0 3.0 2.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds9.csv out5 10sec shift noise 0.0 6.0 3.0 3.0 0.0 10.0.0 10.0.0 2.0.0 2.0.0 0.0

ds9.csv out5 10sec shift filt 0.0 6.0 3.0 1.0 0.0 9.6.0 10.0.0 10.0.0 9.0.0 0.0

ds9.csv out5 10sec shift noise filt 0.0 6.0 3.0 1.0 0.0 0.0.0 10.0.0 2.0.0 7.0.0 0.0

ds9.csv out6 2sec shift 1.0 6.0 4.0 1.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds9.csv out6 2sec shift noise 1.0 6.0 4.0 1.0 0.0 0.0.0 2.0.0 2.0.0 3.0.0 0.0

ds9.csv out6 2sec shift filt 1.0 6.0 4.0 1.0 0.0 5.0.0 2.0.0 2.0.0 3.0.0 0.0

ds9.csv out6 2sec shift noise filt 1.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 0.0.0 0.0

ds9.csv out6 4sec shift 4.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 3.0.0 0.0

ds9.csv out6 4sec shift noise 4.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 4.0.0 0.0

ds9.csv out6 4sec shift filt 4.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 4.0.0 0.0

ds9.csv out6 4sec shift noise filt 4.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 4.0.0 0.0

ds9.csv out6 6sec shift 4.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 4.0.0 0.0

ds9.csv out6 6sec shift noise 4.0 6.0 4.0 1.0 0.0 5.0.0 6.0.0 2.0.0 0.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds9.csv out6 6sec shift filt 4.0 6.0 4.0 4.0 0.0 5.0.0 6.0.0 2.0.0 5.0.0 0.0

ds9.csv out6 6sec shift noise filt 4.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 5.0.0 0.0

ds9.csv out6 8sec shift 4.0 6.0 4.0 2.0 0.0 5.0.0 5.0.0 2.0.0 3.0.0 0.0

ds9.csv out6 8sec shift noise 4.0 6.0 4.0 2.0 0.0 5.0.0 8.0.0 2.0.0 6.0.0 0.0

ds9.csv out6 8sec shift filt 4.0 6.0 4.0 1.0 0.0 5.0.0 8.0.0 2.0.0 7.0.0 0.0

ds9.csv out6 8sec shift noise filt 4.0 6.0 4.0 1.0 0.0 5.0.0 5.0.0 2.0.0 8.0.0 0.0

ds9.csv out6 10sec shift 4.0 6.0 4.0 1.0 0.0 10.0.0 5.0.0 2.0.0 10.0.0 0.0

ds9.csv out6 10sec shift noise 4.0 6.0 4.0 1.0 0.0 10.0.0 5.0.0 2.0.0 9.0.0 0.0

ds9.csv out6 10sec shift filt 4.0 6.0 4.0 0.0 0.0 10.0.0 5.0.0 3.0.0 9.0.0 0.0

ds9.csv out6 10sec shift noise filt 4.0 6.0 4.0 0.0 0.0 10.0.0 5.0.0 3.0.0 10.0.0 0.0

ds10.csv out1 0sec 0.0 0.0 2.0 0.0 0.0 0.0 0.0 1.0.0 0.0 0.0

ds10.csv out2 0sec 3.0 2.0 1.0 5.0 0.0 0.0 5.0.0 3.0.0 0.0 0.0

ds10.csv out3 0sec 4.0 1.0 2.0 3.0 0.0 0.0 0.0 4.0.0 0.0 0.0

ds10.csv out4 0sec 3.0 5.0 2.0 3.0 0.0 0.0 0.0 4.0.0 0.0 0.0

ds10.csv out5 0sec 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ds10.csv out6 0sec 5.0 5.0 5.0 3.0 0.0 3.0.0 0.0 0.0 0.0 0.0

ds10.csv out7 0sec 5.0 5.0 4.0 0.0 0.0 2.0.0 0.0 0.0 2.0.0 0.0

ds10.csv out8 0sec 0.0 0.0 2.0 3.0 0.0 0.0 0.0 0.0 2.0.0 0.0

ds10.csv out1 2sec shift 0.0 0.0 2.0 4.0 0.0 5.0.0 2.0.0 2.0.0 2.0.0 0.0

ds10.csv out1 2sec shift noise 0.0 0.0 2.0 4.0 0.0 5.0.0 5.0.0 4.0.0 4.0.0 0.0

ds10.csv out1 2sec shift filt 0.0 0.0 2.0 1.0 0.0 5.0.0 5.0.0 4.0.0 5.0.0 0.0

ds10.csv out1 2sec shift noise filt 0.0 0.0 2.0 1.0 0.0 5.0.0 5.0.0 4.0.0 2.0.0 0.0

ds10.csv out1 4sec shift 0.0 0.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 1.0.0 0.0

ds10.csv out1 4sec shift noise 0.0 0.0 2.0 3.0 0.0 5.0.0 5.0.0 4.0.0 0.0.0 0.0

ds10.csv out1 4sec shift filt 0.0 0.0 2.0 1.0 0.0 5.0.0 5.0.0 4.0.0 0.0.0 0.0

ds10.csv out1 4sec shift noise filt 0.0 0.0 2.0 1.0 0.0 5.0.0 5.0.0 4.0.0 3.0.0 0.0

ds10.csv out1 6sec shift 0.0 0.0 2.0 5.0 0.0 5.0.0 5.0.0 4.0.0 4.0.0 0.0

ds10.csv out1 6sec shift noise 0.0 0.0 2.0 5.0 0.0 5.0.0 5.0.0 4.0.0 4.0.0 0.0

ds10.csv out1 6sec shift filt 0.0 0.0 2.0 1.0 0.0 5.0.0 5.0.0 5.0.0 5.0.0 0.0

ds10.csv out1 6sec shift noise filt 0.0 0.0 2.0 1.0 0.0 5.0.0 5.0.0 5.0.0 1.0.0 0.0

ds10.csv out1 8sec shift 0.0 0.0 2.0 0.0 0.0 5.0.0 5.0.0 5.0.0 1.0.0 0.0

ds10.csv out1 8sec shift noise 0.0 0.0 2.0 0.0 0.0 5.0.0 8.0.0 5.0.0 1.0.0 0.0

ds10.csv out1 8sec shift filt 0.0 0.0 2.0 1.0 0.0 5.0.0 8.0.0 2.0.0 5.0.0 0.0
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ds10.csv out1 8sec shift noise filt 0.0 0.0 2.0 1.0 0.0 6.0.0 0.0.0 2.0.0 3.0.0 0.0

ds10.csv out1 10sec shift 0.0 0.0 2.0 5.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds10.csv out1 10sec shift noise 0.0 0.0 2.0 5.0 0.0 10.0.0 0.0.0 2.0.0 3.0.0 0.0

ds10.csv out1 10sec shift filt 0.0 0.0 2.0 3.0 0.0 10.0.0 0.0.0 2.0.0 4.0.0 0.0

ds10.csv out1 10sec shift noise filt 0.0 0.0 2.0 3.0 0.0 9.0.0 8.0.0 2.0.0 4.0.0 0.0

ds10.csv out2 2sec shift 3.0 2.0 1.0 4.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds10.csv out2 2sec shift noise 0.0 2.0 1.0 5.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds10.csv out2 2sec shift filt 3.0 2.0 1.0 1.0 0.0 0.0.0 0.0.0 2.0.0 4.0.0 0.0

ds10.csv out2 2sec shift noise filt 0.0 2.0 1.0 3.0 0.0 0.0.0 0.0.0 2.0.0 4.0.0 0.0

ds10.csv out2 4sec shift 3.0 2.0 1.0 3.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds10.csv out2 4sec shift noise 5.0 2.0 1.0 3.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds10.csv out2 4sec shift filt 3.0 2.0 1.0 4.0 0.0 0.0.0 0.0.0 2.0.0 3.0.0 0.0

ds10.csv out2 4sec shift noise filt 0.0 2.0 1.0 2.0 0.0 0.0.0 0.0.0 2.0.0 4.0.0 0.0

ds10.csv out2 6sec shift 3.0 2.0 1.0 0.0 0.0 0.0.0 0.0.0 2.0.0 5.0.0 0.0

ds10.csv out2 6sec shift noise 3.0 2.0 1.0 4.0 0.0 0.0.0 0.0.0 2.0.0 5.0.0 0.0

ds10.csv out2 6sec shift filt 3.0 2.0 1.0 5.0 0.0 0.0.0 0.0.0 2.0.0 0.0.0 0.0

ds10.csv out2 6sec shift noise filt 3.0 2.0 1.0 1.0 0.0 0.0.0 0.0.0 2.0.0 4.0.0 0.0

ds10.csv out2 8sec shift 3.0 2.0 1.0 4.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds10.csv out2 8sec shift noise 0.0 2.0 1.0 0.0 0.0 0.0.0 0.0.0 2.0.0 2.0.0 0.0

ds10.csv out2 8sec shift filt 3.0 2.0 1.0 3.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out2 8sec shift noise filt 3.0 2.0 1.0 0.0 0.0 0.0.0 3.0.0 0.0.0 3.0.0 0.0

ds10.csv out2 10sec shift 3.0 2.0 1.0 3.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out2 10sec shift noise 0.0 2.0 1.0 3.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out2 10sec shift filt 3.0 2.0 1.0 2.0 0.0 0.0.0 3.0.0 3.0.0 3.0.0 0.0

ds10.csv out2 10sec shift noise filt 3.0 2.0 1.0 3.0 0.0 0.0.0 3.0.0 3.0.0 3.0.0 0.0

ds10.csv out3 2sec shift 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out3 2sec shift noise 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out3 2sec shift filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out3 2sec shift noise filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out3 4sec shift 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out3 4sec shift noise 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out3 4sec shift filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out3 4sec shift noise filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds10.csv out3 6sec shift 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out3 6sec shift noise 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out3 6sec shift filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out3 6sec shift noise filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out3 8sec shift 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 8.0.0 8.0.0 0.0

ds10.csv out3 8sec shift noise 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 7.5.0 6.0.0 0.0

ds10.csv out3 8sec shift filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 8.0.0 0.0.0 0.0

ds10.csv out3 8sec shift noise filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 8.0.0 6.0.0 0.0

ds10.csv out3 10sec shift 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 0.0.0 0.0.0 0.0

ds10.csv out3 10sec shift noise 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 0.0.0 10.0.0 0.0

ds10.csv out3 10sec shift filt 4.0 1.0 2.0 3.0 0.0 0.0.0 3.0.0 11.0.0 10.0.0 0.0

ds10.csv out3 10sec shift noise filt 4.0 1.0 2.0 2.0 0.0 0.0.0 3.0.0 11.0.0 3.0.0 0.0

ds10.csv out4 2sec shift 3.0 5.0 2.0 4.0 0.0 0.0.0 3.0.0 0.0.0 1.0.0 0.0

ds10.csv out4 2sec shift noise 3.0 5.0 2.0 4.0 0.0 0.0.0 3.0.0 0.0.0 1.0.0 0.0

ds10.csv out4 2sec shift filt 3.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 3.0.0 0.0.0 0.0

ds10.csv out4 2sec shift noise filt 3.0 5.0 2.0 5.0 0.0 0.0.0 4.0.0 3.0.0 4.0.0 0.0

ds10.csv out4 4sec shift 3.0 5.0 2.0 0.0 0.0 0.0.0 3.0.0 0.0.0 1.0.0 0.0

ds10.csv out4 4sec shift noise 3.0 5.0 2.0 0.0 0.0 0.0.0 3.0.0 0.0.0 0.0.0 0.0

ds10.csv out4 4sec shift filt 3.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 0.0.0 3.0.0 0.0

ds10.csv out4 4sec shift noise filt 3.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 0.0.0 3.0.0 0.0

ds10.csv out4 6sec shift 3.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 0.0.0 2.0.0 0.0

ds10.csv out4 6sec shift noise 3.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 0.0.0 0.0.0 0.0

ds10.csv out4 6sec shift filt 3.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 0.0.0 0.0.0 0.0

ds10.csv out4 6sec shift noise filt 3.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 0.0.0 0.0.0 0.0

ds10.csv out4 8sec shift 3.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 3.0.0 3.0.0 0.0

ds10.csv out4 8sec shift noise 3.0 5.0 2.0 5.0 0.0 8.0.0 6.0.0 8.0.0 1.0.0 0.0

ds10.csv out4 8sec shift filt 3.0 5.0 2.0 1.0 0.0 8.3.0 6.0.0 8.0.0 8.0.0 0.0

ds10.csv out4 8sec shift noise filt 3.0 5.0 2.0 1.0 0.0 0.0.0 8.0.0 6.0.0 8.0.0 0.0

ds10.csv out4 10sec shift 3.0 5.0 2.0 0.0 0.0 0.0.0 3.0.0 10.0.0 10.0.0 0.0

ds10.csv out4 10sec shift noise 3.0 5.0 2.0 1.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out4 10sec shift filt 3.0 5.0 2.0 1.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out4 10sec shift noise filt 3.0 5.0 2.0 1.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 2sec shift 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0
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ds10.csv out5 2sec shift noise 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out5 2sec shift filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 2sec shift noise filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 4sec shift 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 4sec shift noise 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 4sec shift filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 4sec shift noise filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 6sec shift 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 6sec shift noise 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out5 6sec shift filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out5 6sec shift noise filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out5 8sec shift 0.0 0.0 2.0 0.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out5 8sec shift noise 0.0 0.0 2.0 0.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out5 8sec shift filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out5 8sec shift noise filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out5 10sec shift 0.0 0.0 2.0 5.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out5 10sec shift noise 0.0 0.0 2.0 5.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out5 10sec shift filt 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 3.0.0 3.0.0 0.0

ds10.csv out5 10sec shift noise filt 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 3.0.0 3.0.0 0.0

ds10.csv out6 2sec shift 5.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out6 2sec shift noise 5.0 5.0 2.0 0.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out6 2sec shift filt 5.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out6 2sec shift noise filt 5.0 5.0 2.0 1.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out6 4sec shift 5.0 5.0 2.0 4.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out6 4sec shift noise 5.0 5.0 2.0 4.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out6 4sec shift filt 5.0 5.0 2.0 4.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out6 4sec shift noise filt 5.0 5.0 2.0 0.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out6 6sec shift 5.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out6 6sec shift noise 5.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out6 6sec shift filt 5.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out6 6sec shift noise filt 5.0 5.0 2.0 5.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out6 8sec shift 5.0 5.0 2.0 0.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out6 8sec shift noise 5.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0
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Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds10.csv out6 8sec shift filt 5.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out6 8sec shift noise filt 5.0 5.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out6 10sec shift 5.0 5.0 3.0 5.0 0.0 0.0.0 10.0.0 2.0.0 3.0.0 0.0

ds10.csv out6 10sec shift noise 5.0 5.0 3.0 2.0 0.0 10.0.0 3.0.0 2.0.0 10.0.0 0.0

ds10.csv out6 10sec shift filt 5.0 5.0 3.0 2.0 0.0 10.0.0 3.0.0 2.0.0 10.0.0 0.0

ds10.csv out6 10sec shift noise filt 5.0 5.0 3.0 2.0 0.0 1.0.0 10.0.0 2.0.0 3.0.0 0.0

ds10.csv out7 2sec shift 5.0 5.0 4.0 3.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out7 2sec shift noise 5.0 5.0 4.0 0.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out7 2sec shift filt 5.0 5.0 4.0 0.0 0.0 0.0.0 3.0.0 3.0.0 2.0.0 0.0

ds10.csv out7 2sec shift noise filt 5.0 5.0 4.0 0.0 0.0 0.0.0 3.0.0 3.0.0 3.0.0 0.0

ds10.csv out7 4sec shift 5.0 5.0 4.0 2.0 0.0 0.0.0 3.0.0 3.0.0 1.0.0 0.0

ds10.csv out7 4sec shift noise 5.0 5.0 4.0 2.0 0.0 0.0.0 3.0.0 3.0.0 4.0.0 0.0

ds10.csv out7 4sec shift filt 5.0 5.0 4.0 4.0 0.0 0.0.0 3.0.0 3.0.0 4.0.0 0.0

ds10.csv out7 4sec shift noise filt 5.0 5.0 4.0 4.0 0.0 0.0.0 3.0.0 3.0.0 1.0.0 0.0

ds10.csv out7 6sec shift 5.0 5.0 4.0 5.0 0.0 0.0.0 6.0.0 2.0.0 6.0.0 0.0

ds10.csv out7 6sec shift noise 5.0 5.0 4.0 2.0 0.0 0.0.0 6.0.0 2.0.0 1.0.0 0.0

ds10.csv out7 6sec shift filt 5.0 5.0 4.0 1.0 0.0 0.0.0 6.0.0 2.0.0 0.0.0 0.0

ds10.csv out7 6sec shift noise filt 5.0 5.0 4.0 0.0 0.0 6.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out7 8sec shift 5.0 5.0 4.0 0.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out7 8sec shift noise 5.0 5.0 4.0 3.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out7 8sec shift filt 5.0 5.0 4.0 4.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out7 8sec shift noise filt 5.0 5.0 4.0 4.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out7 10sec shift 5.0 5.0 5.0 5.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out7 10sec shift noise 5.0 5.0 5.0 1.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out7 10sec shift filt 5.0 5.0 5.0 1.0 0.0 10.0.0 10.0.0 9.0.0 10.0.0 0.0

ds10.csv out7 10sec shift noise filt 5.0 5.0 5.0 1.0 0.0 10.0.0 10.0.0 9.5.0 9.0.0 0.0

ds10.csv out8 2sec shift 0.0 0.0 2.0 5.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out8 2sec shift noise 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out8 2sec shift filt 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 2.0.0 0.0

ds10.csv out8 2sec shift noise filt 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out8 4sec shift 0.0 0.0 2.0 4.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out8 4sec shift noise 0.0 0.0 2.0 4.0 0.0 0.0.0 3.0.0 2.0.0 1.0.0 0.0

ds10.csv out8 4sec shift filt 0.0 0.0 2.0 2.0 0.0 0.0.0 4.0.0 2.0.0 4.0.0 0.0

.0 Continued on next page
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A.1. All Test Data results

.0 Table A.1 Presentation of Results Before and After Optimization

Filename Output signal CC1 PR1 LR1 AR1 LM1 CC2 PR2 LR2 AR2 LM2

ds10.csv out8 4sec shift noise filt 0.0 0.0 2.0 2.0 0.0 0.0.0 4.0.0 2.0.0 4.0.0 0.0

ds10.csv out8 6sec shift 0.0 0.0 2.0 4.0 0.0 0.0.0 3.0.0 3.0.0 1.0.0 0.0

ds10.csv out8 6sec shift noise 0.0 0.0 2.0 4.0 0.0 0.0.0 3.0.0 3.0.0 1.0.0 0.0

ds10.csv out8 6sec shift filt 0.0 0.0 2.0 2.0 0.0 0.0.0 5.0.0 6.0.0 6.0.0 0.0

ds10.csv out8 6sec shift noise filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 2.0.0 0.0.0 0.0

ds10.csv out8 8sec shift 0.0 0.0 2.0 3.0 0.0 0.0.0 3.0.0 3.0.0 1.0.0 0.0

ds10.csv out8 8sec shift noise 0.0 0.0 2.0 4.0 0.0 0.0.0 3.0.0 3.0.0 1.0.0 0.0

ds10.csv out8 8sec shift filt 0.0 0.0 2.0 5.0 0.0 0.0.0 3.0.0 7.0.0 8.0.0 0.0

ds10.csv out8 8sec shift noise filt 0.0 0.0 2.0 5.0 0.0 0.0.0 3.0.0 2.0.0 8.0.0 0.0

ds10.csv out8 10sec shift 0.0 0.0 2.0 0.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out8 10sec shift noise 0.0 0.0 2.0 4.0 0.0 0.0.0 3.0.0 2.0.0 3.0.0 0.0

ds10.csv out8 10sec shift filt 0.0 0.0 2.0 2.0 0.0 0.0.0 3.0.0 10.0.0 2.0.0 0.0

ds10.csv out8 10sec shift noise filt 0.0 0.0 2.0 2.0 0.0 0.0.0 9.5.0 3.0.0 10.0.0 0.0
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