
Michael Helmut Streibl, BEd BSc

Design and Analysis of the MAYO Signature Scheme

with Focus on Hardware Platforms

MASTER’S THESIS

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science (UF 066 921)

submitted to

Graz University of Technology

Supervisors

Sujoy Sinha Roy, Ass.Prof. PhD

Ahmet Can Mert, Lis. PhD Y.Lis.

Florian Hirner, Dipl.-Ing. BSc

Institute of Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria

Graz, March 2024

Acknowledgements

I would like to express my sincere gratitude to all those who have supported and guided
me throughout the journey of completing this thesis. First and foremost, I extend my
deepest appreciation to my supervisors Sujoy Sinha Roy, Ahmet Can Mert, and Florian
Hirner for their invaluable guidance and continuous assistance during the research and
writing process. Their expertise and constructive feedback have been instrumental in
shaping this thesis. Working with you was an exceptional experience and being involved
in the writing of a paper is certainly one of the highlights in my academic career.

I am indebted to my family for their unwavering love, encouragement, and support
throughout this academic and personal journey. Your belief in me has been a constant
source of motivation and strength and I would not have been able to get to this point
without you.

Finally, I would like to express my heartfelt appreciation to all my friends and colleagues
who have shared this path with me. My way through university is filled with lasting
memories and I will always look back on this time with joy.

This thesis would not have been possible without the support and contributions of all
those mentioned above and many more. Thank you all for being part of this jour-
ney.

ii

Abstract

Research in post-quantum cryptography attracts great interest due to rapid progress in
the development of quantum computers. The initial NIST call regarding post-quantum
cryptography led to the standardization of the first quantum-safe cryptographic algo-
rithms. However, the majority of these new schemes are based on lattice constructions,
prompting NIST to issue a new call to expand their portfolio with schemes founded
on non-lattice problems. One of the new candidates is MAYO, which falls under the
multivariate-based cryptography category and is a modification of the Unbalanced Oil
and Vinegar (UOV) scheme. In general, UOV offers short signatures and fast verifi-
cation, but has the disadvantage of large public keys. MAYO addresses this drawback
by introducing a whipping technique to substantially reduce the size of the public key,
making it a promising candidate of the current NIST call.

This thesis thoroughly analyzes the MAYO scheme and presents multiple approaches for
an efficient hardware design that can be used for both, low-area and high-performance
implementations. The first major design approach is the introduction of on-the-fly gen-
eration for pseudo-random data, leading to a substantial reduction of on-chip memory.
We propose a memory design that enables the parallelization of the matrix computations
within the MAYO scheme to increase the performance of a hardware implementation.
Additionally, we examine the performance effects of different pseudo-random number
generators on hardware and software platforms. While the utilization of Shake128 en-
hances the scheme’s performance on FPGAs, a decrease on modern CPUs is observed.
Consequently, we present a modification of the original MAYO scheme to parallelize
the generation of pseudo-random data. Comparisons show that a hardware implemen-
tation which follows the presented design approaches significantly outperforms previous
works by one to three orders of magnitude, while simultaneously reducing memory con-
sumption by 30 to 50 %. Furthermore, most of the presented design techniques can be
applied to UOV schemes in general, thereby extending their applications to a wide range
of post-quantum cryptographic schemes.

Keywords: MAYO, Unbalanced Oil and Vinegar, PQC, Multivariate Cryptography,
FPGA, Digital Signatures

iii

Kurzfassung

Die Forschung im Bereich der Post-Quanten-Kryptographie stößt aufgrund der schnellen
Fortschritte bei der Entwicklung von Quantencomputern auf großes Interesse. Der erste
NIST-Aufruf zur Post-Quanten-Kryptographie führte zur Standardisierung der ersten
quantensicheren kryptographischen Algorithmen. Die meisten dieser neuen Verfahren
basieren jedoch auf Gitterkonstruktionen, was das NIST dazu veranlasste einen neuen
Aufruf zur Erweiterung seines Portfolios zu starten. Ziel dieses Aufrufes ist es Verfahren
zu standardisieren, die nicht auf Gitterproblemen basieren. Einer der neuen Kandi-
daten ist MAYO, der in die Kategorie der multivariaten Kryptographie fällt und eine
Abwandlung des ”Unbalanced Oil and Vinegar” (UOV) Schemas ist. Im Allgemeinen
bietet UOV kurze Signaturen und eine schnelle Verifizierung, leidet aber unter großen
öffentlichen Schlüsseln. MAYO behebt diesen Nachteil durch die Einführung einer neuar-
tigen ”Whipping”-Technik, mit der die Schlüsselgröße erheblich reduziert werden kann,
was es zu einem vielversprechenden Kandidaten für die aktuelle NIST-Ausschreibung
macht.

In dieser Arbeit wird das MAYO-Verfahren gründlich analysiert und es werden mehrere
Herangehensweisen für ein effizientes Hardwaredesign vorgestellt, die sowohl für Im-
plementierungen mit geringem Ressourcenbedarf als auch für Hochleistungsimplemen-
tierungen verwendet werden können. Der erste wichtige Entwurfsansatz ist die ”on-
the-fly” Generierung von Pseudo-Zufallsdaten, was zu einer erheblichen Reduzierung
des On-Chip-Speichers führt. Wir schlagen ein neuartiges Speicherdesign vor, das in
der Lage ist die Matrixberechnungen innerhalb des MAYO-Schemas zu parallelisieren,
um die Leistung einer Hardwareimplementierung zu steigern. Außerdem untersuchen
wir die Leistungseffekte verschiedener Pseudozufallszahlengeneratoren auf Hardware-
und Software-Plattformen. Während die Verwendung von Shake128 die Leistung des
Schemas auf FPGAs steigert, wird auf modernen CPUs ein Leistungsabfall beobachtet.
Folglich präsentieren wir eine Modifikation des ursprünglichen MAYO-Schemas zur Par-
allelisierung der Pseudo-Zufallsdatengenerierung. Vergleiche zeigen, dass eine Hardware-
Implementierung, die den vorgestellten Designansätzen folgt, frühere Arbeiten um eine
bis drei Größenordnungen übertrifft, während gleichzeitig der Speicherverbrauch um 30
bis 50 % reduziert wird. Darüber hinaus können die meisten der vorgestellten Entwurf-
stechniken auch auf UOV-Schemata angewendet werden, was ihre Anwendung auf eine
breite Palette von kryptographischen Post-Quanten-Schemata erweitert.

Schlagwörter: MAYO, Unbalanced Oil and Vinegar, PQC, Multivariate Kryptogra-
phie, FPGA, Digitale Signaturen

iv

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contribution . 2
1.3. Related Work . 3
1.4. Outline . 4

2. Background 5
2.1. Notation . 5
2.2. Finite field arithmetic over F16 . 5

2.2.1. F16 addition and subtraction . 6
2.2.2. F16 multiplication . 6

2.3. Multivariate Quadratic Maps . 7
2.4. Polar Form . 7
2.5. Multivariate Quadratic Problem . 8
2.6. Oil and Vinegar . 8

2.6.1. Scheme Description . 8
2.7. Gaussian Elimination in F16 . 9
2.8. AES . 11
2.9. SHAKE . 12
2.10. AVX . 12

3. MAYO Scheme 14
3.1. Public Key Size . 14
3.2. Whipping Technique . 15
3.3. Scheme Description . 16

3.3.1. Key Generation . 16
3.3.2. Signature Computation . 17
3.3.3. Sample Solution . 18
3.3.4. Signature Verification . 20

3.4. Emulsifier maps . 21
3.5. Attacks on MAYO . 22

3.5.1. Attacks targeting MAYO . 22
3.5.2. Attacks targeting the Oil and Vinegar problem 23

3.6. Parameter Sets . 25
3.7. MAYO Implementations . 27

v

4. Key Approaches for a Hardware Design 28
4.1. On-the-fly Coefficient Generation . 29
4.2. Memory Design . 36
4.3. Parallelizing Matrix Multiplication . 40
4.4. Coefficient Generation via SHAKE128 . 43
4.5. Gaussian Elimination . 46

5. Software Modifications 52

6. Results 57
6.1. Hardware Results . 57
6.2. Software Results . 61

7. Conclusion 64

Bibliography 65

vi

List of Figures

2.1. AES-CTR mode . 11
2.2. Sponge construction . 12

4.1. PRNG generation order . 30
4.2. Bitsliced decoding of PRNG output . 31
4.3. On-the-fly coefficient generation layout . 32
4.4. Packed Format . 37
4.5. Access pattern for loading matrices in row-major and column-major order 38
4.6. Memory layout for MAYO1 . 39
4.7. F16 MAC unit . 41
4.8. F16 BMAC unit . 45
4.9. Original computation of Mi . 47
4.10. Packed computation of M . 48

5.1. PRNG setup of Aes128 . 53
5.2. Comparison of single and multi-seed approach 55

vii

List of Tables

2.1. Multiplicative Inverses of F16 . 10

3.1. MAYO parameter sets for NIST security levels 1, 3, and 5. 26
3.2. UOV parameter sets for NIST security levels 1, 3, and 5 26
3.3. Lower bound complexity for different attacks 26

4.1. Memory consumption of the Pi matrices sizes for security levels 1, 3 and 5 29

5.1. MAYO public key sizes for single and multi-seed implementation 54

6.1. Area and performance results . 58
6.2. Resource utilization of Aes-128 and Keccak 59
6.3. Comparison with related works . 60
6.4. MAYO performance in CPU cycles . 62

viii

List of Acronyms

AES Advanced Encryption Standard 11
AES-NI Advanced Encryption Standard New Instructions 11
ALU arithmetic logic unit 30
AVX Advanced Vector Extensions 12

BRAM Block RAM 36

CTR counter 11

DH Diffie-Hellmann 1
DSP Digital Signal Processing 58

FF flip-flop 58
FPGA Field Programmable Gate Array 28

IV initialization vector 52

LUT look-up table 57

MAC multiply-and-accumulate 41
MQ Multivariate Quadratic 8

NIST National Institute of Standards and Technology 1

PQC Post-Quantum Cryptography 1
PRNG pseudorandom number generator 17

SHA Secure Hash Algorithm 12
SIMD Single Instruction Multiple Data 12

UOV Unbalanced Oil and Vinegar 2

ix

Chapter 1.

Introduction

1.1. Motivation

Communication in our digital world heavily depends on public-key cryptography to
ensure the authenticity of shared information and to perform key agreements. Com-
monly employed public-key algorithms rely on problems such as integer factorization or
discrete logarithms, which are assumed to be computationally infeasible to solve with
current computers. However, the introduction of large-scale quantum computers poses a
significant risk to these cryptographic algorithms, as Shor’s quantum algorithm [Sho94]
can solve the underlying mathematical problems in polynomial time, resulting in the
break of the widely adopted RSA and Diffie-Hellmann (DH) schemes. Nevertheless,
Shor’s algorithm is not the only quantum algorithm endangering current cryptographic
schemes, since Grover’s algorithm [Gro96] enhances the efficiency of key and preimage
search for current ciphers and hash functions. While its impact is not as severe as in
the case of Shor’s algorithm, Grover still needs to be considered for the development of
future cryptographic schemes. Recent years have witnessed rapid progress in quantum
computing, with notable developments such as Google’s Bristlecone (72 qubits) in 2018
or IBM’s Condor (1121 qubits) in 2023 [Wikc]. In light of this technological progress,
there is a growing demand for novel cryptographic algorithms, specifically designed to
withstand quantum attacks, in order to facilitate a seamless transition from the current
schemes.

This new form of public-key cryptography, often referred to as Post-Quantum Cryp-
tography (PQC), can be classified into five primary classes based on their underly-
ing mathematical problem: lattice-based, hash-based, code-based, isogeny-based, and
multivariate-based. Each class exhibits its own set of distinct characteristics, strengths,
and limitations, including factors such as public key sizes and performance. In 2016,
the US National Institute of Standards and Technology (NIST) started the ”Post-
Quantum Cryptography Standardization” process, inviting proposals from researchers
and experts in the field to establish a new standard for PQC algorithms. In 2022, fol-
lowing three evaluation rounds, NIST standardized one key-encapsulation mechanism,
Crystals-Kyber [Sch+22], and three signature schemes, Crystals-Dilithium [Bai+22],
SPHINCS+ [Hul+22], and Falcon [Pre+22]. Notably, SPHINCS+ is the only algorithm
categorized under the class of hash-based algorithms, while the other three algorithms are

1

based on lattice constructions. However, due to insufficient diversity among the selected
algorithms, NIST initiated a new call in 2022 [NIS22] asking for additional quantum-
safe signature schemes. The submissions regarding this call encompass digital signature
algorithms utilizing a wide range of constructions, among them the remaining classes of
hash-based, code-based, isogeny-based, and multivariate-based approaches.

One of the ten candidates in the multivariate signature class is MAYO [Beu22b; Beu+23a],
a novel post-quantum scheme founded on the Unbalanced Oil and Vinegar (UOV) con-
cept [KPG99]. The UOV algorithm is considered as one of the most comprehensively
studied multivariate quadratic signature algorithms. It is based on the the NP-hardness
of solving multivariate quadratic systems. However, MAYO is not the first multivariate
signature scheme submitted to a NIST standardization process. The Rainbow signature
scheme [DS05] advanced to the third round of the initial NIST post-quantum cryptog-
raphy call. As a result, multivariate signature schemes that are based on the Oil and
Vinegar concept have attracted considerable attention, due to their short signatures and
fast verification process. However, Rainbow was broken during the third round [Beu22a],
resulting in the elimination from the standardization process. The MAYO scheme adapts
the original UOV algorithm to address the inherent large key sizes. It employs an oil
space considered too small for the original scheme and introduces a special whipping
technique to facilitate signature sampling. This results in MAYO signatures being more
compact than those of the recently standardized Falcon and Dilithium.

To achieve widespread adoption in practical settings, a new signature scheme must
demonstrate performance not only on software but also on hardware platforms. NIST
mandates that every submitted scheme is optimized for usage with AVX. Such a re-
quirement is significantly more challenging to formulate for hardware implementations,
as optimizations heavily rely on the scheme’s specifications and the targeted platform.
Therefore, implementation techniques and optimizations strategies must be explored for
each candidate individually. Due to the novelty of MAYO, publications focusing on
its implementation are relatively rare. However, should MAYO emerge as promising
candidate of the NIST call, it is essential that efficient hardware designs exist.

1.2. Contribution

Paper: Florian Hirner, Michael Streibl, Ahmet Can Mert, and Sujoy Sinha Roy.
”Whipping the MAYO Signature Scheme using Hardware Platforms” Submitted for
review in IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES) 2024. [Hir+23]

Contribution: Contributed to the analysis of MAYO and its mathematical back-
ground, the design of the optimization strategies, the implementation of the software
modification, and the writing of the paper

2

The following listing outlines the most notable contributions of this thesis.

1. We give a extensive description of the MAYO scheme and its foundational concept
UOV. Given the various forms of UOV and the revisions undergone by MAYO,
the information regarding the scheme is scattered across different publications
with varying specifications We consolidated the available information to create an
extensive description featuring the latest parameters and algorithm descriptions.
Additionally, we included essential details to understand the transition from UOV
to MAYO, along with the necessary mathematical background to comprehend the
scheme’s operations.

2. We address the large memory demand of MAYO by introducing an on-the-fly
generation design approach. This optimization facilitates the implementation of
MAYO on hardware platforms, preventing potential memory constraint issues that
could arise from the public key exceeding the available memory. We examine the
consequences of dynamically generating data and present solutions for its integra-
tion into the scheme. Furthermore, we demonstrate how this technique can be
utilized to achieve either a high-performance or a low-area design.

3. We present a novel memory design approach specifically tailored for MAYO. This
design facilitates the efficient computation of matrix operations by introducing
two distinct memory formats for storing matrix elements. The proposed design
is compatible with on-the-fly generation and offers customization to target high-
performance or low-area implementations.

4. We introduce a finite field arithmetic unit design that relies exclusively on bit-
wise AND and XOR operations. This design keeps the resource utilization of the
ALU relatively low, enabling the instantiation of multiple units. This capabil-
ity facilitates the parallelization of matrix multiplication, resulting in a significant
performance increase.

5. We propose a modification of the original MAYO specifications, employing Shake
as sole PRNG. The resulting software implementation no longer relies on Aes-
Ni for performance enhancement. This revised version exhibits more hardware-
friendly characteristics, making it easier to implement on constrained platforms
such as FPGAs and microprocessors.

1.3. Related Work

Given the recent publication of MAYO, available implementations are rare. The authors
of MAYO included a software implementation in their submission supporting different
operation modes. The optimized mode enhances performance by employing Aes-Ni
and AVX2 instructions [Beu+23b]. In addition, the MAYO team released a modified
variant for ARM platforms based on a nibble-sliced representation instead of a bitsliced
approach [Beu+23c; Beu+23d]. There exists a second work on porting MAYO to the

3

ARM architecture [Gri+23], however, this implementation does not adhere to the current
specifications [Beu+23a] and employs a flawed linear system solving algorithm.

Regarding multivariate-based cryptography in general, the majority of publications tar-
geting FPGA platforms focus on Rainbow [FG18; Tan+11]. However, a comparison with
these implementations is obsolete due to the break of Rainbow. HaMAYO [Say+23] is
currently the only work specifically aimed at MAYO. Yet, their implementation only
supports key generation and signature computation for one parameter set. The scheme
most closely related to MAYO is UOV, which serves as the foundation of MAYO. Dif-
ferent variants of UOV were released since its publication in 1995 [Pat97]. Among these
variants, [Beu+23e] is particularly noteworthy as it resembles MAYO by employing a
similar matrix representation for the public and private key. Additionally, this work dis-
cusses implementation techniques for ARM and FPGAs. The similarity between many
operations in MAYO and UOV renders this work a excellent candidate for comparison.
Moreover, in contrast to HaMayo, it provides a complete implementation of the scheme
for hardware platforms.

1.4. Outline

This thesis is organized as follows. Chapter 2 presents the used notation and provides
the necessary background for the MAYO scheme, including discussions on finite field
arithmetic, multivariate quadratic systems, and the UOV scheme. Chapter 3 expands
on this background and offers a comprehensive description of MAYO, including its whip-
ping technique, the specified parameter sets, and attacks targeting it. Then, Chapter
4 introduces several key approaches for hardware designs, among them on-the-fly gener-
ation, the memory design and potential techniques for parallelization. Chapter 5 shifts
the focus to software platforms and proposes a modified variant of MAYO that utilizes
a multi-seed approach. Chapter 6 presents hardware and software implementation re-
sults and compares them to previous works. Finally, Chapter 7 provides a summary of
our findings and future research opportunities in the area of MAYO and Oil and Vinegar
schemes.

4

Chapter 2.

Background

This chapter provides the background required to comprehend the Unbalanced Oil and
Vinegar (UOV) [Beu+23e] and MAYO [Beu22b] schemes. First, a description of the
used notation in this thesis is given, followed by a discussion on finite field arithmetic.
Subsequently, the third and fourth sections elaborate on fundamental building blocks of
UOV and MAYO. The fifth section introduces the security foundation of multivariate
cryptography before a high level overview of Oil and Vinegar schemes is given. Section
7 describes Gaussian Elimination in a finite field, which is used to solve related linear
systems in multivariate cryptography. In the subsequent sections, we explore how Aes
and Shake can be used to generate pseudo-random data. Finally, the last section offers
a brief explanation of the AVX instruction set and the advantages it offers to MAYO.
This chapter extents the background provided in [Hir+23].

2.1. Notation

Throughout this thesis finite field arithmetic is often used. A finite field with q elements
is denoted by Fq, where q is either a prime number or a power of a prime. Elements of
this field are written as lowercase letters (i.e., a ∈ Fq). A vector with k field elements is
represented by v ∈ Fk

q . Similarly, a matrix with m rows and n columns is denoted by
M ∈ Fm×n

q . The i-th row of a matrix is expressed as M[i, :], while the j-th column is
represented as M[:, j]. Consequently, M[i, j] refers to the matrix element located at row
i and column j. Over the course of this thesis, we often switch between polynomials,
denoted as lowercase letters (i.e., p) and their matrix counterparts, indicated as the same
letter in uppercase bold font. ∧ and ⊕ represent the bitwise AND and XOR operation,
respectively.

2.2. Finite field arithmetic over F16

The main parts of the MAYO signature arithmetic take place in F16. As mentioned
before, q needs to be a prime number or a power of a prime and, thus, F16 is the shorthand
notion for F24 . Elements within this domain can be expressed as a cubic polynomial,
for instance, a = a3x

3 + a2x
2 + a1x + a0, where a3, a2, a1, a0 belong to the field F2.

5

Throughout the thesis, we encode elements of F16 as unsigned 4-bit integers, whose bits
are the coefficients of the polynomial, such that Encode(a = a3x

3+ a2x
2+ a1x+ a0) =

(a3a2a1a0)2. For instance, Encode(1x
3 + 0x2 + 1x+ 1) = (1011)2 = (11)10.

2.2.1. F16 addition and subtraction

Building on the polynomial representation of F16, the addition and subtraction of two
field elements, represented as polynomials a = a3x

3 + a2x
2 + a1x + a0 and b = b3x

3 +
b2x

2+b1x+b0, is defined as standard polynomial addition and subtraction, respectively.
Given that the coefficients of the polynomial belong to the field F2 where addition is
equivalent to subtraction, we can utilize a single operation for both. Thus, we implement
F16 addition and subtraction as depicted in Equation (2.1).

a± b = (a3 ± b3)x
3 + (a2 ± b2)x

2 + (a1 ± b1)x+ (a0 ± b0) = a⊕ b (2.1)

2.2.2. F16 multiplication

As before, multiplication of two field elements a = a3x
3+a2x

2+a1x+a0 and b = b3x
3+

b2x
2+b1x+b0 can be represented similar to its polynomial counterpart. However, in this

case a standard multiplication can result in a polynomial c with a degree greater than
three, which is not part of the finite field anymore. Therefore, a reduction operation has
to be performed to produce a valid F16 element. The result of this reduction operation
is defined as the remainder of the Euclidean division of c by an irreducible polynomial
p. The MAYO scheme uses p = x4 + x+ 1 as the reduction polynomial. The finite field
multiplication with this specific reduction polynomial can be implemented using only
bitwise AND and XOR operations as shown in Equation (2.2).

c =a× b = (c3c2c1c0)2, where

c0 =(a0 ∧ b0)⊕ (a1 ∧ b3)⊕ (a2 ∧ b2)⊕ (a3 ∧ b1)

c1 =(a0 ∧ b1)⊕ (a1 ∧ b0)⊕ (a1 ∧ b3)⊕ (a2 ∧ b2)⊕ (a3 ∧ b1)⊕ (a2 ∧ b3)⊕ (a3 ∧ b2)

c2 =(a0 ∧ b2)⊕ (a1 ∧ b1)⊕ (a2 ∧ b0)⊕ (a2 ∧ b3)⊕ (a3 ∧ b2)⊕ (a3 ∧ b3)

c3 =(a0 ∧ b3)⊕ (a1 ∧ b2)⊕ (a2 ∧ b1)⊕ (a3 ∧ b0)⊕ (a3 ∧ b3)
(2.2)

This bitsliced approach allows implementing F16 multiplication in a simple and efficient
manner on hardware platforms, due to the the fast bitselection capability compared to
software.

6

2.3. Multivariate Quadratic Maps

The fundamental component of the Oil and Vinegar [KPG99] and the MAYO scheme
is the multivariate quadratic map. We adhere to the definition and notation outlined
in [Beu22b]. A multivariate quadratic map P (x) = (p1, . . . , pm) : Fn

q → Fm
q com-

prises m multivariate quadratic polynomials in n variables with coefficients from Fq.
To evaluate this map at a specific value a ∈ Fn

q , every polynomial pi is evaluated at
a. Hence, the result of the multivariate quadratic map is specified as P (a) = b with
b = (p1(a), . . . , pm(a)).

UOV as well as MAYO employ homogeneous multivariate maps, where every polynomial
is in homogeneous form. In the quadratic case this results in polynomials where every
nonzero term is of degree two, also known as quadratic form. One property of the
quadratic form is that every polynomial has an associated matrix. Let cij denote the
coefficient of the quadratic term xixj . Then, a polynomial can be represented as

p(x) = p(x1 . . . xn) =
∑

1≤i≤j≤n

cijxixj . (2.3)

Since i ≤ j, every term xixj appears only once. This does not restrict the total number
of polynomials. Due to commutativity the xjxi terms can be expressed by xixj . This
allows us to set the lower triangular part to 0 and, therefore, Eq. (2.3) can be rewritten
into

p(x) = x⊤


c11 c12 . . . c1n
0 c22 . . . c2n
...

. . .
. . .

...
0 . . . 0 cnn

x. (2.4)

MAYO adopts the upper triangular matrix form as depicted in Equation (2.4) and defines
polynomial evaluation as

pi(x) = x⊤Pix = x⊤

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
x. (2.5)

Due to the multivariate quadratic map comprising m different polynomials, we are left
with m distinct Pi matrices that require evaluation.

2.4. Polar Form

To understand how UOV and MAYO sample signatures efficiently the polar form of
polynomials is essential. Every homogeneous multivariate quadratic polynomial is linked
to a symmetric and bilinear form

7

p′(x,y) = p(x+ y)− p(x)− p(y). (2.6)

Since the multivariate quadratic maps used in the two signature schemes are homoge-
neous, the polar form of a map can be defined similarly as

P ′(x,y) = P (x+ y)− P (x)− P (y). (2.7)

2.5. Multivariate Quadratic Problem

As described in Section 2.3, multivariate quadratic maps are the foundation of the Oil
and Vinegar and the MAYO scheme. This design choice is motivated by the underlying
Multivariate Quadratic (MQ) problem. Given a multivariate map P and a target t, the
problem is defined as finding a preimage s such that P (s) = t. The MQ problem is the
basis for the computational hardness of the two schemes, since it is proven to be NP-
hard [GJ79]. To our current knowledge, there is no algorithm to solve it in polynomial
time if n ∼ m, even for quantum computers [Beu22b].

2.6. Oil and Vinegar

Using a set of multivariate quadratic equations as central part of a public key scheme
has been discussed by multiple authors over several years [FD85; MI88; Pat96]. In 1997,
Patarin presented the original Oil and Vinegar algorithm [Pat97]. The motivation was
to create a cryptographic scheme based on a set of multivariate quadratic equations
to utilize the computational hardness of the MQ problem as described in Section 2.5.
The fundamental concept behind these schemes is to incorporate a trapdoor into the
set of equations, facilitating efficient signature sampling. Although the original scheme
was broken by Kipnis and Shamir [KS98], its adapted version, Unbalanced Oil and
Vinegar [KPG99], still appears to remain secure in the present context. Hence, it was
selected as the basis for the MAYO scheme.

2.6.1. Scheme Description

The description of the Oil and Vinegar signature scheme is adapted from [Beu22b]. The
fundamental component of this scheme is the multivariate quadratic map P : Fn

q → Fm
q ,

which serves as the public key. Signing a message M involves obtaining its digest through
a cryptographic hash function H and a randomly generated salt. Subsequently, the
signature s is defined as the preimage under the multivariate quadratic map of the
particular digest, satisfying P (s) = H(M || salt). However, due to the computational
hardness of sampling preimages of multivariate quadratic maps, the scheme incorporates
a trapdoor to obtain them efficiently. The trapdoor information in the Oil and Vinegar

8

scheme is denoted as oil space, a linear subspace O ⊂ Fn
q of dimension m, where P

vanishes in the sense that
P (o) = 0 for all o ∈ O. (2.8)

Knowledge of the oil space enables efficient preimage sampling for P and, thus, a basis
of the oil space serves as the secret key. Attacks specifically targeting Oil and Vinegar
schemes aim to uncover the oil space from the public key, which led to the break of
the original Oil and Vinegar version. Since O is hidden in Fn

q , increasing the value of n
for a fixed m enhances the difficulty of these attacks. The Unbalanced Oil and Vinegar
scheme adheres to this principle by setting n to 3m to render oil space recovery attempts
unsuccessful.

For a given target t ∈ Fm
q , one chooses a vector v ∈ Fn

q and solves the equation P (v+o) =
t for o ∈ O. Using the polar form from Equation. (2.7), it follows that

P (v + o) = P (v) + P (o) + P ′(v,o) = t. (2.9)

Since P (v) is fixed due to the choice of v and P (o) evaluates to 0 by the definition of
the oil space in Equation (2.8), only the linear system P ′(v,o) = t−P (v) remains to be
solved for o and the signature is computed via s = v+o. Although Oil and Vinegar is a
well-researched and relatively old scheme, its use cases as a practical signing algorithm
are limited, since it suffers from large public key sizes in the order of 50 KB.

2.7. Gaussian Elimination in F16

Both, UOV and MAYO, rely on the matrix representation of multivariate polynomials
and signature sampling is accomplished by solving a linear system, which is obtained
using the introduced trapdoor. One of the best known algorithms to solve linear systems
in matrix representation is Gaussian Elimination. It takes an augmented matrix as input
and transforms it into echelon form. A matrix is defined to be in echelon form if all zero
rows are at the bottom, the leading non zero entry of every row has to be 1, and every
leading 1 has to be on the left of the leading 1 of the row below it. An example of a
matrix in echelon form is shown in Equation 2.10.


1 c12 c13 c14 c15
0 0 1 c24 c25
0 0 0 1 c35
0 0 0 0 0

 (2.10)

To transform a matrix into echelon form, Gaussian Elimination iterates over all rows
and columns from top to bottom and left to right, respectively, to find a non zero entry.
If this entry is found, the whole row is multiplied by its inverse to set it to 1. This row
is then used to annihilate all entries in the same column of the rows below. A detailed
description of the algorithm can be found in Algorithm 1. Since the coefficients of the

9

Value Inverse Value Inverse Value Inverse

1 1 6 7 11 5

2 9 7 6 12 10

3 14 8 15 13 4

4 13 9 2 14 3

5 11 10 12 15 8

Table 2.1.: Multiplicative Inverses of F16

linear system are in a finite field, the inverse depends on the choice of Fq. The concrete
values for F16 are listed in Table 2.1.

After transforming a linear system into echelon form, its solution can be obtained us-
ing back-substitution by computing every single component of the solution vector in a
bottom-up fashion. Compared to other methods, Gaussian elimination has the ben-
efit that it does not require the original matrix to be in a specific form and it is
more efficient than similar algorithms like Gauss-Jordan Elimination and matrix in-
version [Hea18].

Algorithm 1 Gaussian Elimination [Beu+23a]

GaussianElimination(A):
Input: Matrix A ∈ Fm×n

q

Output: Matrix A′ ∈ Fm×n
q in echelon form

1: pivot row← 0, pivot column← 0
2: while pivot row < m and pivot column < n do
3: next pivot row← pivot row
4: while next pivot row < m and A[next pivot row, pivot column] = 0 do
5: if next pivot row = m then
6: pivot column← pivot column + 1
7: else
8: if next pivot row > pivot row then
9: Swap(A[pivot row, :],A[next pivot row, :])

10: A[pivot row, :]← A[pivot row, pivot column]−1A[pivot row, :]
11: for row from pivot row + 1 to m− 1 do
12: A[row, :]← A[row, :]−A[row,pivot column]A[pivot row, :]

13: pivot row← pivot row + 1
14: pivot column← pivot column + 1

15: return A

10

Figure 2.1.: AES-CTR mode

2.8. AES

Advanced Encryption Standard (AES) is a symmetric key encryption algorithm
established by NIST in 2001 [Dwo+01]. It is based on Rijndael by Daemen and Rij-
men [DR99]. Aes operates on blocks of data, each block being 128 bits in size, and sup-
ports three key lengths: 128, 192, and 256 bits. The algorithm consists of several rounds
of substitution, permutation, and mixing operations, known as the SubBytes, ShiftRows,
MixColumns, and AddRoundKey transformations, which are applied sequentially.

Instead of encryption, Aes is used to generate pseudo-random data in the original MAYO
version. To achieve that, counter (CTR) [Dwo01] is used as mode of operation. In this
mode Aes is transformed into a stream cipher by utilizing the cipher’s output as a
keystream and performing XOR operations between the plaintext and the keystream.
As illustrated by Figure 2.1, a static nonce and an increasing counter is reencrypted
multiple times under the same key to generate a keystream of the desired length. The
individual keystream blocks can be generated independently, since the outputs of Aes
are not connected. Thus, a user is able to generate a certain block without computing
the preceding blocks by setting the appropriate counter value.

To accelerate the performance of the algorithm, MAYO utilizes Advanced Encryption
Standard New Instructions (AES-NI), which is an extension to the x86 instruction set
architecture introduced by Intel in 2010 [Gue10]. It aims to accelerate the Aes en-
cryption and decryption operations by implementing dedicated hardware instructions
specifically designed for Aes operations. Aes-Ni provides a set of new instructions that
significantly enhance the performance of Aes encryption and decryption algorithms on
processors that support this feature. These instructions support different modes of oper-
ation for Aes, among them CTR. By offloading Aes operations to specialized hardware,
Aes-Ni improves the efficiency and speed of cryptographic tasks that rely on Aes en-
cryption, as it is the case for MAYO.

11

Figure 2.2.: Sponge construction

2.9. SHAKE

MAYO uses Aes-128 in counter mode to sample pseudo-random data. In our hardware
design we exchange Aes with Shake. Shake is part of the Secure Hash Algorithm
(SHA) 3 family standardized by NIST [Dwo15]. Sha-3 is based on the cryptographic
suite Keccak by Bertoni et al. [Ber+11]. NIST established this new standard to have
an alternative to previous hash functions, which were based on the Merkle-Damgȧrd
construction. Keccak uses a novel approach instead, called sponge construction. Hence
the name, this construction allows to absorb an arbitrary amount of input data and
squeezing an arbitrary amount of output data.

As shown in Figure 2.2, the sponge constructions utilizes an internal state consisting of
r + c bits. The input is partitioned into blocks which are successively XORed with r
bits of the state. Upon absorbing the entire input, the sponge construction squeezes out
blocks until the desired output length is reached. Between every step of the absorbing
and squeezing phase the function f is applied to the whole state. In the case of Sha-3,
the state size is r+ c = 1600, with r and c depending on the specific Sha instance. The
entire state is divided into a 5×5 array of 64-bit state variables. Additionally to common
hash functions, which compute a fixed-length digest, Sha-3 also includes Shake128 and
Shake256, which allow an arbitrary output length. This property renders the Shake
algorithms as ideal choice to sample pseudo-random data in the MAYO scheme.

2.10. AVX

Advanced Vector Extensions (AVX) is an extension for the instruction set architecture
for microprocessor proposed by Intel in 2008 [Gep17]. They allow the execution of Sin-
gle Instruction Multiple Data (SIMD) operations [Lom11]. AVX uses special registers
to carry out a instruction on a larger amount of data in parallel. However, AVX exclu-

12

sively enables 256-bit data processing for floating points, whereas its successor, AVX2,
extended the instruction set in 2013 to support 256 bits for integers as well. Today,
these standards are compatible with a wide range of CPU families [Wika]. In 2016, Intel
released the first CPU equipped with the newest update AVX-512, further expanding the
instruction set to accommodate 512-bit data [Rei17]. Despite providing an additional
performance increase, AVX-512 is presently not as widely adopted as its two predecessor
standards [Wikb].

Given that numerous sections of the MAYO scheme use large amounts of data with
identical arithmetic instructions, AVX emerges as a good choice for enhancing imple-
mentation performance. Instead of performing operations on single vector or matrix
elements sequentially, they can be loaded into an AVX register and processed in par-
allel. Since one element of F16 is represented by 4 bits, 64 elements fit into one AVX
register.

13

Chapter 3.

MAYO Scheme

In this chapter, we give a detailed explanation of the MAYO scheme extending the de-
scription provided in [Hir+23]. The description is adapted from [Beu22b], incorporating
the latest specifications and algorithms outlined in [Beu+23a]. The MAYO scheme alters
the original Oil and Vinegar scheme to address the challenge of large public key sizes.
The design philosophy closely aligns with UOV, adhering to identical principles. Secu-
rity is established on the MQ-problem, with signatures representing preimages of the
hashed message under a multivariate quadratic map. Key and signature generation, as
well as signature verification, closely resemble Oil and Vinegar. The primary distinction
lies in the selection of the oil space dimension. MAYO employs an oil space deemed too
small for the original scheme. As the oil space is hidden in Fn

q , a smaller size makes it
more challenging to recover. Consequently, the other parameters can be reduced with-
out compromising the scheme’s security. Nevertheless, this modification makes signature
sampling impossible in most cases using the Oil and Vinegar algorithm. The authors of
MAYO, however, have identified a solution for this challenge. They introduce a whipping
mechanism that transforms the multivariate quadratic map P : Fn

q → Fm
q into an ex-

panded map P ∗ : Fkn
q → Fm

q . This approach enables the selection of a smaller oil space,
consequently resulting in a significant reduction in the key size. To delve into the details
of the whipping construction, it is essential to first understand why the dimension of the
oil space plays a crucial role in determining the size of the public key.

3.1. Public Key Size

In the Oil and Vinegar scheme, the public key comprises the multivariate quadratic map
P , consisting of m multivariate quadratic polynomials in n variables. As a result, the
memory needed to store P is O(mn2 log q) bits, attributable to the matrix form of a

polynomial defined in Equation (2.5). Petzoldt et al.[Pet+11] demonstrated that P
(1)
i ∈

F(n−o)×(n−o)
q and P

(2)
i ∈ F(n−o)×o

q can be generated pseudo-randomly. Consequently,

only P
(3)
i ∈ Fo×o

q needs to be stored as the public key, leading to a reduction in key size

to O(mo2 log q) bits. Since P
(3)
i is upper triangular the exact public key size is

|pk| = m(
o(o− 1)

2
+ o) log q + |seedpk|, (3.1)

14

where seedpk denotes the seed which is used to generate P
(1)
i and P

(2)
i . Nevertheless,

the original Oil and Vinegar scheme mandates that o must be at least as large as m,
otherwise, the linear system derived from Equation (2.9) becomes unsolvable with high
probability. The MAYO scheme presents a novel whipping technique to further decrease
the size of the public key by reducing the dimension of the oil space while maintaining
the solvability of the linear system.

3.2. Whipping Technique

As outlined in introduction of Chapter 3, MAYO undergoes a transformation of P into
a larger map denoted as P ∗. This whipping transformation must possess the property
that if P vanishes on a subspace O ⊂ Fn

q , then P ∗ must also be zero on Ok ⊂ Fkn
q ,

where k serves as the whipping parameter determining the size of the oil space, with
o = ⌈m/k⌉. While such a transformation is easy to achieve, the resulting map P ∗ needs
to preserve the preimage resistance of P . To illustrate this challenge, we inspect the
transformation

P ∗(x1, . . . ,xk) = P (x1) + · · ·+ P (xk). (3.2)

The map P ∗ obtained from Equation (3.2) clearly fulfills the requirements, that it maps
from Fkn

q to Fm
q and if P vanishes on O, then the same holds for P ∗ on Ok. However,

it is not preimage resistant. Assume there exists α ∈ Fq such that α2 = −1. Then
P (αx1) = −P (x1), since P consists only of homogeneous polynomials. Subsequently, an
adversary can randomly select δ ∈ Fn

q , set x2 = αx1 + δ, and assign xi = 0 for i > 2. As
a result, we obtain

P ∗(x1,x2,0, . . . ,0) = P (x1) + P (x2)

= P (x1) + P (αx1 + δ)

= P (x1) + P (αx1) + P (δ) + P ′(αx1, δ)

= P (x1)− P (x1) + P (δ) + P ′(αx1, δ)

= P (δ)︸︷︷︸
fixed by choice of δ

+P ′(αx1, δ)︸ ︷︷ ︸
linear

,

(3.3)

by using Equation (2.7). Given a message digest t ∈ Fm
q , an attacker can effectively

determine a solution for x1, such that P ∗(x1, αx1 + δ,0, . . . ,0) = t by solving the linear
system shown in Equation (3.3). Thus, anyone is able to sample preimages to given
messages without knowledge of the private key and, consequently, can forge signatures.
As demonstrated by this example, finding transformations in a way that the security
properties of multivariate quadratic maps are maintained is not trivial.

To preserve the preimage resistance, the authors of MAYO propose the so-called whip-
ping operation defined as

15

P ∗(x1, . . . ,xk) =
k∑

i=1

EiiP (xi) +
k∑

i=1

k∑
j=i+1

EijP
′(xi,xj). (3.4)

The matrices denoted as Eij ∈ Fm×m
q are named emulsifier maps and have a crucial role,

serving as the fundamental element for the security of the whipping technique. Further
details about these emulsifier maps can be found in Section 3.4. Since the parameters are
chosen to satisfy ko > m and given the property that P ∗ vanishes on Ok, the signature
of MAYO can be sampled similarly to Equation (2.9) of UOV, by solving the linear
system

P ∗(v1 + o1, . . . ,vk + ok) = t, (3.5)

which has m equations in ko variables.

3.3. Scheme Description

This section provides a comprehensive description of the key generation, signature com-
putation, and signature verification algorithms of MAYO. The description and algo-
rithms are adapted from [Beu22b; Beu+23a].

3.3.1. Key Generation

To generate a key pair, a randomly generated secret seed is expanded via Shake256,

and the resulting output is utilized as the matrix O ∈ F(n−o)×o
q and the public seed.

This matrix O serves as the secret key, and the corresponding oil space O is defined as
the rowspace of (O⊤Io), where Io represents the identity matrix of size o. As outlined
in Equation (2.8), the multivariate quadratic map P has to vanish on O. Consequently,
every polynomial pi(x) of the map P is required to satisfy the condition that

(O⊤Io)

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
(O⊤Io)

⊤ = O⊤P
(1)
i O+O⊤P

(2)
i +P

(3)
i = 0. (3.6)

It follows, that P
(3)
i = −O⊤P

(1)
i O −O⊤P

(2)
i . However, P

(3)
i has to be in upper trian-

gular form, which is not necessarily the case if this formula is applied. Nevertheless,
every polynomial matrix can be transformed into upper triangular form, as outlined in
Section 2.3, without changing the underlying polynomial by simply adding the lower

half to the upper half. Hence, it is feasible to randomly generate P
(1)
i and P

(2)
i using a

public seed, and set P
(3)
i to Upper(−O⊤P

(1)
i O −O⊤P

(2)
i), where Upper(·) is defined

as Upper(Mii) = Mii and Upper(Mij) = Mij + Mji for i < j. The key generation
algorithm is shown in Algorithm 2 and the described matrix generation technique is
applied in Lines 7 and 8.

16

Algorithm 2 Key Generation [Beu+23a]

CompactKeyGen():
Output: Compact public key cpk ∈ Bcpk bytes and secret key csk ∈ Bcsk bytes

1: seedsk ← RANDOM(sk seed bytes) ▷ Pick at random
2:

3: //Expand seedsk to get seedpk and O

4: seedpk,O← Shake256(seedsk) ▷ O ∈ F(n−o)×o
q

5:

6: //Expand seedpk to get P
(1)
i ∈ F(n−o)×(n−o)

q and P
(2)
i ∈ F(n−o)×o

q

7: {P(1)
i ,P

(2)
i }i∈[m] ← Aes-128-Ctr(seedpk)

8: {P(3)
i }i∈[m] ← Upper(−O⊤P

(1)
i O−O⊤P

(2)
i)i∈[m] ▷ Compute P

(3)
i ∈ Fo×o

q

9:

10: cpk ← seedpk || {P
(3)
i }i∈[m] ▷ Public Key

11: csk ← seedsk ▷ Secret Key
12: return (cpk, csk)

The generation of substantial matrix parts through pseudorandom number generators
(PRNGs) facilitates a significant reduction in key size, as there is no necessity to store
the entire key information. Instead, we generate segments of both the public and private
keys based on their respective seeds. For the private key, it is now sufficient to store

only the private seed, while the public key is composed of the public seed and P
(3)
i .

Furthermore, the whipping transformation outlined in Section 3.2 enables the reduction

of the size of P
(3)
i from m×m to o× o.

3.3.2. Signature Computation

To obtain a signature for a message M, a random salt is generated, and the digest
t = H(H(M) || salt) is computed. Subsequently, a set of vectors (v1, . . . ,vk) is chosen
randomly, and the linear system for (o1, . . . ,ok) is solved as depicted in Equation (3.5).
Following the approach outlined by Beullens et al. [Beu+23a], the last o entries of vi can
be safely set to 0 without altering the distribution of the signing output. Consequently,

one generates a random vector ṽi ∈ F(n−o)
q and sets to vi to (ṽi, 0). This choice ensures

that only P
(1)
i is necessary for the signature computation. Analogous to Equation (2.9),

the oil space trapdoor information enables the partitioning of Equation (3.5) into a

17

constant and a linear part, leading to

P ∗(v1 + o1, . . . ,vk + ok) =

k∑
i=1

EiiP (vi + oi) +

k∑
i=1

k∑
j=i+1

EijP
′(vi + oi,vj + oj)

=

k∑
i=1

Eii(P (vi) + P ′(vi,oi)) +

k∑
i=1

k∑
j=i+1

Eij(P
′(vi,vj) + P ′(vi,oj) + P ′(vj ,oi))

=

k∑
i=1

EiiP (vi) +

k∑
i=1

k∑
j=i+1

EijP
′(vi,vj) (constant)

+

k∑
i=1

EiiP
′(vi,oi)) +

k∑
i=1

k∑
j=i+1

Eij(P
′(vi,oj) + P ′(vj ,oi)) (linear)

= t.
(3.7)

Computation of the constant part can be achieved using

pi(vk) = ṽk
⊤P

(1)
i ṽk,

p′i(vk,vl) = ṽk
⊤P

(1)
i ṽl + ṽl

⊤P
(1)
i ṽk.

(3.8)

To compute the linear part, it is necessary to perform the evaluation of the linear trans-
formation P ′(vk, ·). This can be accomplished by utilizing the matrix representation of
the linear transformation, defined as follows:

Li = (P
(1)
i +P

(1)
i

⊤
)O+P

(2)
i . (3.9)

Subsequently, each component p′i(vk, ·) in P ′ can be written as ṽk
⊤Li. Applying Equa-

tion (3.8) and Equation (3.9) to Equation (3.7) yields an augmented matrix that must be
solved for oi to determine the signature. Hence, MAYO builds a linear system Ax = y,
where A consists of the linear part of Equation (3.7) and y is the vectorized message
digest t minus the respective constant part. Algorithm 3 shows the signing algorithm in
detail.

In Lines 21 and 22, the described computation of the constant part is applied, whereas
in Lines 18, and 23 to 25 the evaluation of the linear part and the construction of A
occurs. Solving the linear system can be accomplished using various algorithms, with
Gaussian Elimination being one example. The process of solving the system takes place
inside the SampleSolution function which is explained in the following section.

3.3.3. Sample Solution

To sample a solution, the constructed matrix A ∈ Fm×ko
q of Algorithm 3 needs to be

solved such that the solution vector x satisfies Ax = y. Since ko ≥ m, the system

18

Algorithm 3 Signature Computation [Beu+23a]

Sign(csk, M) with incorporated ExpandSK:
Input: Compact secret key csk ∈ Bcsk bytes and message M ∈ B∗
Output: Signature sig ∈ Bsig bytes

1: seedsk ← csk ▷ csk is seedsk
2: //Expand seedsk to get seedpk and O

3: seedpk,O← Shake256(seedsk) ▷ O ∈ F(n−o)×o
q

4: //Expand seedpk to get P
(1)
i ∈ F(n−o)×(n−o)

q and P
(2)
i ∈ F(n−o)×o

q

5: {P(1)
i ,P

(2)
i }i∈[m] ← Aes-128-Ctr(seedpk)

6: {Li}i∈[m] ← {(P
(1)
i +P

(1)
i

⊤
)O+P

(2)
i }i∈[m] ▷ Compute linear part Li ∈ F(n−o)×o

q

7:

8: M digest← Shake256(M)
9: R← Random(R bytes) ▷ Pick at random

10: salt← Shake256(M digest || R || seedsk)
11: t← Shake256(M digest || salt) ▷ t ∈ Fm

q

12:

13: for ctr from 0 to 255 do ▷ Find preimage of t
14: {vi}i∈[k], r← Shake256(M digest || salt || seedsk || ctr) ▷ vi ∈ Fn−o

q , r ∈ Fko
q

15:

16: A← 0, l← 0,y← t ▷ A ∈ Fm×ko
q

17: for i from 0 to k − 1 do
18: {Mi[j, :]}j∈[m] ← {v⊤

i Lj}j∈[m]

19: for i from 0 to k − 1 do ▷ Build linear system Ax = y
20: for j from k − 1 to i do

21: u←

{
{v⊤

i P
(1)
a vi}a∈[m] if i = j

{v⊤
i P

(1)
a vj + v⊤

j P
(1)
a vi}a∈[m]

if i ̸= j
▷ u ∈ Fm

q

22: y← y −Elu
23: A[:, i ∗ o : (i+ 1) ∗ o]← A[:, i ∗ o : (i+ 1) ∗ o] +ElMj

24: if i ̸= j then
25: A[:, j ∗ o : (j + 1) ∗ o]← A[:, j ∗ o : (j + 1) ∗ o] +ElMi

26: l← l + 1

27: x← SampleSolution(A,y, r) ▷ x ∈ Fko
q ∪ ⊥

28: if x ̸= ⊥ then
29: break
30: s← 0 ▷ s ∈ Fkn

q

31: for i from 0 to k − 1 do ▷ Compute signature
32: s[i ∗ n : (i+ 1) ∗ n]← (vi +Ox[i ∗ o : (i+ 1) ∗ o]) || x[i ∗ o : (i+ 1) ∗ o]
33: return sig = s || salt

19

is underdetermined and multiple solutions exist. Precisely, the solution space exhibits
a dimension of ko − m. Thus, the random vector r is employed to select each of the
qko−m solutions with uniform probability. This is achieved by solving the corresponding
system Ax′ = y −Ar using the conventional Gaussian Elimination method described
in Section 2.7 and returning x = x′ + r. No solution exists if the input matrix A is
of rank smaller than m, which is the case if the last row of the matrix in echelon form
consists only of zeros. Then SampleSolution outputs ⊥. The full algorithm is shown
in Algorithm 4.

Algorithm 4 Sampling Solutions [Beu+23a]

SampleSolution(A,y, r):
Input: Linear system in matrix form A ∈ Fm×ko

q

Input: Target vector y ∈ Fm
q

Input: Randomization vector r ∈ Fko
q

Output: Solution x ∈ Fko
q or ⊥ if system is unsolvable

1: x← r ▷ Randomize system
2: y← y −Ar
3:

4: (A||y)← GaussianElimination((A||y)) ▷ Compute Echelon Form of (A||y)
5:

6: if A[m− 1, :] = 0 then ▷ Check if A has rank m
7: return ⊥
8:

9: for r from m− 1 to 0 do ▷ Back substitution
10: c← 0
11: while A[r, c] = 0 do ▷ Get index of first non-zero element of current row
12: c← c+ 1

13: xc ← xc + yr

14: y← y − yrA[:, c]

15: return x

Line 1 illustrates the randomization of the solution, Line 6 demonstrates the solvability
check, and Lines 9 to 11 involve the application of back substitution to extract a solution
from the echelon form matrix.

3.3.4. Signature Verification

To verify a given message M along with its signature sig = (salt || s1, . . . , sk), the compu-
tation of the hash t = H(M || salt) is required, followed by the assessment of the whipped
up map P ∗(s1, . . . , sk) = y. If y = t, the signature is valid. To evaluate P ∗(s1, . . . sk),
Equation (3.4) needs to be followed. A straightforward approach to accomplish this is
to evaluate the P (si) and P ′(si, sj) segments separately and subsequently combine the
intermediate results using the Eij matrices. The complete verification process is outlined

20

in Algorithm 5.

Algorithm 5 Signature Verification [Beu+23a]

Verify(cpk, M, sig) with incorporated ExpandPK:
Input: Compact public key cpk ∈ Bcpk bytes, message M ∈ B∗, and sig ∈ Bsig bytes

Output: 0 if signature is valid, −1 otherwise

1: seedpk, {P
(3)
i }i∈[m] ← cpk ▷ Extract seedpk and P

(3)
i ∈ Fo×o

q from cpk

2: //Expand seedpk to get P
(1)
i ∈ F(n−o)×(n−o)

q and P
(2)
i ∈ F(n−o)×o

q

3: {P(1)
i ,P

(2)
i }i∈[m] ← Aes-128-Ctr(seedpk)

4:

5: salt, {si}i∈[k] ← sig ▷ si ∈ Fn
q

6: M digest← Shake256(M)
7: t← Shake256(M digest || salt) ▷ t ∈ Fm

q

8: y← 0, l← 0 ▷ y ∈ Fm
q

9: for i from 0 to k − 1 do ▷ Evaluate P ∗(s1, . . . sk)
10: for j from k − 1 to i do

11: u←

{
{s⊤i Pasi}a∈[m] if i = j

{s⊤i Pasj + s⊤j Pasi}a∈[m]
if i ̸= j

▷ u ∈ Fm
q

12: y← y +Elu
13: l← l + 1

14:

15: if y = t then ▷ Accept signature if y = t
16: return 0
17: return −1

In Line 11, the calculation of the individual outcomes P (si) and P ′(si, sj) is performed,
while Line 12 illustrates the merging of these results into the final outcome.

3.4. Emulsifier maps

The MAYO signature scheme incorporates a new vital element known as emulsifier maps,
denoted as E ∈ Fm×m

q . They play a major role in the whipping transformation, which
distinguishes it from the original Oil and Vinegar algorithm and ultimately contributes
to a more compact public key size. In the context of MAYO, the matrix E performs
multiplication by z in the finite field Fq[z]/f(z) and it is employed in computations of

the form Elu, where u represents a vector of length m and l ranges from 0 to k(k+1)
2 −1.

Rather than explicitly calculating the matrix multiplications, it is more efficient, partic-
ularly considering hardware memory access limitations, to treat u as a single polynomial
and perform the reduction mod f(z) once. This operation resembles a multiplication in
the finite field F16m . Similar to the finite field described in Section 2.2, elements of F16m

can be represented as a polynomial, but now of degree m − 1 with coefficients in F16.

21

Thus, an element a ∈ F16m takes the form

a = am−1z
m−1 + am−2z

m−2 + · · ·+ a1z + a0. (3.10)

The emulsifier map E is now represented by a multiplication by z. Similar to the
field multiplication discussed in Section 2.2.2, it is necessary to reduce the resulting
polynomial to obtain a valid element in F16m once again. In this case, the reduction
polynomials for the different security levels MAYO1, MAYO3, and MAYO5, are given by
f64(z) = z64+8z3+2z2+8, f96(z) = z96+2z3+2z+2, and f128(z) = z128+2z4+4z3+8z+4
respectively. To apply E to a vector a, we interpret a as a polynomial in the form
described in Equation (3.10) and perform the subsequent computations:

MAYO1

b = Ea, with bi = ai−1 for i /∈ {0, 2, 3}.
b0 = 8am−1, b2 = 2am−1 + a1 b3 = 8am−1 + a2

MAYO3

b = Ea, with bi = ai−1 for i /∈ {0, 1, 3}.
b0 = 2am−1, b1 = 2am−1 + a0 b3 = 2am−1 + a2

MAYO5

b = Ea, with bi = ai−1 for i /∈ {0, 1, 3, 4}.
b0 = 4am−1, b1 = 8am−1 + a0 b3 = 4am−1 + a2 b4 = 2am−1 + a3

(3.11)

It is essential to emphasize that the operations involving addition and multiplication in
Equation (3.11) specifically refer to actions within the field F16. This methodology seam-
lessly aligns with our packed format detailed in Section 4.2, allowing the simultaneous
loading of m values and, consequently, an entire F16m element within a single hardware
cycle. The computation of Elu involves repeating this process l times.

3.5. Attacks on MAYO

This section gives a short overview over attacks on MAYO and closely follows the de-
scription in [Beu+23a]. Attacks on MAYO can be classified into two main categories,
first targeting MAYO itself and, second, targeting the underlying Oil and Vinegar prob-
lem.

3.5.1. Attacks targeting MAYO

This sections describes the possible attacks which are specific for MAYO.

Direct Attack: One method to potentially breach the MAYO signature scheme is to
disregard the oil space entirely and instead attempt to solve the system P ∗(s) = t,
directly in order to generate a signature for the message M. In order to achieve that,

22

the attacker selects a salt at random, computes t = Shake256(Shake256(M) || salt),
as described in Algorithm 3, and tries to solve the quadratic system. Currently, there
are no known algorithms capable of exploiting the whipping structure behind P ∗(s) to
determine a solution more efficiently than employing a standard system solving algo-
rithm. Without taking advantage of the whipping technique, the problem of solving
P ∗(s) resembles the MQ problem presented in Section 2.5.

The primary method for solving nonlinear systems over finite fields relies on computing
Gröbner bases. One of the most renowned algorithm for this task is the hybrid Wiede-
mann XL algorithm [BFP09; Yan+07]. Since P ∗ consists of m equations in ko variables,
it is highly underdetermined using the proposed parameter sets of Table 3.1. For this
type of systems, Furue et al. [FNT21] present the most effective method, which integrates
the hybrid technique with the contributions of [TW12]. This method initially condenses
the underdetermined system into a series of qk smaller overdetermined systems before
employing the Wiedemann XL algorithm to solve them. The bit complexities for direct
attacks in Table 3.3 are based on this method.

Guessing the secret key: Since the secret key is the Shake256 expansion of the
secret seedsk, as shown by Line 4 of Algorithm 2, an attacker may attempt to deduce
the secret key by guessing the random seed bytes. A successful seed guess would require
approximately 28sk seed bytes - 1 attempts on average. Thus, the length of the secret seed
is chosen to fulfill the respective NIST level requirements with an additional security
margin of 64 bits.

Forging signatures: MAYO signature can be easily forged under a chosen message
attack by discovering a collision for Shake256. If an attacker obtains two distinct
messages M1 ̸= M2 such that Shake256(M1) = Shake256(M2), they can request a
signature for M1 from the signing oracle and then present it as a forgery for M2. To
mitigate the risk of hash collisions, the digest output lengths for the different NIST levels
are chosen such that Shake256 meets the necessary security requirements.

Claw Finding Attack: An adversary can obtain P ∗(si) for X random inputs {si}i∈[X]

and determine the digest H(H(M) || saltj) for Y random salts {saltj}j∈[Y]. If XY =

qm, a collision P ∗(si) = H(H(M) || saltj) occurs with a probability of approximately
1− e−1, allowing the adversary to produce the signature (si, saltj) for message M. The

computational effort of this attack is 36mX + Y 217, which is equivalent to 12
√
qmm217

when X and Y are optimally chosen.

3.5.2. Attacks targeting the Oil and Vinegar problem

The public map P ∗ is composed of a classic Oil and Vinegar map P : Fn
16 → Fm

16, which
vanishes on an o-dimensional linear subspace O ⊂ Fn

16. As mentioned in Section 2.6.1,
the oil space serves as the secret key and is hidden in Fn

16. Consequently, the security
of MAYO relies on the inability of an attacker to reconstruct O from P . This challenge
has been extensively explored in literature, since it corresponds to a Oil and Vinegar key

23

recovery attack. While the specific algorithm is different to enable signature computation
with the altered parameter set, the MAYO public key itself is essentially an UOV key.
The description of the attacks in this section are based on [Beu21] with the modifications
of [Beu22b; Beu+23a] to apply them on MAYO.

Kipnis-Shamir attack: Kipnis and Shamir [KS98] first proposed a successful attack on
the original Oil and Vinegar problem of Patarin [Pat97], which was extended by [KPG99]
to apply to the unbalanced case. This attack aims to identify vectors within the oil space
O by leveraging the increased likelihood of these vectors being eigenvectors of certain
publicly-known matrices. These matrices are composed of the linear part of the public
key map P ′(x,y). Every component p′i(x,y) of P

′ is associated with a matrix Mi such
that p′i(x,y) = x⊤Miy. The matrices used for the eigenvector computation are then
defined as M−1

j Mi. The primary challenge of this attack lies in calculating the eigenvec-

tors of approximately qn−2o matrices of size n × n. Asymptotically, the computational
expense of computing these eigenvectors equals that of matrix multiplication. Although
this attack operates within polynomial time when n = 2o, it rapidly becomes computa-
tionally impractical for unbalanced Oil and Vinegar instances. For the Kipnis-Shamir
data in Table 3.3, Beullens et al. [Beu+23a] utilized a lower bound of 36qn−2on2.8 as the
bit cost of the attack.

Reconciliation attack: The Reconciliation attack [Din+08] attempts to identify vec-
tors within the oil space O until a complete basis for O is obtained. It exploits the
property that P (o) = 0 for every o ∈ O. In general, it is expected that a random
quadratic map P would contain roughly qn−m zeros and Oil and Vinegar maps include
additional qo fabricated zeros in O. As shown in Table 3.1, o > n −m, and, thus, the
majority of zeros in P lie in O. Therefore, to find a vector in O, an attacker can solve
P (x) = 0 for x using the method described in the Direct Attack section. Since O is of
dimension o, an attacker can employ o random affine constraints to reduce the variable
set to n− o, and, consequently, the resulting system is likely to have a unique solution,
corresponding to a vector in O. Hence, identifying a vector in O simplifies to finding a
solution for a quadratic system with n − o variables and m inhomogeneous multivari-
ate equations. Upon a single vector x in O is discovered, determining the remaining
vectors in O becomes a significantly simpler task. This is due to the requirement that
P ′(x,y) = 0 needs to hold in addition to P (y) = 0 for the second vector y, resulting in
a quadratic system with a smaller amount of variables. Thus, finding the first vector is
the dominating factor in the attack complexity of the Reconciliation attack.

Intersection attack: The intersection attack [Beu21] extends the reconciliation attack
by incorporating elements from the Kipnis-Shamir approach. Its principle lies in ex-
ploring multiple vectors within the oil space concurrently. The attack aims to identify
k ≥ 2 vectors within O by solving a quadratic system with

(
k+1
2

)
m − 2

(
k
2

)
equations

involving min(n, nk − (2k − 1)m) variables. In the case of MAYO, the most efficient
outcomes occur when k = 2. However, the attack’s success is only assured if 3o > n, a
condition not satisfied by the parameters of MAYO. When 3o ≤ n, the probability to
succeed is q−n+3o−1, requiring an average of qn−3o+1 repetitions. Therefore, the total

24

attack complexity is qn−3o+1 times the cost of solving a quadratic system with 3m − 2
equations in n variables. Upon a successful attempt, the k found vectors can be ex-
tended to a complete basis of O as outlined in the Reconciliation attack section. Given
the small value of o in MAYO, the intersection attack exhibits notably low success rates,
rendering it considerably less efficient than in the conventional Oil and Vinegar setup
where o = m.

3.6. Parameter Sets

NIST mandates that every submitted algorithm satisfies certain security levels [NIS22]
and, thus, lists 5 different categories, also referred to as levels, in increasing order of
strength. Levels 1, 2, and 5 are categorized in regard to the computational complexity
required to carry out a key search on a block cipher, such as Aes, with key lengths of
128, 192, and 256 bits, respectively. Levels 2 and 4, on the other hand, are defined by
the computational resources needed for collision search on a hash function with either
256 or 384 bits, for instance Sha-3.

It is recommended to meet the requirements of levels 1 to 3 as well as one of the higher
levels 4 or 5. MAYO aims to satisfy levels 1, 3, and 5 by providing different param-
eter sets, denoted as MAYO1, MAYO3, MAYO5, respectively, to achieve that. The
definitions of the parameter sets are shown in Table 3.1. Furthermore, the authors of
MAYO specify MAYO2, an additional parameter set reaching security level 1, however,
we omitted this set from this thesis because it does not target small public key sizes, the
original objective of MAYO.

To demonstrate the effectiveness of the whipping technique, we compare the key sizes
of MAYO with an implementation of UOV. Beullens et al. [Beu+23e] specify parameter
sets for UOV also targeting NIST security levels 1, 3, and 5. These parameter sets are
shown in Table 3.2.

As demonstrated by the table, whipping accomplishes a reduction of the public key size
by approximately 98 % across all security levels. Accordingly, the sizes of the expanded
keys are reduced by at least 80 % for the public key and 77 % for the secret key. This
reduction comes with an increased signature size by a factor of 3. Nevertheless, this
increase may be neglected as the signatures typically consist of only a few hundred
bytes, whereas the public key size decrease falls within the kilobyte range.

To provide proof that the respective security level requirements are fulfilled, MAYO
[Beu+23a] gives the attack complexity in bits, shown in Table 3.3, for the different
attacks described in Section 3.5. It is important to note that the bit complexity attacks
in the table are lower bounds, since they do not account for the cost of memory accesses,
which provides an additional security margin. The targeted security levels 1, 3, and 5 are
specified in regard to the computational complexity of key search on Aes. As shown by
Table 3.3 attacks on the chosen parameter sets exceed these security requirements.

25

Table 3.1.: MAYO parameter sets for NIST security levels 1, 3, and 5. Adapted
from [Beu+23a]

Parameter Set MAYO1 MAYO3 MAYO5

Security Level 1 3 5

n 66 99 133

m 64 96 128

o 8 10 12

k 9 11 12

q 16 16 16

Salt Bytes 24 32 40

Digest Bytes 32 48 64

PK Seed Bytes 16 16 16

f(z) f64(z) f96(z) f128(z)

Secret Key Size 24 B 32 B 40 B

Public Key Size 1168 B 2656 B 5008 B

Signature Size 321 B 577 B 838 B

Expanded SK Size 69 KB 230 KB 553 KB

Expanded PK Size 70 KB 233 KB 557 KB

Table 3.2.: UOV parameter sets for NIST security levels 1, 3, and 5. Adapted
from [Beu+23e]

Parameter Set ov-Is ov-III ov-V

Security Level 1 3 5

n 160 184 244

m 64 72 96

q 16 256 256

Secret Key Size 48 B 48 B 48 B

Public Key Size 65 KB 185 KB 437 KB

Signature Size 96 B 200 B 260 B

Expanded SK Size 341 KB 1020 KB 2380 KB

Expanded PK Size 403 KB 1197 KB 2802 KB

Table 3.3.: Lower bound complexity in bits for different attacks against chosen parameter
sets Adapted from [Beu+23a]

Parameter Set
Kipnis-

Reconciliation Intersection
Direct Claw-

Shamir Attack finding

MAYO1 222 143 255 145 143

MAYO3 340 209 390 210 207

MAYO5 461 276 525 275 272

26

3.7. MAYO Implementations

The MAYO team created three different software implementations of their algorithm,
which are available under [Beu+23b]. They provide C implementations with an increas-
ing degree of optimization in the following order: Reference, Optimized, and AVX2
optimized.

Reference implementation: In most instances of the reference implementation, matrix-
matrix and matrix-vector multiplications are executed using a bitsliced representation.
The choice of m being divisible by 32 enables the computation of 32 F16-additions or
F16-multiplications in parallel utilizing four 32-bit variables. All parameter sets are
supported by a single library through the use of runtime parameters.

Optimized implementation: The optimized implementation deviates from the ref-
erence implementation in two key aspects. To begin with, the MAYO parameters are
defined at compile-time, leading to the creation of distinct libraries for each set. Modern
compilers efficiently unroll matrix arithmetic operations, eliminating the need for man-
ual loop unrolling. Furthermore, distinct bitsliced arithmetic functions are introduced
for different values of m. For all parameter sets m computations can be carried out
in parallel using four 64-bit, twelve 32-bit, or eight 64-bit variables for the respective
value of m. A significant portion of the computational time involved in key expansion is
consumed by Aes, allowing for substantial performance enhancement through the uti-
lization of an Aes library with Aes-Ni support. Nevertheless, the extent of acceleration
achieved may vary depending on the particular Aes implementation. Aes can either
be done in software or in hardware via intrinsic function calls of Aes-Ni, however, this
depends on the CPU support. Thus, the usage of Aes-Ni is optional.

AVX2 implementation: The AVX2 implementation employs compiler assembly in-
trinsics to utilize SIMD and AVX instructions. Different strategies are employed to
optimize bitsliced arithmetic for every value of m. Similar to before, m multiplications
can be carried out in parallel, however, in this case vector registers are used. Among
the values of m, 64 holds a distinct position since all of the values are encoded within
a single 256-bit vector and multiplication is executed using vector permute and shuffle
instructions. On the other hand, for 96 and 128, three 128-bit and two 256-bit regis-
ters are utilized, respectively. Additional optimizations involve the unrolling of matrix
multiplication loops for every operation in MAYO, the interleaving of multiple bitsliced
arithmetic operations, and the reuse of intermediate values. The efficiency of multipli-
cations in the computation of the echelon form is enhanced through the utilization of
optimized AVX2 shuffle instructions. Additionally, Aes-Ni can be used to increase the
PRNG performance, as described in the optimized implementation. Similar to the previ-
ous case, the utilization of Aes-Ni is optional also for the AVX2 implementation.

27

Chapter 4.

Key Approaches for a Hardware Design

The MAYO signature scheme exhibits several properties which render an efficient hard-
ware design challenging. At first glance, the primary arithmetic operations employed
offer hardware-friendly characteristics. Nonetheless, the large memory demand requires
a sophisticated memory design to store the matrix elements and retrieve them efficiently.
This ensures that the relatively straightforward arithmetic operations can be effectively
utilized. Furthermore, it is challenging to cope with the pseudo-random generation of
matrix coefficients due to the high memory demand. Thus, the seamless integration of
coefficient generation into the memory design is essential to facilitate high-performance
implementations.

Given the novelty of MAYO and the challenges it presents, HaMAYO [Say+23] is the only
Field Programmable Gate Array (FPGA) implementation currently available. However,
HaMAYO is limited to performing key generation and signature computation solely for
security level 1. Should MAYO emerge as a promising candidate of the post-quantum
signature call, it is essential that efficient implementations of the complete algorithm
exist not only for software but also for hardware platforms.

The goal of this thesis is not to present a complete hardware design or to provide exhaus-
tive descriptions of individual modules, given the complexity of the signature scheme.
Instead, we identify and analyse the main challenges inherited by the algorithm specifi-
cation and propose design approaches which allow for an efficient hardware design. The
subsequent sections introduce the following techniques:

1. On-the-fly Coefficient Generation

2. Memory Design

3. Parallelizing Matrix Multiplication

4. Coefficient Generation via Shake128

5. Gaussian Elimination

The presented techniques are flexible in a sense that they can be used in both, high-
performance and low-area implementations. The intended purpose is to reduce the
barrier for future hardware designs, not only for MAYO but also for UOV schemes in
general, as the majority of the approaches presented here can be applied to both.

28

Table 4.1.: Memory consumption of the Pi matrices sizes for security levels 1, 3 and 5

Matrix Dimension MAYO1 MAYO3 MAYO5

P(1) (n− o)× (n− o)
58× 58 89× 89 121× 121
856 B 2003 B 3691 B

P(2) (n− o)× o
58× 8 89× 10 121× 12
232 B 445 B 726 B

P(3) o× o
8× 8 10× 10 12× 12
18 B 28 B 39 B

P n× n
66× 66 99× 99 133× 133
1106 B 2476 B 4456 B

4.1. On-the-fly Coefficient Generation

This section describes the on-the-fly coefficient generation design that addresses the
large memory demand of MAYO. First, we examine the factors contributing to this
demand, followed by the presentation of the on-the-fly generation technique. Subsequent
sections analyze the implications of this approach and its effect on the algorithm, offering
potential solutions. Finally, we illustrate how this technique allows for the optimization
of either performance or memory usage.

Challenge 1: The Pi∈[m] matrices are involved in the majority of the operations and
the main reason for the large memory demand of MAYO. As shown in Equation (2.5),

each Pi matrix comprises three submatrices, P
(1)
i , P

(2)
i , and P

(3)
i . The total memory

consumption is shown in Table 4.1. The number of matrix elements corresponds to
the parameters of the different security levels as listed in Table 3.1. To calculate the
size in bytes, we simply multiply the number of elements by the field element size,

which is 4 bits for MAYO. It is important to note that P
(1)
i and P

(3)
i are in upper

triangular form and, thus, the listed byte sizes do not account for the zero elements
to give a lower bound for the memory demand. Since there exist m Pi matrices, the
total memory consumption is 69, 232, and 557 KB for the respective security level.
Although the memory consumption may appear insignificant in the context of software
implementations on modern computers, it poses challenges when considering memory-
constrained platforms such as microcontrollers. These memory sizes could potentially
cause issues and even render the scheme unimplementable on such platforms.

Design Approach: The large size of the Pi matrices results in significant memory
consumption, making it an important point that needs to be considered during the
design phase. It is not feasible to store all the matrices in memory. Thus, we need an

approach to reduce the memory demand. P
(1)
i and P

(2)
i are generated pseudo-randomly

from the public seed seedpk, as outlined in Section 3.3.1. P
(3)
i is the only matrix in the

key generation process that is not directly derived from a seed, as shown in Algorithm 2.

Therefore, we need to store it in on-chip memory to avoid the recomputation of P
(3)
i ,

29

Figure 4.1.: PRNG generation order

however, P
(1)
i and P

(2)
i can be regenerated anytime. Additionally, as shown by Table 4.1,

the cost of storing P
(3)
i is significantly less compared to the other two matrices. By

storing only P
(3)
i , the memory demand can be reduced from 69, 232, and 557 KB to 1152,

2688, and 4992 B, respectively. This corresponds to a reduction in terms of memory by
99 % across all security levels. These numbers underlie the effectiveness of on-the-fly
coefficient generation, which reduces the memory demand of each Pi from (n× n)/2 to
only (o× o)/2 elements.

Important Consideration: As a result of this approach, every time some P
(1)
i or

P
(2)
i matrix is needed in an operation, the PRNG needs to regenerate the matrices.

To ensure that the memory reduction does not compromise the performance, on-the-fly
generation needs to be considered during the design of the the arithmetical units. As soon
as the PRNG generates coefficients, the arithmetical units should be able to consume
the input and carry out the operations. Ideally, the PRNG generates data as fast as
the arithmetic logic units (ALUs) can consume them to avoid underutilization. This
enables the possibility of customization. Depending on the generation rate of the PRNG
and the number of available ALUs, a designer can either aim for a high-performance
implementation or a low-area approach. Therefore, we have to identify in which order
the coefficients of Pi are generated and in which operations the matrices are involved to
come up with a well-integrated design approach.

30

Figure 4.2.: Bitsliced decoding of PRNG output

A hardware implementation should be compliant with the official MAYO specification.
Due to this, we need to adhere to the same generation order. In the case of MAYO,
the coefficients are generated in m-row-column order, meaning that the PRNG first
outputs the first element of all m matrices followed by the next row element of all m

matrices. This order is illustrated by Figure 4.1. Additionally, all P
(1)
i are generated

before P
(2)
i . MAYO uses a bitslicing technique to decode the PRNG output into actual

F16 elements. This technique is shown in Figure 4.2. It waits until 4m bits have been
generated and splits them into 4 packets of length m. Since a F16 element consists of
4 bits, each packet contains a single bit of an element. Subsequently, one bit from each
packet is concatenated to form a field element. The most significant bit is located in the
fourth packet, hence, the reading order is from bottom to top. In this case, we obtain
the elements (1000)2 = (8)10, (1100)2 = (12)10, (0010)2 = (2)10, and (1100)2 = (12)10.
Consequently, the 4 packets yield m field elements.

As shown by Algorithms 2, 3, and 5, in the majority of cases Pi is part of a matrix-matrix
or matrix-vector multiplication. The benefit of this operation types is that intermediate
result can be computed without knowledge about subsequent values, as depicted by
Equation (4.1).

c = ab =
(
a1 a2 a3

)b1
b2
b3

 =
(
a1b1 + a2b2 + a3b3

)
(4.1)

The first part of the result, colored in red, can be computed before the blue and or-
ange part. Hence, it is relatively straightforward to combine the on-the-fly generation
approach with the involved operations of the algorithm. The PRNG stores the gener-
ated coefficients in a buffer where the F16-ALUs consume them. The second operand is
retrieved from memory and the intermediate result is stored inside the until a complete

31

Figure 4.3.: On-the-fly coefficient generation layout

element of the result is computed. The final element is then written back to memory. A
simplified design of this approach is shown in Figure 4.3. First, the PRNG generates the
bits representing the matrix elements, which are then subject to the decoding process
as previously described. Second, after the decoding is completed, the resulting field ele-
ments are fed into the buffer, where they await processing by the F16-ALUs. Third, the
final computation results are stored in memory for subsequent steps of the respective
algorithm. Thus, the buffer needs to have a capacity of at least 4m bits to accommodate
all elements from a single decoding cycle. Nevertheless, the specific size of the buffer
can be selected based on design considerations. A larger buffer enables the utilization of
more ALUs, thereby enhancing performance. Conversely, a smaller buffer size reduces
the required area since fewer ALUs have to be instantiated.

Although, for this to work, the generated Pi matrices need to be the left-hand operand,
because otherwise, the generation order of the coefficients does not align with the order
of matrix multiplication, since the right-hand side is accessed in column order. Terms of

type v⊤
i P

(1)
a vi (i.e. Line 21 of Algorithm 3) are not an issue, since matrix multiplication

is associative it can be computed as v⊤
i (P

(1)
a vi). However, the computation of P

(3)
i

in Line 8 of Algorithm 2 is not as straightforward. Using the distributivity of matrix
multiplication we can rewrite it to

P
(3)
i = Upper(−O⊤P

(1)
i O−O⊤P

(2)
i)) = Upper(−O⊤(P

(1)
i O+P

(2)
i)). (4.2)

We want to avoid that the generated matrix is on the right-hand side of a matrix multipli-
cation. Using this modification eliminates that. As shown by Equation 4.2, the original
computation comprises six suboperations: three matrix multiplications, one matrix sub-
traction, one negation, and one upper triangulation. It is notable that multiplication
with O⊤ occurs twice. Hence, this can be reduced to a single multiplication by factor-
ing out the multiplication of O⊤. This adjustment, omitting one matrix multiplication,

32

saves a total of m(o × (n − o))(n − o) multiplications and m(o × (n − o))(n − o − 1)
additions, thereby enhancing the performance of key generation.

The last location, where on-the-fly generation can not be applied in a straightforward
manner is located in Line 11 of Algorithm 5. In the computation of u, the complete

matrix Pa =

(
P

(1)
a P

(2)
a

0 P
(3)
a

)
is required. However, the PRNG generates P

(1)
a before

P
(2)
a as described before, and, thus, we do not receive complete rows of the Pa matrices.

Consequently, we are not able to directly feed the F16-ALUs with the matrix coefficients.
To cope with this issue, we perform block matrix multiplication by dividing Pa and si
into blocks of a certain dimension such that it adheres to the generation order. As a
result, h = Pasi is computed using

a = P(1)
a si[0 : n− o]

b = P(2)
a si[n− o : n]

c = P(3)
a si[n− o : n]

h =

(
a+ b
c

)
.

(4.3)

Since a, b, and c are the results of matrix-vector multiplications, we only need to store
three vectors with sizes n−o and o as intermediate results, which is easily possible.

Challenge 2: To preserve the memory saving effect of on-the-fly generation, the in-

termediate results have to be smaller than the involved P
(1)
i and P

(2)
i matrices. This

is obvious by taking a look at Line 6 of Algorithm 3. It is not reasonable to compute

M = P
(1)
i + P

(1)
i

⊤
using on-the-fly generation and then storing the intermediate result

M. Since P
(1)
i is upper triangular and P

(1)
i

⊤
is lower triangular, each matrix consists

of (n − o)(n − o − 1)/2 elements. Therefore, M would contain (n − o)(n − o) elements

and need twice the memory of P
(1)
i . This massive increase in required memory would

annihilate the benefits of our memory saving technique.

Design Approach: To reduce the size of intermediate values, the Pi matrices have to
be multiplied with a smaller matrix to obtain a result with smaller dimensions. Most
importantly, we need to avoid additions involving only plain Pi matrices. In the current
example, we are able to take advantage of matrix product distributivity and modify
Line 6 to

Li = (P
(1)
i +P

(1)
i

⊤
)O+P

(2)
i = P

(1)
i O︸ ︷︷ ︸

F(n−o)×o
16

+P
(1)
i

⊤
O︸ ︷︷ ︸

F(n−o)×o
16

+P
(2)
i . (4.4)

33

While P
(1)
i O and P

(1)
i

⊤
O consist of (n− o)× o elements each, they require significantly

less memory than P
(1)
i +P

(1)
i

⊤
. o is smaller than n − o by at least a factor of 7 across

all security levels. For MAYO1, this results in storing 2× 464 instead of 1× 3364 matrix
elements, reducing the the required memory from 13 KB to 3.6 KB.

To achieve the maximum memory reduction, the scheme needs to be adapted to minimize
the storage of intermediate values and exploit properties of matrix operations to compress
them efficiently. Lines 17 through 26 of Algorithm 3 provide a good example of this
approach. The computations of y and A are independent, thus, their intermediate
values do not need to be held in memory simultaneously. A memory-efficient adaption
of this section is shown in Algorithm 6.

Algorithm 6 Adapted Signature Computation [Beu+23a]

17: //Build right-hand side vector y of linear system
18: for i from 0 to k − 1 do
19: for j from k − 1 to i do

20: u←

{
{v⊤

i P
(1)
a vi}a∈[m] if i = j

{v⊤
i P

(1)
a vj + v⊤

j P
(1)
a vi}a∈[m]

if i ̸= j

21: y← y −Elu

22:

23: //Build left-hand side matrix A of linear system
24: for i from 0 to k − 1 do
25: {Mi[j, :]}j∈[m] ← {v⊤

i Lj}j∈[m]

26: for i from 0 to k − 1 do
27: for j from k − 1 to i do
28: A[:, i ∗ o : (i+ 1) ∗ o]← A[:, i ∗ o : (i+ 1) ∗ o] +ElMj

29: if i ̸= j then
30: A[:, j ∗ o : (j + 1) ∗ o]← A[:, j ∗ o : (j + 1) ∗ o] +ElMi

31: l← l + 1

32: x← SampleSolution(A,y, r)

By separating the computation of A and y we are able to reduce the memory needed for
intermediate values significantly. After the final result of y ∈ Fm

q is obtained, we only
need to store its m elements, since none of the depended variables are shared with A.
Consequently, we can use the freed up memory for the computation of the linear system
matrix. A significant advantage of this separation is that it incurs minimal performance
cost. The only added overhead is the inclusion of an extra for loop with identical limits,
which has negligible impact on performance.

To this point on-the-fly generation was used to decrease the memory requirements of
MAYO. Nevertheless, this approach comes with a performance trade-off. Typically,
retrieving coefficients from on-chip-memory is faster than regenerating them repeat-
edly. However, this is not an feasible option due to the large size of the Pi matrices.

34

Nonetheless, we can sacrifice a small amount of the saved memory to compensate for this
performance loss. By applying precomputations at certain locations in signature com-
putation and signature verification, we increase the number of intermediate variables

in memory, but enable a performance increase in exchange. For instance, gi = P
(1)
a vi

(Line 21 of Algorithm 3) and hi = Pasi (Line 11 of Algorithm 5) are computed repeat-
edly. Consequently, the PRNG has to regenerate the matrix coefficients several times
for the same operation, leading to multiple executions of matrix multiplication sharing
identical operands. This can be avoided by precomputing gi and hi for all i ∈ [k] and
storing them in memory. Using verification as an example, the adapted version would
take the form shown in Algorithm 7.

Algorithm 7 Adapted Signature Verification [Beu+23a]

9: for i from 0 to k − 1 do
10: hi ← {Pasi}a∈[m]

11:

12: for i from 0 to k − 1 do
13: for j from k − 1 to i do

14: u←

{
s⊤i hi if i = j

s⊤i hj + s⊤j hi} if i ̸= j

15: y← y +Elu
16: l← l + 1

Using this adaption increases the required on-chip storage for the hi variable by a factor
of k, since the values for all i ∈ [k] are stored concurrently. A single hi is of dimension
m × n, thus, the precomputation adaption needs approximately 18, 50, and 100 KB
instead of 2, 4.6, and 9.3 KB for the respective security levels. This is a significant
increase in memory demand, but on the other hand, we save mk(k − 1) matrix-vector
multiplications. Therefore, the performance of this operation is increased by 4608, 10560,
and 16896 times the latency of a single matrix-vector multiplication. This example
illustrates the flexibility of on-the-flight generation in regard to performance and memory
demand.

To conclude, on-the-fly generation enables the implementation of MAYO on hardware
platforms. Otherwise, the memory of constraint platforms would already be exhausted

by the public key matrices P
(1)
i , P

(2)
i , and P

(3)
i . Nevertheless, developers retain the

ability to make decisions regarding their design choices. On one hand, they can prioritize
low memory usage and minimize the storage for intermediate results. On the other hand,
they have the option to increase memory and enhance the performance instead.

35

4.2. Memory Design

This section describes a potential memory design aimed at offering a low-latency solution
for accessing memory elements in MAYO. A well-designed memory layout is one of the
key factors for an efficient hardware implementation. First, we introduce two distinct
data formats and elaborate on their identification process. Then, we describe the impact
of these formats on various types of operations. Lastly, we present a memory layout that
demonstrates how to implement the memory formats on a FPGA utilizing Block RAMs
(BRAMs).

Challenge: The majority of arithmetic operations in MAYO involves the evaluation of

the multivariate quadratic map P . This map comprises the three submatrices P
(1)
i , P

(2)
i ,

and P
(3)
i . Since P consists of m multivariate quadratic polynomials, evaluating the map

involves the multiplication of all m Pi matrices. Although the elements of P
(1)
i and P

(2)
i

are generated on-the-fly, P
(3)
i and subsequent computation results have to be retained in

memory. Hence, the memory design needs to support fast loading and storing of these
elements. Thus, using an appropriate format for matrices and vectors is a decisive factor
in the design. Otherwise, accessing and storing elements has a negative impact on the
performance of the hardware implementation.

Design approach: We need to analyze the MAYO scheme and its algorithms to un-
derstand the memory requirement. The scheme’s computations mainly evolve around
the Pi matrices making them a crucial point when it comes to hardware design. Addi-
tionally, the Pi matrices employ the largest amount of elements. Therefore, our memory
layout needs to focus on accelerating computations involving the Pi matrices. An im-
portant detail is that all of the m Pi are used every time. There is no instance where a
single Pi is involved without the others. Consequently, all m matrices share the second
operand. Therefore, it is necessary to store all m coefficients with identical indices close
to each other, as they are simultaneously used in the same operation. This fact leads to
our memory design. We introduce two different formats to store vectors and matrices,
defined as followed:

1. Unpacked: One entry of a BRAM holds an entire vector v or a row of a matrixM.
This format is mainly used during the computation of the matrixA in Algorithm 3.
Therefore, we are able to load a whole vector or matrix row from memory in a single
cycle.

2. Packed: Each BRAM entry holds m elements Pi[x, y] for i ∈ [m]. Pi[x, y] is the
coefficient located at row x and column y of the i-th P matrix. Thus, loading
one entry provides us with m elements from m different matrices, all sharing the
identical index. This format is used whenever a matrix of the form Pi is involved.
This choice is motivated by the fact that the same operation needs to be applied to
elements with identical indices in each Pi matrix. Therefore, subsequent BRAM
entries contain the elements of all m matrices in row-major order. Figure 4.4 illus-
trates the packed memory format of the Pi matrices. One can interpret the packed

36

Figure 4.4.: Packed Format

memory format as storing a single matrix entry per memory location, but instead
of a 4-bit element we store larger elements of size 4m. This interpretation also
aligns with the involved operations since all m elements are used simultaneously.
As an additional benefit, the row order inside the BRAM is not relevant, since we
can load the individual elements in any desired order.

Consequently, these memory formats impact the arithmetical operations of the scheme.
Now, also the format has to be considered. Three different operation types can be
identified:

1. Packed-Unpacked Multiplication: An element in packed format is multiplied

with an element in unpacked format (e.g. {P(1)
i O}i∈[m]). Since the right-hand side

operand is unpacked, all m elements of a single memory location are multiplied
with the same value of the unpacked variable. Thus, we are able to load all the
relevant elements to start with the multiplication in a single cycle. Due the row-
major order of the packed format, we only need to access the memory row by row
to adhere to the order of matrix multiplication The obtained result is stored in
packed format.

2. Unpacked-Packed Multiplication: An element in unpacked format is multi-

plied with an element in packed format (e.g. −O⊤(P
(1)
i O+P

(2)
i)). Similar to the

packed-unpacked multiplication, all m elements of a single memory location are

37

multiplied with the same value of the unpacked variable and we are able load these
elements within one cycle. However, the packed variable is on the right-hand side
of the operation and we need to retrieve the elements in column order. However,
since one BRAM entry stores only one element, the memory access order is not
important. Instead of retrieving subsequent BRAM entries, we need to compute
the correct index using the number of columns.

3. Packed-Packed Addition: An element in packed format is added to an element

in packed format (e.g. P
(1)
i O + P

(2)
i). This operation type is the easiest to im-

plement. Since matrix-matrix addition is only defined for matrices of the same
dimension, we only have to iterate over the memory entries of both matrices and
add the respective values.

The access pattern to load packed variables in row-major and column-major order is
illustrated in Figure 4.5. This pattern enables us to perform computations with packed
variables either on the left or right-hand side and, additionally, the transposition of
matrices with no additional cost.

Figure 4.5.: Access pattern for loading matrices in row-major and column-major order

In contrast to the packed format, transposition and column-major order access of un-
packed variables poses a challenge, since an entire matrix row is stored in a single BRAM
entry. While loading a row only accounts for one cycle, retrieving a column requires as
many cycles as there are matrix rows. However, analysis of the algorithms shows that
the only variables in unpacked format besides A are O, vi, and si. These variables are
of dimension (n− o)× o, (n− o), and n, respectively. Thus, their total memory demand
is 294, 540, and 854 B across all security levels. Additionally, not all three are used in
the same algorithms. vi is needed only in Algorithm 3 and si only in Algorithm 5. Thus,
it is feasible to employ a data cache for this three variables utilizing registers instead of
storing them in BRAM. This allows us to access all elements of these variables within
one cycle and eliminates the overhead of transposition and column order access.

38

Figure 4.6.: Memory layout for MAYO1

To support the two formats we need to align our BRAMs accordingly. We target the
Xilinx 7 Series for the following description, nevertheless this design approach can be
applied to different FPGAs by adapting to the specific Block RAM size. The Xilinx
7 Series comes with two different BRAM sizes, 18 Kb and 36 Kb. The 36 Kb BRAM
supports a maximum width of 72 bits and a maximum depth of 512. The 16 Kb BRAM
allows a width of up to 36 bits and a depth of 512 [Xil19]. As described before, we spread
m 4-bit values across the width of the BRAMs to store and load all of them within on
cycle. However, m is too large to store the values in a single BRAM. The maximum
width of 72 is already exceeded in security level 1 with 4m = 256. Thus, we need to
employ multiple BRAMs to implement our packed format. For every security level we
need to align ⌈4m/72⌉ BRAMs to store all m values in a single entry. To accommodate
a packed entry for MAYO1, 4 BRAMS in width are required. We denote such a block
of ⌈4m/72⌉ BRAMs as memory bank. The required number of banks depends on the
amount of intermediate values and the design choice of the developer. As described in
Section 4.1, one can aim for a high-performance or a low-area implementation.

Our memory design for the security level 1 configuration is depicted in Figure 4.6. The
design comprises a total of l memory banks, denoted as MEMi∈[l], responsible for storing
packed data during the operations involved in MAYO. The value of l depends on the
number of intermediate vales as mentioned before. Each memory bank entry contains one
element in packed format spread across the vertically arranged BRAMs, as highlighted
in blue. The decision if 36K or 18K BRAMS are used depends on the specific security
level. The objective is to approach the required entry width as closely as possible. In
MAYO1, a single packed element consists of 256 bits and each memory bank is able
to store elements of up to 4 × 72 bits. Thus, the last 32 bits of every memory bank
entry are unused, as marked in red. However, this overhead is reasonable and cannot be
easily avoided. Up to this point, we focused on the storage of packed variable. We leave
a thorough discussion of the memory design for unpacked variables to Section 4.5, as

39

this format is primarily used in GaussianElimination and SampleSolution. Both
of these algorithms are addressed in that section.

In conclusion, our memory design aims to minimize the latency associated with storing
and loading matrix and vector elements. It introduces two memory formats, denoted
as packed and unpacked, to handle the m-fold matrices Pi and the outcomes of their
respective operations. The design provides flexibility by allowing developers to choose
the number of memory banks, thereby either enhancing the performance or reducing the
memory demand.

4.3. Parallelizing Matrix Multiplication

This section describes an ALU design to carry out matrix-vector and matrix-matrix
multiplications. The proposed design is fully compatible with the previously presented
on-the-fly generation and the memory design. First, we analyze matrix multiplication to
come up with a design for the responsible ALU. Then, we describe how this ALUs can
be grouped together to deal with the packed format. Finally, we describe how to further
parallelize the matrix multiplications to increase the performance of the design.

Challenge 1: The majority of operations in MAYO are matrix-matrix and matrix-
vector multiplications involving a large number of elements. Thus, the performance of
a hardware implementation highly depends how fast these operations can be carried
out. In addition to this, elements are not only retrieved from memory, as in the case
of intermediate values, but are also generated pseudo-randomly. As a result, the em-
ployed ALUs have to be designed carefully to operate well in these different scenarios.
Otherwise, the overall performance of a hardware implementation is compromised.

Design Approach: We need to analyze matrix-matrix and matrix-vector multiplica-
tions to understand the requirements for an arithmetical unit design. Furthermore, we
have to consider on-the-fly generation and the memory design to align the ALU accord-
ingly with these two optimizations. Equation 4.5 shows an example of a matrix-matrix
multiplication.

(
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

)
︸ ︷︷ ︸

A

×

b1,1 b1,2
b2,1 b2,2
b3,1 b3,2


︸ ︷︷ ︸

B

=

(
c1,1 c1,2
c2,1 c2,2

)
︸ ︷︷ ︸

C

(4.5)

To compute an element of matrix C, the respective row of matrix A is multiplied with
the respective column of matrix B. For instance, c2,1 is the result of the second row of
A times the first column of B. Thus, matrix-matrix multiplications as well as matrix-
vector multiplication can be broken down to a number of vector-vector multiplications.
Equation 4.6 shows this interpretation in more detail.

40

Ab =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1
b2
b3

 =

a1,1b1 + a1,2b2 + a1,3b3
a2,1b1 + a2,2b2 + a2,3b3
a3,1b1 + a3,2b2 + a3,3b3

 =

c1
c2
c3

 = c (4.6)

The elements of c can be computed completely independent of each other. The row
colored in red only influences c1, while the blue and orange rows only influence c2 and
c3, respectively. Additionally, we see how vector-vector multiplication is carried out. The
subsequent elements of a row and a column are multiplied and then added together until
a complete element of c is computed. Thus, vector-vector multiplication is essentially a
multiply-and-accumulate (MAC) operation. This enables us to come up with a design
for our F16-ALUs. The computations colored in red are accumulated within a MAC unit
until all elements of the corresponding row in A are consumed. This process is then
repeated for each row in A, which is highlighted in blue and orange.

The required components for this procedure are only one adder, one multiplier, and
one register to store the accumulation result. However, the matrix elements are in F16

and, thus, the addition and multiplication needs to be implemented as described in
Section 2.2. An illustration of the outlined F16-MAC ALU is shown in Figure 4.7. The
multiplier consumes one element of each side of the multiplication and feeds the result to
the adder. The adder accumulates the multiplication and the intermediate result from
the register until the final element is obtained.

Figure 4.7.: F16 MAC unit

This ALU design aligns well with the on-the-fly generation and the memory design de-
scribed in Section 4.1 and Section 4.2. Both, the element generation of the PRNG
and the storage in memory, follow a row-major order. Additionally, we modified the
scheme such that generated matrices are always on the left-hand side of a computa-
tion. Therefore, the sequence in which the ALU consumes the elements is in accordance
with on-the-fly generation and the memory design. This is demonstrated once more by
Equation 4.6, where the elements utilized in the computation of c precisely match the
elements of A in row-major order.

41

Challenge 2: The proposed ALU is compatible with the memory design and the gen-
eration order of matrix elements. However, one ALU is only able to compute a single
element of the desired result but we receive m elements in a single load cycle from the
BRAMs. Therefore, if only one ALU is used we would need to iterate over the memory
entry m times, resulting in poor performance and extra logic since the ALU needs to
select the individual elements according to their index. Thus, the consumption of one
BRAM entry using a single F16-ALU requires at least m cycles. As a result, we would
encounter a strong underutilization. Furthermore, the advantages of our memory design
cannot be fully utilized and the performance as a whole is decreased.

Design Approach: One F16-ALU module is relatively cheap. We only need a com-
bination of XOR and AND operations to implement the field arithmetic described in
Section 2.2. Therefore, we can enhance the performance by enabling simultaneous com-
putations through the instantiation of multiple units and utilizing the parallelism capa-
bilities of hardware platforms. Since the memory design provides us with m elements
within one cycle, a straightforward design choice is to instantiate m F16-ALUs. This
allows us to consume all elements within one cycle and we introduce no additional la-
tency. This blends in well also with the on-the-fly generation, since the PRNG generates
more than one element at once. We only have to wait until m elements are stored in
the PRNG buffer to start with the computation. As a result, we are able to reduce
the latency for the computation of matrix and vector multiplications by a factor of m
compared to a single ALU approach. For the remaining part of this section we denote
the group of m F16 modules as ALU block.

The majority of multiplications in the MAYO scheme are of the packed-unpacked type,

for instance P
(1)
i O. We take this matrix-matrix multiplication as example to give an

estimate for the latency using the presented ALU block.

P
(1)
i O =

 p1,1 p1,2 . . . p1,n−o
...

...
...

pn−o,1 pn−o,2 . . . pn−o,n−o


︸ ︷︷ ︸

(n−o)×(n−o)


o1,1 . . . o1,o
o2,1 . . . o1,1
...

...
on−o,1 . . . on−o,o


︸ ︷︷ ︸

(n−o)×o

=

 p1,1o1,1 + · · ·+ p1,n−oon−o,1 . . . p1,1o1,o + · · ·+ p1,n−oon−o,o
...

...
pn−o,1o1,1 + · · ·+ pn−o,n−oon−o,1 . . . pn−o,1o1,o + · · ·+ pn−o,n−oon−o,o


(4.7)

Our ALU block consumes one element of each P
(1)
i matrix simultaneously as outlined

in the paragraph before. Equation 4.7 shows that the first row of P
(1)
i , colored in red, is

multiplied with every column of O. Thus, we need to hold the generated row in memory

42

until the ALU block processed all the columns of O. As a result, the latency to compute

a full row of P
(1)
i O is o × latencyALU. However, this enables us to further parallelize

matrix-matrix multiplication. The matrix O is stored in a data cache as described in
Section 4.2. Thus, we are able to access the elements of O instantly. The left-hand
side of the multiplication is shared across all columns. Therefore, we can instantiate o
more ALU blocks to compute the final elements of all columns concurrently. This new
approach allows simultaneous computation of multiple columns and, thus, reduces the
latency for a full matrix-matrix multiplication by a factor of o to (n− o)× latencyALU.
It is the responsibility of the developer to determine the specific number of ALU blocks.
Employing separate blocks for each column maximizes the performance, while processing
the columns sequentially aims for a design with reduced area requirements.

To conclude, our ALU design aims to minimize the latency associated with perform-
ing matrix multiplications while maintaining the compatibility with on-the-fly gener-
ation and the memory design. We introduced two parallelization approaches: first,
grouping m F16-ALUs to efficiently manage the packed format by enabling simultane-
ous computation, and second, concurrent processing of multiple columns to improve
performance.

4.4. Coefficient Generation via SHAKE128

This section describes how to improve the performance of on-the-fly generation and at the
same time lower the area demand by substituting Aes with Shake. First, we explain
the rationale behind this substitution and its advantages. Subsequently, we address
the challenge associated with using Shake instead of Aes. Finally, we introduce a
novel type of arithmetic unit designed to overcome this challenge and discuss potential
opportunities for parallelization.

Challenge 1: The performance of the scheme is highly dependent on the generation
speed of the employed PRNG. Furthermore, the limited area of hardware platforms
restricts the simultaneous utilization of different cryptographic primitives. The newest
specifications of MAYO use Aes and Shake, which can present challenges in hardware
implementations related to both area usage and performance.

Design Approach: In the first MAYO paper [Beu22b], Shake128 is used exclusively
for hashing and pseudo-random coefficient generation. In [Beu+23a] this was changed

to Aes-128-Ctr for the generation of the P
(1)
i and P

(2)
i elements while Shake256 is

employed for computing the message digest and generating O. The reasoning behind
this modification is to use Aes-128 for the primary data generation tasks. Thus, the fast
Aes-Ni instruction of modern CPUs can be applied to enhance the performance of the
scheme. A detailed explanation of Aes-Ni and the resulting optimization is available
in Section 2.8 and Section 3.7. However, this specification change presents challenges in
hardware implementations as previously indicated, specifically:

43

1. Area usage: To follow the newest MAYO specifications in a hardware imple-
mentation, it is necessary to integrate two cores, one for Aes-128 and another
for Shake128. Consequently, a significant portion of the area requirement would
stem from these two cores. Given that both primitives serve the same purpose of
generating pseudo-random values, this method introduces redundancy.

2. Performance: The advantage of Aes in a software implementation is based on
the acceleration provided by the NI extension. However, hardware platforms can-
not benefit from this instruction set. Thus, the reasoning for this change is no
longer applicable. Additionally, our tested Shake core performs significantly bet-
ter compared to Aes. Specifically, Shake128 generates 1344 bits every 26 cycles
compared to Aes-128-Ctr with 128 bits every 12 cycles. This results in a speedup
by a factor of 4.84. Therefore, the transition to Aes not only fails to improve per-
formance but actually slows down the scheme on hardware platforms.

Hence, using Shake exclusively for random data generation can enhance the scheme’s
performance on hardware and also decrease the area requirement of the implementation.

We decided to use Shake128 to generate the elements of P
(1)
i and P

(2)
i , while main-

taining Shake256 in the other cases as specified in the latest specification. Thus, we
are able to benefit of the faster Shake128 in the generation of the large Pi matrices,
while adhering closely to the original version. Importantly, this has no impact on the
area demand since both utilize Keccak, as described in Section 2.9.

This modification becomes even more important in combination with on-the-fly gen-
eration, as it significantly increases the frequency of PRNG usage. Consequently, the
speedup attained through Shake has a substantial impact on the overall performance
of the hardware implementation. Although, it is important to note that Shake has
a drawback in case of software implementations, as the optimizations outlined at the
beginning of the design approach can no longer be applied. Yet, we present a solution to
tackle this problem by introducing an AVX2-based Shake adaption in Chapter 5.

Challenge 2: The transition from Aes to Shake is fully compatible with the hardware
optimizations presented in this chapter except one case. Unlike with Aes, a challenge
arises in the computation of Li in Line 6 of Algorithm 3. We transformed the origi-

nal definition to Li = P
(1)
i O + P

(1)
i

⊤
O + P

(2)
i to ensure compatibility with on-the-fly

generation as outlined in Section 4.1. Computing P
(1)
i

⊤
O poses a challenge when using

Shake. One major difference between Aes and Shake is the reason for this. In Aes
individual keystream blocks can be generated independently by controlling the counter.
However, this is not possible with Shake, as subsequent output blocks depend on each

other. In the case of Aes, generating P
(1)
i

⊤
is feasible by setting the counter appropri-

ately, resulting in generation of the matrix in its transposed form. With Shake, we are

limited to the row-major generation order and cannot directly obtain P
(1)
i

⊤
.

Design Approach: As we are bound to the standard generation order of the matrix,

44

Figure 4.8.: F16 BMAC unit

we need to modify the computation of P
(1)
i

⊤
O to make it compatible with Shake.

Therefore, we analyze the operation similar to Equation 4.6 by transposing the left-
hand side matrix and observe how the computation of the final elements changes.

A⊤b =

a1,1 a2,1 a3,1
a1,2 a2,2 a3,2
a1,3 a2,3 a3,3

b1
b2
b3

 =

a1,1b1 + a2,1b2 + a3,1b3
a1,2b1 + a2,2b2 + a3,2b3
a1,3b1 + a2,3b2 + a3,3b3

 =

c1
c2
c3

 = c (4.8)

As shown by Equation 4.8, the elements of A⊤ are not consumed in row-major order
anymore. The generation sequence is indicated by the colors, first, the red values are
generated by the PRNG from top to bottom followed by the blue and orange ones. Thus,
subsequent values contribute to the whole result vector and are not isolated within a
single entry anymore. As a result, we are not able to feed our ALU blocks directly
with the generated data and receive a complete element after processing a whole row,
since the necessary elements for computing a single ci are no longer generated one after
another.

Therefore, we have to design a modified F16-ALU to support multiplication of a trans-
posed matrix without actually transposing it. Due to the fact that subsequent elements
to not belong to the same ci, we are not able to accumulate the intermediate values
inside the arithmetical unit. Instead, we can store the intermediate results for every
result entry inside a BRAM until the next element is generated and proceed with the
accumulation. For instance, we compute a1,1b1 and store its result in a BRAM. When
a2,1 is generated, we retrieve a1,1b1 from memory and continue with the computation of
c1. We denote this approach as BMAC. An illustration of the outlined F16-BMAC ALU
is shown in Figure 4.8.

The multiplier consumes one element of each side of the multiplication and feeds the
result to the adder. However, the second input for the addition is not retrieved from

45

the register as in the case of standard MAC but is loaded from a BRAM. Then, the
adder accumulates the multiplication and the retrieved intermediate result and stores it
in BRAM again. This process is repeated until the final element is obtained. Ideally,
we allocate the appropriate BRAM entry already for the computation to avoid any
relocating afterwards. This means that the BRAM entry used to store the intermediate
results should align with where the final result should be located.

BMAC offers the same parallelization possibilities as the standard MAC operation de-
scribed in Section 4.3. We are able to combine m BMAC-ALUs to a block to compute

P
(1)
i

⊤
O for all i ∈ [m] simultaneously. Additionally, we can also instantiate o BMAC

blocks to obtain the elements of all columns of O in parallel. One advantage of BMAC

is that P
(1)
i O and P

(1)
i

⊤
O consume the elements in the same order. Thus, we can decide

if we integrate BMAC in the standard F16-ALU or instantiate it separately to compute
the two matrix multiplications in parallel. A very important advantage of this approach
is that we would save one full PRNG round by avoiding the need to regenerate the

P
(1)
i elements a second time. Therefore, we are able to enhance the performance even

more.

In conclusion, incorporating Shake significantly enhances the scheme’s performance,
particularly when coupled with on-the-fly generation. Additionally, we are able to lower
the area demand by omitting the Aes core. Despite introducing a new challenge, the
utilization of BMAC proves effective in overcoming this issue. Moreover, BMAC of-
fers additional opportunities for optimizing the performance on hardware platforms and
conserving PRNG resources.

4.5. Gaussian Elimination

This section covers our approaches to solve the challenges associated with performing
Gaussian Elimination in hardware. Although the actual process of computing the ech-
elon form is relatively straightforward, it heavily relies on the memory format utilized
for matrix A upon which Gaussian Elimination is applied. Consequently, most chal-
lenges are related to the computation of A and the necessary transformation into the
appropriate memory format. First, we analyze the construction of the matrix A and
how the involved Mi matrices require a modification. Second, we describe the reasoning
why A needs to transition between different representations in memory to enable a high
performance design, along with the technique to accomplish these transitions.

Challenge 1: Gaussian Elimination is performed on the matrix A. We aim not only
for a fast computation of the echelon form but also for an efficient building process of
A. Lines 23 and 25 of Algorithm 3 indicate that A depends only on the result of ElMi,
as shown by Equation 4.9.

A[:, i ∗ o : (i+ 1) ∗ o] = A[:, i ∗ o : (i+ 1) ∗ o] +ElMj

A[:, j ∗ o : (j + 1) ∗ o] = A[:, j ∗ o : (j + 1) ∗ o] +ElMi

(4.9)

46

Figure 4.9.: Original computation of Mi

Furthermore, Mi is computed as v⊤
i Lj as shown by Line 18 of Algorithm 3. Thus, we

have to analyze ElMi first. E
lMi is defined as applying El to every column of Mi using

the approach described in Section 3.4. Here we encounter the issue that Mi is stored in
unpacked format in row-major order but its elements are accessed column-wise. Since
Mi is of dimension m× o, we already need m cycles just to load the necessary elements
for the computation of ElMi. Additionally, we need extra logic to select the appropriate
elements of Mi.

Design Approach: Algorithm 3 considers Mi as unpacked matrix as illustrated by
Figure 4.9. The blue arrow indicates the computation order which would occur if we
follow the definition in Line 18. The matrix is filled up from top to bottom in a row-wise
fashion. In general, this is not an issue since unpacked matrices are stored in row-major
order and storing the rows requires only cycle. The problem arises in Lines 23 and 25
of the same algorithm, when we access Mi column-wise as indicated by the red arrow.
Since the matrices are stored in unpacked format we have to load the whole matrix
just to access a single column and, thus, we need m cycles. The biggest advantage of
the unpacked format, loading and storing whole rows in one cycle, is also its biggest
downside when it comes to column access. Since the computations of Lines 23 and 25
are inside the two loops of Line 19 and 20, the impact on the performance is severe. In
total, we spend mk(k − 1) cycles just to load the elements of Mi.

Therefore, it is very important to modify the computation of Mi to improve the memory
access times. This can be achieved by utilizing the packed format. Instead of treating
Mi as unpacked matrix, we perform an unpacked-packed multiplication as it is known

from the Pi matrices. Given that vi ∈ Fn−o
16 and Lj ∈ F(n−o)×o

16 , we obtain a packed
vector mi = vi{Lj}j∈[m] ∈ Fo

16. mi consists of the same elements as Mi, the only
difference is in our internal representation in memory where, mi is stored in packed
format and Mi is stored in unpacked format. Instead of considering the k mi as single
vector, we can combine them into one packed matrix M. This approach is illustrated in
Figure 4.10.

47

Figure 4.10.: Packed computation of M

The packed multiplication essentially computes the columns of Mi before the rows.
Thus, the computation and access order is now identical, highlighted again by the blue
and red arrow. The different Mi are transformed into packed vectors mi which reside
in the rows of the packed matrix M. This approach enables us to store and load the
elements of mi within one cycle. A very important advantage of this packed processing
is that we can utilize the F16-ALU blocks as described in Section 4.3. As a result, a
whole column of Mi is computed simultaneously. Thus, we do not only improve the
access time but also decrease the computational latency. Instead of spending mk(k− 1)
cycles to load the elements of Mi, we reduced it to ok(k − 1). This corresponds to a
reduction by a factor of 8.0, 9.6, and 10.6 for the respective security levels.

Challenge 2: The utilized algorithm to solve the linear system is Gaussian Elimination.
It is employed to transform the augmented matrix (A||y) ∈ Fm×ko+1

16 into echelon form
to subsequently sample a signature. As shown by Algorithm 1, Gaussian Elimination
heavily relies on row operations, among them swapping rows, multiplying by a constant,
or adding two rows. Thus, it is essential to load and store rows of (A||y) in BRAM
as fast as possible. To achieve this, we introduced the unpacked format in Section 4.2.
This format allows us to load and store rows within one cycle since one BRAM entry
holds a full row of (A||y). However, the signature computation algorithm constructs A
in a column-major order as shown by Line 23 and 25 of Algorithm 3. Building A in this
fashion slows down the performance of the signature computation since writing a full
column to memory requires at least m cycles. Additionally, this computation is nested
within two loops, which further amplifies the slowdown. Consequently, the building
process of A would result in a significant bottleneck for the signing algorithm.

48

Design Approach: The foundation for a fast Gaussian Elimination algorithm is the
utilization of the unpacked format. However, this poses a challenge in the building
process of A, which is performed in a column-wise order. Therefore, we have to modify
the computation of A in Lines 23 to 25 of Algorithm 3. This problem is similar to
the previous one of the Mi matrices. Unfortunately, the approach used for Mi is not
applicable for A since the computation of A is not related to a packed multiplication
in any way. However, our solution is relatively straightforward. Instead of building A
directly, we compute its transpose A⊤. Therefore, the column-wise computation order of
A is transformed into a sequence of row computations for A⊤. Consequently, we need to
alter the sign algorithm accordingly. The modified part is shown in Algorithm 8.

Algorithm 8 Adapted Signature Computation [Beu+23a]

26: for i from 0 to k − 1 do
27: for j from k − 1 to i do
28: A⊤[i ∗ o : (i+ 1) ∗ o, :]← A⊤[i ∗ o : (i+ 1) ∗ o, :] +ElMj

29: if i ̸= j then
30: A⊤[j ∗ o : (j + 1) ∗ o, :]← A⊤[j ∗ o : (j + 1) ∗ o, :] +ElMi

31: l← l + 1

32: x← SampleSolution(A⊤,y, r)

The transposed version of A is denoted as A⊤. Lines 28 and 30 demonstrate the row-
wise access instead of the original column-wise order in Algorithm 3. Although the issue
of accessing A in a wrong order is solved for its computation, we probably introduced
new problems since A is passed to SampleSolution in its transposed form. We have
to inspect all the operations where A is involved and examine the impact of using A⊤
instead.

The first relevant computation occurs in Line 2 of Algorithm 4, where y = y − Ar.
Ar cannot be computed in this manner, since the dimensions of A⊤ and r do not align.
Nevertheless, this is easily resolved due to the fact that Ar = r⊤A⊤. The only difference
is that the result is a row vector rather than a column one. However, the dimension of a
vector is not important regarding our memory design, since vectors in unpacked format
are always stored in a single BRAM entry, regardless if they are in row or column form.
In Line 4, A and y are concatenated to create the augmented matrix for the Gaussian
elimination. This essentially adds y as a column to A. Since A⊤ is in unpacked format,
we have fast column write and read. Thus, we are able to append y in one cycle.

The major issue arises in Line 4 when we hand over A⊤ to GaussianElimination.
The computation of the echelon form requires A in unpacked format to perform effi-
ciently. Thus, there is no alternative than transposing A⊤ before performing Gaussian
Elimination. Given that A⊤ is of dimension ko ×m and, hence, rather large, it is not
reasonable to retrieve the whole matrix from memory, except a developer completely
disregards area requirements. Instead, we transpose the matrix in parts. We iterate
over all BRAM entries of A⊤, which store the rows of A⊤, and select r elements. After

49

loading the last BRAM entry of A⊤, we end up with r rows of A and store them in a
new memory location. This procedure is repeated for all columns of A⊤ until the trans-
position is completed. Consequently, we have to iterate over the BRAM entries of A⊤
⌈m/r⌉ times. Now we are able to pass A in unpacked format to GaussianElimination
and compute the echelon form as described in Algorithm 1.

After GaussianElimination is finished, we obtain A in echelon form. Hence, we can
proceed with sampling the solution. Line 11 of Algorithm 4 performs a search within a
row until the first non-zero element is found. This aligns with the unpacked format of A
since we are able to load a whole row within a cycle and carry out the search. However,
the computation in Line 14 accesses a column of A. Thus, we would need m cycles to
load all column elements. Therefore, we perform the same transposition as presented in
the previous paragraph. As a result, we obtained the echelon form of the matrices A
and A⊤ in unpacked format. Consequently, we have fast row and column access for A
to perform the computations of Lines 11 and 14 efficiently. Algorithm 9 incorporates all
the presented modifications for SampleSignature.

Algorithm 9 Adapted Sampling Solutions [Beu+23a]

SampleSolution(A⊤,y, r):

1: x← r
2: y← y − r⊤A⊤
3:

4: B⊤ ←

A⊤
==
y

 ▷ Append y to A⊤ as row

5:

6: B← (B⊤)
⊤ ▷ Transpose augmented matrix B⊤ to enable fast computation of

————————– GaussianElimination
7:

8: (A||y)← GaussianElimination(B)
9:

10: if A[m− 1, :] = 0 then
11: return ⊥
12:

13: A⊤ ← A⊤ ▷ Transpose echelon form of A to enable fast column access
14:

15: for r from m− 1 to 0 do
16: c← 0
17: while A[r, c] = 0 do
18: c← c+ 1

19: xc ← xc + yr

20: y← y − yrA⊤[c, :]

21: return x

50

Line 2 shows the modified computation of y. Appending y to A⊤ and transposing
the augmented matrix occurs in Line 4 and 6. The second transposition is shown in
Line 13 to enable fast columns access of A in the computation of Line 20. Using this
modifications allows us to fully utilize the unpacked format for computing the echelon
form and sampling the solution. We reduced the latency for accessing rows and columns
of A to a minimum. In exchange we introduced additional overhead by adding the two
transpositions. The total transposing latency is

Transpose latency = (ko+ 1)× ⌈m/r⌉︸ ︷︷ ︸
Transposing B⊤

+m× ⌈ko/r⌉︸ ︷︷ ︸
Transposing A

. (4.10)

Given B⊤ is in F(ko+1)×m
q , we need to iterate over all (ko + 1) BRAM entries ⌈m/r⌉

times. Likewise, we have to access all m entries of A ⌈ko/r⌉ times. By transposing A
we achieve the maximum performance in regard to memory access for the operations
involved in Algorithms 3, 4, and 1. Additionally, the latency shown in Equation 4.10 is
lower compared to the latency which would occur without transposing since the wrong
access order in the described loops reduces the performance significantly.

To conclude, we modified the computation of Mi by utilizing the packed memory format
and the available F16-ALU blocks leading to a significant improvement in both, compu-
tation and memory access time. Additionally, we changed the signature computation
algorithm to build A⊤ instead of A to benefit from the resulting row-order access. To
provide Gaussian Elimination with A in its required format, we introduced a flexible
transposing technique. The same procedure is then used to transform the obtained eche-
lon form into its transposed version, enabling the sample solution algorithm to efficiently
access rows and columns in memory.

51

Chapter 5.

Software Modifications

In this chapter, we examine the consequences of substituting Aes with Shake as PRNG
in software. The design strategy outlined in Section 4.4 leads to an incompatibility be-
tween a hardware implementation and the reference software implementation. First, we
provide a brief overview of PRNG usage in the reference version of MAYO as submit-
ted to NIST, along with the setup involved in utilizing Aes and Shake for generating
pseudo-random data. Subsequently, we adapt the software implementation to exclu-
sively employ Shake as the PRNG in accordance with our hardware design approach.
We then describe the various software configurations within MAYO and explain their
relevance for a comparison with our modified software. Finally, we propose an approach
to enhance the performance of our Shake adaption to demonstrate its practicality on
software platforms

Challenge 1: The specification of MAYO utilizes Aes-128-Ctr as a PRNG to gen-

erate the elements of P
(1)
i and P

(2)
i . In Section 4.4 of our hardware design approaches,

we replaced Aes-128-Ctr with Shake128 to enhance the performance and reduce the
area requirements. However, this modification renders a hardware implementation in-
compatible with the original specifications. Therefore, it is of interest to apply the same
adaptation for the software implementation to assess its performance and determine if
employing Shake is also reasonable for software platforms.

Design Approach: The C-implementation of MAYO is publicly available on Github
[Beu+23b]. We modify this code and adapt the PRNG call to use Shake128 instead
of Aes-128-Ctr. The detailed explanation of Aes and its corresponding counter mode
is provided in Section 2.8. The required parameters are the seed seedpk upon which ex-
pansion is performed and the desired output length in bytes, hence P1 bytes+P2 bytes.
The PRNG output has to be deterministic to generate the same keys in every run if the
identical seed is used. Thus, the initialization vector (IV), also referred to as nonce, is
set to 0. seedpk is employed as key and the counter is repeatedly encrypted by Aes until
the specified output length is obtained. Fixing the IV to zero essentially transforms Aes
from a symmetric cipher to a hash function with variable digest length. This configura-
tion is illustrated in Figure 5.1. Due to the 128-bit block length of Aes, the input and
output maintain the same length. Given that the IV is set to zero, the counter value
serves as the only input to the cipher. For each execution of Aes, seedpk serves as the

52

Figure 5.1.: PRNG setup of Aes128

key and every run produces 16 bytes of data for P
(1)
i and P

(2)
i . Encryption is repeated k

times until sufficient data is generated, thus k equals ⌈(P1 bytes+P2 bytes)/16⌉.

Shake on the other hand is already an extendable output hash function, thus, it allows
arbitrarily long output lengths. It only requires the input and the desired output length
as parameters. Consequently, both primitives fulfill the requirements for being used as
a PRNG in MAYO. Therefore, we only have to replace the Aes-128-Ctr call in Line 7
of Algorithm 2, Line 5 of Algorithm 3, and Line 3 of Algorithm 5 with Shake128. As
a result, we obtain a software implementation of MAYO which is compatible to our
proposed hardware approach of Section 4.4.

The C-implementation of MAYO is available in different configurations as outlined in
Section 3.7. Specifically, there are 4 configurations:

1. Reference mode: The reference implementation comes with the lowest degree of
optimization. It does not rely on any instruction set support and is essentially a
one-to-one translation of the algorithms described in Section 3.3.

2. Optimized mode: The optimized implementation is based on the reference mode
but with loop unrolling and improved bitslice arithmetic. Same as before, it does
not require any instruction set support.

3. Optimized mode with AES-NI: The optimized implementation is extended by
the utilization of Aes-Ni. While the performance is increased significantly, this
mode is only available on CPU platforms with Aes-Ni instruction set support.

4. AVX2 mode: In addition to Aes-Ni, AVX2 is employed to parallelize matrix
computations. The AVX2 mode comes with the highest degree of optimization
and, thus, offers the best performance. However, Aes-Ni and AVX2 support is
required for this configuration.

53

We compare the performance of these 4 configurations with the Shake version of MAYO
to test the capability of a pure Shake adaption. The results are listed in Table 6.4 of
Chapter 6. Summarized, the Shake version outperforms configurations (1) and (2), but
fails to keep up with (3) and (4).

Challenge 2: The Shake version of MAYO shows a performance decrease in configu-
rations (3) and (4). Although, there is an increase in the first two modes, the decrease
in the last two is more significant, because in general, modern CPUs come with support
for Aes-Ni and AVX2 as described in Section 2.8 and 2.10. Thus, we have to enhance
our Shake adaption to proof its practicability on software platforms.

Design Approach: In search of opportunities to improve performance, we explored
analogous schemes that also utilize Shake to generate matrix elements. Two candidates
that follow a similar approach are Kyber [Bos+18a] and Saber [D’A+18]. Both schemes
utilize Shake128 for generating a matrix. They employ multiple independent Shake
instances to generate the elements in parallel using AVX. Consequently, multiple seeds
are required for the different Shake calls to generate distinct output streams. Shake
employs 64-bit state variables as described in Section 2.9. Thus, four state variables can
be packed into one AVX-256 vector. As a result, it is feasible to execute four parallel
instances of Shake128. We modify the C-implementation of MAYO to adopt a multi-

seed approach, enabling the generation of P
(1)
i and P

(2)
i through four parallel Shake128

calls. We denote this variant as Shake128x4

First, we have to modify the MAYO scheme to use four different seeds for generating P
(1)
i

and P
(2)
i . To maintain the security margin, we use the same length for the individual

seeds as in the original specifications, specifically 4×16 bytes. Thus, the public key seed
length is increased to 64, as shown in Table 5.1. As a result, the public key size rises
from 1168, 2656, and 5008 B to 1216, 2704, and 5056 B for the respective security levels.
This increase is neglectable.

Table 5.1.: MAYO public key sizes for single and multi-seed implementation

Parameter Set MAYO1 MAYO3 MAYO5

Reference Implementation

PK Seed Bytes 16 16 16

Public Key Size 1168 B 2656 B 5008 B

Multi-seed Implementation

PK Seed Bytes 64 64 64

Public Key Size 1216 B 2704 B 5056 B

In the C-implementation the PRNG generates 69600 B for MAYO1, 93120 B for MAYO3,

and 565312 B for MAYO5 for all P
(1)
i and P

(2)
i matrices. Given that all three numbers

share 4 as a common factor, we can evenly distribute the generation among 4 Shake128
instances. This approach is illustrated in Figure 5.2.

54

Figure 5.2.: Comparison of single and multi-seed approach

In the original variant, a single Shake128 call is used to generate the data for P
(1)
i

and P
(2)
i as depicted by a). In the Shake128x4 modification, 4 individual Shake128

instances generate one fourth of the P
(1)
i and P

(2)
i elements in parallel, as shown in b).

Due to the determinism of Shake128, the 4 instances use 4 different seeds as input to
generate distinct elements. Once the generation is completed, the 4 output streams are
concatenated and the scheme can proceed as usual. The obtained performance increase
is listed in Table 6.4 and will be further discussed in Section 6.2.

The C-implementation of Kyber is available at [Bos+18b]. We adapted the code respon-
sible for the parallel execution of Shake to use it for our Shake128x4 configuration.
Integrating Shake128x4 into MAYO only requires the modification of the PRNG calls
in Line 7 of Algorithm 2, Line 5 of Algorithm 3, and Line 3 of Algorithm 5. The adapted
version of key generation is shown in Algorithm 10.

Algorithm 10 Adapted Key Generation [Beu+23a]

CompactKeyGen():
Output: Compact public key cpk ∈ Bcpk bytes and secret key csk ∈ Bcsk bytes

1: seedsk ← RANDOM(sk seed bytes)
2:

3: //Expand seedsk to get 4 public seeds and O
4: seed1pk, seed

2
pk, seed

3
pk, seed

4
pk,O← Shake256(seedsk)

5:

6: //Expand seedkpk to get P
(1)
i ∈ F(n−o)×(n−o)

q and P
(2)
i ∈ F(n−o)×o

q

7: {P(1)
i ,P

(2)
i }i∈[m] ← Shake128x4(seed1pk, seed

2
pk, seed

3
pk, seed

4
pk)

8: {P(3)
i }i∈[m] ← Upper(−O⊤P

(1)
i O−O⊤P

(2)
i)i∈[m]

9:

10: cpk ← seed1pk || seed2pk || seed3pk || seed4pk || {P
(3)
i }i∈[m]

11: csk ← seedsk
12: return (cpk, csk)

55

In Line 4, Shake256 is utilized to generate 4 public seeds instead of one. Subsequently,

these 4 seeds are passed to Shake128x4 to parallelize the generation of P
(1)
i and P

(2)
i .

To reconstruct the Pi matrices in the other algorithms, the public key now needs to
comprise the 4 seeds, as shown in Line 10.

To ensure compatibility with the non-AVX2 configurations, specifically (1), (2), and
(3), Shake128x4 has to be replaced by four subsequent Shake128 calls using the four
different seeds and a smaller output length. Thus, it is relatively straightforward to
transition the MAYO specifications from a single to a multi-seed scheme. This adaption
is independent of Shake being employed as PRNG. In the case of Aes, the scheme is
modified such that four different keys are used instead of one. Consequently, the value
of the counter has to be reset upon key switching.

In conclusion, we adapted the software implementation of MAYO to accommodate the
use of Shake as the only PRNG. We analyzed the impact on the scheme’s performance
and presented an approach to enhance its efficiency, demonstrating that our modification
is applicable to software platforms as well.

56

Chapter 6.

Results

In this chapter, we present our implementation results and compare them to related
work. The chapter comprises two sections. First, we outline the results of our hardware
design approaches. Second, we compare our modified software variant with the original
implementation.

6.1. Hardware Results

The objective of this thesis is to propose several design approaches which render a
hardware implementation of the complete MAYO scheme possible. As stated in the
introduction of Chapter 4, giving a full hardware design is beyond the scope of this thesis.
However, we have developed a hardware implementation of MAYO that follows the
design approaches of Chapter 4 as part of our paper [Hir+23] to prove the effectiveness
of the presented hardware design techniques. The tables in this section originate from
this work and include only the parts required to demonstrate the capability of our design
approaches. For further details regarding the full hardware design, we refer readers
to [Hir+23].

The area and performance results are given for two different variants. One variant
utilizes Aes-128-Ctr as PRNG, while the other variant employs Shake128. Therefore,
we provide results for a version that is compliant with the official MAYO specifications
and another to demonstrate the improvements achievable by using Shake128. The
area and performance metrics are acquired using Xilinx Vivado 2022.2 for the Alveo
U280 (XCU280). This board is chosen to provide a consistent comparison across all
security levels. Although it is feasible to synthesize MAYO1 on a low-end Xilinx Artix-7
FPGA, this does not extend to MAYO3 and MAYO5. Area and performance results of
the hardware implementation are shown in Table 6.1. All computations are performed
exclusively on hardware without the need for any communication with software. Initially
we discuss the area results followed by the performance results.

Area results: Our FPGA hardware implementations exhibit relatively high look-up
table (LUT) utilization, primarily due to the handling of data from multiple memory
banks as described in Section 4.2 and the utilization of multiple F16-ALU blocks as
outlined in Section 4.3. While this approach allows our design to perform the majority of

57

Table 6.1.: Area and performance results

Design Platform
Latency (in cc/ms) Area

KeyGen Sign Verify LUT/FF/DSP/BR

MAYO with AES-128-CTR based seed expansion

MAYO1 AU280 @ 200MHz 29,287/0.15 94,686/0.47 30,150/0.15 93,841/32,890/2/45.5

MAYO3 AU280 @ 200MHz 65,551/0.32 213,845/1.06 66,939/0.33 157,125/52,975/2/96

MAYO5 AU280 @ 200MHz 118,027/0.59 384,488/1.92 19,603/0.98 219,363/73,900/2/194.5

MAYO with SHAKE128 based seed expansion

MAYO1 AU280 @ 200MHz 12,182/0.06 49,926/0.25 12,722/0.05 91,480/32,007/2/45.5

MAYO3 AU280 @ 200MHz 38,325/0.19 137,358/0.69 39,740/0.20 153,195/51,650/2/96

MAYO5 AU280 @ 200MHz 90,743/0.45 241,310/1.21 92,339/0.46 222,822/71,913/2/194.5
AU280: Xilinx Alveo U280.

computations in parallel and avoids redundant data loading from memory, it does result
in increased implementation complexity. The ALU blocks also contribute to the flip-
flop (FF) utilization due to their internal register. Another factor of the FF utilization
are the employed data caches for O, vi, and si and the PRNG buffer responsible for
storing the generated elements. Noteworthy is the low Digital Signal Processing (DSP)
block utilization in all hardware implementations. Only two DSPs are required because
the ALU design exclusively utilizes bitsliced AND and XOR operations. The BRAM
utilization is relatively low due to our on-the-fly generation technique, as described in
Section 4.1, and the optimized memory design. The combination of these approaches
enables us to minimize the number of required BRAMs compared to previous works
in literature, as we will demonstrate later in this section. This is primarily because
our implementation only requires the storage of intermediate results rather than the

large P
(1)
i and P

(2)
i matrices, which can occupy up to several thousand kilobytes of

memory.

A comparison between the Aes-128 and Shake128 variant reveals a slight advantage for
the latter one regarding area demands. In the case of MAYO1 and MAYO3, the imple-
mentations with Shake128 as only PRNG exhibit a slightly decreased LUT utilization
compared to the implementations that additionally employ Aes-128. The detailed re-
source utilization of the two PRNGs is given in Table 6.2. We employ multiple Aes
cores to match the faster performance of Shake128 as described in Section 4.4. It is
important to note that the Aes variants also need to incorporate a Keccak core, since
seedpk and the elements of matrix O are generated using Shake256 as shown in Line 4
of Algorithm 2. As demonstrated by the table, omitting Aes and using Shake as sole
PRNG results in a reduction of the area requirements. Specifically, the LUT utilization
is reduced by 22, 24, and 27 % across all security levels. Similarly, the FF utilization is
reduced by 23, 30, and 36 %, respectively.

Performance results: The performance results in terms of clock cycles and mil-
liseconds are presented in Table 6.1. The Aes-128 variant completes key generation,
signature computation, and verification in 0.15/0.32/0.59 ms, 0.47/1.06/1.92 ms, and

58

Table 6.2.: Resource utilization of Aes-128 and Keccak

Design Resources AES128 Keccak Total

MAYO1 LUTs 2,981 11,025 14,006
(2×Aes) FFs 916 3,200 4,116

MAYO1 LUTs - 10,895 10,895
(Shake) FFs - 3,186 3,186

MAYO3 LUTs 4,078 10,077 14,155
(3×Aes) FFs 1,368 3,179 4,547

MAYO3 LUTs - 10,716 10,716
(Shake) FFs - 3,183 3,183

MAYO5 LUTs 9,895 5,418 15,313
(4×Aes) FFs 3,214 1,808 5,022

MAYO5 LUTs - 11,179 11,179
(Shake) FFs - 3,208 3,208

0.15/0.33/0.98 ms for MAYO1/MAYO3/MAYO5, respectively. For the Shake128 vari-
ant, the required time for MAYO1/MAYO3/MAYO5 is 0.06/0.19/0.46 ms for key gen-
eration, 0.25/0.69/1.20 ms for signature computation, and 0.06/0.15/0.46 ms for verifi-
cation.

Our Shake-based hardware implementation requires a total of 12128, and 49926, and
12722 cycles for keygen, sign, and verify in the first security level. For the third secu-
rity level, the latency increases to 38325, 137358, and 39740 cycles. This represents an
increase of 3.15×, 2.75×, and 3.12×, respectively. This increase in latency is primar-
ily attributed to the larger amount of pseudo-random data that has to be generated.

The total size of P
(1)
i combined with P

(2)
i has grown from 2175 to 4895 elements from

MAYO1 to MAYO3. Thus, transitioning from security level 1 to 3 results in a 2.25× in-
crease in pseudo-random data generation. In case of security level 5, the latency of each
operation increases by a factor of 7.45×, 4.83×, and 7.26× compared to security level
1. The total size of the two Pi matrices changes from 2175 to 8833 elements, resulting
in an 4.06× increase in pseudo-random data generation. This clearly indicates that the
most significant factor influencing the latency across the security levels is the amount of

pseudo-random generated data for P
(1)
i and P

(2)
i . A similar result can be observed for

the Aes-based variant.

A comparison between the Aes-128 and Shake128 variant reveals a significant advan-
tage for the latter one in terms of performance. This is attributed to the faster generation
rate of Shake, which enhances the pseudo-random data generation by a factor of 4.84, as
outlined in Section 4.4. The latency values in Table 6.1 indicate a performance increase
of key generation, signature computation, and verification up to 2.5×, 1.88×, and 3×,
respectively. Thus, the Shake variant clearly outperforms the Aes version on hardware,
despite instantiating multiple Aes cores, as shown in Table 6.2.

59

Table 6.3.: Comparison with related works

Works Platform
Latency (cc/ms) Area

KeyGen Sign Verify LUT/FF/BR

U
O
V

1

[Beu+23e]a Artix-7 @ 90.3MHzc 11.0M/121.91 779K/8.63 115K/1.27 34,208/26,974/66

M
A
Y
O

1

[Beu+23a]
AC-M4 @ 1GHz 5.24M/5.24 9.18M/9.18 4.88M/4.88 -

IXG 6338 @ 2GHzb 110K/0.05 460K/0.23 175K/0.08 -
[Say+23] Z-7020 @ 100MHz 996K/9.96 3.49M/34.92 - 23,356/24,645/136
Our

AU280 @ 200MHz 29,287/0.15 94,686/0.47 30,150/0.15 93,841/32,890/45.5
(2×Aes)
Our

AU280 @ 200MHz 15,291/0.08 58,305/0.29 16,013/0.07 91,480/32,007/45.5
(Shake)

U
O
V

3

[Beu+23e]a Artix-7 @ 94.1MHzc 16.4M/174.94 1.19M/12.75 195K/2.07 43,166/31,928/184.5

M
A
Y
O

3

[Beu+23a] IXG 6338 @ 2GHzb 508K/0.25 1.66M/0.83 610K/0.30 -
Our

AU280 @ 200MHz 65,551/0.32 213,845/1.06 66,939/0.33 157,125/52,975/96
(3×Aes)
Our

AU280 @ 200MHz 38,325/0.19 137,358/0.69 39,740/0.20 153,195/51,650/96
(Shake)

U
O
V

5

[Beu+23e]a Artix-7 @ 92.6MHzc 38.4M/414.73 2.64M/28.56 364K/3.93 83,444/40,597/359

M
A
Y
O

5

[Beu+23a] IXG 6338 @ 2GHzb 1.21M/0.60 4.14M/2.07 1.18M/0.59 -
Our

AU280 @ 200MHz 118,027/0.59 384,488/1.92 119,603/0.60 219,363/73,900/194,5
(4×Aes)
Our

AU280 @ 200MHz 90,743/0.45 241,310/1.20 92,339/0.16 222,822/71,913/194.5
(Shake)

Z-7020: Xilinx Zynq-7020. IXG 6338: Intel Xeon Gold 6338. AC-M4: ARM Cortex-M4.

a: Targets UOV scheme. b: Uses AVX2 with Aes-Ni. c: Uses pipelined Aes128. K and M are used as an

abbreviation for ×103 and ×106, respectively.

Comparison with related works: Given the novelty of MAYO, available implemen-
tations are rare. We reference two works that address implementation aspects for either
CPU [Beu+23a], ARM [Beu+23a], or FPGA [Say+23]. However, the FPGA publication
only covers key generation and signature computation exclusively for MAYO1. There-
fore, we also include a work that describes an FPGA design for UOV [Beu+23e] to
provide a comprehensive comparison for every algorithm across all security levels. Since
UOV closely resembles MAYO in its construction and computations, a comparison is
possible. Table 6.3 provides the area and performance results of the aforementioned
publications and our work. We use the latency of our Aes variant for a fair compari-
son.

First, we compare our work with existing FPGA works, as this represents our primary
focus. As far as we are aware, only one FPGA implementation of MAYO exists in the
literature, namely, HaMAYO [Say+23]. However, HaMAYO is limited to performing
key generation and signature computation operations for security level 1 and uses the
outdated parameter set of the MAYO scheme. In contrast to HaMAYO, we support all
operations and security levels 1, 3, and 5 of the MAYO scheme. Our hardware design
outperforms HaMAYO by 66× and 74× for key generation and signature computation,
respectively. Our enhanced performance comes with the trade-off of 4× higher LUT

60

and 1.3× higher FF utilization, although we require 2.99× fewer BRAMs compared to
HaMAYO.

To present a comparison for security level 3 and 5, we included [Beu+23e]. This work
presents an FPGA design of the UOV scheme and provides area and performance re-
sults for all operations and security levels. We use their high-performance implemen-
tation with pipelined Aes and F16 arithmetic for the comparison, as it closely resem-
bles the MAYO specifications. Our design surpasses key generation/signature com-
putation/verification by up to 813×/18×/8×, 547×/12×/6×, and 703×/15×/7× for
security level 1, 3, and 5, respectively. This is attributed to our extensive parallelization
of the matrix-matrix multiplications. However, the high degree of parallelism comes at
the cost of increased resource utilization, resulting in 2.7×/3.6×/2.6× higher LUT and
1.2×/1.7×/1.8× higher FF usage for security levels 1/3/5. Nevertheless, their BRAM
utilization is increased by 1.5×/1.9×/1.8× for security levels 1/3/5.

These results clearly demonstrate that our design outperforms HaMAYO [Say+23] and
[Beu+23e] by one to three orders of magnitude. Moreover, besides performance enhance-
ments, our on-the-fly generation technique combined with the memory design illustrates
how to reduce the consumption of BRAMs by half for UOV and MAYO schemes on
hardware.

Next, we compare our work with the ARM design presented in [Beu+23a]. Similar to
HaMAYO, results are provided only for MAYO1, but in this case, for all algorithms. Our
implementation outperforms key generation, signature computation, and verification by
35×, 20×, and 33×, respectively.

Finally, we conduct a comparison with the high-end CPU implementation of [Beu+23a].
We opted for their most performant AVX2 implementation utilizing Aes-Ni. The results
are obtained on an Intel Xeon Gold 6338 CPU (Ice Lake). Our hardware design performs
similarly or worse depending on the security level. The software implementation outper-
forms our work in key generation/signature computation/verification by 3×/2×/1.9×
and 1.3×/1.3×/1.1× for security level 1 and 3, respectively. The latency of our work
and the software implementation is at a similar level for MAYO5. However, as shown by
Table 6.3, the superior performance of our Shake variant is capable of narrowing this
gap.

In conclusion, our hardware design outperforms most of the related implementations
while utilizing more LUTs and FFs. MAYO1 and MAYO3 on a high-end CPU platform
is the sole exception in terms of performance. This clearly demonstrates the capability
of our presented hardware design approaches.

6.2. Software Results

The specification of MAYO utilizes Aes-128-Ctr as PRNG to generate the elements

of P
(1)
i and P

(2)
i . The C-implementation of MAYO is available in various configura-

61

tions. Specifically, there are four configurations: Reference mode (1), Optimized mode
(2), Optimized mode with Aes-Ni (3), and AVX2 mode (4). No instruction set sup-
port is necessary for the first two configurations. However, Aes-Ni support is required
for the third configuration and the fourth configuration requires AVX2 support in ad-
dition to Aes-Ni. If both Aes-Ni and AVX2 instruction sets are supported, Aes-Ni
accelerates the generation of pseudo-random data and AVX2 reduces the computational
latency.

Table 6.4.: MAYO performance in CPU cycles on an Intel i5-7300U at 2.60GHz. The
library was compiled on Ubuntu with gcc version 11.4.0-1ubuntu1 22.04. Re-
sults are the median of 1000 benchmark runs

Scheme KeyGen ExpandSK ExpandPK
ExpandSK
+ Sign

ExpandPK
+ Verify

Configuration 1: Reference Implementation:

MAYO1 - Aes-128 1,662,549 1,752,476 1,351,339 2,439,583 1,556,351
MAYO1 - Shake128 713,854 801,117 403,174 1,486,906 605,872

MAYO3 - Aes-128 7,639,649 6,277,750 4,605,025 10,980,786 6,084,326
MAYO3 - Shake128 4,441,638 3,021,492 1,357,584 7,734,692 2,747,314

MAYO5 - Aes-128 15,447,969 16,174,596 11,126,708 23,099,671 12,798,116
MAYO5 - Shake128 7,482,941 8,160,095 3,293,238 15,247,473 4,836,765

Configuration 2: Optimized Implementation without AES-NI:

MAYO1 - Aes-128 1,663,461 1,753,371 1,351,716 2,464,112 1,559,883
MAYO1 - Shake128 713,982 802,221 403,182 1,486,190 607,556

MAYO3 - Aes-128 7,659,665 6,292,588 4,615,400 11,010,849 6,007,949
MAYO3 - Shake128 4,389,432 3,030,337 1,358,121 7,751,360 2,758,221

MAYO5 - Aes-128 15,457,654 16,340,242 11,141,203 23,517,764 12,803,594
MAYO5 - Shake128 7,504,031 8,218,936 3,295,467 15,362,409 4,847,094

Configuration 3: Optimized Implementation with AES-NI:

MAYO1 - Aes-128 344,252 431,652 34,152 1,117,312 237,247
MAYO1 - Shake128 713,842 802,209 403,518 1,487,726 603,638

MAYO3 - Aes-128 3,123,392 1,759,719 114,751 6,464,676 1,474,894
MAYO3 - Shake128 4,400,519 3,069,822 1,357,976 7,744,110 2,754,690

MAYO5 - Aes-128 4,466,331 5,092,942 275,632 12,231,455 1,721,823
MAYO5 - Shake128 7,499,027 8,204,599 3,302,239 15,313,877 4,898,631

Configuration 4: AVX2 Optimized Implementation with AES-NI:

MAYO1 - Aes-128 129,760 134,258 34,160 395,064 163,274
MAYO1 - Shake128 499,020 501,111 403,239 763,103 533,731
MAYO1 - Shake128x4 255,462 254,256 158,642 520,868 288,566

MAYO3 - Aes-128 629,795 846,652 114,665 1,979,929 707,485
MAYO3 - Shake128 1,873,847 2,095,504 1,357,915 3,257,199 1,957,071
MAYO3 - Shake128x4 1,047,088 1,267,037 532,676 2,432,315 1,133,366

MAYO5 - Aes-128 1,432,013 1,954,131 275,627 4,252,660 1,203,565
MAYO5 - Shake128 4,561,166 5,074,846 3,311,075 7,696,547 4,394,867
MAYO5 - Shake128x4 2,498,755 3,009,640 1,281,901 5,352,631 2,238,094

62

We modified the software implementation of MAYO [Beu+23b] to include Shake128

alongside Aes-128 as PRNG for generating the pseudo-random data of P
(1)
i and P

(2)
i .

This modification enables the software implementation to reflect the hardware design
approach of Chapter 4.4. Table 6.4 presents the median latency in software for all
security levels of MAYO using either Aes or Shake as PRNG.

In configuration (1) without Aes-Ni and AVX2 support, the Shake128 variant out-
performs the Aes-128 version in key generation by 2.33×, 1.72×, and 2.06× for every
security level, respectively. Regarding signature computation and verification, the selec-
tion of Shake128 as the PRNG results in a performance increase ranging from 1.41× to
1.64× and from 2.21× to 2.64×, respectively. Configuration (2) achieves a performance
boost compared to the Aes-128 PRNG from 1.75× to 2.33× for key generation, from
1.42× to 1.66× for signature computation, and from 2.18× to 2.64× for verification,
depending on the security level. In configuration (3), Aes-Ni is utilized for the first
time. As a result, the Aes variant outperforms the Shake version in key generation,
signature computation, and verification by up to 2.07×, 1.33×, and 2.85× across all se-
curity levels. Configuration (4) employs AVX2 in addition to Aes-Ni. In this case, the
performance of the Aes implementation surpasses the Shake variant by a factor of up
to 3.85×, 1.93×, and 3.65× for key generation, signature computation and verification,
respectively.

The configuration (4) part in Table 6.4 includes additional values for our multi-seed
Shake128x4 modification, as described in Chapter 5. This modification enables us to
narrow the gap compared to the fully optimized Aes PRNG. The performance improve-
ment of Shake128x4 over Shake128 is by a factor of up to 1.95×, 1.47×, and 1.96× for
key generation, signature computation and verification, respectively. Therefore, the per-
formance advantage of Aes in key generation, signature computation, and verification
is reduced to approximately 1.66×, 1.23×, and 1.6×, respectively.

To conclude, our modified software implementation design outperforms the original ver-
sion in configuration (1) and (2). However, the utilization of Aes-Ni leads to a significant
performance increase in Configuration (3) and (4). While Shake128x4 enhances the
performance compared to normal Shake128, it falls slightly short of the performance
achieved with Aes.

63

Chapter 7.

Conclusion

The objective of thesis was to present several hardware design approaches for the post-
quantum signature scheme MAYO. The presented techniques optimize the resource uti-
lization and performance of MAYO on constraint platforms. Most notably is the on-
the-fly coefficient generation that addresses the large memory demand of MAYO and
the combination of the memory design with the arithmetical units which enable exten-
sive parallelization to improve the performance. Additionally, the presented techniques
provide the flexibility to target either low-area or high-performance implementations.
Unlike previous works, these design approaches led to the first FPGA implementation
that supports the complete scheme including all security levels. In terms of perfor-
mance, an improvement of one to three orders of magnitude compared to related works
was achieved.

In addition to this, we analyzed the impact of utilizing Shake128 to generate pseudo-
random data on software platforms. While the performance is superior compared to Aes
without intruction set support, it is not able to match the performance of Aes enhanced
by Aes-Ni.

The presented results highlight the effectiveness of our design approaches. Furthermore,
the majority of the presented techniques can be applied to UOV schemes in general,
which serve as the foundation for most post-quantum schemes based on multivariate
quadratic systems. This flexibility leads to a wide range of possible applications for
future multivariate schemes.

Further Research

An interesting area for further research is the exploration of the multi-seed approach to
utilize AVX2 for a parallel Shake128 computation. The potential introduction of Sha-
3 intrinsics may finally shift the PRNG choice in favor of Shake on software platforms.
Additionally, the multi-seed approach can be adopted to further improve the performance
on hardware platforms by parallelizing the pseudo-random data generation. In terms
of security, more research has to be invested into the whipping technique of MAYO.
While UOV serves as a robust foundation for the scheme, the whipping technique may
be susceptible to attacks and requires further research to ensure its resilience.

64

Bibliography

[Bai+22] Shi Bai et al. CRYSTALS-Dilithium. Selected Algorithms 2022. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/selected-

algorithms-2022. Accessed August 3rd 2023. 2022.
[Ber+11] Guido Bertoni et al. The KECCAK reference. https://keccak.team/

files/Keccak-reference-3.0.pdf. Online; accessed January 17, 2024.
2011.

[Beu21] Ward Beullens. “Improved Cryptanalysis of UOV and Rainbow”. In: Ad-
vances in Cryptology – EUROCRYPT 2021. Springer. 2021, pp. 348–373.

[Beu22a] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In:
Advances in Cryptology – CRYPTO 2022. Springer. 2022, pp. 464–479.

[Beu22b] Ward Beullens. “MAYO: Practical Post-quantum Signatures from Oil-and-
Vinegar Maps”. In: Selected Areas in Cryptography. Springer. 2022, pp. 355–
376.

[Beu+23a] Ward Beullens et al. MAYO. MAYO Website. https://pqmayo.org/
assets/specs/mayo.pdf. 2023. url: https://pqmayo.org/assets/
specs/mayo.pdf.

[Beu+23b] Ward Beullens et al. MAYO-C. https://github.com/PQCMayo/MAYO-C.
Online; accessed January 30, 2024. 2023.

[Beu+23c] Ward Beullens et al. MAYO-M4. https://github.com/PQCMayo/MAYO-M4.
Online; accessed February 28, 2024. 2023.

[Beu+23d] Ward Beullens et al. Nibbling MAYO: Optimized Implementations for AVX2
and Cortex-M4. Cryptology ePrint Archive, Paper 2023/1683. https://
eprint.iacr.org/2023/1683. 2023. url: https://eprint.iacr.org/
2023/1683.

[Beu+23e] Ward Beullens et al. “Oil and Vinegar: Modern Parameters and Implemen-
tations”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2023.3 (2023), pp. 321–365.

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. “Hybrid approach
for solving multivariate systems over finite fields”. In: Journal of Mathe-
matical Cryptology 3.3 (2009), pp. 177–197.

[Bos+18a] Joppe Bos et al. “CRYSTALS - Kyber: A CCA-Secure Module-Lattice-
Based KEM”. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE. 2018, pp. 353–367.

[Bos+18b] Joppe Bos et al. Kyber. https : / / github . com / pq - crystals / kyber.
Online; accessed February 25, 2024. 2018.

65

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://github.com/PQCMayo/MAYO-C
https://github.com/PQCMayo/MAYO-M4
https://eprint.iacr.org/2023/1683
https://eprint.iacr.org/2023/1683
https://eprint.iacr.org/2023/1683
https://eprint.iacr.org/2023/1683
https://github.com/pq-crystals/kyber

[D’A+18] Jan-Pieter D’Anvers et al. “Saber: Module-LWR Based Key Exchange,
CPA-Secure Encryption and CCA-Secure KEM”. In: Progress in Cryptology
– AFRICACRYPT 2018. Springer. 2018, pp. 282–305.

[Din+08] Jintai Ding et al. “New Differential-Algebraic Attacks and Reparametriza-
tion of Rainbow”. In: Applied Cryptography and Network Security. Springer.
2008, pp. 242–257.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.
[DS05] Jintai Ding and Dieter Schmidt. “Rainbow, a New Multivariable Polyno-

mial Signature Scheme”. In: Applied Cryptography and Network Security.
Springer. 2005, pp. 164–175.

[Dwo01] Morris Dworkin. Recommendation for Block Cipher Modes of Operation.
Methods and Techniques. 2001. doi: https://doi.org/10.6028/NIST.SP.
800-38A.

[Dwo+01] Morris Dworkin et al. Advanced Encryption Standard (AES). 2001. doi:
https://doi.org/10.6028/NIST.FIPS.197.

[Dwo15] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. 2015. doi: https://doi.org/10.6028/NIST.FIPS.202.

[FD85] Harriet Fell and Whitfield Diffie. “Analysis of a Public Key Approach Based
on Polynomial Substitution”. In: Advances in Cryptology – CRYPTO ’85
Proceedings. Springer. 1985, pp. 340–349.

[FG18] Ahmed Ferozpuri and Kris Gaj. “High-speed FPGA Implementation of the
NIST Round 1 Rainbow Signature Scheme”. In: 2018 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig). IEEE. 2018,
pp. 1–8.

[FNT21] Hiroki Furue, Shuhei Nakamura, and Tsuyoshi Takagi. “Improving Thomae-
Wolf Algorithm for Solving Underdetermined Multivariate Quadratic Poly-
nomial Problem”. In: Post-Quantum Cryptography. Springer. 2021, pp. 65–
78.

[Gep17] Pawel Gepner. “Using AVX2 Instruction Set to Increase Performance of
High Performance Computing Code”. In: Computing and Informatics 36.5
(2017), pp. 1001–1018.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979.

[Gri+23] Arianna Gringiani et al. MAYO: Optimized Implementation with Revised
Parameters for ARMv7-M. Cryptology ePrint Archive, Paper 2023/540.
https://eprint.iacr.org/2023/540. 2023. url: https://eprint.
iacr.org/2023/540.

[Gro96] Lov K. Grover. “A fast quantum mechanical algorithm for database search”.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing. 1996, pp. 212–219.

[Gue10] Shay Gueron. Intel advanced encryption standard (AES) new instructions
set. Intel White Paper. 2010.

[Hea18] Michael T. Heath. Scientific Computing: An Introductory Survey, Revised
Second Edition. Society for Industrial and Applied Mathematics, 2018.

66

https://doi.org/https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://eprint.iacr.org/2023/540
https://eprint.iacr.org/2023/540
https://eprint.iacr.org/2023/540

[Hir+23] Florian Hirner et al. Whipping the MAYO Signature Scheme using Hard-
ware Platforms. Cryptology ePrint Archive, Paper 2023/1267. https://
eprint.iacr.org/2023/1267. 2023. url: https://eprint.iacr.org/
2023/1267.

[Hul+22] Andreas Hulsing et al. SPHINCS+. Selected Algorithms 2022. https://
csrc.nist.gov/Projects/post- quantum- cryptography/selected-

algorithms-2022. Accessed August 3rd 2023. 2022.
[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. “Unbalanced oil and

vinegar signature schemes”. In: International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 1999, pp. 206–222.

[KS98] Aviad Kipnis and Adi Shamir. “Cryptanalysis of the oil and vinegar signa-
ture scheme”. In: Advances in Cryptology – CRYPTO ’98”. Springer. 1998,
pp. 257–266.

[Lom11] Chris Lomont. Introduction to Intel Advanced Vector Extensions. Intel White
Paper. 2011.

[MI88] TsutomuMatsumoto and Hideki Imai. “Public Quadratic Polynomial-Tuples
for Efficient Signature-Verification and Message-Encryption”. In: Advances
in Cryptology – EUROCRYPT’88. Springer. 1988, pp. 419–453.

[NIS22] NIST. Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process. https://csrc.nist.gov/csrc/
media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-

sig-sept-2022.pdf. Online; accessed January 22, 2024. 2022.
[Pat96] Jacques Patarin. “Asymmetric Cryptography with a Hidden Monomial”.

In: Advances in Cryptology – CRYPTO’96. Springer. 1996, pp. 45–60.
[Pat97] Jacques Patarin. “The Oil and Vinegar signature scheme”. In: Dagstuhl

Workshop on Cryptography. Sept. 1997.
[Pet+11] Albrecht Petzoldt et al. “Small Public Keys and Fast Verification for Mul-

tivariate Quadratic Public Key Systems”. In: Cryptographic Hardware and
Embedded Systems – CHES 2011. Springer. 2011, pp. 475–490.

[Pre+22] Thomas Prest et al. FALCON. Selected Algorithms 2022. https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-

2022. Accessed August 3rd 2023. 2022.
[Rei17] James R Reinders. Intel AVX-512 Instructions. https://www.intel.com/

content/www/us/en/developer/articles/technical/intel-avx-512-

instructions.html. Online; accessed February 01, 2024. 2017.
[Say+23] Oussama Sayari et al. HaMAYO: A Reconfigurable Hardware Implemen-

tation of the Post-Quantum Signature Scheme MAYO. Cryptology ePrint
Archive, Paper 2023/1135. https://eprint.iacr.org/2023/1135. 2023.
url: https://eprint.iacr.org/2023/1135.

[Sch+22] Peter Schwabe et al. CRYSTALS-KYBER. Selected Algorithms 2022. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/selected-

algorithms-2022. Accessed August 3rd 2023. 2022.
[Sho94] P. W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms

and Factoring”. In: Proceedings of the 35th Annual Symposium on Founda-

67

https://eprint.iacr.org/2023/1267
https://eprint.iacr.org/2023/1267
https://eprint.iacr.org/2023/1267
https://eprint.iacr.org/2023/1267
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://eprint.iacr.org/2023/1135
https://eprint.iacr.org/2023/1135
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

tions of Computer Science. SFCS ’94. Washington, DC, USA: IEEE Com-
puter Society, 1994, pp. 124–134. isbn: 0-8186-6580-7. doi: 10.1109/SFCS.
1994.365700. url: http://dx.doi.org/10.1109/SFCS.1994.365700.

[Tan+11] Shaohua Tang et al. “High-Speed Hardware Implementation of Rainbow
Signature on FPGAs”. In: Post-Quantum Cryptography: 4th International
Workshop, PQCrypto 2011. Springer. 2011, pp. 228–243.

[TW12] Enrico Thomae and Christopher Wolf. “Solving Underdetermined Systems
of Multivariate Quadratic Equations Revisited”. In: Public Key Cryptogra-
phy – PKC 2012. Springer. 2012, pp. 156–171.

[Wika] Wikipedia contributors. Advanced Vector Extensions – CPUs with AVX2.
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_

with_AVX2. Online; accessed February 01, 2024.
[Wikb] Wikipedia contributors. AVX-512 – CPUs with AVX-512. https://en.

wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512. Online; accessed
February 01, 2024.

[Wikc] Wikipedia contributors. List of quantum processors. https://en.wikipedia.
org/wiki/List_of_quantum_processors [Online; accessed 05-May-2023].
url: https://en.wikipedia.org/wiki/List_of_quantum_processors.

[Xil19] Xilinx, Inc. 7 Series FPGAs Memory Resources. https://docs.xilinx.
com/v/u/en-US/ug473_7Series_Memory_Resources. Online; accessed
February 08, 2024. 2019.

[Yan+07] Bo-Yin Yang et al. “Analysis of QUAD”. In: Fast Software Encryption.
Springer. 2007, pp. 290–308.

68

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2
https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512
https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512
https://en.wikipedia.org/wiki/List_of_quantum_processors
https://en.wikipedia.org/wiki/List_of_quantum_processors
https://en.wikipedia.org/wiki/List_of_quantum_processors
https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources
https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources

	Introduction
	Motivation
	Contribution
	Related Work
	Outline

	Background
	Notation
	Finite field arithmetic over F16
	F16 addition and subtraction
	F16 multiplication

	Multivariate Quadratic Maps
	Polar Form
	Multivariate Quadratic Problem
	Oil and Vinegar
	Scheme Description

	Gaussian Elimination in F16
	AES
	SHAKE
	AVX

	MAYO Scheme
	Public Key Size
	Whipping Technique
	Scheme Description
	Key Generation
	Signature Computation
	Sample Solution
	Signature Verification

	Emulsifier maps
	Attacks on MAYO
	Attacks targeting MAYO
	Attacks targeting the Oil and Vinegar problem

	Parameter Sets
	MAYO Implementations

	Key Approaches for a Hardware Design
	On-the-fly Coefficient Generation
	Memory Design
	Parallelizing Matrix Multiplication
	Coefficient Generation via SHAKE128
	Gaussian Elimination

	Software Modifications
	Results
	Hardware Results
	Software Results

	Conclusion
	Bibliography

