
Isabel Pretterhofer, BSc

An Exploration of Column Generation and

Branch-and-Price With Special Regard to

the Fair Matching Over Time Problem

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieurin

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Eranda Dragoti-Çela, Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.

Institute of Discrete Mathematics

Graz, August 2024

Abstract

Column generation is an algorithm for handling linear programs with many variables by start-
ing with a small subset of the variables and iteratively adding further variables if needed as the
algorithm progresses. Branch-and-price algorithms apply column generation at every node
of a branch-and-bound tree to deal with suitably structured mixed integer linear programs.
In this thesis we investigate these two algorithms and apply branch-and-price to the fair
matching over time problem. This problem is a generalization of the balanced assignment
problem, where we look not only at bipartite graphs but at general graphs and add a time
horizon. The time horizon is the number of perfect matchings we choose. The branch-and-
price algorithm for this problem is implemented using the branch-and-price framework SCIP
with the interface PySCIPOpt and applied to solve randomly generated instances of the fair
matching over time problem on graphs of different types. The empirical analysis shows that
our branch-and-price algorithm successfully reduces the symmetry of the fair matching over
time problem. In the empirical study the running time of the algorithm is strongly correlated
with the order of the graph and its density and only slightly with the time horizon. Further-
more, we observe that instances on graphs with a high number of vertices and a low maximal
degree or a low average degree can often be solved quickly.

3

Kurzfassung

Spaltengenerierung ist ein Algorithmus zur Lösung von linearen Programmen mit einer sehr
großen Anzahl an Variablen, bei welchem ausgehend von einer kleinen Teilmenge der Vari-
ablen iterativ bei Bedarf mehr Variablen hinzugefügt werden. Branch-and-Price (engl. für
verzweigen und bepreisen) ist ein Algorithmus zur Lösung von gemischt ganzzahligen lin-
earen Programmen mit spezieller Struktur. Dabei wird in jedem Knoten eines branch-and-
bound (engl. für verzweigen und beschränken) Baumes Spaltengenerierung angewendet. In
dieser Arbeit werden diese beiden Methoden genauer betrachtet und es wird ein Branch-and-
Price Algorithmus für das faire Matching Problem über Zeit aufgestellt und implementiert.
Das faire Matching Problem über Zeit ist eine Generalisierung des ausgeglichenen Zuord-
nungsproblems (engl. balanced assignment problem), wobei nicht nur bipartite, sondern
allgemeine Graphen betrachtet werden und ein Zeithorizont hinzugefügt wird. Hierbei ist
der Zeithorizont die Anzahl der gesuchten Matchings. Der Branch-and-Price Algorithmus
für dieses Problem wird mit dem Branch-and-Price Framework SCIP mit der Schnittstelle
PySCIPOpt implementiert und wird auf zufällig generierte Instanzen des fairen Matching
Problems für verschiedene Arten von Graphen angewendet. Eine empirische Analyse hat
einerseits gezeigt, dass unser Branch-and-Price Algorithmus die Symmetrie im fairen Match-
ing Problem über Zeit erfolgreich reduziert. Andererseits wurde ersichtlich, dass die Laufzeit
dieses Algorithmus von der Ordnung und Dichte des Graphen stark abhängig ist, während der
Zeithorizont einen geringen Einfluss hat. Es wurde festgestellt, dass Instanzen mit Graphen
mit vielen Knoten und einem niedrigen maximalen Knotengrad oder einem niedrigen durch-
schnittlichen Knotengrad häufig schnell mit diesem Algorithmus gelöst werden können.

5

Contents

1 Introduction 11

2 Column Generation 13
2.1 Introduction to Column Generation . 13

2.1.1 A Dual Point of View . 16
2.2 Dantzig-Wolfe Decomposition . 18

2.2.1 Convexification . 19
2.2.2 Discretization . 23
2.2.3 Generators . 24
2.2.4 Choosing A1 and A2 . 25
2.2.5 Relation to Lagrangian Dual . 28
2.2.6 Strength of Dual Bounds of the Dantzig-Wolfe Reformulation 29

2.3 Using Lagrangian Relaxation in Column Generation 34
2.3.1 Lagrangian Relaxation for the Pricing Problem 34

2.4 Tailing-Off Effect and Stabilization . 36
2.4.1 Penalizing Deviation from a Stability Center 37
2.4.2 Smoothing Dual Prices . 40
2.4.3 Interior Point Stabilization . 43

3 Branch-and-Price 45
3.1 Introduction to Branch-and-Price . 45
3.2 Branching Strategies . 47

3.2.1 Branching on the Variables of the Extended Formulation 47
3.2.2 Branching on the Variables of the Compact Formulation 48
3.2.3 Branching on Aggregated Variables 49
3.2.4 Ryan and Forster branching . 50

3.3 Heuristics for Upper Bound . 51
3.3.1 Rounding Heuristics . 52
3.3.2 Diving Heuristics . 53
3.3.3 Feasibility Pump . 54
3.3.4 Quality of the Heuristics . 55

3.4 Branch-Price-and-Cut . 55
3.4.1 Cuts on the Variables of the Compact Formulation 55
3.4.2 Cuts on the Variables of the Extended Formulation 57

4 The Fair Matching Over Time Problem 59
4.1 Fairness Over Time . 59

7

4.2 The Fair Matching Over Time Problem . 60
4.3 Solving the Fair Matching Over Time Problem Using Branch-and-Price . . . 62
4.4 Implementation . 66
4.5 Computational Experiments . 66

4.5.1 Two Very Small Examples . 66
4.5.2 Results on Random Graphs of Type G(n,p) 70
4.5.3 Results on Random Bipartite Graphs B(n/2, n/2, p) 71
4.5.4 Results on Graphs With Small Maximum Degree and Small Average

Degree . 73

5 Conclusion 85

Bibliography 87

8

List of Algorithms

1 Column Generation . 14
2 Cutting-Plane Algorithm . 18
3 Column Generation with Lagrangian Relaxation in the Pricing Problem . . . 35
4 Stabilized Column Generation by Penalizing Deviation from a Stability Center 38
5 Stabilized Column Generation by Smoothing Dual Prices 41
6 Analytic Center Cutting Plane Method for Column Generation 44

7 Branch-and-Price . 46
8 Branch-Price-and-Cut . 56

9

1 Introduction

Mixed integer linear programs are a way to model various problems in combinatorial opti-
mization and it is therefore highly desirable to be able to solve them efficiently. However,
in general this is a burdensome undertaking. Many of these problems can be reformulated
and subsequently solved more efficiently using a so-called branch-and-price approach. When
the reformulation is such that there is a large number of variables, we can solve the linear
relaxation of the problem by starting with a small subset of the variables and then itera-
tively adding more promising variables until we have found the optimal solution. This is
called column generation. The method was introduced by Gilmore and Gomory for the
cutting stock problem, see [GG63], and by Dantzig and Wolfe, see [DW60]. A major part
of its effectiveness is revealed when solving mixed integer linear problems by performing
branch-and-bound, where we use column generation at every node of the branch-and-bound
tree. This is called branch-and-price. Branch-and-price was introduced by Vance, Barnhart,
Johnson, and Nemhauser, see [Van+94], and has been successfully used to solve many prob-
lems, including vehicle routing problems [Des+95], crew scheduling problems [Des+95] and
coloring problems [LNS24]. The research on branch-and-price is ongoing, very recently a
book by Desrosiers, Lübbecke, Desaulniers and Gauthier on branch-and-price was published,
see [Des+24]. The branch-and-price procedure can be combined with the branch-and-cut
method by occasionally adding cutting planes instead of branching. This yields the branch-
price-and-cut method.

During the last years there has been an increasing interest in combinatorial optimization
to not only find solutions which optimize some cost function, but to find solutions which
are as fair as possible to a certain number of stakeholders, see [BFT11]. To this end, one
needs to define some notion of fairness. This is done using an unfairness function which
rates how unfair a certain distribution of utilities is. Minimizing this unfairness can however
lead to a low overall utility, resulting in low global welfare. Thus, one has to make a trade-off
between fairness and welfare. When the same optimization problem occurs multiple times
it is often possible to achieve more fairness and better welfare by not always making the
same decision. Thus, we try to find a sequence of solutions such that the overall utilities
the stakeholders get are as fair as possible, while securing a certain level of welfare. This
concept is called fairness over time. In [Lod+22] a specific fairness over time problem has
been solved using branch-and-price. Here, we want to solve a generalization of the balanced
assignment problem, which tries to find a fair assignment of workers to tasks, see [NBN22a]
and [NBN22b]. We generalize the balanced assignment problem by considering general sim-
ple graphs and adding a time horizon. This yields a fairness over time problem, which we
call the fair matching over time problem.

11

In this thesis we give an overview on column generation and branch-and-price. In par-
ticular, in the context of column generation we address questions such as suitable problem
formulations, usage of Lagrangian relaxation and the tailing-off effect and stabilization in
Chapter 2.

In Chapter 3 we discuss the branch-and-price method, several possibilities to branch and
heuristics to get good upper bounds for the branch-and-bound tree are considered. Finally,
we briefly introduce the concept of branch-price-and-cut in terms of two particular methods
to add cuts, in the compact formulation and in the extended formulation.

In Chapter 4 we concisely introduce the notion of fairness over time, establish the fair
matching over time problem, and describe how it can be reformulated and solved using
branch-and-price. This branch-and-price algorithm for the fair matching over time problem
was implemented using the branch-and-price framework SCIP [Bol+24] with the interface
PySCIPOpt [Mah+16] from Python to SCIP. At the end of Chapter 4 computational ex-
periments on this implementation are documented. We generate random instances using
different types of random graphs, random weights and set different time horizons. We set
time limits for the solving process of 5 or 10 seconds and observe the ratio of instances which
are solved to optimality to instances which contain a perfect matching. We observe that this
ratio is strongly dependent on the order of the graph and its density and only weakly depen-
dent on the size of the time horizon. Furthermore, the algorithm can solve large instances
quickly when the graph has a limited maximal degree or a limited average degree.

Finally, we summarize the findings of this thesis and formulate some open questions for
further research.

12

2 Column Generation

2.1 Introduction to Column Generation

We now want to introduce the method of column generation as in [DL05] and [GGBM13].
Consider the following linear program, which we call the master problem.

min
(x1, ..., xn)

∑
j∈J

cjxj

s.t.
∑
j∈J

ajxj ≥ b,

xj ≥ 0, ∀j ∈ J,

(2.1)

where |J | = n, (c1, ..., cn) ∈ Rn, aj ∈ Rm for all j ∈ J and b ∈ Rm. When |J | is
exceptionally large, solving this linear program directly will be difficult. Thus, we only consider
a subset J ′ ⊆ J of the variables and solve the so-called restricted master problem.

min
x

∑
j∈J ′

cjxj

s.t.
∑
j∈J ′

ajxj ≥ b,

xj ≥ 0, ∀j ∈ J ′.

(2.2)

We initially choose J ′ such that the restricted master problem is feasible. Then we iteratively
solve the restricted master problem and add j ∈ J \J ′ to J ′, until the optimal solution of the
restricted master problem is already optimal for the master problem. Adding j to J ′ adds the
column aj , the corresponding cost cj and variable xj to the restricted master problem, hence
the name column generation. By adding only promising j’s, the hope is that the number of
columns in the restricted master problem stays significantly below the number of columns in
the master problem.

If choosing J ′ such that the initial restricted master problem is feasible is not possible, the
master problem is not feasible itself, as we can choose J ′ = J . From now on, we assume that
the master problem is feasible and that we choose the initial J ′ such that the corresponding
restricted master problem is feasible.

Regarding the choice of which j to add to J ′, let x∗ = (xB,0) be an optimal primal basic
solution of the restricted master problem where we add columns an+1, ...,an+m as slack
variables. We assume that the submatrix (a1, ...,am) of (a1, ...,an,an+1, ...,an+m) has full

13

rank and corresponds to the basis B. The reduced cost coefficients of the variables xj for
j ∈ J \ J ′ are then defined as cj − (c1, ..., cm)(a1, ...,am)−1aj , see [LY84]. Then we can
see that (c1, ..., cm)(a1, ...,am)−1 is feasible for the dual of the restricted master problem,
as follows. We have

(c1,, c|J ′|)− (c1, ..., cm)(a1, ...,am)−1(a1, ...,a|J ′|) ≥ 0,

due to the fact that B is a basis of an optimal basic solution. And hence,

(a1, ...,a|J ′|)
ᵀ((c1, ..., cm)(a1, ...,am)−1)ᵀ ≤ (c1, ..., c|J ′|)

ᵀ.

Furthermore, u∗ := (c1, ..., cm)(a1, ...,am)−1 is an optimal solution of the dual restricted
master problem, as (c1, ..., cm)(a1, ...,am)−1b = (c1, ..., cm)xB =

∑m
i=1 cix

∗
i and we have

weak duality. Thus we can rewrite the reduced cost as cj − u∗ᵀaj .

Observe that if the reduced cost cj −u∗ᵀaj of all variables xj , j ∈ J \ J ′ is non-negative,
we already have that the reduced cost of all xj , j ∈ J is non-negative and hence the solution
is already optimal for the master problem. Otherwise, there exists a variable xj , j ∈ J \ J ′
with negative reduced cost, which we can add to J ′ and get a potentially better optimal pri-
mal solution for the updated restricted master problem. Indeed, when the restricted master
problem is feasible for J ′, it is also feasible for J ′ ∪ {j} and cannot have a larger objective
value, as we can always choose xj = 0 and take the values of all other variables as in a
feasible solution for J ′. If we iterate this process, we will eventually get an optimal solution
of the master problem. We call this step, where we want to find a variable with negative
reduced cost, the pricing problem or subproblem.

This yields the column generation procedure as in Algorithm 1.

Algorithm 1 Column Generation

Input feasible master problem
Output optimal primal and dual solution of the master problem

1: Find small J ′ such that the restricted master problem is feasible.
2: Solve the restricted master problem, x∗ primal solution, u∗ dual solution.
3: if there exists a variable with negative reduced cost then
4: add one or more variables to J ′, at least one having negative reduced cost.
5: go to 2
6: else return (x∗,u∗)
7: end if

Theorem 2.1.1. The column generation algorithm yields optimal primal and dual solutions
for a feasible master problem in finite time whenever solving the restricted master problem
is done in finite time.

14

Proof. The termination of this procedure is guaranteed whenever finding an optimal primal
and dual solution of the restricted master problem in every iteration terminates within a finite
amount of time, as we add at least one variable in each iteration, and we can have at most
|J | = n variables. The termination of the optimization of the restricted master problem can
for instance be taken for granted when using the simplex algorithm with suitable variable
selection to prevent cycling.

The optimality of the solution is clear, as we stop prior to having J ′ = J only in the case
of non-negative reduced cost for all variables in J .

As any basic feasible solution of the master problem contains no more than m non-zero
variables, it is likely that we can consider a rather small set J ′ and still reach a solution
which is already optimal to the master problem.

In order to find a variable with negative reduced cost with index in J \ J ′ to enter J ′,
one possibility is to solve minj∈J\J ′{cj − u∗ᵀaj}. If minj∈J\J ′{cj − u∗ᵀaj} ≥ 0 we know
that there is no variable with negative reduced cost and if minj∈J\J ′{cj − u∗ᵀaj} < 0 we
can add the index corresponding to a variable which attains this minimum to J ′. Computing
minj∈J\J ′{cj − u∗ᵀaj} can often be done without explicitly computing all reduced costs,
but rather as some kind of a combinatorial optimization problem, which might be solvable
more efficiently. This is especially true, when the columns aj are only given implicitly as
elements of a non-empty set A, whose elements all follow some known rule and are only
made explicit when needed.

Notice that it is also possible to add multiple variables at once in each iteration of the
column generation procedure. Indeed, this might speed up the process, as it can lead to less
iterations.

Finding an initial J ′ such that the restricted master problem is feasible can often be done
using an ad-hoc method depending on the specific problem, but it can also be done more
systematically, see [Van05]. For instance, it can be done by introducing artificial columns
with a cost which is high enough so that the artificial columns do not appear in the fi-
nal solution. However, when we choose the cost of the artificial variables too high, this
results in weak bounds on the dual variables and can lead to adding unnecessary columns
to the restricted master problem, see [LD05]. Hence, we want to keep the cost as high
as necessary but as low as possible. If we have chosen the costs for the artificial variables
too low so that they stay relevant for too long, we may restart the procedure with higher cost.

Note that column generation is classically done by using the simplex algorithm

� to solve the restricted master problem in every iteration, which yields a primal and
dual solution

� and to find a new column by finding the variable with the most negative reduced cost.

However, many different variations of column generation have been considered and come

15

with different advantages, such as better convergence, see for instance Section 2.3 and 2.4.

2.1.1 A Dual Point of View

The dual of the master problem (2.1) looks as follows.

max
u

bᵀu

s.t. aᵀju ≤ cj , ∀j ∈ J,
u≥ 0

(2.3)

Let us now look at the column generation procedure from a Lagrangian dual view, as in
[Bri+08] and [Bri+05]. Recall that the Lagrangian subproblem of the master problem (2.1)
with all constraints dualized is

L(u) := min
x≥0
{cᵀx− uᵀ (Ax− b)} (2.4)

where A = (a1, ...,an) and c = (c1, ..., cn). For every u ≥ 0 this yields a lower bound
on the optimal objective value zMP of the master problem (2.1), as for an optimal primal
solution of the master problem xMP we have that uᵀ (AxMP − b) ≥ 0. The Lagrangian
dual of Problem (2.1) consists of maximizing this lower bound.

zLD = max
u≥0

L(u) = max
u≥0

min
x≥0
{cᵀx− uᵀ (Ax− b)} (2.5)

For the restricted master problem (2.2) we can do the same and get the Lagrangian sub-
problem of the restricted master problem

LRMP (u) := min
x≥0
{c̃ᵀx− uᵀ(Ãx− b)}, (2.6)

where c̃ and Ã consist of the entries and columns of c and A corresponding to J ′, respectively.
The Lagrangian dual of the restricted master problem (2.2) looks as follows.

zRLD = max
u≥0

LRMP (u) = max
u≥0

min
x≥0
{c̃ᵀx− uᵀ(Ãx− b)}. (2.7)

We can rewrite the Lagrangian dual of the master problem

zLD = max
u≥0

min
x≥0
{cᵀx−uᵀ (Ax− b)} = max

u≥0
{s : s ≤ uᵀb+ (cᵀ − uᵀA)x, ∀x ≥ 0} (2.8)

and observe that when we set s = uᵀb, we recognize the linear programming dual of the
master problem (2.3). This works analogously for the restricted master problem.

Using a Lagrangian subproblem we can achieve the following dual lower bound for the
optimal solution of the master problem. This gives us an idea of the quality of the current
solution when we stop the column generation procedure before reaching optimality in the
master problem, see [DL05].

16

Theorem 2.1.2. Let zMP be the optimal objective value of the master problem and zRMP

and uᵀ
RMP the optimal objective value and the optimal dual solution of the restricted master

problem for a fixed J ′, respectively. Furthermore, let κ be an upper bound on the sum of the
entries of an optimal solution (x∗1, ..., x

∗
n) of the master problem, i.e. κ ≥

∑n
j=1 x

∗
j . Then

the following bounds hold

zRMP + κmin
j∈J
{cj − uᵀ

RMPaj} ≤ zMP ≤ zRMP .

Proof. As any feasible solution of the restricted master problem can be transformed into a
feasible solution of the master problem with the same objective value by keeping the values
for xj if j ∈ J ′ and setting xj = 0 for j ∈ J \ J ′, it holds that zMP ≤ zRMP .

For the lower bound, we consider the Lagrangian subproblem

zMP ≥ L(uRMP) = min
x≥0
{cᵀx− uᵀ

RMP (Ax− b)} = min
x≥0
{uᵀ

RMPb + cᵀx− uᵀ
RMPAx}

= zRMP + min
x≥0
{cᵀx− uᵀ

RMPAx} = zRMP + min
x≥0
{
n∑
j=1

(cjxj − uᵀ
RMPajxj)}

= zRMP + min
x≥0
{
n∑
j=1

xj(cj − uᵀ
RMPaj)} ≥ zRMP + min

x≥0
{
n∑
j=1

xj min
j∈J
{cj − uᵀ

RMPaj}}

≥ zRMP + max
x≥0
{
n∑
j=1

xj}min
j∈J
{cj − uᵀ

RMPaj} ≥ zRMP + κmin
j∈J

(cj − uᵀ
RMPaj).

Here the key insights are that the Lagrangian subproblem is a lower bound, uᵀ
RMPb =

zRMP by strong duality, minj∈J(cj−uᵀ
RMPaj) ≤ 0 and thus we minimize a negative number.

Hence, maximizing the absolute value of the individual factors makes the expression smaller.
Thus, it holds that zRMP + κminj∈J{cj − uᵀ

RMPaj} ≤ zMP .

When we add columns in the primal, this corresponds to adding rows in the dual, as Aᵀ is
used in the dual instead of A. This means, that when adding columns aj with the negative
reduced cost cj − u∗ᵀaj ≤ 0 in the primal, this corresponds to adding violated constraints
uᵀaj ≥ cj to the dual problem, where u∗ is an optimal solution to the previous dual re-
stricted master problem. Hence, when performing column generation for the primal problem,
we actually perform a cutting-plane method for the dual problem.

The cutting-plane method in the dual corresponding to column generation in the primal
would be as in Algorithm 2.

From this cutting-plane algorithm we can obtain an optimal primal solution x∗ of the
master problem by solving the primal restricted master problem with J ′ at the end of the
cutting plane algorithm once.

17

Algorithm 2 Cutting-Plane Algorithm

Input feasible dual master problem
Output optimal solution of the dual master problem

1: Choose small J ′.
2: Solve the dual restricted master problem, to get solution u∗.
3: if there exists a constraint in J \ J ′ which is violated then
4: add one or more constraints to J ′, at least one being violated.
5: go to 2
6: else return u∗

7: end if

Observe that contrary to the primal algorithm, it is possible to start with J ′ = ∅.

Also notice, that

zLD = max
u≥0

L(u) ≥ L(argmax
u≥0

LRMP (u)), (2.9)

but L(argmaxu≥0 L
RMP (u)) is not monotonically increasing over the iterations, see [Van05]

and [BADF04]. Hence it can be meaningful to track the best lower bound for zLD of this
form.

Definition 2.1.3 (Stability Center). Let uk := argmaxu≥0 L
RMP (u) for the restricted

master problem in iteration k, i.e. uk is the optimal solution of the Lagrangian dual of the
restricted master problem in iteration k. Then the best lower bound for zLD of this form
found until round l is û := argmaxk∈{1,...,l} L(uk), which we call the stability center after
round l.

2.2 Dantzig-Wolfe Decomposition

We now want to look at how to reformulate integer linear problems with a special structure
such that the solution of the linear relaxation of the reformulation

� provides a good approximation of the original integer linear program,

� and can be obtained in a decently efficient way using column generation.

Whenever possible we try to reformulate the original problem such that the pricing problem
can be solved well. For instance, it is sometimes possible to solve the subproblem by using
a fairly efficient combinatorial algorithm.

One such possibility of using the structure of the problem to get a good reformulation is
the Dantzig-Wolfe decomposition. We are going to introduce the concept of the Dantzig-
Wolfe decomposition as in [DL05] and [VW10].

18

Consider the following integer linear program, which we call the compact formulation of
the program.

min
x

cᵀx

s.t. A1x ≥ b1,
A2x ≥ b2,
x ∈ Zk≥0,

(2.10)

where c ∈ Rk, A1 ∈ Rm×k, A2 ∈ Rl×k, b1 ∈ Rm, b2 ∈ Rl. For mixed-integer programs the
following works analogously, see [Van05].

2.2.1 Convexification

The convex hull conv{x ∈ Zk≥0 : A2x ≥ b2} is a polyhedron and can thus be represented
by a finite set of extreme points and rays using the theorem of Minkowski and Weyl.

Theorem 2.2.1 (Minkowski, Weyl). Let X = {x ∈ Rk : Ax ≤ b} be a polyhedron. Then
there exists a finite set of extreme points {xp : p ∈ P} of X and a finite set of extreme rays
{vr : r ∈ R} of X such that X can be represented as a combination of the extreme rays
plus a convex combination of the extreme points, i.e.

X = {x ∈ Rk : x =
∑
p∈P

xpλp +
∑
r∈R

vrλr,
∑
p∈P

λp = 1, λp ∈ R≥0 ∀p ∈ P, λr ∈ R≥0 ∀r ∈ R}.

Thus, we can write conv{x ∈ Zk≥0 : A2x ≥ b2} = {x ∈ Rk : x =
∑

p∈P xpλp +∑
r∈R vrλr,

∑
p∈P λp = 1, λp ∈ R≥0 ∀p ∈ P, λr ∈ R≥0 ∀r ∈ R} for some finite set of

extreme points {xp : p ∈ P} and a finite set of extreme rays {vr : r ∈ R}. If we plug this
into the compact formulation (2.10), we get the following extensive formulation.

min
λ

∑
p∈P

cpλp +
∑
r∈R

crλr

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≥ b1,∑
p∈P

λp = 1,

λ ≥ 0,∑
p∈P

xpλp +
∑
r∈R

vrλr = x,

x ∈ Zk≥0,

(2.11)

where cp = cᵀxp, cr = cᵀvr,ap = A1xp,ar = A1vr for all p ∈ P, r ∈ R and λ ∈ R|P |+|R|
in the concrete notation of (λp)p∈P , (λr)r∈R. The extensive formulation is equivalent to the
compact formulation. This kind of extensive formulation is also called the convexification of
the compact formulation, see [VW10].

19

The extensive formulation has m + 1 + k constraints additionally to the non-negativity
and integrality constraints, which can be less than the m + l constraints of the compact
formulation. However, the number of variables is only k in the compact formulation and can
be exponential in l in the extensive formulation.

In order to deal with this potentially large amount of variables, we can use column gen-
eration to solve the linear relaxation of the extensive formulation (2.11). Notice, that if we
relax the integrality of x, there is no reason to link x and λ, thus we have the following
linear relaxation of (2.11).

min
λ

∑
p∈P

cpλp +
∑
r∈R

crλr

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≥ b1,∑
p∈P

λp = 1,

λ ≥ 0

(2.12)

We solve Problem (2.12) by column generation, i.e. Problem (2.12) is our master problem.
Then we take an initial subset of the columns P ′ ⊆ P , R′ ⊆ R to get the following restricted
master problem. Here we make sure to choose P ′ and R′ such that the restricted master
problem is feasible.

min
λ

∑
p∈P ′

cpλp +
∑
r∈R′

crλr

s.t.
∑
p∈P ′

apλp +
∑
r∈R′

arλr ≥ b1,∑
p∈P ′

λp = 1,

λ ≥ 0

(2.13)

Let (u∗ᵀ, u∗0) be an optimal dual solution of the restricted master problem at a certain
point of time, where u∗ corresponds to the constraints

∑
p∈P apλp +

∑
r∈R arλr ≥ b1

and u∗0 corresponds to the convexity constraint
∑

p∈P λp = 1. Then the pricing problem is
min{minp∈P {cp−u∗ᵀap− u∗0},minr∈R{cr −u∗ᵀar}}. We can also find the extreme point
or extreme ray with the least reduced cost by using the following Lemma.

Lemma 2.2.2. In the notation from above, it holds that

inf{cᵀx− u∗ᵀA1x− u∗0 : x ∈ conv{x ∈ Zk≥0 : A2x ≥ b2}} ∈
(∞, 0], if there are no extreme points and extreme rays with negative reduced cost,

(0,−∞), if there is an extreme point, but no extreme ray with negative reduced cost,

{−∞}, if there exists an extreme ray with negative reduced cost.

20

Proof. First of all, notice that x ∈ conv{x ∈ Zk≥0 : A2x ≥ b2} are precisely the points
which can be written as x =

∑
p∈P xpλp +

∑
r∈R vrλr for some λ ≥ 0 with

∑
p∈P λp = 1.

Thus, we have that cᵀx−u∗ᵀA1x−u∗0 =
∑

p∈P λp(cp−u∗ᵀap−u∗0)+
∑

r∈R λr(cr−u∗ᵀar),
as

∑
p∈P λp = 1, cᵀxp = cp, c

ᵀvr = cr, A1xp = ap, A1vr = ar and linearity. Furthermore,
observe that when minr∈R{cr−u∗ᵀar} is negative, this means that there exists a ray vr0 with
r0 ∈ R such that cᵀvr0 − u∗ᵀA1vr0 < 0. If we have some fixed λ ≥ 0 with

∑
p∈P λp = 1,

then x(0) :=
∑

p∈P xpλp+
∑

r∈R vrλr is in conv{x ∈ Zk≥0 : A2x ≥ b2}. Then, also x(1) :=∑
p∈P xpλp +

∑
r∈R vrλr + vr0d is in conv{x ∈ Zk≥0 : A2x ≥ b2} for any fixed d ∈ R≥0.

However, cᵀx(1) − u∗ᵀA1x
(1) − u∗0 = cᵀx(0) − u∗ᵀA1x

(0) − u∗0 + d(cᵀvr0 − u∗ᵀA1vr0).
Therefore, we have inf{cᵀx − u∗ᵀA1x − u∗0 : x ∈ conv{x ∈ Zk≥0 : A2x ≥ b2}} = −∞ in
this case.

Let us now consider the case where minr∈R{cr − u∗ᵀar} ≥ 0. Consider again x(0) as
above. Then also x(2) :=

∑
p∈P xpλp is in conv{x ∈ Zk≥0 : A2x ≥ b2}. But, cᵀx(0) −

u∗ᵀA1x
(0)−u∗0 = cᵀx(2)−u∗ᵀA1x

(2)−u∗0+
∑

r∈R λr(cr−u∗ᵀar) ≥ cᵀx(2)−u∗ᵀA1x
(2)−

u∗0 ≥ minp∈P {cp−u∗ᵀap−u∗0} > −∞. Accordingly, we have inf{cᵀx−u∗ᵀA1x−u∗0 : x ∈
conv{x ∈ Zk≥0 : A2x ≥ b2}} > −∞ in this case. Furthermore, we know that the minimum
is attained at an extreme point, as for p0 = argminp∈P {cp−u∗ᵀap−u∗0} we have that xp0 ∈
conv{x ∈ Zk≥0 : A2x ≥ b2}. Hence, we know that inf{cᵀx−u∗ᵀA1x−u∗0 : x ∈ conv{x ∈
Zk≥0 : A2x ≥ b2}} = minp∈P {cp − u∗ᵀap − u∗0}, whenever minr∈R{cr − u∗ᵀar} ≥ 0.

Therefore, instead of solving the pricing problem, we can solve the linear program min{cᵀx−
u∗ᵀA1x − u∗0 : x ∈ conv{x ∈ Zk≥0 : A2x ≥ b2}} = min{cᵀx − u∗ᵀA1x − u∗0 : x ∈ Zk≥0 :
A2x ≥ b2}. Then, if the optimal objective value is positive, we conclude that we are already
optimal for the master problem (2.12) and stop the column generation procedure. In the
case where it is negative and finite, the minimum is attained at an extreme point. In this
case we can add this extreme point to the restricted master problem. Otherwise, we find
an extreme ray with negative reduced cost and add it to the restricted master problem, see
[LD05] and [DL05].

Observe, that Lemma 2.2.2 also holds for inf{cᵀx−u∗ᵀA1x−u∗0 : A2x ≥ b2,x ∈ Zk≥0}.
This is due to the fact, that we minimize a linear function. When we assume that all
constraints are rational we can argue more constructively, that xp are integral points for all
p ∈ P , and the extreme rays r ∈ R start at an integral point and can be scaled such that
they end in another integral point. Therefore, if x(0) :=

∑
p∈P xpλp +

∑
r∈R vrλr is in

{x ∈ Zk≥0 : A2x ≥ b2}, then for all r0 ∈ R there exist arbitrarily large d ∈ R≥0 such that

x(1) :=
∑

p∈P xpλp +
∑

r∈R vrλr + vr0d is also in {x ∈ Zk≥0 : A2x ≥ b2}.

Example (Convexification). Consider the following compact formulation of an integer linear
program.

21

min
x

x1 + x2

s.t. 6x1 + x2 ≥ 6,

x1 + 2x2 ≥ 6,

−x1 + x2 ≥ −3,

x ∈ Z2
≥0.

(2.14)

Suppose we want to convexify the constraints x1 + 2x2 ≥ 6 and −x1 + x2 ≥ −3. Hence,
we need the extreme points and rays of the polyhedron conv{x ∈ Zk≥0 : x1 + 2x2 ≥
6,−x1 + x2 ≥ −3}. The set of extreme points is {(4, 1)ᵀ, (0, 3)ᵀ} and the set extreme rays
is {(1, 1)ᵀ, (0, 1)ᵀ}. Then, we have c = (1, 1), A1 = (6, 1) and b1 = 6. It follows, that
c(4,1) = 5, c(0,3) = 3, c(1,1) = 2, c(0,1) = 1 and a(4,1) = 25, a(0,3) = 3, a(1,1) = 7, a(0,1) =
1. Hence, the extended formulation after the Dantzig-Wolfe convexification looks as follows.

min
λ

5λ(4,1) + 3λ(0,3) + 2λ(1,1) + λ(0,1)

s.t. 25λ(4,1) + 3λ(0,3) + 7λ(1,1) + λ(0,1) ≥ 6,

λ(4,1) + λ(0,3) = 1,

λ ≥ 0,

(4, 1)ᵀλ(4,1) + (0, 3)ᵀλ(0,3) + (1, 1)ᵀλ(1,1) + (0, 1)ᵀλ(0,1) = x,

x ∈ Z2
≥0

(2.15)

The master problem is the linear relaxation of the extended formulation.

min
λ

5λ(4,1) + 3λ(0,3) + 2λ(1,1) + λ(0,1)

s.t. 25λ(4,1) + 3λ(0,3) + 7λ(1,1) + λ(0,1) ≥ 6,

λ(4,1) + λ(0,3) = 1,

λ ≥ 0

(2.16)

The restricted master problem is the master problem with a subset of the columns. We
want to initially choose the columns of the restricted master problem such that it is feasible.
For instance, we could take the column corresponding to the extreme point (0, 3) and the
extreme ray (0, 1) to initialize the restricted master problem. This looks as follows.

min
λ

3λ(0,3) + λ(0,1)

s.t. 3λ(0,3) + λ(0,1) ≥ 6,

λ(0,3) = 1,

λ ≥ 0

(2.17)

After the column generation procedure finishes, we have an optimal solution to the linear
programming relaxation of the Dantzig-Wolfe formulation and are left to deal with the
integrality constraint. Notice, that if we require λ to be integer in (2.12), we are not

22

guaranteed to receive the optimal solution for Problem (2.11), as there are integer x which
do not correspond to an integer λ.

Example. Consider the following integer linear program.

min x

s.t. x ≥ 0.5,

−x ≥ −2,

x ∈ Z≥0,

where A1 = (1), b1 = 0.5, A2 = (−1), b2 = −2. Then the polyhedron conv{x ∈ Z≥0 :
A2x ≥ b2, x ≥ 0} has the two extreme points x1 = 0 and x2 = 2. Thus, conv{x ∈ Z≥0 :
A2x ≥ b2, x ≥ 0} = {x ∈ R≥0 : x = 0 ∗ λ1 + 2 ∗ λ2, λ1 + λ2 = 1, λ1, λ2 ≥ 0}. Hence, for
integer λ1, λ2 we can only reach x = 0 or x = 2. As x = 0 is not feasible for x ≥ 0.5, the
best optimal solution with integer λ1, λ2 would be x = 2. However, the optimal solution to
the original integer linear program is x = 1.

Therefore, we will look at another version of the Dantzig-Wolfe decomposition.

2.2.2 Discretization

To directly represent all integer points {x ∈ Zk≥0 : A2x ≥ b2}, one can use the following
theorem in [NW88].

Theorem 2.2.3. Let X = {x ∈ Zk≥0 : Ax ≥ b} be the set of all integer points in the

polyhedron {x ∈ Rk≥0 : Ax ≥ b}. Then there are finitely many integer points {xp : p ∈ P}
and finitely many integer rays {vr : r ∈ R} such that every x ∈ X can be represented as
x =

∑
p∈P xpλp +

∑
r∈R vrλr, where

∑
p∈P λp = 1 and λs ∈ Z≥0 for all s ∈ P ∪R.

In contrast to Theorem 2.2.1, we describe precisely the integer points x with Ax ≥ b and
not all points in the convex hull conv{x ∈ Zk≥0 : Ax ≥ b}. When conv{x ∈ Zk≥0 : Ax ≥ b}
is a bounded polytope, Theorem 2.2.1 only takes the extreme points into its set of points,
while the set of points in Theorem 2.2.3 is {x ∈ Zk≥0 : Ax ≥ b}. Normally, we will there-
fore have a larger set of points when using Theorem 2.2.3. In Theorem 2.2.1 it can thus
happen that λ is not integral, but x is. Whereas in Theorem 2.2.3 the convexity constraint∑

p∈P λp = 1 together with λ ∈ Z≥0 implies that we have exactly one p0 ∈ P with λp0 = 1
and λp = 0 for all p ∈ P \ {p0}.

We use the representation of Theorem 2.2.3 for x in Problem (2.10), which yields the

23

method of discretization, see [Van00].

min
λ

∑
p∈P

cpλp +
∑
r∈R

crλr

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≥ b1,∑
p∈P

λp = 1,

λs ∈ Z≥0 ∀s ∈ P ∪R,

(2.18)

where cp = cᵀxp, cr = cᵀvr,ap = A1xp,ar = A1vr for all p ∈ P, r ∈ R. The linear relax-
ation of Problem (2.18) can again be solved using column generation and one only needs to
think about the integrality of λ. Notice, that the linear relaxation of the discretization (2.18)
has the same structure as the linear relaxation of Problem (2.12) attained by convexification.

Example (Discretization). We now want to use Dantzig-Wolfe discretization on the com-
pact formulation of the convexification example from above. Suppose that we want to use
discretization for the constraints x1 + 2x2 ≥ 6 and −x1 + x2 ≥ −3. Hence, we need integer
points and integer rays which describe {x ∈ Zk≥0 : x1 + 2x2 ≥ 6,−x1 + x2 ≥ −3}. The
set of points is {(4, 1)ᵀ, (3, 2)ᵀ, (2, 2)ᵀ, (1, 3)ᵀ, (0, 3)ᵀ} and the set rays is {(1, 1)ᵀ, (0, 1)ᵀ}.
Given these points, we can compute cs and as for s ∈ P ∪ R and construct the master
problem similarly to the convexification approach.

2.2.3 Generators

More generally, whenever we have a finite set of so called generators such that every point
in {x ∈ Zk≥0 : A2x ≥ b2} can be represented as a weighted sum of generators, where the
weights follow certain rules, we get a reformulation of our Problem (2.10) in a similar way
as above, see [Van05], [VS06].

Definition 2.2.4 (Generating Set, Generator). Let GA2 be a finite set of points in Rk. Then
GA2 is called a generating set for {x ∈ Zk≥0 : A2x ≥ b2}, if there exists a set of weights

WA2 ⊆ R|GA2 |, which can be described using only linear and integer constraints, such that
{
∑

g∈GA2 gλg : λ ∈ WA2} = {x ∈ Zk≥0 : A2x ≥ b2}. The elements of the generating set
are called generators.

A generating set GA2 together with a suitable set of weights WA2 yields the following
reformulation of Problem (2.10).

min
λ

∑
g∈GA2

cᵀgλg

s.t.
∑

g∈GA2

A1gλg ≥ b1,

λ ∈WA2 .

(2.19)

24

For the pricing step in the column generation procedure, one has to solve min{cᵀg −
u∗ᵀA1g : g ∈ GA2}, where u∗ is the optimal dual solution of the current restricted master
problem.

The convexification and the discretization of the compact formulation are special cases of
the reformulation using generating sets.

Example (Convexification). For the convexification of Problem (2.10), let {xp : p ∈ P}
be a set of extreme points and {vr : r ∈ R} a set of extreme rays of the polyhedron
conv{x ∈ Zk≥0 : A2x ≥ b2}, from the Theorem of Minkowski and Weyl. When we plug in

GA2 = {xp : p ∈ P}∪{vr : r ∈ R} and WA2 = {λ ∈ R|GA2 | :
∑

p∈P λp = 1,
∑

p∈P xpλp+∑
r∈R vrλr ∈ Zk≥0} into (2.19), we get Problem (2.11).

Example (Discretization). For the discretization of Problem (2.10), let {xp : p ∈ P} be a
set of integer points and {vr : r ∈ R} a set of integer rays describing the set {x ∈ Zk≥0 :

A2x ≥ b2} as in Theorem 2.2.3. When we plug in GA2 = {xp : p ∈ P} ∪ {vr : r ∈ R} and

WA2 = {λ ∈ R|GA2 | :
∑

p∈P λp = 1, λs ∈ Z≥0 ∀s ∈ P ∪ R} into (2.19), we get Problem
(2.18).

2.2.4 Choosing A1 and A2

Choosing which constraints to put into A1 and which into A2 is essential to be able to
really use the structure of the problem and to get a good linear programming relaxation.
Partitioning in the following three ways depending on how the constraints relate to each
other often works well, see [VS06] and [Van05].

� Difficult vs. Easy Constraints: Choosing A1x ≥ b1 as the difficult constraints and
the subsystem A2x ≥ b2 as the more efficiently solvable constraints can be a good
choice, especially when optimizing over A2x ≥ b2 can be done by using a combinatorial
algorithm which is more efficient then solving the whole problem. When choosing this
partitioning of the constraints, the pricing problem will be easier to solve.

� Block Diagonal and Linking Constraints: When A2 has a block-diagonal structure
and A1x ≥ b1 are the constraints linking these blocks, we can describe the polyhedron
of each block of A2 individually. Let

A2 =


A1

2

A2
2

. . .

Ad2

 , b2 =


b2

1

b2
2

...

b2
d

 .

Let GA
j
2 be a generating set for {x ∈ Zk≥0 : Aj2x ≥ b2

j} with set of weights WAj
2 , for

each j in {1, ..., d}. Then the master problem looks as follows after the Dantzig-Wolfe
decomposition.

25

min
λ

d∑
j=1

∑
g∈GA

j
2

cjᵀgλjg

s.t.

d∑
j=1

∑
g∈GA

j
2

Aj1gλ
j
g ≥ b1,

λj ∈WAj
2 , ∀j ∈ {1, ..., d},

(2.20)

where Aj1 are the columns of A1 that correspond to the columns of Aj2 in A2. E.g., if
A1

2 is a block of size l, then A1
1 are the first l columns of A1

1. And cj are the entries
of c corresponding to the columns of Aj2.

The pricing problem is then decomposed of d separate pricing problems, min{cᵀg −
u∗ᵀAj2g : g ∈ GA

j
2}, for each j in {1, ..., d}, where u∗ is the optimal dual solution of

the current restricted master problem. Solving these subproblems can be stopped as
soon as one column with negative reduced cost is found in one of the pricing problems,
or it can be solved completely until the column with the overall most negative reduced
cost is found.

It can happen that some of the blocks are identical, i.e. Aj2 = AS2 and b2
j = b2

S

for all j in a subset S ⊆ {1, ..., d}. Then, also the pricing problems are identical.
Hence, we only need one pricing problem for each class of identical blocks. If further
the Aj1 = AS1 and cj = cS for all j ∈ S, then we can we can aggregate the values of

the variables to one variable λSg :=
∑

j∈S λ
j
g for all j ∈ S in the master problem. The

restrictions of WAS
2 are changed accordingly. Suppose that there are L different types

of blocks which can be aggregated. Then the master problem looks as follows.

min
λ

L∑
l=1

∑
g∈GA

Sl
2

cjᵀgλSl
g

s.t.
L∑
l=1

∑
g∈GA

Sl
2

ASl
1 gλ

Sl
g ≥ b1,

λSl ∈WA
Sl
2 , ∀l ∈ {1, ..., L},

(2.21)

The symmetry of the problem is thereby reduced, see [DL11] and [Gam10].

� Multiple Subsystems: When A1x ≥ b1 and A2x ≥ b2 are both easier to solve
on their own then together at once, choosing A1 and A2 such that we can optimize
over the polyhedron induced by A2 better can be beneficial as this facilitates the
computation in the pricing step of column generation.

Example (Cutting Stock Problem). The cutting stock problem is a very classical application
of column generation. We want to see how it can be formulated in order to efficiently use

26

column generation, as in [BAC05].

The task in the one-dimensional cutting stock problem is to find the minimal number of
rolls of length L ∈ Z≥0, such that we can cut from these rolls at least di ∈ Z≥0 pieces of
length li ∈ Z≥0 for i ∈ {1, ...,m}.

A first integer linear programming model for this problem was introduced in [Kan60]. For
this model, we have an upper bound on the minimal number of rolls U . Then we make U
dummy-rolls xj where we have a variable xj0 which indicates whether the i-th dummy-roll is

used and xji which indicates how often we cut a piece of length li from it for i ∈ {1, ...,m}
and j ∈ {1, ..., U}.

min
x0

U∑
j=1

xj0 (2.22a)

s.t.

U∑
j=1

xji ≥ di, ∀i ∈ {1, ...,m}, (2.22b)

m∑
i=1

xji li ≤ Lx
j
0, ∀j ∈ {1, ..., U}, (2.22c)

xi ∈ ZU≥0, ∀i ∈ {1, ...,m}, (2.22d)

x0 ∈ {0, 1}U . (2.22e)

The constraints (2.22b) imply that at least di pieces of length li need to be cut for all
i ∈ {1, ...,m}. The constraints (2.22c) mean that whenever pieces are cut from the j-th
roll, we need to use it and that the total length of all pieces cut from one roll cannot exceed
the length of a roll.

Notice that this problem has a lot of symmetry, as we can permute the rolls and still get
the same result. Regarding a Dantzig-Wolfe decomposition of the problem, observe that the
second set of constraints (2.22c) has a block-diagonal structure when represented with a
matrix and the first set of constraints (2.22b) links the blocks together. Hence, we want to
choose A1 to model the first set of constraints (2.22b) and A2 to model the second set of
constraints (2.22c).

We want to generate the set {xj ∈ Zk≥0 : Aj2x
j ≥ b2j} = {xj ∈ Zk≥0 :

∑m
i=1 lix

j
i ≤

Lxj0} = {0} ∪ {(1, xj1, ..., x
j
m) :

∑m
i=1 lix

j
i ≤ L}, i.e. this set is just the zero vector

and the set of vectors starting with 1 and then having xji the number of times a piece of
length li is cut in a possible cutting of a roll. Those are finitely many, hence we can use
all these points for a Dantzig-Wolfe discretization. As the zero vector is irrelevant to the
problem, we can also say that the set of generators is the set of feasible cutting patterns
GA2 = {g : (g1, ..., gm) :

∑m
i=1 ligi ≤ L}, where every element has a cost of 1. As all

27

blocks in the block-diagonal matrix have precisely the same structure, we can aggregate the
variables and the problem simplifies.

This leads to the formulation of Gilmore and Gomory, as in [GG63].

min
λ

∑
g∈GA2

λg

s.t.
∑

g∈GA2

giλg ≥ di, ∀i ∈ {1,,m},

λg ∈ Z≥0,

(2.23)

Here, λg can be interpreted as the number of times the feasible cutting pattern g is chosen
and gi corresponds to the number of pieces of length li in the cutting pattern g.

This can then be solved via column generation. Also, the subproblem for every block is
the same, hence we can reduce it to solving just one subproblem.

max
g

u∗ᵀg

s.t.
m∑
i=1

gili ≤ L,

g ∈ Zm≥0,

(2.24)

where u∗ is the optimal dual solution of the restricted master problem. As the cost for every
feasible pattern is 1, we can just maximize over u∗ᵀg in order to minimize the reduced cost.
Notice that the subproblem is thus actually a knapsack problem.

2.2.5 Relation to Lagrangian Dual

The Dantzig-Wolfe Decomposition has a strong relation with the Lagrangian dual. We are
now going to study this connection as in [VW10] and [LD05].

Recall that we form the Lagrangian subproblem of (2.10) by relaxing the ”more com-
plicated” constraints A1x ≥ b1 and incorporate the violation of those constraints in the
objective value.

LA1(u) := min{cᵀx− uᵀ (A1x− b1) : A2x ≥ b2,x ∈ Zk≥0} (2.25)

For every u ≥ 0 this yields a lower bound on the optimal objective value x∗ of Problem (2.10),
as uᵀ (A1x

∗ − b1) ≥ 0. The Lagrangian dual of Problem (2.10) consists of maximizing this
lower bound.

zLD = max
u≥0

LA1(u) = max
u≥0

min
x
{cᵀx− uᵀ (A1x− b1) : A2x ≥ b2,x ∈ Zk≥0} (2.26)

We now want to rewrite the Lagrangian dual as a linear program. Let {xp : p ∈ P}
be a set of extreme points and {vr : r ∈ R} a set of extreme rays of the polyhedron

28

conv{x ∈ Zk≥0 : A2x ≥ b2}. Notice that for some fixed u, if there exists an extreme ray
vr such that cp − uᵀar < 0, we already have LA1(u) = −∞. This is, because cᵀx −
uᵀA1x−u0 and cᵀx−uᵀ (A1x− b1) only differ by a constant and Lemma 2.2.2 also holds
for inf{cᵀx − u∗ᵀA1x − u∗0 : x ∈ Zk≥0 : A2x ≥ b2}, as we observed in Section 2.2.1. The
proof of Lemma 2.2.2 works analogously for any fixed u instead of u∗, when we look at
cp − uᵀar and cp − uᵀxp − uᵀb1 instead of the reduced costs. Hence, either there exists
a u ≥ 0 such that no such ray exists, or zLD = −∞. If no such ray exists, then for every
given u there is some extreme point p ∈ P such that LA1(u) = cp − uᵀxp − uᵀb1, again
because Lemma 2.2.2 can be extended as above, see [LD05]. Assume that we know a set
of extreme points {xp : p ∈ P} and a set of extreme rays {vr : r ∈ R} as in the Theorem
of Minkowski and Weyl 2.2.1 and there exists no extreme ray with negative reduced cost.
Then we can restate the Lagrangian dual as the following linear program.

max
u, v

uᵀb1 + v

s.t. uᵀA1xp + v ≤ cᵀxp, ∀p ∈ P,
uᵀA1vr ≤ cᵀvr, ∀r ∈ R.,

u ≥ 0

(2.27)

The linear programming dual of Problem (2.27) looks as follows.

min
λ

∑
p∈P

cᵀxpλp +
∑
r∈R

cᵀvrλr

s.t.
∑
p∈P

A1xpλp +
∑
r∈R

A1vrλr ≥ b1,∑
p∈P

λp = 1,

λ ≥ 0

(2.28)

Observe that this is the same linear program as the linear relaxation of the Dantzig-Wolfe
convexification (2.12). Hence, the optimal solution of the Lagrangian dual is the same as
the optimal solution of the linear relaxation of the Dantzig-Wolfe convexification when we
choose the same partitioning of the constraints.

2.2.6 Strength of Dual Bounds of the Dantzig-Wolfe Reformulation

When looking at the linear relaxation of the Dantzig-Wolfe convexification of a problem, one
achieves a lower bound on the optimal value of the original problem. How good this lower
bound is depends on which constraints are convexified. Suppose we want to reformulate the
following problem.

min
x

cᵀx

s.t. aᵀix ≥ bi ∀i ∈ I,
x ∈ Zk≥0,

(2.29)

29

where c ∈ Rk,ai ∈ Rk, bi ∈ R for all i ∈ I. Thus, we have |I| constraints. Notice that
contrary to the notation before, in this chapter we are looking at the rows aᵀi , i ∈ I instead
of the columns aj , j ∈ J as in Problem (2.1).

When we say that we convexify the constraints I ′ ⊆ I, this means that we use the Dantzig-
Wolfe convexification with A2 having precisely ai with i ∈ I ′ as rows, b2 has bi for i ∈ I ′ as
the corresponding entries and A1 having precisely ai with i ∈ I \ I ′ as rows and b1 has bi
for i ∈ I \ I ′ as the corresponding entries.

When we choose to convexify all constraints in the Dantzig-Wolfe reformulation, i.e.
I ′ = I , the linear relaxation of the Dantzig-Wolfe reformulation is the same as optimizing
over the integer hull PIP := conv{x ∈ Zk : aᵀix ≥ bi ∀i ∈ I}, yielding the strongest
possible reformulation. When we choose to convexify no constraints in the Dantzig-Wolfe
reformulation, i.e. I ′ = ∅, the linear relaxation of the Dantzig-Wolfe relaxation coincides
with the linear relaxation of the original problem, where we optimize over the polyhedron
PLP := {x ∈ Rk : aᵀix ≥ bi ∀i ∈ I} hence leading to the weakest possible reformulation.

When we convexify a subset of the constraints I ′, we could end up with any bound in
between for the linear relaxation of the Dantzig-Wolfe decomposition, as we are then opti-
mizing over PI′ := {x ∈ Rk : aᵀix ≥ bi ∀i ∈ I \ I ′,x ∈ conv{x′ ∈ Zk : aᵀix

′ ≥ bi ∀i ∈ I ′}}.
This is studied more precisely in [LW18] and [BLW18]. We are now going to discuss some
of their findings.

A first insight is that the lower bound gained from the linear relaxation of the Dantzig-
Wolfe decomposition can be better than the bound from just the linear relaxation only if

conv{x ∈ Zk : aᵀix ≥ bi ∀i ∈ I
′} ({x ∈ Rk : aᵀix ≥ bi ∀i ∈ I

′}, (2.30)

i.e. {x ∈ Rk : aᵀix ≥ bi ∀i ∈ I ′} is not an integral polyhedron. This was proven by Geoffrion
[Geo74] for Lagrangian relaxations, and holds thus also for the Dantzig-Wolfe convexification
or discretization described in Section 2.2.5.

In [LW18] it is characterized when the Dantzig-Wolfe formulation is as weak or as strong
as possible for specific problems, starting with the weighted stable set problem.

Definition 2.2.5 (Weighted Stable Set Problem). Let G = (V,E) be an undirected graph
with vertex set V and edge set E ⊆ {{u, v} : u, v ∈ V, u 6= v} and let w : V → Z≥0 be a
weight function. Then a stable set in G is a set of vertices S ⊆ V such that no two vertices
in S are connected by an edge in G, i.e. for all u, v ∈ S we have that {u, v} is not in E.
The task of the weighted stable set problem is to find a stable set with maximal sum of the
weights, i.e. find argmax{

∑
v∈S w(v) : S is a stable set}.

The weighted stable set problem can also be formulated as a linear program with bi-
nary variables using one constraint per edge in the following way. This is called the edge
formulation of this problem.

30

max
x

∑
v∈V

w(v)xv

s.t. xv + xu ≤ 1 ∀{u, v} ∈ E,
xv ∈ {0, 1}, ∀v ∈ V.

(2.31)

For this formulation it can be shown, that the two polyhedra PIP and PLP coincide if and
only if G is a bipartite graph, see [LW18]. This also means, that if G is a bipartite graph,
every Dantzig-Wolfe reformulation gives the same lower bound.

Regarding the weakest Dantzig-Wolfe reformulation for Problem (2.31), Geoffrion’s neces-
sary condition (2.30) is already sufficient in the case of the edge formulation of the weighted
stable set problem.

Theorem 2.2.6. Let G = (V,E) be a graph, E′ ⊆ E a subset of the edges of G and consider
the edge formulation (2.31) of its stable set problem. Then the polyhedron PLP (G) = {x ∈
[0, 1]|V | : xu + xv ≤ 1 ∀{u, v} ∈ E} of the linear relaxation of Problem (2.31) is the same
as the polyhedron PE′(G) = {x ∈ [0, 1]|V | : xu + xv ≤ 1 ∀{u, v} ∈ E \ E′,x ∈ conv{x′ ∈
{0, 1}|V | : x′u + x′v ≤ 1 ∀{u, v} ∈ E′}} coming from the Dantzig-Wolfe reformulation when
convexifying the constraints corresponding to the edges in E′ if and only if the graph (V,E′)
is bipartite.

Proof. If (V,E′) is bipartite, then PIP ((V,E′)) and PLP ((V,E′)) are the same for the edge
formulation of the problem. This means that conv{x′ ∈ {0, 1}|V | : x′

u +x′
v ≤ 1 ∀{u, v} ∈

E′} = {x′ ∈ [0, 1]|V | : x′u + x′v ≤ 1 ∀{u, v} ∈ E′} and hence PLP (G) = PE′(G).

On the other hand, if (V,E′) is not bipartite, there must exist an odd cycle C in (V,E′).
Consider the vector xC for which xCv = 1/2 if v is a vertex in the cycle C, and xCv = 0 if v
is not in C. Then clearly xCu + xCv ≤ 1 for all vertices u, v ∈ V and thus also for all edges
{u, v} ∈ E. Hence, xC ∈ PLP (G). However, for all x ∈ conv{x′ ∈ {0, 1}|V | : x′u + x′v ≤
1 ∀{u, v} ∈ E′} it must hold that

∑
v∈C xv ≤ (|C| − 1)/2, i.e. the odd cycle constraint for

C must hold, but
∑

v∈C x
C
v = |C| /2 > (|C| − 1)/2. Hence xC /∈ conv{x′ ∈ {0, 1}|V | :

x′u + x′v ≤ 1 ∀{u, v} ∈ E′}, xC /∈ PE′(G) and thus, PE′(G) 6= PLP (G).

Notice, that for different problems, Geoffrion’s necessary condition (2.30) is not always
sufficient.

Example. Consider minimizing x ∈ R under the constraints x ≥ 0.5 and x ≥ 1.5, i.e.
a1 = a2 = 1, b1 = 0.5, and b2 = 1.5, and choosing I ′ = {1}, then conv{x ∈ Z : x ≥
0.5} = {x ∈ R : x ≥ 1} ({x ∈ R : x ≥ 0.5}, but the lower bound gained from the linear
relaxation of the Dantzig-Wolfe approximation is min{x : x ≥ 1.5, x ∈ conv{x′ ∈ Z : x′ ≥
0.5}} = min{x : x ≥ 1.5} which is just the bound from the linear relaxation, as the second
constraint is more powerful than the first one.

Regarding the strongest possible Dantzig-Wolfe reformulation for the weighted stable set
problem, the following holds.

31

Theorem 2.2.7. Let G = (V,E) be a graph, E′ ⊆ E a subset of the edges of G and consider
the edge formulation (2.31) of its stable set problem. Then the polyhedron PIP (G) =
conv{x ∈ {0, 1}|V | : xu + xv ≤ 1 ∀{u, v} ∈ E} of the integer hull of Problem (2.31)
is the same as the polyhedron PE′(G) = {x ∈ [0, 1]|V | : xu + xv ≤ 1 ∀{u, v} ∈ E \
E′,x ∈ conv{x′ ∈ {0, 1}|V | : x′u + x′v ≤ 1 ∀{u, v} ∈ E′}} coming from the Dantzig-Wolfe
reformulation when convexifying the constraints corresponding to the edges in E′ if and only
if the graph (V,E′) contains all odd induced cycles of G.

Here, an odd induced cycle C = (VC , EC) of G is a cycle with an odd number of ver-
tices |VC | ≥ 3, such that there are no edges in E\EC connecting two different vertices in VC .

These findings were also expanded to similar problems in [LW18], namely the weighted
clique problem and the weighted node covering problem.

In [LW18] the strongest and weakest possible Dantzig-Wolfe reformulation is also charac-
terized for the maximum weight matching problem, as an example on how this can be done
for problems where one has a full description of the integer hull.

Definition 2.2.8 (Maximum Weight Matching Problem). Let G = (V,E) be an undirected
graph with vertex set V and edge set E ⊆ {{u, v} : u, v ∈ V, u 6= v} and c : E → Z≥0 a
weight function for the edges. Then a matching in G is a set of edges M ⊆ E such that
no two edges in M are adjacent in G. The task of the maximum weight matching problem
is to find a matching with maximum sum of the weights, i.e. find argmax{

∑
e∈M c(e) :

M is a matching}.

The maximum weight matching problem can also be formulated as the following a linear
program with binary variables.

max
x

∑
e∈E

c(e)xe

s.t.
∑
e : v∈e

xe ≤ 1 ∀v ∈ V,

xe ∈ {0, 1} ∀e ∈ E

(2.32)

Thus, we have PLP = {x ∈ [0, 1]|E| :
∑

e : v∈e xe ≤ 1 ∀v ∈ V } and PIP = conv{x ∈
{0, 1}|E| :

∑
e : v∈e xe ≤ 1 ∀v ∈ V } for the maximum weight matching problem.

For further study of these polytopes let us first define the following two notions as in
[KV12].

Definition 2.2.9 (2-connected). Let G = (V,E) be an undirected graph. Then G is called
2-connected if |V | > 2 and for all v ∈ V the graph (V \{v}, E∩{{u,w} : u,w ∈ V \{v}}),
which arises from G by deleting the vertex v, is connected.

Definition 2.2.10 (factor-critical). Let G = (V,E) be an undirected graph. Then G is
called factor-critical if for every v ∈ V the graph (V \ {v}, E ∩ {{u,w} : u,w ∈ V \ {v}}),
which arises from G by deleting the vertex v, contains a perfect matching.

32

From theory about matchings we know, that PLP = PIP if and only if G is a bipartite
graph and we have the following complete description of the integer hull

PIP = PIP (V) = {x ∈ [0, 1]|E| :
∑
e : v∈e

xe ≤ 1 ∀v ∈ V,

∑
e∈E(S)

xe ≤
|S| − 1

2
∀S ⊆ V with |S| odd and G|S factor-critical and 2-connected},

where G|S = (S,E(S)) is the subgraph of G induced by S.
Then, the weakest Dantzig-Wolfe formulation appears precisely in the following case, as

proven in [BADF04]

Theorem 2.2.11. Let G = (V,E) be an undirected graph and V ′ ⊆ V . Then the polyhedron
PLP = {x ∈ [0, 1]|E| :

∑
e : v∈e xe ≤ 1 ∀v ∈ V } of the linear relaxation of the maximum

weight matching problem of G is the same as the polyhedron PV ′ = {x ∈ [0, 1]|E| : x ∈
PIP (V ′),

∑
e : v∈e xe ≤ 1 ∀v ∈ V \ V ′} coming from the Dantzig-Wolfe reformulation when

convexifying the constraints corresponding to the vertices in V ′ if and only if the subgraph
of G induced by V ′ is bipartite.

The strongest Dantzig-Wolfe formulation can be characterized as follows.

Theorem 2.2.12. Let G = (V,E) be an undirected graph and V ′ ⊆ V . Then the polyhedron
PIP of the of the maximum weight matching problem of G is the same as the polyhedron
PV ′ = {x ∈ [0, 1]|E| : x ∈ PIP (V ′),

∑
e : v∈e xe ≤ 1∀v ∈ V \V ′} coming from the Dantzig-

Wolfe reformulation when convexifying the constraints corresponding to the vertices in V ′

if and only if the subgraph of G induced by V ′ contains every 2-connected, factor-critical
subgraph of G.

In [BLW18] the focus is not only on when the reformulation is weakest or strongest, but
also what happens in between. This is investigated computationally for some specific in-
teger problems using a brute-force approach. The authors set up very small instances of
integer linear programs coming from classical combinatorial optimization problems, such as
bin packing or vehicle routing and integer linear programming instances without such an
underlying structure. Then, the authors consider all possible choices of the restrictions to
be convexified in the Dantzig-Wolfe reformulation and compute the corresponding bounds.
These experiments are repeated for multiple randomly chosen objective functions, as the size
of the gap between the dual bounds also depends on the objective function. The results
show that the number of different dual bounds that occur is much smaller than the number
of possibilities of choosing rows to be used for the Dantzig-Wolfe reformulation. Further,
the authors notice that the number of different dual bounds is often very close to a power
of 2. The authors also check the frequencies with which certain bounds occur and how
often good dual bounds are achieved. Their findings imply that strong dual bounds are not
achieved often, but also not many reformulations result in the weakest possible bounds, so
most reformulations were somewhere in between. Also, the authors find that the number
of constraints which are convexified is not a good indicator of the quality of the reformulation.

33

These observations together support the conjecture that some rows have a lot of impact
on the dual bound for most Dantzig-Wolfe reformulations, while most rows normally only
have a minor impact. Thus, the authors also investigate what differences can be seen in the
dual bounds when we first convexify a set of rows I ′ with i /∈ I ′ and then convexify I ′∪ i for
different rows i and different sets I ′. Most often it can be seen, that for a particular row i
the average gain among all sets I ′ ⊆ I \ {i} when adding i is a good indicator for how much
impact constraint i has. Indeed, it is often the case that if the highest gain of row i was
higher than the highest gain of row i′, the gain of i is almost always higher than the one of
i′. Focusing on the average gains for a constraint, the authors find that this indeed highly
depends on the kind of constraint. Especially, for the bin packing problem and the knapsack
problem the columns with a lot of impact coincide with the Dantzig-Wolfe reformulations
found in literature.

However, it is unclear whether a similar behavior occurs when dealing with larger instances
and the question on how to efficiently find a good Dantzig-Wolfe reformulation remains wide
open.

2.3 Using Lagrangian Relaxation in Column Generation

At this point, we wish to explore how to incorporate Lagrangian relaxation in column gen-
eration in a beneficial way, instead of using only the simplex method to solve the restricted
master problem and the pricing problem. We will consider a method shown in [Hui+05].

2.3.1 Lagrangian Relaxation for the Pricing Problem

One method to potentially speed up the column generation procedure after a Dantzig-Wolfe
decomposition is to not only use the simplex method but also use Lagrangian relaxation on
the original problem to obtain a lower bound on the objective value and to add columns
resulting from Lagrangian subproblems to the restricted master problem additionally to the
column obtained by simplex method in each iteration. We will describe this method as in
[Hui+05], [BJ98] and [DJ07].

Suppose that we want to solve the linear relaxation of the Dantzig-Wolfe convexification
(2.12) of the compact formulation (2.10). Hence, we choose Problem (2.12) as our master
problem. Then the pricing problem is

min
s∈P∪R

{cs − u∗ᵀas − u∗0} = min{cᵀx− u∗ᵀA1x− u∗0 : A2x ≥ b2,x ∈ Zk≥0}, (2.33)

where the notation is as in Section 2.2.1.

If we consider the Lagrangian relaxation of the compact formulation of the Problem (2.10),
where we relax the constraints A1x ≥ b1 and use u∗ as a multiplier, we get the Lagrangian

34

subproblem

min{cᵀx− u∗ᵀ(A1x− b1) : A2x ≥ b2,x ∈ Zk≥0} = (2.34)

min{cᵀx− u∗ᵀA1x+ u∗ᵀb1 : A2x ≥ b2,x ∈ Zk≥0}.

We can see in Equation 2.34 that the pricing problem and the Lagrangian subproblem are
minimized by the same x, as the pricing problem is min{cᵀx−u∗ᵀA1x−u∗0 : A2x ≥ b2,x ∈
Zk≥0} and u∗ᵀb1 and u∗0 are constant. Hence, we can also create new columns by solving
the Lagrangian subproblem. Also, the objective value of the Lagrangian subproblem gives
us a lower bound on the objective value of the linear relaxation of the master problem. To
get even better lower bounds, we can perform a couple of subgradient iterations to update
the Lagrangian multipliers, where we can use the primal solution of the restricted master
problem as an upper bound for the master problem to compute a step size. The minimizers
of these new Lagrangian subproblems can also be used as additional columns to be added
to the restricted master problem.

All in all, we have a hybrid column generation and Lagrangian relaxation algorithm to
solve the linear relaxation of an integer linear program, summarized in Algorithm 3.

Algorithm 3 Column Generation with Lagrangian Relaxation in the Pricing Problem

Input feasible master problem
Output optimal primal and dual solution of the master problem

1: Find small J ′ such that the restricted master problem is feasible.
2: Solve the restricted master problem, x∗ primal solution, (u∗ᵀ, u∗0)

ᵀ dual solution using
a simplex algorithm, where u∗0 corresponds to the convexity constraint.

3: if min{cᵀx− u∗ᵀA1x− u∗0 : A2x ≥ b2,x ∈ Zk≥0} < 0 then

4: J ′ = J ′ ∪ {argmin{cᵀx− u∗ᵀA1x− u∗0 : A2x ≥ b2,x ∈ Zk≥0}}
5: stopping criterion = false
6: λ = u∗

7: while stopping criterion == false do
8: J ′ = J ′ ∪ {argmin{cᵀx− λᵀ(A1x− b1) : A2x ≥ b2,x ∈ Zk≥0}}
9: Update multiplier λ by using a subgradient method

10: Update stopping criterion
11: end while
12: go to 2
13: else return (x∗,u∗)
14: end if

In this algorithm we make sure that we solve argmin{cᵀx−u∗ᵀA1x−u∗0 : A2x ≥ b2,x ∈
Zk≥0} in a way that we attain an extreme point or ray as a solution in order to be able to
generate a column from it. Thus, in the pricing step of the column generation algorithm, we
first add the column with smallest reduced cost. Then we solve a few Lagrangian relaxation

35

subproblems, where we start with the optimal dual solution of the restricted master problem
as a Lagrangian multiplier and improve it by some subgradient method. Thereby each
Lagrangian subproblem yields a new column which is also added to the restricted master
problem and a lower bound on the optimal objective value of the master problem.

The stopping criterion for the subgradient iterations could be any combination of a
maximal number of iterations, the (relative) size of the gap between the lower bound
min{cᵀx − u∗ᵀ(A1x − b1) : A2x ≥ b2,x ∈ Zk≥0} and the upper bound x∗, computa-
tion time, etc..

The correctness of this algorithm follows directly from the fact that we only stop the algo-
rithm when there are no more columns with negative reduced cost. The termination of the
algorithm is clear, whenever the stopping criterion for the subgradient iterations is chosen
such that stopping after a finite number of iterations is guaranteed.

The advantages of this hybrid algorithm come from the fact that producing a new column
using the simplex method to resolve the restricted master problem is computationally more
expensive than performing a subgradient iteration and solving a Lagrangian subproblem. By
adding multiple columns in each pricing step, we potentially reduce the number of iterations.
Also, we receive a good lower bound on the optimal objective value of the master problem
through solving the Lagrangian subproblem. Compared to using only Lagrangian relaxation
and a subgradient method, we receive primal feasible solutions by solving the restricted mas-
ter problems and have an exact solution at termination.

In [BJ98] this method was used for the plant location problem with minimum inventory
and the computations showed a significant improvement of the computing time and the lower
bound, compared to the results obtained by using a classical column generation approach
without Lagrangian relaxation. In [DJ07] it was reported that for the capacitated lot sizing
problem the number of iterations for the hybrid column generation algorithm were lower and
more columns were added, while the running time was only about half as long as for the
classical column generation algorithm.

2.4 Tailing-Off Effect and Stabilization

Using column generation has proven itself to be more efficient than solving problems directly
for many applications where a linear program with many variables occurs. However, when
using the classical column generation approach, one can often notice that a good approxi-
mate solution is attained quite fast, but it takes much longer to reach the optimal solution,
as the convergence is very slow towards the end of the procedure. This is known as the
tailing-off effect. A possible cause for this is that the dual bounds in each iteration are not
monotonically decreasing, but rather oscillating. Being able to control the dual bounds in
the column generation procedure seems to be one of the most promising things to do towards
increasing efficiency, see for instance [LD05]. As stated in [BADF04], the tailing-off effect
also appears to be influenced by degenerate solutions in the primal problem. Therefore it

36

is suggested in [Van05] that one should try not to use redundant constraints and equality
constraints whenever possible.

In order to avoid the oscillation of the dual bounds, many stabilization techniques have
been developed. This typically leads to a lower number of total iterations but might result in
more time expensive iterations as the pricing problems often get more difficult. Nevertheless,
from many computational studies it is clear that stabilization can lead to significantly lower
overall running time, see [Lü11].

In [Van05] stabilization methods are put into four categories: methods which define bounds
on the dual prices, penalize the deviation from some stability center, smooth dual prices, or
work with interior dual solutions. These methods can also be combined. We now want to
look at some stabilization techniques. Note that this is not an exhaustive list of stabilization
techniques.

2.4.1 Penalizing Deviation from a Stability Center

As the dual solutions of the restricted master problems are not monotonically increasing
during the column generation procedure, the current dual solution might not yield the best
bound for the primal optimal solution. Taking the maximum over all previous dual solutions
of the restricted master problem would give the best lower bound. After the l-th iteration
of the column generation procedure this bound is given by û = argmaxk∈{1,...,l} L(uk) and

is called the stability center, where uk is the optimal solution of the dual restricted master
problem in iteration k. As the oscillation of the lower bounds is considered a major issue
regarding the speed of the convergence, one idea is to favor solutions where the new dual
solution is closer to the best dual solution found so far, thus penalizing the deviation from
the stability center.

We want to discuss such penalization methods as in [Bri+08], [Bri+05] and [BADF04].
Here the stabilization is done via a stabilization function S : Rm → R≥0 with 0 being
a minimizer of S. Then, instead of solving the Lagrangian dual of the restricted master
problem (2.7) in every iteration to find a new column, we solve the stabilized Lagrangian
dual of the restricted master problem

max
u≥0

LRMP (u)− S(u− û), (2.35)

where û is the current stability center. This is supposed to favor solutions close to the
stability center. Further, strategies to update the stabilization function during the algorithm
can be included, for instance by changing the parameters of the stabilization function.

A generic stabilization method of this type works as in Algorithm 4.

For S(u) = 0 for all u, and minj∈J\J ′{cj − ukᵀaj} ≥ 0 as a stopping criterion, this
coincides with the cutting plane algorithm for the dual of the master problem.

37

Algorithm 4 Stabilized Column Generation by Penalizing Deviation from a Stability Center

Input feasible master problem
Output approximations of the primal and dual solution of the master problem

1: Start with some first columns J ′. And initialize û by a heuristic or by û = 0. Set k = 1.
2: Solve the stabilized Lagrangian dual of the restricted master problem (2.35), yielding a

minimizer uk.
3: Compute new column jk+1 = argminj∈J\J ′{cj − ukᵀaj}.
4: if stopping criterion not fulfilled then
5: J ′ = J ′ ∪ {jk+1}
6: if L(uk) > L(û) then
7: Set û = uk.
8: end if
9: Update S.

10: k = k + 1
11: go to 2
12: else Compute approximate primal solution for the master problem x̂, return (x̂,uk)
13: end if

Note that one could also choose to only update the center of stability, if L(u) > L(û) + ε
for a suitably chosen ε in order to avoid changing the stabilized dual restricted master prob-
lem too often.

As for the computation of an approximation x̂ for the primal optimal solution of the
master problem, we want to consider some kind of dual of Problem (2.35) which is similar
to the primal master problem. For this we reformulate the stabilized Lagrangian dual of the
restricted master problem (2.35) as follows.

max
u ≥ 0

LRMP (u)− S(v)

s.t. v = u− û,
(2.36)

The corresponding Lagrangian dual is then

min
g

max
u≥0
{LRMP (u)− S(v) + gᵀ(v − u+ û)}. (2.37)

After some reformulation this turns out to be the same as the so called Fenchel dual.

min
(x, g)

c̃ᵀx+ ûᵀg + S∗(g)

s.t. Ãx ≥ b− g,
(2.38)

where S∗(g) := maxv(gᵀv−S(v)) and c̃ and Ã consist of the entries and columns of c and
A corresponding to J ′.

Then the following theorem is proven in [Bri+08] and [Bri+05].

38

Theorem 2.4.1. Let S be a convex function and uk an optimal solution of the stabilized
dual restricted master problem (2.35) such that S only takes finite values in a neighborhood
of u− û. Then there exist a minimizer x̂ of LRMP (uk), and a subgradient ĝ of S at u− û,
such that complementary slackness w.r.t. the Fenchel dual is satisfied, i.e. Ãx̂− b+ ĝ ≥ 0,
uk ≥ 0 and (Ãx̂ − b + ĝ)ᵀuk = 0. Then (x̂, ĝ) are the optimal solutions for the Fenchel
dual (2.38). Furthermore, x̂ is an optimal solution of the restricted master problem if ĝ = 0
and an optimal solution of the master problem if cᵀx̂ = L(û)

To compute x̂ one can for instance solve the corresponding Fenchel dual.
As for the stopping criterion, this theorem tells us that we want ĝ ≤ 0 in order to have x̂

feasible for the restricted master problem and we want cᵀx̂ = L(û) for x̂ to be an optimal
primal solution of the master problem. When applying these stopping criteria in practice, we
allow some small deviation.

The question under which conditions this procedure converges remains open. There are
some convergence results for certain specific stabilization functions. For example, in [Fra02]
the convergence is proven if certain conditions on the function to be minimized and the
stabilizing function are fulfilled. In [BADF04] some less general conditions are given, which
suffice for the convergence of the procedure to optimal primal and dual solutions of the
master problem. Among other possibilities, one of the following conditions suffices.

� S is differentiable at 0

� S(0) = 0, S is convex, non-negative and its level sets are convex and full dimensional

� S is strictly convex at 0

� S is ”steep enough” to ensure that the optimal solution of Problem (2.35) is always
finite

Algorithm 4 can be used for various stability functions. We now want to look at some
common stabilization functions.

Example (Boxstep method). For instance we can force the next dual solution to have a
distance of at most ε from the stability center û by choosing S to be the indicator function
S(v) = 0, if |vi| ≤ ε for every component i of v and S(v) = ∞ otherwise. Thus this is
actually a method where we put bounds on dual prices. Of course one needs to carefully
choose ε, as a too small epsilon keeps us from finding a good next solution, while a too large
ε does not stabilize much.

The stabilized restricted master problem is then

max{LRMP (u) : ||u− û||∞ ≤ ε,u ≥ 0}.

And we have S∗(g) = ε ||g||1 , which gives the Fenchel dual.

min
(x, g)

c̃ᵀx+ ûᵀg + ε ||g||1

s.t. Ãx ≥ b− g
(2.39)

39

Other possible choices for S include piecewise linear functions which are close to a quadratic
stabilization function S, or a quadratic stabilization function.

Example (Bundle method). When taking the Euclidean distance to the stability center as
penalization, this stabilization method is called bundle method. We take S(v) = 1

2t ||v||
2,

where t is a constant which can be chosen such that the trade-off between staying close to
the stability center and finding an actual maximum of the dual restricted master problem is
dealt with well and can be changed in each iteration.

The stabilized restricted master problem is then

max
u≥0
{LRMP (u) +

1

2t
||u− û||2}.

And we have S∗(g) = t
2 ||g||

2 , which gives the Fenchel dual

min
(x, g)

c̃ᵀx+ ûᵀg +
t

2
||g||2

s.t. Ãx ≥ b− g,
(2.40)

In [BADF04] computational experiments on the multiple depot vehicle routing problem
and the simultaneous vehicle and crew scheduling problem show that the bundle method
performs better than classical column generation. In [Bri+08] and [Bri+05] the bundle
method is computationally compared to classical column generation, in this case performed
as a cutting plane method on the dual, on five different problems, namely the cutting stock
problem, the vertex coloring problem, the capacitated vehicle routing problem, the multi-
item lot sizing problem and the traveling salesman problem. The authors report that the
number of iterations is often similar, but when the number of rows also gets large the classical
column generation procedure sometimes takes far more iterations than the bundle method.
Furthermore, the authors also report that the time needed to solve the pricing problem is
indeed sometimes longer for the bundle method but suggest that a warm start might help.
The authors state that a main downside of the bundle method is the need to exactly solve
the pricing problem in every step. All in all, it is not always clear which method is better.
However, if there are developments in quadratic optimization, this could improve the running
time of the bundle method significantly.

2.4.2 Smoothing Dual Prices

A disadvantage of penalizing the deviation from the stability center in the way described
above is that the pricing problem can get more difficult. Further, we need to choose several
parameters, e.g. parameters for the stabilization function and for the update of the stabil-
ity center. Also we need to decide when we want to change these parameters during the
procedure. To overcome these downsides we now want to discover a stabilization method
described in [Pes+08] and [Pes+10] which still solves the pricing problem with dual variables

40

close to a stability center.

Instead of penalizing dual solutions far from the stability center by adding a stabilization
function to the dual restricted master problem, the ordinary restricted master problem is
solved, but the pricing problem in iteration k is performed with a convex combination ukS
of the optimal dual solution of the restricted master problem uk and a center of stability û,
i.e. ukS = αuk + (1 − α)û for some α ∈ (0, 1). Here we use û = argmaxk∈{1,...,l} L(ukS),
i.e. our center of stability is the best Lagrangian lower bound obtained from the convex
combinations so far.

Algorithm 5 Stabilized Column Generation by Smoothing Dual Prices

Input feasible master problem, ε ∈ R+

Output primal and dual solution of the master problem

1: Start with some first columns J ′ such that the restricted master problem is feasible. And
initialize û by a heuristic or by û = 0. Choose ε small enough. Set k = 1.

2: Solve the restricted master problem (2.2), yielding a primal optimal solution xk with
optimal objective value Zk and a dual optimal solution uk.

3: if Zk − L(û) > ε then
4: ukS = αuk + (1− α)û

5: Compute jk+1 = argminj∈J\J ′{cj − ukᵀS aj}.
6: if {cjk+1 − ukᵀajk+1} < 0 then

7: J ′ = J ′ ∪ {jk+1}
8: end if
9: if L(ukS) > L(û) then

10: Set û = ukS .
11: end if
12: k = k + 1
13: go to 2
14: end if
15: return (xk,uk)

Theorem 2.4.2. Algorithm 5 terminates after a finite number of iterations with an optimal
primal and dual solution for the master problem, provided that we choose ε small enough.

Proof. As the total number of columns of the master problem |J | is finite, we can only have
a finite number of iterations where we add a new column to the restricted master problem.
We will show that if no new column is added to the restricted master problem, the gap
Zk − L(û) <∞ will get smaller by at least a factor of (1− α)−1. As the algorithm termi-
nates when this gap becomes less than ε, this means that the algorithm terminates after a
finite number of iterations.

Suppose that no new column is added in iteration k, i.e. {cjk+1 −ukajk+1} ≥ 0. Denote

by Lk(u) the Lagrangian subproblem of the restricted master problem at iteration k and

41

by Lk+(u) the Lagrangian subproblem of the restricted master problem at iteration k where
we additionally dualize the constraint corresponding to jk+1. Assume to the contrary, that
L(ukS) < L(û) + α(Zk − L(û)). Observe that by the fact that the Lagrangian function is
concave and the definition of ukS , it holds that

αLk+(uk) + (1− α)Lk+(û) ≤ Lk+(αuk + (1− α)û) = Lk+(ukS).

Furthermore, we have

Lk+(ukS) = L(ukS) < L(û) + α(Zk − L(û)) = αZk + (1− α)L(û)

due to our assumption. Observe that Zk = Lk(uk) due to strong duality. Moreover,
L(û) ≤ Lk+(û), as we have less restrictions in the restricted master problem than in the
master problem. Thus, it follows that

αZk + (1− α)L(û) ≤ αLk(uk) + (1− α)Lk+(û).

All in all, this yields

αLk+(uk) + (1− α)Lk+(û) < αLk(uk) + (1− α)Lk+(û),

which implies
Lk+(uk) < Lk(uk).

However, this is not possible, as (cjk+1 − ukᵀajk+1) ≥ 0. Thus our assumption must have

been wrong and it holds that L(ukS) ≥ L(û) +α(Zk−L(û)). In particular, this means that
L(ukS) > L(û) and therefore our center of stability will be updated to ukS . The inequality
also implies that Zk−L(ukS) ≤ Zk− (L(û) +α(Zk−L(û))) = (Zk−L(û))(1−α), which
means that the gap between the optimal solution of the restricted master problem and the
Lagrangian function at the stability center is indeed getting smaller by a factor of at least
(1− α)−1.

It remains to prove that it is possible to choose ε small enough so as to get optimal primal
and dual solutions of the master problem at termination.

Let x∗ be an optimal solution of the master problem. Notice that there are only finitely
many basic feasible solutions. Therefore, there is a minimal difference between the objective
value of the master problem corresponding to x∗ and the objective value corresponding to
any non-optimal basic feasible solution of the master problem, i.e. min{||cᵀx∗ − cᵀx|| :
x is a basic solution of the master problem, cᵀx 6= cᵀx∗} > 0. Here ||.|| is the Euclidean
norm and c = (c1, ..., cn) comes from the objective function of the master problem. Hence
we can choose ε such that

0 < ε < min{||cᵀx∗ − cᵀx|| : x is a basic solution of the master problem, cᵀx 6= cᵀx∗}.

Then, at termination Zk must be the optimal objective value of the master problem, as
Zk ≥ Z∗ ≥ L(û) and Zk − L(û) ≤ ε at termination, but any non-optimal basic feasible
solution would have Zk − Z∗ > ε. Hence, also xk and uk must be the optimal primal and
dual solution to the master problem.

42

In [Pes+08] and [Pes+10] this method is computationally compared to the classical column
generation approach for random instances of single machine scheduling problems of different
sizes. The results show that the number of iterations and the overall running time of the
stabilized procedure is greatly reduced by an average factor of about 6 for instances with 40
jobs and an average factor of about 11 for instances with 50 jobs.

2.4.3 Interior Point Stabilization

Another possibility of stabilization is to use interior dual solutions of the restricted master
problem instead of extreme dual solutions.

One such method is the analytic center cutting plane method (ACCPM), as in [GV02]
and [BVS07]. In the ACCPM we search for an optimal solution of the dual master problem
in a certain polytope, which we call the localization L, by iteratively computing the analytic
center of the polytope and finding a cutting plane for this analytic center. As we use some
kind of center of the polytope to cut off the polytope in every iteration, the hope is that we
cut off a rather large part of the polytope in every iteration.

In the context of column generation, the initial polytope consists of some of the constraints
of the master problem and a lower bound lb on the solution of the dual master problem.
Furthermore, we search for a cutting plane among the constraints of the dual master problem
and if no such constraint is violated, we know that the current analytic center is feasible
for the dual master problem and have thus a new lower bound on the solution, which gives
again a cutting plane for the localization polytope.

The analytic center of a polytope given by the inequalities aᵀix ≤ bi for i ∈ {1, ...,m} is de-
fined as the minimizer argminx{−

∑m
i=1 log(bi−aᵀix)}. Notice, that the domain of the func-

tion −
∑m

i=1 log(bi−aᵀix) is precisely the set {x : aᵀix ≤ bi, ∀i ∈ {1, ...,m}}. When an in-
equality aᵀi0x ≤ bi0 is added to the polytope, the function in the argmin above can be updated
the by adding − log(bi0−aᵀi0x). For the localization L = {u : aᵀju ≤ cj ,∀j ∈ J ′, b

ᵀu ≥ lb},
where the notation is as in Problem (2.1), this means that the analytic center is given by

argminu{−
∑|J ′|

i=1 log(ci − aᵀju)− log(bᵀu− lb)}.

The analytic center cutting plane algorithm can then be performed as in Algorithm 6.
As for the computation of the (approximate) stability center of the localization, one pos-

sibility would be to first find a point in the domain {x : aᵀix ≤ bi, ∀i ∈ {1, ..., n}} of the
function and then use Newton method to minimize −

∑n
i=1 log(bi − aᵀix), as this function

is convex, and get an approximate analytic center.

In [GV02] it is shown that ACCPM converges even for approximate solutions of the sta-
bility center. Furthermore, the authors state that the advantages of ACCPM rely on its
applicability to a large variety of problems. Moreover, the performance is not conditioned
by a very careful choice of parameters and it does not suffer when dealing with degenerate
cases. However, the computation of the stability center in every iteration is time expensive

43

and ACCPM takes rather long to converge to an optimal solution.

We have presented here some of the main concepts of stabilization. However, there are
many more stabilization techniques and combinations of them which have also shown to be
useful computationally. It would be highly desirable to have a comparison between the various
stabilization methods indicating which methods perform better under which conditions.

Algorithm 6 Analytic Center Cutting Plane Method for Column Generation

Input feasible dual master problem
Output approximation of optimal solution of the dual master problem

1: Find a lower bound lb of the objective value of the dual master problem.
2: Choose small J ′ such that the constraints form a polytope together with the lower bound.
3: Build localization L. Compute upper bound ub of the objective value of the dual master

problem.
4: (Approximately) compute the stability center uST of the localization L.
5: if there exists a constraint in J \ J ′ which is violated then
6: add one or more violated constraints to J ′.
7: Update localization L.
8: Update upper bound ub.
9: if ub− lb < ε then go to 18

10: end if
11: go to 4
12: else
13: if bᵀuST > lb then
14: update lower bound lb and localization L.
15: if ub− lb < ε then go to 18
16: end if
17: go to 4
18: end if
19: end if
20: return uST

44

3 Branch-and-Price

3.1 Introduction to Branch-and-Price

So far, we have seen how to solve linear programs by using column generation. However, a
great part of the usefulness of column generation comes from applying it in the process of
solving integer linear programs. To be more precise, we can use column generation to solve
the linear relaxation of an integer linear program in every node of the branch-and-bound tree
of a branch and bound procedure. This approach is called branch-and-price. We are now
going to introduce this method as in [LD05], [VW10] and [BS06].

We want to find the optimal solution of an integer problem with compact form (2.10).
Before applying branch-and-price we make use of a Dantzig-Wolfe reformulation, such as the
convexification (2.11) or the discretization (2.18) to receive an extensive formulation. Then
we set up a branch-and-bound procedure. At the beginning of branch-and-price we have
the root node of the branch-and-bound tree. Here we can get an initial global upper bound
on the optimal objective value by finding a feasible solution for the compact or extensive
formulation by using some heuristic. Then we solve the linear relaxation of the extensive
formulation with column generation. The linear relaxation of the extensive formulation is the
master problem of the root node. This yields a lower bound on the optimal objective value
of the original problem. If this solution of the master problem corresponds to an integer so-
lution of the compact formulation of the problem we have already found an optimal solution.
Otherwise we branch, i.e. we create at least two child vertices in the branch-and-bound tree.
Each new vertex is associated with its own master problem which is the master problem of its
parent with some additional constraints. These constraints need to be chosen in a way that
ensures that the current solution of the linear relaxation does not come up again. Also, we
make sure that every feasible integer solution of the problem of the parent node corresponds
to a feasible solution of one of the problems of a child vertex.

Then we go to a vertex in the branch-and-bound tree which we have not yet dealt with
and solve the corresponding master problem using column generation. For the initial set
of columns for the restricted master problem we take the set of columns which led to the
solution of the master problem of the parent node. If this does not make the restricted
master problem of the current node feasible we try to add more columns such that it gets
feasible. When this is not possible, we have finished dealing with this vertex. If the solution
of the current master problem corresponds to an integer solution of the original problem, we
compare the objective value of this current integer solution with the current upper bound
and update the upper bound if it is thereby improved. Otherwise, this gives us a lower bound
on the objective value that could come from this branch of the tree, which we compare to

45

the global upper bound. If this lower bound is higher than the global upper bound, we know
that the optimal integer solution of the original problem cannot be found in this branch and
we can hence discard it. If this is not the case, we want to search this branch further, which
we do by branching again, i.e. creating new vertices in the tree which we need to deal with
at some later point in the branch-and-price procedure.

Then we move on to the next vertex in the tree which was not yet treated. After handling
all vertices of the tree, we can be certain that the integer solution of the original problem
which lead to the global upper bound is indeed an optimal solution.

All in all, the branch-and-price procedure looks as in algorithm 7.

Algorithm 7 Branch-and-Price

Input compact and extensive formulation of an integer linear program
Output an optimal solution x∗ of the integer linear program and its objective value UB

1: Set global upper bound UB = ∞, or initialize the upper bound by the objective value
of some heuristic solution of the integer linear program and also initialize x∗ to that
solution.

2: Initialize the branch-and-bound tree BT by one undiscovered root node to which the
linear relaxation of the extensive formulation of the integer linear program is assigned as
a problem.

3: while there exists an undiscovered vertex in BT do
4: Choose an undiscovered vertex and mark it as discovered.
5: Solve the problem assigned to the chosen vertex using column generation, yielding

a solution λ with objective value v.
6: if v < UB then
7: if λ corresponds to an integer solution x of the original problem then
8: Set UB = v and x∗ = x.
9: else branch, i.e. add at least two child nodes to the current vertex and assign to

them the problems obtained from the problem assigned to the current vertex
with additional constraints. Here, the additional constraints need to be such
that λ is not feasible for these problems and all feasible integer solutions of
the problem assigned to the current vertex are feasible for at least one of the
problems assigned to the child nodes. Mark the new vertices as undiscovered.

10: end if
11: end if
12: end while
13: return (x∗, UB)

We will now see, that it is especially important how we choose to perform the branching
and how we carry out column generation in order to perform branch-and-price meaningfully,
see [VW10].

46

3.2 Branching Strategies

The branching process must be such that the following properties are fulfilled, see [LD05].

1. the fractional solution which led to branching is not present in any of the new problems,

2. all integer solutions appear in at least one of the new problems,

3. the branch-and-price algorithm terminates in finite time.

Furthermore, we aim for the branching to

4. partition the solution space,

5. have branches of roughly equal size,

6. maintain the structure of the pricing problem.

In particular, 5 means that the solution space of the subproblems assigned to the new
nodes have almost equal size and we therefore hope that the branch-and-bound tree will be
balanced. With these guiding principles for branching, we now look at specific branching
strategies, as in [DL11], [VW10] and [Gam10].

3.2.1 Branching on the Variables of the Extended Formulation

As we perform column generation for the linear relaxation of the extended formulation of a
problem it is a somewhat natural idea to branch directly on the variables in the extended
formulation. However, when we are given a solution λv of the current node v it is not
always straightforward to see whether this corresponds to an integral solution of the original
formulation of the problem. For instance, when the extended formulation resulted from a
convexification of some compact formulation it can happen that λv is integral while the
corresponding solution of the original problem is not and vice versa. Thus, we cannot branch
depending only on the integrality of λv in such cases. Nevertheless, there are cases where
we have a direct correspondence between integral solutions of the extended formulation of
the problem and the original formulation. For example when Dantzig-Wolfe discretization
was used to get the extended formulation. We now consider this case.

Suppose we have a fractional solution λv of the extended formulation of the master prob-
lem at the current node v. A first branching strategy could be to find an index s with λvs
fractional and enforce λs ≤ bλvsc in one child node and λs ≥ dλvse in the other child node
for a new solution λ.

This is a valid branching strategy. However, it can lead to very unbalanced branching
trees as the restriction λs ≤ dλvse is usually far less restrictive than λs ≥ dλvse, because most
variables λs will be zero in an optimal solution. Furthermore, when we add the restriction
λs ≤ bλvsc to the master problem, the corresponding column as might be a solution of the
pricing problem and can be added again to the master problem. Thus, in order to enforce this

47

restriction we need to exclude this solution from the pricing problem. Adding this restriction
to the pricing problem might destroy the structure of it. This can significantly increase the
running time needed to solve the pricing problem, see [DL11] and [VW10].

3.2.2 Branching on the Variables of the Compact Formulation

In particular in the case where integrality on the variables of the extended formulation does
not correspond to the same as integrality of the solution of the compact formulation, we
can make the branching decisions based on the variables of the compact formulation of the
problem.

Of course, we need a compact formulation for our problem in order to use this form of
branching. In [Vil+05] it is shown that given an extended formulation of a problem it is
possible to construct a compact formulation provided that the extensive formulation satisfies
some rather weak conditions.

For the remainder of this section we use the notation from Section 2.2.3. When we have a
solution λv of the current extended formulation (2.19) which comes from some compact for-
mulation (2.10), this corresponds to a solution xv =

∑
g∈GA2 gλ

v
g of the compact formulation

of the problem. If xv is fractional there exists and index i with xvi =
∑

g∈GA2 giλ
v
g /∈ Z≥0.

Then we can branch by adding one child node with xi ≤ bxvi c as an additional restriction
and another child node with xi ≥ dxvi e. There are two main possibilities how this can be
enforced during the column generation procedure of these nodes. We now consider how to
enforce xi ≥ dxvi e, the constraint xi ≤ bxvi c can be dealt with analogously.

Enforcing Branching using Constraints in the Master Problem

Consider adding
∑

g∈GA2 giλg ≥ dxvi e to the master problem. This additional restriction
corresponds to a new dual variable µ which needs to be included in the pricing problem.
Suppose that the current pricing problem is min{cᵀg−uvᵀA1g : g ∈ GA2}, where uv is the
optimal dual solution of the current restricted master problem. Then the pricing problem of
a new node is min{cᵀg− ũᵀA1g− µ̃gi : g ∈ GA2}. Here (ũ, µ̃) is the optimal dual solution
of the corresponding new restricted master problem, where µ̃ corresponds to the newly added
constraint. As only the objective function of the pricing problem changes, the structure of the
pricing problem is not affected. Hence, in most cases we can still solve the pricing problem
using the same methods as before the branching, e.g. many combinatorial algorithms still
work. When the extended formulation comes from a Dantzig-Wolfe convexification, the new
lower bound for the new node is given as min{cᵀx : A1x ≥ b1, xi ≥ dxvi e,x ∈ conv{x ∈
Zk : A2x ≥ b2}}.

Enforcing Branching in the Generating Columns

Assume that the extended formulation comes from a Dantzig-Wolfe convexification or dis-
cretization. Then we can enforce the branching constraint

∑
p∈P xp,iλp+

∑
r∈R vr,iλr ≥ dxvi e

48

by allowing only generators which satisfy this constraint. Here xp,i is the i-th component
of the vector xp for all p ∈ P and vr,i is the i-th component of the vector vr for all
r ∈ R. This means that all points p ∈ P must satisfy the constraint xp,i ≥ dxvi e and all
rays r ∈ R must fulfill vr,i ≥ 0. Thus the rays are not affected, as vr ≥ 0 for all rays
r. Due to the convexity constraint of the points, the solution of the master problem must
then also satisfy

∑
p∈P xp,iλp +

∑
r∈R vr,iλr ≥ dxvi e. We can make sure that all points

and rays of the restricted master problem fulfill the branching constraint by taking precisely
the points and rays of the restricted master problem of the parent node which satisfy the
branching constraint into the master problem. This can be done by setting all variables
corresponding to points and rays of the parent node which do not fulfill the branching con-
straint to zero. In order to enforce this we call the set of all such points P̃ and the set of
all such rays R̃ and add

∑
s∈P̃∪R̃ λs = 0 to the restricted master problem. If this makes

the restricted master problem infeasible, we need to add more columns which fulfill the con-
straint prior to starting column generation. Furthermore, we need to make sure that new
columns added to the restricted master problem also satisfy the branching constraint. For
this, we add the constraint xi ≥ dxvi e to the pricing problem. Hence, the pricing problem
becomes min{cᵀx − uvᵀA1x − uv0 : x ∈ Zk≥0 : A2x ≥ b2, xi ≥ dxvi e}, where (uv, uv0) is
the optimal solution of the new dual master problem. However, as we add a restriction to
the pricing problem, we might not be able to use the structure of the problem to solve it
anymore. Furthermore, the points P and the rays R need to be changed such that they
represent the polyhedron conv{x ∈ Zk≥0 : A2x ≥ b2, xi ≥ dxvi e}. When the extended
formulation comes from a Dantzig-Wolfe convexification, the lower bound for this node is
min{cᵀx : A1x ≥ b1,x ∈ conv{x ∈ Zk : A2x ≥ b2, xi ≥ dxvi e}}.

3.2.3 Branching on Aggregated Variables

When we have multiple identical blocks which can be aggregated in the compact formulation
of the problem, we have seen how the Dantzig-Wolfe reformulation can reduce the symmetry
of the problem. However, when we branch on one of the variables corresponding to one of
the identical blocks in the compact formulation, this changes the block in the master problem
or the corresponding pricing problem. Thus, the blocks are no longer identical. However, as
the blocks are identical it is likely to happen that the restrictions on the identical blocks are
just permuted on other branches. Hence, the symmetry of the problem is no longer dealt with.

When we are in the case where the integrality of the compact formulation of the problem
is equivalent to the integrality of the extended formulation of the problem, we can branch on
the aggregated variables in Problem (2.21). This reduces the symmetry. However, the inte-
grality of the aggregated variables does not imply the integrality of the individual variables
of the extended formulation. Nevertheless, we can still apply this branching method until all
aggregated variables are integral and use other branching strategies afterwards.

The branching on aggregated variables can be applied by enforcing the constraints
∑

j∈S λ
j
g ≥

dλSvg e or
∑

j∈S λ
j
g ≤ bλSvg c to the master problem of the child nodes. This changes the

49

objective function of the pricing problem. Here the notation is as in Section 2.2.4 and λSvg
is the sum of the aggregated variables of blocks corresponding to S in an optimal solution
of the current master problem.

3.2.4 Ryan and Forster branching

Let us now look at a branching strategy which works well for problems with a so-called set
partitioning structure, as described in [RF81], [Gam10] and [VW10]. A problem with set
partitioning structure is a problem which can be written in the following form, see [RF81].

min
(x1, ..., x|J |)

∑
j∈J

cjxj

s.t.
∑
j∈J

ajxj =


1
1
...
1

 ,

xj ∈ {0, 1}, ∀j ∈ J,

(3.1)

where cj ∈ R and aj ∈ {0, 1}n for all j ∈ J . There are many known problems with this
structure, including the bin packing problem and the vertex coloring problem, see [Gam10].
For the remainder of this section, let us consider problems with this structure.

The i-th constraint in Problem (3.1) is
∑

j∈J aj,ixj = 1, where aj,i is the i-th component
of the vector aj . Then towards the Ryan and Forster branching strategy, we need to observe
that this constraint is fulfilled by a feasible solution x if and only if xj′ = 1 for precisely one
j′ with aj′,i = 1, and xj = 0 for all other j with aj,i = 1. When we consider two constraints
with index i′ and i′′ there can either

1. be one xj′ = 1 with aj′,i′ = aj′,i′′ = 1,

2. or there are two variables xj′ = xj′′ = 1 such that aj′,i′ = aj′′,i′′ = 1 and aj′,i′′ =
aj′′,i′ = 0.

The Ryan and Forster branching is then based on the fact, that we have a fractional solution
of a set partitioning problem (3.1) if and only if there exist two constraints i, i′ such that∑

j∈J :aj,i=aj,i′=1

xj ∈ (0, 1)

is fractional, see [RF81]. Hence, we can branch on this expression. We enforce∑
j∈J :aj,i=aj,i′=1

xj ≥ 1 (3.2)

on one child node and ∑
j∈J :aj,i=aj,i′=1

xj ≤ 0 (3.3)

50

on the other child node. Thus, we are in the case where there exists one variable xj′ = 1
with aj′,i′ = aj′,i′′ = 1 when we enforce Condition (3.2). And we are in the case where
there are two variables xj′ = xj′′ = 1 such that aj′,i′ = aj′′,i′′ = 1 and aj′,i′′ = aj′′,i′ = 0
when we enforce Condition (3.3). The first condition (3.2) is equivalent to∑

j∈J :aj,i 6=aj,i′

xj ≤ 0, (3.4)

as we have a problem with set partitioning structure and hence aj,i ∈ {0, 1} for all j ∈ J, i ∈
{1, ..., n},

∑
j∈J = aj,ixj =

∑
j∈J = aj,i′xj = 1 and summands where aj,i = aj,i′ = 0

do not contribute to both of these sums. Thus, we can enforce such a branching in the
generating columns by adding the restriction aj,i = aj,i′ and aj,i + aj,i′ ≤ 1 to the pricing
problem for Condition (3.2) and Condition (3.4), respectively, and remove all columns of the
restricted master problem which do not satisfy the corresponding restrictions.

The main advantages of this branching method are, that it can handle Dantzig-Wolfe
decompositions coming from multiple identical blocks and it guarantees an integral solution
if no more branching is possible. The main disadvantage is that it can only be applied for
problems with a set partitioning structure.

There exist considerably more branching strategies, for instance a rather generic branch-
ing strategy is described in [Van10]. This method can handle Dantzig-Wolfe decompositions
which come from multiple identical blocks without reintroducing symmetry and the subprob-
lem is only modified using bounds on its variables. Nonetheless, it has the disadvantage that
it can be necessary to solve more than one subproblem for each type of identical blocks and
that one node might have more than two children in the branch and bound tree.

3.3 Heuristics for Upper Bound

In [Lü11] it is emphasized that the use of heuristics can significantly improve column gen-
eration and branch-and-price. Heuristics can be used for various purposes in the context
of branch-and-price. For instance, for solving the pricing problem, as this step is typically
expensive. The heuristics for solving the pricing problem are rather problem specific, thus we
will not go into further detail. Another useful application of heuristics in branch-and-price is
in the computation of good global upper bounds. Having a good upper bound is very useful,
as branches of the branch-and-bound tree can be discarded whenever the objective value of
the corresponding master problem is higher than the upper bound.

For all of these heuristics, there is always a trade-off between the time to perform the
heuristics and the quality of the bound. Furthermore, there is no guarantee to find a new or
improve an existing upper bound. In order to mitigate this kind of disadvantages, we might
set some kind of maximum running time or a maximum number of iterations for the heuristic.

51

We will now discuss a selection of the heuristics to get or improve the global upper bound
for branch-and-price as described in [Ber08], [Ach07], [Puc11] and [Ber06].

3.3.1 Rounding Heuristics

At every node of the branch-and-bound tree in the branch-and-price procedure we get a
solution x which is feasible for the linear relaxation of the original problem. If this solution
is integer, it gives us a global upper bound for the problem. However, if it is fractional this is
not the case. An idea to still obtain an upper bound is to round the value of every variable
in the solution such that the new solution becomes integer and stays feasible. This gives a
global upper bound for the original problem. By rounding a variable xj up we mean rounding
it to dxje and by rounding down we mean rounding it to bxjc. There are different methods
to achieve this.

Rounding

One approach is to iteratively round fractional variables and if this leads to a violation of some
constraint try to regain feasibility through rounding other fractional variables accordingly.
More precisely, suppose we have an original problem of the form (2.10) and a fractional
solution x̄. For simplicity we merge the constraints A1x ≥ b1 and A2x ≥ b2 to Ax ≥ b. We
want to round the variables such that only few constraints are violated. Notice that rounding
a variable xi up can only cause violating the constraint Ak,.x ≥ bk if Ak,i is negative. And
rounding down can only cause the violation of this constraint, if Ak,i is positive. Here, Ak,. is
the k-th row of A and Ak,i is the i-th entry of Ak,.. Thus, we want to first pick a fractional
variable x̄i with a highest number of max{|{k : Ak,i < 0}|, |{k : Ak,i > 0}|}. Then we
round this chosen variable in the direction where fewer entries of Ax̄ are decreased. If after
the rounding we are still feasible for Ax ≥ b and still have fractional variables, we repeat
this process. If however, there are violated constraints and fractional variables, we try to
restore the linear programming feasibility by rounding the other fractional variables. In order
to do so we select one violated constraint Ak,.x ≥ bk and search for fractional variables xi
with Ak,i 6= 0 and round such a variable up if Ak,i > 0 and down if Ak,i < 0. If no such
fractional variable exists, we stop the procedure as we cannot restore feasibility. When there
are multiple such variables, we choose to round a variable which makes the fewest entries of
Ax̄ smaller when the rounding is performed. If there are no more fractional variables we have
reached the end of the rounding procedure. When our rounded variables satisfy Ax ≥ b we
have found a feasible solution for the original problem.

Shifting

When we perform the rounding procedure described above and encounter a violated solution
which cannot be restored by rounding the remaining fractional variables, we stop. However,
we could also take variables which are already integer and change them to different integer
values. This procedure is called shifting. Notice that the shifting procedure could cycle,

52

as shifting a variable for one violated constraint might lead to another constraint being
violated and then shifting the variable back restores this second constraint. To prevent this
from happening, we prefer variables which have not been shifted in the other direction yet,
or at least not recently. Furthermore, we count the number of steps where the number of
violated constraints has not reached a new lowest point since the last rounding of a fractional
variable and stop after a certain number is exceeded. Notice that the shifting procedure can
be significantly more expensive than the rounding procedure and should thus be performed
less often.

Relaxation Enforced Neighborhood Search

In [Ber07] the relaxation enforced neighborhood search is described. In this heuristic, we
take a feasible solution x̄ of the linear relaxation of the original problem (2.10) and search
for the best way to round all fractional variables. This is done by creating a subproblem of
the original problem, where we add the restrictions that for every index i, bx̄ic ≤ xi ≤ dx̄ie.
In particular, this includes fixing every variable which is already integral. Hence, our new
problem looks as follows.

min
x

cᵀx

s.t. A1x ≥ b1,
A2x ≥ b2,
x ≥ bx̄c,
x ≤ dx̄e,
x ∈ Zk≥0,

(3.5)

If this new problem (3.5) is not feasible, we stop the heuristic. Otherwise we can solve the
problem and get a solution which is also feasible for the original problem (2.10). Notice that
the solution of Problem (3.5) is the best feasible solution of the original problem which can
be obtained by rounding x̄. However, solving Problem (3.5) can be rather time expensive.
Thus, this heuristic should only be used when we can solve Problem (3.5) in reasonable time,
for instance when many variables are fixed, i.e. were already integral.

3.3.2 Diving Heuristics

The main observation on which diving heuristics build upon is, that we can get a feasible
solution for our original problem (2.10) when we reach a leaf of the branch-and-bound tree.
To get to the first leaf as soon as possible, we could therefore traverse the tree in a depth-first
search order until we reach the first leaf. Furthermore, the main goal of diving heuristics is to
find a feasible solution and not to have a balanced search tree. Thus, a diving heuristic will
typically not use the same branching as during the branch-and-bound procedure, but rather
use a rule which drives the branch to a feasible solution. The branching can be done by
bounding fractional variables of the solution of the linear relaxation of the current problem.
There are different approaches on the selection of the fractional variable to be bounded next.

53

For instance, one can take the fractional variable which is closest to an integer, or with a
lowest non-zero number of min{|{k : Ak,i < 0}|, |{k : Ak,i > 0}|}. In order to prevent too
expensive dives, we keep track of how deep we are in the search tree and stop at a certain
depth.

3.3.3 Feasibility Pump

Classic Feasibility Pump

In [BFL07] and [FGL05] the feasibility pump heuristic for finding a feasible solution for
Problem (2.10) is described. It is based on the fact, that x is feasible for the original
problem if it is both feasible for the linear relaxation of the problem and integral. The
heuristic starts at the solution x̄(0) of the linear relaxation of the original problem. Then
x̄(0) is rounded in every component to the nearest integer to get x̃(0). If x̄(0) = x̃(0), this
must be a solution of the original problem and we stop the procedure. Otherwise, we find
the solution x̄(1) of the linear relaxation of the original problem which is as close to x̃(0)

as possible. Where with ”close” we mean that the sum of the absolute differences of the
variables is small, i.e. we measure the distance between x̃ and x̄ as

∑n
i=1 |x̃i − x̄i|. Then,

x̄(1) is rounded again, which yields x̃(1). If x̄(1) = x̃(1) we have found a feasible solution of
the original problem and stop the procedure. Otherwise we continue to iteratively find the
closest point which is feasible for the linear relaxation and round it. Notice, that every x̄
is feasible for the linear relaxation of the original problem, while every x̃ is integral. When
this method starts to cycle it is possible to change an integer solution to another close-by
integer solution and continue the procedure from there. Also, we want to make sure to set
an upper bound on the number of iterations.

Objective Feasibility Pump

A downside of the classical feasibility pump heuristic is that the objective function is only
taken into account at the initialization. Therefore, in [AB07] a version of the feasibility pump
heuristic is proposed which also considers the objective functions at higher iterations. For
this version, we assume that the objective function is not always 0. The objective feasibility
pump heuristics works similar to the classic feasibility pump heuristic. But, instead of finding
a feasible solution x̄ of the linear relaxation which minimizes

∑n
i=1 |x̃i − x̄i| for the current

integral x̃, we want to find a feasible solution of the linear relaxation which minimizes a
convex combination of this distance and the objective function. More precisely, we want to
minimize (1−α)

∑n
i=1 |x̃i−x̄i|+α(cᵀx̄

√
n/||c||) for some α ∈ [0, 1]. Here,

√
n/||c|| is some

kind of normalization for the objective function with ||.|| being the Euclidean norm. In every
iteration we multiply α by some constant in [0, 1], which stays fixed during the heuristic, to
get our new α. This has the effect, that we put a stronger emphasis on being integral in
every iteration and thus allow for x̄ with a worse objective value. Again, this procedure is
stopped if we find a feasible solution of the original problem or if we reach a certain number
of iterations.

54

3.3.4 Quality of the Heuristics

In [Ber08] computational experiments show that every single heuristic on its own only has
a rather small impact on the running time of branch-and-price. Except, for the objective
feasibility bump heuristic. However, when using multiple different heuristics together, this
reduces the running time significantly. For a more detailed discussion on the advantages and
disadvantages of the individual heuristics, see [Ber06].

3.4 Branch-Price-and-Cut

During a branch-and-bound procedure, instead of branching on a fractional variable, it is
also possible to add a feasible cut every now and then. This is known as branch-and-cut,
see [Elf+01]. When we additionally solve the linear relaxation of the problems assigned to
the nodes of the branch-and-bound tree by using column generation, we call this approach
branch-price-and-cut. In other words, in order to solve the integer linear problem (2.10), we
modify branch-and-price such that whenever we would branch, we decide between adding
cutting planes and branching.

Algorithm 8 represents a generic branch-price-and-cut approach.

Suppose that at a certain node v of the branch-price-and-cut procedure we solve the linear
relaxation of the extended formulation (2.19), which has the compact form (2.10). Let λv

be a solution of the linear relaxation of the extended problem and let xv be a corresponding
feasible solution of the linear relaxation of the compact formulation. If xv is fractional, it is
not yet optimal for the compact formulation. Thus, we need to branch or cut. When adding
cutting planes, we need to enforce them in the new problem. We will now see how to enforce
different types of cutting planes as in [DL11] and [DDS11].

3.4.1 Cuts on the Variables of the Compact Formulation

Suppose that we find one or more cutting planes of the form A3x ≥ b3 separating xv from
the optimal feasible solution of (2.10). This means that we now want to solve the following
problem.

min
x

cᵀx

s.t. A1x ≥ b1,
A2x ≥ b2,
A3x ≥ b3,
x ∈ Zk≥0,

(3.6)

Then, similar to enforcing branching decisions on variables of the compact formulation,
we can enforce the cuts either directly in the master problem or by using the generating
columns.

55

Algorithm 8 Branch-Price-and-Cut

Input compact and extensive formulation of an integer linear program
Output an optimal solution x∗ of the integer linear program and its objective value UB

1: Set global upper bound UB = ∞, or initialize the upper bound by the objective value
of some heuristic solution of the integer linear program and also initialize x∗ to that
solution.

2: Initialize the branch-and-bound tree BT by one undiscovered root node to which the
linear relaxation of the extensive formulation of the integer linear program is assigned as
a problem.

3: while there exists an undiscovered vertex in BT do
4: Choose an undiscovered vertex and mark it as discovered.
5: Solve the problem assigned to the chosen vertex using column generation, yielding

a solution λ with objective value v.
6: if v < UB then
7: if λ corresponds to an integer solution x of the original problem then
8: Set UB = v and x∗ = x.
9: else if we want to add cuts then

10: add one or more cutting planes, i.e. add one child node to the current vertex
and assign to it the problem of the current vertex with additional cutting
constraints such that λ is not feasible for the problem assigned to the child
node. Mark the new vertex as undiscovered.

11: else branch, i.e. add at least two child nodes to the current vertex and assign
to them problems obtained from the problem of the current vertex by adding
additional constraints. Here, the additional constraints need to be such that
λ is not feasible for these problems and all feasible integer solutions of the
problem assigned to the current vertex are feasible for at least one of the
problems assigned to the child nodes. Mark the new vertices as undiscovered.

12: end if
13: end if
14: end while
15: return (x∗, UB)

56

Enforcing Cuts in the Master Problem

Suppose we want to enforce A3x ≥ b3 in the master problem. Then we add these constraints
to the master problem. The linear relaxation of the following problem yields the new master
problem.

min
λ

∑
g∈GA2

cᵀgλg

s.t.
∑

g∈GA2

A1gλg ≥ b1,

∑
g∈GA2

A3gλg ≥ b3,

λ ∈WA2 .

(3.7)

However, this yields additional dual variables and thus changes the pricing problem to
min{cᵀg − uᵀA1g − µᵀA3g : g ∈ GA2}. Here (u,µ) is the optimal dual solution of
the corresponding new restricted master problem, where µ corresponds to the newly added
constraints.

Enforcing Cuts using Generating Columns

Enforcing A3x ≥ b3 by using the generating columns looks as follows. We consider the case,
where the extended formulation comes from a Dantzig-Wolfe convexification or discretization.
The constraint is then

∑
p∈P A3xpλp +

∑
r∈RA3vrλr ≥ b3. We want to enforce this

constraint by allowing only columns which satisfy this constraint. This is done by updating
the points P and the rays R such that they represent the polyhedron conv{x ∈ Zk≥0 : A2x ≥
b2, A3x ≥ b3}. Furthermore, we only keep points p of the restricted master problem of the
parent node which satisfy A3xp ≥ b3 and the rays r which satisfy A3vr ≥ 0. The pricing
problem changes to min{cᵀx − uvᵀA1x − uv0 : x ∈ Zk≥0 : A2x ≥ b2, A3x ≥ b3}, where
(uv, uv0) is the optimal solution of the new dual master problem. This might change the
structure of the pricing problem, but can potentially provide a stronger dual bound.

3.4.2 Cuts on the Variables of the Extended Formulation

It is also possible to have cutting planes involving the variables of the extended formulation.
This might be especially meaningful when we have integrality constraints on the variables in
the extended formulation, for instance in the case of a Dantzig-Wolfe discretization. In the
following we use the notation of Section 2.2.3. Suppose first that we have cutting planes of
the form

∑
g∈GA2 A3gλg ≥ b3. These constraints correspond to cutting planes A3x ≥ b3

involving variables of the compact formulation and can thus be treated as in Section 3.4.1.
Assume now that we have cutting planes of the form

∑
g∈GA2 ag,3λg ≥ b3, where ag,3 =

57

f(A1g) for some function f . This yields the following new extended formulation.

min
λ

∑
g∈GA2

cᵀgλg

s.t.
∑

g∈GA2

A1gλg ≥ b1,

∑
g∈GA2

ag,3λg ≥ b3,

λ ∈WA2 .

(3.8)

Regarding the pricing problem of this formulation, we need to include the dual variables
corresponding to the new constraints. This yields min{cᵀg − uᵀA1g − µᵀf(A1g) : g ∈
GA2} = min{cᵀg − uᵀA1g − µᵀf : g ∈ GA2 , f = f(A1g)}. Here (u,µ) is the optimal
dual solution of the corresponding new restricted master problem, where µ corresponds to
the newly added constraints. The complexity of the pricing problem depends on the function
f . If f is linear, we are again in the previous case of Section 3.4.1.

We can recreate a new compact formulation that gives us the new extended formulation
after a Dantzig-Wolfe reformulation. To this end we introduce an additional variable f =
f(A1x). However, notice that the function f might not be linear.

min
x

cᵀx

s.t. A1x ≥ b1,
A2x ≥ b2,
f ≥ b3,
f = f(A1x),

x ∈ Zk≥0,

(3.9)

From this new compact formulation we can derive the new extended formulation (3.8) by a
Dantzig-Wolfe reformulation. We apply the Dantzig-Wolfe reformulation to {(x,f) : x ∈
Zk≥0, A2x ≥ b2, f = f(A1x)}. Notice that the condition f = f(A1x) does not affect the

polyhedron {x ∈ Zk≥0 : A2x ≥ b2}, but only defines the value of the new variable f . Thus,
this yields Problem (3.8) as an extended formulation and min{cᵀg − uᵀA1g − µᵀf : g ∈
GA2 , f = f(A1g)} as a pricing problem.

For cuts with coefficients which can be represented as f2(f , A1g) for some function f2,
we apply this procedure again. We can repeat this any finite number of times, see [DDS11].
Such cuts have been successfully used for multiple applications, see for instance [BS06] and
[PPS08].

58

4 The Fair Matching Over Time Problem

In [Lod+22] the fairness over time problem is described and the so-called ambulance allo-
cation problem, a special fairness over time problem, is solved using branch-and-price and
other methods. Using this as a motivation, we want to introduce a new specific fairness over
time problem and solve it with a branch-and-price algorithm. Towards this, we first want to
introduce the concept of fairness over time as in [Lod+22], [LSW23] and [LSW22].

4.1 Fairness Over Time

Suppose that some central decision maker has a set X of options to choose from. Further-
more, there are n stakeholders of this decision, and each of them will receive a certain utility
from each of the options x ∈ X . These utilities can be represented using a utility-function
u : X → Rn, where [u(x)]i represents the utility obtained by the i-th stakeholder when op-
tion x is chosen by the central decision maker. The central decision maker wants to choose
an option such that the utilities obtained by the stakeholders are as fair as possible, where
fairness is defined by an unfairness function.

Definition 4.1.1 (Unfairness Function). An unfairness function is a function Φ : Rn → R≥0
such that

1. Φ(y1, ..., yn) = 0 if and only if y1 = y2 = ... = yn and

2. Φ(y1, ..., yn) = Φ(yπ(1), yπ(2)..., yπ(n)), for all permutations π ∈ Sn
holds.

Example. We can easily check that Φ(y1, ..., yn) = max(y1, ..., yn) − min(y1, ..., yn) is
an unfairness function. First of all, if y1 = ... = yn, we know that max(y1, ..., yn) −
min(y1, ..., yn) = y1 − y1 = 0. Suppose that max(y1, ..., yn) − min(y1, ..., yn) = 0. Then
we have that min(y1, ..., yn) = max(y1, ..., yn) and we already have y1 = ... = yn, as yi ≤
max(y1, ..., yn) and yi ≥ min(y1, ..., yn) for all i ∈ {1, ..., n}. Secondly, max(y1, ..., yn) −
min(y1, ..., yn) is permutation invariant, as the minimum function and the maximum function
are both permutation invariant.

This yields the single round fairness problem.

Definition 4.1.2 (Single Round Fairness Problem). Let X be a set of options, u : X → Rn
a utility function and Φ : Rn → R≥0 an unfairness function. Then the task is to find an
option x ∈ X which minimizes

min
x∈X

Φ([u(x)]1, [u(x)]2, ..., [u(x)]n).

59

Often, such decisions have to be made multiple times. Then, based on these decisions each
stakeholder will receive a respective utility in each round. When T decisions are made, where
the options x(1),x(2), ...,x(T) are chosen, the utilities obtained by the i-th stakeholder are
[u(x(1))]i, [u(x(2))]i, ..., [u(x(T))]i. To get the overall utility obtained by the i-th stakeholder
through T rounds, we need to aggregate these utilities. For instance, we can take the
average of the utilities and have 1

T

∑T
t=1[u(x(t))]i as the aggregated utility obtained by the

i-th stakeholder. Then, we want to find a sequence of options such that the aggregated
utilities obtained by the stakeholders are as fair as possible.

Definition 4.1.3 (Fairness Over Time Problem). Let X be a set of options, u : X → Rn a
utility function, Φ : Rn → R≥0 an unfairness function and T the number of decisions. Then
the task is to find a sequence of options (x(1), ...,x(T)) ∈ X T which minimizes

min
(x(1), ...,x(T))

Φ(y1, ..., yn)

s.t. yi =
1

T

T∑
t=1

[u(x(t))]i, ∀i ∈ {1, ..., n},

x(t) ∈ X , ∀t ∈ {1, ..., T}.

(4.1)

4.2 The Fair Matching Over Time Problem

Imagine having a certain number of agents and the same number of tasks. When an agent
performs one of the tasks, this will have some fixed cost. Searching for an assignment of
all tasks to the agents such that each agent gets exactly one task and such that the total
sum of the costs is minimized is called the assignment problem. However, when the agents
get paid depending on the cost of their tasks or the tasks are funded by different parties it
might be beneficial to choose a fair assignment. In [NBN22a] and [NBN22b] the balanced
assignment problem is considered, in which we aim to find an assignment which minimizes
the difference between the highest cost and the lowest cost associated with an agent-task
pair.

Definition 4.2.1 (Balanced Assignment Problem). Let G = (A∪B,E) be a bipartite graph
with A ∩ B = ∅, E ⊆ {{a, b} : a ∈ A, b ∈ B} and |A| = |B|. Furthermore, let c : E → R
be a cost function on the edges. Then the task is to find an assignment M , i.e. a perfect
matching in G, which minimizes max{c(e) : e ∈M} −min{c(e) : e ∈M}.

In [NBN22a] and [NBN22b] the article [Mar+84] is referenced, where an algorithm which
solves the balanced assignment problem in O(n4) time is described.

Furthermore, [NBN22a] and [NBN22b] show that in the case of non-negative weights it
is possible to find all optimal solutions to the problem of finding a fair trade-off between
the total cost of the assignment and the difference between the highest and lowest cost in
polynomial time.

60

From now on, we will not consider the total cost of the assignment. We want to generalize
the balanced assignment problem to arbitrary undirected graphs. The resulting problem looks
as follows.

Definition 4.2.2 (Fair Matching Problem). Let G = (V,E) be an undirected graph with
weights c : E → R. The task is to find a perfect matching M which minimizes max{c(e) :
e ∈M} −min{c(e) : e ∈M} if such a matching exists.

Definition 4.2.3 (Decision Version of the Fair Matching Problem). Let G = (V,E) be an
undirected graph with weights c : E → R and k a constant. The question is whether there
exists a perfect matching M with max{c(e) : e ∈M} −min{c(e) : e ∈M} ≤ k.

Theorem 4.2.4. The decision version of the fair matching problem can be solved inO(
√
nm2)

time, where |V | = n and |E| = m. In particular, the time complexity is O(n4.5) for dense
graphs with m = O(m2).

Proof. We first sort the edges by their weight and rename them such that c(e1) ≤ c(e2) ≤
... ≤ c(em). Then, we create a graph H = (V,E′), where E′ is the set of all edges which
have weight at most c(e1) + k. Then we compute a maximum cardinality matching. If this
is already a perfect matching we stop. Otherwise, we delete e1 from the graph and add all
edges with weight larger than c(e1) +k and at most c(e2) +k and search again for a perfect
matching. This process is repeated until we have found a perfect matching, or until em was
included in H, but no perfect matching was found in the new graph. Notice that throughout
the whole algorithm, every edge is added and removed at most once to the graph H, as the
edges are sorted. Thus, creating and maintaining the graph H takes at most O(m2) time,
as adding and removing edges can be done in at most O(m) for incidence lists, adjacency
lists or adjacency matrices. Sorting the edges can be done in O(m logm) time. The number
of iterations is at most m and the maximum cardinality matching problem can be solve in
O(
√
nm) time, see [Blu90]. This yields an overall running time of O(

√
nm2).

Now, we want to work towards an over-time version of the fair matching problem. To-
wards doing this, we first want to put this problem in the framework of a single round fairness
problem defined in Section 4.1. In order to do so, we need to identify the utilities obtained
by the stakeholders. Observe that for the balanced assignment problem we want the utilities
to be fair among the agents and the parties funding the tasks. This means, that the utilities
are actually received by the vertices and not by the edges. Consequently, we can define
the utilities of the vertices to be the cost of the incident edges in the matching. This is
well defined, as there is precisely one edge incident to every vertex in a perfect matching.
For the framework of the fairness problems this yields the following. The set of options X
corresponds to the set of perfect matchings in the given graph. We assume for simplicity
that G contains a perfect matching. The utility function u : X → R|V (G)| is given by
[u(M)]v =

∑
e∈M :v∈e c(e) for all perfect matchings M ∈ X and all v ∈ V . And the unfair-

ness function is given as Φ(y1, ..., yn) = max(y1, ..., yn) − min(y1, ..., yn). When we plug
this into the single round fairness problem 4.1.2 we get precisely the fair matching problem
4.2.2.

61

We can now add the time component, which results in the fair matching over time problem.

Definition 4.2.5 (Fair Matching Over Time Problem). Let G = (V,E) be an undirected
graph containing a perfect matching with weights c : E → R and T ∈ Z>0. The task is to
find a sequence of perfect matchings (M (1),M (2), ...,M (T)) that minimizes

max
v∈V

{ 1

T

T∑
t=1

uv(M
(t))

}
−min

v∈V

{ 1

T

T∑
t=1

∑
e∈M(t):v∈e

c(e)
}
.

The fair matching over time problem with the undirected graph G = (V,E) and weights
c : E → R can thus be formulated as follows.

min
(M (1), ...,M (T))

f − g (4.2a)

s.t.
∑
e : v∈e

M (t)
e = 1, ∀v ∈ V, ∀t ∈ {1, ..., T}, (4.2b)

u(t)v =
∑
e : v∈e

c(e)M (t)
e , ∀v ∈ V, ∀t ∈ {1, ..., T}, (4.2c)

yv =
1

T

T∑
t=1

u(t)v , ∀v ∈ V, (4.2d)

f ≥ yv, ∀v ∈ V, (4.2e)

g ≤ yv, ∀v ∈ V, (4.2f)

M (t)
e ∈ {0, 1} (4.2g)

We overload the notation a bit and denote by M (t) = (M
(t)
e)e∈E ∈ {0, 1}|E| the incidence

vector of the matching M (t) for t ∈ {1, ..., T}. Constraints 4.2b together with M
(t)
e being

binary variables make sure that M (t) is a perfect matching for all t, Constraints (4.2c) com-
pute uv(M

(t)) and Constraints (4.2d) compute the average utility gained by the vertices.
Constraints (4.2e) make sure that f is at least as large as the maximum of all yv’s and
Constraints (4.2f) imply that g is at most as large as the minimum. As we minimize over
f − g, this is equivalent to minimizing over maxv∈V {yv} −minv∈V {yv}.

4.3 Solving the Fair Matching Over Time Problem Using
Branch-and-Price

We build a branch-and-price algorithm which solves the fair matching over time problem.

We denote byM(G) := {M : M is a perfect matching in G} the set of all perfect match-
ings in G. We can reduce the symmetry in Problem (4.2a) by counting the number of
occurrences of each M ∈ M(G) in the sequence (M (1),M (2), ...,M (T)). This yields the
following reformulation.

62

min
q

f − g (4.3a)

s.t. yv =
1

T

k∑
j=1

qju
(j)
v , ∀v ∈ V, (4.3b)

T∑
j=1

qj = T, (4.3c)

f ≥ yv, ∀v ∈ V, (4.3d)

g ≤ yv, ∀v ∈ V, (4.3e)

qj ∈ Z≥0, ∀j ∈ {1, ..., k}, (4.3f)

if there are precisely k different perfect matchingsM1, ...,Mk inG, i.e. M(G) = {M1, ...,Mk}
and u

(j)
v = uv(Mj) for j in {1, ..., k}. This means that the variable qj counts the number

of occurrences of the perfect matching Mj , j ∈ {1, ..., k}, in (M (1),M (2), ...,M (T)).

The linear relaxation of Problem (4.3f) is the master problem at the root node of the
branch-and-price tree. When we additionally take just a subset of the perfect matchings
with indices J ′ ⊆ {1, .., k}, this yields a restricted master problem.

min
q

f − g (4.4a)

s.t. yv =
1

T

∑
j∈J ′

qju
(j)
v , ∀v ∈ V, (4.4b)

T∑
j=1

qj = T, (4.4c)

f ≥ yv, ∀v ∈ V, (4.4d)

g ≤ yv, ∀v ∈ V, (4.4e)

qj ≥ 0, ∀j ∈ J ′ (4.4f)

63

The dual of the restricted master problem looks as follows.

max
(α,β,λ, µ)

µT (4.5a)

s.t.
∑
v∈V

αv = 1, (4.5b)∑
v∈V

βv = 1, (4.5c)

λv = βv − αv, ∀v ∈ V, (4.5d)

µ ≤ − 1

T

∑
v∈V

λvu
(j)
v , ∀j ∈ J ′, (4.5e)

αv ≥ 0, ∀v ∈ V, (4.5f)

βv ≥ 0, ∀v ∈ V (4.5g)

Here, we take {αv : v ∈ V }, {βv : v ∈ V }, {λv : v ∈ V } and µ as the dual variables
corresponding to Constraints (4.4d), (4.4e), (4.4b) and (4.4c), respectively.

Let (α∗,β∗,λ∗, µ∗) be an optimal solution of the dual of the restricted master problem.
Then the reduced cost of a perfect matching Mj with j ∈ {1, .., k} is

cj − u∗ᵀaj = 0− (α∗,β∗,λ∗, µ∗)ᵀ(0,0,
1

T
uv1(Mj), ...,

1

T
uvn(Mj), 1)

= − 1

T

∑
v∈V

λ∗vuv(Mj)− µ∗,
(4.6)

where V = {v1, ..., vn} and cj , aj , u
∗ denote the cost coefficient, the column corresponding

to the j-th variable of matching Mj in the master problem ,the optimal solution of the dual
of the restricted master problem, respectively. This leads to the following pricing problem.

min
M perfect matching in G

− 1

T

∑
v∈V

λ∗vuv(M)− µ∗ (4.7)

Notice that µ∗ is a constant. Furthermore,∑
v∈V

λ∗vuv(M) =
∑
v∈V

λ∗v
∑

e∈M : v∈e
c(e) =

∑
{u,v}∈M

c({u, v})(λ∗u + λ∗v),

for every perfect matching M . Hence, the reduced cost of a perfect matching is the weight
of the matching with respect to the weights w({u, v}) = c({u, v})(−λ∗u − λ∗v) divided
by T and reduced by µ∗. Therefore, we can get a matching with minimum reduced cost
by solving a minimum weight perfect matching problem where the weights are defined as
w({u, v}) = c({u, v})(−λ∗u − λ∗v). Then we can get the minimum reduced cost by dividing
the weight of this matching by T and subtracting µ∗. This solves the pricing problem.

64

After solving the current master problem, it can happen that the optimal solution contains
a fractional variable q∗j0 for some j0 in {1, ..., k}. In this case we will need to branch. For
example, we can branch on the variable qj0 and enforce qj0 ≥ dq∗j0e in one child node and
qj0 ≤ bq∗j0c on the other child node. This can be done by adding these restrictions to the
corresponding master problem to generate two new nodes of the branch-and-bound tree. We
consider the node with qj0 ≥ dq∗j0e, the other node works similarly. The new constraint has a
corresponding new dual variable σ and the dual restricted master problem in this node looks
as follows.

max
(α,β,λ, µ, σ)

µT + σdq∗j0e

s.t.
∑
v∈V

αv = 1,∑
v∈V

βv = 1,

λv = βv − αv,

µ ≤ − 1

T

∑
v∈V

λvu
(j)
v , ∀j ∈ J ′ \ {j0},

µ+ σ ≤ − 1

T

∑
v∈V

λvu
(j0)
v ,

αv ≥ 0, ∀v ∈ V,
βv ≥ 0, ∀v ∈ V,
σ ≥ 0

(4.8)

Let (α′,β′,λ′, µ′, σ′) be an optimal dual solution for the dual problem (4.8). Then the
pricing problem changes to the following.

min
M perfect matching in G

− 1

T

∑
v∈V

λ′vuv(M)− µ′ − σ′1{M=Mj0
}, (4.9)

where 1{M=Mj0
} is the indicator function, which attains value 1 if M = Mj0 and is 0 oth-

erwise.

However, we do not want to add another column corresponding to the matching Mj0 to
the restricted master problem. Thus, we search for a column with negative reduced cost
among all other matchings.

min
M perfect matching in G, M 6= Mj0

− 1

T

∑
v∈V

λ′vuv(M)− µ′ (4.10)

In order to enforce that M 6= Mj0 , we can solve the minimum weight perfect matching prob-
lem and if Mj0 is the minimizer we compute the second best matching instead. When we are
further down in the branch-and-bound tree we might need to compare the matching with all

65

the matchings we have branched on so far. In the worst case this might require computing the
K-th best matching, where K is the depth of the search tree of the current node. In [CH87]
it is shown that computing the K best different weighted perfect matchings can be done in
O(n3K) time, if K is a fixed constant. An easier to implement version runs in O(n4K) time.

4.4 Implementation

The branch-and-price algorithm for the fair matching over time problem described above
was implemented using the branch-and-price framework SCIP [Bol+24] with the interface
PySCIPOpt [Mah+16] version 5.1.1 from Python to SCIP version 9.1. The linear relaxations
of the master problems were also solved using SCIP. For an example of how this branch-
and-price framework can be used, see [Pri]. Furthermore, the Python package networkx
[HSS08] version 3.3, which is a Python package for networks and graphs, was used to handle
the weighted undirected graphs and to compute minimal weight matchings with a maximal
number of edges. The K-th best matching algorithm was implemented as the O(n4K) time
algorithm in [CH87]. We now want to consider some computational experiments on this
implementation. In the following part we present the results of the empirical analysis.

4.5 Computational Experiments

4.5.1 Two Very Small Examples

Firstly, we want to take a close look at a small illustrating example and, more precisely,
to the solutions of the fair matching over time problem for these instances. Thus, we now
consider specific instances of the fair matching over time problem. We consider the complete
graph K6 with weights as indicated in Figure 4.1. For the fair matching problem, we see
that the matching which minimizes the unfairness yields an objective value of 1. When we
consider the fair matching over time problem and vary the time horizon, Table 4.1 shows the
optimal objective value and the number of different perfect matchings in an optimal solution.
Notice that both the objective value and the number of different perfect matchings are not
monotonically decreasing or increasing as T grows, but they are strongly correlated with T .
However, observe that there is always an upper bound for the number of different matchings
and thus the correlation between the number of different perfect matchings in an optimal
solution and T is only present for reasonably large T . Furthermore, there might be a finite
time horizon for which the optimal objective value among all time horizons can be reached,
see [LSW23] and [LSW22]. Thus, also this correlation holds only for moderately large T .

Let us now consider in more depth an optimal solution of the fair matching over time
problem with this graph and time horizon T = 10. The solution consists of the matchings
in Figure 4.2, where the perfect matchings described in (a), (b) and (c) occur once and
the perfect matching described in (d) is chosen 7 times. These perfect matchings yield the

66

Figure 4.1: weighted graph K6

Table 4.1: Objective value and number of different perfect matchings appearing in the opti-
mal solution of the fair matching over time problem with instance including K6,
weights as in Figure 4.1 and T = 1 to T = 15.

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

objective
value

1 1 1 0.75 0.8 0.5 0.43 0.38 0.33 0.2 0.27 0.25 0.23 0.21 0.2

different
matchings

1 1 2 3 3 2 2 2 4 4 4 5 4 4 4

following utilities for the vertices (8.7, 8.8, 8.7, 8.6, 8.6, 8.8). Hence, the optimal objective
value is 0.2. The weighted average weight of the matchings in the optimal solution is 26.1,
i.e. when we sum the weight of each matching times the number of occurrences in the solu-
tion and divide by the time horizon, we get 26.1. For comparison, the matching of minimal
weight in this graph has weight 12. Notice that there are 1

k!
(2k)!
2k+1 perfect matchings in the

complete graph K2k. For k = 3 we have 15 perfect matchings in K6.

Next, we want to closely consider the solving process when the branch-and-price algorithm
for the fair matching over time problem described above is used. More precisely, we want
to look at the number of nodes of the branch-and-bound tree and the number of matchings
generated during the branch-and-price process. To put this into perspective, we also look at
the number of different matchings which are used in the optimal solution found and focus on

67

(a) This perfect matching occurs once. (b) This perfect matching occurs once.

(c) This perfect matching occurs once. (d) This perfect matching occurs seven times.

Figure 4.2: Perfect matchings of K6 in the solution of the fair matching over time problem
for T = 10.

68

graphs with a known number of perfect matchings. As mentioned above, the total number
of perfect matchings in complete graphs can be easily calculated. This also holds for the
complete bipartite graphs Kl,l, which has l! perfect matchings. Also, we want the number of
vertices to be such that most instances can be solved to optimality, while not being trivial.
Therefore, we consider instances involving the complete graph K6 and the complete bipar-
tite graph K4,4. We generate 10 instances of K6 and K4,4 with random weights which are
i.i.d. uniformly distributed on {1, ..., 100}. The results of the branch-and-price algorithm
applied to these instances are summarized in Table 4.2 and Table 4.3. In the first column,
we enumerate the generated instances. In the second column the number of nodes of the
branch-and-bound tree at the end of the branch-and-price procedure is listed. In the third col-
umn we count the number of different perfect matchings which occur in an optimal solution
of the fair matching over time problem. In the fourth column we have the number of perfect
matchings which were added to the master problem during the branch-and-price process. In
the fifth column we note the status after the end of the branch-and-price procedure, where
optimal means that the optimal solution was found within a time limit of 5 seconds. There,
we can see that the number of perfect matchings generated for most of the K6 instances is
high compared to the total number of perfect matchings. For the K4,4 instances the total
number of generated perfect matchings is between 4 and 23, more precisely it is four times at
most 8 and seven times at most 18. As the size of these instances is small, we can hope that
for instances with more vertices, the total number of generated matchings would be even
less compared to the total number of matchings. For all instances, the number of different
matchings in the solution is way less than the total number of matchings. The number of
nodes of the branch-and-bound tree differs quite a lot. However, we can see that the size of
the branch-and-bound tree correlates with the number of generated matchings. This is as
expected, because we only branch on the variables corresponding to generated matchings.

Table 4.2: Solving instances of the fair matching over time problem with graph K6, random
weights and T = 10 using the branch-and-price algorithm.

K6 number of number of number of status
nodes in tree matchings in solution matchings generated

1 48 5 13 optimal
2 27 4 11 optimal
3 90 3 15 optimal
4 17 3 12 optimal
5 1 1 9 optimal
6 8 5 10 optimal
7 16 3 8 optimal
8 27 3 13 optimal
9 46 6 14 optimal

10 7 2 8 optimal

69

Table 4.3: Solving instances of the fair matching over time problem with graph K4,4, random
weights and T = 10 using the branch-and-price algorithm.

K4,4 number of number of number of status
nodes in tree matchings in solution matchings generated

1 347 5 23 timelimit
2 4 2 6 optimal
3 3 6 8 optimal
4 195 6 21 optimal
5 155 4 16 optimal
6 251 5 18 optimal
7 174 6 14 optimal
8 1 3 4 optimal
9 409 5 23 optimal

10 1 1 7 optimal

4.5.2 Results on Random Graphs of Type G(n,p)

In this subsection, we consider the question, up to which size we can solve instances of the
fair matching over time problem quickly by using our implementation of the branch-and-price
algorithm. Towards this, we want to look at some different types of graphs and generate
random instances of different sizes of the fair matching over time problem. We set a time
limit of 5 seconds per instance. We generate 100 instances per parameter-setting of the
random graphs and count the number of times the algorithm reaches the optimal solution
within the time limit and the number of times that there exists a perfect matching in the
graph. The instances which contain a perfect matching, but are not solved to optimality
are not solved to optimality due to the time limit. We first look at binomial random graphs
G(n, p) for different numbers of vertices n and different probabilities p for an edge to be
in the graph, see [FK15a]. As we also want to investigate how high we can set the time
horizon, we try T = 2, 10, 100, 1000, 10000. The results can be seen in the Tables 4.4, 4.5,
4.6, 4.7 and 4.8. Observe that for dense graphs, the fairness over time problem is only
solved to optimality by the branch-and-price algorithm within the time limit if the number
of vertices is small. More precisely, for n ≤ 6 the problem is almost always solved to op-
timality if T ≤ 100, whereas for T = 10000 we solve to optimality 74 of 100 for n = 6
and p = 1 instances. When we have more sparse graphs, we can deal with many more
vertices, probably as a consequence of the total number of edges decreasing and hence likely
the total number of perfect matchings in the graph decreasing. Furthermore, the higher
the time horizon, the more difficult the problem gets. However, we can clearly see that the
number of vertices and the density of the graph have a greater influence on the number of
solved instances within the time limit than the time horizon. In more detail, the dependency
on T of the ratio of instances solved to optimality in 5 seconds to instances containing a
perfect matching can be seen in Figures 4.3, 4.4 and 4.5 for random weights and the graphs
G(6, 1), G(8, 0.6) and G(20, 0.2), respectively. In the experiments we let T take the values
in {2} ∪ {10, 20, ..., 90} ∪ {100, 200, ..., 900, 1000}. We can see a very weak dependency on

70

Figure 4.3: Ratio of instances solved to optimality in 5 seconds to instances containing a
perfect matching out of 100 instances of the fair matching over time problem
with graph G(6, 1), random weights and varying T , using the branch-and-price
algorithm.

the time horizon. Owing to the fact that we chose the reformulation of the mixed integer
linear problem in a way that reduces the symmetry introduced by adding the time horizon.
The reformulation also leads to a high number of variables, coming from the large num-
ber of perfect matchings in a graph. To see how the algorithm performs when we set the
time limit to 10 seconds, see Tables 4.9 and 4.10, where we again generated 100 instances
for each parameter-setting of G(n, p) with random weights and a time horizon of T = 10
and T = 100, respectively. In comparison to setting the time limit to 5 seconds, the algo-
rithm typically solves some more instances whenever some, but not all instances are solved
within a 5 seconds time limit. For instance, for T = 10 and p = 0.6 the ratio of instances
solved to optimality to the instances containing a perfect matching is 1, 1, 0.81, 0.25, 0.04, 0
when n = 4, 6, 8, 10, 12, 14, respectively. For the 10 seconds time limit we have a ratio of
1, 1, 0.93, 0.31, 0.04, 0.02, for the same parameters.

4.5.3 Results on Random Bipartite Graphs B(n/2, n/2, p)

For all further investigations we choose our time horizon to be T = 10, generate random
weights which are i.i.d. uniformly distributed on {1, ..., 100}, generate 100 instances per
parameter-setting and set a time limit of 5 seconds for the branch-and-price algorithm.

In this subsection we will focus on bipartite graphs. In these graphs the pricing problem

71

Figure 4.4: Ratio of instances solved to optimality in 5 seconds to instances containing a
perfect matching out of 100 instances of the fair matching over time problem
with graph G(8, 0.6), random weights and varying T , using the branch-and-price
algorithm.

72

Figure 4.5: Ratio of instances solved to optimality in 5 seconds to instances containing a
perfect matching out of 100 instances of the fair matching over time problem
with graph G(20, 0.2), random weights and varying T , using the branch-and-price
algorithm.

is the assignment problem, which can be solved faster than the minimum weight perfect
matching problem in general graphs. So we hope to be able to solve larger instances of the
fair matching over time problem on bipartite graphs. For our next computational experi-
ments, we generate bipartite binomial random graphs according to the B(l, r, p) model, see
[FK15b]. In order to have a perfect matching in a bipartite graph we need the left hand
side and the right hand side of the graph to have equal sizes. Thus, we set l = r = n/2,
where n is the even number of vertices. The ratio of instances which are solved optimally
within 5 seconds to the instances which contain a perfect matching and the total number of
instances which contain a perfect matching can be seen in Table 4.11. We can see that when
we choose the same probability p as for the instances of G(n, p), we can solve instances with
a larger number of vertices. This may be caused by the smaller total number of edges and
hence the likely smaller number of perfect matchings.

4.5.4 Results on Graphs With Small Maximum Degree and Small Average
Degree

As the branch-and-price algorithm generates one matching after the other, the total number
of matchings could be a good indicator for the running time of the algorithm. In [AF08a]

and [AF08b] it is shown that
∏n
i=1(di!)

1
2di is an upper bound on the total number of perfect

matchings in a graph with an even number n of vertices and degree sequence (d1, ..., dn).

73

Motivated by this fact we want to investigate how our algorithm behaves for graphs with
small maximal degrees and for graphs with a low expected average degree. More precisely,
we generate random degree sequences, where the degrees are i.i.d. uniformly distributed on
{2, 3}, {2, 3, 4} or {2, 3, 4, 5}. Here, we exclude 1 as we want to have multiple possibilities
to match every vertex to have a more interesting instance of the fair matching over time
problem. Furthermore, we subtract 1 from the last degree if the sum of degrees is odd. If the
resulting sequence cannot be achieved as a degree sequence of a graph, we generate a new
sequence. Then, we generate a random graph with this degree sequence, as in [BKS09], using
the networkx package. This yields a random graph with maximal degree 3, 4 or 5, respectively.
The performance of the branch-and-price algorithm on these graphs can be seen in Table
4.12. We can observe, that very few of the graphs do not have a perfect matching and
even for n = 100 there are still 23 to 39 instances which were solved to optimality within 5
seconds. Thus, it seems that limiting the maximal degree does indeed help to greatly reduce
the running time of the algorithm. Hence, this can be a good way to find larger instances
of the fair matching over time problem which can be solved rather efficiently using the
branch-and-price algorithm. For the graphs with expected average degree d, we again look
at binomial random graphs G(n, p), where p = d/(n − 1). When choosing p = d/(n − 1),
the expected degree of a vertex u is E(

∑
v∈V \{u} 1{u,v}∈E) =

∑
v∈V \{u} P({u, v} ∈ E) =

(n− 1)d/(n− 1) = d and thus also the expected average degree is d. The according results
can be seen in Table 4.13. Notice that there are again a lot of large instances which can be
solved fast.

74

T
ab

le
4.

4:
S

ol
vi

n
g

in
st

an
ce

s
of

th
e

fa
ir

m
at

ch
in

g
ov

er
ti

m
e

pr
ob

le
m

w
it

h
gr

ap
h
G

(n
,p

),
ra

n
d

om
w

ei
gh

ts
an

d
T

=
2

u
si

n
g

th
e

br
an

ch
-a

n
d

-p
ri

ce
al

go
ri

th
m

.
(r

at
io

of
in

st
an

ce
s

so
lv

ed
to

op
ti

m
al

it
y

in
5

se
co

n
d

s
to

in
st

an
ce

s
co

n
ta

in
in

g
a

p
er

fe
ct

m
at

ch
in

g,
n

u
m

b
er

of
in

st
an

ce
s

co
n

ta
in

in
g

a
p

er
fe

ct
m

at
ch

in
g)

ou
t

of
10

0
in

st
an

ce
s.

G
(n

,p
)

p
=

0.
1

p
=

0.
2

p
=

0.
3

p
=

0.
4

p
=

0.
5

p
=

0.
6

p
=

0.
7

p
=

0.
8

p
=

0.
9

p
=

1

n
=

4
(1

,
2)

(1
,

15
)

(1
,

27
)

(1
,

34
)

(1
,

71
)

(1
,

69
)

(1
,

88
)

(1
,

95
)

(1
,

99
)

(1
,

10
0)

n
=

6
(1

,
1)

(1
,

8)
(1

,
25

)
(1

,
54

)
(1

,
74

)
(1

,
86

)
(1

,
99

)
(1

,
10

0)
(1

,
10

0)
(1

,
10

0)
n

=
8

(1
,

3)
(1

,
16

)
(1

,
38

)
(1

,
69

)
(1

,
92

)
(1

,
98

)
(0

.9
8,

99
)

(0
.8

7,
10

0)
(0

.6
5,

10
0)

(0
.2

8,
10

0)
n

=
10

(0
,

0)
(1

,
20

)
(1

,
58

)
(0

.9
9,

81
)

(0
.8

8,
93

)
(0

.4
8,

99
)

(0
.1

5,
10

0)
(0

.0
2,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

12
(1

,
4)

(1
,

25
)

(0
.9

6,
77

)
(0

.7
6,

93
)

(0
.3

1,
99

)
(0

.0
8,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

14
(1

,
2)

(0
.9

6,
28

)
(0

.8
4,

85
)

(0
.2

8,
98

)
(0

.0
6,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

16
(0

,
0)

(0
.9

8,
40

)
(0

.5
5,

86
)

(0
.0

4,
10

0)
(0

.0
1,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

18
(1

,
2)

(0
.7

9,
58

)
(0

.2
6,

95
)

(0
.0

2,
10

0)
(0

.0
1,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

20
(1

,
1)

(0
.7

6,
67

)
(0

.1
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

75

T
ab

le
4.5:

S
olvin

g
in

stan
ces

of
th

e
fair

m
atch

in
g

over
tim

e
prob

lem
w

ith
grap

h
G

(n
,p

),
ran

d
om

w
eigh

ts
an

d
T

=
10

u
sin

g
th

e
bran

ch
-an

d
-price

algorith
m

.
(ratio

of
in

stan
ces

solved
to

op
tim

ality
in

5
secon

d
s

to
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g,
n

u
m

b
er

of
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g)
ou

t
of

100
in

stan
ces.

G
(n

,p
)

p
=

0.1
p

=
0.2

p
=

0.3
p

=
0.4

p
=

0.5
p

=
0.6

p
=

0.7
p

=
0.8

p
=

0.9
p

=
1

n
=

4
(1,

1)
(1,

11)
(1,

21)
(1,

43)
(1,

54)
(1,

74)
(1,

88)
(1,

95)
(1,

100)
(1,

100)
n

=
6

(0,
0)

(1,
6)

(1,
36)

(1,
55)

(1,
73)

(1,
86)

(1,
98)

(1,
100)

(0.99,
100)

(0.97,
100)

n
=

8
(1,

2)
(1,

9)
(1,

42)
(1,

74)
(0.98,

94)
(0.81,

95)
(0.66,

99)
(0.44,

100)
(0.13,

100)
(0.02,

100)
n

=
10

(1,
1)

(1,
18)

(1,
53)

(0.92,
85)

(0.68,
97)

(0.25,
100)

(0.08,
100)

(0,
100)

(0,
100)

(0,
100)

n
=

12
(0,

0)
(1,

22)
(0.91,

70)
(0.61,

96)
(0.15,

100)
(0.04,

100)
(0.01,

100)
(0,

100)
(0,

100)
(0,

100)
n

=
14

(1,
1)

(1,
41)

(0.67,
80)

(0.18,
99)

(0.01,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

n
=

16
(0,

0)
(0.91,

47)
(0.39,

96)
(0.12,

99)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
n

=
18

(1,
1)

(0.78,
64)

(0.21,
94)

(0.05,
99)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

n
=

20
(1,

2)
(0.59,

68)
(0.15,

98)
(0.03,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)

76

T
ab

le
4.

6:
S

ol
vi

n
g

in
st

an
ce

s
of

th
e

fa
ir

m
at

ch
in

g
ov

er
ti

m
e

pr
ob

le
m

w
it

h
gr

ap
h
G

(n
,p

),
ra

n
d

om
w

ei
gh

ts
an

d
T

=
10

0
u

si
n

g
th

e
br

an
ch

-a
n

d
-p

ri
ce

al
go

ri
th

m
.

(r
at

io
of

in
st

an
ce

s
so

lv
ed

to
op

ti
m

al
it

y
in

5
se

co
n

d
s

to
in

st
an

ce
s

co
n

ta
in

in
g

a
p

er
fe

ct
m

at
ch

in
g,

n
u

m
b

er
of

in
st

an
ce

s
co

n
ta

in
in

g
a

p
er

fe
ct

m
at

ch
in

g)
ou

t
of

10
0

in
st

an
ce

s.

G
(n

,p
)

p
=

0.
1

p
=

0.
2

p
=

0.
3

p
=

0.
4

p
=

0.
5

p
=

0.
6

p
=

0.
7

p
=

0.
8

p
=

0.
9

p
=

1

n
=

4
(1

,
3)

(1
,

13
)

(1
,

18
)

(1
,

42
)

(1
,

56
)

(1
,

68
)

(1
,

85
)

(1
,

92
)

(1
,

10
0)

(1
,

10
0)

n
=

6
(0

,
0)

(1
,

7)
(1

,
26

)
(1

,
47

)
(1

,
74

)
(1

,
91

)
(0

.9
6,

96
)

(0
.9

5,
99

)
(0

.8
7,

10
0)

(0
.7

,
10

0)
n

=
8

(0
,

0)
(1

,
12

)
(1

,
45

)
(1

,
77

)
(0

.9
3,

88
)

(0
.6

4,
98

)
(0

.5
3,

10
0)

(0
.2

8,
10

0)
(0

.0
7,

10
0)

(0
.0

1,
10

0)
n

=
10

(1
,

1)
(1

,
18

)
(1

,
62

)
(0

.7
6,

82
)

(0
.4

7,
94

)
(0

.2
0,

99
)

(0
.0

6,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
n

=
12

(0
,

0)
(1

,
27

)
(0

.8
5,

74
)

(0
.4

8,
98

)
(0

.1
,

10
0)

(0
.0

3,
10

0)
(0

,
10

0)
(0

.0
1,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

14
(0

,
0)

(0
.9

3,
30

)
(0

.5
3,

80
)

(0
.1

8,
96

)
(0

.0
4,

10
0)

(0
.0

1,
10

0)
(0

.0
1,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

16
(1

,
1)

(0
.8

7,
38

)
(0

.2
6,

87
)

(0
.1

3,
98

)
(0

.0
2,

10
0)

(0
.0

3,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
n

=
18

(1
,

2)
(0

.6
6,

53
)

(0
.2

6,
94

)
(0

.1
1,

99
)

(0
.0

1,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
n

=
20

(1
,

1)
(0

.6
1,

69
)

(0
.2

3,
96

)
(0

.0
5,

10
0)

(0
.0

1,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)

77

T
ab

le
4.7:

S
olvin

g
in

stan
ces

of
th

e
fair

m
atch

in
g

over
tim

e
prob

lem
w

ith
grap

h
G

(n
,p

),
ran

d
om

w
eigh

ts
an

d
T

=
1000

u
sin

g
th

e
bran

ch
-an

d
-price

algorith
m

.
(ratio

of
in

stan
ces

solved
to

op
tim

ality
in

5
secon

d
s

to
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g,
n

u
m

b
er

of
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g)
ou

t
of

100
in

stan
ces.

G
(n

,p
)

p
=

0.1
p

=
0.2

p
=

0.3
p

=
0.4

p
=

0.5
p

=
0.6

p
=

0.7
p

=
0.8

p
=

0.9
p

=
1

n
=

4
(1,

2)
(1,

15)
(1,

27)
(1,

37)
(1,

61)
(1,

75)
(1,

89)
(1,

96)
(1,

98)
(1,

100)
n

=
6

(1,
2)

(1,
13)

(1,
27)

(1,
44)

(1,
72)

(1,
88)

(0.96,
99)

(0.88,
97)

(0.78,
100)

(0.6,
100)

n
=

8
(1,

1)
(1,

11)
(0.98,

43)
(0.97,

72)
(0.86,

90)
(0.65,

96)
(0.42,

100)
(0.17,

100)
(0.04,

100)
(0,

100)
n

=
10

(0,
0)

(1,
13)

(0.93,
58)

(0.74,
92)

(0.45,
98)

(0.20,
99)

(0.05,
100)

(0,
100)

(0,
100)

(0,
100)

n
=

12
(1,

1)
(1,

24)
(0.72,

67)
(0.40,

94)
(0.10,

99)
(0.01,

100)
(0.02,

100)
(0.01,

100)
(0,

100)
(0,

100)
n

=
14

(1,
1)

(0.86,
37)

(0.49,
85)

(0.22,
98)

(0.1,
100)

(0.02,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

n
=

16
(1,

2)
(0.72,

39)
(0.32,

94)
(0.12,

98)
(0.03,

100)
(0.01,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
n

=
18

(1,
1)

(0.65,
52)

(0.35,
99)

(0.12,
100)

(0.04,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

n
=

20
(1,

2)
(0.46,

67)
(0.24,

99)
(0.1,

100)
(0.03,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)

78

T
ab

le
4.

8:
S

ol
vi

n
g

in
st

an
ce

s
of

th
e

fa
ir

m
at

ch
in

g
ov

er
ti

m
e

pr
ob

le
m

w
it

h
gr

ap
h
G

(n
,p

),
ra

n
d

om
w

ei
gh

ts
an

d
T

=
10

00
0

u
si

n
g

th
e

br
an

ch
-a

n
d

-p
ri

ce
al

go
ri

th
m

.
(r

at
io

of
in

st
an

ce
s

so
lv

ed
to

op
ti

m
al

it
y

in
5

se
co

n
d

s
to

in
st

an
ce

s
co

n
ta

in
in

g
a

p
er

fe
ct

m
at

ch
in

g,
n

u
m

b
er

of
in

st
an

ce
s

co
n

ta
in

in
g

a
p

er
fe

ct
m

at
ch

in
g)

ou
t

of
10

0
in

st
an

ce
s.

G
(n

,p
)

p
=

0.
1

p
=

0.
2

p
=

0.
3

p
=

0.
4

p
=

0.
5

p
=

0.
6

p
=

0.
7

p
=

0.
8

p
=

0.
9

p
=

1

n
=

4
(1

,
4)

(1
,

8)
(1

,
29

)
(1

,
40

)
(1

,
63

)
(1

,
78

)
(1

,
86

)
(1

,
94

)
(1

,
99

)
(1

,
10

0)
n

=
6

(1
,

4)
(1

,
10

)
(1

,
26

)
(1

,
50

)
(1

,
74

)
(1

,
94

)
(0

.9
6,

98
)

(0
.9

1,
10

0)
(0

.8
2,

10
0)

(0
.7

4,
10

0)
n

=
8

(1
,

1)
(1

,
11

)
(1

,
29

)
(0

.9
6,

69
)

(0
.9

4,
90

)
(0

.7
2,

95
)

(0
.5

1,
10

0)
(0

.2
5,

10
0)

(0
.0

8,
10

0)
(0

.0
2,

10
0)

n
=

10
(1

,
2)

(1
,

18
)

(0
.9

,
50

)
(0

.7
8,

85
)

(0
.4

6,
98

)
(0

.2
8,

10
0)

(0
.1

,
10

0)
(0

.0
4,

10
0)

(0
,

10
0)

(0
.0

1,
10

0)
n

=
12

(1
,

1)
(0

.9
5,

20
)

(0
.8

1,
75

)
(0

.5
,

98
)

(0
.1

6,
10

0)
(0

.0
9,

10
0)

(0
.0

5,
10

0)
(0

.0
2,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

16
(0

,
0)

(0
.9

5,
22

)
(0

.6
4,

86
)

(0
.2

7,
10

0)
(0

.1
8,

10
0)

(0
.0

9,
10

0)
(0

.0
1,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

16
(1

,
1)

(0
.7

6,
38

)
(0

.4
6,

89
)

(0
.2

1,
99

)
(0

.0
8,

10
0)

(0
.0

3,
10

0)
(0

.0
2,

10
0)

(0
,

10
0)

(0
,

10
0)

(0
,

10
0)

n
=

18
(1

,
2)

(0
.5

8,
55

)
(0

.3
8,

90
)

(0
.1

1,
10

0)
(0

.0
6,

10
0)

(0
.0

1,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
n

=
20

(1
,

1)
(0

.6
1,

67
)

(0
.3

2,
98

)
(0

.1
5,

99
)

(0
.0

3,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
10

0)
(0

,
99

)
(0

,
10

0)

79

T
ab

le
4.9:

S
olvin

g
in

stan
ces

of
th

e
fair

m
atch

in
g

over
tim

e
prob

lem
w

ith
grap

h
G

(n
,p

),
ran

d
om

w
eigh

ts
an

d
T

=
10

u
sin

g
th

e
bran

ch
-an

d
-price

algorith
m

.
(ratio

of
in

stan
ces

solved
to

op
tim

ality
in

10
secon

d
s

to
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g,
n

u
m

b
er

of
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g)
ou

t
of

100
in

stan
ces.

G
(n

,p
)

p
=

0.1
p

=
0.2

p
=

0.3
p

=
0.4

p
=

0.5
p

=
0.6

p
=

0.7
p

=
0.8

p
=

0.9
p

=
1

n
=

4
(1.00,

2)
(1.00,

13)
(1.00,

19)
(1.00,

44)
(1.00,

52)
(1.00,

77)
(1.00,

80)
(1.00,

97)
(1.00,

99)
(1.00,

100)
n

=
6

(1.00,
1)

(1.00,
9)

(1.00,
23)

(1.00,
54)

(1.00,
69)

(1.00,
91)

(1.00,
97)

(1.00,
100)

(1.00,
100)

(0.99,
100)

n
=

8
(0,

0)
(1.00,

13)
(1.00,

50)
(1.00,

63)
(0.99,

89)
(0.93,

98)
(0.72,

100)
(0.55,

100)
(0.22,

100)
(0.07,

100)
n

=
10

(1.00,
2)

(1.00,
13)

(1.00,
46)

(0.89,
83)

(0.64,
97)

(0.31,
100)

(0.09,
100)

(0.01,
100)

(0.00,
100)

(0.00,
100)

n
=

12
(1.00,

1)
(1.00,

21)
(0.96,

72)
(0.65,

94)
(0.22,

99)
(0.04,

99)
(0.01,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)
n

=
14

(0,
0)

(1.00,
29)

(0.67,
85)

(0.28,
98)

(0.03,
100)

(0.02,
100)

(0.00,
100)

(0.00,
100)

(0.00,
100)

(0.00,
100)

n
=

16
(0,

0)
(0.91,

44)
(0.38,

89)
(0.09,

100)
(0.01,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)
n

=
18

(0,
0)

(0.69,
59)

(0.22,
99)

(0.04,
100)

(0.01,
100)

(0.00,
100)

(0.00,
100)

(0.00,
100)

(0.00,
100)

(0.00,
100)

n
=

20
(1.00,

4)
(0.61,

59)
(0.18,

98)
(0.02,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)
(0.00,

100)80

T
ab

le
4.

10
:

S
ol

vi
n

g
in

st
an

ce
s

of
th

e
fa

ir
m

at
ch

in
g

ov
er

ti
m

e
pr

ob
le

m
w

it
h

gr
ap

h
G

(n
,p

),
ra

n
d

om
w

ei
gh

ts
an

d
T

=
10

0
u

si
n

g
th

e
br

an
ch

-a
n

d
-p

ri
ce

al
go

ri
th

m
.

(r
at

io
of

in
st

an
ce

s
so

lv
ed

to
op

ti
m

al
it

y
in

10
se

co
n

d
s

to
in

st
an

ce
s

co
n

ta
in

in
g

a
p

er
fe

ct
m

at
ch

in
g,

n
u

m
b

er
of

in
st

an
ce

s
co

n
ta

in
in

g
a

p
er

fe
ct

m
at

ch
in

g)
ou

t
of

10
0

in
st

an
ce

s.

G
(n

,p
)

p
=

0.
1

p
=

0.
2

p
=

0.
3

p
=

0.
4

p
=

0.
5

p
=

0.
6

p
=

0.
7

p
=

0.
8

p
=

0.
9

p
=

1

n
=

4
(1

.0
0,

4)
(1

.0
0,

5)
(1

.0
0,

24
)

(1
.0

0,
41

)
(1

.0
0,

56
)

(1
.0

0,
75

)
(1

.0
0,

81
)

(1
.0

0,
98

)
(1

.0
0,

10
0)

(1
.0

0,
10

0)
n

=
6

(0
,

0)
(1

.0
0,

17
)

(1
.0

0,
29

)
(1

.0
0,

59
)

(1
.0

0,
77

)
(1

.0
0,

93
)

(1
.0

0,
96

)
(0

.9
6,

10
0)

(0
.8

5,
10

0)
(0

.7
9,

10
0)

n
=

8
(1

.0
0,

2)
(1

.0
0,

10
)

(1
.0

0,
42

)
(1

.0
0,

64
)

(0
.9

2,
92

)
(0

.7
8,

98
)

(0
.5

2,
10

0)
(0

.2
9,

10
0)

(0
.1

0,
10

0)
(0

.0
2,

10
0)

n
=

10
(1

.0
0,

1)
(1

.0
0,

17
)

(0
.9

8,
48

)
(0

.8
5,

84
)

(0
.5

3,
94

)
(0

.2
3,

10
0)

(0
.0

4,
99

)
(0

.0
2,

10
0)

(0
.0

1,
10

0)
(0

.0
0,

10
0)

n
=

12
(1

.0
0,

1)
(1

.0
0,

18
)

(0
.8

4,
74

)
(0

.3
9,

96
)

(0
.1

7,
10

0)
(0

.0
1,

10
0)

(0
.0

4,
10

0)
(0

.0
1,

10
0)

(0
.0

0,
10

0)
(0

.0
1,

10
0)

n
=

14
(1

.0
0,

2)
(0

.9
4,

31
)

(0
.5

1,
83

)
(0

.2
5,

96
)

(0
.0

3,
10

0)
(0

.0
3,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

n
=

16
(0

,
0)

(0
.8

4,
55

)
(0

.3
6,

92
)

(0
.0

9,
10

0)
(0

.0
4,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

(0
.0

0,
10

0)
n

=
18

(1
.0

0,
3)

(0
.7

3,
52

)
(0

.2
9,

98
)

(0
.1

3,
10

0)
(0

.0
2,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

(0
.0

0,
10

0)
n

=
20

(1
.0

0,
3)

(0
.4

4,
72

)
(0

.2
7,

96
)

(0
.0

7,
98

)
(0

.0
0,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

(0
.0

0,
10

0)
(0

.0
0,

10
0)

(0
.0

0,
10

0)

81

T
ab

le
4.11:

S
olvin

g
in

stan
ces

of
th

e
fair

m
atch

in
g

over
tim

e
prob

lem
w

ith
grap

h
B

(n
/
2,n

/2
,p

),
ran

d
om

w
eigh

ts
an

d
T

=
10

u
sin

g
th

e
bran

ch
-an

d
-price

algorith
m

.
(ratio

of
in

stan
ces

solved
to

op
tim

ality
in

5
secon

d
s

to
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g,
n

u
m

b
er

of
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g)
ou

t
of

100
in

stan
ces.

B
p

=
0.1

p
=

0.2
p

=
0.3

p
=

0.4
p

=
0.5

p
=

0.6
p

=
0.7

p
=

0.8
p

=
0.9

p
=

1

n
=

4
(1,

3)
(1,

6)
(1,

23)
(1,

33)
(1,

41)
(1,

52)
(1,

68)
(1,

87)
(1,

96)
(1,

100)
n

=
6

(1,
1)

(1,
6)

(1,
22)

(1,
29)

(1,
52)

(1,
65)

(1,
91)

(1,
93)

(1,
98)

(1,
100)

n
=

8
(1,

1)
(1,

3)
(1,

12)
(1,

40)
(1,

68)
(1,

84)
(0.99,

98)
(0.99,

100)
(0.92,

100)
(0.72,

100)
n

=
10

(0,
0)

(1,
1)

(1,
19)

(1,
43)

(0.95,
75)

(0.94,
89)

(0.69,
98)

(0.53,
100)

(0.24,
100)

(0.11,
100)

n
=

12
(0,

0)
(1,

2)
(1,

12)
(0.98,

46)
(0.84,

83)
(0.59,

98)
(0.28,

99)
(0.05,

100)
(0.06,

100)
(0,

100)
n

=
14

(0,
0)

(1,
3)

(0.92,
25)

(0.87,
55)

(0.59,
95)

(0.26,
100)

(0.15,
100)

(0.05,
100)

(0.01,
100)

(0,
100)

n
=

16
(0,

0)
(1,

3)
(0.94,

32)
(0.70,

67)
(0.41,

95)
(0.13,

99)
(0.1,

100)
(0.03,

100)
(0,

100)
(0,

100)
n

=
18

(0,
0)

(1,
1)

(0.83,
35)

(0.55,
77)

(0.26,
94)

(0.05,
99)

(0.06,
100)

(0.01,
100)

(0,
100)

(0,
100)

n
=

20
(0,

0)
(0.89,

9)
(0.71,

59)
(0.43,

86)
(0.21,

97)
(0.06,

100)
(0.01,

100)
(0.01,

100)
(0.01,

100)
(0,

100)
n

=
30

(0,
0)

(0.81,
21)

(0.37,
91)

(0.21,
99)

(0.01,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

n
=

40
(1,

1)
(0.67,

55)
(0.20,

96)
(0.05,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
(0,

100)
n

=
50

(1,
2)

(0.52,
82)

(0.07,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

(0,
100)

82

Table 4.12: Solving instances of the fair matching over time problem with a graph with
random degree sequence with maximal degree of 3, 4, or 5, random weights
and T = 10 using the branch-and-price algorithm. (ratio of instances solved to
optimality in 5 seconds to instances containing a perfect matching, number of
instances containing a perfect matching) out of 100 instances.

max degree = 3 max degree = 4 max degree = 5

n=10 (1, 100) (0.99, 99) (0.95, 100)
n=20 (0.94, 97) (0.67, 99) (0.42, 100)
n=30 (0.69, 97) (0.31, 98) (0.27, 100)
n=40 (0.54, 99) (0.37, 99) (0.29, 100)
n=50 (0.44, 95) (0.4, 100) (0.28, 100)
n=60 (0.38, 98) (0.3, 100) (0.28, 100)
n=70 (0.37, 99) (0.25, 100) (0.37, 99)
n=80 (0.35, 97) (0.23, 100) (0.32, 100)
n=90 (0.33, 100) (0.39, 99) (0.37, 100)
n=100 (0.24, 96) (0.40, 98) (0.33, 100)

83

T
ab

le
4.13:

S
olvin

g
in

stan
ces

of
th

e
fair

m
atch

in
g

over
tim

e
prob

lem
w

ith
grap

h
G

(n
,

d
/(n

-1))
w

ith
exp

ected
average

d
egree

of
d

,
ran

d
om

w
eigh

ts
an

d
T

=
10

u
sin

g
th

e
bran

ch
-an

d
-price

algorith
m

.
(ratio

of
in

stan
ces

solved
to

op
tim

ality
in

5
secon

d
s

to
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g,
n

u
m

b
er

of
in

stan
ces

con
tain

in
g

a
p

erfect
m

atch
in

g)
ou

t
of

100
in

stan
ces.

G
d

d
=

2
d

=
2.5

d
=

3
d

=
3.5

d
=

4
d

=
4.5

d
=

5
d

=
5.5

d
=

6
d

=
6.5

d
=

7
n

=
10

(1.00,
30)

(0.98,
41)

(0.99,
67)

(0.89,
82)

(0.82,
90)

(0.70,
99)

(0.47,
98)

(0.29,
100)

(0.06,
100)

(0.00,
100)

(0.00,
100)

n
=

20
(1.00,

1)
(0.94,

16)
(0.81,

27)
(0.68,

44)
(0.51,

76)
(0.44,

94)
(0.24,

92)
(0.19,

100)
(0.11,

99)
(0.04,

100)
(0.02,

100)
n

=
30

(1.00,
1)

(0.80,
5)

(0.79,
14)

(0.79,
28)

(0.55,
60)

(0.46,
76)

(0.30,
88)

(0.25,
92)

(0.09,
96)

(0.04,
100)

(0.03,
100)

n
=

40
(0,

0)
(1.00,

2)
(0.82,

11)
(0.60,

20)
(0.68,

44)
(0.42,

71)
(0.44,

80)
(0.33,

91)
(0.14,

94)
(0.06,

98)
(0.08,

100)
n

=
50

(0,
0)

(1.00,
1)

(1.00,
2)

(0.70,
23)

(0.62,
45)

(0.59,
70)

(0.56,
78)

(0.36,
91)

(0.16,
95)

(0.13,
100)

(0.07,
98)

n
=

60
(0,

0)
(0,

0)
(1.00,

4)
(0.67,

6)
(0.61,

31)
(0.64,

55)
(0.59,

71)
(0.43,

86)
(0.19,

91)
(0.07,

100)
(0.07,

98)
n

=
70

(0,
0)

(0,
0)

(0.00,
2)

(0.71,
7)

(0.86,
22)

(0.62,
40)

(0.59,
56)

(0.36,
70)

(0.18,
95)

(0.02,
96)

(0.00,
99)

n
=

80
(0,

0)
(0,

0)
(1.00,

1)
(1.00,

8)
(0.62,

21)
(0.70,

44)
(0.52,

61)
(0.47,

75)
(0.18,

94)
(0.06,

96)
(0.05,

100)
n

=
90

(0,
0)

(0,
0)

(0,
0)

(1.00,
3)

(0.62,
13)

(0.74,
34)

(0.58,
60)

(0.44,
70)

(0.17,
90)

(0.03,
97)

(0.05,
98)

n
=

100
(0,

0)
(0,

0)
(0,

0)
(1.00,

2)
(0.80,

15)
(0.48,

27)
(0.54,

50)
(0.30,

64)
(0.17,

89)
(0.10,

94)
(0.04,

98)84

5 Conclusion

We discussed column generation and branch-and-price approaches which are very powerful
tools to solve large linear programs and mixed integer linear programs. Both tools are generic,
but there are numerous possibilities to adapt them to the given problem and enhance the
algorithmic performance. First of all, choosing the right reformulation of the problem is
a crucial factor. For this, Dantzig-Wolfe decompositions can often be used. Furthermore,
it is indispensable to have a pricing problem which can be solved rather efficiently. In the
context of column generation it is essential to handle the tailing-off effect properly using an
appropriate stabilization technique. For branch-and-price we saw that selecting a suitable
branching strategy can further improve the algorithm.

Based on the techniques mentioned above we derived a branch-and-price algorithm for
the fair matching over time problem. The fair matching over time problem is a generaliza-
tion of the balanced assignment problem, where we consider general graphs and add a time
horizon. We introduced a particular formulation of the fair matching over time problem,
which successfully deals with the symmetry introduced by the time horizon. Another ad-
vantage and important feature of this formulation is that the pricing problem can be solved
by a minimum weight perfect matching problem. We implemented our algorithm using the
branch-and-price framework SCIP with the interface PySCIPOpt from Python. We tested
its performance on randomly generated instances of the fair matching over time problem.
For the instances, we experiment with different random graphs, including bipartite graphs
and graphs with low degrees and generate the weights randomly. We tested different or-
ders of graphs with various densities, time horizons and time limits for the solving process.
We observed that the branch-and-price algorithm can solve instances with very large time
horizons quickly. However, it seems that the algorithm does not scale well with the total
number of perfect matchings in the graph. The latter seems to be a crucial bottleneck
for our algorithm. In particular, our algorithm is able to solve large instances of the fair
matching over time problem on graphs with a limited maximal degree or average degree of
the vertices. Clearly, such graphs contain a moderate number of perfect matchings in general.

In the following we briefly mention some open questions for further research. First, it would
be desirable to better understand the influence of different components of the algorithm to
its performance. In particular, we assume that reformulations of the problem, stabilization
methods and branching strategies do have a crucial impact on the performance of the algo-
rithm. Second, the performance of a branch-and-price algorithm for the fair matching over
time problem with different unfairness functions or different ways to aggregate the utilities
over time can be explored. The dependency of the optimal objective value on the time
horizon can be further investigated, for instance by considering a probabilistic formulation

85

as in [LSW23] and [LSW22] to observe the behavior for large T . The overall welfare can
be considered in the fair matching over time problem by allowing only perfect matchings
which exceed a certain weight. Moreover, it can be investigated whether adding cuts to the
branch-and-price algorithm improves its performance. As for the usage of branch-and-price,
one could presumably also set up a branch-and-price algorithm for fairness over time prob-
lems other than the fair matching over time problem and the ambulance relocation problem
in [Lod+22] in a similar manner and get a decently efficient algorithm provided that the
pricing problem can still be solved rather fast.

All in all, it can be said that column generation and branch-and-price are very powerful
tools which work well for solving the fair matching problem over time.

86

Bibliography

[AB07] T. Achterberg and T. Berthold. “Improving the Feasibility Pump”. In: Discrete
Optimization 4 (Mar. 2007), pp. 77–86. doi: 10.1016/j.disopt.2006.10.
004.

[Ach07] T. Achterberg. “Constraint Integer Programming”. PhD thesis. Technische
Universität Berlin, Jan. 2007. doi: 10 . 14279 / depositonce - 1634. url:
https://www.researchgate.net/publication/230595676_Constraint_

Integer_Programming.

[AF08a] N. Alon and S. Friedland. The Maximum Number of Perfect Matchings in
Graphs with a Given Degree Sequence. 2008. arXiv: 0803.2578 [math.CO].
url: https://arxiv.org/abs/0803.2578.

[AF08b] N. Alon and S. Friedland. “The Maximum Number of Perfect Matchings in
Graphs with a Given Degree Sequence”. In: Electronic Journal Combinatorics
15 (Apr. 2008). doi: 10.37236/888.

[BAC05] H. Ben Amor and J. Valério de Carvalho. “Cutting Stock Problems”. In: Column
Generation. Ed. by G. Desaulniers, J. Desrosiers, and M. M. Solomon. Boston,
MA: Springer US, 2005, pp. 131–161. isbn: 978-0-387-25486-9. doi: 10.1007/
0-387-25486-2_5.

[BADF04] H. Ben Amor, J. Desrosiers, and A. Frangioni. Stabilization in Column Gen-
eration. Les Cahiers du GERAD G-2004-62. GERAD, Montréal QC H3T 2A7,
Canada: Groupe d’études et de recherche en analyse des décisions, Aug. 2004,
pp. 1–31. eprint: https://www.gerad.ca/papers/G-2004-62.pdf?locale=
en. url: https://www.gerad.ca/en/papers/G-2004-62. published.

[Ber06] T. Berthold. “Primal Heuristics for Mixed Integer Programs”. Diplomarbeit.
Technische Universität Berlin, 2006. url: https://www.researchgate.

net/publication/258846101_Primal_Heuristics_for_Mixed_Integer_

Programs.

[Ber07] T. Berthold. “RENS - Relaxation Enforced Neighborhood Search”. In: 2007.
url: https://api.semanticscholar.org/CorpusID:56072527.

[Ber08] T. Berthold. “Heuristics of the Branch-Cut-and-Price-Framework SCIP”. In:
Operations Research Proceedings 2007. Ed. by J. Kalcsics and S. Nickel. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 31–36. isbn: 978-3-540-77903-
2.

[BFL07] L. Bertacco, M. Fischetti, and A. Lodi. “A Feasibility Pump Heuristic for General
Mixed-Integer Problems”. In: Discrete Optimization 4 (Mar. 2007), pp. 63–76.
doi: 10.1016/j.disopt.2006.10.001.

87

[BFT11] D. Bertsimas, V. Farias, and N. Trichakis. “The Price of Fairness”. In: Opera-
tions Research 59 (Feb. 2011), pp. 17–31. doi: 10.1287/opre.1100.0865.

[BJ98] F. Barahona and D. Jensen. “Plant location with minimum inventory”. In:
Mathematical Programming 83 (Sept. 1998), pp. 101–111. doi: 10.1007/

BF02680552.

[BKS09] M. Bayati, J. H. Kim, and A. Saberi. “A Sequential Algorithm for Generating
Random Graphs”. In: Algorithmica 58 (July 2009), 860–910. issn: 1432-0541.
doi: 10.1007/s00453-009-9340-1.

[Blu90] N. Blum. “A New Approach to Maximum Matching in General Graphs”. In:
Automata, Languages and Programming. Ed. by M. S. Paterson. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1990, pp. 586–597. isbn: 978-3-540-47159-2.

[BLW18] M. Bastubbe, M. E. Lübbecke, and J. T. Witt. “A Computational Investigation
on the Strength of Dantzig-Wolfe Reformulations”. In: 17th International Sym-
posium on Experimental Algorithms (SEA 2018). Ed. by Gianlorenzo D’Angelo.
Vol. 103. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018, 11:1–11:12.
isbn: 978-3-95977-070-5. doi: 10.4230/LIPIcs.SEA.2018.11. url: http:
//dagstuhl.sunsite.rwth- aachen.de/volltexte/2018/8946/pdf/

LIPIcs-SEA-2018-11.pdf.

[Bol+24] S. Bolusani, M. Besançon, K. Bestuzheva, A. Chmiela, J. Diońısio, T. Donkiewicz,
J. van Doornmalen, L. Eifler, M. Ghannam, A. Gleixner, C. Graczyk, K. Halbig,
I. Hedtke, A. Hoen, C. Hojny, R. van der Hulst, D. Kamp, T. Koch, K. Kofler,
J. Lentz, J. Manns, Mexi G., E. Mühmer, M. E. Pfetsch, F. Schlösser, F. Ser-
rano, Y. Shinano, M. Turner, S. Vigerske, D. Weninger, and L. Xu. The SCIP
Optimization Suite 9.0. Technical Report. Optimization Online, 2024. url:
https://optimization-online.org/2024/02/the-scip-optimization-

suite-9-0/.

[Bri+05] O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Vander-
beck. Comparison of Bundle and Classical Column Generation. Research Report
RR-5453. An updated version of this paper has appeared in : Mathematical Pro-
gramming, Ser. A, 2006 DOI 10.1007/s10107-006-0079-z. INRIA, 2005, p. 31.
url: https://inria.hal.science/inria-00070554.

[Bri+08] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vander-
beck. “Comparison of Bundle and Classical Column Generation”. In: Mathe-
matical Programming 113 (June 2008), pp. 299–344. doi: 10.1007/s10107-
006-0079-z.

[BS06] G. Belov and G. Scheithauer. “A Branch-and-Cut-and-Price Algorithm for One-
Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting”. In: Eu-
ropean Journal of Operational Research 171 (2006), pp. 85–106. issn: 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2004.08.036. url: https:
//www.sciencedirect.com/science/article/pii/S0377221704006150.

88

[BVS07] S. Boyd, L. Vandenberghe, and J. Skaf. “Analytic Center Cutting-Plane Method”.
In: 2007. url: https://api.semanticscholar.org/CorpusID:5915628.

[CH87] C. R. Chegireddy and H. W. Hamacher. “Algorithms for finding K-best perfect
matchings”. In: Discrete Applied Mathematics 18 (1987), pp. 155–165. issn:
0166-218X. doi: 10.1016/0166-218X(87)90017-5. url: https://www.
sciencedirect.com/science/article/pii/0166218X87900175.

[DDS11] G. Desaulniers, J. Desrosiers, and S. Spoorendonk. “Cutting Planes for Branch-
and-Price Algorithms”. In: Networks 58 (Dec. 2011), pp. 301–310. doi: 10.
1002/net.20471.

[Des+24] J. Desrosiers, M. E. Lübbecke, G. Desaulniers, and J.-B. Gauthier. Branch-and-
Price. Les Cahiers du GERAD G-2024-36. GERAD, Montréal QC H3T 2A7,
Canada: Groupe d’études et de recherche en analyse des décisions, June 2024,
pp. 1–689. eprint: https://www.gerad.ca/papers/G- 2024- 36.pdf?

locale=en. url: https://www.gerad.ca/en/papers/G-2024-36. pub-
lished.

[Des+95] J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis. “Time Constrained Rout-
ing and Scheduling”. In: Network Routing (Jan. 1995), pp. 35–139.

[DJ07] Z. Degraeve and R. Jans. “A New Dantzig-Wolfe Reformulation and Branch-
and-Price Algorithm for the Capacitated Lot Sizing Problem with Set Up Times”.
In: Operations Research 55 (Oct. 2007), pp. 909–920. doi: 10.1287/opre.
1070.0404.

[DL05] J. Desrosiers and M. E. Lübbecke. “A Primer in Column Generation”. In: Col-
umn Generation. Ed. by G. Desaulniers, J. Desrosiers, and M. M. Solomon.
Boston, MA: Springer US, 2005, pp. 1–32. isbn: 978-0-387-25486-9. doi:
10.1007/0-387-25486-2_1.

[DL11] J. Desrosiers and M. E. Lübbecke. “Branch-Price-and-Cut Algorithms”. In: Wi-
ley Encyclopedia of Operations Research and Management Science (Jan. 2011).
doi: 10.1002/9780470400531.eorms0118.

[DW60] G. B. Dantzig and P. Wolfe. “Decomposition Principle for Linear Programs”.
In: Operations Research 8 (1960), pp. 101–111. doi: 10.1287/opre.8.1.101.
eprint: https://doi.org/10.1287/opre.8.1.101.

[Elf+01] M. Elf, C. Gutwenger, M. Jünger, and G. Rinaldi. “Branch-and-Cut Algorithms
for Combinatorial Optimization and Their Implementation in ABACUS”. In:
vol. 2241. Jan. 2001, pp. 157–222. isbn: 978-3-540-42877-0. doi: 10.1007/3-
540-45586-8_5.

[FGL05] M. Fischetti, F. Glover, and A. Lodi. “The Feasibility Pump”. In: Mathematical
Programming 104 (Sept. 2005), pp. 91–104. doi: 10.1007/s10107-004-
0570-3.

[FK15a] A. Frieze and M. Karoński. “Random Graphs”. In: Introduction to Random
Graphs. Cambridge University Press, 2015, 3–18.

89

[FK15b] A. Frieze and M. Karoński. “Spanning Subgraphs”. In: Introduction to Random
Graphs. Cambridge University Press, 2015, 81–109.

[Fra02] A. Frangioni. “Generalized Bundle Methods”. In: SIAM Journal on Optimization
13 (2002), pp. 117–156. doi: 10.1137/S1052623498342186.

[Gam10] G. Gamrath. “Generic Branch-Cut-and-Price”. Diplomarbeit. Technische Uni-
versität Berlin, 2010. url: https://www.zib.de/userpage/gamrath/

publications/gamrath2010_genericBCP.pdf.

[Geo74] A. M. Geoffrion. “Lagrangean Relaxation for Integer Programming”. In: Ap-
proaches to Integer Programming. Ed. by M. L. Balinski. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1974, pp. 82–114. isbn: 978-3-642-00740-8. doi:
10.1007/BFb0120690.

[GG63] P.C. Gilmore and R. Gomory. “A Linear Programming Approach to the Cutting
Stock Problem—Part II”. In: Operations Research 11 (Dec. 1963). doi: 10.
1287/opre.11.6.863.

[GGBM13] J. Gondzio, P. González-Brevis, and P. Munari. “New Developments in the
Primal–Dual Column Generation Technique”. In: European Journal of Opera-
tional Research 224 (2013), pp. 41–51. issn: 0377-2217. doi: 10.1016/j.
ejor.2012.07.024. url: https://www.sciencedirect.com/science/
article/pii/S0377221712005656.

[GV02] J.-L. Goffin and J.-P. Vial. “Convex Nondifferentiable Optimization: A Survey
Focused on the Analytic Center Cutting Plane Method”. In: Optimization Meth-
ods and Software 17 (2002), pp. 805–867. doi: 10.1080/1055678021000060829a.

[HSS08] A. Hagberg, P. J. Swart, and D. A. Schult. Exploring Network Structure,
Dynamics, and Function Using NetworkX. Tech. rep. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[Hui+05] D. Huisman, R. Jans, M. Peeters, and A. P.M. Wagelmans. “Combining Column
Generation and Lagrangian Relaxation”. In: Column Generation. Ed. by G. De-
saulniers, J. Desrosiers, and M. M. Solomon. Boston, MA: Springer US, 2005,
pp. 247–270. isbn: 978-0-387-25486-9. doi: 10.1007/0-387-25486-2_9.

[Kan60] L. V. Kantorovich. “Mathematical Methods of Organizing and Planning Pro-
duction”. In: Management Science 6 (1960), pp. 366–422. url: https://

api.semanticscholar.org/CorpusID:62611375.

[KV12] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
5th. Springer Publishing Company, Incorporated, 2012. isbn: 3642244874.

[Lü11] M. E. Lübbecke. “Column Generation”. In: Jan. 2011. isbn: 9780470400531.
doi: 10.1002/9780470400531.eorms0158.

[LD05] M. E. Lübbecke and J. Desrosiers. “Selected Topics in Column Generation”. In:
Operations Research 53 (Dec. 2005), pp. 1007–. doi: 10.1287/opre.1050.
0234.

90

[LNS24] M. Lucci, G. Nasini, and D. Seveŕın. “Solving the List Coloring Problem through
a branch-and-price algorithm”. In: European Journal of Operational Research
315 (June 2024), 899–912. issn: 0377-2217. doi: 10.1016/j.ejor.2024.
01.038.

[Lod+22] A. Lodi, P. Olivier, G. Pesant, and S. Sankaranarayanan. “Fairness Over Time
in Dynamic Resource Allocation With an Application in Healthcare”. In: Math-
ematical Programming 203 (Nov. 2022), 285–318. issn: 1436-4646. doi: 10.
1007/s10107-022-01904-6.

[LSW22] A. Lodi, S. Sankaranarayanan, and G. Wang. A Framework for Fair Decision-
making Over Time with Time-invariant Utilities. 2022. arXiv: 2212 .10070

[math.OC]. url: https://arxiv.org/abs/2212.10070.

[LSW23] A. Lodi, S. Sankaranarayanan, and G. Wang. “A Framework for Fair Decision-
Making Over Time With Time-Invariant Utilities”. In: European Journal of
Operational Research (2023). issn: 0377-2217. doi: 10.1016/j.ejor.2023.
11.030. url: https://www.sciencedirect.com/science/article/pii/
S0377221723008718.

[LW18] M. E. Lübbecke and J. T. Witt. “The Strength of Dantzig–Wolfe Reformulations
for the Stable Set and Related Problems”. In: Discrete Optimization 30 (2018),
pp. 168–187. issn: 1572-5286. doi: https://doi.org/10.1016/j.disopt.
2018.07.001. url: https://www.sciencedirect.com/science/article/
pii/S1572528617302608.

[LY84] D. Luenberger and Y. Ye. “Linear and Nonlinear Programming”. In: American
Journal of Agricultural Economics 67 (Jan. 1984). doi: 10.2307/1240727.

[Mah+16] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and F.
Serrano. “PySCIPOpt: Mathematical Programming in Python with the SCIP
Optimization Suite”. In: Mathematical Software – ICMS 2016. Springer Inter-
national Publishing, 2016, pp. 301–307. doi: 10.1007/978-3-319-42432-
3_37.

[Mar+84] S. Martello, W. R. Pulleyblank, P. Toth, and D. de Werra. “Balanced Opti-
mization Problems”. In: Operations Research Letters 3 (1984), pp. 275–278.
issn: 0167-6377. doi: 10.1016/0167- 6377(84)90061- 0. url: https:

//www.sciencedirect.com/science/article/pii/0167637784900610.

[NBN22a] M. H. Nguyen, M. Baiou, and V. H. Nguyen. “Nash Balanced Assignment
Problem”. In: Combinatorial Optimization. Ed. by I. Ljubić, F. Barahona, S.
S. Dey, and A. R. Mahjoub. Cham: Springer International Publishing, 2022,
pp. 172–186. isbn: 978-3-031-18530-4.

[NBN22b] M. H. Nguyen, M. Baiou, and V. H. Nguyen. “Nash Balanced Assignment Prob-
lem”. In: 7th International Symposium on Combinatorial Optimization (ISCO).
Online Conference, France, May 2022. url: https://hal.science/hal-
03656133.

91

[NW88] G. Nemhauser and L. Wolsey. In: Integer and Combinatorial Optimization. John
Wiley & Sons, Ltd, 1988. isbn: 9781118627372. doi: 10.1002/9781118627372.
ch14. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9781118627372.ch14. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781118627372.ch14.

[Pes+08] A. A. Pessoa, E. Uchoa, M. Poggi de Aragão, and R. Rodrigues. “Algorithms
over Arc-time Indexed Formulations for Single and Parallel Machine Scheduling
Problems”. In: 2008. url: https://api.semanticscholar.org/CorpusID:
1041396.

[Pes+10] A. A. Pessoa, E. Uchoa, M. Poggi de Aragão, and R. Rodrigues. “Algorithms
over Arc-time Indexed Formulations for Single and Parallel Machine Scheduling
Problems”. In: Mathematical Programming Computation 2 (2010), pp. 259–
290. doi: 10.1007/s12532-010-0019-z.

[PPS08] B. Petersen, D. Pisinger, and S. Spoorendonk. “Chvátal-Gomory Rank-1 Cuts
Used in a Dantzig-Wolfe Decomposition of the Vehicle Routing Problem with
Time Windows”. In: The Vehicle Routing Problem: Latest Advances and New
Challenges. Ed. by B. Golden, S. Raghavan, and E. Wasil. Boston, MA: Springer
US, 2008, pp. 397–419. isbn: 978-0-387-77778-8. doi: 10.1007/978-0-387-
77778-8_18.

[Pri] PySCIPOpt. GitHub. https://github.com/scipopt/PySCIPOpt/blob/

master/tests/test_pricer.py. Accessed: 2024-08-08.

[Puc11] C. Puchert. “Primal Heuristics for Branch-and-Price Algorithms”. master the-
sis. Technische Universität Darmstadt, 2011. url: https://www.or.rwth-
aachen.de/files/research/theses/2011/Puchert_Primal_Heuristics_

for_Branch-and-Price_Algorithms.pdf.

[RF81] D. Ryan and B. Foster. “An Integer Programming Approach to Scheduling”.
In: Computer Scheduling of Public Transport 1 (Jan. 1981), pp. 269–.

[Van00] F. Vanderbeck. “On Dantzig-Wolfe Decomposition in Integer Programming and
ways to Perform Branching in a Branch-and-Price Algorithm”. In: Operations
Research 48 (Feb. 2000), pp. 111–. doi: 10.1287/opre.48.1.111.12453.
url: https://inria.hal.science/inria-00342641.

[Van05] F. Vanderbeck. “Implementing Mixed Integer Column Generation”. In: Column
Generation. Ed. by G. Desaulniers, J. Desrosiers, and M. M. Solomon. Boston,
MA: Springer US, 2005, pp. 331–358. isbn: 978-0-387-25486-9. doi: 10.1007/
0-387-25486-2_12.

[Van10] F. Vanderbeck. “Branching in Branch-and-Price: a Generic Scheme”. In: Math-
ematical Programming 130 (Jan. 2010). doi: 10.1007/s10107-009-0334-1.
url: https://inria.hal.science/inria-00311274.

92

[Van+94] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. “Solving Binary
Cutting Stock Problems by Column Generation and Branch-and-Bound”. In:
Computational Optimization and Applications 3 (1994), pp. 111–130. url:
https://api.semanticscholar.org/CorpusID:42319347.

[Vil+05] D. Villeneuve, J. Desrosiers, M. E. Lübbecke, and F. Soumis. “On Compact
Formulations for Integer Programs Solved by Column Generation”. In: Annuals
of Operations Research 139 (2005), pp. 375–388. doi: 10.1007/s10479-005-
3455-9.

[VS06] F. Vanderbeck and M.W.P. Savelsbergh. “A Generic View of Dantzig–Wolfe De-
composition In Mixed Integer Programming”. In: Operations Research Letters
34 (2006), pp. 296–306. issn: 0167-6377. doi: 10.1016/j.orl.2005.05.009.
url: https://inria.hal.science/inria-00342623.

[VW10] F. Vanderbeck and L. A. Wolsey. “Reformulation and Decomposition of Integer
Programs”. In: 50 Years of Integer Programming 1958-2008: From the Early
Years to the State-of-the-Art. Ed. by M. Jünger, T. M. Liebling, D. Naddef,
G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 431–502. isbn: 978-
3-540-68279-0. doi: 10.1007/978- 3- 540- 68279- 0_13. url: https:

//inria.hal.science/inria-00392254.

93

