TU

Grazm

Thomas Langs, BSc

Large Language Models for Software

Development:

Scenario-Driven Model Selection and
Practical Exploration

Master’s Thesis to achieve the university degree of Master of Science
Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisors Roman Kern, Mark Kroll

Institute of Human-Centered Computing
Head: Assoc.Prof. Dipl.-Ing. Dr.techn. Denis Helic

Graz, January 2025

ii

Acknowledgments

First and foremost, I would like to express my gratitude and appreciation towards
my supervisors Assoc.Prof. Roman Kern and Dr.techn. Mark Kr6ll, for the contin-
uous support, and the invaluable feedback I received from both of you. Your ex-
cellent supervision and insightful suggestions throughout the entire process were
incredibly helpful. Furthermore, I would like to extend the gratitude and appreci-
ation to my family for the continuous support on my journey.

iii

Abstract

Following the recent surge in popularity of Large Language Models (LLMs), many
models that were also trained on source code now exist and can aid with soft-
ware development (SD). However, this raises the question of how to select and
compare LLMs for SD and how well the chosen model can aid the implemen-
tation of an actual software project. To shed light on this, we defined a prac-
tical SD scenario of a startup implementing an expense-tracking application us-
ing Java (and React). Based on criteria extracted from said scenario, we selected
eight models. These were then quantitatively compared on five aspects of Java
SD (i.e. code generation, code completion, unit test generation, method comment
generation, and automatic program repair) using benchmarks to select the over-
all best-performing model. We then used an IDE-integrated tool (GitHub Copilot)
based on the selected model (GPT-4(0)) to implement part of the application. The
quantitative model comparison revealed that the three best-performing and the
three worst-performing models respectively stayed the same respectively for four
aspects, with method comment generation being the only exception. Moreover,
looking at three benchmarks that provide a more fine-granular evaluation, the
three best-performing models primarily failed due to difficulties producing com-
pilable and functionally correct code. However, syntactical correctness did not
seem to be a problem in most cases. For the implementation phase, our observa-
tions revealed that GitHub Copilot was generally able to produce good starting
points; however, the code frequently contained small issues and inconsistencies,
as well as occasionally larger problems, like using libraries incorrectly (e.g., Ul in-
teractions and reactive state changes for test cases). This usually also depended
on the complexity of the task the model had to solve. Furthermore, we observed
that having a solid understanding of the programming language and framework,
utilizing explicit prompting, and supplementing the prompt with relevant files are
all essential to use the tool effectively. Generally, the tool was able to aid imple-
mentation efforts, although one must also be aware of potential pitfalls. Summing
up, this thesis provides the intrigued reader with insights into the LLM selection
process guided by a scenario as well as into subsequent implementation efforts
with an LLM-based tool.

v

Contents

1. Introduction

2. Background

2.1.
2.2.

2.3.

2.4.

2.5.

What innovations in Deep Learning led to the advent of LLMs?

Overview of Current LLMs
221. GeneralModels
2.2.2. Models Specifically Trained for Code
223. SmallModels
2.2.4. Integrated Approaches
Evaluation Measures of LLMs (NLP + Code)
23.1. CodeMeasures
2.3.2. Human Evaluationof LLMs
Historic Approaches
24.1. Code Generation
24.2. Code Completion
2.4.3. Unit Test Generation
2.44. Method Comment Generation
2.45. Automated Program Repair
Assessing Code Qualityo L.

3. Related Work

3.1.

3.2.
3.3.

3.4.

Model Benchmarking for Aspectsof SD
3.1.1. Code Generation
3.1.2. Code Completion
3.1.3. Unit Test Generation
3.1.4. Method Comment Generation
3.1.5. Automated Program Repair
Developer Behaviorand LLMs
LLM-aided development of a complete Software Project
3.3.1. What differentiates our approach from others (Research Gap)
Research Information

O 0 0 3 U1 Ul

10
10
12
13
14
14
15
17
18
20
21

23
23
23
25
26
27
29
30
32

34

Contents

4. Practical Scenario - Definition

4.1.
4.2.
4.3.

Company
Tech Stack Constraints
Application Constraints
4.4. Further Remarks on Tech Stack Considerations

5. Initial LLM Selection

5.1.

5.2.
5.3.

Method
5.1.1. Practical Exploration Constraints
5.1.2. Downstream Task Constraints
Results
Discussion

6. Model Comparison

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Code Generation
6.1.1. Method
6.1.2. Results.
6.1.3. Detailed Compilation Results

6.1.4. Discussion
Code Completion
6.2.1. Method
622. Results.
6.23. Discussion.
Unit Test Generation
6.3.1. Method
632. Results.
6.3.3. Discussion
Method Comment Generation
6.41. Method
642. Results.
6.43. Discussion
Automated Program Repair
6.5.1. Method
652. Results.
6.53. Discussion.
ModelRanking L.
6.6.1. Method
6.62. Results.
6.6.3. Discussion

Vi

35
35
35
36
37

39
39
39
40
40
43

45
45
45
48
49
51
52
52
54
57
60
60
61
63
67
67
68
70
72
72
73
75
77
77
79
30

Contents

7. Practical Scenario - Exploration 87
71. Method 87
7.2. Observations 90

7.2.1. KeyObservations 90
7.22. Code Generation 91
7.23. Code Completion 94
7.2.4. Test Case Generation 94
7.2.5. Comment Generation 97
7.2.6. Automated Program Repair and Code Adaption 98
7.3. Promptevolution 99
74, Summary e e 101

8. Conclusions 103

Appendix 121

A. Practical Scenario 122
Al DataModel 122
A2, UserStories 123
A3. UlMockups 123

B. Code Completion Prompt Examples 130

vil

List of Figures

2.1.
2.2.
2.3.

3.1.
3.2.

4.1.
4.2.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.

7.1.
7.2.
7.3.

Al
A2

Multi-Head-Attention L, 7
LLM Answer Feedback 13
LLM Answer Side-by-Side Feedback 14
CodeNLPair. 28
CodeGRITSIDE Tracker 31
DataModel 36
UlMockup 38
Code Generation Prompt 46
Code GenerationResults 49
Code Generation Detail Results 50
Code Completion Prompt 53
Code CompletionResults 56
Block Completion Error Categories 58
Control Statement Completion 59
Unit Test Generation Prompt 61
Unit Test GenerationResults 63
Unit Test Generation Coverage 64
Unit Test Generation Detail Results 66
Method Comment Generation Results 69
Method Comment Generation Comment Length 71
APRPrompt 73
APRResults 75
APRDetailResults oo 76
Rank over Model Size L, 81
Recording Approach 88
Screenshot Accounts Overview Page 89
Similar Examples 100
DataModel L 122
UI Mockup: Basic Application Components 126

viii

A3.
A4
AS.
A.6.
A7
AS8.

UI Mockup:
UI Mockup:
UI Mockup:
UI Mockup:
UI Mockup:
UI Mockup:

List of Figures

LoginForm. 126
Account CreationForm 127
Accounts Overview Page 127
Booking List 128
CategoriesPage 128
Budgets. 129

X

1. Introduction

Generative Artificial Intelligence (GenAl) for software development (SD) has be-
come a highly active field of research in recent years, both in academic and com-
mercial fields. This development has led to a situation where many different Large
Language Models (LLMs) exist that can be used for SD. This is illustrated by the
fact that Chatbot Arena (Chiang et al., 2024) currently” lists 187 LLMs in the code
section of their leaderboard. Such a vast landscape of models raises the question
of how one can select a model to use in the practical implementation of a software
project and how helpful such a model can be.

Therefore, this thesis explores how to choose a model given a concrete scenario
using a quantitative approach. This is followed up by qualitative assessment of the
utility of the selected model in aiding the implementation of the software project
from the scenario.

The theoretical part of our thesis is comprised of two chapters: Background
(Chapter 2) and Related Work (Chapter 3). The background chapter provides in-
formation on the evolutions leading up to the first LLMs. Additionally, it offers
an overview of current LLMs and commonly used evaluation measures. It closes
by detailing approaches to tackling the five Java SD aspects (see Table 1.1) prior
the advent of LLMs. The related work chapter provides an overview of important
benchmarks and datasets for evaluating the five aspects of Java SD (see Table 1.1),
informing the selection process for the model comparison. Moreover, this chapter
illustrates different approaches to tracking developer behavior when using LLMs,
informing our approach to tracking observations and interactions in the practical
exploration. The last part of the related work chapter details similar works and
subsequently highlights how our thesis differs.

The practical part of our thesis is structured into four main steps: (1) defining
the practical scenario, (2) selecting an initial group of models to be considered, (3)
comparing the models using quantitative methods to select the best-performing
one, and (4) qualitatively exploring the practical scenario by implementing part of
the application. The following paragraphs provide further details on these steps:

'https://1lmarena.ai/?leaderboard (Accessed: 05.01.2025)

https://lmarena.ai/?leaderboard

1. Introduction

1. Practical Scenario - Definition (Chapter 4) The scenario we explore is that
of a one-person startup that aims to develop a web application that allows users
to track their expenses. The application is split into a frontend and a backend
part. While this thesis focuses on Java SD, as this is the language we have the
most experience with, the tech stack consists of a fronted based on Next.js, a React
framework, and a backend based on Spring Boot, a Java framework. This is done
to use an up-to-date approach for building a front end. Additionally, this allows
us to experience the usefulness of the selected LLM for React, a language we were
unfamiliar with prior to this thesis.

Furthermore, which models can be considered is constrained by the limited
funds available to the startup. However, code privacy, regarding patents or in-
tellectual property, are not a primary concern.

To simplify the exploration process in step 4 and to be able to focus on the actual
implementation, we opt to provide user stories, a data model, and UI mockups.

This scenario is chosen as it provides an application that can (partially) be imple-
mented by a single person. Although this scenario is quite specific, our approach
to selecting and evaluating a model can arguably be applied to various scenarios
and needs.

2. Initial Model Selection (Chapter 5) Considering the scenario outlined
above, we define criteria that a model should fulfill in order to be useful for all
parts of our evaluation. This includes, among other things, being able to run as
additional software on a developer laptop or being available as a hosted offering.

Based on the defined criteria, we select eight fitting models, five of which are
hosted offerings. The other three are smaller models that can realistically run on
a developer machine in addition to existing applications like an IDE.

3. Model Comparison (Chapter 6) To narrow the selection to a single model,
we quantitatively evaluate the eight models on five aspects of Java SD. These are
chosen based on our experience with using Java in practice, further considering
the availability of sensible benchmarks. The five aspects we evaluate are given in
Table 1.1.

Note that the terms code generation and code completion are sometimes used
inconsistently in literature, our thesis uses the following distinction:

Code generation is the task of generating complete source code snippets, pri-
marily, but not necessarily exclusively, based on natural language text or com-
ments.

Code completion is the task of completing the current statement, line, block, or
method, at least based on the code before the caret position.

1. Introduction

Aspect Description

The task of synthesizing source code from a natural
language (NL) description and context information.
The task of generating further code to complete

an existing snippet, condition or statement.

The task of synthesizing a test case for a method under
test based on an NL description and additional
context information.

The task of generating a comment that describes
what a method does. Judging based on the similarity
to a reference description.

The task of automatically fixing bugs within a method
based on the method in question and additional
context information.

Code Generation

Code Completion

Unit Test
Generation

Method Comment
Generation

Automatic Program
Repair (APR)

Table 1.1.: The Aspects of Java SD that are part of the quantitative model com-
parison.

We rank the eight models based on their performance on the five aspects, each of
which are evaluated using a benchmark. The ranks range from 1 (best) to 8 (worst)
for each aspect, using the average rank as a tiebreaker. These results are then
combined using the arithmetic mean to arrive at the final rank for each model.

4. Practical Scenario - Exploration (Chapter 7) Using the results from
the model comparison, in the last step, we set out to see how helpful the best-
performing model can be for implementing (part of) the application. For this we
utilize an existing tool (GitHub Copilot) that is built around the selected model
(GPT-4(0)) and can be tightly integrated into the IDE. The implementation follows
the user stories already present from the first step. For this qualitative evaluation,
we start with an over-reliance on the tool, even relying on it for minor changes,
and adapting the usage over time if we find it not helpful. We keep track of our
our subjective observations and how our usage changes using pen and paper.
Furthermore, we record the screen and IDE interactions to be able to refer back to
them in case there is anything unclear in our notes. Furthermore, the maximum
duration of our practical exploration is limited to 80 hours, with the ability to
stop earlier if we cease to make notable new observations. The findings of this
exploration are presented in Chapter 7.

1. Introduction

In this thesis, we address the following research questions (RQs):

« RQ1: What aspects of an LLM are required to be useful for both our practical
exploration and the comparison? (addressed in Step 2)

« RQ2: How do the eight models compare on their benchmark performances?
(addressed in Step 3)

« RQ3: In which parts of the benchmarks do the highest-scoring models per-
form well, and where is room for improvement? (addressed in Step 3)

« RQ4: To what extent can GitHub Copilot aid in implementing a software
project? (addressed in Step 4)

With this thesis, we make the following key contributions:

« We provide insights into how to find a fitting model based on a practical
scenario.

« We identify where, in the benchmarks we use for model comparison, the
best-performing models perform well and where they do not.

« We present our findings from implementing part of the application from
the scenario with the aid of GitHub Copilot, which is based on a variant of
OpenAI’s GPT-4 models.

2. Background

This chapter serves as an introduction to many of the topics we touch on during
this master thesis. These include the history of how LLMs came to be (2.1), an
overview of current LLMs (2.2), an overview of commonly used evaluation mea-
sures for LLMs (2.3), previous approaches to tasks related to Java software devel-
opment(2.4) and tools for measuring code quality (2.5).

2.1. What innovations in Deep Learning led to the
advent of LLMs?

In this section, we summarize the history of how LLMs came to be, starting with
Recurrent Neural Networks (RNNs) and ending with some of the first "modern”
models like BERT (Devlin et al., 2019) and GPT-1 (Radford and Karthik, 2018).

One key capability that enables large language models (LLMs) to be this pow-
erful is incorporating previous inputs and outputs, say previous parts of a conver-
sation, into the output generation process during normal execution.

This contrasts classical feed-forward neural networks (NNs), which cannot re-
tain information about previous inputs and outputs outside the learning phase.
The idea of enabling NNs to retain a state between executions is not new, how-
ever. The first explorations already took place in the twentieth century with early
Recurrent Neural Network (RNN) versions. Graves (2014) and Schmidt (2019) pro-
vide further information on RNNs.

However, early RNNs had a fundamental problem preventing them from retain-
ing information over many time steps: their gradients would tend to either blow up
or vanish. The latter case is especially interesting here, as this leads to the down-
side that "learning to bridge long time lags takes a prohibitive amount of time, or
does not work at all” (Hochreiter et al., 2001). This problem was solved by the in-
troduction of Long-Short-Term Memory (LSTM) cells, which enabled information
retention across more than 1000 time steps (Hochreiter, 1997). LSTMs were then
applied in, among other things, music (Boulanger-Lewandowski et al., 2012; Eck
and Schmidhuber, 2002), text, and handwriting generation (Graves, 2014).

The next step along the journey to LLMs came with the introduction of Encoder-
Decoder Architectures (Sutskever et al., 2014; Cho et al., 2014). This type of archi-

2. Background

tecture allows to encode a variable-length input to an internal state with a fixed size.
From this internal state, the output, again of variable length, can be decoded. One
field of application for these models is Neural Machine Translation (NMT). Here,
the goal is to encode text from the source language and then decode the text into
the target language. This type of architecture was first introduced by Sutskever
et al. (2014) and Cho et al. (2014) and subsequently improved by the introduction
of attention mechanisms (Bahdanau et al., 2016; Luong et al., 2015; Jean et al., 2015).

Bahdanau et al. (2016) explain the attention mechanism fittingly in their paper:
”The decoder decides parts of the source sentence to pay attention to. By letting
the decoder have an attention mechanism, we relieve the encoder from the bur-
den of having to encode all information in the source sentence into a fixed-length
vector. With this new approach, the information can be spread throughout the
sequence of annotations, which can be selectively retrieved by the decoder ac-
cordingly” (Bahdanau et al., 2016).

The next major evolution of the encoder-decoder architecture came with the
introduction of transformers (Vaswani et al., 2017), which rely only on attention
and not on recurrences or convolutions. This allows the model to be trained sig-
nificantly faster. One key building block of the transformer architecture is the
Multi-Head-Attention layer (see Figure 2.1). It is used in two ways:

1. Self Attention: with Key, Value, and Query coming from the same source,
allowing it to attend to all outputs of the previous layer (Vaswani et al., 2017).

2. Encoder-Decoder Attention: with K and V coming from the encoder and Q
coming from the decoder. Allows decoder input (all previously generated
output) to attend to the input (that is fed through the encoder) (Vaswani
et al., 2017).

Subsequently, the transformer architecture was then applied in (large) language
models like BERT (Devlin et al., 2019) and GPT(-1) (Radford and Karthik, 2018).
Both models are similar in that they are pre-trained on a general task and then
fine-tuned on a specific task. However, they differ in architecture and training
methods. GPT is trained on texts to predict the next token, while BERT is trained
as a Masked Language Model (MLM). When training a MLM, the task is to predict
randomly blanked-out tokens. Moreover, these models also differ in architecture:
GPT is a decoder-only model, while BERT is an encoder-only model.

In this section, we gave a brief overview of the technical evolutions that led to
the advent of LLMs, primarily focusing on the field of Natural Language Processing
(NLP).

2. Background

Linear

Concat

4

Scaled Dot-Product J& h
Attention N
4 1 4
- - -
Linear Linear Linear

Figure 2.1.: Multi-Head-Attention. An illustration of a Multi-Head-Attention
layer that consists of h attention heads and has the following inputs:
Key, Value, and Query. Taken from Vaswani et al. (2017).

2.2. Overview of Current LLMs

Having introduced the history leading up to LLMs, we aim to provide an overview
of currently available models.

We start with more general models like (Chat-)GPT (Radford and Karthik, 2018;
Brown et al., 2020; OpenAl et al., 2024) or Gemini (Team et al., 2024a,b) continue to
SD-specific models like OpenAl Codex (Chen et al., 2021) and StarCoder (Li et al.,
2023; Lozhkov et al., 2024), before concluding at integrated offerings like GitHub
Copilot! or Replit AI%.

As the field of LLMs is highly active, with new models and model versions con-
stantly being released, we expect the currently relevant models to be replaced by
even better ones soon. Therefore, we want to refer the reader to a regularly up-
dated leader-board® that provides scores of various models in different domains.

'https://github.com/features/copilot (Accessed: 14.10.2024)
https://replit.com/ai (Accessed: 14.10.2024)
3For example: https://1lmarena.ai/?leaderboard (Accessed: 25.12.2024)

https://github.com/features/copilot
https://replit.com/ai
https://lmarena.ai/?leaderboard

2. Background

2.2.1. General Models

These models were not specifically trained to perform well on code or coding-
related tasks. However, as general models are usually at least also trained on code,
they are, therefore, also relevant parts of the landscape of LLMs for code.

Prominent commercial models that fit into this criterion are, among others,
ChatGPT (Brown et al,, 2020; OpenAl et al., 2024) from OpenAl, Gemini (Team
et al., 2024a,b) from Google, and Claude (Anthropic PBC, 2024) from Anthropic.

However, there also exists a multitude of prominent open models, which can
be grouped into two categories: open-weight and open-source*. The difference
between these two categories is that only the weights are publicly available for an
open-weight model, whereas everything is for a full open-source model.

Prominent open-weight model families include LLaMA (Touvron et al., 2023a,b;
Dubey et al.,, 2024), and Gemma (Team et al., 2024c), as well as Mistral (Jiang et al.,
2023) and Mixtral (Jiang et al., 2024a). An example of a completely open-source
model is OpenLLaMA °. This is an approach to creating a model similar to LLaMA
but with more favorable licensing terms (Apache 2.0). Moreover, the creators of
OpenLLaMA also detail how the model was trained, including the datasets and
tools used.

General models, like the ones listed above, are usually trained on a various tasks,
including open-source code. Intuitively, this would give them good *world knowl-
edge” and some capabilities for handling source code. This is underlined by the fact
that currently, one Leaderboard for HumanEval® shows both GPT-40 and Claude-
3 Sonnet in the Top 10. Moreover, all other models in the top 10 are based on a
Model from OpenAlL

2.2.2. Models Specifically Trained for Code

There not only exist general models, but also ones that are trained or fine-tuned
for specific tasks, like synthesising code. This means that such models were ei-
ther trained with the coding task as a primary objective or the developers took a
general model and fine-tuned it on coding-related tasks. One example of a code
dataset commonly used in the training procedure is "The Stack”(Kocetkov et al.,
2022; Lozhkov et al., 2024). Moreover, when looking at the models below, it can be

‘https://promptengineering.org/llm-open-source-vs-open-
weights-vs-restricted-weights/#open-weights-vs-open-source-
for-language-models (Accessed: 14.10.2024)

Shttps://github.com/openlm-research/open_llama (Accessed: 21.08.2024)

Shttps://paperswithcode.com/sota/code-generation-on-humaneval
(Accessed: 21.08.2024)

https://promptengineering.org/llm-open-source-vs-open-weights-vs-restricted-weights/#open-weights-vs-open-source-for-language-models
https://promptengineering.org/llm-open-source-vs-open-weights-vs-restricted-weights/#open-weights-vs-open-source-for-language-models
https://promptengineering.org/llm-open-source-vs-open-weights-vs-restricted-weights/#open-weights-vs-open-source-for-language-models
https://github.com/openlm-research/open_llama
https://paperswithcode.com/sota/code-generation-on-humaneval

2. Background

noted that the training or fine-tuning data is usually collected from open-source
repositories on pages like GitHub.

When looking at the category of fine-tuning approaches, noteworthy models
include Codex (Chen et al,, 2021) from OpenAl, which is based on GPT-3 (Brown
et al., 2020), CodeLlama (Roziére et al., 2024) (based on Llama2 (Touvron et al.,
2023b)), and CodeGemma (Team et al., 2024d) (based on Gemma (Team et al.,
2024c)). For models that were trained from scratch, approaches include Star-
coder (Li et al.,, 2023; Lozhkov et al., 2024), ReplitCode v1.5 3b (Replit, Inc, 2023),
and AWS CodeWhisperer (O’Neil, 2021).

One model series that is not consistently within any of the above-mentioned
categories is DeepSeekCoder (Guo et al,, 2024). The first version of this model
had been trained from scratch, with the developer switching to a fine-tuning ap-
proach for the second version. They based the model there on their more gen-
eral DeepSeek-V2 (DeepSeek-Al et al., 2024a). Furthermore, with their newest
model, DeepSeekV-2.5, they removed the separation between the general and code-
specific models altogether, combining both V2 models into one’.

In addition to the models mentioned above, a list of even more currently avail-
able models can be found in Jiang et al. (2024b) on page 4. There, the authors
present them in the form of a chronological overview. They list 70 different mod-
els, most of which, but not all of them, are directly intended to generate code.

2.2.3. Small Models

Another interesting direction some model developers turn to is providing their
models with varying amounts of parameters. This sometimes also includes models
with few parameters (< 4 billion parameters). Such a models size is particularly
interesting, as it is the most likely to be able to run as an additional software on a
developer machine with sufficient performance (token generation speed).

One example of this approach is Phi3 (Abdin et al., 2024), where the smallest
model has 3.8b parameters. Moreover, the authors of this paper also managed to
run this model on a phone with a memory footprint of 1.8GB using quantization.
Another example that features a small and even very small model is Qwen2 (Yang
et al., 2024). The authors released models with 0.5b and 1.5b parameters respec-
tively.

One additional approach worth mentioning is the "Full Line Code Completion”
model from JetBrains (Semenkin et al., 2024). There, the authors take a different
approach by creating small models trained explicitly for a single language. This

"https://api-docs.deepseek.com/updates/#deepseek-coder--
deepseek-chat-upgraded-to-deepseek-v25-model (Accessed: 14.10.2024)

https://api-docs.deepseek.com/updates/#deepseek-coder--deepseek-chat-upgraded-to-deepseek-v25-model
https://api-docs.deepseek.com/updates/#deepseek-coder--deepseek-chat-upgraded-to-deepseek-v25-model

2. Background
allows them to provide line completion suggestions in a purely local manner.

2.2.4. Integrated Approaches

The following gives an overview of integrated approaches, which are either di-
rectly bundled with an editor or installable as a plugin. Integrated approaches
usually consist of at least one LLM and are (deeply) integrated into the code edi-
tor. Intuitively, there are multiple advantages to such a deep integration: Firstly,
it allows for context information to be automatically supplemented when writing
prompts. This can allow users to write shorter prompts, as they do not need to ex-
plain the whole context themselves. Secondly, tight coupling enables using LLMs
for code completion, which is similar to but more potent than current suggestion
systems.

Several IDEs come bundled with LLM features. These include JetbrainsAl and
"Full Line Code Completion” (Semenkin et al., 2024) for JetBrains IDEs, Intelli-
code (Svyatkovskiy et al., 2020) for Visual Studio, or ReplitAl for the Replit® online
IDE. Moreover, approaches that can be integrated via a plugin include GitHub
Copilot (Chen et al., 2021) , AlphaCodium (Ridnik et al., 2024), and tabnine’.

2.3. Evaluation Measures of LLMs (NLP + Code)

Having established the evolution of approaches that ultimately led to LLMs, this
leaves the question of how to evaluate such models. One way to assess the per-
formance of LLMs on generative tasks is to compare a model’s output with a ref-
erence text or code. Multiple approaches exist to quantify the relation between
the desired and actual output. In the following, we discuss prominent evaluation
measures that can be used to evaluate the text and code output of LLMs. We start
by intuitively defining the need for capable measures for Language Modelling and
then move to code-specific measures for evaluating LLMs.

Arguably, the most straightforward approach to comparing two texts is using
exact match (EM). EM is a binary measure that distinguishes whether two texts are
exactly the same or not. While this measure is simple, it is not robust. This becomes
obvious when comparing the following two strings: (1) "Happy Birthday” and (2)
"Happy Birthday!”. Whilst their meaning is practically the same, EM classifies
them as entirely different.

Shttps://replit.com/ (Accessed: 14.10.2024)
*https://www.tabnine.com/ (Accessed: 26.12.2024)

10

https://replit.com/
https://www.tabnine.com/

2. Background

This drawback leads to Edit Distance'® (ED) being the next candidate. ED works
by computing a cost function on a per-character basis. Matching characters incur a
cost of 0, whilst additional or missing characters cost 0.5 each. A wrong character
incurs a cost of 1 - this is intuitive when visualizing character substitution remov-
ing one character (0.5 cost) followed by the insertion of another one (0.5 cost).
Whilst this approach is already more fine-grained than EM, it only compares texts
on a per-character basis and ignores all surrounding context.

n-gram Text Measures One approach to incorporate the context are n-grams'’,
where the text is segmented with a n element-wide sliding window, e.g., using a
character or token granularity. N-grams are usually not used in isolation but as
a building block for more complex approaches. One popular n-gram-based mea-
sure is BLEU (Papineni et al., 2001), initially developed for machine translation. It
combines a modified n-gram approach with a "brevity penalty.” This penalty ex-
ists to ensure that the translation does not get too short. In the original paper, the
authors reported that the BLEU score correlates with human judgment.

Another approach is chrF(++) (Popovic, 2015, 2017), which calculates the F-score
based on character n-grams. The approach can be controlled using selectable sys-
tem parameters, namely the n-gram length and 3. [controls the importance of
recall. The main difference introduced by chrF++ (Popovi¢, 2017) is that the au-
thors added word uni- and bi-grams to the formula.

Another approach that is based on n-grams is ROUGE (Lin, 2004). There the au-
thors utilize the rate of n-grams that occur in both texts to compare them. More-
over, they also propose approaches based on the longest common subsequence
(ROUGE-L) word uni- and bi-grams (ROUGE-1/-2).

One final approach we want to highlight is METEOR' (Denkowski and Lavie,
2014), which addresses shortcomings of the BLEU score. METEOR is based on
alignment" with word unigrams and consists of two main parts. F,cqn, the first
part, is computed based on precision and recall of the alignment. It weighs recall
significantly higher than precision. The second part is a fragmentation penalty
that can reduce the score by up to 50% if the word groupings differ considerably
from the reference output (i.e., if a phrase was torn apart).

0Also called Levenshtein Distance (see https://en.wikipedia.org/wiki/
Levenshtein_distance (Accessed: 11.08.2024))

Uhttps://de.wikipedia.org/wiki/N-Gramm (Accessed: 11.08.2024)

Phttps://en.wikipedia.org/wiki/METEOR (Accessed: 12.08.2024)

BWhat parts of the source text map to what parts of the target text

11

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://de.wikipedia.org/wiki/N-Gramm
https://en.wikipedia.org/wiki/METEOR

2. Background

2.3.1. Code Measures

Theoretically, one could also take a measure like BLEU (Papineni et al., 2001) and
evaluate it on code - after all, code is still just a unique form of text. However, these
measures are not tailored to the specific characteristics of code. In the following,
we therefore present two measures that are: (1) CodeBLEU and (2) ChrystalBLEU.

One approach that takes the advances of NLP-specific measures and extends
them to code is CodeBLEU (Ren et al., 2020). It is based on BLEU and combines
syntactic and semantic measures by adding (1) abstract syntax trees (ASTs) and (2)
data flow graphs (DFGs). The AST™ is a way of representing the code as a tree of
operations with branches usually being parts of an if clause (Branches: condition,
if, (else)) or a loop (Branches: condition, body). The score that then influences
CodeBLEU is calculated based on how many sub-trees of the reference solution
are in the output. The DFG" is a graph that illustrates how information flows
in a function. The nodes represent operations, and the edges represent informa-
tion flowing between the operations. For CodeBLEU, the DFG part of the score is
calculated based on the number of data flows that match the reference solution.

Another approach that extends BLEU to code is ChrystalBLEU (Eghbali and
Pradel, 2022). There, the authors compute the k most common n-grams of the
code and remove them from the BLEU calculation. Their paper shows, that in
Java, the most common 2- and 4-grams mainly consist of brackets and a few com-
mon keywords like "public” or "return.” The authors show that their approach
outperforms BLEU in accuracy, precision, and F1-score in code clone detection.
Although, BLEU outperforms ChrystalBLEU in terms of recall value.

There also exists an approach called CodeBERTScore (Zhou et al., 2023), which
compares two code snippets by encoding the instruction-code pairs'® using
language-specific CodeBERT (Feng et al.,, 2020) models. The code part (without
punctuation) is then compared by pairwise cosine similarity which produces a
similarity matrix. The precision value of their score is then computed by apply-
ing the max operation along all rows. The same is done for recall by applying the
operation on all columns. Their paper shows, that their measure more strongly
correlates with functional correctness than most other measures (only exception:
METEOR).

Yhttps://en.wikipedia.org/wiki/Abstract_syntax_tree (Accessed:
12.08.2024)

Bhttps://bears.ece.ucsb.edu/research-info/DP/dfg.html (Accessed:
12.08.2024)

18Encodes (instruction, reference code) and (instruction, generated code)

12

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://bears.ece.ucsb.edu/research-info/DP/dfg.html

2. Background

Important Measure Whilst pass@k (Kulal et al., 2019; Chen et al., 2021) is not
a measure that compares two texts or code snippets with each other, it is still im-
portant to highlight it here, as it is often used in the field of LLMs when evaluating
them on their abilities related to code. Pass@k is the probability that at least 1
out of k generated outputs passes all requirements. These requirements could, for
example, be test cases or a code quality gate.

2.3.2. Human Evaluation of LLMs

In the previous parts, we have shown how different measures can be used to eval-
uate the performance. While these measures can easily be computed on thousands
of examples and allow for a straightforward comparison of models, this approach
might not be suitable for all use cases. This becomes clear when considering that
multiple approaches and levels of detail exist with which a concept can be ex-
plained. Such a situation calls for a different form of evaluation, like using the
users of LLMs to evaluate their performance.

Please provide me with a funny programmer joke

& Sure! Here's a classic one:

Why do programmers prefer dark mode?

Because light attracts bugs! # &

g b PO

Figure 2.2.: LLM Answer Feedback. An example of how users can provide feed-
back on the answer received by the model. A thumbs up signifies a
good answer, and a thumbs down signifies a bad answer. Screenshot
taken from ChatGPT (GPT-40).

One straightforward approach used by many LLM providers nowadays is to give
users feedback buttons to allow them to mark especially good or bad answers (see
Figure 2.2). While this allows the provider of a model to gain information on the
perceived quality of the model it does not lend itself to model comparison. To
address this shortcoming, one can let users rank the outputs of multiple models
based on the same prompt. An example taken from Chatbot Arena'’ can be seen
in Figure 2.3.

Moreover, human evaluations do not have to be collected from the actual users.
To compare models, one approach is to ask human experts or evaluators to judge

https://lmarena.ai/?leaderboard (Accessed: 26.12.2024)

13

https://lmarena.ai/?leaderboard

2. Background

@ Expand to see the descriptions of 84 models “«

Please provide me with a funny programmer joke Please provide me with a funny programmer joke

Here are a few options, pick the one you like best! Here's a classic programming joke:
Option 1 (Classic): Why do programmers always mix up Halloween and Christmas?
Why did the programmer quit his job? Because Oct 31 = Dec 25!

Because he didn't get arrays! (This is a number system joke - Oct 31 is 31 in octal notation, which equals 25 in decimal notation!

Option 2 (Relatable):
"Debugging is like being the detective in a crime movie where you are also the murderer”"

Option 3 (Short & Sweet):

Why do Java programmers have to wear glasses?

Because they don't C#

Option 4 (A bit more technical):

Ais better Bis better Tie Both are bad

Figure 2.3.: LLM Answer Side-by-Side Feedback. An example of an applica-
tion that allows the user to rank the outputs of two different models.
Screenshot taken from Chatbot Arena.

model output concerning specific questions. This can be seen in Iyer et al. (2016),
where the authors asked humans to rate C# and SQL comments regarding their
"naturalness” and “informativeness” on a scale from 1 to 5.

Another way to evaluate, for example, the usefulness of an LLM for software
development is to conduct studies of how users use the tools and their experience
with it. One example is the study by Tang et al. (2024a) where the authors tracked
user interactions a tool called CodeGRITS (Tang et al., 2024b). Moreover, they
had the participants fill out cognitive workload assessments and conducted semi-
structured interviews.

2.4. Historic Approaches

The tasks of code generation, test case generation, code completion, unit test gen-
eration, method comment generation and automatic program repair (APR) are not
purely a result of the advent of LLMs. Instead, they were explored and evaluated
before the first LLM was even trained. In the following, we examine the five tasks
more thoroughly and highlight some “historic” approaches.

2.4.1. Code Generation

Code generation is the task of generating methods, classes or even entire projects
using a non-code definition. In the past, the definitions took various forms, such

14

2. Background

as diagrams or models, in combination with templates.

Diagrams One popular diagram-based approach to generating code is using the
Unified Modeling Language (UML), specifically UML class diagrams'. This al-
lows for the specification of details of the class itself, like methods or fields. More-
over, it also allows to define the relationship between classes, like inheritance.
However, such modeling techniques usually have no way to specify a method’s
behavior directly. This means that tools usually generate empty method bodies
that must be manually filled with code. Additionally, the fact that the actual be-
havior is not included in the model raises the question of how to deal with the
method bodies when adapting the UML model.

Models and Templates One approach using text-based models and templates is
Telosys?, which is based on the Apache Velocity template engine?!. The modeling
part of Telosys is similar to UML in that it allows the user to model data classes
and their relationships. Additionally, this tool offers the ability to define velocity
templates that describe how models are translated to code. The combination of
templates and models can even be used to generate entire applications.

For example, there exists a template?® that takes a data model and converts it
into a Spring Boot JPA REST application that allows Create, Read, Update, and
Delete (CRUD) operations on the data.

2.4.2. Code Completion

The task of code completion involves generating code to complete a statement
based on information about the context, which is usually gathered using static
analysis®®. Most IDEs provide some implementation of this feature out of the box.
Moreover, code completion can be defined using various granularities ranging
from the next token to the complete method.

Bhttps://de.wikipedia.org/wiki/Unified_Modeling_Language (Ac-
cessed: 13.09.2024)
Yhttps://www.visual-paradigm.com/guide/uml-unified-modeling-
language/what-is-class-diagram/ (Accessed: 13.09.2024)
Phttps://www.telosys.org/ (Accessed: 13.09.2024)
“https://velocity.apache.org/ (Accessed: 13.09.2024)
Zhttps://github.com/telosys-templates/java-rest-springboot-
jpa-basic (Accessed: 13.09.2024)
Bhttps://en.wikipedia.org/wiki/Code_completion (Accessed: 18.09.2024)

15

https://de.wikipedia.org/wiki/Unified_Modeling_Language
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-class-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-class-diagram/
https://www.telosys.org/
https://velocity.apache.org/
https://github.com/telosys-templates/java-rest-springboot-jpa-basic
https://github.com/telosys-templates/java-rest-springboot-jpa-basic
https://en.wikipedia.org/wiki/Code_completion

2. Background

Statistical Code Completion Allamanis et al. (2019) describe the original goal
of statical code completion as ranking completion suggestions based on the context
rather than simply alphabetically. One of the first works to improve upon this was
the Best Matching Neighbours (BMN) algorithm, by Bruch et al. (2009), which uses
an adapted k-Nearest Neighbours (kNN) approach to rank the suggestions based
on similar usages in the code base. Another approach is to do code completion
on the level of n-grams. One example of Hindle et al. (2012), where the authors
developed an n-gram-based code completion model for Java, which outperformed
the approach that shipped with the Eclipse IDE then.

Code Completion Tools Nowadays, IDEs like Intelli] IDEA?* approach the task
by analyzing the context and providing suggestions based on the currently written
code. The analyzed context here usually includes the current file and other classes
within the project and project dependencies.

Intelli] IDEA, specifically collects completion usage data to suggest better com-
pletions based on previous choices. Moreover, it allows the possibility to expand
keywords to complete functions automatically. One example is the extension of
“psvm” to the standard Java main method.

When comparing the traditional code completion in JetBrains IDEs for Java and
Python, one can observe that suggestions for Java tend to be more accurate and
the list of suggestions tends to be complete®. This is intuitive, as Java is a strongly
typed language, and developers can therefore receive better suggestions than for
Python, where a specific variable’s datatype might only be known during execu-
tion. One example that illustrates the practical benefit of this is that if one writes
”String s = SomeClass.” the IDE suggests all static methods of SomeClass that return
strings and all visible constants.

Distinction from Code Generation The distinction from code generation can
be fuzzy at times. One example is the CoderUJB (Zeng et al., 2024) benchmark,
where the authors present a code generation benchmark but call it coderujbcom-
plete in their repository. In this benchmark, the task is to generate complete meth-
ods based on the method comment and the signature, and the other context infor-
mation.

Lu et al. (2021) present a relatively straightforward categorization, where they
list code generation as a text-to-code task and code completion as a code-to-code

“https://www. jetbrains.com/help/idea/auto-completing-code.
html#basic_completion (Accessed: 09.09.2024)

%For an example see https://medium.com/swlh/static-types-vs-dynamic-
types-stop-fighting-and-make-my-life-easier-already-
73f58bfe7d0 under "IDE Assistance” (Accessed: 25.12.2024)

16

https://www.jetbrains.com/help/idea/auto-completing-code.html#basic_completion
https://www.jetbrains.com/help/idea/auto-completing-code.html#basic_completion
https://medium.com/swlh/static-types-vs-dynamic-types-stop-fighting-and-make-my-life-easier-already-73f58bfe7d0
https://medium.com/swlh/static-types-vs-dynamic-types-stop-fighting-and-make-my-life-easier-already-73f58bfe7d0
https://medium.com/swlh/static-types-vs-dynamic-types-stop-fighting-and-make-my-life-easier-already-73f58bfe7d0

2. Background

task. Combined with the above example, this illustrates the source for ambiguity,
namely that the code generation task also utilizes parts from the code as auxiliary
information.

Therefore, to avoid confusion in this thesis, we use the following distinction:
Code generation is the task of generating complete source code snippets, primarily,
but not necessarily exclusively, based on natural language text or comments. Code
completion is the task of completing the current statement, line, block, or method, at
least based on the code before the caret position.

2.4.3. Unit Test Generation

Unit tests are the lowest-granularity tests in a software project. In Java, they are
usually used to test individual methods or classes without depending on other
components. The standard library for writing unit tests in Java is JUnit*, which
is frequently accompanied by Mockito?, a library that allows one to mock the
behavior of other classes that the current class depends on. This allows developers
to circumvent actual implementations, like slow file system or network accesses, of
dependencies and specify the class’s desired behavior instead. Moreover, Mockito
also tracks calls to the mocked object, essentially allowing tests to check how often
a mocked method was called.

Automatically Assessing Test Quality While one could just write tests, exe-
cute them, and verify that they pass, this does not inform the developer whether
they managed to cover all parts of the code or whether their test cases are robust
or efficient. A metric called code coverage® can be used to assess whether the
tests cover all parts. This measure usually indicates the percentage to which all
methods, statements, and branches in a method or class are covered. For Java, this
can be evaluated using the JaCoCo® library. Additionally, mutation testing can be
employed to ensure that the test cases are robust. There, small changes, so-called
“mutations,” are introduced in the code, and it is checked whether the unit tests
are able to catch them. One prominent example for Java is PITest™.

Additional Considerations When testing software, there are not only auto-
matic assessment tools to be considered but also other factors. These include the

®https://junit.org/junit5/ (Accessed: 13.08.2024)
Thttps://site.mockito.org/ (Accessed: 13.08.2024)
Bhttps://en.wikipedia.org/wiki/Code_coverage (Accessed: 13.08.2024)
Yhttps://www.jacoco.org/jacoco/trunk/doc/ (Accessed: 13.08.2024)
Yhttps://pitest.org/ (Accessed: 13.08.2024)

17

https://junit.org/junit5/
https://site.mockito.org/
https://en.wikipedia.org/wiki/Code_coverage
https://www.jacoco.org/jacoco/trunk/doc/
https://pitest.org/

2. Background

time required to execute the test cases and their repeatability, maintainability, and
understandability.

Automatic Test Generation Several tools exist to generate unit tests for Java
code automatically. Here, we highlight two open-source applications that are
also actively maintained: (1) EvoSuite and (2) Randoop. However, one important
attribute of such systems to remember is that they generate these test cases based
on the code. This means that bugs exisitng in the code can or do also become
testing criteria. In the worst case, this can lead to test cases verifying that the bug
is still present.

EvoSuite (Fraser and Arcuri, 2013) is an approach to automated test generation
to maiximize code coverage while reducing the number of assertions. The authors
achieve this behavior by using two key techniques: (1) generating the whole test
suite based on the combined code coverage rather than focusing on covering
individual elements. And (2) employing mutation testing to minimize the number
of assertions while maximizing the coverage of each assertion.

Randoop (Pacheco and Ernst, 2007) works based on "feedback-directed random
testing” (Pacheco and Ernst, 2007), which is used to generate test cases. In general,
it distinguishes between two types of tests: (1) error-revealing tests that reveal
already existing bugs and errors and (2) regression tests that currently pass but
might reveal bugs that are introduced in the future. The test case generation is
based on so-called contracts, which can be extended to define the desired behavior.
The default contracts include, for example, “reflexivity” and “equality.”

2.4.4. Method Comment Generation

Accurate and up-to-date comments are essential to keep software understandable
and maintainable. In this section, we highlight two approaches for generating
method comments/headers for Java before the advent of Transformers and also
show some actual tools for documentation generation in Java.

Before LLMs, there were various approaches to generating method comments.
One of these is the approach by Sridhara et al. (2010) where they generate Java
method comments from the method signature and body. They present the prob-
lem as consisting of two steps: (1) selecting the correct content to include in the
comment and (2) generating the actual NL comment. They use a Software Word
Usage Model (SWUM) (Hill et al., 2009) to preprocess the input data to extract
what they call "action,” "theme,” and "secondary arguments.” These are used as in-
put to their generator, which selects the most important parts, generates the NL

18

2. Background

representation, and subsequently combines them into the method comment. This
generator deals with the method in terms of "Sunits,” which usually represent in-
dividual statements, except for loops or branches, which can consist of multiple
”Sunits” They evaluate their approach by letting 13 people with experience in Java
programming judge outputs generated by their model. Among other things, they
report the majority opinion on various criteria. Each of which have three answer
possibilities. While their approach managed to gain primarily good reviews on
“Accuracy” (7/8 times the majority for the best answer possible), the same can not
be said for "Content Adequacy” (4/8) and "Conciseness” (3/8).

Another approach we want to highlight is Code-NN (Iyer et al., 2016), in which
the authors created an LSTM to summarize code snippets in C# and SQL. Iyer
et al. (2016) evaluate their model on the dataset they created based on the title of
StackOverflow (SO) posts combined with the code snipped from the accepted an-
swer. They subsequently clean the dataset by automatically classifying samples as
“clean” or "not clean” The authors do this by utilizing a self-trained classifier. They
also create two human-written titles for each sample in their test set to capture
a wider variety of answer possibilities. In addition to that, Iyer et al. (2016) com-
pare their model with various baselines on code summarization and code retrieval;
however, here, we focus on summarization only. They evaluate the summariza-
tion capabilities using BLEU-4 (Papineni et al., 2001) and METEOR (Denkowski
and Lavie, 2014) and show that their model outperforms the baseline methods.
Moreover, the authors also let five human annotators rank the approach on a scale
from 1 to 5 for "Naturalness” and “Informativeness.” They showed that it statis-
tically significantly outperformed all but one baseline in all measures except for
one.

Java Landscape Java features various ways to write comments: (1) inline com-
ments (//), (2) block comments (/*..*/), and (3) Javadoc comments (/** */). In
the following, we focus on Javadoc comments (Oracle Corporation), which can
be semi-automatically generated and feature the possibility of adding metadata
about information like parameters, return values, exceptions, and more. The most
prominent use of such documentation is in open-source libraries to provide infor-
mation on how to use methods and what they do (i.e., API/library documentation).
Moreover, this type of documentation is usually also tightly integrated into IDEs,
meaning that inspections and code suggestions also benefit from good Javadoc
documentation. Another feature is the possibility to generate HTML documenta-
tion from these Javadoc comments>!.

31See one example at https://docs.spring.io/spring-framework/docs/
current/javadoc-api/ (Accessed: 20.08.2024)

19

https://docs.spring.io/spring-framework/docs/current/javadoc-api/
https://docs.spring.io/spring-framework/docs/current/javadoc-api/

2. Background

Modern Java IDEs feature the capability to generate parts of the Javadoc auto-
matically. This means that they can prepopulate the comment with metadata tags
and inform the user when, for example, a newly created call parameter is not in
the Javadoc, or a deleted one still is. However, these tools usually only create the
blueprint comment, not the NL description.

One separate tool that partially addresses that shortcoming is JAutodoc *?, a
plugin for Eclipse®® that allows the use of templates to define how to generate the
content of Javadoc comments.

2.4.5. Automated Program Repair

Automated Program Repair (APR) is the task of automatically fixing bugs in code.

Tools and approaches to solve this task were already explored a long time before
LLMs were introduced, with GenProg (Le Goues et al., 2012), one often-cited**
approach, being released more than 10 years ago. This approach was released
for use with C, utilizes genetic programming® (GP) to generate program fixes,
and requires test cases to verify the fix. GP is an approach based on generational
evolution/mutation and bears similarity to human genetic evolution. Here, the
different evolution/mutations are compared using a fitness score computed based
on the test case results. The authors of GenProg also apply three major changes
to the GP approach, thereby improving the problem of potentially infinite search
spaces. These are: (1) setting the granularity at which they operate to statements
of ASTs, (2) introducing the assumption that correct code for this problem exists
somewhere in the code base, and (3) restricting mutations to AST elements that
are actually executed by the failing test case.

Martinez and Monperrus (2016) implemented the Java-specific version jGen-
Prog2 and added the capability to choose the scope of the part of the codebase
to be considered when looking for correct implementations. With this paper, the
authors also publish further Java-adaptions® of other algorithms: jKali as an adap-
tion of Kali (Qi et al., 2015) and jMutRepair as an adaption of MutRepair (Debroy
and Wong, 2010).

Another approach we want to highlight is Pattern-based Automatic Repair
(PAR) (Kim et al., 2013), where the authors improved upon GenProg by integrat-

*See https://jautodoc.sourceforge.net/ (Accessed: 19.08.2024)

Bhttps://www.eclipse.org/downloads/ (Accessed:19.08.2024)

34Cited in 707 papers as of 26.09.2024: https://ieeexplore.ieee.org/document/
6035728

¥https://en.wikipedia.org/wiki/Genetic_programming (Accessed:
26.09.2024)

¥https://github.com/SpoonLabs/astor (Accessed: 27.09.2024)

20

https://jautodoc.sourceforge.net/
https://www.eclipse.org/downloads/
https://ieeexplore.ieee.org/document/6035728
https://ieeexplore.ieee.org/document/6035728
https://en.wikipedia.org/wiki/Genetic_programming
https://github.com/SpoonLabs/astor

2. Background

ing so-called “fix patterns.” These patterns were uncovered by analyzing around
62.000 patches written by humans and were subsequently compiled into scripts
that define how to fix these errors. The authors also conduct a user study among
developers and students and show that, on average, fixes by PAR were considered
more acceptable than those by GenProg.

A final work we want to cover in more detail is TBar*’ (Liu et al., 2019). There,
the authors approached the topic of APR, more specifically, pattern-based APR,
by taking a step back and analyzing existing approaches and their patterns. The
authors end up identifying/compiling a superset” from various previous works,
including PAR. Using this approach, they achieved a new level of performance
on Defects4]. They also note that deciding which existing code snippet to use for
the fix and having accurate fault localization is important to achieve good perfor-
mance.

In this section, we primarily showed pattern-based approaches. Even more APR
approaches can be found in the paper by Xia et al. (2023) or on a Program Repair
Overview site®.

2.5. Assessing Code Quality

Ensuring high code quality is an important consideration when developing soft-
ware, as poorly written code can lead to all sorts of issues like unreliable, unmain-
tainable, or insecure software®. One approach that can be used to uncover and,
therefore, prevent low-quality code is static analysis. In the following, we high-
light three free and commonly used tools for that*’: (1) PMD, (2) SonarLint and (3)
CheckStyle.

PMD*' is a static analysis tool for multiple programming languages and eval-
uates code based on rulesets executed against the program’s AST. For Java, PMD
comes with a "quickstart” ruleset that can, and according to their wiki page, should
be extended and adapted to specific needs.

Shttps://github.com/TruX-DTF/TBar (Accessed: 27.09.2024)

Bhttps://program-repair.org/tools.html (Accessed: 27.09.2024)

¥https://www.sonarsource.com/learn/code-quality/ (Accessed:
27.09.2024)

A large scale overview of static analysis tools can be found under https://en.
wikipedia.org/wiki/List_of_tools_for_static_code_analysis
(Accessed: 27.09.2024)

“https://docs.pmd-code.org/pmd-doc-7.6.0/index.html (Accessed:
27.09.2024)

21

https://github.com/TruX-DTF/TBar
https://program-repair.org/tools.html
https://www.sonarsource.com/learn/code-quality/
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://docs.pmd-code.org/pmd-doc-7.6.0/index.html

2. Background

SonarLint** is a tool from SonarSource, the creator of SonarCube. It is a local
tool that checks against a predefined ruleset, provides explanations and examples
for the found rule violations, and suggests fixes. Moreover, it can be paired with
SonarCube* to synchronize rules across teams. One final feature worth mention-
ing is the option to ignore existing code in the analysis, allowing the user only
to receive feedback on newly written code. This has the advantage of not over-
whelming users, for example, when they inherit a poorly maintained project.

CheckStyle** is another open source tool that can be configured according to
the user’s needs. However, they also provide configurations out of the box, such
as the "Sun Code Conventions” or the "Google Java Style Guide”

“https://www.sonarsource.com/products/sonarlint/ (Accessed:
27.09.2024)

#SonarCube is a commercial product from SonarSource and not free!

“https://checkstyle.sourceforge.io/index.html (Accessed: 27.09.2024)

22

https://www.sonarsource.com/products/sonarlint/
https://checkstyle.sourceforge.io/index.html

3. Related Work

This chapter provides information about related work in benchmarking LLMs for
aspects of software development (SD), developer behavior when using LLMs, and
implementing software projects with the help of LLMs. Firstly, we start by showing
existing benchmarks for the five aspects we use for model comparison (3.1). The
second part (3.2) provides a general overview of the approaches that have been
used to track and evaluate how programmers utilize LLMs. Finally, we highlight
specific works similar to our use case and subsequently clarify the differences (3.3).

Research for the background and related work chapters was primarily con-
ducted using Google Scholar and Connected Papers (CP).

3.1. Model Benchmarking for Aspects of SD

Benchmarks are an essential tool that allows comparing different LLMs to each
other and gaining some insight into their performance. In this section, we explore
existing benchmarks for five aspects of SD with a special focus on Java. These as-
pects are code generation, code completion, unit test generation, method comment
generation, and automatic program repair (APR).

3.1.1. Code Generation

The task of code generation, or code synthesis, involves generating program code
from a natural language description and can be supplemented by additional con-
text information. The natural language description can come from, among oth-
ers, comments. The output from the LLM can then be evaluated, for example, by
comparing it with a reference solution or using unit tests. In the following, we
highlight benchmarks and datasets for code generation, moving from the most
prominent ones (Python) to Java benchmarks.

There exists a multitude of code-specific benchmarks that can be used to evalu-
ate LLMs. Some of the most prominent examples include HumanEval (Chen et al.,
2021) and Mostly Basic Python Programming (MBPP) (Austin et al., 2021). These
are centered around method-level code generation. Furthermore, there exist more
specific benchmarks like ClassEval (Du et al., 2023), that evaluate an LLMs’ ability

23

3. Related Work

to synthesize class-level code. What these have in common is, however, that they
are all purely Python benchmarks. However, as the primary focus of this thesis
is on Java, in the following we, therefore, focus on benchmarks and datasets for
said language. It is worth mentioning that most datasets we found were split into
train, test, and evaluation parts and are intended to be used to train a model from
scratch or fine-tune it before evaluation.

One example of a dataset is CONCODE (Iyer et al., 2018), which was created to
train and evaluate the model capabilities of generating methods based on the text
part of the JavaDoc method comment and the other methods and fields from a class.
Another very specific dataset, is Card2Code (Ling et al., 2016), which contains a
task to generate Java classes based on card descriptions from the popular trading
card game "Magic The Gathering.

For benchmarks, one example is CoderEval (Yu et al., 2024), which contains both
a Python and a Java dataset. The main differentiating factor for this benchmark
is using six levels of dependency, ranging from self-contained methods that only
utilize code from the System class to methods that need the entire project context
because they rely on information in Super- or Util-classes.

Moreover, variants of HumanEval, that were translated into multiple lan-
guages, also exist. These include HumanEvalPack' (Muennighoff et al., 2024) and
HumanEval-X? (Zheng et al., 2023). Therein, the authors also extended the bench-
mark to Java (and other languages) by translating the 164 problems.

Another relatively new example is CoderUJB (Zeng et al., 2024), a Java bench-
mark suite that features multiple aspects and uses Defects4] (Just et al., 2014) as the
underlying data and evaluation source. One task that is part of CoderU]JB is codeu-
jbcomplete, where the model under test is required to generate a method based on
the method comment, the import statements, the fields, and the abstract header of
the other methods in the class. The benchmark provides prompts for models that
were trained on completion as well as for ones trained on instruct (chat).

Additional datasets and benchmarks that also include Java code can be found
in Lopez Espejel et al. (2023) and Jiang et al. (2024b).

In this section we detailed datasets and benchmarks ranging from straightfor-
ward translations of HumanEval problems to Java to fully automated benchmarks
like CoderUJB. Another interesting approach we detailed is CoderEval, which in-
troduces dependency levels that allow for a more fine-granular evaluation of mod-
els.

'https://huggingface.co/datasets/bigcode/humanevalpack (Accessed:
21.08.2024)

https://huggingface.co/datasets/THUDM/humaneval-x (Accessed:
14.10.2024

24

https://huggingface.co/datasets/bigcode/humanevalpack
https://huggingface.co/datasets/THUDM/humaneval-x

3. Related Work

3.1.2. Code Completion

Code completion is the task of completing partially written code snippets. This
means generating new code based on already existing code, potentially also in-
cluding further context information. This section highlights different datasets and
benchmarks for Java code completion.

One collection that also contains a dataset to evaluate code completion for Java
is CodeXGlue (Lu et al., 2021). There, the authors created datasets for next to-
ken prediction and line completion using the GitHub Java Corpus (Allamanis and
Sutton, 2013). They evaluated model performance using accuracy for next token
prediction and exact match (EM) and edit similarity for line completion. Moreover,
they also provided two baselines. One of these is CodeGPT-adapted, a fine-tuned
version of GPT-2 that achieved an accuracy of 77.73% for next token prediction®.
For line-level code completion, the model achieves an EM of 30.6% and an edit
similarity of 63.45%*.

Another approach that includes a Java portion is the CrossCodeEval (Ding et al.,
2023) benchmark, in which the task is to complete the current statement. More-
over, the authors provided the model with context information about the current
project. They did this by strategically retrieving context from other files within
the project. This was done using the retrieve-and-generate approach of Zhang
et al. (2023). To select context information based on similarity, they evaluated
three different approaches. The two best-performing ones for Java were text-
embedding-ada-002, a text embedding model from OpenAl, and BM25 (Robertson
and Zaragoza, 2009), an extension to “term frequency - inverse document fre-
quency” (TF-IDF). They obtained their datasets by crawling GitHub repositories
over a specific time frame and selecting code snippets requiring cross-file informa-
tion to be completed correctly. Moreover, CrossCodeEval evaluates model perfor-
mance in two dimensions: (1) Code Match by computing EM and ES to a reference
solution, and (2) Identifier Match, which evaluates whether the correct API calls
are used.

A special case of code completion is code infilling - here, code exists before and
after the current part that shall be completed (Fried et al., 2023). One benchmark
tailored to this task, which also includes Java parts, is Syntax-Aware Fill-in-the-
Middle (SAFIM) (Gong et al., 2024). There, the authors collected the data for their
benchmark from GitHub and Codeforces (a website for programming contests).
Using this data, they created three task types for their benchmark, namely: (1)

*https://github.com/microsoft/CodeXGLUE/tree/main/Code-
Code/CodeCompletion-token (Accessed: 21.09.2024)

*https://github.com/microsoft/CodeXGLUE/tree/main/Code-
Code/CodeCompletion-1line (Accessed: 21.09.2024)

25

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/CodeCompletion-token
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/CodeCompletion-token
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/CodeCompletion-line
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/CodeCompletion-line

3. Related Work

Algorithmic Block Completion (from Codeforces), (2) Control-Flow Completion
(from Codeforces), and (3) API Function Call Completion (from GitHub). These
are evaluated using unit tests, where applicable, and ”syntactical matching” in all
other cases. Moreover, they also compared multiple prompting approaches with
regard to pass@1. There, they found that the Suffix Prefix Middle (for 4/7 models)
and Prefix Suffix Middle (for 2/7 models) approach worked best.

In this part, we presented three approaches to evaluating LLM performance for
code completion. Moreover, one of these approaches was for infilling, a special
case of code completion where code exists before and after the part to be com-
pleted.

3.1.3. Unit Test Generation

The task of unit test generation involves synthesizing test cases based on various
factors like the method under test, the method comments, or the specifications.
This section highlights different datasets and benchmarks specifically for Java unit
test generation.

One prominent dataset is SF110 (Fraser and Arcuri, 2014) from the authors of
EvoSuite. There, the authors collected a total of about 28,000 classes from 110
Java projects. Moreover, the authors evaluated the performance of EvoSuite on
this dataset with a generation time per class of 2 minutes. They achieved an av-
erage branch coverage of 71% (Median 94%), with significant variance depending
on the “difficulty” of the class under test. Their work specifically highlights multi-
threading and environment interaction (e.g., file system, network) as hindrances
to higher branch coverage. Siddiq et al. (2024) used this dataset and a version of
HumanEval that was translated to Java (Athiwaratkun et al., 2023) to evaluate the
ability of various LLMs to generate unit tests. While they achieved above 90%
branch coverage with some models on HumanEval, no LLM achieved more than
2% branch coverage on SF110. Unfortunately, the authors do not discuss this dif-
ference in scores in detail. However, a sizable performance drop seems logical,
considering that HumanEval consists of 160 isolated problems and SF110 origi-
nates from code from 111 real repositories. Moreover, Evosuite, which the authors
used as a baseline, also exhibited a sizeable drop in benchmark scores from about
95% for HumanEval to around 20-27% for SF110.

In general, SF110 also illustrates that unit test generation can theoretically be
evaluated on any set of classes, as branch coverage, a commonly used criterion,
requires no external validation information.

Another dataset for unit test generation is Methods2Test® (Tufano et al., 2022),

Shttps://github.com/microsoft/methods2test (Accessed: 16.08.2024)

26

https://github.com/microsoft/methods2test

3. Related Work

where the authors extracted about 780k test cases from 91k Java GitHub reposi-
tories; moreover, the authors present their approach to finding a test case’s "focal
method” (i.e. the method under test). Additionally, they also explored the use of
further “focal contexts” to extend the model input. This context can, for example,
be as small as the individual method under test or as large as the whole class, ex-
cluding method bodies of all other methods. They finetuned their model on the
various focal contexts and concluded that the largest explored context leads to the
best results.

A similar but different approach was pursued by (Watson et al., 2020), where
they focused on creating the correct JUnit assertions given a method under test
and the test method, excluding the assert statement but including all other state-
ments. Whilst they did not release their dataset, they shared their approach to data
generation.

Another dataset was created by Yuan et al. (2024), where they started with a
subset of 185 Java projects from CodeSearchNet (Husain et al., 2020) and extracted
1748 focal method test-case pairs. They subsequently sampled 1000 pairs and used
them as the benchmark. Interestingly, they not only evaluated the generated unit
test but also conducted a user study of 5 participants who had to score the outputs
concerning readability and usability. To the best of our knowledge, the dataset is
not publicly available.

As a final benchmark collection, we want to highlight CoderUJB (Zeng et al.,
2024) again, as it also features a benchmark for evaluating unit test generation.
The authors again used the Defects4] (Just et al., 2014) dataset and extracted 140
test cases. The generated test cases are subsequently evaluated based on whether
they compile and pass. Additionally, the benchmark also analyzes and reports code
coverage.

For the aspect of unit test generation, we presented three datasets as well as a
benchmark. Moreover, we detailed that, in theory, unit test generation can be eval-
uated on any code base as coverage criteria can be computed without additional
information.

3.1.4. Method Comment Generation

The task of method comment generation is a special case of general program sum-
marization. It involves taking at least the method signature and body and creating
a descriptive natural language comment.

This description illustrates that all that is needed to obtain a dataset for this
task is to scrape open-source code repositories or other sources for the methods
and related comments. One example of such a pair can be seen in Figure 3.1.
Approaches that do this include LeClair et al. (2019); Hu et al. (2018a); Liang and

27

3. Related Work

Code
public void haltAllTasks() {

LinkedList<Thread> endingThreads = new LinkedlList<>();

endingThreads.addAll(executions.values());
for (Thread thread : endingThreads) {
while (thread.isAlive() && thread != Thread.currentThread()) {
LOGGER.info("Interrupting execution thread " + thread);
thread.interrupt();
}
}

executions.clear():

T
Natural Language
Interrupt all currently executing tasks, and clear the record of all executing tasks

Figure 3.1.: Code NL Pair. An example of a method and the corresponding com-
ment. Taken from the dataset used by Hu et al. (2018a).

Zhu (2018). This is then usually accompanied by subsequent dataset cleaning and
preprocessing.

In the following, we want to highlight three different datasets available for
download.

The first dataset was initially put forward by Hu et al. (2018a) and subsequently
used and mentioned again by almost the same group of authors (Hu et al., 2018b).
Here, the authors collected method and comment pairs from 9,714 Java projects
on GitHub. Their paper reports that they have released a dataset of 69,708 pairs.
However, when manually inspecting the dataset® we found significantly more
pairs: Train: 470,486, Test: 58,811, Validation: 58,811. These sum up to a total
of 588,108 samples. Nonetheless, their first paper (Hu et al., 2018a) evaluated the
model performance on BLEU-4 (Papineni et al., 2001). Their second paper used
metrics from MT and information retrieval (IR). The MT methods are BLEU-4 and
METEOR (Denkowski and Lavie, 2014), and the IR methods are Precision, Recall,
and F1-score.

The second dataset (LeClair et al., 2019) we want to highlight was created
from 2.1 million comment and method pairs. These originate from the Sourcerer
project’. The authors specifically selected methods that had Javadoc comments and
took the description in the comment as an explanation of the method. Moreover,
the authors filter out comments they consider too short or long. They evaluated
model performance on various BLEU scores.

Shttps://github.com/xing-hu/DeepCom (Accessed: 20.08.2024)
"https://isr.uci.edu/content/sourcerer-project (Accessed: 20.08.2024)

28

https://github.com/xing-hu/DeepCom
https://isr.uci.edu/content/sourcerer-project

3. Related Work

The last dataset we want to highlight is HumanEvalExplain (Muennighoff et al.,
2024), which is part of the HumanEvalPack®. It fundamentally differs from the
approaches above in that it does not aim to evaluate the code’s explanation di-
rectly. Instead, it synthesizes code based on the generated comment and assesses
the pass@k score. One paper that uses HumanEvalExplain is Szalontai et al. (2024).

This subsection highlighted three datasets for evaluating LLMs’ ability to syn-
thesize method comments. One noteworthy approach we presented was Hu-
manEvalExplain, where the authors generated code from the previously generated
comment and evaluated it using a test suite.

3.1.5. Automated Program Repair

Automated program repair (APR) is the task of automatically fixing a code snippet.
This can range from complete methods to single lines (Xia et al., 2023) . Multiple
Java benchmarks exist for this task, four of which we highlight in chronological
order by their publication.

The first benchmark we want to highlight is QuixBugs’ by Lin et al. (2017), re-
leased before the advent of LLMs. The benchmark consists of problems in Python
and Java, each containing one buggy line that must be fixed. Said fixes are then
evaluated using test cases. The problems have their origin in the Quixey chal-
lenge'® and were translated to both Java and Python - to allow a direct performance
comparison between different languages.

The second benchmark we want to highlight is the Bears Benchmark (Madeiral
et al,, 2019), created for Java. There, the authors introduced an approach to au-
tomatically generating benchmark data from GitHub by leveraging Continuous
Integration (CI) build results to detect buggy builds and to identify subsequent
builds that fix that bug. This is determined by checking the results of test suite
runs. Moreover, they specifically focused on Travis CI as a build platform, as ac-
cording to them, it is "tightly integrated” into GitHub. Initially, their benchmark
contained 251 bugs; however, as of September 2023, this number has reduced to
118 due to various issues (see GitHub'!), including the unavailability of dependen-
cies required to reproduce the bugs.

Moreover, there also exist newer benchmarks. One of which is GitBug-

Shttps://huggingface.co/datasets/bigcode/humanevalpack (Accessed:
20.08.2024)

*https://github.com/jkoppel/QuixBugs (Accessed: 24.09.2024)

Yhttps://en.wikipedia.org/wiki/Quixey#Quixey_Challenge (Accessed:
24.09.2024)

Uhttps://github.com/bears-bugs/bears-benchmark?tab=readme-ov-
file#tdata (Accessed: 25.09.2024)

29

https://huggingface.co/datasets/bigcode/humanevalpack
https://github.com/jkoppel/QuixBugs
https://en.wikipedia.org/wiki/Quixey#Quixey_Challenge
https://github.com/bears-bugs/bears-benchmark?tab=readme-ov-file#data
https://github.com/bears-bugs/bears-benchmark?tab=readme-ov-file#data

3. Related Work

Java'? (Silva et al., 2024), which was released earlier this year and focuses on bug
recency and reproducibility. The authors addressed these requirements by collect-
ing bugs and their fixes from commits in 55 repositories. All commits were made
in 2023. To achieve this, they used their tool called GitBug-Actions® (Saavedra
et al,, 2024). This ensures that the environment stays reproducible by collecting all
data required to run the benchmark and creating a self-contained docker image.

The last benchmark we want to mention here is CoderUJB (Zeng et al., 2024).
This is a benchmark suite designed around the Defects4 (Just et al., 2014) dataset,
which itself is a collection of bugs that are also reproducible. CoderUJB extends
on this by adding a software suite to prompt LLMs and evaluate their output au-
tomatically. To do this, they automatically generate the prompts for the LLMs,
ultimately simplifying the evaluation process.

For APR, we highlighted four benchmarks. We further described that the Bears
benchmark was reduced to a smaller size of problems due to no longer existing
dependencies. GitBug-Java addressed this issue by creating self-contained docker
images.

3.2. Developer Behavior and LLMs

To gain insights into how developers use LLMs and what their experience is, it is
necessary to understand how data can realistically be obtained in the first place.
Therefore, this section focuses on different approaches to collecting data when
programming and interacting with LLMs.

There are multiple possibilities for obtaining behavior and usage data. One
straightforward approach several publications take is to use screen recording,
which can subsequently be used to analyze and retrace user behavior (Asare et al.,
2024; Tang et al., 2024a; Vaithilingam et al., 2022; Barke et al., 2023). In addition to
that, Vaithilingam et al. (2022) and Barke et al. (2023) both record the user audio,
with the latter explicitly instructing users to “talk through their interactions.”

Another approach to collecting data on how tools, like GitHub Copilot, are being
used is to utilize metadata from the tool itself. This approach was presented in
papers from Microsoft (Mozannar et al., 2024) and GitHub (Ziegler et al., 2022). The
authors used GitHub Copilot to track detailed usage data related to their research.
However, this capability to collect data in this detail does not seem to be available to
people outside of these companies, with GitHub only providing an API'* to access

Phttps://github.com/gitbugactions/gitbug-java (Accessed: 25.09.2024)

Bhttps://github.com/gitbugactions/gitbugactions (Accessed: 25.09.2024)

Yhttps://docs.github.com/en/rest/copilot/copilot-usage?
apiVersion=2022-11-28 (Accessed: 16.10.2024)

30

https://github.com/gitbugactions/gitbug-java
https://github.com/gitbugactions/gitbugactions
https://docs.github.com/en/rest/copilot/copilot-usage?apiVersion=2022-11-28
https://docs.github.com/en/rest/copilot/copilot-usage?apiVersion=2022-11-28

3. Related Work

more general statistics related to Copilot use within teams and organizations.

One approach that combines both metadata and user tracking was pursued
by Tang et al. (2024a), where they used the CodeGRITS " toolkit (Tang et al.,
2024b). This toolkit can record the screen, track “eye gaze,” and collect JetBrains
IDE usage information simultaneously. The types of IDE usage data that the tool
collects can be seen in Figure 3.2. Moreover, Tang et al. (2024a) also collected
information about the experience of using LLMs by utilizing self-reporting and
semi-structured interviews.

xR @Ra &

Clipboard File

Debugger Timestamp

X

Caret Mouse Selection Location

Figure 3.2.: CodeGRITS IDE Tracker. An overview of the different actions
the CodeGRITS IDE tracker collects in JetBrains IDEs. Taken
from https://codegrits.github.io/CodeGRITS/
usage-guide/ (Accessed: 16.10.2024)

In general, most papers we found also use surveys that are then tailored to the
specific areas of interest for the research work (Tang et al., 2024a; Liang et al.,
2024; Vaithilingam et al.,, 2022; Asare et al., 2024; Ross et al., 2023; Ziegler et al.,
2022). However, some used semi-structured interviews to gain insights into the
experience of using LLMs (Barke et al., 2023; Tang et al., 2024a).

In this section, we described multiple approaches to tracking developer behav-
ior when using LLMs, which ranged from recording the screen and audio, over
collecting IDE interactions to surveys and semi-structured interviews.

Bhttps://github.com/codegrits/CodeGRITS (Accessed: 16.10.2024)

31

https://codegrits.github.io/CodeGRITS/usage-guide/
https://codegrits.github.io/CodeGRITS/usage-guide/
https://github.com/codegrits/CodeGRITS

3. Related Work

3.3. LLM-aided development of a complete
Software Project

Few papers explore the use of LLMs to develop a software project. In the following,
we highlight four similar papers and their different approaches. This is followed
by an explanation of what differentiates our approach (see Subsection 3.3.1).

One approach similar to ours is Peng et al. (2023), where the authors conducted
an experiment with two groups of developers. Both were tasked with implement-
ing a very rudimentary HTTP web server in JavaScript as fast as possible. One
group was allowed to use GitHub Copilot, while the other was not. The experi-
ment primarily focused on productivity, measured in task completion time. They
observed a 55,8% faster completion time for developers that used Copilot. More-
over, participants were also asked to complete a survey to gain further insights
into which group benefited most from the coding assistant. They found that Copi-
lot was most beneficial to developers with much experience, developers older than
25 years, and developers who spend a large amount of time writing code.

A different approach was taken by Rasnayaka et al. (2024) as they conducted an
experiment with multiple student groups during a group project for a university
course. There, the groups had to develop a C++ software project, and they were
encouraged to use LLMs to aid with development efforts. However, the students
had to annotate the code that was Al generated with the model name and indicate
how much of the original output was retained (all, > 90%, < 90%). They found
that LLM usage (#prompts) decreased throughout the project whilst the complexity
of the synthesized code increased. The authors also highlight that students with
more coding experience tended to use LLMs more extensively than students with
less proficiency. They attribute this to the requirement of essentially auditing the
synthesized code before adding it to the project. Moreover, they did not observe
any statistically significant implications on “correctness and quality” based on the
amount of LLM code in the project.

Heitz et al. (2024) took a different approach to evaluating the code generation
capabilities of the free Versions of ChatGPT (GPT-3.5) and Gemini. In the first
part of their evaluation, they evaluated them on HumanEval (Chen et al.,, 2021)
and ClassEval (Du et al., 2023), both Python benchmarks. Here, ChatGPT outper-
formed Gemini; however, the authors were not completely satisfied with either
model due to their tendency to create semantic errors. The second part consisted
of multiple developers being tasked with implementing a small Java application
(330 Lines of Code (LoC)) using either one of the models. The primary focus here
was to assess the productivity improvement and code quality. The authors report
that the developers had to refine their prompts often iteratively to ensure that the

32

3. Related Work

model completely understood the task details. Moreover, they note that the code
generated by these models showed minor issues and code smells.

The final approach we are presenting here is the one from Monteiro et al. (2023),
where they explored the use of GPT-4 in developing a simple web-based forum.
Three developers were tasked with individually implementing the six short user
stories, and their results were then compared to a manually implemented refer-
ence solution. Their tech stack consisted of Vue.js (Frontend), TypeScript (Back-
end), and an SQLite database. Their work mainly focused on prompting, with a
special focus on bottom-up and top-down prompting. While the authors only had
a limited set of observations, they found the bottom-up approach to require fewer
prompts overall, especially fewer bug fixing steps. However, the model seemed to
struggle more with correctly integrating features in the code base.

3.3.1. What differentiates our approach from others
(Research Gap)

Here, we explain what sets our approach apart from the previous works mentioned
above. The scenario we explored is defined in Chapter 4, and the exploration is
detailed in Chapter 7.

The first main difference in our approach is the model selection process, which
started with a selection of models that would theoretically fit the requirements of
our practical scenario. This was then further reduced to a single model by assess-
ing and comparing their performance on five different aspects of software develop-
ment. Our approach contrasts the others mentioned above, which used a single or
two models for their work. The closest paper to our approach in this regard is Heitz
et al. (2024), where they also compared two models. However, they evaluated the
models on Python benchmarks before using them in a Java task. Moreover, they
continued to use both models for the implementation.

Another key difference is our practical exploration (see Chapter 4). Our ap-
proach differs from Monteiro et al. (2023), which also implemented a project based
on user stories, by using a larger number of user stories, and by using two different
languages instead of two variations of JavaScript. One we were familiar with and
one that we were not. Similarly to the existing literature, we also considered the
code quality of the resulting project. However, we did note our observations and
aimed to fix them during the implementation so as not to cause any unnecessary
hindrances. Moreover, we also considered prompting approaches as a means to an
end rather than as a primary focus.

To the best of our knowledge, our approach bears some similarities yet is distinc-
tively different from the existing approaches.

33

3. Related Work

3.4. Research Information

Research on this topic was conducted between August and mid-October 2024. As
LLMs for code is a highly active research topic, we decided to use a research cutoff
after this research phase. Papers released around this time or later could be missing
as they might not have been indexed by the tools used (Google Scholar, Connected
Papers). ConnectedPapers (Eitan et al., 2024) was used in the research process to
gain a better overview and reduce the chance of overlooking papers in this vast
and fast-moving research field.

34

4. Practical Scenario - Definition

Before selecting and comparing LLMs for software development (SD), we first de-
fine a scenario, the realization of which is detailed in Chapter 7. It serves as a
practical example, providing constraints and expectations to consider.

The scenario we explore involves a one-person startup with limited funds that
aims to develop a web application for expense tracking with a separate frontend
and backend. Some of the application requirements, including simplified user sto-
ries, user interface (UI) mockups, and the data model, have already been defined
upfront.

In the following, we explore the practical scenario based on various viewpoints.
The exploration of this is detailed in Chapter 7.

4.1. Company

The company is a one-person startup with a minimal budget to be used on Al
tools for SD. Therefore, the company heavily favors tools and solutions that do
not require significant one time investments. Such offerings are subscriptions or
pay-as-you-go models. Crucially, this means that hosting or running large models
locally is out of question due to the high upfront cost for specialized hardware.
Additionally, (very) small models may be considered, as they can realistically run
on a developer machine without significantly impacting system performance.

4.2. Tech Stack Constraints

The application we explore needs to consist of a separate backend and frontend
to future-proof the application by separating most of the logic from the visual
representation.

Moreover, the backend is implemented in Java as the developer is most familiar
with that language. More specifically, the Spring Boot framework' is used to sim-
plify the implementation of REST APIs, authentication, and data persistence. In

Thttps://spring.io/ (Accessed: 23.10.2024)

35

https://spring.io/

4. Practical Scenario - Definition

this project, the data is persisted in a PostgreSQL? database.

The frontend is built using React®, more specifically, the Next.js* framework.
For faster Ul development, shadcn®, a collection of blueprint Ul components, is be-
ing used. While shadcn is built on top of RadixUI®, a component library, it differs
from classic component libraries as it gives the developer full access to how the
components are implemented. This is done by adding them as files to the project.
The developer has no relevant prior experience using React or Next.js but has pre-
viously worked with typescript (TS), the underlying language.

4.3. Application Constraints

The application has to be developed based on functional requirements, presented
as a data model, simplified user stories, and UI mockups.

Figure 4.1 shows the data model that was defined before the implementation
of the scenario. It is based on the user stories and does not include relationships
between the entities.

4 User Profile N Booking) / Budget \

Title Name
uuIlD
Name Amount Amount
Password g:tzgory ScopeAcco ot
Profile Image - u
g /) \lype(+ - transfer)) - Category

- All of Currency
Timeframe
4 Account N Category) - week

- month
- quarter
Name Name - year
Currency Icon (from Picker)
Starting Balance Color
o DN J

Figure 4.1.: Data Model for the different entities in the application.

https://www.postgresql.org/ (Accessed: 23.10.2024)
Shttps://react.dev/ (Accessed: 23.10.2024)
*https://nextjs.org/ (Accessed: 23.10.2024)
Shttps://ui.shadcn.com/ (Accessed: 23.10.2024)
Shttps://www.radix-ui.com/ (Accessed: 27.11.2024)

36

https://www.postgresql.org/
https://react.dev/
https://nextjs.org/
https://ui.shadcn.com/
https://www.radix-ui.com/

4. Practical Scenario - Definition

Individual features for the application are given in the form of simplified user
stories’”. Simplified means that the benefit is omitted. Table 4.1 shows the user
stories for the account entities; a complete list of user stories is provided in Ap-
pendix A.2.

Accounts
create a default account on my first log-in
always have a default account
create additional accounts
change default accounts
As a user, I want to be able to... | delete all of my accounts except the default one
edit all my accounts
see the current balance of my accounts
see the account delta for the current month

Table 4.1.: Account User Stories, detailing the account requirements for the prac-
tical exploration.

In addition to the data model and user stories, Ul mockups are provided. These
serve as a coarse guideline on how the Ul should look like, allowing the developer
to focus on functionality and details. One Ul mockup can be seen in Figure 4.2,
and a complete list of mockups is available in Appendix A.3.

4.4. Further Remarks on Tech Stack
Considerations

Initially, the idea was to develop the entire application, including the frontend, in
Java (using, e.g., Swing, JavaFX or Thymeleaf), as the main focus of this work is
evaluating LLM tools for the Java SD process. However, we ultimately decided
against it as this is no longer a frequently used approach in practice. Instead, we
chose to split the application into a Next.js/React frontend and a Java/Spring Boot
backend. Given the fact that the developer did not have any prior experience with
React or Next.js, this decision provided us with the opportunity to evaluate the
effect of using a language/framework, the developer was not familiar with, prior to
this project. Furthermore, we decided to add shadcn, a relatively new and different
Ul library® to see how the tool would fare.

"https://en.wikipedia.org/wiki/User_story (Accessed: 23.10.2024)
8First GitHub release: 08.03.2023

37

https://en.wikipedia.org/wiki/User_story

4. Practical Scenario - Definition

= Account X - Booking List ! Thomas (1)
Groceries Lidl - 32,1€
Cat: Groceries 01.08.2024

Salary

Cat:Salary 29.07.2024
Transfer &
Cat: Savings To: Account Y 01.08.2024

Figure 4.2.: UI Mockup of the bookings overview page for an individual account
showing the three different booking types. Moreover, the ability to
sort is indicated in the header.

38

5. Initial LLM Selection

Considering the quantitative comparison of the models and the following practical
exploration, we selected an initial set of LLMs to be evaluated. Section 5.1 details
the constraints that needed to be considered, and Section 5.2 provides more de-
tailed information on the models that we selected for the comparison. Section 5.3
presents the rationale for choosing the individual models and answers RQ1.

5.1. Method

In this section, we highlight the constraints of our practical exploration and how
they influenced the selection of models that could be considered.

5.1.1. Practical Exploration Constraints

Due to the constraints for the practical exploration in Chapter 4, we had specific
requirements for the models we could consider. The following section highlights
the most important requirements and explains their implications.

In Chapter 4, we established that we would need a model that could be run
locally on a laptop’, or one that is hosted by an external party. This explicitly
excluded setting up “large” LLMs on local or cloud infrastructure ourselves. Con-
sidering local models did require us to ensure that the model execution would not
interfere with the performance of other software that runs on that computer, like
an IDE. Moreover, including hosted offerings enabled us to use large LLMs, like
Claude 3.5 Sonnet, which are usually billed monthly using a flat fee or usage-based.
Although it would also have been possible to set up arbitrary LLMs in a Cloud, we
considered this out of scope. We argue that assuming a typical developer would
go this extra step for a one-person startup is not logical.

Another constraint originating from our practical scenario was that the training
dataset for the LLM should also have contained code - ideally, Java and, to a lesser
extent JavaScript / Typescript. However, this requirement was not strictly enforced
for the small models, allowing us to include Phi 3.

'The following specification forms the upper limit for the hardware that can be expected: AMD
Ryzen 5800H, 16GB DDR4 3200 MT/s, NVIDIA GeForce RTX 3060 Laptop GPU

39

5. Initial LLM Selection

Moreover, since we did not need to adhere to strict privacy requirements regard-
ing code confidentiality, we could even consider offerings that might use model
outputs for further training.

A final point that we considered beneficial is an integration into the IDE via
tools such as GitHub Copilot, Replit, or JetBrains Al. However, if a model that had
not been integrated would have performed significantly better, we would have
selected it over an already integrated one.

5.1.2. Downstream Task Constraints

As we wanted to ideally complete the practical exploration using a single model,
the selected models needed to be evaluated and compared. We did this using five
benchmarks (see Chapter 6). However, to run the benchmarks, there had to be a
way to automatically interact with the models, either through an API or by running
the model locally. Moreover, to achieve a fair comparison, we had to compare the
models with each other without potentially surrounding tools. To illustrate this,
if we wanted to evaluate GitHub Copilot, we needed to assess GPT-4(0)* to keep
it comparable. Furthermore, considering the primary mode of interaction in both
the model comparison and practical exploration is chat-based, the models should
have been optimized for instructions (i.e., instruct). The only exception to this is
code completion in the practical exploration. There it would be best if the had been
optimized for completions.

5.2. Results

Based on the constraints we derived from our practical scenario we selected eight
out of 11 models (see Table 5.1) to compare. All of the selected models were op-
timized for chat-based interactions (i.e., instruct models). Furthermore, for most
models we found it difficult to verify which exact programming languages they
were trained on. However, considering that both Java and Typescript/JavaScript
are popular languages® it is highly likely that they were included in the training
datasets.

In the following, we provide further details on the individual models:

The GPT-40 model is the current “flagship model” from OpenAl*, which was

ZPlease note that according to OpenAl, Copilot is no longer powered by Codex but some non-
disclosed version of GPT-4 (Source: support chat with OpenAl - Screenshots available on re-
quest)

https://survey.stackoverflow.co/2024/technology#most-
popular-technologies-language (Accessed: 22.01.2025)

*https://platform.openai.com/docs/models/gpt-40 (Accessed: 28.10.2024)

40

https://survey.stackoverflow.co/2024/technology#most-popular-technologies-language
https://survey.stackoverflow.co/2024/technology#most-popular-technologies-language
https://platform.openai.com/docs/models/gpt-4o

5. Initial LLM Selection

Context
Model Window | How Provided? | Selected
[tokens]
GPT-40 (2024.08.06) 128k Hosted v
Claude-3.5 Sonnet
(20240620) 200k Hosted v
Gemini 1.5 Pro 2M Hosted v
Gemini 1.5 Flash M Hosted v
Qwen 2 0.5B Instruct 32k Local Runtime v
Qwen 2 1.5B Instruct 32k Local Runtime v
Deep Seek Coder V2 - Hosted X
Deep Seek Chat V2 - Hosted X
Deep Seek V2.5 128k Hosted v
Phi 3 3.8B instruct 128k Local Runtime v
Replit Code V1.5 3B 4k Local Runtime X

Table 5.1.: A list of initially considered models, including those we eliminated be-
fore running the comparison. The selected models are highlighted in
, and the eliminated ones are in red. Dashes indicate that no ver-
ifiable information could be found. We used Ollama as a local runtime
for the models.

trained on data, including code (OpenAl, 2024), ranging up until October 2023°. It
is a proprietary model that features a context window size of 128k tokens, with the
maximum number of output tokens being limited to 16k. The price® for this model
via the API is 2.50$ per 1 million input tokens and 10$/1M output tokens. The
specific model version we selected is "gpt-40-2024-08-06”, the most recent version
at that time.

Claude 3.5 Sonnet’ is the largest model from Anthropic Al and features a cutoff
date for training data of April 2024. While Anthropic does not explicitly mention
that the model was trained on code, their blog post highlights working with code as
one of the areas where the model performs well®. The size of the context window is

*https://learn.microsoft.com/en-us/azure/ai-services/openai/
concepts/models?tabs=global-standard%2Cstandard-chat-
completions (Accessed: 21.01.2025)

Shttps://openai.com/api/pricing/ (Accessed: 28.10.2024)

"https://docs.anthropic.com/en/docs/about-claude/models#
model-comparison-table (Accessed: 28.10.2024)

Shttps://www.anthropic.com/news/claude-3-5-sonnet (Accessed:
22.01.2025)

41

https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions
https://openai.com/api/pricing/
https://docs.anthropic.com/en/docs/about-claude/models#model-comparison-table
https://docs.anthropic.com/en/docs/about-claude/models#model-comparison-table
https://www.anthropic.com/news/claude-3-5-sonnet

5. Initial LLM Selection

200k tokens and the maximum number of tokens to be generated is 8k. The usage
of this model costs 3$/1M input tokens and 15$/1M output tokens. The model
version we used is “claude-3-5-sonnet-20240620".

Gemini 1.5 Flash and Gemini 1.5 Pro are proprietary models from Google
with a knowledge up until May 2024° and have been trained on code (Team et al.,
2024b). The Flash variant features a context window size of 1M tokens and costs!°
up to 0.15$/1M input tokens and up to 0.60$/1M output tokens. The Pro variant has
double the context window size (2M) and costs'' up to 2.50$/1M input tokens and
up to 5.00$/1M output tokens. The versions we used are “gemini-1.5-flash-001” and
”gemini-1.5-pro-001”, which, up until the end of our comparison (on 07.10.2024),
were called "gemini-1.5-flash” and "gemini-1.5-pro” respectively.

Qwen2 0.5B and Qwen2 1.5B are open models from Alibaba Cloud which were
also trained on code. Both feature a context window size of 32K tokens, and have
an undisclosed knowledge cutoff date. Because they are small models, they can be
run locally using a tool like Ollama'?. The specific variants we used are identified
as “qwen2:0.5b-instruct” and "qwen2:1.5b-instruct” within Ollama.

DeepSeek V2.5 is an open model from DeepSeek that is the result of "merg-
ing””® DeepSeek V2 Chat and DeepSeek Coder V2, which are both based on
"DeepSeek-Coder-V2-Base™*. It features a 128k token context window and can
generate up to 4k tokens as output. Using this model costs 0.14$/1M input to-
kens and 0.28%/1M output tokens. Initially, we aimed to evaluate both v2 models;
however, to the best of our knowledge, these are no longer provided by their API,
and both model specifiers, "deepseek-coder” and “deepseek-chat,” now refer to the
new model. Furthermore the base model was trained on data ranging up until
November 2023. The training dataset for this model was comprised of 60% code
containing 338 programming languages (DeepSeek-Al et al., 2024b).

Phi 3 mini is an open model, created by Microsoft Research and includes vari-
ants with context lengths of 4k and 128k tokens. It was trained on data ranging up
until October 2023"°. The variant we used is run via Ollama and is called "phi3:3.8b-
instruct™¢, which is a quantized (Q4_0) version with a 128k token context window.

*https://cloud.google.com/vertex-ai/generative-ai/docs/learn/
models (Accessed: 21.01.2025)
Yhttps://ai.google.dev/pricing#1_5f1lash (Accessed:28.10.2024)
Thttps://ai.google.dev/pricing#1_5pro (Accessed: 28.10.2024)
Lhttps://ollama.com (Accessed: 28.10.2024)
Bhttps://api-docs.deepseek.com/quick_start/pricing/ (Accessed:
28.10.2024)
Yhttps://api-docs.deepseek.com/news/news0905 (Accessed: 21.01.2025)
Bhttps://huggingface.co/microsoft/Phi-3-mini-128k-instruct#
model (Accessed: 21.01.2025)
Bhttps://ollama.com/library/phi3:3.8b-instruct (Accessed: 28.10.2024)

42

https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models
https://ai.google.dev/pricing#1_5flash
https://ai.google.dev/pricing#1_5pro
https://ollama.com
https://api-docs.deepseek.com/quick_start/pricing/
https://api-docs.deepseek.com/news/news0905
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct#model
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct#model
https://ollama.com/library/phi3:3.8b-instruct

5. Initial LLM Selection

It has to be noted that code in the training data was primarily comprised of python
code that uses basic packages'’.

We initially considered but ultimately did not use the Replit Code V1.5 3b
model as we could not verify whether and to what extent Replit actually uses it in
production.

5.3. Discussion

Here, we discuss the rationale for choosing the specific models for our comparison.

GPT-40 We selected a GPT-4 model because it is used in GitHub Copilot and Jet-
Brains Al and is provided as a premium model in Replit. Moreover, we specifically
selected the GPT-40-2024-08-06 snapshot as it was the most recent and cheapest
full-size GPT-4(o) variant at that time and since we were not able to verify which
specific models are used by tools like GitHub Copilot or Replit.

Claude 3.5 Sonnet This model by Anthropic was selected as it is a competing
offering to GPT-4. Moreover, it is also part of the premium models in Replit. We
specifically selected claude-3-5-sonnet-20240620 as this was the most recent
version of Claude 3.5 at the time of evaluation.

Gemini 1.5 We selected two Gemini models, Gemini 1.5 Flash and Gemini 1.5
Pro. The Flash variant was chosen as it is the freely available model on Replit, and
the Pro variant was selected to have a “reference” offering similar to Claude and
GPT.

Qwen 2 The 0.5B and 1.5B instruct models were selected as they are both very
small and should be able to run on a developer machine without interfering with
other tasks.

Deep Seek V2.5 Initially, we wanted to evaluate both Deep Seek Coder and
Deep Seek Chat. The primary motivation was that the model is open and available
on HuggingFace, their webpage, and via an API. Moreover, we aimed to evaluate
the difference between a model trained explicitly on code and a more general one.
However, on 05.09.2024, they released Deep Seek V2.5'%, combining the two models

https://huggingface.co/microsoft/Phi-3-mini-128Kk-instruct#
responsible-ai-considerations (Accessed: 27.11.2024)

Bhttps://platform.deepseek.com/api-docs/updates/ (Accessed:
16.09.2024)

43

https://huggingface.co/microsoft/Phi-3-mini-128k-instruct#responsible-ai-considerations
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct#responsible-ai-considerations
https://platform.deepseek.com/api-docs/updates/

5. Initial LLM Selection

into one and making the other two models unavailable in their API. Therefore, we
ultimately decided to use Deep Seek V2.5.

Phi 3 We selected the 3.8b instruct version to add an additional step in model
sizes between the small Qwen 2 models and the large models. Moreover, we
wanted to include a local model that requires more computational power than the
small Qwen 2 variants.

In this section, we detailed the initial model selection process and can, therefore,
now answer the first research question:

Answer for RQ1: What aspects of an LLM are required to be useful for both

our practical exploration and the comparison?

For the models to useful to both the exploration and the comparison, they
should have been trained on code, with the training dataset including Java
and JavaScript/Typescript. Furthermore, ideally they would also be inte-
grated directly into an IDE.

For the quantitative comparison based on benchmarks, there needs to be
a means of directly and automatically interacting with the models (i.e.. an
API). Moreover, the model needs to either be small enough to run as an
additional application on the machine or be available on a subscription or
pay-as-you-go basis.

Furthermore, the models should also have been optimized for instructions
rather than completions as the evaluation of all five aspects in the model
comparison is based on prompts. Additionally, in the practical exploration
all interactions with the exception of code completion are chat-based.

44

6. Model Comparison

This chapter details how we compared the models and how they performed. To
compare the eight LLMs, we evaluated them on five different aspects of Java SD.
Please note that while we later decided to write the frontend part in the exploration
using React for multiple reasons, the original idea was to implement the entire
application using Java (see Section 4.4). Therefore, this chapter only focuses on
aspects of Java SD.

We selected each aspect based on practical experience with both Java SD and
LLMs. Each aspect was evaluated with either a preexisting benchmark or a new
evaluation based on an existing dataset. The five evaluations are detailed in Sec-
tions 6.1 to 6.5.

However, we needed not only to compare the LLMs but also to determine which
model we should use for our practical evaluation. This ranking process is given in
Section 6.6.

6.1. Code Generation

Code generation is the task of synthesizing code based on a description. In this
comparison, we focused on generating individual Java methods from comments.
We selected this code generation aspect as datasets and benchmarks are readily
available. In the following, we elaborate on the benchmark we used, the observed
results and the conclusions we could draw from them.

6.1.1. Method

To evaluate models on their ability to synthesize code, we used the CoderUJB!
benchmark (Zeng et al., 2024), specifically "codeujbcomplete.” The task in this
benchmark is to generate a method body based on the method comment, the
method signature, and additional context information. The individual tasks in this
benchmark were derived from Defects4] (Just et al., 2014). It also provides the
required environments and test cases to evaluate the generated code.

ISee https://github.com/WisdomShell/ujb (Accessed: 07.10.2024)

45

https://github.com/WisdomShell/ujb

6. Model Comparison

There are 238 tasks in "codeujbcomplete,” which are evaluated in four stages. A
prerequisite for passing a stage is that the previous stage must have been passed.
In the first stage ("pass_syntax”), the method is inserted into the surrounding class,
and the syntax is verified using a parser. The second stage ("pass_compile”) con-
sists of an attempt to compile the project using Defects4] in the background. If
this fails, the first compilation error is reported, which we categorize (see 6.1.1)
and report. The third stage ("pass_trigger”) is a remnant from Defects4] and not
relevant here, as it only executes part of the test cases. Instead, the important stage
for code generation is "pass_all,” which executes all available test cases.

We executed the benchmark according to the instructions provided in the
project readme file and adapted the code-base to support all our models. Regarding
default values, we kept the default temperature of 0.2 and the maximum number
of newly generated tokens at 1024. We had initially set the number of samples
per task to five. However, since we did observe little to no difference between
the individual outputs for each task, we ultimately decided to use a single sample
instead.

The performance of the models is reported as pass@ 1, computed as the average
of the pass@1 scores of each task. As we generated one candidate per task, the
pass@1 score of an individual task is a binary measure. Due to the nature of the
results, they can also be interpreted as passing percentages.

T Jjava
package org.apache.commons.math3.stat.regression;
import org.apache.commons.math3.linear.LUDecomposition; Import Context
public class GLSMultiplelLinearRegression extends AbstractMultiplelinearRegression {
private RealMatrix Omega; .
private RealMatrix OmegaInverse; Field Context

protected RealVector calculateBeta(); q
protected RealMatrix calculateBetaVariance(); Signature Context

Y.

You are a professional Java programmer, please create a function named " calculateBeta”
based on the provided abstract Java class context information and the following

natural language annotations. Task Description
"7 java

/**

* Calculates beta by GLS.

* b=(X' Omega”-1 X)"-1X'Omega”-1 y Function Comment
* @return beta

*/

@Override . .
protected RealVector calculateBeta() { Function Slgnature

Figure 6.1.: Code Generation Prompt. A prompt example for code generation
with CoderUJB. Taken from Zeng et al. (2024).

Moreover, this benchmark provides a prompt generation strategy (see Fig-
ure 6.1). The generated prompt includes the method comment and the method

46

6. Model Comparison

header for the body that has to be generated. Furthermore, the prompt also con-
tains a more general “Task Description” that instructs the model on what to do.
Additionally, each prompt includes the import statements of the file and the fields
and abstract method signatures from the class.

Error Categories

In addition to the output already provided by the benchmark, we collected the
compilation error messages during our evaluation. We grouped them based on
categories introduced in a document from 2007 by the University of Princeton?.
Since Java has evolved since then and the document is not exhaustive, we also
went through the uncategorized errors raised during the evaluation. We created
rules to assign them to a preexisting category or create a new one. The categories
and a short explanation are given in Table 6.1.

Error Category Description
Issues related to the use of the abstract
abstract .
keyword/feature in Java.
. Among others: Issues related to type conversion,
computation

operations with and on data, uninitialized variables
exception declaration | Issues related to exceptions in Java.
Among others: Issues with undefined or already

identifier defined symbols, unimplemented method bodies,
access modifiers
return statements Issues with return statements: unreachable or missing

Issues related to the use of the static

static keyword/feature in Java.
syntax More complex syntax errors that the parser missed
A feature from a newer version has been used in the code.
version Example: Defects4] has projects that still use Java 1.4.
Therefore, they do not support for-each statements or similar.
. When the compilation and the pass_syntax evaluation
timeout

together took more than 120 seconds.

Table 6.1.: The eight error compile error categories we settled on.

It is essential to mention that the compilation step in this benchmark is done
using Defects4j, and it only reports the error that caused the compilation to fail.
This means that more than one error could have been made in a task, but only the

https://introcs.cs.princeton.edu/java/11cheatsheet/errors.
pdf (Accessed; 02.11.2024)

47

https://introcs.cs.princeton.edu/java/11cheatsheet/errors.pdf
https://introcs.cs.princeton.edu/java/11cheatsheet/errors.pdf

6. Model Comparison

first one would have been reported.

We chose this specific benchmark since it offers two desirable properties: (1) An
evaluation based on executed code by using unit test cases and (2) additional
context information about the class that the method is a part of.

6.1.2. Results

Figure 6.2 and Table 6.2 show the performance of all eight models as pass@1 scores.
These were computed as the mean of the binary pass@1 values from the 238 in-
dividual tasks. Since the pass@1 scores of the individual tasks are binary, the
resulting combined values can also be interpreted as percentage values, which we
do in the following.

pass_syntax pass_compile pass_all

Model [pass@1] [pass@1] [pass@1]
Claude 97.5 69.3 39.5
GPT-40 97.5 61.8 30.3
DeepSeek V2.5 96.6 59.2 29.0
Gemini Pro 86.1 47.1 23.1
Gemini Flash 92.0 45.8 19.7
Qwen2 1.5B 78.6 21.4 3.4
Phi3 3.8B 22.3 2.9 0.0
Qwen2 0.5B 37.4 6.3 0.0

Table 6.2.: Pass rates for all relevant stages of “codeujbcomplete” with a precision
of 1.

The results show that the five larger models managed to pass more individual
tasks than the three smaller models, with Claude 3.5 Sonnet performing the best.
The larger models passed all test cases on 19.7% to 39.5% of tasks. For the smaller
models, Qwen2 1.5B was able to pass 3.5% of test cases, with the other two passing
none. Moreover, the data shows that all models have failed tasks due to incorrect
syntax (see pass_syntax) or compilation issues (see pass_compile). While the per-
centage that passed the syntax and compilation step is between 45,8% and 69,3%
for the larger models, the same cannot be said for the smaller ones. They could
only produce compiling code for 2.9-21.4% of tasks.

Table 6.2 also shows that Phi3 3.8B consistently achieved lower pass@1 scores
than the smaller Qwen2 models. Moreover, it can be observed that Qwen2 1.5B
produced syntactically correct code in 78.6% of instances, which is close to the

48

6. Model Comparison

Pass@1 by pass category

100 s
Model
¢ Claude
¢ —e— DeepSeek V2.5
80 —e— GPT-40
—e— Gemini Flash
—e— Gemini Pro
50 o —e— Phi3 3.8B
- ¢ Qwen2 0.5B
© Qwen2 1.5B
3 ®
0- w.
40
e
20 .\. :
° °
0
pass_syntax pass_compile pass_all
Pass Category
Figure 6.2.: Code Generation Results are given in pass@1 for each of the eight

models over all three criteria. “pass_syntax” denotes that the output
passed a syntax check, with "pass_compile” denoting that the code
could also be compiled. “pass_all” denotes that the synthesized code
additionally passed all test cases. Results for "pass_trigger” omitted, as
not relevant for this benchmark.

larger models. However, it failed 57.2% of tasks at the compilation stage and an-
other 18% due to test cases, ending up close to the other small models.

6.1.3. Detailed Compilation Results

The compiler results were analyzed to gain a more detailed understanding of why
some test cases failed at the compilation stage.

In Figure 6.3, we show the number of occurrences for each error category and
model as a heatmap.

The most common error category we found for each model is identifier. This
is followed by either computation or version, depending on the model. For all

6. Model Comparison

Compile Errors for Model and Category
80
Claude 0 6 0 42 0 0 0 19 0

70
DeepSeek V2.5 1 10 0 0 0 2 24 0

60
GPT-40 1 8 1 0 0 1 27 0
50
_ Gemini Flash 0 20 1 0 1 0 9 2
[0]
é - 40
Gemini Pro 1 14 0 0 1 0 7 0
- 30
Phi3 3.8B 0 6 0 23 2 0 5 9 0
-20

Qwen2 0.5B 2 23 0 40 2 0 2 5 0

-10
Qwen2 1.5B 1 24 0 11 0 4 15 1
-0
> L &) O + o >
&0 \'Z‘r\\o {Z}\O <§® @Q’Q & &“@ & &
QO N NN & S © &
ke L O N\ N
N Y x@
SR N
© N
R &
(9
oF
Error Category

Figure 6.3.: Code Generation Detail Results are given in the absolute number
of occurrences per category and model.

models except Claude, Gemini Flash, and Phi 3, the compiler found syntax er-
rors that the syntax checker in the previous stage did not. Moreover, errors in
the abstract category occurred for GPT-40, Gemini 1.5 Pro, DeepSeek V2.5, and
both Qwen2 models. Compilation-related issues with return statements only
occurred in the smaller models, with Qwen2 1.5B producing a total of 11 tasks that
failed with this error and the other two models producing two erroneous tasks
each. Furthermore, the exception declaration and static error categories only
occurred in individual cases.

The timeout category is not an error by the compiler but the surrounding frame-
work. It denotes that the project compilation and the pass_trigger tests did not run
through completely in 120 seconds. This happened twice for Gemini 1-5 Flash and
once for Qwen2 1.5B.

50

6. Model Comparison

6.1.4. Discussion

In the overall evaluation, we found that the five larger models consistently scored
higher than the three smaller models. Claude 3.5 performed the best, followed by
GPT-40 and DeepSeek V2.5. However, even though the large models performed
better, all models also produced answers that failed to adhere to the syntax or could
not be compiled, ultimately leading to an overall pass rate for the best-performing
model of 39,5%. The most common compile errors for code that passed the initial
syntax check were due to identifier, computation, or version-related issues.
It is unsurprising that identifier and computation occurred often as both are
broad categories. Moreover, the compilation errors in the version category can
be attributed to the fact that some tasks in this benchmark have to be compiled
using old Java versions and, therefore, do not support the newer language features
the models used. However, we cannot mitigate this issue without major changes
to the benchmark or Defects4].

When examining the plot for the overall evaluation (see Figure 6.2), the lines
for the three best-performing models look relatively straight, indicating that the
models failed roughly equally due to compile errors and test cases. All other mod-
els exhibited a lower syntax pass rate and a visible kink. The latter indicates that
the overall performance is disproportionately affected by the compilation errors
rather than the test cases.

The benchmark results indicate that functional correctness is one, but not the
only, limiting factor regarding model performance on this task. Depending on the
model, incorrect syntax and compilation issues also caused a large performance
drop. Although this seems to indicate that the practical utility of such models for
generating code is limited, we argue that it can still be beneficial to use. Primarily
because solid support systems like IDEs already exists. These can check the syntax
and flag compiler errors using static analysis, addressing a sizable chunk of the
failures in the evaluation. This allows a developer to see potential issues with
the code immediately. We, therefore, argue that LLMs for code generation lend
themselves to be used in a joint setup with IDEs.

Moreover, the results of the experiment seem to suggest that increasing the size
of a model can potentially increase the ability to synthesize correct code. This can
be observed in both the Gemini models as well as the Qwen2 models. However,
this does not seem to hold across model families, as Phi3, a model that is larger
than both Qwen2 models, performs consistently equal or worse. One likely reason
for the poor performance of Phi3 could be that the model was primarily trained
on Python code with a focus on standard packages’.

*https://huggingface.co/microsoft/Phi-3-mini-128k-instruct#
responsible-ai-considerations (Accessed: 25.11.2024)

51

https://huggingface.co/microsoft/Phi-3-mini-128k-instruct#responsible-ai-considerations
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct#responsible-ai-considerations

6. Model Comparison

One last limitation we need to mention is that the compiler only reports the
error that caused the compilation to fail. This might mask further errors that may
also be present in that code snippet. However, this does not affect the overall
performance.

Answer for RQ2.1: How do the eight models compare in their code genera-

tion capability?

The larger models performed better than the smaller ones, but even the best-
performing model (Claude 3.5 Sonnet) only managed to pass 39,5% of tasks,
with two small models passing none. Moreover, all models struggled to
some extent with syntax and compilation errors.

Answer for RQ3.1: Where in the code generation benchmark do the highest-

scoring models perform well and where is room for improvement?

The three highest-scoring models, Claude 3.5 Sonnet, GPT-40, and DeepSeek
V2.5, were able to synthesize syntactically correct code in > 95% of cases.
However, they ultimately failed more than half of all tasks due to compila-
tion and test failures. The primary compilation errors observed are iden-
tifier, version and computation. However, version can not be mitigated
without changing the to the structure of the underlying framework.

6.2. Code Completion

Another aspect of Java SD is code completion, which is the process of completing
partially written code snippets. Traditionally, this feature was provided by IDEs
using static analysis and usually only supported single statements.

However, with LLMs, code can be completed at various scopes ranging from
single API calls to complete blocks.

6.2.1. Method

We evaluated the models using SAFIM* (Gong et al., 2024), a benchmark for the
Fill-in-the-Middle (FiM) task. FiM means that a part within a text is blanked out
and needs to be filled in.

SAFIM evaluates three distinct categories and provides data for multiple lan-
guages. The categories are (1) block completion, (2) control-flow completion, and

*See https://github.com/gonglinyuan/safim (Accessed: 07.10.2024)

52

https://github.com/gonglinyuan/safim

6. Model Comparison

(3) API function call completion. Block completion involves completing a partially
written block from, among others, methods, conditions, or loops. Control-flow
completion requires the models to complete the conditional statements of control-
flow statements. API function call completion involves finding the correct API
call.

In SAFIM, the data for block completion and control statement completion orig-
inate from the programming contest website Codeforces® and the results are eval-
uated using unit tests. The API function call” completion data was extracted from
GitHub repositories, and the completions are evaluated using exact match (EM).

While block completion and control-flow completion feature many (2.478 and
2.464) individual Java tasks, we decided to keep the three categories equal in size
and match the size of the Java API task set (56).

Calculate n-th fibonaccl number

n = input()

a, b=0,1

for _ 1n range(n):
a, b=>b, a+b

print{a)

Original Code

[MASK]
print{a)
[END]

Calculate n-th fibonacci number
n = input()

a, b-0,1
for _ in range(n):

Suffix-Prefix-Middle (SPM)

Calculate n-th fibonacci number

n = input()
a, b=0,1
for _ 1n range(n):

Left-to-Right (L2R)
Calculate n-th fibonacci number

n = 1nput()
a,b=-0,1
for _ 1n range(n):
[MASK]
print(a)
[END]
Complete the masked part:

n = input()

a,b=-0,1
for _ 1n range(n):

Instructed Prefix Feeding (IPF)

Calculate n-th fibonacci number

n = input()

a, b=0,1

for _ 1n range(n):
[MASK]

print(a)

[END] «

Prefix-Suffix-Middle (PSM)

Calculate a + b
a, b = 1nput(Q
[MASK]

print(c)

[END] c =a + b

Calculate n-th fibonacci number

n = input()

a, b-0,1

for _ in range(n):
[MASK]

print(a)

[END] <

One-Shot (15)

Figure 6.4.: Code Completion Prompt. Overview of the different prompt styles
offered by SAFIM. We initially went with SPM but ultimately landed
on 1S due to poor model performance. Taken from Gong et al. (2024).
A shortened example for both SPM and 1S prompting can be seen in
Appendix B.

Moreover, the SAFIM benchmark supports five different prompting approaches,
as shown in Figure 6.4. Ideally, we would have wanted to use the standard infilling
prompt (Prefix Suffix Middle (PSM)). However, this would require the models to

Shttps://codeforces.com/ (Accessed: 11.11.2024)

53

https://codeforces.com/

6. Model Comparison

support FiM prompting explicitly, which relatively few do. Therefore, we initially
went with Suffix Prefix Middle (SPM) prompting, which according to the authors
is a way to extend PSM prompts to a wider range of models, by allowing them
to process information in a “left-to-right manner” (Gong et al., 2024). However,
due to very poor performance (see Table 6.3), we ultimately went with One-Shot
prompting (1S). We suspect that the poor performance of SPM stems from the fact
that the code that comes after the infilling location (suffix) is placed at the very start
of the prompt (see Appendix B). This deviates from a classic instruction structure.
In contrast to that 1S prompting, provides an complete example before the actual
task and denotes the infilling location with a comment.

For model parameters, we followed their approach of setting the temperature to
0.2, as this aligns with the value chosen for the other benchmarks. Moreover, they
set top_p sampling to 0.95 for all models. We differ from that and use the default
parameters for all models to stay consistent with our other evaluations.

The individual categories provided pass@1 scores, and we computed the over-
all score by taking the arithmetic mean for all three. For block and control-flow
completion, the score is determined using input-output (IO) test cases, and for API
function call completion, it is determined using a ground truth string.

Additionally, we employed a simple extraction step for Claude 3.5 Sonnet on
Control and API tasks, as the benchmark framework could not extract the comple-
tions from the model answers in multiple cases. The regular expression® (RegEx)
for this extraction is: ”:\\ n\\n(.+) (\\n\\n.) ?”. However, we only extracted the
first RegEx group to get the output.

Moreover, SAFIM provides error statistics for each model and category, which
we also evaluated to understand the generated completions better. The only eval-
uation for "API function call” is to check if the generated code matches the ground
truth using EM. Therefore, we cannot provide further details here.

We chose this benchmark as it evaluates three different completion tasks and
features the ability to select from five prompt styles. Additionally, the benchmark
evaluates the generated completions using IO tests where applicable and falls back
to text-based evaluation otherwise (API tasks).

6.2.2. Results

The performance for code completion is reported as pass@1, both for each category
and for the combined (averaged) result. First, we briefly report the overall results
for SPM prompting before presenting the results for one-shot (1S) prompting in

*https://en.wikipedia.org/wiki/Regular_expression (Accessed:
1.12.2024)

54

https://en.wikipedia.org/wiki/Regular_expression

6. Model Comparison

detail. The latter is the one we used for the final ranking.

The results for code completion using SPM prompts are presented in Table 6.3.
There it can observed that many cells show a 0, indicating that no passing result
was achieved on any of the tasks. Moreover, GPT-40 was the only model to score
above 0% for all three tasks. In total, three models scored 0% on all three tasks.
Based on these results, we concluded that the SPM prompt was not suited for the
selected models and opted to use 1S prompting instead.

Block Control API Combined

Model [Pass@1] [Pass@1] [Pass@1] [Pass@1]
GPT-40 16.1 54 714 31.0
DeepSeek V2.5 10.7 0.0 39.3 16.7
Qwen2 1.5B 0.0 3.6 7.1 3.6
Qwen2 0.5B 0.0 1.8 3.6 1.8
Gemini Pro 1.8 0.0 0.0 0.6
Claude 0.0 0.0 0.0 0.0
Gemini Flash 0.0 0.0 0.0 0.0
Phi3 3.8B 0.0 0.0 0.0 0.0

Table 6.3.: The rounded results for of code completion with SPM prompting. Many
entries are 0, meaning that no passing results were produced.

Figure 6.5 and Table 6.4 show the performance of the eight models on the bench-
mark using one-shot (1S) prompting. Here, the results show that all models, except
for Qwen2 0.5B, scored above 0% for at least one of the categories.

For block completion, all larger models managed to pass tasks, with GPT-40
scoring highest at 73.2%, followed by DeepSeek V2.5 (69.6%), Claude 3.5 Sonnet
(67.9%) and Gemini 1.5 Flash (64.3%). Gemini 1.5 Pro scored lowest for the larger
models at 34%. Moreover, all smaller models scored 0%.

For control statement completion, GPT-40 and Claude scored 80.4%, followed
by DeepSeek V2.5 at 76.8%. Regarding the Gemini models, it can be observed that
the Pro variant (67.9%) scored higher than the Flash variant (64.3%). Both Qwen2
models achieved the lowest score at 0%, while Phi3 performed marginally better
at 1.8%.

We found GPT-40 to perform best for API category, scoring 84%, followed by
DeepSeek V2.5 (82.1%) and Claude (80.4%). Moreover, Gemini Flash once again
outperformed the Pro variant. Furthermore, we found that for the first time in
this benchmark, two of the three smaller models achieved a score above 0%, with
Qwen2 1.5B scoring 5.4% and Phi3 3.8B reaching 1.8%.

Following the individual evaluations, the scores from the models were combined

55

6. Model Comparison

using the arithmetic mean. This resulted in GPT-40 scoring the highest at 79.2%,
followed by Claude and Deep Seek V2.5, scoring 76.2%. The worst-performing
model in this benchmark was Qwen2 1.5B, scoring 0% in all three categories.

100 Pass@1 by pass category

Model
GPT-40
Claude
Gemini Pro
Gemini Flash
DeepSeek V2.5
Phi3 3.8B
Qwen2 0.5B
Qwen2 1.5B

80

block control api combined
Type

6

o

Pass@1

N
o

2

o

Figure 6.5.: Code Completion Results for the different models using one-shot
(1S) prompting. Each model has a performance measured in pass@1 for
each category. The combined score is the arithmetic mean computed
over all three categories.

We visualized the error categories for block and control completion to under-
stand the score differences better. API completion does not feature error cate-
gories, as the tasks are evaluated using EM.

Figure 6.6 details the failure types we encountered for each model when evalu-
ating block completion. There, we found that both Qwen2 models primarily failed
due to code that could not be compiled, which, based on manual inspection of the
extracted snippets, was usually caused by the model not following the instruc-
tions. Moreover, Phi3 3.8B primarily failed due to empty responses or compilation
errors. Upon further inspection of the produced output, we observed that most of
it appears to be nonsensical text mixed with code. Moreover, the larger models
primarily failed due to producing a "Wrong Answer,” meaning that at least one of
the test cases did not pass. However, Gemini 1.5 Pro was the exception, mainly

56

6. Model Comparison

Block Control API Combined

Model [Pass@1] [Pass@1] [Pass@1] [Pass@1]
GPT-40 73.2 80.4 83.9 79.2
Claude 67.9 80.4 80.4 76.2
DeepSeek V2.5 69.6 76.8 82.1 76.2
Gemini Flash 64.3 64.3 78.6 69.0
Gemini Pro 33.9 67.9 73.2 58.3
Qwen2 1.5B 0.0 0.0 5.4 1.8
Phi3 3.8B 0.0 1.8 1.8 1.2
Qwen2 0.5B 0.0 0.0 0.0 0.0

Table 6.4.: The rounded results for code completion with 1S prompting and a pre-
cision of 1.

failing due to compilation and runtime errors. When inspecting the outputs for
Gemini 1.5 Pro, we noticed that, in many cases, the model outputted parts of the
one-shot example.

In Figure 6.7, we present the failure types encountered during control-flow com-
pletion. There, we found that for all larger models, the primary issue was "Wrong
Answer,” which indicates that at least one IO test failed. The small models all pri-
marily failed due to compilation errors. Based on manual inspection, we found
that Phi 3 often produced nonsensical texts. Moreover, the Qwen2 models some-
times included additional import statements in their output, leading them to fail
tests this way. However, for both models, this only occurred in 14 or 15 cases,
respectively.

6.2.3. Discussion

In the evaluation using the three categories in this benchmark, we found that the
larger models performed remarkably better than the smaller models, which scored
0% in most instances. Notably, GPT-40, Claude 3.5 Sonnet, and DeepSeek V2.5
formed the top 3 in all three categories. Based on the evaluation of the error cate-
gories, we found that primary reason for failure for most of the larger models was
functional ("Wrong Answer”) and not syntax or compilation.

Moreover, we observed that Gemini 1.5 Flash outperformed the Pro variant in
2 of 3 categories. This occurred for block completion due to the Pro variant out-
putting the example in the one-shot prompt.

However, there exist some limitations to this benchmark. Firstly, the API com-
pletion is based on an exact match (EM) criterion, which could lead to an equivalent

57

6. Model Comparison

GPT-40 0 0 0 1 0 1 1% - 50
Claude 0 3 0 0 0 1 14
- 40
Gemini Pro 23 0 0 1 8 0 5
_ Gemini Flash 3 0 0 0 0 1 16 - 30
S
=
DeepSeek V2.5 0 0 0 0 0 1 16
- 20
Phi3 3.8B 5 0 0 0 0 0
Qwen2 0.5B 52 3 0 1 0 0 0 -10
Qwen2 1.5B 53 3 0 0 0 0 0
-0
> <
Q}@ 6@4‘ & @\'\‘0 © re ff\@
'OQ (%) +o® (Qe' +o® ?S\
& N & Q ©
& Q N & ©
© S RN
& @
N <€
@Q‘

Figure 6.6.: Block Completion Error Categories for the different models and 1S
prompting.

but textually different answer being regarded as wrong despite being a viable al-
ternative. Especially since seemingly inconsequential changes, like adding a blank
space, can lead to changes in the answer (Salinas and Morstatter, 2024). Secondly,
the benchmark features an approach to extraction that either assumes that the
models adhere to the prompt and only output the snippet in question or that the
models provide the snippet in question in a markdown style code notation. No-
tably, Claude 3.5 did not do this, initially leading to a low score. Fortunately, the
model always included a colon (:) followed by two newlines before each snippet’,
allowing us to easily add an additional extraction step to extract the snippets prop-
erly.

Based on the evaluation we theorize that GPT-40, Claude 3.5 Sonnet, and
DeepSeek V2.5 should be well suited for code completion in practice, with the
Gemini models likely performing okay. However, we would expect the smaller
models not to be helpul in practice.

"If there was text after the snippet, there also always were two newlines as a separator.

58

6. Model Comparison

GPT-40 0 0 0 1 1 0 9
50
Claude 1 0 0 0 0 0 10
Gemini Pro 7 0 0 0 0 0 11 40
_ Gemini Flash 3 0 0 1 3 0 13
9] -30
el
=
DeepSeek V2.5 1 0 0 2 1 1 8
-20
Phi3 3.8B 55 0 0 0 0 0 0
Qwen2 0.5B 56 0 0 0 0 0 0 - 10
Qwen2 1.5B 54 0 0 0 2 0 0
-0
> <
Q}‘O éQ‘é @60 @,__e <<}"° ebe §‘®
< S « & \a
N Q & \Q’ N\
Q\ N Qp 6\\ &©
N = >
P S <
& A

Figure 6.7.: Control Statement Completion Errors for the different models and
1S prompting.

Answer for RQ2.2: How do the eight models compare in their code comple-

tion abilities?

The larger models performed better than the smaller ones with GPT-4o, the
best-performing model achieving a combined score of 79.2%. All the smaller
models scored below 2% on average, with Qwen2 0.5B scoring 0% on all
benchmarks.

59

6. Model Comparison

Answer for RQ3.2: Where in the code completion benchmark do the highest-

scoring models perform well and where is room for improvement?

The three highest-scoring models GPT-40, Claude 3.5 Sonnet and DeepSeek
V2.5 were able to synthesize correct completions in most cases, leading to
scores between 76% and 80%. Moreover, they performed well consistently,
forming the top 3 in each category. In cases where they failed, the pri-
mary issue was functional correctness ("Wrong answer”), with the occa-
sional other error.

6.3. Unit Test Generation

Unit test generation is the task of synthesizing unit tests based on the method un-
der test. In the following, we elaborate on the approach we used to evaluate and
compare the capabilities of the models. Moreover, we show how the models per-
formed and what learnings we could draw from them. Furthermore, we selected
unit test generation, an aspect of test generation as a whole, as it is straightforward
to evaluate and datasets/benchmarks are readily available.

6.3.1. Method

To evaluate the ability of the models to synthesize unit tests, we used the codeu-
jbtestgen” part of CoderUJB (Zeng et al., 2024). The task in this benchmark is to
generate a unit test for a method under test, the surrounding context, and addi-
tional test-related information. This includes the method comment and signature
of the test method and the surrounding context. All tasks in this benchmark were
derived from Defects4j (Just et al., 2014), which also provides the environments to
execute the test cases.

There are 140 tasks, and the execution structure is similar to code gener-
ation (see 6.1). However, “pass_all” does not exist for codeujbtestgen,” and
"pass_trigger” is the relevant measure that indicates the following: (1) the test
case passed and (2) the test case achieved a line coverage > 0.

We evaluated the benchmark as we did for code generation with a temperature
of 0.2, a maximum number of newly generated tokens of 1024, and a sample size
per task of 1.

The performance of the models is reported as pass@ 1, computed as the average
of the pass@1 scores of each task. As we only generated one candidate per task,
the pass@1 score of an individual task is a binary measure. Due to the nature of
the results, they can also be interpreted as passing percentages.

60

6. Model Comparison

" java
// Abstract Java Tested Class

Abstract Tested Class Context
// Abstract Java Test Class

Abstract Test Class Context

Task Description

TT 7 java

Function Comment

Function Signature

Figure 6.8.: Unit Test Generation Prompt. A prompt example for unit test gen-
eration with CoderUJB. Taken from Zeng et al. (2024).

This benchmark also provides a prompting strategy, as shown in Figure 6.8.
Here, it contains context information about the class under test and the test class.

In addition to the primary pass@1 scores, the benchmark also provides code-
, branch- and diff-coverage values as measures for each task. As the result for
“pass_trigger” does not consider these coverage values apart from a simple check
if the test case achieves any coverage at all, we incorporated coverage values into
our evaluation. Equation 6.1 shows how we computed and added the average of
the two coverage values with a weight of 30%. Moreover, we calculated code- and
branch-coverage based on all test cases that passed “pass_trigger.” Crucially, we
omitted the diff-coverage, as it represents the same as the code-coverage in this
situation.

ass_trigger code_coverage + branch_coverage
pass_tgger +0.3 % = g = g

100 2

We used the same categorization for compilation errors as for the code genera-
tion benchmark. This can be seen in Table 6.1.

The rationale for choosing this benchmark is the same as for code generation,
namely: (1) An evaluation based on executed code by compiling and executing
the unit test cases and (2) additional context information about both the classes
of the method under test and the class of the test method.

score = 0.7

(6.1)

6.3.2. Results

Figure 6.9 illustrates the performance of all eight models on this benchmark, and
Table 6.5 lists the detailed pass@1 values and the combined final score. The results

61

6. Model Comparison

were computed as the arithmetic mean of the binary pass@1 values from the 140
individual tasks.

The results in Figure 6.9 show that the five larger models performed better on
the original benchmark than the smaller ones, with GPT-40 achieving the highest
pass rate, for “pass_trigger.” Overall, the larger models produced a passing test case
on 12.9-22.1% of tasks, while the smaller models achieved between 0.7% and 2.1%.

Moreover, GPT-40, Claude 3.5 Sonnet, and DeepSeek V2.5 all passed the syntax
check in > 95% of tasks. Furthermore, the two Gemini models produced passing
code in 68,6% (Pro) and 76,4% (Flash) of cases. For the small models, Qwen2 1.5B
had the highest pass rate at 52.9%, followed by Phi 3 3.8B (37.1%) and Qwen2 0.5B
(16.4%). Claude 3.5 (47,9%) achieved the highest pass rate for the compilation
stage, followed by GPT-40 and DeepSeek V2.5, which both passed in around 38%
of cases. The Gemini models reached 31.4% (Pro) and 33.6% (Flash). Both Qwen2
models and Phi 3 were closer together, passing the stage with rates ranging from
3.6% to 5.7%.

In Figure 6.10, we provide the average line- and condition-coverage rates per
model and the number of tasks on which this could be computed. It must be noted
that the results for the smaller models are based on either one or three passing
tasks, which is a relatively small number compared to the large models. Consid-
ering only the large models, Claude produced code that, on average, covered the
largest percentage of lines at 44.3%, followed by DeepSeek V2.5 (43.1%) and Gem-
ini Flash (41.8%). For condition coverage, the order of the three best-performing
large models was reversed, with Gemini Flash covering the highest percentage at
32.4%, followed by DeepSeek V2.5 (29.5%) and Claude (28%).

Moreover, Table 6.5 also shows the final weighted score that combines the re-
sults from pass_trigger with the coverage rates at a 70-30 ratio. Based on this
final score, GPT-40 performed best, achieving 0.244, followed by Claude 3.5 Son-
net (0.228) and DeepSeek V2.5 (0.209). Qwen2 0.5B and Phi 3 3.8B performed the
worst.

For unit test generation, we also analyzed the compilation errors for all models,
which we present in Figure 6.11. The categories are the same as for the code gen-
eration benchmark and can be seen in 6.1. The most common error category for
every model was identifier. Moreover, for all models except Phi3, the second and
third most common error categories were computation and version in varying
order. The second most common error category for Phi3 was version, followed
by syntax. Generally, syntax, abstract, and exception categories occurred in-
frequently. No compilation errors occurred in the categories return statements
or static. However, there was a single timeout.

62

6. Model Comparison

100 Pass@1 by pass category

Model
Claude
DeepSeek V2.5
GPT-40
Gemini Flash
Gemini Pro
Phi3 3.8B
Qwen2 0.5B
Qwen2 1.5B

80

60

40

Pass@1
/ |
@

1 | |
® e o0 0 0@
| [O A A |

/

20

@

)

0 []

pass_syntax pass_compile pass_trigger
Pass Category

Figure 6.9.: Unit Test Generation Results on the codeujbtestgen benchmark.
Each model has a performance measured in pass@1 for each task. The
relevant score here is pass_trigger.

6.3.3. Discussion

In the overall evaluation, we found that the larger models consistently outper-
formed the smaller ones, even though all models seem to have substantial problems
reliably producing compileable code. After weighing the coverage percentages, we
found GPT-40 scored the highest at 0.175, followed by Claude 3.5 Sonnet (0.139)
and DeepSeek V2.5 (0.116). The most common compiler errors we observed were
identifier, computation, and version.

When looking at the pass@1 values illustrated in Figure 6.9, it can be observed
that the three best-performing models were scoring roughly the same in terms of
syntactical correctness. In general, Claude seems more capable of generating unit
tests that successfully compile, as code from GPT-40 and DeepSeek V2.5 failed to
compile more frequently. However, despite having fewer passing tasks after the

6. Model Comparison

50 Coverage Type
mmm Line Coverage
B Condition Coverage
40
| I
N
Q

Coverage [%]
N w
o o

o

o

g

Model

Figure 6.10.: Unit Test Generation Coverage for lines and conditions averaged
over all passing tasks per model. The number of passing samples for
each model is listed in the x-axis description.

compile stage, GPT-40 produced more passing test cases than Claude. This could
indicate that GPT-4o is better suited to generate unit tests. However, the coverage
rates reported in Figure 6.10 seem to contradict that indication, seeing as GPT-40
achieved the lowest line and second lowest condition coverage rate of the larger
models. However, one limitation to the expressiveness of these observations is
that the benchmark provides a method comment for each test case detailing what
precisely should be tested. Therefore, the goal for line- and condition-coverage
rates is not given. This led us to weigh “pass_trigger” 70% and the coverage 30%.
Ultimately, GPT-40 scored the highest, followed by Deep Seek V2.5, with the other
three larger models all being within a window of 0.02.

The smaller models appear unsuitable for unit test generation, with the best of
the three having a pass rate of only 5.7% after the compilation stage. One po-
tential explanation for this could be that the prompt contains information about

64

6. Model Comparison

pass_syntax pass_compile pass_trigger Weighted

Model [pass@1] [pass@1] [pass@1] Score
GPT-40 95.0 38.6 22.1 0.244
Claude 95.7 47.9 17.1 0.228
DeepSeek V2.5 96.4 37.9 14.3 0.209
Gemini Flash 76.4 33.6 12.9 0.201
Gemini Pro 68.6 314 13.6 0.189
Qwen2 1.5B 529 5.7 0.7 0.127
Qwen2 0.5B 16.4 4.3 2.1 0.045
Phi3 3.8B 37.1 3.6 0.7 0.012

Table 6.5.: Pass rate for all stages of “codeujbtestgen” with a precision of 1. The
weighted score is given with a precision of 3.

two classes and that the smaller models could have issues correctly assigning the
information.

Similar to code generation, we generally found the most common compilation
errors in the identifier, computation, or version categories. Similar to the other
CoderUJB benchmarks, the compilation step only reports the first error, poten-
tially hiding further ones that may also exist. Moreover, version-related errors
can unfortunately not be avoided for the same reasons as in code generation. Fur-
thermore, we argue that in practice, the other two error types could easily be mit-
igated using the LLM and an IDE capable of detecting such problems using static
analysis.

Based on the sizable score difference between the smaller and larger models,
model size seems to impact model performance for unit test generation. However,
based on the ultimately slight score difference between Gemini 1.5 Pro and Flash
(less than 0.04) and between the smaller models, we would argue that it is less
pronounced than in code generation.

Answer for RQ2.3: How do the eight models compare in their unit test gen-

eration abilities?

The larger models performed better than the smaller ones, but even the best-
performing model (GPT-40) only achieved a pass rate of 22.1% and a final
weighted score of 0.244. Two of the smaller models did not achieve a score
higher than 0.045. All models failed most of their tasks due to compiler and
syntax errors.

65

6. Model Comparison

Compile Errors for Model and Category

50
Claude 0 14 2 33 3 15 0 0 0
DeepSeek V2.5 0 12 2 48 2 18 1 0 0 40
GPT-40 0 7 1 50 3 18 0 0 0
30
_ Gemini Flash 0 1" 0 44 0 5 0 0 0
3
s
Gemini Pro 1 8 1 35 0 7 0 0 0
-20
Phi3 3.8B 0 3 1 25 8 10 0 0 0
Qwen2 0.5B 2 0 0 12 0 3 0 0 0 - 10
Qwen2 1.5B 3 12 0 2 9 0 0 0
-0
& o o & ¥ o & & L
> O O N @ © N >
RO P e I M
@Q ®0 N \"b\
o O 2
o Q Q
© N
& @
oF
Error Category

Figure 6.11.: Unit Test Generation Detail Results are given in absolute number
of occurrences per category and model.

Answer for RQ3.3: Where in the unit test generation benchmark do the

highest-scoring models perform well and where is room for improvement?

The three highest-scoring models, GPT-40, Claude 3.5 Sonnet, and DeepSeek
V2.5, exhibited next to no problems with syntax. The primary issues were
compilation errors and test case failures, with compilation errors account-
ing for the larger drop in pass rate. The most common compilation error
categories were identifier, version and computation. However, version-
related issues cannot be mitigated without fundamental changes to the un-
derlying framework. The Gemini models failed more often due to syntac-
tical problems but less frequently due to compilation errors than the other
three, ultimately reaching a similar weighted score to the other three larger
models.

66

6. Model Comparison

6.4. Method Comment Generation

Method comment generation is the task of generating a descriptive comment about
the method in question. We selected method comment generation as an aspect of
documentation generation as it is straightforward to apply and evaluate. More-
over, datasets containing Java method and comment pairs are readily available.

6.4.1. Method

We employed a quantitative evaluation to assess the ability of the models to gener-
ate comments from code. We utilized the DeepCom dataset from Hu et al. (2018a),
which consists of Java method and comment pairs and is split into train, test, and
validation sets.

From the test set, we sampled 300 pairs and evaluated the models on them. Since
we could not fine-tune the LLMs on this task, we utilized one-shot prompting to
convey specific information about this task. The prompt is based on our experience
with LLMs and contains influences from the prompts in the other comparisons.
The prompt we used contains a manually selected sample® from the part of the
test set we did not use’.

You are a professional Java programmer, please create a
short comment that explains what the following method does.
Only answer with the comment.

Write nothing else.

protected String renderUri(URI uri){
return uri.toASCIIString () ;

}

Comment: Render the URI as a string.

[METHOD_TO_SUMMARIZE]
Comment :

We evaluated the output of the model using ROUGE-1 (Lin, 2004) and computed
the average over all 300 samples. We specifically chose ROUGE-1 with word stem-
ming as it is a measure that can be used to evaluate automatic summarization, and
code comments can be seen as a summary of code. The comparison was done by
comparing the word unigram overlap between the reference and the generated

8This sample was selected as it is simple, self-contained (i.e., not dependent on external context
information) and the comment accurately describes the method.
“Please note that the line-break between "a” and “short” is not present in the actual prompt.

67

6. Model Comparison

summary. We evaluated the model performance based on the F1-score (see For-
mula 6.4) as it balances precision (see Formula 6.2) and recall (see Formula 6.3).

. #overlapping unigrams
precision = e : (6.2)
#prediction unigrams

#overlapping unigrams

recall = (6.3)

#target unigrams

2 x precision * recall
f = 2P (6.4)
precision + recall

All three formulas were taken from the source code of the "rouge-score” Python
package'®. Moreover, as an additional preprocessing step, we removed the com-
ment notation'! present in some generated answers before comparing the texts.

We selected this approach as method-comment pairs for Java are readily avail-
able. Moreover, we utilized ROUGE-1 as we dealt with short method comments
and commenting code can be viewed as a special form of summarization.

6.4.2. Results

The results for the model performance are given as the F-1 score of ROUGE-1 and
are plotted in Figure 6.12 with the mean on the x-axis and the median on the y-
axis. It can be observed that the mean and median tend to be close, although the
median is always slightly lower. The best-performing model based on the mean
here was the smaller Gemini Flash (0.31) model, followed by Gemini Pro (0.308)
and DeepSeek V2.5 (0.3). GPT-40 scored 0.286 on this benchmark, and the worst-
performing larger model, Claude 3.5 Sonnet, achieved 0.256. Moreover, Qwen2
1.5B (0.288) managed to outperform both GPT-40 and Claude 3.5 in this benchmark,
and Phi3 (0.09), as well as Qwen2 0.5 (0.029) had clearly lower scores than all other
models.

Table 6.6 shows the precision, recall, and F1 scores for each model. Please
note that all three values were first computed based on the individual tasks and
then combined using the arithmetic mean. It can be observed that Qwen2 1.5B
achieved the highest precision but the third-lowest recall value. Moreover, Claude
3.5 Sonnet, the worst-performing larger model according to the F1-score, achieved
the highest recall but the third-lowest precision value. Gemini 1.5 Flash, which
achieved the highest F1 score, scored second-highest for precision and fifth-highest
for recall.

Yhttps://pypi.org/project/rouge-score/#description (Accessed:
24.11.2024)
"This includes //, /*, */, I**, ...

68

https://pypi.org/project/rouge-score/#description

6. Model Comparison

ROUGE-1 Values per Model

0.30 Model
) ® GPT-4o
Claude
0.25 ® Gemini Pro ®
® Gemini Flash
® DeepSeek V2.5
~ 0.20 ® Phi3 3.8B
°g’a Qwen2 0.5B
& Qwen2 1.5B
- 0.15
©
©
@
=
0.10
0.05
0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Mean Rouge-1

Figure 6.12.: Method Comment Generation Results of the sampled (n=300)
benchmark. Scored using ROUGE-1 F1 and plotted as median over
mean. The blue line is at d=0, k=1 and represents mean=median.

In Figure 6.13, we report the length of the comments in the dataset and the
length of the comments generated by the eight models. We found that most mod-
els produced comments similar in length to the dataset. However, three models
clearly differed. Firstly, we observed that comments generated by Claude 3.5 Son-
net were longer than for most other models. Secondly, Phi3 3.8B created very long
comments, and a manual inspection revealed that the output was often nonsensi-
cal. Finally, Qwen2 0.5B answered with the function from the one-shot example
in most cases.

69

6. Model Comparison

Model Precision Recall F1

Gemini Flash 0.350 0354 0.310
Gemini Pro 0.330 0.378 0.308
DeepSeek V2.5 0.301 0.392 0.301
Qwen2 1.5B 0.381 0.290 0.288
GPT-40 0.278 0.389 0.286
Claude 0.216 0.470 0.256
Phi3 3.8B 0.068 0.254 0.090
Qwen2 0.5B 0.031 0.052 0.029

Table 6.6.: The average ROUGE-1 scores by model rounded to a precision of 3. The
values for all columns were computed using the arithmetic mean of the
results for the individual tasks. This means that computing the F1 score
based on the values in the table would differ from the ones present.

6.4.3. Discussion

In the evaluation we, observed that all larger models outperformed all but one
smaller model. Qwen2 1.5B achieved a higher F1 performance than GPT-40 and
Claude 3.5 Sonnet. While the best-performing model only scored a mean ROUGE-
1 F1 score of 0.31, which is relatively low for a value that can, in theory, range
from 0 to 1, we argue that this is to be expected as there is more than one way to
summarize a method.

Surprisingly, Qwen2 1.5B scored relatively high, which we assume is partly ac-
counted for because it primarily provided shorter answers.

Moreover, the lower score of Claude 3.5 can, in part, be explained by the longer
comment lengths, which lead to a lower precision score of the ROUGE-1 F1 score,
thereby reducing the overall score. The same rationale applies to Phi3 3.8B, as can
be seen in Table 6.6. Moreover, Phi3 also seems to tend to output nonsensical texts
that have no apparent connection to the prompt.

The worst performing model was Qwen2 0.5B, which achieved a low score due
to the tendency to not adhere to the prompt and to output the code from the one-
shot example.

Based on the results, we conclude that all models except Phi3 and Qwen2 0.5B
are generally suited for method comment generation. However, Claude 3.5 Son-
net seems to tend to synthesize lengthy text, which we would consider a slight
disadvantage. Moreover, while we did not exhaustively check the comments as
this is a quantitative evaluation, the comments from the best-performing models
we actually looked at were good. However, based on that we can not generally
say whether all the comments make sense and are helpful.

70

6. Model Comparison

Comment Length

Dataset }—.—kmmo@@ O 00O @O
GPT-40 }—l—{m@
Claude | fpo@mo @O O
Gemini Pro }—l—bo o o o o
Gemini Flash }—l—‘m o)
DeepSeek V2.5 }—l—{:m @)

Qwen2 0.5B m oOEmO® O 0O 000 O O o O

Model

Qwen2 1.5B)—I—{ @® O®®D O

200 400 600 800 1000
Text Length

Figure 6.13.: Method Comment Generation Comment Length for all eight
models and the dataset. Outliers with a length of >1000 characters
were removed. These are 10 for Phi3 and 12 for Qwen2 0.5B.

Answer for RQ2.4: How do the eight models compare on their ability to

synthesize method comments?

The larger models and Qwen2 1.5B scored the best in our evaluation. How-
ever, Claude 3.5 scored lower than the others on the F1 score. This was
primarily due to longer answers. Phi3 and Qwen2 1.5B scored very low and
seem unsuitable for practical application.

71

6. Model Comparison

Answer for RQ3.4: Where in the method comment generation benchmark

do the highest-scoring models perform well and where is room for improve-
ment?

The six highest-scoring models primarily performed well due to the compar-
atively high token overlap (i.e. high precision and recall scores) combined
with producing text of roughly similar length to the dataset. Claude 3.5 Son-
net tended to create lengthier comments, leading to a lower score. Except for
Claude, there is no clear room for improvement for the six best-performing
models, as the generated comments we looked at generally seemed good.

6.5. Automated Program Repair

Automatic Program Repair is the task of automatically correcting defective code. It
is one approach to fixing bugs, and we selected it because several benchmarks are
readily available for this sub-aspect of software correction'?. Moreover, this aspect
is straightforward to evaluate. In the following, we elaborate on the approach we
used to assess and compare the capabilities of the models. Furthermore, we show
how the models performed and what learnings we could draw from them.

6.5.1. Method

To evaluate the models on their ability to fix code, we utilized the codeujbrepair
benchmark from CoderUJB (Zeng et al., 2024). The task in this benchmark is to
repair methods that contain bugs. The available information for each task is the
method itself, the method comment, and class context information. The individual
tasks in this benchmark stem from the “single-function defects” in Defects4j. These
were extracted by Xia et al. (2023) and subsequently used in this benchmark. A
”single-function defect” is defined as a defect that can be corrected by only editing
code withing a single method. Additionally, Defects4j was used to execute and
evaluate the fixes.

The benchmark comprises 470 tasks, which are evaluated in four stages. These
are the same for code generation (see Section 6.1) and unit test generation (see Fig-
ure 6.8). However, both "pass_trigger” and "pass_all” are relevant for this bench-
mark. Here, the former indicates whether the previously failing test cases now
passed, and the latter indicates whether all tests passed. We once again ran the
benchmark in accordance with the instructions provided by the benchmark cre-
ators. This involved setting the temperature of the LLM to 0.2 and the maximum

2https://program-repair.org/benchmarks.html (Accessed: 21.11.2024)

72

https://program-repair.org/benchmarks.html

6. Model Comparison

number of newly generated tokens to 1024. Moreover, we generate one sample
per task.

The performance of the models is reported as pass@ 1, computed as the average
of the pass@1 scores of each task. As we only generated one candidate per task,
the pass@1 score of an individual task is a binary measure. Due to the nature of
the results, they can also be interpreted as passing percentages.

" java

Abstract Class Context

Task Description

"7 java

/x* Function Comment
* Tests the list for equality with another

object (typically also a list).
*/
public boolean equals(Object obj) {

1f (obj == this) { Buggy Function

return true;

}
if (l(obj instanceof ShapelList)) {
return false;

}

return super.equals(obj);

3.

Figure 6.14.: APR Prompt. A prompt example for APR with CoderUJB. Taken
from Zeng et al. (2024).

The prompt generation strategy is similar to code generation, differing only in
the task description and by including the entire method instead of the method
header (see Figure 6.14).

As for code and test case generation, we categorized and reported the compila-
tion errors based on the information in Table 6.1.

The rationale for choosing this benchmark is similar to code generation and
test case generation. Another factor is that this benchmark uses Defects4j, a well-
explored benchmark for APR (Xia et al., 2023) .

6.5.2. Results

The performance of each model on the APR benchmark is given as pass@1 and
visualized in Figure 6.15. Moreover, the exact scores are reported in Table 6.7. The
results are computed as the mean of the binary pass@1 values from the 470 indi-
vidual tasks. As the pass@1 scores of the individual tasks are binary, the resulting

73

6. Model Comparison

combined values can also be interpreted as percentage values, which we did in the
following.

The results show that the five larger models outperformed the smaller mod-
els, with Claude performing the best in the "pass_all” category (25.1%). The other
larger models managed to pass between 18.1% (GPT-40) and 15.7% (Gemini 1.5
Flash) of tasks. All smaller models scored below 1%.

Moving back to "pass_syntax, the first stage, all larger models passed between
88.3% and 79.1% of tasks and were closely followed by Qwen2 1.5B with a pass
rate of 77.2%. The other smaller models were further off, with the smaller Qwen2
models scoring 64.5% and Phi3 reaching 17.2%.

In "pass_compile,” Gemini Flash synthesized passing code in 79.6% of cases, fol-
lowed by Claude, GPT-40, and Gemini Pro, which all scored between 72.1% and
69.1%. DeepSeek V2.5 scored the lowest of the large models, with 64.3%. The
Qwen models managed to pass this stage 54.9% (1.5B) and 47.4% (0.5B) of times,
respectively, with Phi3 3.8B scoring the lowest (3.8%) by a sizable margin.

For "pass_trigger,” the stage that executes the initially failing test case(s), the
performance dropped notably, with Claude, the best-performing model, now man-
aging to pass 30% of tasks. It is followed by DeepSeek V2.5, which scored 25.7%,
and the other three larger models, which achieved between 21.9% and 20.2%. The
smaller models all scored below 3%.

pass_syntax pass_compile pass_trigger pass_all

Model [pass@1] [pass@1] [pass@1] [pass@1]
Claude 88.3 72.1 30.0 25.1
GPT-40 82.6 69.1 21.9 18.1
DeepSeek V2.5 79.1 64.3 25.7 17.4
Gemini Pro 83.2 70.9 20.9 16.6
Gemini Flash 87.9 79.6 20.2 15.7
Qwen2 1.5B 77.2 54.9 2.8 0.6
Phi3 3.8B 17.2 3.8 1.1 0.4
Qwen2 0.5B 64.5 47.4 1.3 0.2

Table 6.7.: The numeric results for the APR benchmark with a precision of 1.

The compilation errors that occurred during the evaluation of this benchmark
are visualized in Figure 6.16. The most common error categories were identifier,
computation, and version. Moreover, for Phi 3, the compilation failed 6 times
due to syntactical errors initially missed by the parser in the first stage. Both
Qwen2 models had multiple instances of missing return statements. All other
error categories did not occur more than three times per model.

74

6. Model Comparison

Pass@1 by pass category

100
Model
® Claude
® —e— DeepSeek V2.5
80 3 —e— GPT-40
—e— Gemini Flash
—e— Gemini Pro
—e— Phi3 3.8B
- 60 Qwen2 0.5B
@ —eo— Qwen2 1.5B
$
40
20 '\ \5
0 P f— a

pass_syntax pass_compile pass_trigger pass_all
Pass Category

Figure 6.15.: APR Results for the codeujbrepair benchmark. Results are reported
as pass@k-1, and pass_all is the relevant measure.

6.5.3. Discussion

In the evaluation, we observed that the larger models outperformed the smaller
ones at every stage, with Claude 3.5 Sonnet ultimately achieving the best score
with a pass@1 of 25.1%. Although, the two Qwen2 models were not to far from
the larger models for the first two parts, Phi3 scored only 17.2% on "pass_syntax.”
After that, the performance differences became apparent. We generally observed a
sizable drop for every model when evaluating the previously failing test cases. This
was followed by a small decrease in performance when extending the evaluation
scope to all test cases. Furthermore, the most common compiler errors were once
again identifier, computation and version.

Looking at the pass@1 values at the different stages, we noted that, sur-
prisingly, the smaller Gemini model achieved the second-highest pass@1 score
for "pass_syntax.” Moreover, the Flash variant achieved the highest score for

75

6. Model Comparison

Compile Errors for Model and Category
Claude 0 3 1 59 2 0 1 10 2

50
DeepSeek V2.5 0 13 3 34 0 2 2 16 3
GPT-40 0 6 0 41 0 0 1 15 1 40

Gemini Flash 0 3 0 68 1 0 0 2 1
-30

Model

Gemini Pro 0 7 1 43 1 0 2 4 0

Phi3 3.8B 0 12 1 41 1 0 6 2 0 20

Qwen2 0.5B 3 22 1 44 6 0 0 4 0 - 10

Qwen2 1.5B 1 26 1 59 4 0 1 12 1
-0
R) N L NN &
& & \ré\'\o N 6‘@{\ & é(\"b @@\o) 6‘@0
& & SR
S ¥ &
o Q Q&
© \K
& &
oF
Error Category

Figure 6.16.: APR Detail Results are given in absolute number of occurrences per
category and model.

“pass_compile” with a margin of 7.5% to Claude, the second-best performing
model. However, Gemini 1.5 Flash ultimately achieved last place among the larger
models.

Additionally, we found that apart from Claude, the best-performing model, all
other large models were within 2.4% in the final score. There, we also observed that
while DeepSeek V2.5 scored better for "pass_trigger,” it was ultimately overtaken
by GPT-40 in “pass_all” This could indicate that DeepSeek V2.5 is better at fixing
bugs than GPT-4o0, but at the same time, introduces more new bugs.

Again, we observed that the most common compilation error categories were
identifier, computation, and version. However, the expressiveness of the errors is
limited by the fact that version errors cannot be mitigated without fundamentally
changing the benchmark and that only the first error was reported, hiding further
potentially existing ones.

In general, APR is the first benchmark from CoderUJB for which the syntax
and compilation errors seem less problematic, and functional correctness becomes

76

6. Model Comparison

more relevant. However, the fact that all tasks for this benchmark stem from the
”single-function defects” part of Defects4j could allow models to perform better
more easily, as we assume context plays a minor role under those circumstances.
Moreover, with the highest passing percentage being 25.1% and the other larger
models scoring in the range of 15-20%, it remains to be seen how the practical
experience with APR will be.

Answer for RQ2.5: How do the eight models compare regarding their APR

abilities?

The larger models performed better than the smaller ones, but even the best-
performing model only managed to achieve a pass rate of 25.1%. More-
over, all other larger models achieved notably lower rates between 18.1%
and 15.7%. The smaller models achieved pass rates below 1% and are not
suited for the task. Syntax and compilation errors played a reduced role,
likely because the models were less dependent on the provided context, as
the fixes required for the tasks were always within a single method.

Answer for RQ3.5: Where in the APR benchmark do the highest-scoring

models perform well and where is room for improvement?

The highest-scoring models Claude 3.5 Sonnet, GPT-40, and DeepSeek V2.5
all had some problems with syntax and with the compilation step. However,
all models had their largest drop due to failing test cases.

Claude 3.5 Sonnet passed more tasks than DeepSeek V2.5 and GPT-4o.
Moreover, DeepSeek V2.5 seemed better at fixing bugs than GPT-40 but ul-
timately appeared to introduce more new bugs, leading to a lower pass@1
score. However, all three models introduced new bugs in some cases.

6.6. Model Ranking

In this part, we detail how we combined the results from the five evaluations to
arrive at a single model that we then used in the practical exploration.

6.6.1. Method

To determine the best-performing model, we had to find a way to combine the re-
sults from the five benchmarks. For this, we needed to consider two main caveats:
Firstly, the resulting values measure different things (e.g., pass rates versus n-gram

77

6. Model Comparison

overlap) and are, as such, not directly comparable. Secondly, while all results are,
per definition, in a value range of [0, 1], the achieved value ranges differed between
the five comparisons (see Table 6.8). If we had combined the scores by computing
the sum or the arithmetic mean, an evaluation with higher scores would have been
overrepresented. In comparison, one with lower scores would have been under-
represented.

Therefore, we opted to use a ranking approach. To do this, we computed ranks
for each benchmark, with each model receiving a rank from 1 (first) to 8 (last).
If two models achieved precisely the same score, they were awarded the average
rank of their places. This means that, for example, if the last two models achieved
the same score, they were both given a rank of 7.5. The final rank was computed
using the arithmetic mean of the ranks for each model.

Additionally, we wanted to evaluate if there were groups of models that dif-
fered significantly in their performance. For this, we aimed to use the Nemenyi
posthoc test'® which requires a statistical test that shows a significant difference
as a precondition. We opted to us a Friedman test on the model scores in Table 6.8.
Moreover, we used the following hypothesis and a p-value of 0.05:

Hy: The ranks that the models achieved are the same across all aspects

H 4: The ranks that the models achieved differ across all aspects.

We ran the Friedman test with an assumed Chi® distribution from the
”scipy.stats”* package to evaluate this. Please note that it is not entirely clear
whether using a C'hi? assumption under these circumstances is acceptable. While
the scipy package description would have required us to have more than 10 mod-
els and more than 6 aspects that we evaluated, Wikipedia'® lists a requirement of
more than 15 models or more than 4 aspects. Since we could not determine which
restrictions were correct, we took the more beneficial one and assumed that having
more than 4 aspects was enough.

Furthermore, we wanted to explore how the average rank and the model size are
related. For this, we created a scatter plot to visualize the relationship. Since we
could not verify the actual size for most commercial models, we had to fall back to
assumptions we found online. For the Gemini 1.5 models, we assumed 32B (Flash)

Bhttps://scikit-posthocs.readthedocs.io/en/latest/generated/
scikit_posthocs.posthoc_nemenyi_friedman.html (Accessed: 14.12.2024)

Yhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.friedmanchisquare.html (Accessed: 14.12.2024)

Bhttps://en.wikipedia.org/wiki/Friedman_test (Accessed: 14.12.2024)

78

https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_nemenyi_friedman.html
https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_nemenyi_friedman.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
https://en.wikipedia.org/wiki/Friedman_test

6. Model Comparison

and 120B (Pro) parameters'® respectively. For GPT-40'” and Claude 3.5 Sonnet'?,
we assumed a parameter count of more than 175B. We plotted both as having a
size of 175B. For DeepSeek V2.5, we do know the precise model size: 236B", and
for all smaller models, the size is already in the name.

6.6.2. Results

Table 6.8 provides the relevant scores for each of the five evaluations. It can be
seen that GPT-40 and Claude 3.5 Sonnet each achieved the highest score in two of
five evaluations. Furthermore, Gemini 1.5 Flash ranked first for method comment
generation.

When considering the value ranges, it can be observed that for four of the five
benchmarks, the scores all stayed below 0.4. In contrast to that, in code comple-
tion, all five larger models scored above 0.58. This illustrates the need to choose a
ranking approach that avoids over- and underrepresentation.

Based on these results, we computed the ranks for each evaluation and combined
them to a final rank using the arithmetic mean. Table 6.9 shows the results. Based
on this ranking process, we determined GPT-40 to be the best-performing model
with a rank of 2.2, closely followed by Claude 3.5 Sonnet (2.5) and DeepSeek V2.5
(2.9). Moreover, the smaller Gemini 1.5 Flash (3.8) model ranked better than the
Pro counterpart (4.0).

The small models ended up in the last places, with Qwen2 1.5B receiving a rank
of 5.6, followed by Phi3 3.8B (7.4) and Qwen2 0.5B (7.6).

In addition to computing the combined rank for all models, we also computed
the Friedman test on the model scores to evaluate whether they differed signifi-
cantly. The test resulted in a p-value of 0.107, which is larger than 0.05, leading
us not to reject the null hypothesis. Therefore, we did not do a Nemenyi post-hoc
test or provide a critical distance plot.

Figure 6.17 provides the average model scores with their (assumed) model sizes.
Since not all models have publicly available parameter counts, we took estimates
from various sources that we considered reasonable. The Figure shows that the
rank generally improved with model size.

Yhttps://www.reddit.com/r/LocalLLaMA/comments/1cx1lsa9/
comment/153gga5/ (Accessed: 14.12.2024)

Uhttps://aimlapi.com/comparisons/claude-sonnet-3-5-vs-
chatgpt-4o0 (Accessed: 14.12.2024)

Bhttps://felloai.com/2024/08/claude-ai-everything-you-need-
to-know/ (Accessed: 14.12.2024)

Yhttps://huggingface.co/deepseek-ai/DeepSeek-V2.5 (Accessed:
14.12.2024)

79

https://www.reddit.com/r/LocalLLaMA/comments/1cxlsa9/comment/l53gga5/
https://www.reddit.com/r/LocalLLaMA/comments/1cxlsa9/comment/l53gga5/
https://aimlapi.com/comparisons/claude-sonnet-3-5-vs-chatgpt-4o
https://aimlapi.com/comparisons/claude-sonnet-3-5-vs-chatgpt-4o
https://felloai.com/2024/08/claude-ai-everything-you-need-to-know/
https://felloai.com/2024/08/claude-ai-everything-you-need-to-know/
https://huggingface.co/deepseek-ai/DeepSeek-V2.5

6. Model Comparison

Code Code Weighted Method

Model . ; Unit Test Comment APR
Generation Completion . .
Generation Generation

GPT-40 0.3025 0.7917 0.2435 0.2855 0.3025
Claude 0.3950 0.7619 0.2284 0.2561 0.3950
Gemini Pro 0.2311 0.5833 0.1890 0.3085 0.2311
Gemini Flash 0.1975 0.6905 0.2012 0.3101 0.1975
DeepSeek V2.5 0.2899 0.7619 0.2090 0.3007 0.2899
Phi3 3.8B 0.0000 0.0119 0.0120 0.0897 0.0000
Qwen2 0.5B 0.0000 0.0000 0.0451 0.0290 0.0000
Qwen2 1.5B 0.0336 0.0179 0.1268 0.2878 0.0336

Table 6.8.: The relevant scores for each of the five evaluations. All scores are
rounded to the 4th decimal place.

Code Code Weighted Method

Model .) Unit Test Comment APR Rank
Generation Completion . .
Generation Generation

GPT-40 2.0 1.0 1.0 5.0 20 22
Claude 1.0 2.5 2.0 6.0 1.0 2.5
DeepSeek V2.5 3.0 2.5 3.0 3.0 3.0 2.9
Gemini Flash 5.0 4.0 4.0 1.0 5.0 3.8
Gemini Pro 4.0 5.0 5.0 2.0 4.0 4.0
Qwen2 1.5B 6.0 6.0 6.0 4.0 6.0 5.6
Phi3 3.8B 7.5 7.0 8.0 7.0 7.5 7.4
Qwen2 0.5B 7.5 8.0 7.0 8.0 7.5 7.6

Table 6.9.: The rankings for each evaluation and the overall ranking.

6.6.3. Discussion

In this chapter, we compared the eight models and their performance in five as-
pects of Java SD and subsequently combined the results to determine the best-
performing model. This model is GPT-4o0, ranking first in code completion and
unit test generation, second in code generation and APR, and fifth in method com-
ment generation.

Moreover, the final rank unveiled three groups: The best-performing models
with ranks from 2.2 to 2.9, followed by the two Gemini models (4.0-5.6) and the
small models (5.6-7.6). It must be noted, however, that Qwen2 1.5B has a notably
better rank (5.6) than the other small models (7.4-7.6).

Another noteworthy observation we made is that based on the rankings,
DeepSeek V2.5 appears to be the most consistent model of the larger ones, reaching

80

6. Model Comparison

Rank over Model Size for each Model

)
3 []
4 ¢ °
< 5
) o Model
6 ® GPT-40*
Claude*
7 R ® DeepSeek V2.5
® Gemini Flash*
8 ® Gemini Pro*
® Qwen2 1.5B
9 ® Phi33.8B
Qwen2 0.5B
10
0 50 100 150 200

Parameters [Billion]

Figure 6.17.: Rank over Model Size for all models. Unverified model sizes are
denoted with a star.

third place in all but one evaluation. However, even there, it shares second/third
place with Claude 3.5 Sonnet.

Furthermore, we found the Gemini models to be the worst-performing larger
models, with method comment generation being the only exception. Interest-
ingly, the smaller Gemini 1.5 Flash scored better than the Gemini 1.5 Pro. While
both models always were within one place of each other, Gemini Flash ranked
above Gemini Pro in 3 of 5 benchmarks. One potentially contributing factor to the
performance differences is their architecture. While Gemini 1.5 Pro is a "sparse
mixture-of-expert (MoE)” model, Gemini 1.5 Flash is a dense decoder model that
is "online distilled”?® from the Pro variant (Team et al., 2024b).

“The following article explains the process in details: https://medium.com/google-
developer-experts/online-knowledge-distillation-advancing-
llms-1like-gemma-2-through-dynamic-learning-e61c39280693 (Ac-
cessed: 23.01.2025)

81

https://medium.com/google-developer-experts/online-knowledge-distillation-advancing-llms-like-gemma-2-through-dynamic-learning-e61c39280693
https://medium.com/google-developer-experts/online-knowledge-distillation-advancing-llms-like-gemma-2-through-dynamic-learning-e61c39280693
https://medium.com/google-developer-experts/online-knowledge-distillation-advancing-llms-like-gemma-2-through-dynamic-learning-e61c39280693

6. Model Comparison

The smaller models performed consistently worse than the larger ones, with
the only exception being Qwen2 1.5B, which ranked fourth in method comment
generation.

Given the fact that the models ranked rather consistently in all aspects but
method comment generation, we deem it likely that this difference might be due to
the evaluation differences. While the other aspects were primarily evaluated using
a pass-fail measure (pass@1), method comment generation was evaluated with a
similarity measure that compares how close the text is to a reference comment.

When considering whether models are open-weight or proprietary, it is inter-
esting to see that DeepSeek V2.5, an open-weight model, scored in the top three
consistently. This also means that it outperformed both Gemini models in 4 out
of 5 aspects. Moreover, all other three open-weight models ranked in the bottom
three places. However, this can likely not be attributed to open-weighted-ness
but should arguably attributed to the comparatively small model sizes (under 4B
parameters).

Another aspect under which to view the results is training data. While infor-
mation on the code contained in training datasets is generally sparse, both Phi3
3.8B and DeepSeek V2.5 provide more detailed information. The authors of Phi3
3.8B mention?! that code in the training dataset primarily consisted of basic Python
code, which we consider as the likely cause for being outperformed by Qwen2 1.5B
in all aspects. Furthermore, it is interesting to see that DeepSeek-Coder-V2-Base,
the base model of DeepSeek V2.5, was trained on a dataset consisting of 60% code
in 338 languages (DeepSeek-Al et al., 2024b). This could indicate that the model
might also perform well on other languages.

Furthermore, knowledge cutoff dates (see Section 5.2) do not seem to be relevant
to performance. This becomes clear when seeing that all known cutoff dates* lie
between October 2023 and May 2024 (8 months). Moreover, the time range only
reduces by one month (down to 7) when looking at just the three best-performing
models.

While GPT-40 ranked the highest, we also deem Claude 3.5 Sonnet and
DeepSeek V2.5 valuable software development tools as they achieved a rank close
to GPT-40. The small models, however, would likely be less suited to aid with soft-
ware development. This becomes especially apparent when looking at the scores
in Table 6.8. Moreover, we expect the experience with the Gemini models to be
more involved than the other large models, although they would most likely still
fare better than the small ones.

Z'https://huggingface.co/microsoft/Phi-3.5-mini-instruct#
responsible-ai-considerations (Accessed: 22.01.2024)
22The cutoff dates for the two Qwen2 models are unknown.

82

https://huggingface.co/microsoft/Phi-3.5-mini-instruct#responsible-ai-considerations
https://huggingface.co/microsoft/Phi-3.5-mini-instruct#responsible-ai-considerations

6. Model Comparison

Moreover, we could not to verify that the average scores differed significantly
between the different aspects. Therefore, we could not do a Nemenyi test. Fur-
thermore, we showed that the rank generally improved with larger model sizes.
However, it must be noted that 4 of the 8 model sizes were assumptions taken from
the internet, limiting the expressiveness of this plot.

Another important limitation that needs to be mentioned is that even though
we evaluated five aspects of Java SD, these only cover some aspects of software
development. Moreover, while providing a convenient way to evaluate and com-
pare models, benchmarks, and datasets can only cover parts of the aspects they
aim to address.

Therefore, to partially address this shortcoming and further understand of how
the LLMs fared in practice, we evaluated GPT-4o0 in a software development sce-
nario in the next chapter.

83

6. Model Comparison

Overall answer for RQ2: How do the eight models compare on their bench-
mark performances?

The large models performed better than the smaller ones, with GPT-40 rank-
ing the highest, closely followed by Claude 3.5 Sonnet and DeepSeek V2.5.
The two Gemini models performed the worst out of the larger models, only
surpassing the other three in method comment generation. Gemini Flash
ranked higher than the larger Pro counterpart. The smaller models per-
formed the worst in all benchmarks, except for Qwen2 1.5B, which ranked
fourth in method comment generation.

Knowledge cutoff dates do not appear to impact the results of the compari-
son, given that all known cutoff dates (known for all models except Qwenz2)
are within 8 months of each other and the spanned date range only reduces
to 7 months when considering the top three.

Moreover, it is worth mentioning that an open-weight model (DeepSeek
V2.5) is under the three best-performing models, outperforming the propri-
etary Gemini 1.5 models. In part, this can likely be attributed to the fact
that it’s base model was trained on a dataset containing 60% code from 338
programming languages.

The minor performance differences between Gemini 1.5 Pro and Gemini 1.5
Flash might be partially explained by the fact that their architectures differ
and that the Flash (dense encoder) variant is trained with the help of the Pro
(Mixture of Experts) variant.

The low scores and partially nonsensical outputs for Phi3 3.8B across all
five aspects can likely be attributed to the fact that primary programming
language in the training dataset was Python.

84

6. Model Comparison

Overall answer for RQ3: In which parts of the benchmarks do the highest-

scoring models perform well and where is room for improvement?

In the code generation benchmark the highest-scoring models were capa-
ble of synthesizing syntactically correct code in almost all cases. Moreover,
the models mostly failed due to compilation errors and test cases. For com-
pilation errors the most relevant categories were identifier, version and
computation.

For the code completion benchmark the highest-scoring models per-
formed quite well with overall scores in the range of 75-80%. The models
achieved high scores for control-flow completion and API function call com-
pletion and struggled most with block completion.

In the unit test generation benchmark, the highest-scoring models also
performed well in regard to syntactical correctness. Furthermore, about
half of all tasks failed due to compilation errors, with the most relevant
error types being identifier, version and computation. Moreover, test
case failures accounted for another 15-30% reduction in pass rate for the
best-performing models.

For method comment generation all larger models and Qwen2 1.5B per-
formed similarly leading to an overall F1-score between 0.256 and 0.310.
Moreover, with the exception of Claude 3.5 Sonnet, which synthesized
longer comments, the other well-performing models synthesized comments
of similar length to the original comment. Overall, this benchmark does not
lend itself well to this question as it does not provide detailed insights.

In the APR benchmark, the three best-performing models had some prob-
lems with all stages, failing up to about 20% of test cases due to syntax er-
rors. However, the most pronounced drop was due to test cases failures,
indicating that the “corrected” code could be compiled but did not pass func-
tional requirements. Compilation issues posed a less pronounced challenge,
only accounting for up to 16,2% of errors among the highest-scoring mod-
els. Moreover, all of the best-performing models introduced new errors in
at least some tasks.

Generally for code generation, test case generation and APR there is room
for improvement both in creating compile-able code, specifically in the
identifier and computation categories, as well as in creating functionally
correct code. For code completion, the functional correctness could be im-
proved (i.e. less errors in the "Wrong Answer” category) and for method
comment generation there is no clear room for improvement other than
shorter comments for Claude 3.5 Sonnet.

85

6. Model Comparison

Given the learnings from this chapter we expect that the IDE will likely be help-
ful in the practical exploration as it has the potential to detect compilation errors,
like identifier and computation early, allowing for a swift mitigation. Further-
more, we conclude that we should extensively use tests, especially seeing as failing
to meet functional requirements was also a common cause for failing tasks. Even
though GPT-40 was the best-performing model, given the numeric results, we ex-
pect Claude 3.5 Sonnet and DeepSeek V2.5 to perform similar in practice.

86

7. Practical Scenario - Exploration

In this chapter, we detail our implementation following the assumed practical sce-
nario where we used GitHub Copilot, an Al tool for SD powered by a GPT-4 ver-
sion, to implement a small software project. This chapter differs from the others
in this thesis as it primarily includes subjective experiences from the exploration.
The first section (7.1) details how we conducted our exploration. This is followed
by our experience, observations, and learnings, which are given in Sections 7.2
and 7.3. Section 7.2 details our experiences and learnings in a structure similar
to Chapter 6. Section 7.3 illustrates how our prompting approach evolved and for
which reasons. The final section (7.4) summarizes our key findings and takeaways.

7.1. Method

To better understand how well LLMs can aid with actual software development, we
decided to implement a part of an expense-tracking application. We used GitHub
Copilot for this, as it is built on top of a GPT-4 model. Unfortunately, we were
not able to verify that Copilot uses GPT-40, only that it uses a version of GPT-
4'. However, given Open Al’s pricing structure?, we consider it to be likely that
GPT-4o is used.

The application was already introduced in Chapter 4 and is a web application
with a Next.js frontend and Spring Boot backend. The fact that we had prior expe-
rience with Spring Boot and Java and no prior experience with Next.js and React®
allowed us to explore the role that familiarity with the used language plays.

The development for this application was done using Intelli] IDEA as the IDE,
with the Copilot Plugin? installed. Additionally, SonarLint® was installed to find
more code issues than with the IDE-provided tools alone.

! According to OpenAl, Copilot is no longer powered by Codex but some non-disclosed version
of GPT-4 (Source: support chat with OpenAl - Screenshots available on request)

https://openai.com/api/pricing/ (Accessed: 17.12.2024)

3With the exception of having worked before, with Typescript, the underlying language.

‘https://plugins. jetbrains.com/plugin/17718-github-copilot (Ac-
cessed: 14.12.2024)

SNow called SonarQube for IDE: https://plugins.jetbrains.com/plugin/
7973 -sonarqube-for-ide (Accessed: 14.12.2024)

87

https://openai.com/api/pricing/
https://plugins.jetbrains.com/plugin/17718-github-copilot
https://plugins.jetbrains.com/plugin/7973-sonarqube-for-ide
https://plugins.jetbrains.com/plugin/7973-sonarqube-for-ide

7. Practical Scenario - Exploration

During the evaluation, we primarily recorded our observations using a pen and
paper, noting all the relevant observations and learnings we had made. Addi-
tionally, we ensured to record the screen and track IDE interactions to allow us
to revisit key parts if needed. The screen was recorded using Open Broadcaster
Software (OBS)®, and the IDE interactions were tracked using CodeGRITS’ (Tang
et al., 2024b). For CodeGRITS, we had to adapt the plugin to support a current IDE
version®. An illustration of our recording approach can be seen in Figure 7.1.

CodeGRITS

i
recording
------,l/'
'

IntelliJ IDEA + Interactions
|- screen GitHub Copilot +
_recording SonarLint
OBS Developer
T — / observations
T and learnings

Pen and
Paper

Figure 7.1.: Recording Approach we used for the practical exploration.

To conduct the evaluation in an ordered manner, we decided to use user stories,
which we had to implement one after the other. A user story could be considered
done when all required functionality was present, or we reached a point where
we were blocked by a dependency to another, not yet implemented, user story.
Additionally, the code had to be tested using test cases, achieving a coverage of
at least 80%. We decided against requiring a coverage of 100% to avoid having to
create test cases that do not have any meaningful assurances.

*https://obsproject.com/ (Accessed: 28.11.2024)
"https://github.com/codegrits/CodeGRITS (Accessed: 28.11.2024)
8Intelli] IDEA 2024.2.3

88

https://obsproject.com/
https://github.com/codegrits/CodeGRITS

7. Practical Scenario - Exploration

For the implementation, we started with an apparent over-reliance on GitHub
Copilot, attempting to do everything using the tool and only falling back to man-
ual editing if we had to. This behavior was subsequently adapted based on our
experiences and learnings.

Since we were not sure how long the implementation of the application would
take, using Copilot, we decided to restrict the time to be used for this exploration to
80 hours, the equivalent of two 40-hour work weeks. Moreover, if we had finished
the project in under 40 hours, we would have had to develop further user stories.
However, we ultimately ended up stopping the exploration at around 60 hours, as
at that point, we had not made any notable or new observations for multiple hours,
and it became clear that we would not be able to finish the application in 80 hours.
Figure 7.2 shows a page of the application.

Expense Tracker Categories § 10}
Pension Fund : Default Account H Stock Portfolio
2048.00 £ 1024.00 € -100.00 €
401k
Add Account
1234.00 $

Figure 7.2.: Screenshot of the Accounts Overview Page of the expense tracking
application.

89

7. Practical Scenario - Exploration

7.2. Observations

In this section we describe our observations, starting with six key observations,
followed by a more detailed description of five aspects that are similar to the ones
in Chapter 6.

7.2.1. Key Observations

During our practical exploration, we made the following key observations when
working with GitHub Copilot:

Observation 1: Good Starting Points We generally found GitHub Copilot to
produce good starting points, usually in the form of code that was well readable
and seemed correct. However, it was rarely the case that the code did exactly
fit our needs and diligence was needed as not to overlook certain details or is-
sues. Furthermore, the complexity of the task also played a role, with simpler
tasks seemingly leading to better results than more complex ones. When dealing
with complex tasks or ones Copilot did not seem to understand” we found our-
selves falling back to manual implementation efforts in multiple instances, due to
poor tool performance.

Observation 2: Iterative Improvements When attempting to improve or
adapt the code obtained from the tool, we found iterative changes to work well. Us-
ing this approach we found it important to (1) make one change after the other, (2)
select the code in question (or stating the class) and (3) explicitly state or describe
the desired changes. Using this approach, in contrast to changing many parts at
the same time, we observed better results, likely due to the reduced complexity.
Moreover, these smaller changes could then also be easier verified.

Observation 3: Suboptimal Code and Inconsistencies When using the tool,
we found that the outputs sometimes contained suboptimal code and architectural
decisions that would lead to errors at runtime or simply not follow best practices.
Moreover, the results obtained from Copilot would at times be inconsistent. This
included using different testing approaches for a similar task, removing already
existing comments or using the wrong libraries.

Observation 4: "Inspiration” for Alignhment and Correctness Another key
observation we made was that adding or referencing files with similar or related
code as an source of “inspiration” to the prompt noticeably improved the results

90

7. Practical Scenario - Exploration

obtained. This held true both in terms of alignment (how the task was solved) as
well as correctness. Furthermore, we observed explicitly adding a related file to
be more reliable than simply referencing it, likely because this step eliminates a
potential source of ambiguity.

Observation 5: Test Case Issues For test case generation we observed the tool
to struggle quite a bit. While the test cases that were generated looked quite good
and covered the majority of the function in question, they would often lack checks
for calls to mocked methods. Moreover, when prompted to create test cases for
a specific method, it would frequently miss at least one test condition or branch.
Furthermore, the tests for the frontend were notably worse than the ones for the
backend, primarily due to issues with reactive state management and UI interac-
tions. Overall, due to these issues, we observed test case generation to be the most
time-consuming part of this exploration.

Observation 6: New Language Development Speed Another key observa-
tion we made was about using GitHub Copilot for working with React/Next.js,
a framework/language, we had no prior experience with’. There we found that
the tool generally allowed us to get started faster than we likely would have been
otherwise. However, this benefit became a liability in cases where the model
was not able to fix a problem and we were left with tracking down and solving
the issue ourselves. These situations proved to be quite time consuming as we
had little experience and knowledge about the code and the intricacies of the
underlying concepts.

Having highlighted the six key observations the following parts provide an
overview of observations categorized using five aspects similar to the one in Chap-
ter 6. The related key observations are referenced using (01)-(06):

7.2.2. Code Generation

We found generated application code look good generally, but to contain flaws
in the details (O1). These included, but were not limited to, using recently dep-
recated methods of libraries, having challenges adding specific libraries correctly,
and suggesting suboptimal architecture (03).

"We just had experience with JavaScript and Typescript but not with React or Next.js.

91

7. Practical Scenario - Exploration

Backend

For the development of the backend, it was most notable that the code followed
the same overall schema for REST API endpoints and database accesses, only dif-
fering in the details. An example of this can be seen in Listing 1. Therefore, some-
what unsurprisingly, the model performed quite well, having usually at least one
similar example within the same file (O4). However, we sometimes found the
model to omit certain safety checks, requiring additional prompts to add them
(02, 03).

Listing 1 Example of an REST endpoint. This snippet shows all logic needed for
the delete operation.

e
* Endpoint to delete the authenticated user's account.
* @param userDetails the authenticated user's details
* @return a response entity with the status of the deletion

@Transactional
@DeleteMapping("/user")
public ResponseEntity<String> deleteUser(@AuthenticationPrincipal UserDetails userDetails) {
if (userDetails == null) {
return new ResponseEntity<>(HttpStatus.UNAUTHORIZED) ;
}
User user = userRepository.findByUsername(userDetails.getUsername());
if (user == null) {
return new ResponseEntity<>(HttpStatus.NOT_FOUND) ;
3

userRepository.delete(user);
return new ResponseEntity<>("User account deleted successfully", HttpStatus.OK);

Moreover, the model also struggled with correctly setting up the security con-
fig (03). It initially used the now deprecated approach to configure access to the
application. While this could partially be fixed by letting the model improve the
code in a multi-turn approach, it could not correct all errors (01, 02). We theo-
rize that this is in part due to the deprecating update being relatively new, with
the corresponding blog post being released in February 2022' and most existing
articles, blog posts, or Stack Overflow questions most likely not being updated.

Furthermore, we observed the model to not follow best practices in some in-
stances, by, for example, creating fields that are annotated with "@Autowired”!!
instead of adding them as a parameter to the class constructor (03).

Moreover, the model would sometimes not practice separation of concerns by
putting the REST call of different entities into the same class (03). However, we

Yhttps://spring.io/blog/2022/02/21/spring-security-without-
the-websecurityconfigureradapter (Accessed: 14.12.2024)

Uhttps://medium.com/devdomain/spring-boots-autowired-vs-
constructor-injection-a-detailed-guide-1b19970d828e (Accessed:
14.12.2024)

92

https://spring.io/blog/2022/02/21/spring-security-without-the-websecurityconfigureradapter
https://spring.io/blog/2022/02/21/spring-security-without-the-websecurityconfigureradapter
https://medium.com/devdomain/spring-boots-autowired-vs-constructor-injection-a-detailed-guide-1b19970d828e
https://medium.com/devdomain/spring-boots-autowired-vs-constructor-injection-a-detailed-guide-1b19970d828e

7. Practical Scenario - Exploration

only observed this for the first REST endpoint for an entity.

Another issue we found to occur multiple times was that entities that had a
relationship (i.e., 1:n) to another entity would sometimes be serialized circularly,
leading to an endless loop that only stopped due to a stack overflow. This could
have been prevented by the consistent use of data transfer objects (DTOs), which
would have given the explicit possibility to specify which fields should be serial-
ized. However, Copilot created and used DTOs inconsistently or naively (O3).

In general, we found Copilot to help speed up development, especially in this
scenario, where we already had experience with the tech stack. We often had to
fix more complex issues, like serializing the circular dependencies ourselves (0O1).

Frontend

For the frontend, we observed that the model had difficulty properly providing the
correct commands to install shadcn, the Ul library, and jest, the testing library. This
prompted us to add shadcn components to the project manually. One reason the
model could have had difficulties producing the correct commands is that shadecn
is relatively new and follows a different philosophy where the developer inherits
the entire code for the Ul component using an install command.

Furthermore, we found Copilot to struggle with more complex uses of shadcn
components, especially with forms (01). One way to improve the generated code
was to identify existing components, for example an existing form, and to explicitly
point the model to it for inspiration (see 7.3). Code generated using this approach
was usually notably better and better aligned with our intentions than if we had
prompted it from scratch (04).

Moreover, we found GitHub Copilot helpful for changing details, especially re-
lated to styling. There, it saved us time by allowing us to iteratively describe the
visual behavior we wanted to achieve (02). Regarding React Hooks, we had many
instances where the conditions for hook to be re-evaluated were incorrectly set,
leading to endless re-evaluations (O3).

In addition, Copilot often failed to grasp the context, leading to it using the
Next.js server package to implement navigation on a client page or omitting the
“use client” keywords required to execute certain features (01,03).

Overall, we found GitHub Copilot to be helpful, especially for quickly starting
with a new language. However, our lack of knowledge about the intrinsics of React
and the tendency of Copilot to use the wrong libraries, introduce small inconsis-
tencies or omit keywords made SD with Next.JS quite tedious and time-consuming
(03,06). We believe we would have benefited greatly from prior knowledge and
experience with this framework (React/Next.js) (06).

93

7. Practical Scenario - Exploration

7.2.3. Code Completion

Code completion is the only one of the five aspects we had ample prior experi-
ence with, as we previously used the “Full Line code completion” by JetBrains.
Therefore, most of the usage of Copilot’s line completion capability was handled
intuitively.

Our experience with Copilot line completion was not noticeably better or worse
than that of the model by JetBrains. Moreover, we observed it to generally produce
good suggestions in cases where the intended action was clear. Furthermore, the
line completion suggestions were non-intrusive and could readily be accepted or
ignored. We found line completion to work especially well for repetitive tasks like
calling multiple setters, completing function calls, or completing boilerplate code.

Code completion is the only aspect where we were able to collect meaningful
data using CodeGRITS, which tracked the number of completion suggestions that
were accepted or rejected. However, we only have data for around 85% of the
evaluation duration due to the IDE crashing multiple times during this implemen-
tation phase. However, we were shown 168 suggestions in this time-frame, 160 of
which we accepted. This number is not a suitable proxy to gauge the usefulness
of suggestions. Firstly, since we started this evaluation with an over-reliance on
generating code rather than completing it, the number of suggestions shown is
relatively small. Secondly, we observed our tendency to instinctively accept all
suggestions that do not seem completely wrong, as we expected to need to make
some alterations either way. Therefore, the acceptance rate is likely not indicative
of the usefulness of the suggestions.

In general, we found the tool to be unintrusive and a helpful addition to the
completions already present in a traditional IDE.

7.2.4. Test Case Generation

For test case generation, our experience with using GitHub Copilot was mixed.
While it seemed generally capable of generating test code that looked good on the
surface, it often got details wrong or missed essential parts (01, O3, O5).

Backend

For the backend, the model was usually capable of identifying and synthesizing test
cases that captured a considerable amount of the logic contained within a function.
Although these test cases appeared great on the surface level, verifying the inputs

https://www. jetbrains.com/help/idea/full-1line-code-
completion.html (Accessed; 14.12.2024)

94

https://www.jetbrains.com/help/idea/full-line-code-completion.html
https://www.jetbrains.com/help/idea/full-line-code-completion.html

7. Practical Scenario - Exploration

and outputs of a function, the same cannot be said of side effects. While the tool
correctly employed mocking of related classes, to test a method in isolation, it did
not verify whether the correct methods of these classes were actually called (O5).
Listing 2 shows an illustrative example of this.

Listing 2 Example of a generated test case. The comment indicates the type of

check that would often be missing.

@Test
@wWithMockUser (username = "testuser")
void testCreateDefaultAccount_Success() throws Exception {
User user = new User();
when (userRepository.findByUsername("testuser")).thenReturn(user);
when(accountRepository.findByUserAndIsDefault (user, true))
.thenReturn(null) ;

AccountRequest request = new AccountRequest();
request.setName("Default Account");
request.setStartingBalance(BigDecimal.valueOf (1000));
request.setCurrency(Currency.USD) ;

request.setDefault (true);

mockMvc.perform(post("/account/create")
.contentType (MediaType.APPLICATION_JSON)
.content (new ObjectMapper().writevValueAsString(request))
.with(csrf()))
.andExpect (status().1is0k())
.andExpect (content () .string("ommitted for brevity"));

// Checks, like the one below, would often be missing
verify(accountRepository, times(1)).save(any(Account.class));

Moreover, we found that Copilot tends to miss at least one branch in most cases.
However, in general, this could be discovered using test coverage and resolved by
selecting the not yet covered part of the code and prompting the model to generate
a test case for the selection (02, 04, O5).

Another observation we made was that the tool frequently missed tests for non-
explicitly documented requirements (O5). An example of this was the requirement
that users may only edit their own categories. While this was reflected in the
code by the fact that the repository method did explicitly attempt to retrieve the
category for a user, there was usually no test case verifying that no categories from
another user were returned. While such a shortcoming can easily be overlooked, it
was typically straightforward to rectify once discovered by prompting the model
to extend the test suite by a test case for this exact situation (02).

Moreover, we found GitHub Copilot inconsistent in how it generated test cases
(03). While for some endpoints, it would use MockMVC, a way of testing the
entire endpoint including, but not limited to, serialization and de-serialization, in

95

7. Practical Scenario - Exploration

some cases it merely called the method in question.

However, in situations where test cases for similar code already existed in the
same file, we found Copilot to perform notably better, leading to better results on
the first prompt (04).

GitHub Copilot also provides a ”/tests” command instructing the model to gen-
erate unit tests for the selected code. However, we found ourselves primarily using
explicit prompts, which were more in line with the prompting we used in other
parts of the exploration.

Overall, Copilot was helpful for quickly identifying and writing required test
cases for Java. However, vigilance was needed to ensure the test cases verified all
the necessary aspects (01, 06).

Frontend

For the frontend, we found test generation to be very time-consuming (06). While
the concept of the test cases usually made sense in general, the specific evaluations
often contained faults (O1). This was especially prevalent for testing interactions
with shadcen UI components and test cases that utilized reactive behavior (05).
Copilot frequently seemed to not "understand” how to correctly interact with these
components using Jest. Common issues encountered were ambiguous Ul element
selectors, not waiting for state updates, problems with mocking, and incorrectly
imported libraries (O5). This led to even “simple” tests taking quite a long time.

Tracking down some of these issues, especially the state updates and mocks was
tedious, time-consuming, and hindered by the fact that we had no prior experience
with React or Jest. We were led astray multiple times by Copilot and had to consult
the documentation frequently. Although we believe that with more experience
and understanding, the benefits would outweigh the drawbacks, this is not the
case without prior knowledge (05, O6).

Moreover, Copilot would almost always miss scenarios when testing, or it
would import the wrong libraries (03, O5).

Summary

We found GitHub Copilot to provide sensible starting points in most cases (O1).
However, almost all test suites generated required manual rework or, at the very
least, manual verification (02). While we can see this tool being helpful for test
case generation, there is an obvious need for diligence on the side of the program-
mer to not overlook shortcomings of the generated test cases. Moreover, to get
the most utility from Copilot, the user should be experienced with the intricacies

96

7. Practical Scenario - Exploration

of the language and framework as well as testing in that language. Otherwise, the
process can be pretty cumbersome (O6).

7.2.5. Comment Generation

While the complexity of the code was not that high due to the utilization of frame-
works, we nonetheless wanted to explore Copilot’s comment generation abilities.

In the beginning, we did not explicitly prompt GitHub Copilot to create com-
ments for the code it generated. In most cases, this led to code without any com-
ments. Once we adapted the prompting style by adding sentences like "Provide
comments for the generated code” or "Comment the code you generate.”,
the outputs contained comments. They usually contained either line comments
(see Listing 3) or JavaDoc comments (see Figure 4), but rarely both. We generally
found the comments to be accurate summarizations of the code. However, we did
not require the comments as the code was already easy to read and understand.

Moreover, we found that Copilot sometimes removes already existing comments
from the code. This primarily occurred when the conversation did not contain a
part that instructed the model to generate comments (O3).

Listing 3 Example of a code snippet with normal comments.

@GetMapping("/{accountId}")

public ResponseEntity<AccountResponse> getAccountById(
@AuthenticationPrincipal UserDetails userDetails,
@PathvVariable Long accountId) {

// Check if the user is authenticated
if (userDetails == null) {

return new ResponseEntity<>(HttpStatus.UNAUTHORIZED) ;
}

// Find the user by username
User user = userRepository.findByUsername(userDetails.getUsername());
if (user == null) {
return new ResponseEntity<>(HttpStatus.NOT_FOUND) ;
3

// Find the account by ID

Optional<Account> optionalAccount = accountRepository
.findByIdAndUser (accountId, user);

if (optionalAccount.isEmpty()) {
return new ResponseEntity<>(HttpStatus.NOT_ FOUND) ;

}

Account account = optionalAccount.get();

// Return the account details

return new ResponseEntity<>(AccountResponse.fromAccount (account),
HttpStatus.OK);

97

7. Practical Scenario - Exploration

Listing 4 Example of a code snippet with a JavaDoc comment.
ik

*

Endpoint to change the password of the authenticated user.

@param userDetails the authenticated user's details

@param request the request containing the old and new passwords

* @return a response entity with the status of the operation
*/

@Transactional

@PutMapping("/user/password")

public ResponseEntity<String> changePassword(

@AuthenticationPrincipal UserDetails userDetails,

@RequestBody ChangePasswordRequest request) {

if (userDetails == null) {
return new ResponseEntity<>(HttpStatus.UNAUTHORIZED) ;
}
if (request.getNewPassword() == null ||
request.getNewPassword().length() < 6) {
return new ResponseEntity<>(
"New password must be at least 6 characters long",
HttpStatus.BAD REQUEST) ;
¥

User user = userRepository.findByUsername(userDetails.getUsername());

if (user == null) {
return new ResponseEntity<>(HttpStatus.NOT_FOUND) ;

}

if (!passwordEncoder.matches(request.getOldPassword(), user.getPassword()))
return new ResponseEntity<>("Old password is incorrect",

HttpStatus.BAD REQUEST) ;

}

user.setPassword(passwordEncoder. encode (request.getNewPassword())) ;

userRepository.save(user);

return new ResponseEntity<>("Password changed successfully",
HttpStatus.OK) ;

7.2.6. Automated Program Repair and Code Adaption

Since most of the code produced by GitHub Copilot had at least minor issues or
needed to be adapted further to suit our needs, we had ample opportunities to
explore the bug-fixing and code-altering capabilities of the tool (02).

We generally observed bug fixing to work well in low complexity and common
scenarios. However, we found it to perform worse for more complex problems
where the error message or the error was not clear (01).

While we found the iterative improvement steps from (02) to work well, we
sometimes also employed suggestive questions as special source of “inspiration”
(04), when the model did not correctly identify the error with the classical ap-
proach, and manual editing would have been tedious. This usually led to correct
results.

98

{

7. Practical Scenario - Exploration

Another approach we sometimes used was the ”/fix” command of Copilot, which
instructs the model to identify the current error(s) and to fix them. Additionally,
a description of the error or fix could be provided. While this worked sometimes,
we also had cases where the model would describe correct code as erroneous and
would attempt to fix it (03). While we occasionally observed this behavior using
normal prompting, it seemed to occur more often when using the ”/fix” command.
This led us to primarily narrow down the potential errors with explicit prompting
(02).

Towards the end, we made smaller changes ourselves, as we felt slowed down by
waiting for the model to complete an output for the entire class just to change one
minor detail. However, we still used it for more complex situations where more
code needed to be changed to mitigate an error or adapt the code, as it saved quite
some time (02, 06). Moreover, since the Copilot plugin for IntelliJ does not offer a
diff view between the output and the currently open file, we found it tremendously
helpful to have files fully committed before starting with changes.

7.3. Prompt evolution

We started our exploration with an over-reliance on the chat functionality of
GitHub Copilot. For this, we used a simple initial prompt, which we evolved over
time. This section details key evolution steps and learnings. We primarily focused
on straightforward prompts here, as this is also what is shown in the examples on
the GitHub Copilot webpage®.

The prompt we started with was a simple and naive approach: “I need to im-
plement the following user story ”As a user I want to be able to delete my
account””. However, this prompting style produced suboptimal results, likely
because it was a very high-level description that did not communicate any addi-
tional assumptions. As the exploration progressed, the prompting approach got
more sophisticated.

The first step in this evolution was to get more specific by detailing the required
functionality and assumptions: “I need to create the functionality to log out
of my application. It should be a button that is shown in the Nav Bar to
the right of the username. It should log the user out and forward to /”. This
prompt improved the alignment of the code with our intentions by eliminating
ambiguities through explicitly stating requirements.

Another adaptation we explored was to prepend the prompt with a text like:
“You are a professional Java/Spring'* developer”. However, there was no no-

Bhttps://github.com/features/copilot (Accessed: 22.01.2024)
140r: React/Next.js

99

https://github.com/features/copilot

7. Practical Scenario - Exploration

p their billing
se the provided
set up their billing

from fuifcomponents. :
form.tsx BookingForm.tsx

> +

(a) Implicit (b) Explicit

Figure 7.3.: Similar Examples approach, which points the tool toward similar
samples.

ticeable improvement in the responses from the model. Moreover, since the ex-
amples given on the Copilot quickstart page'® do not contain this type of prefix
either, we assumed that it is not necessary here to improve performance further.

One strategy we found to work quite well, and therefore ended up using a lot,
was pointing the tool to similar existing code snippets. To do this, we used two dif-
ferent strategies: (1) mentioning the name of a class that contains similar code; and
(2) explicitly adding the file to the prompt. Illustrative examples of this strategy
are given in Figure 7.3. Overall, we found that explicitly adding the files achieved
better results than just mentioning the classes.

Another strategy we explored was adding the task of writing comments and
testing the code to the initial prompt. This worked reasonably well, and we did not
notice differences in the quality compared to creating separate prompts. Moreover,
we noticed that Copilot would sometimes remove already existing comments when
the initial prompt did not contain an explicit instruction to write comments.

Towards the end of the exploration, a typical initial prompt looked like this:
“Please extend the BookingController to allow the user to retrieve all their
bookings in chronological order. You should use pagination. You create
exhaustive tests for the code you generate. You comment the code you
generate”.

To adapt, improve, and correct code, we usually re-used the already existing con-
versation and described the desired changes or observed errors in plain language.
Furthermore, we sometimes also pasted the error and stack trace we received into
the conversation. This usually worked well, likely because the conversation al-
ready contained ample context information. Moreover, we experienced that once
answers from a conversation started to become inaccurate or, in any other way,
clearly suboptimal, it was usually best to start a new conversation instead of at-
tempting to "fix” the current one.

Bhttps://docs.github.com/de/copilot/quickstart (Accessed: 15.12.2024)

100

https://docs.github.com/de/copilot/quickstart

7. Practical Scenario - Exploration

In general, if we encountered a new situation, we used clear and short prompts
to convey all the required information.

7.4. Summary

In this chapter, we explored using GitHub Copilot to implement part of a soft-
ware project. We found that using Copilot usually worked reasonably well up to
a certain complexity, above which the process would get tedious (O1). However,
almost all user stories required iterative refinement or correction to achieve the
desired results (O2). This not only included functional correctness but also subop-
timal code and inconsistencies (03). While we found this to work well most of the
time, sometimes fixing the code manually was faster and more intuitive. More-
over, we observed Copilot as especially good for clear and repetitive tasks. One
example of this is to adapt an existing test suite from calling functions normally
to using MockMvc, which would have been tedious to do by hand (02).

For more complex situations, the tool usually provides a good starting point
(O1). However, both in general and especially in more complex situations, it was
essential to verify the code as it could, among other things, contain (1) suboptimal
architectural decisions that did not align well with the application, (2) insecure cor-
rectness assumptions (e.g., expecting that a security-relevant part is always con-
figured correctly), or (3) test cases that appear to cover a specific situation but do
so incompletely.

Moreover, test cases posed a challenge for the tool (05). This was especially
notable, for mocking, Ul interactions and reactive state management. Moreover,
the model frequently missed at least one important test case.

For the difference between a known and an unknown framework, we found that
for the unknown framework (React), we could start much faster than we likely
would have been without using an Al tool (06). However, this meant that we ran
into unexpected issues in situations where the model failed to produce the desired
code, and we were left with implementing or fixing the code ourselves. In contrast,
we found that our experience with Java and Spring helped us spot potential issues
early and were, therefore, able to mitigate them, before becoming a real problem.
Based on our experience, we would expect a person with previous experience to
benefit more from Copilot than a person without.

Moreover, while code completion played a reduced role in this implementation,
we found it easy to apply potentially fitting code and ignore unwanted code.

While we found comment generation to generally create good comments, they
were not needed in this project as the code was usually not that complex and well-
readable.

101

7. Practical Scenario - Exploration

For prompting, we found it best to use explicit and concise prompts to achieve a
good result. In cases where the model did not produce the desired output, we found
it helpful point it to relevant or similar files explicitly (O4). Another approach was
to start a fresh conversation once results started to became suboptimal.

Summing up, we found that after some time, we started to get an intuition of
what would likely work well and what would not.

Answer to RQ4: To what extent can GitHub Copilot aid in implementing a

software project?

Generally, GitHub Copilot can aid in all implementation steps; however, the
utility is highly dependent on the complexity. Moreover, we found it cru-
cial to have a solid understanding of the languages and frameworks used to
ensure that issues can be detected and remediated early on. Code generated
by Copilot often contained smaller issues and occasionally larger problems.
If the tool "understood” the code, these could usually be remediated using
iterative prompting. However, vigilance is essential when using this LLM
to avoid missing errors.

102

8. Conclusions

In this thesis, we explored how, given a practical SD scenario, suitable LLMs can be
selected, how they can be compared to select a single model, and how well the best-
performing model can aid in implementing the software project from the scenario.
We selected eight models based on key requirements we determined based on the
scenario and quantitatively compared and ranked these models based on five as-
pects of Java SD using benchmarks. These aspects are code generation, code com-
pletion, unit test generation, method comment generation and automatic program
repair. Using this approach, we found GPT-4o to be the best-performing LLM and,
therefore, selected GitHub Copilot, which is based on GPT-4(0), as the tool to aid
with implementation efforts. With Copilot, we conducted a qualitative evaluation
by implementing part of the expense tracking application until we ceased making
new and notable observations. We started the evaluation with an over-reliance on
conversations with GitHub Copilot, successively reducing the reliance if we found
the tool not helpful for certain tasks.

In the model comparison step, we found that for four out of five aspects of
Java SD, the top 3 comprised the same three models: GPT-40, Claude 3.5 Sonnet,
and DeepSeek V2.5. The only exception was method comment generation, where
only DeepSeek V2.5 scored in the top 3. Moreover, a similar pattern was observed
on the lower end of the scores - there the three smaller models consistently ranked
last, with method comment generation being the only exception. This suggests
that the smaller models might not be well suited for aiding Java SD. For Phi 3 3.8B,
the fact that it was not trained on Java or JavaScript code, just basic Python code,
might explain part of its low performance.

We theorize that the difference in comment generation stems from a differing
evaluation approach. While the other benchmarks were generally evaluated in a
pass-fail fashion (using pass@k), the comments were scored on how similar they
were to a reference comment. This was done using ROUGE-1.

Moreover, during the model comparison, we found that while syntactical cor-
rectness did not appear to be a major problem for the best-performing models,
the compilation and functional correctness were. This was observed in all three
aspects that explicitly evaluated the steps of syntax, compilation, and functional

103

8. Conclusions

correctness'. For compilation failures, we were able to categorize them and found
the most common error categories to be identifier, computation, and version.
However, the version errors cannot necessarily be attributed to the model. This is
due to the fact that some tasks in the benchmarks use old Java versions, that do not
support often-used language features. This is a caveat that the LLM is not aware
off and unfortunately this cannot be mitigated as the underlying benchmark does
not report the used Java versions of each task.

For the implementation of the software project in the scenario, in which
we used GitHub Copilot as the tool surrounding GPT-4(0)* we observed the tool
to generally be able to help to some degree in all five aspects of Java SD. However,
this helpfulness also depended on the task’s complexity and the LLM’s capability
to "understand” the task at hand. Furthermore, we found that the generated code
regularly contained smaller issues and occasionally larger ones. This required vig-
ilance when working with GitHub Copilot. In general, we observed that the result
could be notably improved by pointing the model explicitly (by adding files to
the prompt) to relevant or similar code. Moreover, we found the line completion
in the tool to be good when the completions appeared correct and non-intrusive
otherwise. Additionally, we observed test case generation with Copilot to be cum-
bersome at times due to the tool’s problems with mocking, UI interactions and re-
active state management. Furthermore, GitHub Copilot tended to miss test cases.
In contrast to that, fixing and adapting code usually worked well as long as the
model had an accurate "understanding” of the situation. In our scenario, we found
comment generation not to be necessary due to the relatively simple and readable
code. Nonetheless, the comments the tool generated seemed sensible and were
well-readable.

Moreover, writing the frontend using a JavaScript framework (React), which we
had no prior experience with, illustrated the importance of having a solid under-
standing of the technologies one is working with. While Copilot enabled us to
start faster than we would likely have been otherwise, it also slowed us down sig-
nificantly at times when the tool was unable to solve a problem and we did not yet
have the knowledge and experience required to swiftly solve the issue.

Considering the entire implementation phase (frontend and backend), we do not
feel that using GitHub Copilot made us significantly faster, as especially the issues
with frontend tests did cost us a lot of time. However, limiting the scope to the
backend part (Java), we would estimate that GitHub Copilot increased our speed
by about 20-30%.

!In terms of passing test cases

While we cannot confirm that GitHub Copilot uses GPT-40 as the underlying LLM, a support
chat with OpenAl confirmed that they use an undisclosed version of GPT-4. Due to the pricing
of both GPT-4 and GPT-40 we deem it likely that they use the 40 version.

104

8. Conclusions

Moreover, to prompt the model, we found it essential to make implicit assump-
tions explicit. This was usually done by clearly stating the desired change with
some detail rather than describing it more generally. That approach was typically
accompanied by explicitly adding and mentioning relevant files to the prompt to
ensure the model produced better code, even in more complex scenarios. More-
over, we did not notice any changes in the results when starting the prompt with
"You are a professional <language|framework> developer..” leading us to assume
such a prompting approach is either not necessary, or already takes place inter-
nally.

Considering the observations from both the quantitative model compari-
son and the qualitative exploration, we found the compilation errors to be less
present in the practical exploration. This was likely due to the IDE and SonarLint
being able to detect and highlight potential issues in most cases. Furthermore,
issues with functional correctness were also observed in the exploration - these
ranged from minor issues to more fundamental problems like the incorrect use of
libraries. This was especially noticeable when using mocking or Ul interactions
in test cases. However, the latter might also be attributed to the novelty and the
special approach of the Ul library we used. There, one inherits the component’s
code instead of just using it. For code completion, we cannot definitively say if
there was a difference between the performance during the model comparison
and the practical exploration, as we primarily used chat-based interactions. Fur-
thermore, when we used the completion capability, we did so intuitively as we had
exhaustively used JetBrains’ line completion before. Moreover, the task of method
comment generation does not lend itself well to be compared as it is not a classic
pass-fail approach, and we can, therefore, not easily compare the results from the
quantitative comparison with the qualitative exploration.

Future work in this field may focus on evaluating models on all languages for
a project, potentially even leading to the selection of different models for each
programming language. It would furthermore be interesting to conduct an ex-
ploration with multiple programmers and models, for example, using the three
best-performing models from our evaluation, to see whether the benchmark differ-
ences and rankings are indicative of changes in the experience in practice. More-
over, our exploration consisted of a greenfield (new) project, which, based on our
experience, can be significantly easier to work with than a brownfield (existing)
project. However, exploring the latter could help clarify up to which complexity
using a tool like GitHub Copilot makes sense and where boundaries of the model’s
capabilities start to become a hindrance.

Summing up, while an LLM can be helpful for software development, it
is not without pitfalls, especially as minor errors or missing test cases can be
easily overlooked. Furthermore, we consider it highly beneficial to have prior

105

8. Conclusions

knowledge of the language for which one uses the LLM, as it allows oneself
to detect problems earlier and makes manual intervention easier when it is
eventually needed.

This thesis was revised using Grammarly’. However, neither Grammarly’s
“Generative AI” feature nor any other LLM was used to write the text for this

thesis.

Shttps://www.grammarly.com/ (Accessed: 06.01.2025)

106

https://www.grammarly.com/

Bibliography

M. Abdin,]. Aneja, H. Awadalla, A. Awadallah, A. A. Awan, N. Bach
et al, “Phi-3 Technical Report: A Highly Capable Language Model Locally
on Your Phone, Aug. 2024, arXiv:2404.14219 [cs]. [Online]. Available:
http://arxiv.org/abs/2404.14219

M. Allamanis and C. Sutton, “Mining source code repositories at massive scale
using language modeling,” in 2013 10th Working Conference on Mining Software
Repositories (MSR). San Francisco, CA, USA: IEEE, May 2013, pp. 207-216.
[Online]. Available: http://ieeexplore.ieee.org/document/6624029/

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A Survey of Machine
Learning for Big Code and Naturalness,” ACM Computing Surveys, vol. 51, no. 4,
pp- 1-37, Jul. 2019. [Online]. Available: https://dl.acm.org/doi/10.1145/3212695

Anthropic PBC, “Introducing the next generation of Claude,” 2024. [Online].
Available: https://www.anthropic.com/news/claude-3-family

O. Asare, M. Nagappan, and N. Asokan, “A User-centered Security Evaluation
of Copilot,” in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. Lisbon Portugal: ACM, Apr. 2024, pp. 1-11. [Online].
Available: https://dl.acm.org/doi/10.1145/3597503.3639154

B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, Y. Tian, M. Tan et al., “Multi-lingual
Evaluation of Code Generation Models,” Mar. 2023, arXiv:2210.14868 [cs].
[Online]. Available: http://arxiv.org/abs/2210.14868

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan et al., “Program
Synthesis with Large Language Models,” Aug. 2021, arXiv:2108.07732 [cs].
[Online]. Available: http://arxiv.org/abs/2108.07732

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” May 2016, arXiv:1409.0473 [cs]. [Online].
Available: http://arxiv.org/abs/1409.0473

107

http://arxiv.org/abs/2404.14219
http://ieeexplore.ieee.org/document/6624029/
https://dl.acm.org/doi/10.1145/3212695
https://www.anthropic.com/news/claude-3-family
https://dl.acm.org/doi/10.1145/3597503.3639154
http://arxiv.org/abs/2210.14868
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/1409.0473

Bibliography

S. Barke, M. B. James, and N. Polikarpova, “Grounded Copilot: How Programmers
Interact with Code-Generating Models,” Proceedings of the ACM on Programming
Languages, vol. 7, no. OOPSLA1, pp. 85-111, Apr. 2023. [Online]. Available:
https://dl.acm.org/doi/10.1145/3586030

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling Temporal
Dependencies in High-Dimensional Sequences: Application to Polyphonic
Music Generation and Transcription,” Jun. 2012, arXiv:1206.6392 [cs]. [Online].
Available: http://arxiv.org/abs/1206.6392

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal et al,
“Language Models are Few-Shot Learners,” Jul. 2020, arXiv:2005.14165 [cs].
[Online]. Available: http://arxiv.org/abs/2005.14165

M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in Proceedings of the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. —Amsterdam The
Netherlands: ACM, Aug. 2009, pp. 213-222. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1595696.1595728

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan et al., “Evaluating
Large Language Models Trained on Code,” Jul. 2021, arXiv:2107.03374 [cs].
[Online]. Available: http://arxiv.org/abs/2107.03374

W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li et al., “Chatbot
Arena: An Open Platform for Evaluating LLMs by Human Preference,” Mar.
2024, arXiv:2403.04132 [cs]. [Online]. Available: http://arxiv.org/abs/2403.04132

K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk
et al, “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, 2014, pp. 1724-1734. [Online].
Available: http://aclweb.org/anthology/D14-1179

V. Debroy and W. E. Wong, “Using Mutation to Automatically Suggest Fixes for
Faulty Programs,” in 2010 Third International Conference on Software Testing,
Verification and Validation. Paris, France: IEEE, 2010, pp. 65-74. [Online].
Available: http://ieeexplore.ieee.org/document/5477098/

108

https://dl.acm.org/doi/10.1145/3586030
http://arxiv.org/abs/1206.6392
http://arxiv.org/abs/2005.14165
https://dl.acm.org/doi/10.1145/1595696.1595728
https://dl.acm.org/doi/10.1145/1595696.1595728
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2403.04132
http://aclweb.org/anthology/D14-1179
http://ieeexplore.ieee.org/document/5477098/

Bibliography

DeepSeek-Al, A. Liu, B. Feng, B. Wang, B. Wang, B. Liu et al., “DeepSeek-V2:
A Strong, Economical, and Efficient Mixture-of-Experts Language Model,” Jun.
2024, arXiv:2405.04434 [cs]. [Online]. Available: http://arxiv.org/abs/2405.04434

DeepSeek-Al, Q. Zhu, D. Guo, Z. Shao, D. Yang, P. Wang et al., “DeepSeek-Coder-
V2: Breaking the Barrier of Closed-Source Models in Code Intelligence,” Jun.
2024, arXiv:2406.11931 [cs]. [Online]. Available: http://arxiv.org/abs/2406.11931

M. Denkowski and A. Lavie, “Meteor Universal: Language Specific Translation
Evaluation for Any Target Language,” in Proceedings of the Ninth Workshop
on Statistical Machine Translation. Baltimore, Maryland, USA: Association
for Computational Linguistics, 2014, pp. 376-380. [Online]. Available: http:
//aclweb.org/anthology/W14-3348

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding,” in Proceedings
of the 2019 Conference of the North. Minneapolis, Minnesota: Association
for Computational Linguistics, 2019, pp. 4171-4186. [Online]. Available:
http://aclweb.org/anthology/N19-1423

Y. Ding, Z. Wang, W. U. Ahmad, H. Ding, M. Tan, N. Jain et al., “CrossCodeEval:
A Diverse and Multilingual Benchmark for Cross-File Code Completion,” Nov.
2023, arXiv:2310.11248 [cs]. [Online]. Available: http://arxiv.org/abs/2310.11248

X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen et al, “ClassEval: A Manually-
Crafted Benchmark for Evaluating LLMs on Class-level Code Generation,” Aug.
2023, arXiv:2308.01861 [cs]. [Online]. Available: http://arxiv.org/abs/2308.01861

A.Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman et al,, “The llama
3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

D. Eck and J. Schmidhuber, “A first look at music composition using LSTM recur-
rent neural networks,” Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale,
Tech. Rep., 2002.

A. Eghbali and M. Pradel, “CrystalBLEU: Precisely and Efficiently Measuring the
Similarity of Code,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. Rochester MI USA: ACM, Oct. 2022, pp.
1-12. [Online]. Available: https://dl.acm.org/doi/10.1145/3551349.3556903

A. T. Eitan, E. Smolyansky, I. K. Harpaz, and S. Perets, “Connected Papers,” 2024.
[Online]. Available: https://www.connectedpapers.com/

109

http://arxiv.org/abs/2405.04434
http://arxiv.org/abs/2406.11931
http://aclweb.org/anthology/W14-3348
http://aclweb.org/anthology/W14-3348
http://aclweb.org/anthology/N19-1423
http://arxiv.org/abs/2310.11248
http://arxiv.org/abs/2308.01861
https://dl.acm.org/doi/10.1145/3551349.3556903
https://www.connectedpapers.com/

Bibliography

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong et al, “CodeBERT:
A Pre-Trained Model for Programming and Natural Languages,” Sep. 2020,
arXiv:2002.08155 [cs]. [Online]. Available: http://arxiv.org/abs/2002.08155

G. Fraser and A. Arcuri, “EvoSuite: On the Challenges of Test Case Generation in
the Real World,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation. Luxembourg, Luxembourg: IEEE, Mar. 2013, pp.
362-369. [Online]. Available: http://ieeexplore.ieee.org/document/6569748/

G. Fraser and A. Arcuri, “A Large-Scale Evaluation of Automated Unit Test
Generation Using EvoSuite,” ACM Transactions on Software Engineering and
Methodology, vol. 24, no. 2, pp. 1-42, Dec. 2014. [Online]. Available:
https://dl.acm.org/doi/10.1145/2685612

D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi et al, “InCoder: A
Generative Model for Code Infilling and Synthesis,” Apr. 2023, arXiv:2204.05999
[cs]. [Online]. Available: http://arxiv.org/abs/2204.05999

L. Gong, S. Wang, M. Elhoushi, and A. Cheung, “Evaluation of LLMs on
Syntax-Aware Code Fill-in-the-Middle Tasks,” Jun. 2024, arXiv:2403.04814 [cs].
[Online]. Available: http://arxiv.org/abs/2403.04814

A. Graves, “Generating Sequences With Recurrent Neural Networks,” Jun. 2014,
arXiv:1308.0850 [cs]. [Online]. Available: http://arxiv.org/abs/1308.0850

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang et al., “DeepSeek-
Coder: When the Large Language Model Meets Programming — The Rise
of Code Intelligence,” Jan. 2024, arXiv:2401.14196 [cs]. [Online]. Available:
http://arxiv.org/abs/2401.14196

L. B. Heitz,]J. Chamas, and C. Scherb, “Evaluation of the Programming Skills of
Large Language Models,” May 2024, arXiv:2405.14388 [cs]. [Online]. Available:
http://arxiv.org/abs/2405.14388

E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing source
code context of NL-queries for software maintenance and reuse,” in 2009
IEEE 31st International Conference on Software Engineering. Vancouver, BC,
Canada: IEEE, 2009, pp. 232-242. [Online]. Available: http://ieeexplore.ieee.
org/document/5070524/

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of soft-
ware,” in Proceedings of the 34th international conference on software engineering,

110

http://arxiv.org/abs/2002.08155
http://ieeexplore.ieee.org/document/6569748/
https://dl.acm.org/doi/10.1145/2685612
http://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2403.04814
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2405.14388
http://ieeexplore.ieee.org/document/5070524/
http://ieeexplore.ieee.org/document/5070524/

Bibliography

ser. Icse '12. IEEE Press, 2012, pp. 837-847, place: Zurich, Switzerland Number
of pages: 11.

S. Hochreiter, “Long short-term memory,” Neural Computation MIT-Press, 1997.

S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, and others, “Gradient Flow in
Recurrent Nets: The Difficulty of Learning LongTerm Dependencies,” in A Field
Guide to Dynamical Recurrent Networks. IEEE, 2001.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,” in
Proceedings of the 26th Conference on Program Comprehension. Gothenburg
Sweden: ACM, May 2018, pp. 200-210. [Online]. Available: https://dl.acm.org/
doi/10.1145/3196321.3196334

X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing Source Code with
Transferred API Knowledge,” in Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence. ~Stockholm, Sweden: International
Joint Conferences on Artificial Intelligence Organization, Jul. 2018, pp.
2269-2275. [Online]. Available: https://www.ijcai.org/proceedings/2018/314

H. Husain, H-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “Code-
SearchNet Challenge: Evaluating the State of Semantic Code Search,” Jun. 2020,
arXiv:1909.09436 [cs]. [Online]. Available: http://arxiv.org/abs/1909.09436

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing Source Code
using a Neural Attention Model,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics, 2016, pp. 2073-2083.
[Online]. Available: http://aclweb.org/anthology/P16-1195

S. Iyer, 1. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping Language to Code
in Programmatic Context,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: Association
for Computational Linguistics, 2018, pp. 1643-1652. [Online]. Available:
http://aclweb.org/anthology/D18-1192

S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On Using Very Large Target
Vocabulary for Neural Machine Translation,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Beijing, China: Association for Computational Linguistics, 2015, pp.
1-10. [Online]. Available: http://aclweb.org/anthology/P15-1001

111

https://dl.acm.org/doi/10.1145/3196321.3196334
https://dl.acm.org/doi/10.1145/3196321.3196334
https://www.ijcai.org/proceedings/2018/314
http://arxiv.org/abs/1909.09436
http://aclweb.org/anthology/P16-1195
http://aclweb.org/anthology/D18-1192
http://aclweb.org/anthology/P15-1001

Bibliography

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. L
Casas et al., “Mistral 7B, Oct. 2023, arXiv:2310.06825 [cs]. [Online]. Available:
http://arxiv.org/abs/2310.06825

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford et al,
“Mixtral of Experts,” Jan. 2024, arXiv:2401.04088 [cs]. [Online]. Available:
http://arxiv.org/abs/2401.04088

J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A Survey on Large Language Models
for Code Generation,” Nov. 2024, arXiv:2406.00515 [cs]. [Online]. Available:
http://arxiv.org/abs/2406.00515

R. Just, D. Jalali, and M. D. Ernst, “Defects4]: a database of existing faults
to enable controlled testing studies for Java programs,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis.
San Jose CA USA: ACM, Jul. 2014, pp. 437-440. [Online]. Available:
https://dl.acm.org/doi/10.1145/2610384.2628055

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned
from human-written patches,” in 2013 35th International Conference on Software
Engineering (ICSE). San Francisco, CA, USA: IEEE, May 2013, pp. 802-811.
[Online]. Available: http://ieeexplore.ieee.org/document/6606626/

D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M. Ferrandis et al., “The Stack:
3 TB of permissively licensed source code,” Nov. 2022, arXiv:2211.15533 [cs].
[Online]. Available: http://arxiv.org/abs/2211.15533

S. Kulal, P. Pasupat, K. Chandra, M. Lee, O. Padon, A. Aiken et al,
“SPoC: Search-based pseudocode to code,” in Advances in neural information
processing systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché
Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/
7298332f04ac004a0cad4cc69ect6f6b-Paper.pdf

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A Generic
Method for Automatic Software Repair, I[EEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 54-72, Jan. 2012. [Online]. Available:
http://ieeexplore.ieee.org/document/6035728/

A. LeClair, S. Jiang, and C. McMillan, “A Neural Model for Generating
Natural Language Summaries of Program Subroutines,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). Montreal,

112

http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2406.00515
https://dl.acm.org/doi/10.1145/2610384.2628055
http://ieeexplore.ieee.org/document/6606626/
http://arxiv.org/abs/2211.15533
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
http://ieeexplore.ieee.org/document/6035728/

Bibliography

QC, Canada: IEEE, May 2019, pp. 795-806. [Online]. Available: https:
//ieeexplore.ieee.org/document/8811932/

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou et al., “StarCoder:
may the source be with you!” Dec. 2023, arXiv:2305.06161 [cs]. [Online].
Available: http://arxiv.org/abs/2305.06161

J. T. Liang, C. Yang, and B. A. Myers, “A Large-Scale Survey on the
Usability of AI Programming Assistants: Successes and Challenges,” in
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. Lisbon Portugal: ACM, Feb. 2024, pp. 1-13. [Online]. Available:
https://dl.acm.org/doi/10.1145/3597503.3608128

Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive comments for
code blocks,” in Proceedings of the thirty-second AAAI conference on artificial in-
telligence and thirtieth innovative applications of artificial intelligence conference
and eighth AAAI symposium on educational advances in artificial intelligence, ser.
AAAT'18/TIAAT'18/EAAT’'18. AAAI Press, 2018, place: New Orleans, Louisiana,
USA Number of pages: 8 tex.articleno: 641.

C.-Y. Lin, “ROUGE: a package for automatic evaluation of summaries,’
in Text summarization branches out. Barcelona, Spain: Association for
Computational Linguistics, Jul. 2004, pp. 74-81. [Online]. Available: https:
//aclanthology.org/W04-1013/

D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: a multi-
lingual program repair benchmark set based on the quixey challenge,” in
Proceedings Companion of the 2017 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for Humanity.
Vancouver BC Canada: ACM, Oct. 2017, pp. 55-56. [Online]. Available:
https://dl.acm.org/doi/10.1145/3135932.3135941

W. Ling, E. Grefenstette, K. M. Hermann, T. Kocisky, A. Senior, F. Wang et al,
“Latent Predictor Networks for Code Generation,” Jun. 2016, arXiv:1603.06744
[cs]. [Online]. Available: http://arxiv.org/abs/1603.06744

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: revisiting template-
based automated program repair, in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. Beijing China:
ACM, Jul. 2019, pp. 31-42. [Online]. Available: https://dl.acm.org/doi/10.1145/
3293882.3330577

113

https://ieeexplore.ieee.org/document/8811932/
https://ieeexplore.ieee.org/document/8811932/
http://arxiv.org/abs/2305.06161
https://dl.acm.org/doi/10.1145/3597503.3608128
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://dl.acm.org/doi/10.1145/3135932.3135941
http://arxiv.org/abs/1603.06744
https://dl.acm.org/doi/10.1145/3293882.3330577
https://dl.acm.org/doi/10.1145/3293882.3330577

Bibliography

A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi et al, “StarCoder
2 and The Stack v2: The Next Generation,” Feb. 2024, arXiv:2402.19173 [cs].
[Online]. Available: http://arxiv.org/abs/2402.19173

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco et al,
“CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation,” Mar. 2021, arXiv:2102.04664 [cs]. [Online]. Available:
http://arxiv.org/abs/2102.04664

T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based
Neural Machine Translation,” in Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon, Portugal: Association
for Computational Linguistics, 2015, pp. 1412-1421. [Online]. Available:
http://aclweb.org/anthology/D15-1166

J. Lopez Espejel, M. S. Yahaya Alassan, E. M. Chouham, W. Dahhane,
and E. H. Ettifouri, “A comprehensive review of State-of-The-Art methods
for Java code generation from Natural Language Text, Natural Language
Processing Journal, vol. 3, p. 100013, Jun. 2023. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S2949719123000109

F. Madeiral, S. Urli, M. Maia, and M. Monperrus, “BEARS: An Extensible Java
Bug Benchmark for Automatic Program Repair Studies,” in 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering
(SANER). Hangzhou, China: IEEE, Feb. 2019, pp. 468-478. [Online]. Available:
https://ieeexplore.ieee.org/document/8667991/

M. Martinez and M. Monperrus, “ASTOR: a program repair library for Java
(demo),” in Proceedings of the 25th International Symposium on Software Testing
and Analysis. Saarbriicken Germany: ACM, Jul. 2016, pp. 441-444. [Online].
Available: https://dl.acm.org/doi/10.1145/2931037.2948705

M. Monteiro, B. C. Branco, S. Silvestre, G. Avelino, and M. T. Valente, “End-to-end
software construction using ChatGPT: An experience report, 2023, arXiv:
2310.14843 [cs.SE]. [Online]. Available: https://arxiv.org/abs/2310.14843

H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “When to Show a
Suggestion? Integrating Human Feedback in Al-Assisted Programming,” Apr.
2024, arXiv:2306.04930 [cs]. [Online]. Available: http://arxiv.org/abs/2306.04930

N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo et al., “OctoPack:
Instruction Tuning Code Large Language Models,” Feb. 2024, arXiv:2308.07124
[cs]. [Online]. Available: http://arxiv.org/abs/2308.07124

114

http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2102.04664
http://aclweb.org/anthology/D15-1166
https://linkinghub.elsevier.com/retrieve/pii/S2949719123000109
https://linkinghub.elsevier.com/retrieve/pii/S2949719123000109
https://ieeexplore.ieee.org/document/8667991/
https://dl.acm.org/doi/10.1145/2931037.2948705
https://arxiv.org/abs/2310.14843
http://arxiv.org/abs/2306.04930
http://arxiv.org/abs/2308.07124

Bibliography

S. O’'Neil, “AWS CodeWhisperer creates computer code from natural language,”
Dec. 2021. [Online]. Available: https://www.amazon.science/latest-news/aws-
codewhisperer-creates-computer-code-from-natural-language

OpenAl, “GPT-40 System Card,” Dec. 2024. [Online]. Available: https://cdn.
openai.com/gpt-4o-system-card.pdf

OpenAl J. Achiam, S. Adler, S. Agarwal, L. Ahmad, 1. Akkaya et al, “GPT-
4 Technical Report,” Mar. 2024, arXiv:2303.08774 [cs]. [Online]. Available:
http://arxiv.org/abs/2303.08774

Oracle Corporation, “Javadoc Tool” [Online]. Available: https://www.oracle.com/
java/technologies/javase/javadoc-tool.html

C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing for
Java,” in Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion. Montreal Quebec Canada:
ACM, Oct. 2007, pp. 815-816. [Online]. Available: https://dl.acm.org/doi/10.
1145/1297846.1297902

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics - ACL °02. Philadelphia,
Pennsylvania: Association for Computational Linguistics, 2001, p. 311. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1073083.1073135

S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The Impact of Al
on Developer Productivity: Evidence from GitHub Copilot,” Feb. 2023,
arXiv:2302.06590 [cs]. [Online]. Available: http://arxiv.org/abs/2302.06590

M. Popovié, “chrF: character n-gram F-score for automatic MT evaluation,” in
Proceedings of the Tenth Workshop on Statistical Machine Translation. Lisbon,
Portugal: Association for Computational Linguistics, 2015, pp. 392-395.
[Online]. Available: http://aclweb.org/anthology/W15-3049

M. Popovi¢, “chrF++: words helping character n-grams,” in Proceedings of
the Second Conference on Machine Translation. Copenhagen, Denmark:
Association for Computational Linguistics, 2017, pp. 612-618. [Online].
Available: http://aclweb.org/anthology/W17-4770

Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibility
and correctness for generate-and-validate patch generation systems,” in
Proceedings of the 2015 International Symposium on Software Testing and

115

https://www.amazon.science/latest-news/aws-codewhisperer-creates-computer-code-from-natural-language
https://www.amazon.science/latest-news/aws-codewhisperer-creates-computer-code-from-natural-language
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
http://arxiv.org/abs/2303.08774
https://www.oracle.com/java/technologies/javase/javadoc-tool.html
https://www.oracle.com/java/technologies/javase/javadoc-tool.html
https://dl.acm.org/doi/10.1145/1297846.1297902
https://dl.acm.org/doi/10.1145/1297846.1297902
http://portal.acm.org/citation.cfm?doid=1073083.1073135
http://arxiv.org/abs/2302.06590
http://aclweb.org/anthology/W15-3049
http://aclweb.org/anthology/W17-4770

Bibliography

Analysis. Baltimore MD USA: ACM, Jul. 2015, pp. 24-36. [Online]. Available:
https://dl.acm.org/doi/10.1145/2771783.2771791

A. Radford and Karthik, “Improving language understanding by generative
pre-training,” 2018. [Online]. Available: https://cdn.openai.com/research-
covers/language-unsupervised/language_understanding_paper.pdf

S. Rasnayaka, G. Wang, R. Shariffdeen, and G. N. Iyer, “An Empirical Study on
Usage and Perceptions of LLMs in a Software Engineering Project,” Jan. 2024,
arXiv:2401.16186 [cs]. [Online]. Available: http://arxiv.org/abs/2401.16186

S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang et al, “CodeBLEU: a Method
for Automatic Evaluation of Code Synthesis,” Sep. 2020, arXiv:2009.10297 [cs].
[Online]. Available: http://arxiv.org/abs/2009.10297

Replit, Inc, “Replit’s new Al model now available on hugging face,” 2023. [Online].
Available: https://blog.replit.com/replit-code-v1_5

T. Ridnik, D. Kredo, and I. Friedman, “Code Generation with AlphaCodium: From
Prompt Engineering to Flow Engineering,” Jan. 2024, arXiv:2401.08500 [cs].
[Online]. Available: http://arxiv.org/abs/2401.08500

S. Robertson and H. Zaragoza, “The Probabilistic Relevance Framework: BM25
and Beyond,” Foundations and Trends® in Information Retrieval, vol. 3, no. 4,
pp- 333-389, 2009. [Online]. Available: http://www.nowpublishers.com/article/
Details/INR-019

S. L Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz, “The Programmer’s
Assistant: Conversational Interaction with a Large Language Model for
Software Development,” in Proceedings of the 28th International Conference
on Intelligent User Interfaces. Sydney NSW Australia: ACM, Mar. 2023, pp.
491-514. [Online]. Available: https://dl.acm.org/doi/10.1145/3581641.3584037

B. Roziére, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan et al, “Code Llama:
Open Foundation Models for Code,” Jan. 2024, arXiv:2308.12950 [cs]. [Online].
Available: http://arxiv.org/abs/2308.12950

N. Saavedra, A. Silva, and M. Monperrus, “GitBug-Actions: Building Reproducible
Bug-Fix Benchmarks with GitHub Actions,” in Proceedings of the 2024
IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings. Lisbon Portugal: ACM, Apr. 2024, pp. 1-5. [Online]. Available:
https://dl.acm.org/doi/10.1145/3639478.3640023

116

https://dl.acm.org/doi/10.1145/2771783.2771791
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://arxiv.org/abs/2401.16186
http://arxiv.org/abs/2009.10297
https://blog.replit.com/replit-code-v1_5
http://arxiv.org/abs/2401.08500
http://www.nowpublishers.com/article/Details/INR-019
http://www.nowpublishers.com/article/Details/INR-019
https://dl.acm.org/doi/10.1145/3581641.3584037
http://arxiv.org/abs/2308.12950
https://dl.acm.org/doi/10.1145/3639478.3640023

Bibliography

A. Salinas and F. Morstatter, “The Butterfly Effect of Altering Prompts: How Small
Changes and Jailbreaks Affect Large Language Model Performance,” in Findings
of the Association for Computational Linguistics ACL 2024. Bangkok, Thailand
and virtual meeting: Association for Computational Linguistics, 2024, pp.
4629-4651. [Online]. Available: https://aclanthology.org/2024.findings-acl.275

R. M. Schmidt, “Recurrent Neural Networks (RNNs): A gentle Introduction
and Overview,” Nov. 2019, arXiv:1912.05911 [cs]. [Online]. Available: http:
//arxiv.org/abs/1912.05911

A. Semenkin, V. Bibaev, Y. Sokolov, K. Krylov, A. Kalina, A. Khannanova et al., “Full
line code completion: Bringing Al to desktop,” arXiv preprint arXiv:2405.08704,
2024.

M. L. Siddiq, J. C. S. Santos, R. H. Tanvir, N. Ulfat, F. A. Rifat, and V. C. Lopes,
“Using Large Language Models to Generate JUnit Tests: An Empirical Study,”
in Proceedings of the 28th International Conference on Evaluation and Assessment
in Software Engineering, Jun. 2024, pp. 313-322, arXiv:2305.00418 [cs]. [Online].
Available: http://arxiv.org/abs/2305.00418

A. Silva, N. Saavedra, and M. Monperrus, “GitBug-Java: A Reproducible Bench-
mark of Recent Java Bugs,” in Proceedings of the 21st International Conference
on Mining Software Repositories, Apr. 2024, pp. 118-122, arXiv:2402.02961 [cs].
[Online]. Available: http://arxiv.org/abs/2402.02961

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for Java methods,” in
Proceedings of the IEEE/ACM international conference on Automated software
engineering. Antwerp Belgium: ACM, Sep. 2010, pp. 43-52. [Online]. Available:
https://dl.acm.org/d0i/10.1145/1858996.1859006

L. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proceedings of the 28th international conference on neural informa-
tion processing systems - volume 2, ser. NIPS’14. Cambridge, MA, USA: MIT
Press, 2014, pp. 3104-3112, number of pages: 9 Place: Montreal, Canada.

A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “IntelliCode compose: code
generation using transformer,” in Proceedings of the 28th ACM joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. Virtual Event USA: ACM, Nov. 2020, pp. 1433-1443.
[Online]. Available: https://dl.acm.org/doi/10.1145/3368089.3417058

117

https://aclanthology.org/2024.findings-acl.275
http://arxiv.org/abs/1912.05911
http://arxiv.org/abs/1912.05911
http://arxiv.org/abs/2305.00418
http://arxiv.org/abs/2402.02961
https://dl.acm.org/doi/10.1145/1858996.1859006
https://dl.acm.org/doi/10.1145/3368089.3417058

Bibliography

B. Szalontai, G. Szalay, T. Marton, A. Sike, B. Pintér, and T. Gregorics, “Large
Language Models for Code Summarization,” May 2024, arXiv:2405.19032 [cs].
[Online]. Available: http://arxiv.org/abs/2405.19032

N. Tang, J. An, M. Chen, A. Bansal, Y. Huang, C. McMillan et al, “CodeGRITS:
A Research Toolkit for Developer Behavior and Eye Tracking in IDE; in
Proceedings of the 2024 IEEE/ACM 46th International Conference on Software
Engineering: Companion Proceedings. Lisbon Portugal: ACM, Apr. 2024, pp.
119-123. [Online]. Available: https://dl.acm.org/doi/10.1145/3639478.3640037

N. Tang, M. Chen, Z. Ning, A. Bansal, Y. Huang, C. McMillan et al,, “A Study on
Developer Behaviors for Validating and Repairing LLM-Generated Code Using
Eye Tracking and IDE Actions,” May 2024, arXiv:2405.16081 [cs]. [Online].
Available: http://arxiv.org/abs/2405.16081

C. Team, H. Zhao, J. Hui, J. Howland, N. Nguyen, S. Zuo et al., “CodeGemma: Open
Code Models Based on Gemma,” Jun. 2024, arXiv:2406.11409 [cs]. [Online].
Available: http://arxiv.org/abs/2406.11409

G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut et al, “Gemini:
A Family of Highly Capable Multimodal Models,” Jun. 2024, arXiv:2312.11805
[cs]. [Online]. Available: http://arxiv.org/abs/2312.11805

G. Team, P. Georgiev, V. L. Lei, R. Burnell, L. Bai, A. Gulati et al, “Gemini 1.5:
Unlocking multimodal understanding across millions of tokens of context,” Dec.
2024, arXiv:2403.05530 [cs]. [Online]. Available: http://arxiv.org/abs/2403.05530

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak et al,
“Gemma: Open Models Based on Gemini Research and Technology,” Apr. 2024,
arXiv:2403.08295 [cs]. [Online]. Available: http://arxiv.org/abs/2403.08295

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix
et al., “LLaMA: Open and Efficient Foundation Language Models,” Feb. 2023,
arXiv:2302.13971 [cs]. [Online]. Available: http://arxiv.org/abs/2302.13971

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei et al, “Llama
2: Open Foundation and Fine-Tuned Chat Models,” Jul. 2023, arXiv:2307.09288
[cs]. [Online]. Available: http://arxiv.org/abs/2307.09288

M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy, “Methods2Test:
a dataset of focal methods mapped to test cases,” in Proceedings of the
19th International Conference on Mining Software Repositories. Pittsburgh

118

http://arxiv.org/abs/2405.19032
https://dl.acm.org/doi/10.1145/3639478.3640037
http://arxiv.org/abs/2405.16081
http://arxiv.org/abs/2406.11409
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.08295
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288

Bibliography

Pennsylvania: ACM, May 2022, pp. 299-303. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3524842.3528009

P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. Experience:
Evaluating the Usability of Code Generation Tools Powered by Large Language
Models,” in CHI Conference on Human Factors in Computing Systems Extended
Abstracts. New Orleans LA USA: ACM, Apr. 2022, pp. 1-7. [Online]. Available:
https://dl.acm.org/doi/10.1145/3491101.3519665

A. Vaswani, N. Shazeer, N. Parmar,]J. Uszkoreit, L. Jones, A. N. Gomez et al.,
“Attention is all you need,” in Advances in neural information processing
systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan et al, Eds., vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases, in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering.
Seoul South Korea: ACM, Jun. 2020, pp. 1398-1409. [Online]. Available:
https://dl.acm.org/doi/10.1145/3377811.3380429

C. S. Xia, Y. Wei, and L. Zhang, “Automated Program Repair in the Era of Large
Pre-trained Language Models,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). Melbourne, Australia: IEEE, May 2023, pp.
1482-1494. [Online]. Available: https://ieeexplore.ieee.org/document/10172803/

A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou et al, “Qwen2
Technical Report, Sep. 2024, arXiv:2407.10671 [cs]. [Online]. Available:
http://arxiv.org/abs/2407.10671

H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma et al, “CoderEval:
A Benchmark of Pragmatic Code Generation with Generative Pre-trained
Models,” in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. Lisbon Portugal: ACM, Feb. 2024, pp. 1-12. [Online].
Available: https://dl.acm.org/doi/10.1145/3597503.3623316

Z.Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen et al., “No More Manual Tests?
Evaluating and Improving ChatGPT for Unit Test Generation,” May 2024,
arXiv:2305.04207 [cs]. [Online]. Available: http://arxiv.org/abs/2305.04207

119

https://dl.acm.org/doi/10.1145/3524842.3528009
https://dl.acm.org/doi/10.1145/3524842.3528009
https://dl.acm.org/doi/10.1145/3491101.3519665
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://dl.acm.org/doi/10.1145/3377811.3380429
https://ieeexplore.ieee.org/document/10172803/
http://arxiv.org/abs/2407.10671
https://dl.acm.org/doi/10.1145/3597503.3623316
http://arxiv.org/abs/2305.04207

Bibliography

Z. Zeng, Y. Wang, R. Xie, W. Ye, and S. Zhang, “CoderUJB: An Executable
and Unified Java Benchmark for Practical Programming Scenarios,” Mar. 2024,
arXiv:2403.19287 [cs]. [Online]. Available: http://arxiv.org/abs/2403.19287

F. Zhang, B. Chen, Y. Zhang,]J. Keung, J. Liu, D. Zan et al, “RepoCoder:
Repository-Level Code Completion Through Iterative Retrieval and Generation,”
in Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. Singapore: Association for Computational Linguistics, 2023, pp.
2471-2484. [Online]. Available: https://aclanthology.org/2023.emnlp-main.151

Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue et al., “CodeGeeX: A Pre-Trained
Model for Code Generation with Multilingual Benchmarking on HumanEval-X,
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. Long Beach CA USA: ACM, Aug. 2023, pp. 5673-5684. [Online].
Available: https://dl.acm.org/doi/10.1145/3580305.3599790

S. Zhou, U. Alon, S. Agarwal, and G. Neubig, “CodeBERTScore: Evaluating Code
Generation with Pretrained Models of Code,” Oct. 2023, arXiv:2302.05527 [cs].
[Online]. Available: http://arxiv.org/abs/2302.05527

A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister et al,
“Productivity assessment of neural code completion,” in Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming.
San Diego CA USA: ACM, Jun. 2022, pp. 21-29. [Online]. Available:
https://dl.acm.org/doi/10.1145/3520312.3534864

120

http://arxiv.org/abs/2403.19287
https://aclanthology.org/2023.emnlp-main.151
https://dl.acm.org/doi/10.1145/3580305.3599790
http://arxiv.org/abs/2302.05527
https://dl.acm.org/doi/10.1145/3520312.3534864

Appendix

121

A. Practical Scenario

This appendix provides the data model, all user stories, and all Ul mockups that are
part of the expense tracking application in the practical scenario. All three were
defined before the exploration phase of the scenario.

A.1. Data Model

In this section, we present the underlying data model that defines the different
entities in the expense tracking application of the practical scenario. The visual
representation of the data model can be seen in Figure A.1.

‘ User Profile] ‘ Booking] Budget

UUID Title Name
Amount Amount
Name Category S
Password Date CopeAcc t
) - ou
Profile Image Type(+ - transfer) - Category

- All of Currency

Timeframe
‘ Account] r Category] - week

- month
- quarter
Name Name - year
Currency Icon (from Picker) \)

Starting Balance Color

Figure A.1.: Data Model for the expense tracking application in the practical sce-
nario.

User Profile An instance of a user profile represents an individual application
user and consists of a unique user id, a username, a password, and a profile image.
Moreover, the profile image excludes SVGs to avoid having to deal with security
issues related to XML parsing.

122

A. Practical Scenario

Account An account instance represents an individual account to which book-
ings can be made. It consists of a name, a currency, and a starting balance.

Booking A booking represents a real-world transaction like withdrawing
money at an ATM. It consists of a title, an amount (in the currency of the account),
a category, a booking date, and a booking type. The booking types are deposit,
withdrawal, and transfer (between accounts).

Category Categories allow the user to group bookings by, for example, an ex-
pense type. It is characterized by a name, an icon, and a color.

Budget A budget allows the user to set spending limits that trigger if exceeded.
It is defined by a name, an amount, a timeframe, and a scope. The timeframe
defines whether the budget is for a week, a month, a quarter, or a year. The scope
can be set to a single account, category, or all accounts with a particular currency.

A.2. User Stories

The simplified user stories in this section are grouped into several tables based on
the entities in the data model. The following tables (A.1, A.2, A.3, A.4, A.5) contain
the user stories per entity type and are self-contained.

Additionally, two user stories are more open-ended and do not fit particularly
well to one of the entities:

« Asauser, I want to gain insights into my spending habits, especially regard-
ing month-to-month differences and outliers.

+ As a user, I want to be able to automatically scan and add receipt totals as
an entry.

A.3. Ul Mockups

This section features all Ul mockups that were present at the start of the explo-
ration phase. The relevant figures are (A.2, A.3, A4, A5, A4, A8) and are self-
contained.

123

A. Practical Scenario

User Profile
able to create a profile
delete my profile after entering
the correct password
log into my profile with my credentials
log out of my profile

change my username to a new, unique

username after entering the correct

password
change my password after entering
the correct current password

As a user, I want to be able to...

Table A.1.: User Profile user stories detailing the requirements related managing
individual user profiles.

Accounts
create a default account on my first log in
always have a default account
create additional accounts
change default accounts
delete all of my accounts
except for the default one
edit all my accounts
see the current balance of my accounts
see the account delta for the current month

As a user, I want to be able to...

Table A.2.: Accounts user stories detailing requirements regarding accounts.

124

A. Practical Scenario

Bookings
create bookings for my accounts
create bookings between all of my accounts
edit all of my bookings
delete my bookings
view the details of my bookings
As a user, I want to be able to... | view my bookings in chronological order
filter my bookings by account, budget, time,
and category
sort my bookings by amount, A-Z,
and inverse

Table A.3.: Bookings user stories. The two user stories marked in blue must be
implemented on the server-side.

Categories
always have a default category
view all of my categories
As a user, I want to be able to... edit my categories
delete my categories and set all bookings
to the default category
set multiple categories for a booking

Table A.4.: Categories user stories.

Budgets
create budgets
edit budgets
As a user, I want to be able to... delete budgets

receive a warning
if a booking exceeds a budget
see all of my budgets
and their current balance

Table A.5.: Budgets user stories.

125

A. Practical Scenario

Thomas ()
Accounts
Categories

Budgets

IIIII

Insights

Figure A.2.: UI Mockup of the Basic Application Components, featuring a col-
lapsible sidebar menu and an indication of the current user, including

the possibility to log out.

Figure A.3.: UI Mockup of Login Form, including the possibility of registring a
new account.

126

A. Practical Scenario

Register

@
E
3
2

Pick a Picture

| |

Figure A.4.: Ul Mockup of the Account Creation Form, including the possibility
to pick a profile image from the local machine.

= Accounts Thomas ()
W Account X *** Account Y Account Z Account A
30Day -721,32€ 30Day -721,32€ 30Day -721,32€ 30Day -721,32%

+
Add Account

Figure A.5.: Ul Mockup of Accounts Overview Page. It contains multiple ac-
counts, one denoted as the default account using a star.

127

A. Practical Scenario

= Account X - Booking List]l Thomas (1)
Groceries Lidl - 32,1€
Cat: Groceries 01.08.2024

Salary

Cat:Salary 29.07.2024
Transfer &
Cat: Savings To: Account Y 01.08.2024

Figure A.6.: UI Mockup of a Booking List containing all bookings for an account,
including the possibility to add an entry using a floating action button.
The entries can be sorted using the icon in the header.

= Categories Thomas (1)
Xl Uncategorized Groceries &1 Salaray +
30 Day -721,32€ 30 Day -121.32€ 30 Day Add Account

Figure A.7.: UI Mockup featuring the Categories Page. It includes the default
category, two custom categories, and the possibility of creating a new
one.

128

A. Practical Scenario

= Budgets Thomas ()
Groceries Spendin
Category: Groceries AccE)unt: Accountg(6 1 O/ 300€
Resets: monthly Resets: quarterly

All Expenses

Category: Groceries
Resets: yearly

Figure A.8.: Ul Mockup showing three different Budgets for different scopes and
timeframes, including an indication of one account being over budget.

129

B. Code Completion Prompt
Examples

Since Figure 6.4 in Section 6.2 might not be ideally suited to illustrate how the
prompts would look like in practice, we give examples for both SPM and 1S
prompting here. These were taken from the SAFIM benchmark (Gong et al., 2024).

Additional line breaks were automatically inserted, and text was omitted to in-

crease readability.
Listing B.1: Suffix-Prefix-Middle (SPM) prompt example

}
}
return bCount > 0 && s.charAt(s.length()-1) == 'B';
}
public static void main(String[] args) {

Scanner s = new Scanner (System.in);

try A
int t = s.nextInt();
for(int i=0;i<t;i++) {

String inp = s.next();
System.out. println (isValidString (inp) ?”YES
”:”NO”) ;
}

} catch (Exception e) {
System.out. println (”Exception: 7 + e);
e.printStackTrace () ;

} finally {
s.close () ;

}

}

130

B. Code Completion Prompt Examples

Complete the code in java to solve this programming problem:
Description: <text omitted for brevity >

Input Specification: <text omitted for brevity >

Output Specification: <text omitted for brevity>

Notes: <text omitted for brevity >

Code:

import java.util .«;
public class ILoveAAB {

public static boolean isValidString (String s) {
if (s.length() <= 1) return false;
int bCount = 0, aCount
for (int i=0;i<s.length (
if (s.charAt(i) == '
else bCount += 1;
if (bCount > aCount) {

)
A') aCount += 1;

131

B. Code Completion Prompt Examples

Listing B.2: One Shot (1S) prompt example

Complete the code in java to solve this programming problem:
Description: <text omitted for brevity >

Input Specification: <text omitted for brevity >

Output Specification: <text omitted for brevity >

Code:

import java.util.Scanner;

public class Main {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
int t = sc.nextlnt();
for (int i = 0; i < t; i++) {

/+ TODO: Your code here «/
}

sc.close () ;

}

Replace the ”/+ TODO: Your code here +«/” in the code above

with the appropriate block. Provide only the replaced
block.

int a = sc.nextInt();
int b = sc.nextlnt();
int ¢ = a + b;

System.out. println (c);

Complete the code in java to solve this programming problem:
Description: <text omitted for brevity >
Input Specification: <text omitted for brevity >

Output Specification: <text omitted for brevity >

132

B. Code Completion Prompt Examples

Notes: <text omitted for brevity >
Code:

import java.util .«;
public class ILoveAAB {

public static boolean isValidString (String s) {
if (s.length() <= 1) return false;
int bCount = 0, aCount = 0;
for (int 1i=0;i<s.length();i++) {
if (s.charAt(i) == 'A') aCount += 1;
else bCount += 1;
if (bCount > aCount) {
/+ TODO: Your code here =/

}
}
return bCount > 0 && s.charAt(s.length()-1) == 'B’;
}
public static void main(String[] args) {
Scanner s = new Scanner (System.in);
try {
int t = s.nextInt();

for(int i=0;i<t;i++) {
String inp = s.next();
System.out. println (isValidString (inp) ?”YES
7:”NO”) ;
}

} catch(Exception e) {
System.out. println (> Exception:
e.printStackTrace () ;

} finally {

s.close () ;

+ e);

}

Replace the ”/+ TODO: Your code here +«/” in the code above
with the appropriate block. Provide only the replaced
block .

133

	Introduction
	Background
	What innovations in Deep Learning led to the advent of LLMs?
	Overview of Current LLMs
	General Models
	Models Specifically Trained for Code
	Small Models
	Integrated Approaches

	Evaluation Measures of LLMs (NLP + Code)
	Code Measures
	Human Evaluation of LLMs

	Historic Approaches
	Code Generation
	Code Completion
	Unit Test Generation
	Method Comment Generation
	Automated Program Repair

	Assessing Code Quality

	Related Work
	Model Benchmarking for Aspects of SD
	Code Generation
	Code Completion
	Unit Test Generation
	Method Comment Generation
	Automated Program Repair

	Developer Behavior and LLMs
	LLM-aided development of a complete Software Project
	What differentiates our approach from others (Research Gap)

	Research Information

	Practical Scenario - Definition
	Company
	Tech Stack Constraints
	Application Constraints
	Further Remarks on Tech Stack Considerations

	Initial LLM Selection
	Method
	Practical Exploration Constraints
	Downstream Task Constraints

	Results
	Discussion

	Model Comparison
	Code Generation
	Method
	Results
	Detailed Compilation Results
	Discussion

	Code Completion
	Method
	Results
	Discussion

	Unit Test Generation
	Method
	Results
	Discussion

	Method Comment Generation
	Method
	Results
	Discussion

	Automated Program Repair
	Method
	Results
	Discussion

	Model Ranking
	Method
	Results
	Discussion

	Practical Scenario - Exploration
	Method
	Observations
	Key Observations
	Code Generation
	Code Completion
	Test Case Generation
	Comment Generation
	Automated Program Repair and Code Adaption

	Prompt evolution
	Summary

	Conclusions
	Appendix
	Practical Scenario
	Data Model
	User Stories
	UI Mockups

	Code Completion Prompt Examples

