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Abstract

Physical properties of organic-inorganic interfaces are mainly determined by the formed
structure of the organic molecules on the surface of an inorganic material. Dependent on
the arrangement of the molecules physical properties can change quite a lot, for example,
the work function of the interface. Organic-inorganic interfaces can form a huge number
of different polymorphs. For technical applications, usually specific interface structures
are more desirable than others because of some superior properties. But it can happen
that those high-performance polymorphs are not the energetically most favorable ones.
To be able to form structures that are unfavorable in a thermodynamic picture we need
to bring the system out of thermodynamic equilibrium by changing temperature and
pressure in the system. At these new thermodynamic conditions, the system starts to
equilibrate to a new structure with the lowest Gibbs free energy. During this equilibration
process the system can form new metastable interface structures which we then can try
to trap by bringing the thermodynamic conditions in to a region where the new structure
is more stable. This leads to the idea that we can control the structure of an interface
system with time dependent temperature and pressure protocols. If we know the kinetic
transition network of such an interface polymorph system we can use Optimal Control
theory to find optimal temperature and pressure curves to maximize the concentration
of a specific interface polymorph.
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Kurzfassung

Physikalische Eigenschaften von organisch-anorganischen Grenzflächen werden
hauptsächlich durch die gebildete Struktur der organischen Moleküle auf der Oberfläche
eines anorganischen Materials bestimmt. Abhängig von der Anordnung der Moleküle
können sich physikalische Eigenschaften stark ändern, beispielsweise die Austrittsarbeit
eines Elektrons an der Grenzfläche. Organisch-anorganische Grenzflächen können
eine Vielzahl unterschiedlicher Polymorphe bilden. Für technische Anwendungen sind
bestimmte Grenzflächenstrukturen normalerweise besser geeignet als andere. Normaler-
weise sind diese Hochleistungspolymorphe aber nicht die energetisch günstigsten. Um
thermodynamisch ungünstige Strukturen bilden zu können, müssen wir das System
aus dem thermodynamischen Gleichgewicht bringen, indem wir Temperatur und Druck
im System verändern. Bei diesen neuen thermodynamischen Bedingungen beginnt
das System, sich zu einer neuen Struktur mit der niedrigsten freien Gibbs-Energie
umzuformen. Während dieses Umformungssprozesses kann das System neue metastabile
Grenzflächenstrukturen bilden, die wir dann versuchen können zu stabilisieren, indem
wir die thermodynamischen Bedingungen in einen Bereich bringen, in der die neue
Struktur stabiler ist. Dies führt zu der Idee, dass wir die Struktur einer Grenzfläche
mit zeitabhängigen Temperatur- und Druckprotokollen steuern können. Wenn wir
das kinetische Übergangsnetzwerk eines solchen polymorphen Grenzflächensystems
kennen, können wir die Theorie der optimalen Steuerung verwenden, um optimale
Temperatur- und Druckkurven zu finden, um die Konzentration eines speziellen
Grenzflächenpolymorphs zu maximieren.
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1. Introduction

1.1. Motivation

Properties of materials are usually characterized by the spatial geometry of the individual
atoms of the material. For example, a material with only one chemical compound can
have very different physical properties based on its structure. A very famous example
of this are the different phases of pure carbon. Carbon can occur in solid form as
graphite or diamond. These two materials have very different mechanical, thermal,
optical and electronic properties. For technical applications, some phases or polymorphs
of a material are of more interest because of their superior properties compared to
others. For example the hardness of diamond is much bigger than the one of graphite.
The challenge is how we can force a system to form a specific structure with the desired
properties for a technical application. In a thermodynamic picture, usually the structure
with the lowest energy is formed. A requirement for this is thermodynamic equilibrium.
This is not necessarily the case for many systems. For example, diamond would not
be observed at room temperature and atmospheric pressure if solid carbon would be in
thermodynamic equilibrium. The energy of the graphite structure is lower than the one
of diamond at normal conditions. Diamond is actually a metastable phase of carbon at
normal conditions but the transition rate to form graphite is so slow that this transition
will never be observed in a human lifetime. [1]

This leads to the idea that we can trap a system in a specific structure by changing
thermodynamic quantities like temperature and pressure. We can utilize this feature to
control the structure of a system. The main goal is to find the optimal temperature and
pressure curves that transform a material into the desired structure.

To actually find those curves we need to understand how the energy of a system changes
with temperature and pressure and how the transition rates from one structure to another
can be calculated.

1.2. Interface Polymorphism

Polymorphism is also present for interface structures where two different materials are
in contact with each other. In this thesis, we investigate interfaces between metals and
organic materials. Those systems are relevant for technical applications in the field of
organic semiconductors for example. Interfaces between metallic contacts and the active
organic material usually determine the efficiency of these organic semiconductor devices
[2, 3].

The properties of organic-inorganic interfaces are usually mainly determined by the first
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1. Introduction

few molecular layers, where the first layer is the most important one. Usually the first
molecular monolayer of a system already reflects the main properties of an interface.
For preliminary studies we can simplify the interface system to a model of a monolayer
of organic molecules adsorbed on top of a metal surface. For real technical applications
one still need to consider the transition to a molecular bulk phase.

The molecules in this monolayer can arrange in a huge number of different ways [4].
Each of those possible polymorphs gives the interface different properties and some of
them have better properties for technical applications than others. In the example of
tetracyanoethylene (TCNE) molecules adsorbed on a Copper (111) surface the work
function of this interface can change up to 3 eV between different polymorphs [5]. In
Figure 1.1 two different polymorphs of the TCNE - Cu(111) system are shown where
the molecules are adsorbed in a lying and standing configuration.

Figure 1.1.: Two different polymorphs of TCNE on a Copper (111) surface [6].

To actually find which polymorphs can be formed by the system we need to evaluate its
potential energy surface. We need to vary the positions ~Ri of the atoms in the system
and calculate for each geometry its energy. This will give us a function E(~Ri) for the
potential energy surface (PES). A local minimum of the PES represents a possible stable
surface structure of the molecules. The evaluation of the PES is computationally very
expensive and is usually done by density functional theory (DFT).

1.3. Ab-initio thermodynamics

In a thermodynamic picture, the structure with the lowest Gibbs free energy is formed.
The question is now, how we can use the zero temperature energies of the density
functional theory calculation and extend it to conditions at finite temperatures and
pressures.

First, we need to find an expression for the total Gibbs free energy G of a metal in
contact with a molecular gas. We can find that the total Gibbs free energy G consists of

2



1.3. Ab-initio thermodynamics

a contribution from the metal bulk Gsolid, the molecular gas Ggas and the contribution
of the interface between the two phases ∆Gsurf [7].

G = Gsolid +Ggas + ∆Gsurf (1.1)

If we divide this expression by the total surface area A and transform Equation 1.1 to
express ∆Gsurf we find

γ =
∆Gsurf
A

=
1

A
(G−Gsolid −Ggas) (1.2)

where γ is the surface free energy per unit area.

Figure 1.2.: Comparison of the desorbed and adsorbed system. Here we can see that
the Gibbs free energies of the reservoirs cancels out and only the Gibbs free
energies close to the interface are relevant. The difference of the Gibbs free
energies of the interface regions Ginterdes and Ginterads gives the surface contri-
bution ∆Gsurf .

At large distances from the interface the system becomes homogeneous and is not influ-
enced by the surface anymore which means that regions far away from the surface cancels
out in Equation 1.2 and the only relevant region for the Gibbs free energy contribution
of the surface ∆Gsurf is the one close to the interface. In Figure 1.2 the region close to
the interface is indicated by a dashed line. The total Gibbs free energy of this smaller
interface region is then

Ginterads (T, p,Ngas, Nsolid) = Gintergas (T, p,Ngas)︸ ︷︷ ︸
µgas(T,p)Ngas

+Gintersolid (T, p,Nsolid)︸ ︷︷ ︸
gsolid(T,p)Nsolid

+∆Gsurf (1.3)

3



1. Introduction

where Gintergas and Gintersolid are the Gibbs free energy contributions of the gas molecules and
the substrate atoms in the interface region, Ngas are the number of molecules and Nsolid

the number of substrate atoms in the surface region.

In Equation 1.3 we introduced the Gibbs free energy of a metal atom gsolid in the
homogeneous bulk and the chemical potential µgas of a molecule in an homogeneous gas
which are dependent on temperature T and pressure p. We can rewrite Equation 1.3
and divide by the total area A and find the surface free energy

γ =
1

A

[
Ginterads (T, p,Ngas, Nsolid)− gsolid(T, p)Nsolid − µgas(T, p)Ngas

]
(1.4)

We can compare the surface free energy γ with the surface free energy of the clean
surface γclean where we do not have a molecular gas in the system.

γclean =
1

A

[
Ginterads (T, p,Ngas = 0, Nsolid)− gsolid(T, p)Nsolid

]
(1.5)

The difference of the two we call the surface Gibbs free energy of adsorption γads

γads(T, p) = γ(T, p,Ngas, Nsolid)− γclean(T, p,Ngas = 0, Nsolid)

=
1

A
[Ginterads (T, p,Ngas, Nsolid)−Ginterads (T, p,Ngas = 0, Nsolid)︸ ︷︷ ︸

∆Gads

−µgas(T, p)Ngas]

(1.6)

In general the Gibbs free energy can be calculated with

G = Etot + Fvib + Fconf + pV (1.7)

where Etot is the total internal energy, Fvib the vibrational free energy, Fconf the config-
urational free energy, p the pressure and V the volume of the system [7]. If we look at
differences of Gibbs free energies like in the case of the Gibbs free energy of adsorption
∆Gads it can be often approximated only by the total internal energy evaluated with
a density functional theory calculation and neglect all other terms. The argumentation
why this approximation is often valid can be looked up in [7, 8].

This means the surface free energy of adsorption can be approximated with the expres-
sion

γads(T, p) =
1

A
[Eads − µgas(T, p)Ngas] (1.8)

where Eads is the difference between the internal energy of the surface with the adsorbed
molecules and the clean surface. We only consider the adsorbed molecules on the surface
and do not include any gas phase molecules in our calcualtions which means that Ngas

is the number of adsorbed molecules.

With this findings we are now able to predict which polymorph is predominantly formed
on a metal surface in contact with a molecular gas. We can evaluate with density
functional theory the adsorption energies Eads of possible polymorphs and the coverage

4



1.3. Ab-initio thermodynamics

θ =
Ngas
A . The chemical potential µgas is determined with an ideal gas approxima-

tion. The polymorph with the lowest surface free energy γads is the most likely formed
polymorph in a thermodynamic picture.

1.3.1. Chemical potential

The chemical potential of a molecular gas can be described with an ideal gas model at
temperature T and pressure p and turns out to be [7, 9]

µgas(T, p) = − 1

N

(
kBT ln

(
Qtotgas

)
− pV

)
(1.9)

where N is the number of indistinguishable molecules in the volume V . To evaluate this
expression we need to calculate the partition function Qtotgas.

Qtotgas =
1

N !
(qtransqrotqvibqelectrqnucl)N (1.10)

It consists of a translational, rotational, vibrational, electronic and a nuclei contribution.
If we insert the expression for the partition function into Equation 1.9 we get a sum of
contributions instead of a product and we can write

µgas = µtrans + µrot + µvib + µelectr + µnucl (1.11)

where we put 1
N ! and pV into the translational contribution µtrans. The detailed deriva-

tion of these chemical potential contributions can be looked up in [7]. In summary we
find

µtrans = −kBT ln

((
2πm

h2

) 3
2 (kBT )

5
2

p

)
(1.12)

µrot = −kBT ln


√
π
∏3
i=1 Ii

σ

(
8π2kBT

h2

) 3
2

 (1.13)

µvib = kBT
∑
i

(
ln

(
1− e−

~ωvibi
kBT

)
+

1

2
~ωvibi

)
(1.14)

µelectr = Etotgas − kBT ln (J) (1.15)

µnucl = 0 (neglected) (1.16)

m . . . total mass of molecule

h . . . Planck constant

~ . . . reduced Planck constant

5



1. Introduction

kB . . . Boltzmann constant

Ii . . . moments of inertia of the molecule

σ . . . symmetry number of the molecule (number of indistinguishable orientations)

ωi . . . harmonic vibrational modes of the molecule

Etotgas . . . total internal energy of one molecule in gas phase

J . . . spin degeneracy of the molecule in its ground state

Since we neglected the vibrational contribution to the Gibbs free energy we also neglect it
for the chemical potential, otherwise we would introduce a systematic error in calculating
the surface free energy γads. We can also neglect the nuclei contribution since in chemical
processes the state of the nucleus changes almost never. We find then for the chemical
potential of an ideal molecular gas

µgas ≈ Etotgas − kBT ln

(2πm

h2

) 3
2 (kBT )

5
2

p

√
π
∏3
i=1 Ii

σ

(
8π2kBT

h2

) 3
2

J

 (1.17)

In the appendix A.1 this approximation is evaluated for the tetracyanoethylene (TCNE)
molecule. This molecule will be used later in an example in Chapter 5 for evaluating
the chemical potential.

1.4. Transition rates

To understand kinetic processes of polymorphs we need to find a way how to calculate
or approximate transition rates. They should describe how fast a polymorph at given
thermodynamic conditions would transform into another polymorph.

One way to do this is using Transition State theory [10, 11]. A naive approach would be
to find a polymorph transition state (saddle point of the potential energy surface) which
would introduce a Gibbs free energy barrier ∆G‡ between two distinct polymorphs.
With this energy barrier we can approximate the transition rate k with the Arrhenius
rate equation of the form

k = fae
−∆G‡
kBT . (1.18)

Here fa is an exponential prefactor which is also known as attempt frequency [11, 12],
kB is the Boltzmann constant an T is the temperature.

6



1.4. Transition rates

Figure 1.3.: Transition rate between two polymorphs are determined by the energy bar-
riers ∆GAB and ∆GBA separating the two phases

The problem with this approach is that we can not assume that there is only one dom-
inant transition state between two polymorphs. In reality this transition process is a
multistage process where individual molecules start to change positions and orientations
and start a global phase transition in the system.

To simulate the system more realistically we would need to look at these individual
transition processes of the molecules on the surface. One technique to efficiently simu-
late such kinetic systems are Kinetic Monte Carlo (KMC) methods [13–15]. To apply
this technique one need to know the transition rates for the different processes of the
molecules on the surface. They can be effectively determined with Transition State
theory [10–12]. In the case of TCNE on Copper (111), single molecule transitions are
calculated for example in [16]. By randomly choosing those individual processes weighted
by their probability one can simulate the dynamics of the formation process of a new
phase and extract the transition rate out of the simulation.

However, these simulations are computationally still very expensive. We would need to
repeat them for different temperatures and pressures to get a temperature and pressure
dependence of the transition rates. Therefore we will stick to the assumption that we
can express the transition rate via the Arrhenius equation. With that we require that
there exists one single global transition state between two polymorph phases. As already
mentioned above this is not the case since we have to deal with multiple single molecule
transitions and not a single global transition. But if we assume that the real transition
rates have the same exponential behaviour with temperature as the Arrhenius equation
1.18 then this assumption is justified. We just need to find an energy barrier ∆G‡ which
represents this complicated molecular multi stage process.

We assume that this artificial energy barrier ∆G‡ behaves like a difference between two
Gibbs free energies of a finite interface system with area A.

∆G‡ = A(γ‡ads − γads) = [E‡ads − µgasN
‡
gas]− [Eads − µgasNgas] =

= (E‡ads − Eads)− µgas(Ngas −N ‡gas) = ∆Eads − µgas∆Ngas

(1.19)

7



1. Introduction

Here γ‡ads is the surface free energy of the transition polymorph.
With this energy barrier we can formulate the temperature and pressure dependent
transition rates with

k(T, p) = fae
−∆G‡
kBT = fae

−
∆E
‡
ads
−µgas(T,p)∆N

‡
gas

kBT (1.20)

You can see here that we need to approximate the barrier of the adsorption energy of
the transition polymorph and the starting polymorph ∆E‡ads and the difference between

the molecule numbers ∆N ‡gas.
These transition rates k(T, p) can be now used to describe the time evolution of poly-
morph concentrations in a system dependent on temperature T and pressure p.

8



2. Kinetics of a polymorph system

2.1. Polymorph transition system

In order to describe the transition dynamics of our polymorph system we need to find
an underlying physical model. This model should describe the change of the polymorph
concentrations over time. For this we first need some basic transition rates between two
distinct polymorphs. How to calculate those transition rates is described in Chapter 1.4.
Independent of the theory for calculating transition rates, in the end you get an expres-
sion k(~u) for the rates which depends on some external system parameters combined in
the vector ~u. Some examples for such system parameters are the temperature T and the
pressure p of the system. Usually the transition rates have the form of an exponential

e
−∆G‡(T,p)

kBT where ∆G‡ is some kind of energy barrier which the system has to overcome
to do a transition. Here we can clearly see that with increasing temperature also the
transition rate increases exponentially, which means the dynamics of the system is highly
dependent on temperature T . The dependence on other external parameters, like the
pressure p, is incorporated in the energy barrier ∆G‡(T, p) itself.

2.1.1. State equation

Assuming we are able to calculate individual transition rates between two polymorphs
we can begin to build up a transition network between multiple polymorphs. For this
we think of the system as a graph network where each node represents a polymorph in
the system and all polymorphs are connected via edges which represent the transition
between two polymorphs (see Figure 2.1).
Mathematically this graph network can be described by a two dimensional matrix K ∈
RN×N . The component kij of the matrix K is the transition rate from polymorph i to
polymorph j and the diagonal elements kii of K are zero.

K =


0 k12 k13 . . .
k21 0 k23

k31 k32 0
...

. . .

 (2.1)

The Arrhenius equation 1.18 is used to calculate transition rates. This means a compo-
nent in the matrix K is defined as

kij =

i 6= j : fae
−

∆Gij
kBT

i = j : 0
(2.2)

9



2. Kinetics of a polymorph system

Figure 2.1.: Graph representation of a polymorph transition system. Each node repre-
sents a possible polymorph of the system. Each edge represents an allowed
transition.

where fa is the constant attempt frequency, ∆Gij is the energy barrier between poly-
morph i to polymorph j. Notice that the energy barrier matrix Gij is not symmetric.
The energy barrier in direction i→ j is not the same as j → i. Through out this thesis
we assume that the attempt frequency is the same for every transition even though in
real systems it can slightly differ. The transition rate matrix K depends on the system
parameters ~u as explained before.

K = K(~u) (2.3)

The current concentrations of the polymorphs in the system can be described by a state
vector ~y where each component yi represents the relative concentration of a polymorph
in the system.

~y =

y1

y2
...

 (2.4)

A component yi of the concentration vector is the ratio between the occupied area Ai of
this polymorph and the total area Atotal.

yi =
Ai

Atotal
(2.5)

Since the total concentration in the system needs to be one, the sum of the vector
components of ~y needs to sum up to one.

10



2.1. Polymorph transition system

∑
i

yi = 1 (2.6)

With these definitions we can start to construct an equation which describes the time
evolution of the polymorph concentrations in the system. For this we construct a simple
balance equation where we calculate the change in concentration of a polymorph after
a time step ∆t. Also note that the system parameter ~u(t) is now dependent on time t
which corresponds to a change in temperature and pressure with passing time.

Figure 2.2.: Concentration flow of the ith polymorph in the system.

yi(t+ ∆t) = yi(t) +

− N∑
j=1

yi(t) kij(~u(t))

︸ ︷︷ ︸
flow out of node i

+
N∑
j=1

kji(~u(t)) yj(t)


︸ ︷︷ ︸

flow in to node i

∆t (2.7)

The term in squared brackets is the net change of the concentration of polymorph i after
time step ∆t. This term consists of the flow in and out of the representative node in
the graph for polymorph i. In Figure 2.2 the flow in and out of the ith polymorph node
is illustrated. The absolute flow rate at time t is the product of the transition rate k
and the current concentration of the polymorph in the system at time t. Now we can
transform the equation to a difference equation.

yi(t+ ∆t)− yi(t)
∆t

=

− N∑
j=1

yi(t) kij(~u(t)) +

N∑
j=1

kji(~u(t)) yj(t)

 (2.8)

If we do the limit ∆t → 0 we find our underlying state equation of our polymorph
system.

d

dt
yi =

− N∑
j=1

yi(t) kij(~u(t)) +

N∑
j=1

kji(~u(t)) yj(t)

 (2.9)

11



2. Kinetics of a polymorph system

To get rid of the clumsy component notation we can write the equation in matrix nota-
tion. We can see that the first term in the squared bracket with the minus sign in front
is simply a diagonal matrix KD and the second term is the transition rate matrix K
times the transposed state vector ~y

~̇yT = ~yT (t)


−
∑

j k1j(~u(t)) 0 0 . . .

0 −
∑

j k2j(~u(t)) 0

0 0 −
∑

j k3j(~u(t))
...

. . .


︸ ︷︷ ︸

KD(~u(t))

+~yT (t)K(~u(t))

(2.10)

The state equation has now the form

~̇yT = ~yT (t) A(~u(t)) (2.11)

with

A(~u(t)) = KD(~u(t)) +K(~u(t)) =

=


−
∑

j k1j(~u(t)) k12(~u(t)) k13(~u(t)) . . .

k21(~u(t)) −
∑

j k2j(~u(t)) k23(~u(t))

k31(~u(t)) k32(~u(t)) −
∑

j k3j(~u(t))
...

. . .

 (2.12)

We can now solve the state equation for a given system parameter protocol ~u(t) for
t ∈ (0, tf ). Usually this differential equation can not be solved in a closed form and only
numerical techniques provide solutions for the state trajectory ~y(t).

2.1.2. Accuracy of the state equation

The state equation derived in the previous chapter is a very rough approximation for a
polymorph transition system. It assumes that the state can be fully described only by
knowing the concentrations of the different polymorphs currently existing on the surface.
To be more precise one would also need to account for the spatial distribution of the
polymorphs currently existing in the system. It is a difference if there is for example only
one single area on the surface where a new polymorph emerges or if there are many small
islands growing to form a new polymorph. In the latter case the length of the phase
front between the two polymorphs is much longer than in the first case. The growth
of a polymorph happens at this phase front and if there are many phase boundaries
in the system then there are also bigger absolute growth rates. But in the derivation
of the state equation in the previous chapter we weighted the transition rate by the
concentration of the starting polymorph and not by the length of the phase front. This
results in treating the many small polymorph islands case and the one big single island
case exactly the same way, despite they would not behave in the same way kinetically.
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2.1. Polymorph transition system

But including the spatial distribution in the state equation would complicate the calcula-
tion of the time evolution of the concentrations tremendously. There does not exist any
easy model which describes such solid state processes with an easy first order differential
equation. Therefore we will stick to the simple model where we weight the transition
rate by the concentration and not the phase front length and accept this systematic error
in the system.

2.1.3. Example system

Consider a two state system where the two states are separated by an energy barrier
∆EAB and ∆EBA (see Figure 2.3).

Figure 2.3.: Two polymorph system example with two barriers ∆EAB = 0.4 eV and
∆EBA = 0.6 eV

We can calculate the transition rate from one state to another by using the Arrhenius
equation.

k(T ) = fae
− ∆E
kBT (2.13)

Here fa is the attempt frequency, kB is the Boltzmann constant, T is the temperature
and ∆E is the corresponding energy barrier for this transition.

With the help of this equation we can construct the transition matrix of this system and
the matrix A for the state equation.

K(T ) =

(
0 kAB(T )

kBA(T ) 0

)
(2.14)

A(T ) =

(
−kAB(T ) kAB(T )
kBA(T ) −kBA(T )

)
(2.15)

The state equation of this example is then

13



2. Kinetics of a polymorph system

~̇yT = ~yT (t) A(T (t)) (2.16)

The state equation can be simply solved by transforming it to its corresponding integral
equation. This can be done by integrating both sides by t.

∫ t

0
~̇yTdt′ =

∫ t

0
~yT (t′)A(T (t′))dt′

~yT (t)− ~yT (0) =

∫ t

0
~yT (t′)A(T (t′))dt′

~yT (t) = ~yT (0) +

∫ t

0
~yT (t′)A(T (t′))dt′

(2.17)

To solve the state equation we need to know the initial state ~yT (0) = ~yTinit. Here
in this example we use ~yTinit = (0.95, 0.05) meaning that polymorph A has an initial
concentration of 95 % and polymorph B 5 %. With some iterative integration scheme
we can solve the state equation. In the equation below only the simple Forward Euler
integration scheme is used. For more accurate solutions one need to use higher order
numerical techniques, like Runge Kutta integration methods [17]. To actually solve the
state equation we need to discretize the time domain in N points where the time point
at position n ∈ N is labeled by tn and adjacent time points are separated by ∆t. We
also define ~yn = ~y(tn). With this we can find the recursive equation

~yTn+1 = ~yTn + ~yTnA(T (tn))∆t (2.18)

with the initial condition

~yT0 = ~yTinit

In Figure 2.4 one can see how the state ~y(t) evolves in time for a specific temperature
protocol T (t).

14



2.2. Accessibility of polymorphs

Figure 2.4.: Time evolution of the concentrations yA and yB for a sine shaped temper-
ature protocol. The energy barriers are chosen to be ∆EAB = 0.4 eV and
∆EBA = 0.6 eV, the pre-exponential factor fa = 3× 107 s−1

2.2. Accessibility of polymorphs

Before we actually start trying to optimize the concentration of a specific polymorph in
a polymorph transition network we should think about how accessible a polymorph in
such a network is. A naive approach would be to look at the graph representation of the
polymorph transition system, like the one in Figure 2.1, and check if the graph is fully
connected and can not be reduced into two separated graphs. This means there exists
for each polymorph pair a transition path through the graph and every polymorph is
accessible. In theory this is true but if we assume for example that one polymorph in
this graph has the highest Gibbs free energy for the whole temperature-pressure phase
space, then the energy barriers which we need to overcome to reach this unfavorable
polymorph are very high and the barriers for leaving it are always lower. This means
that the concentration flow out of the unfavorable polymorph is always bigger than in
to it. Such a polymorph can only be increased in concentration if we go to very high
temperatures. At very high temperatures the difference between forward and backward
transition becomes smaller and at infinite temperature they are as close as possible.
We can see this very easily with the Arrhenius equation introduced in Chapter 1.4. If
the temperature reaches infinity the exponent vanishes and the rate equals the attempt
frequency fa.
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2. Kinetics of a polymorph system

k = fae
−∆G‡
kBT

T→∞
= fa (2.19)

Usually the attempt frequency for a transition is very similar compared to other tran-
sitions and through out this thesis we assume that they are equal for every transition
in a system. Then in the infinite temperature limit all transition rates are the same
and if we wait long enough all concentrations of the polymorphs in the system are the
same. For the unfavorable polymorph in the system this is the maximum concentration
it can potentially reach. This maximum concentration yT→∞ = 1/N becomes smaller
with increasing system size N , where N is the number of polymorphs.
This example showed us that not all polymorphs can be accessed from another poly-
morph. There exists polymorphs which can only be maximized by distributing the
concentrations uniformly over the system via a very high temperature.
This leads us to a different definition of accessibility of a polymorph in a polymorph
transition network.
We look at all edges of the polymorph graph and check if one transition rate is always
bigger than the reverse rate for our temperature-pressure phase space. If this is the
case only the transition direction with the bigger rate is considered to be relevant for
accessibility. If we do this for the whole polymorph graph we find an accessibility graph
where edges exist which only have one transition direction. In Figure 2.5 this accessibility
check is done for an example network consisting of six polymorphs
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2.2. Accessibility of polymorphs

Figure 2.5.: Example graph containing six polymorphs. If we do an accessibility check all
the red transition directions are inaccessible, which means they are smaller
than their back transition at every point in the considered temperature-
pressure phase space. One can see in the Gibbs free energy of two connected
polymorphs if they can transform in both directions. If the lines intersect in
a point within the considered phase space (chemical potential µ(T, p)) both
directions are allowed.
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3. Optimal control theory

In this section we follow closely the book of D. Kirk [18] for deriving the mathematical
framework of optimal control theory. In the previous chapter we derived a differential
equation to describe the system dynamics of a polymorph system. The question now is
how we need to change external parameters of the system like temperature and pressure
to maximize the concentration of a specific polymorph B in the system. A change
in temperature or pressure usually influences the transition rates in the system and
therefore you can control the system up to a certain degree.

3.1. Mathematical framework

3.1.1. Performance measure

The dynamics of the system is incorporated in the state equation. This differential
equation describes the time evolution of the state vector ~y(t) and has the form

~̇y(t) = ~a(~y(t), ~u(t), t) (3.1)

It consists of the first time derivative of the state vector and the vector valued function
~a(~y(t), ~u(t), t) which depends on the state vector ~y(t), the control vector ~u(t) and time
t. If you compare the general state equation 3.1 with the one we derived in Chapter 2
one can identify ~a(~y(t), ~u(t), t) = AT (~u(t)) ~y(t).

Further to find the optimal control we need a performance measure J which maps the
control function ~u to a real number. The performance measure J [~u] is a functional which
has its minimum at the optimal control ~u∗. The performance measure has the general
form

J [~u] = h(~y(tf ), tf ) +

∫ tf

0
g(~y(t), ~u(t), t) dt (3.2)

where h(~y(tf ), tf ) is the terminal cost and g(~y(t), ~u(t), t) are the running costs. We will
define these terms for our special problem of polymorphs in the subsequent chapter.
However it will be easier to express the terminal cost in integral form assuming h is a
differentiable function.

h(~y(tf ), tf ) =

∫ tf

0

d

dt
h(~y(t), t) dt+ h(~y(0), 0) (3.3)

With this the performance measure J will look like
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J [~u] =

∫ tf

0

{
g(~y(t), ~u(t), t) +

d

dt
h(~y(t), t)

}
dt (3.4)

Here we removed the constant term h(~y(0), 0) because it will only shift the performance
measure by a constant value and does not change the minimum. With using the chain
rule for differentiation we will arrive at an expression for the performance measure

J [~u] =

∫ tf

0

{
g(~y(t), ~u(t), t) +

[
∂h

∂~y
(~y(t), t)

]T
· ~̇y(t) +

∂h

∂t
(~y(t), t)

}
dt (3.5)

The expression ∂h
∂~y is the gradient of h where we differentiate with respect to every

component of ~y.

∂h

∂~y
= ∇~yh(~y, t) =


∂
∂y1

h(~y, t)
∂
∂y2

h(~y, t)
...


3.1.2. Augmented functional

Until now the derived performance measure J is dependent on the state vector ~y and
the control vector ~u. We can find pairs of solutions for ~y and ~u which minimizes the
performance measure J but completely ignores the fact that the state vector ~y(t) also
needs to fulfill the state equation. To incorporate this constraint in the performance
measure we can use the technique of Lagrange multipliers. We can simply put the
state equation constraint into the integral of the performance measure multiplied by the
Lagrange multiplier ~λ(t).

Ja[~u] =

∫ tf

0

{
g(~y(t), ~u(t), t) +

[
∂h

∂~y
(~y(t), t)

]T
· ~̇y(t) +

∂h

∂t
(~y(t), t)+

+~λT (t)
[
~a(~y(t), ~u(t), t)− ~̇y(t)

]}
dt

(3.6)

We define the augmented running cost ga as

ga(~y(t), ~̇y(t), ~u(t), ~λ(t), t) =

= g(~y(t), ~u(t), t) +

[
∂h

∂~y
(~y(t), t)

]T
· ~̇y(t) +

∂h

∂t
(~y(t), t) + ~λT (t)

[
~a(~y(t), ~u(t), t)− ~̇y(t)

]
(3.7)

so that

Ja[~u] =

∫ tf

0
ga(~y(t), ~̇y(t), ~u(t), ~λ(t), t) dt (3.8)
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3.1. Mathematical framework

By minimizing this new augmented functional Ja we automatically fulfill the constraint
of the state equation for the state vector ~y. This means since ~y is completely determined
by the state equation the only independent variable left is the control function ~u(t).

3.1.3. Necessary conditions for optimality

To derive the necessary conditions for optimal control of the system we need to dive into
the theory of calculus of variations. The goal is to find the conditions where the aug-
mented functional Ja is minimal. If we have a maximization problem we can transform
it to a minimization problem by using the negative performance measure, which means
no new formalism is needed for this kind of problem. This will be important for our
special use case of maximizing a specific polymorph.

However finding an extremum of an functional is similar to finding the extremum of
a function. For functions we look for the case where the first derivative vanishes. In
the case of functionals we will look for extremal curves where the first variation of the
functional vanishes. But let us start from the beginning.

We assume that the function ~u∗(t) 1 minimizes the functional Ja. Then we can define
the increment ∆Ja of the functional in the vicinity of the extremal curve by

∆Ja = Ja[~u
∗(t) + δ~u(t)]− Ja[~u∗(t)] (3.9)

The function δ~u(t) is called the variation of function ~u(t). If we now insert the expression
for the augmented functional from 3.8 in 3.9 we get

∆Ja =

∫ tf

0
ga(~y

∗(t) + δ~y(t), ~̇y∗(t) + δ~̇y(t), ~u∗(t) + δ~u(t), ~λ∗(t) + δ~λ(t), t) dt

−
∫ tf

0
ga(~y

∗(t), ~̇y∗(t), ~u∗(t), ~λ∗(t), t) dt

Expanding the integrand expression in a Taylor series around the fixed (∗)-arguments
with using the symbol (∗) = (~y∗(t), ~̇y∗(t), ~u∗(t), ~λ∗(t), t) will give us

∆Ja =

∫ tf

0

{
ga(∗) +

[
∂ga
∂~y

(∗)
]T
δ~y(t) +

[
∂ga

∂~̇y
(∗)
]T
δ~̇y(t) +

[
∂ga
∂~u

(∗)
]T
δ~u(t)

+

[
∂ga

∂~λ
(∗)
]T
δ~λ(t) + [higher order terms]− ga(∗)

}
dt

(3.10)

Notice that δ~̇y = d
dtδ~y which means they are not independent from each other. Using

this relation and integration by parts we find for the term with variation δ~̇y an expression
which only has the variation δ~y in it.

1All quantites marked with a ∗ are optimal, they minimize or maximize the performance measure.
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∫ tf

0

[
∂ga

∂~̇y
(∗)
]T
δ~̇y(t) dt =

[
∂ga

∂~̇y
(∗)
]T
δ~y(t)

∣∣∣∣∣
tf

0

−
∫ tf

0

[
d

dt

∂ga

∂~̇y
(∗)
]T
δ~y(t) dt

Since we know the initial state vector at time t = 0, the variation of the state vector δ~y
at t = 0 vanishes.

δ~y(0) = 0

This leads to the expression for the increment of the augmented functional

∆Ja =

[
∂ga

∂~̇y
(∗))

]T
t=tf

δ~y(tf ) +

∫ tf

0

{[
∂ga
∂~y

(∗)− d

dt

∂ga

∂~̇y
(∗)
]T
δ~y(t)

+

[
∂ga
∂~u

(∗)
]T
δ~u(t) +

[
∂ga

∂~λ
(∗)
]T
δ~λ(t)

}
dt+ higher order terms

(3.11)

The first variation δJa is determined by extracting only the terms of 3.11 which are
linear in their variation.

δJa =

[
∂ga

∂~̇y
(∗))

]T
t=tf

δ~y(tf ) +

∫ tf

0

{[
∂ga
∂~y

(∗)− d

dt

∂ga

∂~̇y
(∗)
]T
δ~y(t)

+

[
∂ga
∂~u

(∗)
]T
δ~u(t) +

[
∂ga

∂~λ
(∗)
]T
δ~λ(t)

}
dt

(3.12)

The fundamental theorem of calculus of variations states that δJa needs to vanish at the
minimum of Ja. For a proof see [18].

δJa = 0 (3.13)

To make use of the relation 3.12 for the first variation of the augmented functional we
will use the fundamental lemma of calculus [19] which states that

∫ b

a
h(t)δx(t)dt = 0

for arbitrary continuous δx(t) only if h(t) = 0.

All the first variations in Equation 3.12 are independent from each other. The con-
sequence of this is that each term needs to vanish individually. This leads us to the
necessary conditions of optimality.
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(i)
∂ga

∂~̇y
(∗)
∣∣∣∣
t=tf

= 0

(ii)
∂ga
∂~y

(∗)− d

dt

∂ga

∂~̇y
(∗) = 0

(iii)
∂ga
∂~u

(∗) = 0

(iv)
∂ga

∂~λ
(∗) = 0

(3.14)

If we insert the actual expression for ga from Equation 3.7

ga(∗) = g(~y∗(t), ~u∗(t), t) +

[
∂h

∂~y
(~y∗(t), t)

]T
· ~̇y∗(t) +

∂h

∂t
(~y∗(t), t)

+~λ∗T (t) ·
[
~a(~y∗(t), ~u∗(t), t)− ~̇y∗(t)

]
we find for the necessary conditions:

(i) For ∂ga
∂~̇y

(∗)
∣∣∣
t=tf

= 0 :

∂ga

∂~̇y
(∗)
∣∣∣∣
t=tf

=
∂h

∂~y
(~y∗(tf ), tf )− ~λ∗(tf ) = 0 ⇒ ~λ∗(tf ) =

∂h

∂~y
(~y∗(tf ), tf ) (3.15)

This equation can be seen as the final value of the costate equation which will be
derived in the next point.

(ii) For ∂ga
∂~y (∗)− d

dt
∂ga
∂~̇y

(∗) = 0 :

∂ga
∂~y

(∗)− d

dt

∂ga

∂~̇y
(∗) =

=
∂g

∂~y
(~y∗(t), ~u∗(t), t) +

��������������
∂

∂~y

[
∂h

∂~y

]T
(~y∗(t), t) · ~̇y∗(t) +

��������∂

∂~y

∂h

∂t
(~y∗(t), t)

+

[
∂~a

∂~y
(~y∗(t), ~u∗(t), t)

]T
· ~λ∗(t)−

��������∂

∂t

∂h

∂~y
(~y∗(t), t)

−
�������������
∂

∂~y

[
∂h

∂~y

]T
(~y∗(t), t) · ~̇y∗(t) + ~̇λ∗(t) = 0

~̇λ∗(t) = −∂g
∂~y

(~y∗(t), ~u∗(t), t)−
[
∂~a

∂~y
(~y∗(t), ~u∗(t), t)

]T
· ~λ∗(t) (3.16)

This equation is the so called costate equation where we define the Lagrange mul-
tiplier λ(t) as the costate. The final value for this differential equation is defined
in the first necessary condition.
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(iii) For ∂ga
∂~u (∗) = 0 :

∂ga
∂~u

(∗) =
∂g

∂~u
(~y∗(t), ~u∗(t), t) +

[
∂~a

∂~u
(~y∗(t), ~u∗(t), t)

]T
· ~λ∗(t) = 0

This equation we will reference to as the control equation. This equation will be
used later to numerically find the optimal control function u∗(t)

(iv) For ∂ga
∂~λ

(∗) = 0 :

∂ga

∂~λ
(∗) = ~a(~y∗(t), ~u∗(t), t)− ~̇y∗(t) = 0 ⇒ ~̇y∗(t) = ~a(~y∗(t), ~u∗(t), t)

This equation is the already familiar state equation which needs to be fulfilled by
design.

The gradient of the vector function ∂~a
∂~y has to be seen as an outer product of the form

∂~a

∂~y
=


∂a1
∂y1

∂a1
∂y2

∂a1
∂y3

. . .
∂a2
∂y1

∂a2
∂y2

∂a2
∂y3

∂a3
∂y1

∂a3
∂y2

∂a3
∂y3

...
. . .


same applies for the gradient ∂~a

∂~u .

To summarize, the general necessary conditions for optimal control are

(i) Final condition costate equation

~λ∗(tf ) =
∂h

∂~y
(~y∗(tf ), tf ) (3.17)

(ii) Costate equation

~̇λ∗(t) = −∂g
∂~y

(~y∗(t), ~u∗(t), t)−
[
∂~a

∂~y
(~y∗(t), ~u∗(t), t)

]T
· ~λ∗(t) (3.18)

(iii) Control equation

0 =
∂g

∂~u
(~y∗(t), ~u∗(t), t) +

[
∂~a

∂~u
(~y∗(t), ~u∗(t), t)

]T
· ~λ∗(t) (3.19)

(iv) State equation

~̇y∗(t) = ~a(~y∗(t), ~u∗(t), t) (3.20)
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In some cases it is convenient to define a function H called Hamiltonian to simplify the
necessary conditions.

H(~y(t), ~u(t), ~λ(t), t) = g(~y(t), ~u(t), t) + ~λT (t) · ~a(~y(t), ~u(t), t) (3.21)

With the Hamiltonian H we can write the necessary conditions in the form

(i) Final condition costate equation

~λ∗(tf ) =
∂h

∂~y
(~y∗(tf ), tf ) (3.22)

(ii) Costate equation

~̇λ∗(t) = −∂H
∂~y

(~y∗(t), ~u∗(t), t) (3.23)

(iii) Control equation

0 =
∂H
∂~u

(~y∗(t), ~u∗(t), t) (3.24)

(iv) State equation

~̇y∗(t) =
∂H
∂~λ

(~y∗(t), ~u∗(t), t) (3.25)

3.1.4. Performance measure with a control derivative

In some cases the performance measure J is dependent on the first derivative ~̇u of the
control vector. For example if we want to penalize optimal controls which vary a lot in
time we can add a term of the form γ

2 ~̇u
2(t) to the performance measure J [20]. This term

becomes big for control functions which changes a lot and will shift the minimum of the
performance measure to optimal controls which do not vary too much. The parameter γ
regularizes this term and can be adjusted to a suitable value for the problem. Generally
we find for the performance measure something like

J [~u] = h(~y(tf ), tf ) +

∫ tf

0
g(~y(t), ~u(t), ~̇u(t), t)dt (3.26)

The problem here now is that the integrand g depends on the first time derivative of the
control ~̇u. This would change the derived necessary conditions in the previous Section
3.1.3. To avoid deriving new necessary conditions we can transform the problem in to
the familiar version where no derivative of the control appears [21]. This can be done
by introducing a new variable

~v(t) = ~̇u(t) (3.27)

which will be the new control variable of the system. The old control variable ~u will be
treated now as a state variable and will be merged to a new state vector
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~̂y =

(
~y
~u

)
(3.28)

The modified state equation for this artificial state looks like

˙̂
~y(t) =

(
~a(~̂y(t), t)
~v(t)

)
(3.29)

With this new quantities we can use the same necessary conditions as derived before
with the difference that the control vector is now ~v and not ~u and the state vector is ~̂y
not ~y.

3.2. Numerical solution technique

In order to solve an optimal control problem the state equation, costate equation and
control equation with the corresponding initial conditions needs to be satisfied. If all
of those three equations are fulfilled simultaneously we found a stationary point of the
performance measure functional. Solving these three coupled equations usually needs
numerical techniques. Only in special cases it can be solved analytically.

The usual procedure to solve an optimal control problem are the following steps:

1. Guess the optimal control function ~u∗(t)

2. Solve the initial value problem of the state equation using the initial condition for
the state vector ~y(0) = ~y0.

3. Solve the final value problem of the costate equation backward in time using the
final condition ~λ∗(tf ) = ~λf at final time tf .

4. Calculate the improvement of the control function by using the control equation
and the solutions to the state and costate equations.

5. Calculate the new control function by adding the improvement determined in the
previous step. If the change in the control function is still big we start again at step
2 and stop if the calculated improvement is smaller than the defined threshold.

To calculate the improvement for the control function as it is imposed in step 4 we need
to have a look at the performance measure functional Ja again. In the derivation of the
necessary conditions for optimality we derived an expression for the first variation δJa
(Equation 3.12) of the performance measure.
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3.2. Numerical solution technique

δJa =

[
∂ga

∂~̇y

]T
t=tf︸ ︷︷ ︸

final condition
of costate

δ~y(tf ) +

∫ tf

0

{[
∂ga
∂~y
− d

dt

∂ga

∂~̇y

]T
︸ ︷︷ ︸

costate equation

δ~y(t)

+

[
∂ga
∂~u

]T
︸ ︷︷ ︸

control equation

δ~u(t) +

[
∂ga

∂~λ

]T
︸ ︷︷ ︸

state equation

δ~λ(t)

}
dt

(3.30)

Since we calculated the solution of the state and costate equation for the current control
equation ~u in step 2 and 3 the corresponding terms in Equation 3.30 will vanish and the
remaining term is only the term of the control equation

δJa =

∫ tf

0

[
∂ga
∂~u

]T
δ~u(t) dt (3.31)

This expression for the first variation is the linear part of the change of the performance
measure functional ∆Ja = Ja[~u(t) + δ~u] − Ja[~u(t)]. If the change δ~u(t) of the control
function is small enough, the sign of δJa is the same as in ∆Ja. Since our goal is to
maximally reduce the performance measure functional Ja we want to make ∆Ja negative.
If the change δ~u(t) is small we can use the first variation δJa as approximation for the
change ∆Ja.

We can choose for the change in the control function δ~u(t)

δ~u(t) = −ε∂ga
∂~u

with ε > 0 (3.32)

where ε is a small step factor which makes sure that δ~u(t) is small. We insert it into
Equation 3.31 and find for the first variation

δJa = −ε
∫ tf

0

[
∂ga
∂~u

]T ∂ga
∂~u

dt < 0 (3.33)

This expression for δJa is always negative because the integrand is positive. This shows
us that if we change our control function ~u(t) with δ~u(t) = −ε∂ga∂~u the performance
measure functional will always decrease in value or at least stays the same. This means
we can find a better control function by adding the variation δ~u(t) to it.

~unew(t) = ~u(t) + δ~u(t) = ~u(t)− ε∂ga
∂~u

(3.34)

If the performance measure functional Ja is bounded from below we will find after some
iterations an extremal function ~u∗(t) where the first variation vanishes.
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3. Optimal control theory

3.3. Optimization algorithms

3.3.1. Gradient descent

The algorithm described in Chapter 3.2 is basically a gradient descent algorithm for
functionals.

In the case of a regular function f : Rn → R; ~x 7→ f(~x) the gradient descent algorithm
goes into the direction of the negative gradient of f because f decreases the most in this
direction. The iterative scheme is

~xn+1 = ~xn − ε∇f(~xn)⇒ f(~xn+1) ≤ f(~xn) (3.35)

where the step factor ε scales the gradient to an appropriate size to make sure, that
not too much or enough progress is made during each iteration. If we start at some
position ~x0 in the domain of f and do enough iterations the sequence {~xi}i∈N is then a
descending path to a minimum of f .

To actually apply these technique to our optimal control problem we need to discretize
our control function ~u(t) to a time grid. In that way we no longer need to deal with
continuous functions but with discrete vectors.

~u(t)→ ~u =


~u(t0)
~u(t1)
~u(t2)

...
~u(tN )

 (3.36)

We introduced here an equidistant time grid {ti}i∈[1,...,N ] of size N . Now we can evaluate
the discretized correction δ~u on this time grid.

δ~u(t) = −ε∂ga
∂~u

(t)→ δ~u = −ε



∂ga
∂~u (t0)
∂ga
∂~u (t1)
∂ga
∂~u (t2)

...
∂ga
∂~u (tN )

 = −ε∇~uJa (3.37)

The column vector in this expression can be identified as the gradient of the performance
measure ∇~uJa. Notice that this identification is only valid because of the discretization
performed on the system.

Now we can use the same procedure (Equation 3.35) as in the case of a regular function
to iteratively find the minimum of the functional Ja.

~un+1 = ~u− ε∇~uJa (3.38)

The algorithm for solving the optimal control problem numerically described in Chapter
3.2 can be used now on the discretized version of the optimal control problem. This
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3.3. Optimization algorithms

means we also need to discretize the solution of the state and costate equation to the
same time grid {ti}i∈[1,...,N ].

3.3.2. BFGS optimization

Besides the negative gradient direction, the Newton direction is a very efficient search
direction [22]. It can be derived from a second order Taylor expansion for the objective
function f at a point ~xk.

f(~xk + ~pk) = fk + ~pTk∇fk +
1

2
~pTk∇2fk~pk + higher order terms (3.39)

The Newton search direction is the vector ~pk which minimizes this second order Taylor
series. We assume that the hessian ∇2fk is a positive definite matrix which means ~xk is
in a convex region of f . If it would be negative definite we would start moving towards
a maximum instead. To find the Newton direction ~pk we need to set the gradient with
respect to ~pk of the Taylor expansion to zero.

∇pkf(~xk + ~pk) = ∇fk +∇2fk ~pk
!

= 0 (3.40)

If we rearrange this equation we find for the Newton direction

~pk = −(∇2fk)
−1∇fk (3.41)

where (∇2fk)
−1 is the inverse of the positive definite hessian matrix. To summarize,

we approximate the objective function f with a convex paraboloid at ~xk by building
the second order Taylor expansion. Then we find the minimum of this paraboloid and
the direction from our building point ~xk to the found minimum. This direction ~pk is
a good search direction to find the minimum of f . We can show that ~pk is a descent
direction if the hessian matrix is positive definite. From Equation 3.39 we need to show
that f(~xk + ~pk)− fk < 0:

f(~xk + ~pk)− fk = ~pTk∇fk +
1

2
~pTk∇2fk~pk (3.42)

We can insert from Equation 3.40 that ∇fk = −∇2fk~pk and this leads to

f(~xk + ~pk)− fk = −~pTk∇2fk~pk +
1

2
~pTk∇2fk~pk = −1

2
~pTk∇2fk~pk︸ ︷︷ ︸

>0

< 0 (3.43)

The quadratic term in this expression is positive because of the positive definiteness of
∇2fk. This shows that the Newton direction is indeed a descent direction. If we move
along this direction and repeatedly calculate the Newton direction we will end up very
quickly in a local minimum of the objective function f .

One problem with this simple approach is that the computation of the inverse hessian
matrix is very expensive. To speed up this algorithm we can use a quasi-Newton method
like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [23–26]. In this method
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3. Optimal control theory

we approximate the Hessian by a matrix Bk and improve it along the way with the
gradient information.
We can compute a new point xk+1 with the search direction ~pk with

xk+1 = ~x+ αk ~pk (3.44)

where αk is an appropriate step length determined by the Wolfe conditions [27, 28].
We do again a second order Taylor expansion of the form

mk+1(~p) = fk+1 + ~pT∇fk+1 +
1

2
~pTBk+1~p (3.45)

where we do not use the exact Hessian but the approximation Bk+1.
We should try to approximate Bk+1 in a way that the gradient of mk+1(~p) at the point
~p = ~xk − ~xk+1 = −αk ~pk matches the previous gradient of the objective function ∇fk.
We obtain

∇mk+1(−αk~pk) = ∇fk+1 − αkBk+1~pk = ∇fk (3.46)

after rearranging we find

∇fk+1 −∇fk = αkBk+1~pk (3.47)

To simplify notation we define

~sk = ~xk+1 − ~xk = αk~pk

~yk = ∇fk+1 −∇fk
(3.48)

Then Equation 3.47 simplifies to the secant equation

Bk+1~sk = ~yk (3.49)

Since for calculating the Newton direction we need the inverse Hessian we can multiply
the secant equation 3.49 with the inverse Hessian approximation B−1

k+1 and find

B−1
k+1~yk = ~sk (3.50)

The goal now is to find a matrix B−1
k+1 which solves the secant equation 3.50 and is

symmetric B−1
k+1 = (B−1

k+1)T . There exist infinite solutions because there are only n

equations in 3.50 but a symmetric positive matrix has 1
2n(n + 1) degrees of freedom.

The BFGS algorithm tries to find the unique solution which changes the matrix B−1
k+1

the least compared to the previous matrix B−1
k by employing a weighted Frobenius

matrix norm ‖·‖F to measure the change. The Frobenius norm is just the sum of all
squared matrix components ‖A‖2F =

∑
i

∑
j a

2
ij .

We try to solve

min
B−1
k+1

‖B−1
k+1 −B

−1
k ‖F (3.51)

B−1
k+1~yk = ~sk (3.52)
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3.3. Optimization algorithms

B−1
k+1 = (B−1

k+1)T (3.53)

The solution to this set of equations is

B−1
k+1 =

~sk~s
T
k

~yTk ~sk
+

(
I −

~sk~y
T
k

~yTk ~sk

)
B−1
k

(
I −

~yk~s
T
k

~yTk ~sk

)
(3.54)

where I is the unity matrix. A derivation of this expression can be found in the ap-
pendix A.2. To apply the BFGS algorithm to the optimal control problem we use the
performance measure Ja as our objective function and the discretized control function ~u
as position variable. With this update formula for the inverse Hessian we can summarize
the steps of the BFGS algorithm:

1. Compute the search direction

~pk = −B−1
k (∇~uJa)k

using the gradient of the performance measure ∇~uJa as defined in 3.37. At the
first step we need to make a guess for the inverse Hessian B−1

0 . In this thesis we
use the identity matrix as initial guess.

2. Perform an inexact Wolfe line search to determine the step length αk

3. Calculate new position
~uk+1 = ~uk + αk~pk

4. Compute updated inverse Hessian B−1
k+1 with Equation 3.54

If you repeat those steps you will go towards a minimum. It turns out that generally
the BFGS algorithm is one of the most efficient optimization techniques which exists so
far.
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4. Optimal control of a polymorph
transition system

In this section we try to apply the derived mathematical framework in Section 3 on
the specific problem of maximizing the concentration of a specific polymorph B in a
polymorph transition system.

4.1. Unconstrained optimal control

First we need to find the performance measure which describes the optimum of the
system. Intuitively we would think of something like

J [~u] = −yB(tf ) (4.1)

where yB is the component of the state vector which represents the concentration of the
target polymorph. Notice the minus sign which transforms the maximization problem to
a minimization problem. Now we can apply the mathematical theory for optimal control
derived in the previous section.

To formulate the Hamiltonian we will use the state equation which we derived in Chapter
2 and the following terms which results from comparing to the general theory

~a(~y(t), ~u(t), t) = AT (~u(t)) ~y(t)

h(~y(t), t) = −yB(t)

g(~y(t), ~u(t), t) = 0

The Hamiltonian of the system reads then

H(~y(t), ~u(t), ~λ(t), t) = ~λT (t)AT (~u(t)) ~y(t) (4.2)

With this we can formulate the necessary conditions for the special problem of maxi-
mizing the yield of a specific polymorph after time tf .
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4. Optimal control of a polymorph transition system

(i) Final condition costate

~λ∗(tf ) = −
[
∂

∂~y
yB(t)

]
t=tf

= −


0
...
1
...
0

 = −IB (4.3)

The symbol IB can be seen as an indicator vector where all components are zero
except the Bth component which is one. One can think of it as the Bth column of
the identity matrix.

(ii) Costate equation

~̇λ∗(t) = −A(~u∗(t)) ~λ∗(t) (4.4)

(iii) Control equation

0 = ~λ∗T (t)
∂A

∂~u

T

(~u∗(t)) ~y∗(t) (4.5)

(iv) State equation

~̇y∗(t) = AT (~u∗(t)) ~y∗(t) (4.6)

One interesting property of this special system is that the time derivative of the scalar
product between the state and the costate vector vanishes.

d

dt

(
~λT (t) · ~y(t)

)
=

(
d

dt
~λT (t)

)
~y(t) + ~λT (t)

(
d

dt
~y(t)

)
= −~λT (t) AT (~u(t)) ~y(t) + ~λT (t) AT (~u(t)) ~y(t) = 0

(4.7)

This can be used to check the numerical implementation of calculating the state and the
costate equations in a computer.

4.1.1. Analytical discussion

Before trying to solve the optimal control problem for a polymorph transition system
numerically we should discuss the found necessary conditions in an analytical way. If we
take a closer look at the control equation for the unconstrained case 4.5 where we only
consider one control variable being the inverse temperature β = 1

kBT
we can find that

it takes the form of an exponential sum or an exponential polynomial. To ease notation
we skip the function arguments and keep in mind that all terms depend on time t and
we identify the gradient with respect to β of the time evolution matrix as
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4.1. Unconstrained optimal control

D =
∂AT

∂β
= fa


∑

j e
−β∆G1j∆G1j −e−β∆G21∆G21 −e−β∆G31∆G31 . . .

−e−β∆G12∆G12
∑

j e
−β∆G2j∆G2j −e−β∆G32∆G32

−e−β∆G13∆G13 −e−β∆G23∆G23
∑

j e
−β∆G3j∆G3j

...
. . .


(4.8)

Here we define the diagonal elements of the barrier matrix to vanish ∆Gii = 0. Addi-
tionally we only look at the case where the Gibbs free energy barriers are constant an
do not vary with temperature and pressure. This means the only control variable is the
inverse temperature β. The control equation with the notation introduced above is then

~λTD ~y =

M∑
i=1

M∑
j=1

λiDijyj =

M∑
i=1

λiDiiyi︸ ︷︷ ︸
diagonal part

+
M∑
l=1
l 6=m

M∑
m=1

λlDlmym

︸ ︷︷ ︸
non diagonal part

=

=

M∑
i=1

λi

M∑
j=1

(e−β∆Gij∆Gij)yi −
M∑
l=1

M∑
m=1

λle
−β∆Gml∆Gmlym =

=
M∑
i=1

M∑
j=1

λi(e
−β∆Gij∆Gij)yi −

M∑
j=1

M∑
i=1

λje
−β∆Gij∆Gijyi =

=
M∑
i=1

M∑
j=1

∆Gijyi(λi − λj)e−β∆Gij

(4.9)

In the second step we renamed the summation indices to be able to combine the two
sums. The summation limit M is the number of polymorphs in the system. The result
is an exponential polynomial which has in general the form

φ(β) =
n∑
k=1

ake
αkβ (4.10)

where we can identify αk = ∆Gij and ak = ∆Gijyi(λi − λj) with flattended indices
ij → k. The summation limit n is the number of all possible combinations of the indices
i and j which is n = N2. To have a solution for the optimal control problem all necessary
conditions of optimality needs to be fulfilled. The control equation should be zero at the
optimum. This means we would need to find the roots of this exponential polynomial.
Unfortunately there exists no closed form for the zeros of an exponential polynomial but
we can estimate an upper bound for the number of zeros and lower and upper bounds
for the position of the roots.

Number of solutions

For regular polynomials there exists Decartes’ rule of signs [29] to estimate an upper
bound for the number of positive real roots. This rule can be extended to exponential
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4. Optimal control of a polymorph transition system

polynomials as shown in [30]. Decartes’ rule of signs for exponential polynomials states
that an upper bound for the roots is given by the number of sign changes in the sequence
of the coefficients of the polynomial.
Assume we have the exponential polynomial

φ(β) =
n∑
i=1

aie
αiβ (4.11)

where the terms in the sum are ordered by the exponent αi (α1 < α2 < ... < αn). Then
the number of sign changes S({ai}) in the sequence of the coefficients ai determines an
upper bound for the number of zeros.

{
s1

a1,

s2

a2,
s3

a3,

s4

a4, a5...,
si

ai, ai+1, ...,
sn−1

an−1, an} with si =

{
1 if sgn(ai) 6= sgn(ai+1)

0 if sgn(ai) = sgn(ai+1)

(4.12)

S({ai}) =
n−1∑
i=1

si (4.13)

In the case of the control equation for a polymorph transition system the exponential
polynomial has at most M(M − 1) terms which means according to Decartes’ rule of
signs there are at most M(M−1)−1 zeros if the signs of the coefficients are alternating.

Upper and lower bound for solutions

Upper bound We can also estimate an upper bound for the position of the real roots
of the exponential polynomial. For a regular polynomial Lagrange formulated a rule
to determine an upper bound for the position of the real roots [31]. This rule can be
extended to an exponential polynomial like it is defined in 4.11.
If a root of 4.11 is located at β+ ≥ 0 then

0 =
n∑
i=1

aie
αiβ

+ ⇒ |an|eαnβ
+

=

∣∣∣∣∣
n−1∑
i=1

aie
αiβ

+

∣∣∣∣∣
|an|eαnβ

+ ≤
n−1∑
i=1

|ai| eαiβ
+ ≤

n−1∑
i=1

|ai| eαn−1β+

eαnβ
+

eαn−1β+ ≤
n−1∑
i=1

|ai|
|an|

(4.14)

β+ ≤
ln
(∑n−1

i=1
|ai|
|an|

)
αn − αn−1

(4.15)

This is true for all positive roots of 4.11 therefore 4.15 is an upper bound for all positive
real roots.
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4.1. Unconstrained optimal control

Lower bound For the lower bound we do a similar estimation. If a root is located at
β− ≤ 0 then

|a1|eα1β− =

∣∣∣∣∣
n∑
i=2

aie
αiβ
−

∣∣∣∣∣
|a1|eα1β− ≤

n∑
i=2

|ai|eαiβ
− ≤

n∑
i=2

|ai|eα2β−

eα1β−

eα2β−
≤

n∑
i=2

|ai|
|a1|

β− ≥
ln
(∑n

i=2
|ai|
|a1|

)
α1 − α2

(4.16)

We can conclude here that if there exists a root β0 of the exponential polynomial it lies
between the boundaries

β− ≤ β0 ≤ β+. (4.17)

Self consistent cycle

Usually optimal control problems can not be solved analytically only in very rare cases.
An example for an optimal control problem with an analytical solution is the two-
polymorph system. The solution is shown in the next chapter. In general one need to
rely on numerical algorithms to solve such problems. We already showed some techniques
in Chapter 3.2. In this Chapter we will use a different approach solving the problem
with a self consistent cycle. This algorithm starts very similar to the already described
numerical techniques but updating the control function is different.

1. Guess the optimal control function β∗(t)

2. Solve the initial value problem of the state equation using the initial condition for
the state vector ~y(0) = ~y0.

3. Solve the final value problem of the costate equation backward in time using the
final condition ~λ∗(tf ) = ~λf at final time tf .

4. Find the root β0(t) of the control equation closest to the current control β(t) for
every time t using the upper and lower bounds described in Chapter 4.1.1

5. Update the control function β(t) to the root function β0(t) and start over at step
2

This algorithm converges quite fast if you have a good initial guess for the control
function. If you are not very close to a solution it can happen that it does not converge
at all. To improve the performance it is helpful updating the control function for the
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4. Optimal control of a polymorph transition system

next iterations with a mix of the new solution and the previous solution. This prevents
from oscillating around the optimal control function and accelerates convergence.

It turns out that a good solution strategy is to use the numerical technique described in
Chapter 3.2 with very loose convergence settings and use the obtained control function
as initial guess for the self consistent cycle to find the final solution.

We will apply the self consistent cycle algorithm to the three state system in Chapter
5.3.

4.1.2. Analytical discussion: Two control variables

In the previous discussion we only considered the inverse temperature β as our only
control variable of the system. Here we want to see what happens if we consider a
second control namely the pressure p. The main change here is that the barriers ∆G are
now also dependent on inverse temperature β and pressure p.

∆G(β, p) = ∆E − µ(β, p)∆N (4.18)

where µ(β, p) is the chemical potential of a molecule in gas phase, ∆E is the adsorption
energy barrier and ∆N is the change of the number of adsorbed molecules (see Chapter
1.3). Two independent control parameters means that the control equation has two
components which need to be zero simultaneously. It is convenient to do a variable
transformation where we introduce a new variable η

η = βµ(β, p) (4.19)

If we insert this in our exponential function for the rates e−β∆Gij(β,p) we find the decou-
pled function

e−β∆Gij(β,p) = e−β(∆Eij−µ(β,p)∆Nij) = e−β∆Eij+η∆Nij (4.20)

which is nicer to work with.

Now we have two control variables β and η with which we can formulate the two control
equations.
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0 = ~λTDβ~y = ~λT
∂AT

∂β
~y =

= fa~λ
T


∑

j e
−β∆E1j+η∆N1j∆E1j −e−β∆E21+η∆N21∆E21 . . .

−e−β∆E12+η∆N12∆E12
∑

j e
−β∆E2j+η∆N2j∆E2j

...
. . .

 ~y

0 = ~λTDη~y = ~λT
∂AT

∂η
~y =

= fa~λ
T

−
∑

j e
−β∆E1j+η∆N1j∆N1j e−β∆E21+η∆N21∆N21 . . .

e−β∆E12+η∆N12∆N12 −
∑

j e
−β∆E2j+η∆N2j∆N2j

...
. . .

 ~y

(4.21)

We can represent those two equations in the form of two exponential sums.

0 = ~λTDβ~y =
∑
ij

∆Eij(λi − λj)yie−β∆Eij+η∆Nij

0 = ~λTDη~y =
∑
ij

∆Nij(λj − λi)yie−β∆Eij+η∆Nij
(4.22)

In a more general form we can identify those two equations as

φβ(β, η) =
n∑
k=1

ake
βαkeηγk = 0 (4.23)

φη(β, η) =

n∑
i=1

bke
βαkeηγk = 0 (4.24)

where ak = ∆Eij(λi − λj)yi, bk = ∆Nij(λj − λi)yi, αk = −∆Eij and γk = ∆Nij with a
flattended index k ↔ ij.

For a root to exist in those two equations there need to be at least one sign change in the
coefficients ai and bi. In the case of the exponential polynomial φβ this is actually the
case because all the terms building the coefficient ai are positive except the difference of
the costates (λi − λj) which can potentially be negative. This difference occurs in the
coefficients two times with opposite sign, which means we have at least one sign change.

In the case of the φη polynomial we have the special case that the change in particle
number ∆Nij can be positive and negative. Usually we assume that the fictional transi-
tion polymorph has a particle number which lies between the initial and final polymorph
particle number, which means Ninit < N ‡ < Nfinal or Ninit > N ‡ > Nfinal. With that
the forward and backward reaction direction have opposite sign in the particle number
change ∆N , so that ∆Nij has opposite sign compared to ∆Nji. Because of this alternat-
ing sign change in ∆N in the case of a two state system only positive or only negative
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coefficients b1 and b2 exists in φη. The consequence is that in the two polymorph system
case φη has only positive or only negative values. Therefore φη has no root and no opti-
mal η(t) can exist. It only make sense to start optimizing at least a three state system
in this case.

Upper and lower bounds for solutions

We can now estimate a region, in a similar way as we did in the one dimensional case,
where the roots of those two equations are located. For each of the control equations
we get a bounded area in the βη-plane. These two root areas need to overlap to be able
to find a common root for both control equations. For finding these root containing
areas we keep one of the control variables fixed and apply the same estimation for the
remaining free variable as we did in the one dimensional case. In the case of the φβ
polynomial we need to find four curves in the βη plane which are the upper and lower
boundaries of the root containing area.

φβ(β, η) =

n∑
i=1

āi(η)eβαi = 0 with α1 < α2 < ... < αn and āi(η) = aie
ηγi

φβ(β, η) =
n∑
i=1

āi(β)eηγi = 0 with γ1 < γ2 < ... < γn and āi(β) = aie
βαi

(4.25)

β+
φβ

(η) ≤
ln
(∑n−1

i=1
|āi(η)|
|ān(η)|

)
αn − αn−1

β−φβ (η) ≥
ln
(∑n

i=2
|āi(η)|
|ā1(η)|

)
α1 − α2

(4.26)

η+
φβ

(β) ≤
ln
(∑n−1

i=1
|āi(β)|
|ān(β)|

)
γn − γn−1

η−φβ (β) ≥
ln
(∑n

i=2
|āi(β)|
|ā1(β)|

)
γ1 − γ2

(4.27)

We do the exact thing again for the φη polynomial and find for the bounds

φη(β, η) =

n∑
i=1

b̄i(η)eβαi = 0 with b̄i(η) = bie
ηγi

φη(β, η) =
n∑
i=1

b̄i(β)eηγi = 0 with b̄i(β) = bie
βαi

(4.28)
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4.2. Constrained optimal control

β+
φη

(η) ≤
ln
(∑n−1

i=1
|b̄i(η)|
|b̄n(η)|

)
αn − αn−1

β−φη(η) ≥
ln
(∑n

i=2
|b̄i(η)|
|b̄1(η)|

)
α1 − α2

(4.29)

η+
φη

(β) ≤
ln
(∑n−1

i=1
|b̄i(β)|
|b̄n(β)|

)
γn − γn−1

η−φη(β) ≥
ln
(∑n

i=2
|b̄i(β)|
|b̄1(β)|

)
γ1 − γ2

(4.30)

If these two root containing areas overlap we can do a zero search only in this overlapping
area to find a root.

Anyhow, we are not focusing on finding optimal pressure curves in this thesis and only
stick to the more important optimal temperature curve. This section should only show
how theoretically a second control parameter could be optimized via the self consistent
algorithm. Also finding roots of a two dimensional exponential polynomial is much more
difficult than in the one dimensional case.

4.2. Constrained optimal control

If the performance measure J depends also on the control derivative we need to introduce
a new control variable ~v as shown in Section 3.1.4. We can add to the performance
measure J a penalty term γ

2 ~̇u
2(t) [20] which shifts the minima to optimal controls which

do not vary too much. The penalized performance measure for our polymorph system
then looks like

Jp[~u] = −yB(tf ) +

∫ tf

0

γ

2
~̇u2(t)dt = −yB(tf ) +

∫ tf

0

γ

2
~v2(t)dt (4.31)

by using the new control variable ~v = ~̇u.

Further we need to define the modified state vector which is the original state vector
merged with the former control vector ~u

~̂y =

(
~y
~u

)
The state equation has now the modified form

˙̂
~y(t) =

(
AT (~̂y(t)) · ~y(t)

~v(t)

)
(4.32)

Notice that the argument in the matrix A is now the new state vector ~̂y and not the
original control vector ~u. The matrix A is still exactly the same as previously, the change
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4. Optimal control of a polymorph transition system

in the argument is just to not forget that the differential of A with respect to ~̂y does not
vanish anymore, since ~u is part of the state vector ~̂y now.

With this modified quantities we find by comparing the equations to the general theory

~a(~̂y(t), ~v(t), t) =

(
AT (~̂y(t)) · ~y(t)

~v(t)

)

h(~̂y(t), t) = −yB(t)

g(~̂y(t), ~v(t), t) =
γ

2
~v2(t)

this leads us again to the Hamiltonian

Hp(~̂y(t), ~v(t), ~̂λ(t), t) =
γ

2
~v2(t) +

(
~λ(t)
~λv(t)

)T
·
(
AT (~̂y(t)) · ~y(t)

~v(t)

)
(4.33)

with an additional costate vector ~λv for the new variable ~v.

The necessary conditions for the penalized system then look like

(i) Final condition of costate

~̂λ∗(tf ) = −
[
∂

∂~̂y
yB(t)

]
t=tf

= −


0
...
1
...
0

 = −ÎB (4.34)

(ii) Costate equation

˙̂
λ∗k(t) = −

(
~λ∗(t)
~λ∗v(t)

)T
∂

∂ŷk

(
AT (~̂y∗(t)) · ~y∗(t)

~v∗(t)

)
= −~λ∗T (t)

∂AT

∂ŷk
(~̂y∗(t)) ~y∗(t)− ~λ∗T (t)AT (~̂y∗(t))

∂~y

∂ŷk
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4.2. Constrained optimal control

In vector notation we find

˙̂
~λ∗(t) =



0
...

0

−~λ∗T (t)∂A
T

∂u1
(~̂y∗(t)) ~y∗(t)

−~λ∗T (t)∂A
T

∂u2
(~̂y∗(t)) ~y∗(t)
...


−



A(~̂y∗(t)) ~λ∗(t)

0

0
...


=

= −

 A(~̂y∗(t)) ~λ∗(t)

~λ∗T (t)∂A
T

∂~u (~̂y∗(t)) ~y∗(t)


(iii) Control equation

0 = γ~v∗(t) + ~λ∗v(t) (4.35)

(iv) State equation

˙̂
~y∗(t) =

(
AT (~̂y∗(t)) · ~y∗(t)

~v∗(t)

)
(4.36)
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5. Results

Now we derived all necessary methods to optimize the concentration of a specific inter-
face polymorph. In this chapter we are solving multiple polymorph transition systems.
The first system we investigate is a two polymorph system, where we do not put any
constraints on the optimal temperature curve we try to find 5.1. Because of its simplicity
this example is ideal for demonstrating how Optimal Control theory works and how it
can be used to obtain optimal temperature curves. Another convenient property of the
unconstrained two state system is that it can be solved analytically. We use the analytic
solution here to compare it to a solution obtained numerically.
In the second example we demonstrate how to put a constraint on the optimal temper-
ature curve such that the curve is not varying too much over time.
In the last two examples we start to go towards more realistic systems where we extend
the system by a third polymorph. In the first three state example we keep the Gibbs
free energy barriers constant for different temperatures and apply an alternative very
efficient solution technique to the optimal control problem (self consistent cycle approach
described in Section 4.1.1).
The last example deals with the interesting problem of an ”elevator polymorph” system.
The rough idea is that if two polymorphs are intrinsically not connected in the transition
network graph they can be connected via a third polymorph which we call ”elevator
polymorph”. The goal is to find the optimal temperature curve which first occupies
the elevator polymorph (”loading the elevator”), then change the temperature quickly
(”elevate”) and finally start to occupy the target polymorph (”unloading the elevator”).
In this example we use Gibbs free energy barriers which vary with temperature, making
the problem even more complex.
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5. Results

5.1. Two polymorph system unconstrained

We try to solve the optimal control problem for a simple two-state system with one
constant barrier between the two polymorphs (see Figure 5.1). This example is the
simplest possible polymorph network and also the easiest one to solve with Optimal
Control theory. The most interesting aspect of this system is that it can be solved
analytically. This is the perfect starting situation to test and compare the numerical
algorithms, developed in previous chapters, to the exact solution.
In this example we use fictional barrier heights which are convenient to calculate with.
They are chosen in such a way that we can set the attempt frequency fa (pre-exponential
factor of the Arrhenius equation 1.18) to one and the resulting optimal inverse temper-
ature curve will have values which are in a reasonable range.
In a later example we will use more realistic transition barrier heights which we assume
will be similar to the barrier heights of a single molecular process on a metal surface.
Typical values for the transition barriers of this single molecular processes are in the
range of tens to hundreds of meV [16].

Figure 5.1.: Two state system: polymorph A and B are separated by a common barrier
on the Gibbs free potential energy surface with the forward barrier ∆GAB =
4 eV and the backward barrier ∆GBA = 6 eV

In this example the goal is to maximize the concentration yB of polymorph B within
the time frame t ∈ [0, tf ]. The performance measure J2−state of this problem is

J2−state = −(yB(tf )− yB(0)) = −
∫ tf

0
ẏB(t)dt =

= −
∫ tf

0
fa

(
e−β(t)∆GAByA(t)− e−β(t)∆GBAyB(t)

)
dt

(5.1)

which means we want to maximize the concentration yield of the second polymorph B.
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5.1. Two polymorph system unconstrained

The necessary conditions for this kind of problem are

• State equation:

(
ẏA
ẏB

)
= fa

(
−e−β∆GAB e−β∆GBA

e−β∆GAB −e−β∆GBA

)
︸ ︷︷ ︸

A(β)

(
yA
yB

)
with

(
yA(0)
yB(0)

)
=

(
yA0

1− yA0

)

(5.2)

• Costate equation:

(
λ̇A
λ̇B

)
= −fa

(
−e−β∆GAB e−β∆GAB

e−β∆GBA −e−β∆GBA

)(
λA
λB

)
with

(
λA(tf )
λB(tf )

)
=

(
0
−1

)
(5.3)

• Control equation:

(
λA λB

)( ∆GABe
−β∆GAB −∆GBAe

−β∆GBA

−∆GABe
−β∆GAB ∆GBAe

−β∆GBA

)(
yA
yB

)
= 0 (5.4)

If the temperature is infinite, which corresponds to an inverse temperature β of zero,
the concentrations approach an uniform distribution. This is because all the entries in
the time evolution matrix A(β = 0) are equal to the attempt frequency fa. The other
extreme is a temperature of zero, which corresponds to an infinite inverse temperature β.
In that case all entries in A(β →∞) are zero and the concentrations do not change at all.
As you can see in Figure 5.2 for different constant inverse temperatures β we get different
yields for our target polymorph B. Usually there exists an optimal constant β∗ between
ultra cold condition β = ∞ and ultra hot conditions β = 0. Dependent on the initial
value of the concentrations the maximum yield can be achieved at different constant
inverse temperatures β. If we apply optimal control theory and determine the optimal
time dependent inverse temperature function β∗(t) we can increase the concentration
yield of polymorph B even more, this is indicated by the dashed line in Figure 5.2.
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5. Results

Figure 5.2.: Final concentration yB(tf ) of the target polymorph B at different con-
stant inverse temperatures β and different initial concentrations yB(0). The
dashed lines are the concentrations resulting of the optimized inverse tem-
perature curves β∗(t). Here we used the barriers ∆GAB = 4 eV, ∆GBA =
6 eV. For the attempt frequency we used fa = 1 s−1 and the final time is
tf = 16 s. At zero inverse temperature (hot temperature) we get an uni-
form distribution in the concentrations where yA = yB = 50 %. At high
inverse temperatures (cold temperature) the initial distribution of the con-
centrations do not change and we find the same concentrations at the end of
the time frame. We can also observe that the improvement of the optimal
inverse temperature curve compared to the optimal constant inverse tem-
perature is getting smaller with higher initial concentrations in the target
state.

5.1.1. Analytical solution

In the simple case of a two-state system we can rearrange the control equation 5.4 to
have an explicit expression for the control β. If we do the matrix multiplications in 5.4
we find

0 = fayA∆GABe
−β∆GAB (λA − λB) + fayB∆GBAe

−β∆GBA(λB − λA) (5.5)

Here, we can see that there exists at most one solution if we apply Decartes’ rule of
signs for exponential polynomials [30], since there can only be one sign change in the
coefficients.

We can now divide by e−β∆GAB > 0 and get
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5.1. Two polymorph system unconstrained

0 = fayA∆GAB(λA − λB) + fayB∆GBAe
β(∆GAB−∆GBA)(λB − λA) (5.6)

Then one can find for the control β if λA 6= λB

β(t) =
ln
(
yA(t)∆GAB
yB(t)∆GBA

)
∆GAB −∆GBA

(5.7)

Notice that if one of the concentrations yA(t) or yB(t) is zero the inverse temperature
diverges to infinity or negative infinity. To only deal with finite values the initial concen-
trations at t = 0 needs to be different to zero. This finding is very interesting because
this means we can not reach the perfect situation where the target concentration is 100 %
because β would need to diverge.
Now we insert the closed form of β into the state equation 5.2 and costate equation 5.3
and find

(
ẏA
ẏB

)
= fa

−
(
yA∆GAB
yB∆GBA

)− ∆GAB
∆GAB−∆GBA

(
yA∆GAB
yB∆GBA

)− ∆GBA
∆GAB−∆GBA(

yA∆GAB
yB∆GBA

)− ∆GAB
∆GAB−∆GBA −

(
yA∆GAB
yB∆GBA

)− ∆GBA
∆GAB−∆GBA

(yA
yB

)
=

= fa

(
−r∆GAB r∆GBA

r∆GAB −r∆GBA

)(
yA
yB

) (5.8)

(
λ̇A
λ̇B

)
= −fa

−
(
yA∆GAB
yB∆GBA

)− ∆GAB
∆GAB−∆GBA

(
yA∆GAB
yB∆GBA

)− ∆GAB
∆GAB−∆GBA(

yA∆GAB
yB∆GBA

)− ∆GBA
∆GAB−∆GBA −

(
yA∆GAB
yB∆GBA

)− ∆GBA
∆GAB−∆GBA

(λA
λB

)
=

= −fa
(
−r∆GAB r∆GAB

r∆GBA −r∆GBA

)(
λA
λB

)
(5.9)

where r =
(
yA∆GAB
yB∆GBA

)− 1
∆GAB−∆GBA .

If we solve the state equation 5.8 with the initial condition ~y(0) = ~y0 we find an extremum
of the performance measure. In Figure 5.3 the solutions to these differential equations
are plotted for some example values. The found solution only satisfies the necessary
conditions of optimality, which means we do not know if we found a minimum, maximum
or saddle point. In the Appendix A.3 we can show that the found solution is indeed a
minimum.
In Figure 5.3 one can see that the optimal inverse temperature curve is negative in one
region. This is unphysical because the inverse temperature can only be positive.
Nevertheless, we continue to discuss the method of optimal control theory on this exam-
ple. To avoid non positive inverse temperatures in later examples (see Sections 5.2, 5.3,
5.4) further constraints are introduced then. But in this example we will stick to the
unphysical negative inverse temperature values because this example is to demonstrate
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5. Results

Figure 5.3.: Solutions to the state and costate equations and the optimal control β de-
fined in 5.7 to 5.9. The values used are yA(0) = 95 %, yB(0) = 5 %, ∆GAB =
4 eV, ∆GBA = 6 eV, fa = 1 s−1, tf = 16 s.
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5.1. Two polymorph system unconstrained

how an optimal control problem can be solved. For physical results we need to constrain
the admissible inverse temperature to positive values which means we would need to set
all negative values to zero or a small number.

5.1.2. Numerical solution with gradient descent

Now we try to solve the two polymorph system with the numerical technique described
in Chapter 3.2. This should ideally compute the same optimal inverse temperature curve
as in the analytical solution. We will use the gradient descent method to find the optimal
control.

We tested different fixed step factors ε, introduced in Section 3.3.1, with which we scale
the gradient of the performance measure ∇~uJa. In Figure 5.4 the number of iterations
for convergence for different step factors is plotted. There is an optimum around ε = 7.5.
At higher step lengths the number of iterations increases very sharply. This means the
step length is too big and we overshoot the minimum at every iteration quite a lot. At
some point it will not converge at all. The other extreme are very small step factors.
The problem here is that we do not make much progress during one iteration but if we
wait long enough it will converge at some point.

Figure 5.4.: Number of iterations in dependence of the step factor ε to satisfy the con-
vergence criteria that the absolute value of the control equation is smaller
than fmax = 10−5.

As expected the result of the numerical gradient descent method in Figure 5.6 is exactly
the same as in the analytical solution. In Figure 5.5 one can see the change of the
performance measure and the control equation for different iterations i.
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5. Results

Figure 5.5.: Performance measure J improves (decreases) at every iteration i. The gra-
dient of the performance measure with respect to the inverse temperature
converges towards zero. Plotted are the first four and the last iteration.
Convergence setting is |∇~uJa| < 10−5.
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5.1. Two polymorph system unconstrained

Figure 5.6.: Result to the state and costate equations and the optimal control β with
the gradient descent method. The dashed line in the first plot is the con-
centration time evolution of the target polymorph B for the initial inverse
temperature guess β0(t). The values used are yA(0) = 95.0 %, yB(0) =
5.0 %, ∆GAB = 4 eV, ∆GBA = 6 eV, fa = 1 s−1, tf = 16 s. For the step
factor in the gradient descent algorithm we used ε = 7.5 and convergence is
reached if |∇~uJa| < 10−5 which was the case after 23 iterations.
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5. Results

5.2. Two polymorph system constrained

To illustrate how the constrained version of an optimal control problem described in
Chapter 4.2 works we will apply it to the same two state system as before (see Figure
5.1). The goal is to get optimal inverse temperature curves which do not vary too much
in time. If we would have a temperature curve which oscillates rapidly in time it is maybe
not realizable in an experiment. What we do is we penalize optimal control solutions for

fast changes of β by adding the term γ β̇
2

2 to the performance measure. This will give
temperature curves with very steep or highly oscillating regions a worse performance
measure. Meaning that smoother or flatter temperature curves are preferred .
As already derived in Section 4.2 the main difference to before is that we now have a
modified state vector ~̂y where the inverse temperature β is contained. The new control
variable v is the time derivative of the inverse temperature β.
The performance measure of this problem is

J2−state−constr = −(~yB(tf )− ~yB(0)) +

∫ tf

0
γ
β̇2

2
dt (5.10)

where we included the penalty term. The parameter γ determines how strong the penalty
should be. Larger γ gives flatter or less oscillating inverse temperature curves. If γ is
zero we would have the unconstrained case again. If γ is very large we worsen the yield
of our target polymorph.
The necessary conditions are

• State equation ẏAẏB
β̇

 =

−fae−β∆GAByA + fae
−β∆GBAyB

fae
−β∆GAByA − fae−β∆GBAyB

v

 (5.11)

• Costate equationλ̇Aλ̇B
λ̇v

 = −

 −fae−β∆GABλA + fae
−β∆GABλB

fae
−β∆GBAλA − fae−β∆GBAλB

(∆GABe
−β∆GAByA −∆GBAe

−β∆GBAyB)(λA − λB)

 (5.12)

• Control equation

0 = γv + λv (5.13)

For this example we choose γ = 0.1. This value is chosen because it gives a reasonable
flat inverse temperature curve without decreasing the target polmorph yield too much.
For solving the optimal control problem we use the BFGS algorithm from Chapter 3.3.2.
Now the time derivative of the inverse temperature is our control function and we need
to give an initial guess for it. Here, we use the zero function as initial guess. To solve the
state equation we also need to set an initial value for the inverse temperature curve at
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5.2. Two polymorph system constrained

time t = 0, we set it to β(0) = 0.7. In Figure 5.7 the result for the constrained optimal
control is plotted. Because of the penalty term in the performance measure we do not
have very steep regions in the optimal inverse temperature curve β∗(t) compared to the
unconstrained case. The achieved optimized concentration yB of our target polymorph
B is slightly less but almost similar to the unconstrained case. Here we achieved for the
final concentration yB(tf ) =72.2 %. Compared to the previous unconstrained case it is
only 1.2 % less.

Figure 5.7.: Optimal curves for the constrained two state system. The optimal control v
is the time derivative of the inverse temperature β. The dashed line in the
first plot is the time evolution of the target polymorph concentration yB for
the initial control guess v0(t).
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5. Results

5.3. Three polymorph system

A more complex system is a three-state system where three polymorphs are involved.
The corresponding Gibbs free energies and barriers are drawn in Figure 5.8. Our goal is
again to maximize the concentration for polymorph B.

In contrast to the two-polymorph system our target polymorph B is not the energetic
most favorable structure anymore. As you can see in Figure 5.8 polymorph C is lower in
Gibbs free energy. It can happen that concentration escapes from our target polymorph
B to the low energy polymorph C and can never gained back because the backward
transition rate from C to B is always lower than the forward transition rate. We need
to find an optimal temperature curve which traps the system in polymorph B and tries
to prevent the transition further to polymorph C. In the second part of this example
we also try to vary the barrier heights and see how the optimized target polymorph
concentrations change for different barrier combinations.

Figure 5.8.: Schematic Gibbs free energy landscape chosen for the three-state system.

The Gibbs free energy barriers used in this example are:

∆GAB = 0.5 eV ∆GBA = 1.5 eV

∆GAC = 5.0 eV ∆GCA = 7.0 eV

∆GBC = 1.3 eV ∆GCB = 2.3 eV

and we set the attempt frequency, like in the previous example, to fa = 1 s−1. The initial
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5.3. Three polymorph system

concentration distribution in the system is set to

~y(0) =

yA0

yB0

yC0

 =

90.0 %
5.0 %
5.0 %

 (5.14)

Meaning we start with a majority in polymorph A. The barrier between our starting
polymorph A and polymorph C is set very high compared to the other barriers, so it
does not contribute very much to the process. Our focus in this example is the transition
path A→ B → C. If we would decrease the barrier height between polymorph A and C
we would loose concentration to polymorph C and the maximally gained concentration
in the target polymorph B would be lower because of this ”leak”. We will see later
in this example how varying barriers effect which optimal concentration is reachable in
polymorph B.

We start by determining the state equation for the concentrations ~y =
(
yA, yB, yC

)T
and

find

ẏAẏB
ẏC

 = fa

−e−β∆GAB − e−β∆GAC e−β∆GBA e−β∆GCA

e−β∆GAB −e−β∆GBA − e−β∆GBC e−β∆GCB

e−β∆GAC e−β∆GBC −e−β∆GCA − e−β∆GCB

yAyB
yC


(5.15)

with the initial condition ~y(0) =
(
yA0, yB0, yC0

)T
=
(
90.0 %, 5.0 %, 5.0 %

)T
.

In Figure 5.9 we solved the state equation for a constant inverse temperature β =
1.5 eV−1. Here we can see nicely how the concentration first increases in polymorph B,
reaches a maximum and then decreases again. This decreasing is because we loose the
concentration in B again due to the transition B → C. We suppose that the optimal
inverse temperature curve needs to increase (cool down) around the concentration max-
imum of polymorph B. Then the transition rate from B to C is low and we can trap
the system in our target polymorph B.

Figure 5.9.: Concentration time evolution for a constant inverse temperature β =
1.5 eV−1. Here we can see that at first polymorph B gets populated and
then transform further to polymorph C.
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5. Results

Now we can apply Optimal Control theory to actually find the optimal inverse tem-
perature curve. The performance measure for this Optimal Control problem is given
by

J3−state = −
∫ tf

0
ẏB(t)dt =

= −
∫ tf

0

[
e−β∆GAByA − (e−β∆GBA + e−β∆GBC )yB + e−β∆GCByC

]
dt

(5.16)

The costate equation has the form

λ̇Aλ̇B
λ̇C

 = −fa

−e−β∆GAB − e−β∆GAC e−β∆GAB e−β∆GAC

e−β∆GBA −e−β∆GBA − e−β∆GBC e−β∆GBC

e−β∆GCA e−β∆GCB −e−β∆GCA − e−β∆GCB

λAλB
λC


(5.17)

with the final condition ~λ(tf ) =
(
0,−1, 0

)T
and the control equation is

0 = e−β∆GAB∆GAByA(λA − λB) + e−β∆GAC∆GACyA(λA − λC)+

+ e−β∆GBA∆GBAyB(λB − λA) + e−β∆GBC∆GBCyB(λB − λC)+

+ e−β∆GCA∆GCAyC(λC − λA) + e−β∆GCB∆GCByC(λC − λB)

(5.18)

Solution with self consistent cycle

In the case of a three state system no analytical solution exists, as the control equation
cannot be transformed into a explicit form where the control β depends only on the
state ~y and costate ~λ. The only way to solve it is numerically. We can use the numerical
techniques we already used in the previous two examples, which are described in Chapter
3.2. Here we will try to solve it with the self consistent cycle approach from Chapter
4.1.1.

In Figure 5.10 the first step of this self consistent cycle algorithm is illustrated. One can
see that there are two root trajectories β0(t) for the three state system for an constant
initial inverse temperature guess βinit(t) = 6.0 eV−1. We use the positive root trajectory
and update the inverse temperature curve via equally weighted linear mixing

βi+1(t) = (1− w) βi−1(t) + w βi(t) (5.19)

For the first step i = 1 we set β0 = βinit(t) to the initial guess and β1 = β0(t) to the
first found positive root trajectory. In this example the weight w for the linear mixture
is set to w = 1

2 . To converge faster one can increase the weight w on the newly found
root trajectory βi. If the weight is too big the updated curves βi+1 start to alternate
around the real optimal solution with every iteration i.

One also need to be very careful with the initial guess for the inverse temperature βinit(t).
It can happen that a root trajectory is only defined in a part of the time frame t ∈ [0, tf ],
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5.3. Three polymorph system

Figure 5.10.: First step of the self consistent cycle algorithm. Between the black dashed
lines two root trajectories β0(t) are found (red dotted lines). We choose
one of them to update our guess. The second figure is a cross section of
the upper plot at time zero.

59



5. Results

like in Figure 5.11. Finding a good initial guess is kind of a trial and error task. In the
case illustrated in Figure 5.11 we can adjust our initial guess to be closer to the region
of the incomplete root trajectory and restart the self consistent algorithm and hope that
the upper root trajectory is now complete over the whole time frame.

Figure 5.11.: First step of the self consistent cycle algorithm with a suboptimal initial
guess, βinit(t) = 2.0 eV−1. The upper root trajectory starts in the mid-
dle of the time range and cannot be used for updating the inital inverse
temperature βinit.

If we found a proper initial guess for the inverse temperature the self consistent cycle
algorithm converges quite fast (see Figure 5.12) and it gives us the optimal state ~y∗(t),
optimal costate ~λ∗(t) and the optimal inverse temperature β∗(t), all plotted in Figure
5.13.
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5.3. Three polymorph system

Figure 5.12.: Convergence of the self consistent cycle algorithm. The performance mea-
sure in the first plot improves in the first step already quite a lot. It
took the algorithm 34 iterations to reach the convergence criteria that
|∇~uJa| < 10−9. In the second plot one can see how the performance mea-
sure gradient gets closer and closer to zero. In the third plot the inverse
temperature curves for a few iterations i are shown.
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Figure 5.13.: Optimal curves for the three state system. In the fist plot the dashed line
shows the target polymorph concentration over time for the initial inverse
temperature guess. Compared to the initial guess the concentration of the
target polymorph yB(tf ) increased from yB(tf ) = 54.2 % to 79.5 %. The

second plot shows the costates ~λ. In the last plot the optimal inverse
temperature curve β∗(t) and the initial guess βinit(t) is shown.
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Varying the barrier heights A→ B and B → C

Now we want to investigate how varying barrier heights of the system influence the
maximal possible concentration of our target polymorph B. For that, we first vary the
barrier height ∆GAB between 0.3 eV and 1.8 eV. The barrier ∆GBC is varied between
1.2 eV and 3.3 eV (see Figure 5.14).

Figure 5.14.: Gibbs free energy landscape of the model system with barrier variation.
∆GAB is varied between (0.3 to 1.8) eV and ∆GBC between (1.2 to 3.3)
eV. The barrier between polymorph A and C is not drawn, as it remains
unchanged with ∆GAC = 5.0 eV

In Figure 5.15 one can see the influence of different barrier height combinations on
the optimized target polymorph concentration. One interesting aspect is, the closer we
get to the region where the two barriers are equally high the lower is the optimized
concentration. In the region where the barrier ∆GBC is lower than the barrier ∆GAB
we were not able to converge the self consistent cycle. It is not surprising that this region
is difficult to control since we first need to overcome the higher barrier A→ B and then
stabilize polymorph B which is quite unstable because of the low B → C barrier. The
highest concentration yield is found for a low A→ B barrier and a high B → C barrier.
Here we can reach polymorph B concentrations of 90 % and beyond.

In Figure 5.16 we show how the average of the optimal inverse temperature curve changes
for different barrier combinations. We can clearly see that for higher barriers we need
higher temperatures (lower inverse temperature) to find an optimal result.

Varying the barrier height A→ C

To also see the effect of different barrier heights for the transition A → C we vary it
between 0.7 eV - 5.0 eV and keep all the other barriers constant at ∆GAB = 0.7 eV and
∆GBC = 2.5 eV. In Figure 5.17 all the used barriers are shown.
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Figure 5.15.: Optimized target polymorph concentration yB(tf ) for different Gibbs free
energy barriers. Here we used a 40 × 40 equidistant grid for the differ-
ent barrier combinations and linearly interpolated on it. The convergence
criteria was |∇~uJa| < 10−9.

Figure 5.16.: Average of optimal inverse temperature curve 〈β∗〉 for different barrier
height combinations. Increasing barrier heights decreases the optimal in-
verse temperature, meaning higher temperatures are required to find opti-
mal results for higher barriers.
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Figure 5.17.: Gibbs free energy landscape of the model system for variation of the barrier
between polymorph A and C. The other barriers are held constant at
∆GAB = 0.7 eV and ∆GBC = 2.5 eV.

In Figure 5.18 the effect of different barrier heights on the maximized concentration
on the target polymorph B is plotted. As expected, the lower the barrier between
polymorph A and C the lower the achieved optimal concentration is. With decreasing
barrier height we loose more and more concentration via the A → C transition and we
get less concentration into our target polymorph B. As soon as the barrier height ∆GAC
gets close to ∆GAB we were not able to converge the optimization algorithm anymore. If
the barrier A→ C is lower than A→ B almost all concentration flows from polymorph
A directly to C and convergence for our target polymorph B can not be reached within
the applied convergence criteria.

Figure 5.18.: Optimized target polymorph concentration yB(tf ) for different barriers
∆GAC between 0.7 eV and 5.0 eV. The convergence criteria was again
|∇~uJa| < 10−9.
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5.4. Three-polymorph system - ”Elevator polymorph” problem

Another interesting example for a three polymorph transition system is what we call
an ”elevator polymorph” system. Think of the situation where we have a polymorph A
which is always lower in Gibbs free energy through out the whole accessible temperature
range than another polymorph B (see Figure 5.20). If our goal would be to maximize the
concentration in polymorph B we will have difficulties to do so because in this situation
the transition rate from A to B will always be lower than the backward transition B
to A. Meaning we will never observe a higher concentration in B than in A. The only
possibility to maximize the concentration in B would be to increase the temperature
towards infinity because then we would occupy all the polymorphs uniformly which
would be for two polymorphs 50 %(see Section 2.2).
To actually maximize the concentration in polymorph B without any diverging temper-
atures we need a third polymorph E (elevator polymorph) in the system. The idea is to
use this elevator polymorph E to connect polymorph A and B and use it as a bridge to
let the concentration flow through the elevator polymorph E to the target polymorph
B. In Figure 5.19 the graph representation of the system is shown.

Figure 5.19.: Graph representation of the elevator system. The red arrow is a non ac-
cessible transition. That means that the transition rate in this direction is
never larger than the rate of the reverse direction. Polymorph A can not
reach polymorph B directly but has to go via the elevator polymorph E to
the target polymorph B.

To use the elevator polymorph E as a mediator for transforming the system from poly-
morph A to B, we need a temperature region where we can populate E starting from
A (”loading the elevator”) and a region where we unpopulate E to B (”unloading the
elevator”). In Figure 5.20 an example which fulfills this requirements is drawn. The
corresponding Gibbs free energy curves are plotted for the three polymorphs A, B and
E and additionally the corresponding transition states as well. In the high temperature
region the elevator polymorph E is the lowest in Gibbs free energy. This region can be
used for ”loading” the elevator polymorph. At low temperature polymorph E is highest
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in Gibbs free energy and it can transform to polymorph B and A, this is the region
where we can ”unload” the elevator.

In Section 1.3 we derived how to calculate these Gibbs free energy curves. They are
linear equations of the form

Gads(T, p) = Eads − µgas(T, p)N = Eads − µgas(T, p)θAunit (5.20)

where we have the adsorption energy Eads, the number of adsorbed molecules N in the
unit cell area Aunit and the coverage θ. Notice that the coverage θ determines the slope
of the Gibbs free energy with changing chemical potential µ. This leads to the important
fact that more densely packed structures are preferred at higher chemical potentials (low
temperatures, high pressures).

To get to the situation that polymorph A has always a lower Gibbs free energy than
polymorph B they need to have the same coverage θ. Then the Gibbs free energy curves
for A and B are parallel, like in Figure 5.20. For the elevator polymorph E we need the
possibility that the net concentration flow can change its direction. This means we need
to be able to populate the elevator polymorph at some temperature and unpopulate it
at an different temperature. This can be achieved if the Gibbs free energy curve of the
elevator polymorph E intersect the Gibbs free energy curves of A and B. Meaning the
coverage θ (slope of the Gibbs free energy curve) of the elevator polymorph needs to be
different compared to the coverages of A and B.

Here the elevator polymorph is chosen to be lower in coverage than the other two poly-
morphs because then the system is easier to control. The reason for that is the phase
space range where we try to populate our target polymorph B is located at low tempera-
tures which means all rates are generally low and easier to control compared to the high
temperature range. Occupying the elevator polymorphs happens at a high temperature
but here we do not really need to control a lot since the elevator polymorph is anyway
the lowest in Gibbs free energy in this region and will be populated very easily since it
is the thermodynamically most favorable.

We now try to find the optimal temperature curve to maximize the concentration of
polymorph B. We use the BFGS algorithm from Chapter 3.3.2 to solve the optimal
control problem. The numerical values used for calculating the Gibbs free energy curves
for the polymorphs and the transition states (‡) in Figure 5.20 are listed Table 5.1

With these values we can calculate the effective Gibbs free energy barriers and therefore
also the transition rates at a certain temperature. The transition rates are also plotted
in Figure 5.20.

The optimal result is plotted in Figure 5.21. You can see that we started with an
sinusoidal initial guess for the temperature curve. Since we expected we need to go
to higher temperatures first and then change to lower temperatures at a later time a
sine function is a good rough guess how the curve will look like in the optimal case. We
could have also started with a constant temperature curve guess as we did in the previous
examples but it turns out that it takes quite a long time in this case to converge.

It is nicely illustrated in Figure 5.21 how the temperature needs to change in a time
frame of one hour (3600 s) for an optimal result. The temperature first increases to
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Figure 5.20.: Gibbs energies and transition rates of the elevator polymorph system. The
two polymorphs A and B have the same coverage and the so called ele-
vator polymorph E is slightly less densely packed. The Gibbs free energy
of the elevator polymorph E intersects the Gibbs curves of A and B. We
keep the pressure of the system constant at around atmospheric pressure
1× 105 Pa and for the chemical potential we use the one of tetracyanoethy-
lene (TCNE), the attempt frequency is fixed for all transitions at fa =
1× 1012 s−1.
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Table 5.1.: Numerical values for the Gibbs free energy and coverages

Adsorption energies / eV Coverage / molecules nm−2

EAads -2.00 θA 1.00

EBads -1.94 θB 1.00

EEads -1.73 θE 0.55

EAB
‡

ads -1.00 θAB
‡

1.00

EAE
‡

ads -1.08 θAE
‡

0.75

EBE
‡

ads -1.45 θBE
‡

0.98

populate the elevator polymorph (load the elevator). At around t = 1200 s (20 min)
we can identify the ”elevating” phase, meaning the temperature changes quickly to the
region where we are going to ”unload” the elevator polymorph. This elevating phase
needs to be very short, as otherwise we would loose the concentration in E to the
thermodynamically more favorable polymorph A again. In the third plot of Figure 5.21
the rate of temperature change is plotted. There is a peak at the elevating phase (t =
1200 s) with a change rate of vmax = −1.3 K s−1. After the elevating phase we stay at
low temperatures to populate our target polymorph B. In this example we achieved a
concentration for our target polymorph B of almost 90 %.
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Figure 5.21.: Optimal curves for the elevator polymorph system. Here we can see very
nicely how the temperature needs to increase to populate the elevator poly-
morph and then decrease again to unload to the target polymorph B. For
this system we can get close to 90 % for the concentration of polymorph B.
Compared to the initial sinusoidal temperature guess (dashed lines) this
is an increase of 71 % in concentration. The BFGS algorithm needed 27
iterations to converge. The smoothing factor for the first derivative of the
temperature curve is set to γ = 0.05.
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This thesis deals with the investigation of the possibility to control the interface poly-
morphism of organic-inorganic interfaces with temperature. This is realized by find-
ing optimal time-dependent growth conditions, here specifically temperature protocols,
which maximize the concentration of a target polymorph.

Kinetics of a polymorph transition system

The kinetics of a polymorph system is described as graph network, where each node
represents a relevant polymorph of the system and each edge of the graph corresponds
to a transition rate from one polymorph to another (see Chapter 2). The transition rates
between two polymorphs are approximated using the Arrhenius equation. By applying
a simple balance equation on this graph network using these transition rates a first
order differential equation (state equation) is obtained, which describes the concentration
dynamics of the polymorph system.

Optimizing the concentration of a specific polymorph

To optimize one specific polymorph in concentration, the temperature can be used to
modify the transition rates between polymorphs in such a way that one specific poly-
morph is maximized in concentration. This optimal temperature curve is determined
within the framework of Optimal Control theory (see Chapter 3). A main focus is laid
on diverse technical pitfalls that occur in Optimal Control theory for this specific appli-
cation and their solutions. One problem are fast changing optimal temperature curves
which tends to not converge very easily. For these problems a constrained version of
Optimal Control theory is used, a detailed description can be found in Section 4.2.

Results

Finally, to demonstrate how the developed framework can be utilized to obtain optimal
temperature curves, four different problem scenarios are presented in Chapter 5. The
first two examples (Section 5.1 and 5.2) are the simplest possible ones, namely a two
polymorph system. They are used to demonstrate how an Optimal Control problem
in principle works and how a solution would look like. In the third example (Section
5.3) a three polymorph system with temperature independent energy barriers is investi-
gated. In this example the influence of different barrier heights on the optimized target
polymorph concentration is shown.

The last example (Section 5.4) offers a strategy for growing and stabilizing metastable
polymorphs. In this scenario two polymorphs are intrinsically not accessible from one
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to another but can be connected via a third polymorph (”elevator polymorph”). In this
example temperature dependent barriers are used which makes the system even more
complex.

Outlook

In the present work only one possible control parameter, the time dependent growth
temperature, is optimized. As next step it would be sensible to include the pressure p as
a second control parameter. The current mathematical framework is already ready to
tackle such a two-parameter problem. Anyhow, it seems like that reaching convergence
becomes very complex in that case. This is a problem that would be essential to tackle.
Furthermore, the demonstrated examples are still very small in system size. It would
be interesting to increase the number of polymorphs in the system and go towards more
complex systems of a realistic application. This would then allow to test this theoretical
framework against experimental results, which finally could open doors to optimized
design of technical applications in the field of organic electronics.
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A. Appendix

A.1. Chemical potential of tetracyanoethylene TCNE

For our elevator polymorph example we used the gas phase chemical potential of the
tetracyanoethylene (TCNE) molecule (see Figure A.1).

Figure A.1.: Tetracyanoethylene (TCNE) molecule geometry. The blue circles are the
Nitrogen atoms, Carbon atoms are the gray circles.

In Chapter 1.3.1 we derived how to approximate the chemical potential of a molecular
gas by neglecting all vibrational contributions.

µgas ≈ Etotgas − kBT ln

(2πm

h2

) 3
2 (kBT )

5
2

p

√
π
∏3
i=1 Ii

σ

(
8π2kBT

h2

) 3
2

J

 (A.1)

The parameters for TCNE are

m = 2.127× 10−25 kg . . . total mass of TCNE molecule

σ = 4 . . . symmetry factor

J = 1 . . . electronic ground state degeneracy

I1 = 5.669× 10−45 kg m2

I2 = 5.766× 10−45 kg m2 . . . moments of inertia

I3 = 1.144× 10−44 kg m2

Here we set the total internal energy Etotgas to zero since we are here only interested in
the temperature and pressure behavior of the chemical potential of an ideal molecular
gas. The total internal energy would only introduce a constant shift of the chemical
potential. In Figure A.2 we can see the chemical potential for different temperatures T
and pressure p. One can see that the chemical potential at high temperatures and low
pressures is low which means it becomes more favorable for the molecule to be in gas
phase with increasing temperature or decreasing pressure.
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Figure A.2.: Chemical potential of TCNE in the ideal gas approximation without vibra-
tional contributions.

A.2. BFGS update formula

Here we derive the expression 3.54 for updating the inverse Hessian B−1 for the BFGS
algorithm. To simplify the notation we set H = B−1 . We need to find a solution to the
following equations then

min
Hk+1

‖Hk+1 −Hk‖F (A.2)

Hk+1~yk = ~sk (A.3)

Hk+1 = (Hk+1)T (A.4)

Depending on which matrix norm we use another expression for Hk+1 is found. We
actually use a weighted Frobenius norm to find a closed form for the solution. The
weighted Frobenius norm looks like this

‖A‖W = ‖W
1
2AW

1
2︸ ︷︷ ︸

Â={âij}

‖F =
∑
i

∑
j

|âij |2 (A.5)

where W is a symmetric matrix which fulfills W ~sk = ~yk
With this we find

min
Hk+1

‖W
1
2Hk+1W

1
2︸ ︷︷ ︸

Ĥ

−W
1
2HkW

1
2︸ ︷︷ ︸

Ĥk

‖F (A.6)
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A.2. BFGS update formula

Now we do an variable transformation

W−
1
2W ~sk︸ ︷︷ ︸

~̂sk=W
1
2 ~sk

= W−
1
2 ~yk︸ ︷︷ ︸

~̂yk

⇒ ~̂sk = ~̂yk (A.7)

W
1
2Hk+1W

1
2︸ ︷︷ ︸

Ĥ

W−
1
2~yk︸ ︷︷ ︸

~̂yk

= W
1
2~sk︸ ︷︷ ︸
~̂sk

⇒ Ĥ~̂yk = ~̂sk ⇔ Ĥ~̂yk = ~̂yk (A.8)

Further we define an orthonormal system of vectors

{~u1 =
~̂yk

‖~̂yk‖
, ~u2, ~u3, ~u4..., ~un︸ ︷︷ ︸

orthonormal vectors

} (A.9)

The vector ~ui>1 can be any vector which is orthogonal to ~u1.

We combine this orthonormal column vectors ~ui to a unitary matrix U with

U = (~u1, ~u2, ..., ~un︸ ︷︷ ︸
u⊥

) = (~u1, u⊥)

UT =


~uT1
~uT2
...
~uTn

 =

(
~uT1
uT⊥

) (A.10)

where we defined the n× (n− 1) matrix u⊥.

The matrices U and UT are unitary matrices which means that UUT = UTU = I.
It can be shown that the Frobenius norm is idependent of a unitary transformation
‖UTAU‖F = ‖A‖F .

First we need the trace representation of the Frobenius norm

tr
(
ATA

)
=
∑
i

∑
j

aijaij =
∑
i

∑
j

a2
ij = ‖A‖2F (A.11)

Then we find

‖UTAU‖2F = tr
(
UTATUUTAU

)
= tr

(
UUTATA

)
= tr

(
ATA

)
= ‖A‖2F (A.12)

where we used the property of the trace, that we can permute the arguments cyclically.
This allows us to solve for

min
Hk+1

‖UT ĤU − UT ĤkU‖F (A.13)

First we evaluate the term UT ĤU

UT ĤU =

(
~uT1
uT⊥

)
Ĥ(~u1, u⊥) =

(
~uT1 Ĥ~u1 ~uT1 Ĥu⊥
uT⊥Ĥ~u1 uT⊥Ĥu⊥

)
=

(
1 0

0 uT⊥Ĥu⊥

)
(A.14)
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in the last step we used the fact that the orthonormal vector ~u1 satisfies the secant
equation.
The second term reads then

UT ĤkU =

(
~uT1
uT⊥

)
Ĥk(~u1, u⊥) =

(
~uT1 Ĥk~u1 ~uT1 Ĥku⊥
uT⊥Ĥk~u1 uT⊥Ĥku⊥

)
(A.15)

In combination we find

min
Hk+1

∥∥∥∥(1− ~uT1 Ĥk~u1 ~uT1 Ĥku⊥
uT⊥Ĥk~u1 uT⊥Ĥu⊥ − uT⊥Ĥku⊥

)∥∥∥∥
F

(A.16)

If we look carefully we can see that only the block matrix in the lower right corner of
this expression changes with Hk+1 or Ĥ. This means we need to minimize only this
component. The best would be if this term vanishes to zero. This leads to

uT⊥Ĥu⊥ = uT⊥Ĥku⊥ (A.17)

We can find that

uT⊥Ĥu⊥ = u⊥U︸︷︷︸
(0,I)

(
1 0

0 uT⊥Ĥku⊥

)
UTu⊥︸ ︷︷ ︸0
I


(A.18)

and extract

Ĥ = U

(
1 0

0 uT⊥Ĥku⊥

)
UT = ~u1~u

T
1 + u⊥u

T
⊥Ĥku⊥u

T
⊥ = ~u1~u

T
1 + (I − ~u1~u1)Ĥk(I − ~u1~u1)

(A.19)
where we used I = UUT = ~u1~u

T
1 + u⊥u

T
⊥

We can now transform back all variables and find

‖~̂yk‖2 = ~̂yTk ~̂yk = ~̂yTk ~̂sk = ~yTkW
− 1

2W
1
2~sk = ~yTk ~sk (A.20)

~u1~u
T
1 =

1

~yTk ~sk
~̂yk~̂y

T
k =

1

~yTk ~sk
W

1
2~sk~y

T
kW

− 1
2 =

1

~yTk ~sk
W−

1
2~yk~s

T
kW

1
2 =

1

~yTk ~sk
W

1
2~sk~s

T
kW

1
2

(A.21)
Bringing all together gives us

Hk+1 = W−
1
2 ĤW−

1
2 =

1

~yTk ~sk
W−

1
2W

1
2~sk~s

T
kW

1
2W−

1
2 +

+W−
1
2

(
I − 1

~yTk ~sk
W

1
2~sk~y

T
kW

− 1
2

)
W

1
2HkW

1
2

(
I − 1

~yTk ~sk
W−

1
2~yk~s

T
kW

1
2

)
W−

1
2

(A.22)
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A.3. Two state example: Sufficient condition for a minimum

All the weighting matrices W cancels out and we find the update expression for the
approximated inverse Hessian

Hk+1 =
~sk~s

T
k

~yTk ~sk
+

(
I −

~sk~y
T
k

~yTk ~sk

)
Hk

(
I −

~yk~s
T
k

~yTk ~sk

)
(A.23)

A.3. Two state example: Sufficient condition for a minimum

The found analytical solution of the two state system only satisfies the necessary condi-
tions, which means it can be a minimum, maximum or a saddle point. To actually show
which kind of extremum we found we need to find the second derivative of the perfor-
mance measure J2−state with respect to the control β. If it is positive at the extremum.
Then we found a minimum of J2−state.

∂2

∂β2
J2−state = fa

∫ tf

0

(
e−β∆GAB

[
2
∂yA
∂β

∆GAB −∆G2
AByA −

∂2yA
∂β2

]

− e−β∆GBA

[
2
∂yB
∂β

∆GBA −∆G2
BAyB −

∂2yB
∂β2

])
dt =

=

∫ tf

0

∂2j2−state
∂β2

dt

(A.24)

First we need the derivatives of the states with respect to β but they can only be found
if we have a solution to the state equation dependent on β. In the case of the two state
equation we can find that

yA(t) = eI1(t)(yA0 + I2(t))

yB(t) = 1− yA(t)
(A.25)

with

I1(t) = −
∫ t

0

(
e−β(t′)∆GAB + e−β(t′)∆GBA

)
dt′

I2(t) =

∫ t

0
e−β(t′)∆GBA−I1(t′)dt′

(A.26)

is a solution to the state equation 5.2 with the initial condition ~y(0) = ~y0 = (yA0, 1 −
yA0)T .

With this closed form of the state ~y(t) we can easily calculate the necessary derivatives
for our second derivative of the performance measure and find
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∂yA
∂β

= eI1(t)

[
∂I1(t)

∂β
(yA0 + I2(t)) +

∂I2(t)

∂β

]
∂yB
∂β

= −∂yA
∂β

∂I1

∂β
=

∫ t

0

[
∆GABe

−β(t′)∆GAB + ∆GBAe
−β(t′)∆GBA

]
dt′

∂I2

∂β
= −

∫ t

0
e−β(t′)∆GBA−I1(t′)

(
∆GBA +

∂I1

∂β

)
dt′

∂2yA
∂β2

= eI1(t)

[(
∂I1

∂β

∂I1

∂β
+
∂2I1

∂β2

)
(yA0 + I2(t)) + 2

∂I1

∂β

∂I2

∂β
+
∂2I2

∂β2

]
∂2yB
∂β2

= −∂
2yA
∂β2

∂2I1

∂β2
= −

∫ t

0

[
∆G2

ABe
−β(t′)∆GAB + ∆G2

BAe
−β(t′)∆GBA

]
dt′

∂2I2

∂β2
=

∫ t

0
e−β(t′)∆GBA−I1(t′)

[(
∆GBA +

∂I1

∂β

)2

− ∂2I1

∂β2

]
dt′

(A.27)

If we evaluate the integral in Equation A.24 and can show that it is positive we found a
minimum.

In Figure A.3
∣∣∣∂2j2−state

∂β2

∣∣∣ and the integral over the whole time frame is shown for the

two state example in Chapter 5.1. One can see that the second derivative is positive and
therefor a minimum.
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A.3. Two state example: Sufficient condition for a minimum

Figure A.3.: Second derivative of the performance measure integrand with respect to
β. Here the absolute value of it is plotted. If we perform the integral we
get a positive value which means we found a minimum of the performance
measure J2−state. The red area is bigger than the blue area. Those areas
are distorted because of the logarithmic scaling of the y-axis.
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