TU

Grazm

Franz Mandl, BSc

Creating a Web Application to Visualize
Compiler Optimizations

Master’s Thesis
to achieve the university degree of
Master of Science

Master's degree programme: Computer Science

submitted to

Graz University of Technology

Supervisors

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa
Dipl.-Ing. Dipl.-Ing. Dr.techn. Roxane Koitz-Hristov, BSc

Institute of Software Technology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Graz, September 2022

This document is set in Palatino, compiled with pdfI&IEX2e and Biber.

The IXIEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid /LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TuGRAZOnNline is
identical to the present master’s thesis.

Date Signature

Abstract

Compilers are applications that translate code written in one language into
another, usually without a graphical user interface. Programmers are often
left in the dark about the internal workings of a compiler, such as code opti-
mization decisions. To address such issues, a research area emerged around
visualization applications for educational purposes. Students indicate that
they are more confident in the knowledge they have gained from using such
applications compared to using only written material.

In the scope of this thesis, we developed a web application to visualize
compiler optimizations called Visual Optimizer (VisOpt). We started by
analyzing similar, already existing applications in the field of compiler
visualization for computer science education. Based on the newly acquired
knowledge, we implemented VisOpt and released it as an open-source
project.

To measure the impact of VisOpt on student learning, we conducted a
controlled experiment using a pre-test-post-test design. Students of the
course “Compiler Construction” at Graz University of Technology could
participate in the experiment voluntarily. They were randomly divided into
an experimental group working with VisOpt and a control group.

The experiment led to the conclusion that using VisOpt in combination
with written material has the same effect on learning as using only written
material. However, students using VisOpt reported to be slightly more
confident about their level of competence and fully agree that using VisOpt
has improved their understanding of code optimization.

Contents

Abstract

1.

Introduction
1.1. Requirements
1.2. Outline o

Theoretical Background

2.1.
2.2,

Compiler
Code Optimization
2.2.1. Machine-Independent and Machine-Dependent Opti-
mization o Lo
2.2.2. Local and Global Optimization
2.2.3. Control Flow Graph
2.2.4. Algebraic Simplification
2.2.5. Common Subexpression Elimination
2.2.6. Constant Folding
2.2.7. Constant Propagation
2.2.8. Copy Propagation
2.2.9. Dead Code Elimination
2.2.10. Reductionin Strength
2.2.11. Execution Order of Optimizations

Related Work
XVPODB s

3.1.
3.2.
3.3.
3.4.

CLaX

The Feedback Compiler

CcNav

Vil

Contents

viii

Implementation
4.1. Getting the User’s Program
4.2. Visualize the Program
4.2.1. Flow Graph View
4.2.2. CodeViews
4.3. Getting the User’s Optimization Parameters
4.4. Visualize the Optimization.
4.4.1. Compiler Construction
4.4.2. Intermediate Representation
4.4.3. Visualization,
4.4.4. UserControl
45 Testing
4.6. Structure of the Project

Experiment

51. Design
5.2. Participants 0 0000000
5.3. Timetable
5.4. Pre-and Post-Test
5.5. Training Activities
56. Results
5.7. SUIVEY . . . o ottt e

Conclusion
6.1. ExperimentResults
6.2. Future Work

Pre-Test

. Code Optimization Theory

B.1. Local and Global Optimization
B.2. Control Flow Graph
B.3. Algebraic Simplification
B.4. Common Subexpression Elimination
B.5s. ConstantFolding
B.6. Constant Propagation
B.7. Copy Propagation

Contents

B.8. Dead Code Elimination 61

B.g. Reductionin Strength 62
C. Experimental Group’s Training Activity 63
D. Control Group’s Training Activity 69
E. Post-Test 71
F. Experiment Results &4
Bibliography 83

1. Introduction

Many researchers believe that visualization applications help to understand
the internal workings of algorithms or programs. The research field sur-
rounding the use of visualization in computer science education began in
1981 with the premier of the movie Sorting Out Sorting created by Baecker
and Sherman (1981). Since then, many visualization applications have been
developed, although some empirical research concludes that the use of
visualization as a teaching aid does not significantly improve student un-
derstanding (Binkley et al., 1998; P. R. Osztidn, Kétai, and E. Osztidn, 2020;
Stasko, Badre, and Lewis, 1993).

Nevertheless, the use of visualization applications in computer science
education increased over the years (Fouh, Akbar, and Shaffer, 2012). Some
applications visualize the internal workings of compilers, which serve as
the basis for this thesis. For example, Boyd and Whalley (1993) developed
an interactive visualization application that can be used as a teaching aid
for compiler courses. The idea was that students would learn for themselves
how a program gets optimized by showing the changes made to a program
during an optimization phase.

Five years later, a similar application was published by Binkley et al. (1998),
who also conducted an experiment with their application. The experi-
ment found that students” understanding of code optimization did not
improve significantly after using their application. Nevertheless, students
who learned with their application reported having more confidence in
their newly acquired knowledge than students who learned with written
material only.

Over the next few years, web browsers became more sophisticated, allowing
complex applications to run directly in the browser without the need to

1. Introduction

install additional software. Such a web application was developed by De-
vkota et al. (2020). It visualizes the correlation between the original source
code and the optimized machine code. By navigating through different
representation methods in multiple views, users can explore this correlation
for themselves.

The main goal of this thesis is the development of a new web application in
the field of compiler visualization for educational purposes called VisOpt.
It is based on several open-source web frameworks that allow us to create a
complex web application in a structured way, such as React (Meta Platforms
Inc., 2013) and Spring (VMware Inc., 2002). In addition to these frameworks,
our application contains a compiler based on ANother Tool for Language
Recognition (ANTLR) (Parr, 1992).

The second goal of this thesis is to measure the impact of using VisOpt
while learning code optimization. Therefore, we conducted an experiment
to determine whether using the application during learning significantly
improves students” understanding of code optimization.

1.1. Requirements

The resulting application is primarily intended to be used as teaching aid
in the course “Compiler Construction” at Graz University of Technology.
Therefore, several requirements were defined in advance:

* The resulting application should be web-based and not require the
user to install any additional software.

¢ The application should take a program written in a Java-like language
called Jova as input. A grammar definition of Jova already exists at
Graz University of Technology and is used by the application.

¢ For the visualization, a flow graph as well as an assembly language
for Java bytecode shall be used.

* The user should be able to enable and disable individual optimization
techniques.

* The user should also be able to navigate manually and automatically
through the single optimization steps transforming the program.

1.2. Outline

1.2. Qutline

The remainder of this thesis is structured as the research was conducted.

In Chapter 2 on page 5, we summarize the theoretical background of
code optimization that is necessary to understand and implement code
optimization for our application.

Next, we searched for related work in the field of compiler visualization
for computer science education, as described in Chapter 3 on page 17.
Therefore, we conducted an online search using the keywords compiler,
optimization, animation, and visualization. If there was an application
described in the found material, we tried to execute it. During this process,
we gathered useful information about how these applications work and
what capabilities they offer.

Then, we implemented our own application based on the newly acquired
knowledge using state-of-the-art web technologies, as described in Chap-
ter 4 on page 23.

In Chapter 5 on page 39, we describe an experiment to analyze whether the
newly implemented application is useful in computer science education.

Finally, we summarize the results of this thesis in Chapter 6 on page 47.

2. Theoretical Background

In this chapter we start with a general description of the structure of a
compiler. Then we give an overview of optimization techniques and explain
when they are performed during compile time.

2.1. Compiler

A compiler is an application that translates code written in a source language
into code written in some target language. Typically, a compiler is split into
an analysis part and a synthesis part (Aho et al., 2006).

Each part consists of phases in which the program is transformed from one
representation to another (Aho et al., 2006). The source code is basically a
character stream, which is also the first representation we encounter. The
lexical analysis phase takes the character stream as input and separates
it into tokens such as constants, keywords, operators, and identifiers. The
resulting token stream is passed as input to the syntax analysis phase, which
outputs a syntax tree. This syntax tree is then checked for type errors using
a symbol table in our semantic analysis phase, which is also the last phase
of our analysis part (Tremblay and Sorenson, 1985).

The next phase belongs to the synthesis part and uses the syntax tree and the
symbol table to generate an intermediate representation. To represent our
code, we can use three-address code. In three-address code, an instruction
has at most three operands.

In an optional optimization phase, the intermediate representation gets
transformed into a more optimized one. The resulting intermediate rep-
resentation is transformed into target code in the code generator phase.

2. Theoretical Background

Finally, the target code gets optimized again in a second optional optimiza-
tion phase, resulting in an even more optimized target code.

2.2. Code Optimization

The goal of code optimization is to generate improved code that performs
better on certain objectives. For example, some objectives might be code size,
execution speed, or power consumption (Aho et al., 2006). The behavior of
the program must be preserved during code optimization.

Code optimization distinguishes between machine-independent and machine-
dependent optimization as well as local and global optimization.

2.2.1. Machine-Independent and Machine-Dependent
Optimization

As the name implies, machine-independent optimization performs code
improvements without knowing which machine the code is running on.
Both the input and the output of a machine-independent optimization phase
is an intermediate representation. Machine-dependent optimization, on the
other hand, takes the machine type into account, resulting in optimized
target code.

In the scope of this thesis, we will focus only on machine-independent
optimization.

2.2.2. Local and Global Optimization
Local optimization improves code within a maximum sequence of consecu-
tive instructions, where the flow of control can only

(a) enter the sequence through the first instruction of the sequence and
(b) leave only through the last instruction of the sequence.

2.2. Code Optimization

Such a sequence of instructions is called a basic block. Only the last instruc-
tion in a basic block is allowed to be a halting, branching, or jumping in-
struction. Peephole optimizations are simple but effective local optimization
techniques that replace instructions within a small sequence of consecutive
instructions, also called a peephole, by only looking at the peephole (Aho
et al., 2006).

While local optimization only takes into account what happens inside a
basic block, global optimization on the other hand considers what happens
across basic blocks, e.g., by using a control flow graph.

2.2.3. Control Flow Graph

A control flow graph is a directed graph in which nodes represent basic
blocks and edges represent possible transfers of control between these basic
blocks (Shivers, 1991). To indicate the flow of control’s start and end, we
add two special nodes labeled ENTRY and EXIT.

The corresponding control flow graph of Listing 2.1 on the next page is
illustrated in Figure 2.1 on the following page using a node-link representa-
tion.

2.2.4. Algebraic Simplification

Algebraic simplification is an optimization technique that uses algebraic
laws to simplify code. For example, we use algebraic identities, such as

I+
= = O O

x =0+ x

Lo o - T o
Lol - T o

N ¥

to improve our code. We can use a peephole optimizer to search for such
instructions and eliminate them in the peephole, since the value of x remains
the same before and after such an instruction (Aho et al., 2006).

SO \O coN ol AW N R

2. Theoretical Background

int a, b;

a = 50;

b = 75;

if (a <b) {
if (a != o) {

print("true");

}

} else |
print("false");

}

a=a+ 1;

while (a > b) {
print ("while");
}

return o;

Listing 2.1: Example code written in Jova

ENTRY

int a, b;
a = 50;
b = 75;
if (a < b)

#T

| if (a != 0)

#T

| print("true");

L1 =~ 1 =

| print("false"); |

while (a > b) |

#T

| print("while");

-

return 0; |

EXIT

Figure 2.1.: Node-link representation of the
control flow graph of Listing 2.1

U~ W N R

2.2. Code Optimization

2.2.5. Common Subexpression Elimination

By eliminating common subexpressions, we can avoid unnecessary com-
putations that result in the same values (Aho et al., 2006). We introduce
temporary variables to store the results of these computations. For example,
applying this technique on Listing 2.2 results in Listing 2.3 .

a=3=x*4/ 2;
b = 3 % 4 % 2;
result = (a + 10) = (a + 10);

Listing 2.2: Example code before common subexpression elimination

tmp1 = 3
a = tmp1
b = tmp1 2;
tmp2 = a 10;
result = tmp2 * tmp2;

4;
2;

+ xS ¥

Listing 2.3: Example code after common subexpression elimination

To identify common subexpressions, we need to transform a basic block
into a Directed Acyclic Graph (DAG). Similar to a syntax tree, the leaves in
a DAG correspond to atomic operands while interior nodes correspond to
operators (Aho et al., 2006). While creating a DAG, we need to keep track of
which branches compute the same values and link them accordingly. A node
in a DAG has more than one parent if the node is a common subexpression.
Figure 2.2 on the next page shows an example of a syntax tree and the
corresponding DAG.

2.2.6. Constant Folding

Folding constants means that constant expressions are evaluated at compile
time and replaced with their constant value (Aho et al., 2006). For example,
we may replace the expression 2 * 3 + 4 with 10. We can use a peephole
optimizer to search for such expressions and replace them in the peephole.

2. Theoretical Background

L — result

(a) Syntax tree (b) DAG

Figure 2.2.: Syntax tree and DAG for basic block in Listing 2.2 on the previous page

Since we are not allowed to change the behavior of the program, we must
be careful about overflows and underflows. We need to evaluate them at
compile time just as they are evaluated at runtime. Also, we cannot fold
expressions that would raise an error at compile time, like 1 / 0, and leave
them unchanged in the program.

2.2.7. Constant Propagation

We can replace variable references by constant values if that variable always
has the same constant value at this point in the code (Aho et al., 2006). For
example, in Listing 2.4 we may replace variable i with the value 2, resulting
in Listing 2.5 .

i = 2;
result = 1 %= 1 + i;
Listing 2.4: Example code before constant propagation
i = 2;
result = 2 = 2 + 2;

Listing 2.5: Example code after constant propagation

10

2.2. Code Optimization

Constant propagation is a local optimization and is therefore applied to a
basic block. While iterating over all instructions in a basic block, we associate
a variable with a value when we encounter an assignment of a constant
value. Further usages of this variable are then replaced by the constant value
until it is reassigned.

2.2.8. Copy Propagation

The idea behind copy propagation is that after an assignment (or copy)
statement u = v, we may use v over u afterwards (Aho et al., 2006). For
example, using variable i over copy in Listing 2.6 results in Listing 2.7 .

copy = i;
result = copy * copy + copy;

Listing 2.6: Example code before copy propagation

[

copy = i;
result = i = i + 1i;

Listing 2.7: Example code after copy propagation

Copy propagation is like constant propagation, except that we associate a
variable with another variable when we encounter a corresponding assign-
ment.

2.2.9. Dead Code Elimination

The elimination of instructions that compute values that are never used is
called dead code elimination (Aho et al., 2006). A variable is dead at a point in
a program if the value of a variable is not accessed before the next time it
gets assigned. We may eliminate assignhments to dead variables. If the value
of a variable may get accessed later in another basic block, we call it live on
exit.

11

S W N R

2. Theoretical Background

Applying dead code elimination on Listing 2.8 with variable b live on exit
eliminates the first assignment of b as well as the assignment of ¢ as shown
in Listing 2.9 .

201;
302;
a * 2;
a + 3;

o n oo

Listing 2.8: Example code before dead code elimination

201;
a+ 3;

Listing 2.9: Example code after dead code elimination

Live-Variable Analysis

To determine whether a variable is live or dead on exit, we analyze the flow
of data along execution paths. Since we cannot keep track of all program
states along all possible paths, we abstract out certain details we need for
our analysis (Aho et al., 2006).

In live-variable analysis, we are interested in the assignments and usages
of variables in a basic block. Therefore, we associate four sets to each basic
block B:

* defp contains variables that get assigned in B before any usage of that
variable in B (Aho et al., 2006).

* usep contains variables whose values may be used in B before any
assignment of that variable in B (Aho et al., 2006).

* IN[B] contains live on entry variables of B.

e OUTIB] contains live on exit variables of B.

To compute the IN and OUT sets for each basic block, the algorithm shown
in Figure 2.3 on the facing page can be used. The algorithm takes the control
flow graph with the def and use sets already computed for each basic

12

U~ W N R

2.2. Code Optimization

for each basic block B do

1:

2: IN[B] =@

3: end for

4: while changes to any IN occur do

5: for each basic block B other than EXIT do
6: OUTIB] = Us a successor of 8 IN[S]

7: IN[B] = useg U (OUTI[B] \ def3)

8: end for

9: end while

Figure 2.3.: Iterative algorithm to compute live variables (Aho et al., 2006)

block as input. After the IN and OUT sets have converged, the OUT sets
contain the live on exit variables for each basic block. Since we only add
variables to the IN and OUT sets and never remove variables, they converge
eventually.

This algorithm is also called flow propagation algorithm, since information is
propagated in reverse order along the edges of the control flow graph. In
our case, the flow information is a finite set of the variables, so the algorithm
converges in polynomial time (Tonella and Potrich, 2005).

Unreachable Code Elimination

Unreachable code is code that never gets executed at runtime under any
circumstances (Debray et al., 2000). Therefore, we can eliminate it during
compile time. For example, in Listing 2.10 we may eliminate the else branch
by replacing the entire if-then-else statement with the print statement in the
then branch.

if (true) {
print ("then branch");
} else |

print ("unreachable else branch");

}

Listing 2.10: Example code before unreachable code elimination

13

2. Theoretical Background

2.2.10. Reduction in Strength

Replacing more expensive operators with cheaper ones is called reduction
in strength (Aho et al., 2006). For example, a multiplication or division by a
power of two can be replaced by a cheaper addition or bit shift operation,
such as:

X *x 2 X + X 2 % x =X+ x
X *x 4 X «€ 2 4 *x x X € 2
x/ 4=x>»2

We can use a peephole optimizer to search for such instructions and replace
them in the peephole with cheaper instructions.

2.2.11. Execution Order of Optimizations

We have discussed several optimization techniques so far, but we need to
combine them to optimize a program. Therefore, we need to decide in which
order to apply them.

By starting with copy propagation, we replace variables with other variables,
thus reducing the number of different variable usages. By applying constant
propagation next, we might reduce the total amount of variable usages.
Now that there are fewer variable usages and more constant values, this is
a good opportunity to apply constant folding. As more complex constant
expressions have been evaluated, we next perform algebraic simplification
and reduction in strength. Before eliminating common subexpressions, we
tirst eliminate dead code, since we do not want to introduce unnecessary
temporary variables. Last, we apply common subexpression elimination.

In conclusion, we used the following order of applying optimizations on a
program:

1. Copy Propagation

2. Constant Propagation
3. Constant Folding

4. Algebraic Simplification
5. Reduction In Strength

14

2.2. Code Optimization

6. Dead Code Elimination
7. Common Subexpression Elimination

We apply this sequence to each basic block one after the other. We repeat this
until there is nothing left to optimize and the intermediate representation
of the program does not change.

15

3. Related Work

There exists a considerable amount of related work in the field of compiler
visualization. They often describe applications specially designed for com-
puter science education. In this chapter, we summarize the key findings
from the related work that most influenced this work.

3.1. XVPODB

The X-windows Very Portable Optimizer DeBugger (XVPODB) is a graphi-
cal optimization viewer developed by Boyd and Whalley (1993). It visualizes
optimizations performed by the Very Portable Optimizer (VPO) developed
by Benitez and Davidson (1988). VPO and XVPODB run in separate pro-
cesses, with VPO running in debug mode, allowing XVPODB to control
execution and access internal data structures via Unix sockets (Boyd and
Whalley, 1993).

VPO uses Register Transfer Lists (RTLs) as intermediate representation,
which is also used for visualization by XVPODB. For example, the RTL of
a register-to-register integer addition is r[1] = r[1] + r[2] (Benitez and
Davidson, 1988).

VPO uses different optimization phases to transform the program into a
semantically equivalent but optimized program (Boyd and Whalley, 1993).
For example, one such optimization phase is common subexpression elimi-
nation. In general, an optimization phase consists of one or multiple smaller
transformations. Such smaller transformations include adding, replacing, or
removing one or more lines of code.

17

3. Related Work

[¢] YPO Optimization Viewer [®] VPO Optimization Viewer
Function | cal(}] [(BEFORE | Trans Hunber Function | cal()] [CAFTER | Trans Munber
Opt Phase | Strength Reduction] Highlighted Total 276 Opt Phase | Strength Reduction | Highlighted Total 276
| R | | NI |
| rror=reodess | | rron=rrtonss |
10 [L102 10 [L102 R
IC=r{1017r[18]; IC=r[1017r (18]
PL=1C<0, L1038 PC=10<0,L103;
111101 11101
ri91=7; 917
rI8)=r(1613 rl16] rI81=r[16]; rl16]
r(81=UCL . rem,r(81,r[911; rL9] rI81=UCLrem, r[8],r{9]): r(9]
r[19]=r

rl16. 221+r[8]: r(8Ir[22]

r[171=1
r[8)=HI_non);
rI81=r[81+LOL_nonl; 71l
rIB1=(BIr[181+r[B]1424)}24; rL8I=HIL_non):
IC=r[17170[8) r[81=r[81+L0C_mon]:
PL=IC>0,L93; r(8]=(BLr[18)+r[81124)324;
J [E=r{1717rL81;
| 12 Loo1 | PC=IC>0,L93;
| riz21=H1C_non1; | T
J | 12 Loo |
J=Tue] | re2ei=Hit_noni; |
Options Options
Set/List/Delete Set/List/Delet.
Breakpoints << < > >> EBre;ﬁpoi:t‘s! © << < > >>
@[Wl | @Ol __welp]
(a) Before state (b) After state

Figure 3.1.: Screenshot of XVPODB’s main window during a reduction in strength (Boyd
and Whalley, 1993)

XVPODB visualizes them by showing the program before and after such a
transformation. The main window of XVPODB is shown in Figure 3.1 and
is divided into three sections.

The top section shows which method is currently being optimized, which
optimization phase caused the current transformation, whether we are
before or after the current transformation, how many lines of code are
currently affected, the number of the current transformation, and how many
transformations there are in total.

In the middle section, the user can see the control flow graph as node-link
representation, where each node contains RTL code of the corresponding
basic block. Lines of code that are changed by the current transformation are
highlighted. Highlighted lines before a transformation get removed, while

18

3.2. CLaX

highlighted lines after a transformation were either inserted or altered (Boyd
and Whalley, 1993).

The bottom section allows the user to control the visualization via buttons.
Clicking the step forward button (>) takes us from the before state of
a transformation (Figure 3.1a on the preceding page) to its after state
(Figure 3.1b on the facing page).

Clicking the same button again changes from the after state to the before
state of the next transformation and so on. The step backward button
(<) leads in the opposite direction. XVPODB also allows the user to set
breakpoints when a certain event occurs, e.g., the current transformation has
a certain number. Clicking the continue forward (>>) or continue backward
(<<) button continues the optimizer until the start, end, or a breakpoint is
reached.

Unfortunately, we were unable to run XVPODB ourselves because the official
download link (Florida State University, 1993) is no longer reachable and
no other copies could be found elsewhere.

3.2. CLaX

CLaX is a visualized compiler developed by Sander et al. (1995). It visual-
izes internal data structures after different compiler phases. These are, for
example, a syntax tree, a control flow graph, and a data dependency graph.
It supports different layouts to visualize graphs. For example, a Manhattan
layout can be used where all edges consist of horizontal or vertical line
segments. To overcome the problem of limited screen size, a fisheye view
can be used that distorts large graphs to fit inside the viewport (Sander

et al., 1995).

19

3. Related Work

3.3. The Feedback Compiler

The feedback compiler was developed by Binkley et al. (1998) and provides
information from a compiler’s backend. This information is subsequently
used for visualization. Figure 3.2 shows the feedback compiler during
common subexpression elimination.

Binkley et al. (1998) conducted a controlled experiment to measure whether
visualization helps students understand common subexpression elimination.
First, all students had to attend a 10-minute long video lecture on common
subexpression elimination, followed by pre-test to measure their understand-
ing. Afterwards, all students had to read a prepared text about common
subexpression elimination for 25 minutes. They were then divided into
an experimental group and a control group. The control group continued
reading and worked on some code examples, while the experimental group
used the feedback compiler to examine some code examples for 30 minutes.

Polka Control Panel _|O] x| Polka Control Panel O] x|
_start | Step| Slow I [Fast uit| Start | Step| Stow TS Fast uit
Samba =] P4 Samba O] x|
main () ain ()
{
int a, b, ¢, d = v int a, b, ¢, d, x ¥
a=5; a=25;
@tem]{l =a+1; Btempl = a + 1;
hb=a+1; b = @templ;
x = 42; x = 42;
c=a+1 c=a+1;
a = 52; a = 52;
d=a+1; d=a+1;
v =67/ (a+1); y=67/ (a+1);
} i
A »| 3| Al 1 out] Refresh| Close| «f » ¥| Al In| 0w Refresh| Close
(a) Before elimination (b) After elimination

Figure 3.2.: Screenshot of the feedback compiler during a common subexpression elimina-
tion (Binkley et al., 1998)

3.4. CcNav

Finally, all students completed a post-test in which three questions were
carried over from the pre-test, three questions were about already known
code examples, and three questions were completely new to all students.

Binkley et al. (1998) concluded that there was no significant difference
between the two groups and that students using the feedback compiler
performed just as good as those who read only the written material. Another
finding was that the experimental group had more confidence in their newly
acquired knowledge than the control group.

3.4. CcNav

Compilation Navigator (CcNav) is a browser-based client-server application
developed by Devkota et al. (2020). CcNav does not optimize code by
itself. Instead, it tries to visualize what an external optimizer has done.
Therefore, it needs a compiled binary file and its corresponding source code
file as input. Then, the correlation between the original source code and
the disassembled code of the executable file is displayed. For this purpose,
multiple views are used, such as an original source code view, a control
flow graph view, and a disassembled code view, as shown in Figure 3.3 on
the following page. Users can then navigate through CcNav on their own.
When a user clicks on an element in one view, the other views also switch
to the corresponding program location.

CcNav was developed together with experts in the field of high-performance
computing. To run it, we need to follow the installation instructions using
Docker on the project page (Devkota et al., 2019).

21

3. Related Work

SubEnterExec x

Enter executable input dir /
name:

(for example /g/g@/pascal/inputs
/1/a.out)

7 /home/ccnavuser/a3.out

H

7 /home/ccnavuser/CcNav/misc/sam

Highlighteditems =

Selected Source Code:

Selected Assembly:

Selected Graph Nodes:

VarRenamer x

Variable renamer:
Function: main

Variables:
| Add Variable |

FnLoops x Sourct

(Reset |

mmm.nj Function.. _ 1:
Function Inlining Tree 2: #i

targ520
_start

3: #i
4: #ii

5:

in

deregister tm_clones _

register tm clones _

~do global dtors aux _

sourced
loopme

frame_dummy

sourcel

loopmel

amw:d_

~ libc csu init

__libc_csu_fini

fini

eCode x

nclude <stdio.h>
nclude "sourcef.c"

nclude "sourcel.c"
t main() {
sourced();
sourcel();

printfi"hello world\rin");

return @;

Disassembly x CallGraph x

0x6fl: pop %rbp |ao|a§rm~|&uqmlm:x_

0x6f2: ret near (%rsp) 1, @ \ /

B46

0x700: push %r15 targ520 deregister_tr

0x702: push %rl4

0x704: mov %rdx,%rls

0x707: push %rl3

0x709: push %rl2

0x70b: lea 0x2006a6(%rip),%rl2

0x712: push %rbp

0x713: lea 0x2006a6(%rip),%rbp

0x71a: push %rbx

0x71b: mov %edi,%rl3d

0x71e: mov %rsi,%rld

0x721: sub %rl2,%rbp

0x724: sub $0x8,%rsp S 3

0x728: sar $0x3,%rbp @zmﬁmm..ﬂo: Mode
() selection Mode

0x72c: call exfffffdbci(®rip) 1,

B47

0x731: test %rbp,%rbp

0x734: jz ex22(%rip) 1, @

B48

0x736: xor %ebx, %ebx

0x738: nop Ox@(%rax,%rax,l) 1,

B49

0x740: mov %r15,%rdx

0x743: mov %rld4, %rsi

0x746: mov %ri13d,%edi

0x749: call ex0(%rl2,%rbx,8) 1,

B50

Figure 3.3.: Screenshot of CcNav (Devkota et al., 2020)

22

4. Implementation

From the user’s perspective, the application has to perform the following
tasks:

1. Let the user input arbitrary programs (see Section 4.1 on the next
page)

2. Visualize the program (see Section 4.2 on page 26)

3. Let the user specify optimization parameters (see Section 4.3 on
page 28)

4. Visualize the optimization (see Section 4.4 on page 28)

According to the requirements defined in Section 1.1 on page 2, the result-
ing application has to be a website used by students to learn about code
optimization. Therefore, we need a web server to serve static Hypertext
Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript
files. This web server is written in Kotlin (JetBrains s.r.0., 2011) and uses
Spring (VMware Inc., 2002) to handle Hypertext Transfer Protocol (HTTP)
requests.

To reduce the workload on the server, we implemented the business logic for
code optimization and visualization on the client side. Nowadays, there exist
a variety of JavaScript libraries for building applications on the client side.
React (Meta Platforms Inc., 2013) is one of them and was chosen because it
already exists for many years and has a large community behind it.

Since JavaScript is not a strongly typed programming language, the entire
client logic is implemented in TypeScript (Microsoft Corporation, 2012)
and Kotlin. Nevertheless, the client source code needs to be compiled to
JavaScript because browsers do not understand these languages. Advanta-
geously, many type errors are already found during this compilation.

23

4. Implementation

4.1. Getting the User’s Program

Users who visit our website automatically land on the input page shown
in Figure 4.1 on the facing page. The input page consists of a large text
area where users can enter arbitrary Jova code and a sidebar on the right
containing a general description of Jova.

Jova is an object-oriented programming language similar to Java. It was
designed for educational purposes and has some differences to Java. There
are no packages and all classes and their methods are in a single source file.
Every method has to return a value by having a return statement at the end
of a method body. The declaration of local variables is only allowed at the
beginning of a method body.

Since VisOpt has a built-in compiler, users only need to provide the source
code as input, unlike CcNav (Devkota et al., 2020), where users also need to
provide the optimized machine code.

As suggested by Saraiya et al. (2004), the text area already contains a sample
program to help new users get started quickly. Users familiar with Visual
Studio Code will recognize the look and feel of the text area as both use the
Monaco Editor (Microsoft Corporation, 2015).

The sidebar also contains a start button. When we click the start button, the
content of the text area is sent to the server. This in turn performs the lexical,
syntactical, and semantical analysis of the program using ANTLR (Parr,
1992). In case of an error, the server responds an error report containing an
error message and the exact code location that caused the error. Otherwise,
the server responds with the syntax tree of the program.

While the client is waiting for the server’s response, a loading indicator
is displayed. In case of an error response, the error report is shown on
the sidebar and the user has to fix the errors before they can continue.
Otherwise, the input page gets replaced by the visualization page where
the program is visualized.

24

4.1. Getting the User's Program

[-- RN - T I i

class Example {
public int publicMember;
private String privateMember;

public int flowGraph() {

int a, b;

a = 5@;

b = 75;

if (a < b) {
if (a 1= @) {

print("true\n");

}

} else {
print("false\n");

}

a=a+1;

while (a = b) {
print("while\n");
}

return @;

VisOpt
Visual Optimizer

Please insert some Jova code or use the provided
example code.

Jova is an educational programming language
which is similar to Java, but with several limitations.
It is object-oriented and can be compiled to Java
bytecode.

The main differences between Java and Jova are:
« nullis called nix inJova.
void does not exist.

.

Variable declarations are only allowed at the
top of a method body.

return is only allowed at the bottom of a
method body.

new Example invokes the default constructor.

.

.

.

new Example(..) invokes a declared constructor,
as inJava.

There are no packages and all classes are in
one source file.

static does not exist, so the optional entry
paoint of the program has to be a method called
main that takes no arguments and returns an
integer, inside a class called Main that contains

.

.

only the main method.

Jova has the following built-in functions:
* print(..) either prints a boolean, an integer or
a string on standard output.
+ readInt() reads an integer from standard
input.
+ readString() reads a string from standard
input.

Figure 4.1.: Screenshot of the input page of VisOpt

25

4. Implementation

4.2. Visualize the Program

The visualization page consists of a visualization area displaying a selected
method and a sidebar on the right, as shown in Figure 4.2b on the next
page. Using the sidebar, the user can return to the input page, redo or undo
optimizations, change the view of the program, and start an optimization.
The application can view the selected method as flow graph or as code.

4.2.1. Flow Graph View

The flow graph view is the default view and uses a node-link representation
to show the control flow graph of the selected method.

Nowadays there are many third-party libraries to draw graphs on websites.
In contrast to these, one could calculate the positions of nodes and arrows
by hand. However, we choose a middle way between these two extremes.

There exists a relatively new CSS layout called grid (Atkins et al., 2020) that
is supported by most modern browsers. We use a 3 x 2n grid, where n is the
number of nodes in our flow graph. In the first column we place our upward
pointing arrows. The second column contains our nodes and straight arrows.
In the third column we place our downward pointing arrows. To draw the
arrows, we use Scalable Vector Graphics (SVG). By intelligent merging and
stacking of cells over each other, we can draw the flow graph while the
browser does most of the position calculations for us. The only calculation
we have to do ourselves is the curvature of the arrows. In Figure 4.2 on
the facing page we see an example of the underlying grid layout and the
resulting flow graph. Just like in XVPODB (Boyd and Whalley, 1993), all
nodes have the same width and contain code instead of short labels as in
CcNav (Devkota et al., 2020).

This approach makes us independent of third-party libraries and at the

same time relieves us of the need to perform pixel-precise calculations for
different screen sizes.

26

4.2. Visualize the Program

3/4

4/9
6/11
8/11
o
—
—
13/16
14117

)

10

1n

12

13

14

15

16

17

18

19

20

(a) Grid layout

ENTRY

«Back w=Undo ~Redo

Flow Graph Jova Jasmin

int a, b;
a = 50; Method
b = 75;
if (a < b) Example.flowGraph() v
¢T F Optimizations
All optimizations
if (a = @) Algebraic Simplification

b

Common Subexpression Elimination
Constant Folding

print("true\n");

Constant Propagation
Copy Propagation

Dead Code Elimination

print("false\n");

Reduction in Strength

Three-Address Code
Transform to Three-Address Code first

Live on Exit

All variables
azint

b:int

while (a > b)

¢T

print("while\n");

return 0;

Visualization

EXIT

Show each transformation step
Automatically scroll to changes

Start Optimizer

(b) Screenshot

Figure 4.2.: Grid layout and screenshot of the visualization page using the flow graph view

27

4. Implementation

4.2.2. Code Views

There are two code views supported by the application: Jova and Jasmin.
In the Jova view, the selected method is displayed as Jova code. Using this
view, users can easily recognize their input code just like the source code
view in CcNav, because it looks almost the same as on the input page.

The Jasmin view, on the other hand, shows the compiled assembly code
like the disassembly view in CcNav. Jasmin (Meyer, 1996) is an assembly
language for Java bytecode that uses a local array for local variables and an
operand stack instead of registers. The view is shown in Figure 4.3 on the
next page.

4.3. Getting the User’s Optimization Parameters

The optimizer needs to know the name of the method the user wants to opti-
mize, which optimizations are enabled, and which variables are live on exit.
Since three-address code is a commonly used intermediate representation
in compilers, there is also an option to visualize the transformation to three-
address code. Setting certain variables live on exit affects the live-variable
analysis described on page 12, because IN[EXIT] is initialized with these
variables. Users can set these parameters in the sidebar of the visualization
page. Clicking on the start button activates the interactive visualization of
the optimization.

4.4. Visualize the Optimization

This is the most challenging task that our application has to perform. De-
pending on the input program and optimization parameters, we want to
show how the program is optimized. We have to visualize seven different
optimization techniques (Algebraic Simplification, Common Subexpression
Elimination, Constant Folding, Constant Propagation, Copy Propagation,
Dead Code Elimination, and Reduction in Strength) which can be enabled

28

4.4. Visualize the Optimization

.method public flowGraph()I
.limit stack 2
.limit locals 3
ldc @
istore 1 ; a
ldc @
istore
ldc 58
istore
ldc 75
istore 2 ; b
iload 1 ; a
iload 2 ; b
if_icmplt REL2THEN
ldc @
goto RELZEND
REL2THEN:
ldc 1
REL2END:
ifeq L4
iload 1 ; a
ldc @
if_icmpne REL1THEN
ldc @
goto REL1END
REL1THEN:
ldc 1
REL1END:
ifeq L5
getstatic java/lang/System/out Ljava/io/PrintStream
ldc "true\n"

8}
o

[
w

invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

goto L5

L4:
getstatic java/lang/System/out Ljava/io/PrintStream
1dc "false\n"

invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

L5:
iload 1 ; a
Tldc 1
iadd
istore 1 ; a
L6:
iload 1 ; a
iload 2 ; b
if_icmpgt REL3THEN
ldc @
goto REL3END
REL3THEN:
ldc 1
REL3END:
ifeq L8
getstatic java/lang/System/out Ljava/io/PrintStream
ldc "while\n"

invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

goto L6
La:
ldc @
ireturn
.end method

«Back & w=Undo = ~~Redo

Flow Graph Jova

Method

Example.flowGraph() v

Optimizations
All optimizations
Algebraic Simplification
Common Subexpression Elimination
Constant Folding
Constant Propagation
Copy Propagation
Dead Code Elimination
Reduction in Strength
Three-Address Code
Transform to Three-Address Code first
Live on Exit
All variables
axint
brint

Visualization
Show each transformation step
Automatically scroll to changes

Start Optimizer

Figure 4.3.: Screenshot of the visualization page using the Jasmin view

29

4. Implementation

or disabled individually. Some of those use internal data structures that also
need to be visualized.

4.4.1. Compiler Construction

Before we can start with the visualization we have to implement a compiler
as already described in Section 2.1 on page 5. The source language of our
compiler is Jova. Just implementing all compiler phases is not sufficient
because we also have to visualize what happens during the optimization
phase. We can achieve this by recording information while it performs the
optimization and use this information later for visualization (Binkley et al.,

1998).

As already mentioned, we want to keep the workload on the server side
as low as possible. Therefore, we will perform the analysis part and inter-
mediate code generation phase on the server side. The code optimization
and generation phase take place in the browser on the client side. To send
the intermediate representation to the client, we need to add two additional
compiler phases: a serialization and deserialization phase.

Our compiler translates into multiple target languages, since there are three
different views. Therefore, having a well-designed intermediate representa-
tion is essential.

4.4.2. Intermediate Representation

Our intermediate representation must be able to be visualized as a control
flow graph and translated into Jasmin and Jova code. To translate it into Jova
code, our intermediate representation has to preserve as much information
as possible from the source code. Therefore, it is hierarchically designed like
a syntax tree:

* A program consists of classes.

e (Classes consist of constructors, members, and methods.
Each constructor or method has a body.

A body has exactly one compound.

30

4.4. Visualize the Optimization

Compounds consist of compound statements.

Each compound statement can be either an if-then-else statement, while
statement, return statement, or a basic block.

An if-then-else statement consists of a basic block and one or two com-
pounds representing the branches.

A while statement consists of a basic block and one compound, while a
return statement only consists of a basic block.

Each basic block consists of basic statements.

Basic statements can be either an assignment or a bare expression.

An expression may consist of sub expressions.

We can easily program such a hierarchy using Kotlin’s sealed classes. With
Kotlin’s serialization library (JetBrains s.r.0., 2017), we can simply encode
and decode instances of our intermediate representation as JavaScript Object
Notation (JSON) and send them over a network connection.

4.4.3. Visualization

To visualize a sequence of optimization steps, the compiler has to record
commands while it performs the optimization (Binkley et al., 1998). Analyz-
ing all optimization techniques led to the conclusion that we can visualize
them all with six commands:

Add basic statement: Adds a statement at a specified position in a
basic block.

Remove basic statement: Removes a statement at a specified position
in a basic block.

Remove compound statement: Removes a statement at a specified
position in a compound.

Replace basic statement: Replaces a statement with another statement
at a specified position in a basic block.

Replace expression: Replaces an expression with another expression
within a basic statement or expression.

Take branch: Replaces an if-then-else statement with a branch.

Each optimization is a sequence of these commands. In Table 4.1 on the next
page we can see which optimization requires which commands.

31

4. Implementation

c S c
S 2 = S <
=1 S 3 8 w50 g
ol.g & = c g
= | = 50 « c B o o
=S| = Q. [eYo) o] L)
g a5 5 = £ i .
(4] —_—
& E < S & % o c o O
@) CF) o) c) = < . g i
= nEg = A~ o J < °
el .9 S = e o S O g o]
Sl 8% € ¢ & 2 B<
- = E (o < < R~ o O «)
o) o= - - Q
=3 s ® = T©W 5 28
o EE 5 B B § g EZ
Command < OH O U U A EE
Add basic statement v v
Remove basic statement v
Remove compound statement v
Replace basic statement v
Replace expression | v/ v v v VY v v
P P
Take branch v

Table 4.1.: Command usage of code transformations

Each command requires parameters that specify what was changed in the
intermediate representation and the location of the change. We need to
implement a command executor to avoid having to keep a copy of the
intermediate representation in memory after each command. To remember
where a change occurred in our intermediate representation, each entity
needs to be addressable. An address consists of the type of the entity and
a unique combination of indices leading to the entity. An example of how
entities are addressed is show in Figure 4.4 on the facing page.

The address information is also used to highlight a code change. To make
it easier to track changes, the visualization first scrolls to the position
where a change is going to take place. Only in the next step the change is
applied. This divides each command into a before and after step, turning
our sequence of commands into a sequence of steps.

To help the user understand why a particular code change was made,
we display the exact reason and current state of an important internal
data structure used by the optimizer on the right-hand side of the screen.

32

4.4. Visualize the Optimization

class Example {
public int publicMember;
private String privateMember;

public int flowGraph() {

|€«—Program
int a, b; < Body Example.flowGraph()
g = 32' ompound []
if_(a < b) { < Compound 1t[]/0
ompound [0,0]
if (a 1= 0) { ompound 1t [0,0)/0
: m e € ompound [0,0,0,0]
[print("truewnt)]4 ‘ ompound 1t [0,0,0,01/0

}
} else { <—Compound Statement []/0

lprint("false\n");] « ompound [0,1] | int a, b; | < Basic Block

< ompound 1t [0,1]/0 < Basic Statement 0
3 a = 50; < Basic Statement 1
[a =a+1; }4 Compound it[)1 b = 75; < Basic Statement 2
while (a > b) { ompound [12 - P < Basic Statement 3
T - ‘4 ompound [2] if (|a_,) {
l print("while\n"); L ompound 210
< 1t
} [Jet—comomnana
lreturn o; }4 ompound t[1/3 } else {
[Je—compmunapoa
}
} }
(a) Program (b) Compound Statement []/o

. Expression 0/[0]
Expression 0/[]

v ' €—Basic Statement 3

|
é = ; «—Basic Statement 1 IEI < IEI Expression 0/[]
A
|

A

Expression 1/[] Expression 0/[1]
(c) Basic Statement 1 (d) Basic Statement 3

Figure 4.4.: Example addresses of entities in the intermediate representation

33

4. Implementation

Figure 4.5 on the next page shows how a command caused by a constant
propagation is visualized. The symbol table, which maps variables to values,
is an important data structure during constant propagation and is shown in
the sidebar on the right.

4.4.4. User Control

Users should be able to navigate through a sequence of steps at their own
pace, as they learn at different rates (Saraiya et al., 2004). Therefore, the
user can navigate through the sequence of steps using pagination buttons.
Clicking on the step forward (>) or step backward (<) button, the application
jumps to the previous or next step, respectively. It is also possible to jump
to the first or last step by clicking the continue forward (») or continue
backward («) button. These buttons allow users to repeat the sequence until
they fully understand the optimization performed by the compiler (Binkley
et al., 1998).

To meet the requirements, we also need to implement a mode where the
application automatically jumps through the sequence of steps at a certain
pace. Therefore, a play/pause button and a speed slider were added to
control automatic jumping.

4.5. Testing

To test the compiler extensively, we prepared 2150 test cases from different
sources. 1739 test cases were written by the study assistants of the course
“Compiler Construction” at Graz University of Technology in the summer
semester 2022. 318 test cases were written by the students of group 1 of the
“Compiler Construction” practicals at Graz University of Technology in the
summer semester 2020. The remaining 93 test cases were written by the
author of this thesis. Using JUnit (The JUnit Team, 2000), the compiler gets
automatically tested, leading to a code coverage of 87% of all lines.

34

4.5. Testing

ENTRY

int a, b;

a = 50;

b = 75;

if (a < b)
iT

if (a != 0)

iT

print("true\n");

print("false\n");

v

a=a+1;

)

while (a > h)

lT

print("while\n");

return @;

EXIT

Flow Graph Jova Jasmin

Next Transformation:

Constant Propagation

Replace a
with 50

because symbol was found in symbol table

Symbol table at this line:

Symbol Value
a 50
b 75
Step 1 of 21

Speed: 0.5 Steps/sec
®

Automatically scroll to changes

oafan

Figure 4.5.: Screenshot of the visualization page during an optimization using the flow

graph view

35

4. Implementation

4.6. Structure of the Project

The source code of VisOpt is publicly available at
https://github.com/franzmandl/visopt.

The repository contains the source code of the compiler and the web client.
Since most of the test cases, especially those written by study assistants,
were not allowed to be published, there exists also a private repository
containing these test cases.

The compiler is a Kotlin Multiplatform (JetBrains s.r.0., 2022) project that
contains three software modules. A server module contains the lexical,
syntactical, and semantical analysis and runs on the Java Virtual Machine.
Another module compiles to JavaScript and serves as an interface between
Kotlin and TypeScript code. The largest module contains code shared by
client and server, such as the intermediate representation, the code optimizer,
and the code generator. It is also responsible for recording visualization
commands during code optimization.

The web client contains the user interface and is based on Create-React-
App (Meta Platforms Inc., 2016). It depends on some modules of the com-
piler project, because it needs the recorded visualization commands for
visualization. An overview of all software modules is shown in Figure 4.6 on
the facing page.

36

https://github.com/franzmandl/visopt

4.6. Structure of the Project

Path: compiler/src/commonMain

Contains: Optimizer, JSON En-/Decoder,
Intermedate Representation

Written in: Kotlin

Depends on: kotlinx-serialization-json

Lines of code: 5324

compile dependency

A

compile dependency

Path: compiler/src/jsMain
Contains: Facade

Written in: Kotlin, JavaScript
Lines of code: 318

Figure 4.6.: Dependencies between the software modules of VisOpt

Path: compiler/src/jvmMain
Contains: Lexer, Parser,
Type Checker,
HTTP Server
Written in: Kotlin, Java
Depends on: ANTLR, Spring
Lines of code: 1270

runtime dependency

Path: web/src
Contains: User Interface,
HTTP Client

compile dependency Written in: TypeScript

Depends on: React, ...
Lines of code: 3438

Server

Client

37

5. Experiment

This chapter describes the design and evaluation of an experiment con-
ducted for this thesis. The goal of the experiment was to determine whether
using VisOpt significantly improves students” understanding of code opti-
mization.

5.1. Design

For our experiment, we use a pre-test-post-test design as described by
Dimitrov and Jr. (2003) and performed by Binkley et al. (1998). Generally,
a pre-test-post-test design is used to measure the change between two
points in time resulting from a treatment. Therefore, a sample of individuals
is divided into several groups, and all groups perform a pre-test and a
post-test. Between pre- and post-test, at least one group is exposed to the
treatment and compared to at least one control group that did not receive
the treatment. The difference between the groups of the pre- and post-test
results can then be analyzed using statistical methods (Dimitrov and Jr.,
2003).

5.2. Participants

The participant in our experiment were students attending the Compiler
Construction course at Graz University of Technology. Participating in
the experiment was voluntary, but participants received bonus points for
their upcoming Compiler Construction exam. The entire experiment was

39

5. Experiment

conducted online. By completing the online pre-test, students were automat-
ically registered for the experiment. Only after the pre-test, the participants
were randomly divided into two groups. The experimental group used
VisOpt, while the control group did not. Since only three students did not
participate in the corresponding Compiler Construction practicals at Graz
University of Technology, they were not considered for the final result. We
also filtered students who aborted a test.

Finally, we obtained 53 valid participants, of which 26 were in the experi-
mental group and 27 in the control group.

5.3. Timetable

The experiment was conducted between April 25, 2022 and May 3, 2022 as
shown in Table 5.1 . Each activity takes about 10 to 30 minutes. Participants
were allowed to do the activities whenever and for as long as they wanted
within the specified time period. The timetable was strict and there were no
exceptions for late submissions.

From To Activity
April 25, 2022 | April 26, 2022 | All participants performed the pre-test.
April 27, 2022 All participants were randomly divided

into two groups.

April 28, 2022 | April 29, 2022 | All groups performed their training ac-
tivity.

May 2, 2022 | May 3, 2022 | All participants performed the post-test.

Table 5.1.: Timetable of the experiment

5.4. Pre- and Post-Test

The goal of the pre-test is to get a baseline measure of the students” un-
derstanding of the topic (Binkley et al., 1998). The pre-test is attached in
Appendix A on page 51 and it consists of nine questions. Two questions are

40

5.5. Training Activities

surveys asking participants to assess their own level of competence in code
optimization and feedback on the pre-test. The remaining seven questions
are graded and relate to code optimization techniques.

The post-test is attached in Appendix E on page 71 and contains the same
question about the level of competence as well as the seven graded questions
about code optimization techniques. Additionally, we also ask participants
to provide feedback on the training activity and how much they think their
understanding improved.

The seven graded questions consist of four multiple-choice questions: one
about constant folding, one about common subexpression elimination, and
two about dead code elimination. The remaining three questions are open-
ended questions that require participants to solve a coherent optimization
example using constant propagation, constant folding, and dead code elimi-
nation, in this order.

As for grading, all graded questions are worth the same. When scoring
multiple-choice questions, we assume a baseline score of 50% and make a
weighted deduction for each incorrect choice and a weighted addition for
each correct choice, resulting in a possible score between 0% and 100% for
each question.

We assume a baseline score of 100% when scoring open-ended questions and
make a deduction for each mistake, with 0% being the minimum. We have
also considered that some open-ended questions depend on the previous
answer. 124 pre- and post-tests were submitted, resulting in 45 different
ways to answer the three open-ended questions.

The final score on a test is a percent value between 0% to 100%.

5.5. Training Activities

For the training activities, we have prepared a summary on the theory of
code optimization, which is attached in Appendix B on page 57. It is an
early draft of Section 2.2 on page 6. Each group got a different training
activity.

41

5. Experiment

The experimental group was instructed to read through the code optimiza-
tion theory and visualize the code examples after each section using VisOpt.
The instruction sheet is attached in Appendix C on page 63.

The control group’s training activity consisted of reading through the code
optimization theory and understand the code examples without VisOpt.
The instruction sheet is attached in Appendix D on page 69.

5.6. Results

In this section, we analyze whether we need to accept or reject our null
hypothesis “There is no statistically significant difference between the two groups”
based on the pre- and post-test scores.

First, we calculate the gain scores by subtracting the pre-test score from the
post-test score of each participant (Dimitrov and Jr., 2003). In Table 5.2 on
the facing page we can see the average score of the experimental group on
each question as well as the average gain score. In Table 5.3 on the next page
we can see the same for the control group. We can see that the experimental
group performed slightly better in the pre- and post-test than the control

group.

In the next step, we check our null hypothesis using Analysis of Variance
(ANOVA) (Stdhle and Wold, 1989). ANOVA can be used to analyze two
or more groups for statistical significance by testing whether the variance
between the groups is greater than the variance within the groups. If there
is statistical significance, then the grouping was meaningful and there is
a difference between the groups. In our case, we have only one random
variable to analyze, the gain scores, and therefore use a single-factor (also
called one-way) ANOVA. ANOVA gives us a P-value between o and 1.
The P-value is the probability of obtaining test results that are at least as
extreme as the actual observed result, assuming that the null hypothesis is
correct (Wasserstein and Lazar, 2016). For statistical significance, we usually
need a P-value below 0.05 (Stahle and Wold, 1989).

42

5.7. Survey

Question Pre-Test Gain Post-Test
Constant Folding 75.32% +3.53% 78.85%
Common Subexpression Elimination 77.88% 0.00% 77.88%
Dead Code Elimination (1/2) 73.08% +6.73% 79.81%
Dead Code Elimination (2/2) 91.35% +6.73% 98.08%
Open-ended (three questions) 69.89% +14.94% 84.83%
All graded questions 75.33% +8.83% 84.16%

Table 5.2.: Achieved scores of the experimental group

Question Pre-Test Gain Post-Test
Constant Folding 67.90% +0.62% 68.52%
Common Subexpression Elimination 73.15% +4.63% 77.78%
Dead Code Elimination (1/2) 64.81% +10.19% 75.00%
Dead Code Elimination (2/2) 92.59% -1.85% 90.74%
Open-ended (three questions) 69.90% +5.82% 75.72%
All graded questions 72.59% +4.44% 77.03%

Table 5.3.: Achieved scores of the control group

Our analysis of the gain scores between pre- and post- test yielded to a
P-value of 0.2991. We also analyzed each question individually, as shown in
Table 5.4 on the following page, but there is not statistical significance.

Therefore, we have to accept the null hypothesis and conclude that the
understanding about code optimization of students who read about code
optimization theory and visualize the examples with VisOpt improved the
same as of students who only read about it.

5.7. Survey

The pre- and post-test allowed to provide feedback and an estimation on the
code optimization competence level. In this section, we discuss this data.

Adding up all the options for written feedback, it was used in 38% of the
cases. Many participants stated in the pre-test that they had not yet studied

43

5. Experiment

Question P-value Calculation

Constant Folding 0.6088 see Table F.3 on page 8o
Common Subexpression Elimination 0.3503 see Table F.4 on page 8o
Dead Code Elimination (1/2) 0.7440 see Table F.5 on page 8o
Dead Code Elimination (2/2) 0.1264 see Table F.6 on page 81
Open-ended (three questions) 0.2414 see Table F.7 on page 81
All graded questions 0.2991 see Table F.8 on page 81

Table 5.4.: ANOVA results of the experiment

code optimization. Some saw the pre-test as good practice for the practicals
and upcoming exam.

In both groups, participants seemed to enjoy the training activities. The
experimental group had fun playing around with VisOpt while reading
through the theory, as indicated by some participants:

“I really liked the interactive examples and the compact descrip-
tion in the document.”

“The visual optimizer is great. It makes more fun, playing around
with that, then reading the theory. It also helps to understand
the theory.”

The Jasmin view was mentioned twice as useful for the practicals:

“I like this type of visualization very much, especially that you
can also look at the flow graph, the Jova code and (most impor-
tantly) the Jasmin assembly.”

“I would have loved to have this website during the practicals to
understand the implementation of optimizations. Like that the
Jasmin code is also available.”

One participant has already saved VisOpt as a bookmark for exam prepa-
ration. There was also a feature request for using the arrow keys on the
keyboard to navigate through the optimization steps, which was imple-
mented afterwards.

44

5.7. Survey

Six participants in the control group found the summary about code opti-
mization easy to understand with clear and concise examples. On the other
hand, there were two demands for more complex examples in the summary.
Two participants indicated on the post-test that the theory did not stick in
their memory very well:

“I'’hardy remember anything from the PDF. With the PDF I would
solve all the task, but without its kind of impossible.”

“When I read through it 2 days ago it all made sense, but with-
out any materials right now it was hard for me to remember
everything exactly.”

One participant criticized that the post-test was quite short and that the
questions may not reflect student knowledge accurately enough. This could
be one of the reasons why we have to accept the null hypothesis. It is also
possible that some of the questions were too difficult or that the grading of
the questions led to this result. Another reason could be that the training
activities were too simple and too short, as some participants indicated:
“Simple but good activity”

In Figure 5.1 on the next page we see the result for estimating the level of
competence. The estimated level of competence was almost the same in both
groups at the pre-test. In the post-test, the experimental group seems to be
slightly more confident about their level of competence. No one in either
group reported having a high level of competence, neither on the pre-test
nor on the post-test. Except for one participant in the control group, all
participants reported the same or a higher level of competence on the post-
test than on the pre-test, although the gain score of this particular participant
increased by 27%. In some cases, the level of competence estimation is clearly
not accurate, as the gain score has decreased in some cases.

In the experimental group, all participants either agreed or strongly agreed
that the training activity improved their understanding of code optimization,
as shown in Figure 5.2 on the following page, while only 70% of the control
group agreed or strongly agreed with this statement.

45

5. Experiment

100% “ pumm 4%
8 Bl
80%

0%

60% 5204 B High level of competence
5004 2704 B Moderately high level of
competence
40%
Average level of competence
30% W Low level of competence
20% B No level of competence
10%
O

Pre-Test Post-Test Pre-Test Post-Test
Experimental Group Caontrol Group

Figure 5.1.: Participants” estimation of their level of competence

All survey results as well as the gain scores for each participant are listed in
the appendix. For the experimental group, see Table F.1 on page 78 and for
the control group, see Table F.2 on page 79.

convt oo] 2656 I« < v coee

B Disagree
Meither agree nor disagree
B Agree

s sle gle ele e gle sle sle sle oo e M Strongly Agree
& '~5§1' {,Eg‘. .-5?" ,&g\ (Sg'ﬁ ng‘. ,\@‘. @\ Dsg\ .§§§1'

Experimental Group

Figure 5.2.: Participants’ agreement that the training activity improved their understanding
of code optimization

46

6. Conclusion

In this thesis, we introduced a new web application for visualizing com-
piler optimizations called VisOpt. The application takes code written in
a Java-like language called Jova as input and uses various representation
methods for visualization, such as a flow graph or a Java bytecode assembly
language. At the time of writing, the web application was accessible at

http://ccvisual.ist.tugraz.at/.

It does not require any software to be installed by the user other than a
modern web browser. Navigation buttons allow users to undo and redo spe-
cific optimization steps. The source code of the project is publicly available
at
https://github.com/franzmandl/visopt.

The project includes a powerful yet extensible compiler with an optimizer
written in Kotlin, and web client using state-of-the-art web technologies
such as React and TypeScript.

6.1. Experiment Results

An experiment was conducted using a pre-test-post-test design to determine
if using the application to learn significantly improves the understanding
of code optimization. No such improvement was detected, except those
students who used the application were slightly more confident in their
level of competence. The same results were also obtained by Binkley et al.
(1998) with a similar application called The Feedback Compiler.

47

http://ccvisual.ist.tugraz.at/
https://github.com/franzmandl/visopt

6. Conclusion

6.2. Future Work

Machine-Dependent Optimization. In the scope of this thesis we only
focused on machine-independent optimization, while machine-dependent
optimization can also be visualized. A machine-dependent peephole opti-
mization to eliminate redundant Jasmin stack instructions has already been
implemented and tested, but not visualized.

More Optimization Techniques. VisOpt currently fully supports seven
optimization techniques and the transformation to three-address code. Im-
plementing other optimization techniques would be a good way of extension,
since many other techniques exist. Some of them are also described by Aho
et al. (2006), and Tremblay and Sorenson (1985).

More Source Languages. The educational language Jova is at the moment
the only source language accepted by VisOpt. An extension possibility
would be to improve the grammar of Jova to be more similar to Java, or to
add a whole new source language like Python.

Visualization Improvements. There are several ways to improve visual-
ization. One possibility would be to make the views more interactive. For
example, if the user clicks on the edge of the flow graph, the visualization
jumps to the corresponding basic block as in XVPODB (Boyd and Whalley,
1993). A bigger improvement would be to make the Jova code view editable
and merge it with the input page.

48

Appendix

49

Appendix A.

Pre-Test

Please perform the test to the best of your ability without using any addi-
tional materials.

Question 1: Background

Did you participate in the Compiler Construction practicals this semester or
in any previous semester?

O Yes
O No

How familiar are you with code optimization? Please estimate your current
skills on a scale from 1 (= No level of competence) to 5 (= High level of
competence).

(O 1 (= No level of competence)

(O 2 (= Low level of competence)

(O 3 (= Average level of competence)

O 4 (= Moderately high level of competence)
(O 5 (= High level of competence)

51

Appendix A. Pre-Test

Question 2: Constant Folding

Check all examples for Constant Folding replacements. « and » are bit shift
operations.

[Ja. replacing 301 + 402 with 703
Ob. replacing 4 * 3 with 3 « 2
[Jc. replacing 5 * 2 with 10

[d. replacing 8 » 1 with 4

[e. replacing a * 1 with a

Question 3: Common Subexpression Elimination

Consider the following basic block. Check all expressions which are good
candidates for Common Subexpression Elimination.

a = 50;
b=4 % a;
c=a/ 2;
a=a/ 2;
d =4 % a;
[(Ja. 50
Ob. 4 x a
(Jc. a / 2

52

Question 4: Dead Code Elimination (1/2)

Consider the following basic block. By only applying Dead Code Elimi-
nation, which line(s) would be eliminated? There are no variables live on
exit.

= 3;
=7;

=a+ 1;
if (b < 9)

p oo

1.
2.
3.
4.

[Ja. line 1
L b. line 2
[c. line 3
L1 d. line 4

Question 5: Dead Code Elimination (2/2)

Consider the following basic block. By only applying Dead Code Elimi-
nation, which line(s) would be eliminated? Variables f and g are live on
exit.

A ol S S
H 0 B0 Hh
[
BN O oW

U a.
O b.
U c.
Od.
Ue.

line 1
line 2
line 3
line 4
line 5

53

Appendix A. Pre-Test

Question 6: General (Step 1: Constant Propagation)

Consider the following basic block.

int a,b,c;
a = 21;

b=a/ 3;
c=Db+ a;

return a * 2;

Optimize the basic block above using Constant Propagation!

TODO: Change this with your solution
int a,b,c;

a=21

b=a/3;

c=b+a;

return a * 2;

Question 7: General (Step 2: Constant Folding)

Optimize the result of step 1 using Constant Folding!

54

Question 8: General (Step 3: Dead Code Elimination)

Optimize the result of step 2 using Dead Code Elimination and consider
variable b live on exit!

Question 9

Do you have any comments/remarks on the test?

55

Appendix B.

Code Optimization Theory

The goal of code optimization is to generate improved code that performs
better on certain objectives. For example, some objectives might be code size,
execution speed, or power consumption (Aho et al., 2006). The behavior of
the program must be preserved during code optimization.

In code optimization, we differentiate between local and global optimiza-
tion.

B.1. Local and Global Optimization

Local optimization improves code within a maximum sequence of consecu-
tive instructions where the flow of control can only

(a) enter the sequence through the first instruction of the sequence and
(b) leave only through the last instruction of the sequence.

Such a sequence of instructions is called a basic block (Aho et al., 2006). Only
the last instruction in a basic block is allowed to be a halting, branching, or
jumping instruction.

While local optimization only takes into account what happens inside a
basic block, global optimization on the other hand considers what happens
across basic blocks, e.g., by using a control flow graph.

57

OO CoN ol KW N R

Appendix B. Code Optimization Theory

B.2. Control Flow Graph

A control flow graph is a directed graph where nodes represent basic
blocks and edges represent possible transfers of control between these basic
blocks (Shivers, 1991). To indicate the flow of control’s start and end we can
add two special nodes labeled ENTRY and EXIT.

The corresponding control flow graph of Listing B.1 is illustrated in Fig-
ure B.1 using a node-link representation.

int a, b;
a = 50;
b = 75;
if (a < b) {
if (a != o) {

print("true");
}
} else {
print ("false");
}
a=a+ 1;
while (a > b) {
print ("while") ;
}

return o;

Listing B.1: Example code written in Jova

58

ENTRY

int a, b;
a = 50;
b = 75;
if (a < b)

| if (a != 0)

L1 =~ 1 =

| print("true");

| print("false"); |

v
a=a+1; |
v
while (a > b) |

#T F

| print("while"); |

return 0; |

EXIT

Figure B.1.: Node-link representation of the
control flow graph of Listing B.1

W N

U~ WD N R

B.3. Algebraic Simplification

B.3. Algebraic Simplification

Algebraic simplification is an optimization technique that uses algebraic
laws to simplify code. For example, we use algebraic identities, such as

I+
= = O O
|

0+x=x

C I B
|

C I B
—
*
>
Il
>

~N ¥

to improve our code (Aho et al., 2006).

B.4. Common Subexpression Elimination

By finding common subexpressions we can eliminate unnecessary com-
putations evaluating to the same values (Aho et al., 2006). By introducing
temporary variables, we store the results of those computations. For exam-
ple, applying this technique on Listing B.2 results in Listing B.3 .

a=3x* 4 / 2;
b = 3 % 4 * 2;
result = (a + 10) * (a + 10);

Listing B.2: Example code before common subexpression elimination

tmp1 = 3
a = tmp1
b = tmp1
tmp2 = a 10;

result = tmp2 * tmpz2;

LR NG
N

Listing B.3: Example code after common subexpression elimination

59

Appendix B. Code Optimization Theory

B.5. Constant Folding

Folding constants means that constant expressions are evaluated at compile
time and replaced with their constant value (Aho et al., 2006). For example,
we may replace the expression 2 * 3 + 4 with 10.

B.6. Constant Propagation

We can replace variable references by constant values if that variable has
a unique constant value at that point in the code (Aho et al., 2006). For
example, in Listing B.4 we may replace variable i with value 2 resulting in
Listing B.5 .

i = 2;
result = 1 = i + i;
Listing B.4: Example code before constant propagation
i = 2;
result = 2 = 2 + 2;

Listing B.5: Example code after constant propagation

B.7. Copy Propagation

The idea behind copy propagation is that after an assignment (or copy)
statement u = v, we may use v over u afterwards (Aho et al., 2006). For
example, using variable i over copy in Listing B.6 results in Listing B.7 on
the facing page.

copy = i;
result = copy * copy + copy;

Listing B.6: Example code before copy propagation

60

1
2

AW N R

B.8. Dead Code Elimination

copy = i;
result = i = i + 1i;

Listing B.7: Example code after copy propagation
B.8. Dead Code Elimination

Eliminating instructions that compute values that are never used is called
dead code elimination (Aho et al., 2006). A variable is dead at a point in a
program, if the value of a variable is not accessed before the next time it
gets assigned. We may eliminate assignments to dead variables. If the value
of a variable may get accessed later in another basic block, we call it live on
exit.

Using dead code elimination on Listing B.8 with variable b live on exit
eliminates the first assignment of b as well as the assignment of ¢ as shown
in Listing B.g .

a = 201;
b = 302;
c=a* 2;
b=a+ 3;

Listing B.8: Example code before dead code elimination
a = 201;
b =a+ 3;

Listing B.g: Example code after dead code elimination

Unreachable code is code that never gets executed under any circumstances at
runtime (Debray et al., 2000). Therefore, we can eliminate it during compile
time. For example, in Listing B.10 on the next page we may eliminate the
else branch.

61

U~ W N R

Appendix B. Code Optimization Theory

if (true) {
print("always true");
} else {
print ("unreachable else branch");

}

Listing B.10: Example code before unreachable code elimination

B.9. Reduction in Strength

Replace more expensive operators by cheaper ones is called reduction in
strength (Aho et al., 2006). For example, a multiplication or division by a
power of two can be replaced with a cheaper addition or bit shift operation,
such as:

X 2 =x +x 2 ¥ x =X + X
X * 4 =3x <« 2 4 *x x = x € 2
x/4=x>»2

62

Appendix C.

Experimental Group’s Training
Activity

Please make a serious attempt when following the tasks of the training
activity.

* Read the first two pages about code optimization in the attached file
Code Optimization (Appendix B on page 57).

* Afterwards, visit the optimization visualizer VisOpt (http://ccvisual.
ist.tugraz.at/) and click the Start-button at the bottom right.

Question 1

* Read Section B.3 about Algebraic Simplification in the Code Opti-
mization file.

¢ Afterwards, select method Example.algebraicSimplification() in Vi-
sOpt and disable all optimizations except Algebraic Simplification.

* Click on the "Start Optimizer"-button at the bottom right. Use the
navigation buttons at the bottom right to navigate between the trans-
formation steps and try to improve your understanding about code
optimization.

* (Click the Leave-button at the top right when you are done.

Have you completed the task? O Yes () No

63

http://ccvisual.ist.tugraz.at/
http://ccvisual.ist.tugraz.at/

Appendix C. Experimental Group's Training Activity

Question 2

¢ Read Section B.4 about Common Subexpression Elimination in the
Code Optimization file.

¢ Afterwards, select method Example.commonSubexpressionElimination()
in VisOpt and disable all optimizations except Common Subexpression
Elimination.

* As before, click the "Start Optimizer"-button and navigate through the
transformation steps while improving your understanding about code
optimization.

¢ Click the Leave-button when you are done.

Have you completed the task? () Yes () No

Question 3

* Read Section B.5 about Constant Folding in the Code Optimization
tile.

» Afterwards, select method Example.constantFolding() in VisOpt and
disable all optimizations except Constant Folding.

* As before, click the "Start Optimizer"-button and navigate through the
transformation steps while improving your understanding about code
optimization.

¢ Click the Leave-button when you are done.

Have you completed the task? O Yes () No

Question 4

* Read Section B.6 about Constant Propagation in the Code Optimiza-
tion file.

¢ Afterwards, select method Example.constantPropagation() in VisOpt
and disable all optimizations except Constant Propagation.

* As before, click the "Start Optimizer"-button and navigate through the
transformation steps while improving your understanding about code
optimization.

64

¢ (Click the Leave-button when you are done.

Have you completed the task? () Yes () No

Question 5

¢ Read Section B.7 about Copy Propagation in the Code Optimization
file.

* Afterwards, select method Example.copyPropagation() in VisOpt and
disable all optimizations except Copy Propagation.

* As before, click the "Start Optimizer"-button and navigate through the
transformation steps while improving your understanding about code
optimization.

¢ Click the Leave-button when you are done.

Have you completed the task? () Yes () No

Question 6

* Read Section B.8 about Dead Code Elimination in the Code Optimiza-
tion file.

¢ Afterwards, select method Example.deadCodeElimination() in VisOpt
and disable all optimizations except Dead Code Elimination.

* Set variable b live on exit.

* As before, click the "Start Optimizer"-button and navigate through the
transformation steps while improving your understanding about code
optimization.

¢ Click the Leave-button when you are done.

Have you completed the task?) Yes () No

Question 7

¢ Select method Example.unreachableCodeElimination() in VisOpt and
disable all optimizations except Dead Code Elimination.

65

Appendix C. Experimental Group's Training Activity

¢ As before, click the "Start Optimizer"-button and navigate through the
transformation steps while improving your understanding about code
optimization.

¢ Click the Leave-button when you are done.

Have you completed the task? () Yes () No

Question 8

* Read Section B.g about Reduction in Strength in the Code Optimiza-
tion file.

* Afterwards, select method Example.reductionInStrength() in VisOpt
and disable all optimizations except Reduction in Strength.

* As before, click the "Start Optimizer"-button and navigate through the
transformation steps while improving your understanding about code
optimization.

¢ Click the Leave-button when you are done.

Have you completed the task? O Yes () No

Question 9

¢ Have a look at method Example.allOptimizations() and optimize it
by enabling all optimizations.

* Finally, you can play around with VisOpt as you like.

¢ If you want, you can also optimize your own code by going back to
the code input.

Have you completed the task?) Yes () No

66

Question 10

Do you think you have understood Code Optimization?

O Yes
(O Not Completely

O No

Question 11

Do you have any additional comments on the training activity?

67

Appendix D.

Control Group’s Training Activity

Please make a serious attempt when following the tasks of the training
activity.
Question 1

Read the theory about code optimization in the attached file Code Optimiza-
tion (Appendix B on page 57) and try to follow the examples.

Have you read the file?

O Yes
O No

Do you think you have understood the theory?

O Yes
(O Not Completely

O No

Question 2

Do you have any additional comments on the training activity?

69

Appendix E.

Post-Test

Please perform the test to the best of your ability without using any addi-
tional materials.

Question 1: Constant Folding

Check all examples for Constant Folding replacements. « and » are bit shift
operations.

U a. replacing 301 + 402 with 703
Ob. replacing 4 * 3 with 3 « 2
[c. replacing 5 * 2 with 10

U d. replacing 8 » 1 with 4

Oe. replacing a * 1 with a

71

Appendix E. Post-Test

Question 2: Common Subexpression Elimination

Consider the following basic block. Check all expressions which are good
candidates for Common Subexpression Elimination.

O a.

o p o T w
I

Ob. 4 x a
e, a/ 2

Question 3: Dead Code Elimination (1/2)

Consider the following basic block. By only applying Dead Code Elimi-
nation, which line(s) would be eliminated? There are no variables live on

exit.

1.
2.
3.
4.

a =
b =7,

a=a+1;
if (b < 9)

3;

72

[Ja. line 1
[b. line 2
[Jc. line 3
[Jd. line 4

Question 4: Dead Code Elimination (2/2)

Consider the following basic block. By only applying Dead Code Elimi-

nation,

exit.

i ol e
Hh 09 03

Ob.
Oc.
Od.

which line(s) would be eliminated? Variables £ and g are live on

. line 1

line 2
line 3
line 4

[le. line s

Question 5: General (Step 1: Constant Propagation)

Consider the following basic block.

int a,b,c;
a = 21;

b=a/ 3;
c=b+ a;

return a * 2;

Optimize the basic block above using Constant Propagation!

TODO: Change this with your solution
int a,b,c;

a = 21;

b=a/3;

c=b+a;

return a * 2;

73

Appendix E. Post-Test

Question 6: General (Step 2: Constant Folding)

Optimize the result of step 1 using Constant Folding!

Question 7: General (Step 3: Dead Code Elimination)

Optimize the result of step 2 using Dead Code Elimination and consider
variable b live on exit!

Question 8: Background

How familiar are you with code optimization? Please estimate your current
skills on a scale from 1 (= No level of competence) to 5 (= High level of
competence).

(O 1 (= No level of competence)

(O 2 (= Low level of competence)

O 3 (= Average level of competence)

(O 4 (= Moderately high level of competence)
(O 5 (= High level of competence)

74

Do you agree that the training activity improved your understanding of
code optimization?

(O 1. Strongly disagree
(O 2. Disagree
(O 3. Neither agree nor disagree

O 4. Agree
O 5. Strongly Agree

Question 9

Do you have any additional remarks about the training activity?

75

Appendix F.

Experiment Results

7

Appendix F. Experiment Results

ID* Pre* Post3 Agree* CF5 CSE® DCE17 DCE2® General® AlI*°

1 1 4 5 0% 0% 0% 0% +83% +36%
2 3 4 5 0% 0% +25% +75% +67% +43%
3 2 4 5 0% 0% 0% 0% -11% -5%
4 2 4 5 0% 0% -50% +13% 0% -5%
5 2 2 5 +25% 0% 0% 0% +25% +14%
6 2 2 4 -33% 0% +75% 0% -83% -30%
7 2 3 4 0% —25(70 0% 0% 0% -40/0
8 4 4 5 0% -25% 0% 0% 0% 4%
9 1 3 4 0% 0% 0% 0% -17% -7%
10 2 3 4 +25% 0% +25% +63% 0% +16%
11 1 1 4 +8% 0% -25% 0% +17% +5%
12 2 2 4 -25% 0% +75% +63% +22% +26%
13 1 1 4 0% +25% +25% 0% +11% +12%
14 1 3 4 -17% +50% -50% 0% +60% +23%
15 2 2 4 +25% 0% +25% 0% 0% +7%
16 2 3 4 +25% 0% +50% -13% +17% +16%
17 2 2 4 -8% 0% 0% 0% 0% -1%
18 2 2 4 0% 0% 0% 0% +17% +7%
19 3 4 4 -25% 0% 0% 0% -17% -11%
20 2 4 4 +33% 0% +50% +13% +100% +57%
21 3 4 5 +25% 0% -50% 0% +25% +7%
22 1 3 4 +42% 0% +25% -13% +37% +23%
23 2 4 5 -17% -25% 0% 0% +8% 2%
24 1 2 4 +8% 0% 0% -25% -6% -5%
25 3 4 4 -25% 0% 0% 0% 0% 4%
26 1 3 4 +25% 0% -25% 0% +33% +14%

Table E.1.: Pre- and post-test results of the experimental group

1D ... participant identifier

2Pre ... competence level estimation on pre-test (1 = No level of competence, 2 = Low
level of competence, 3 = Average level of competence, 4 = Moderately high level of
competence, 5 = High level of competence)

3Post ... competence level estimation on post-test (1 to 5 mean the same as for Pre?)

*Agree ... agreement that the training activity has improved understanding (1 = Strongly
disagree, 2 = Disagree, 3 = Neither agree nor disagree, 4 = Agree, 5 = Strongly Agree)

78

ID* Pre* Post3 Agreet CF5 CSE® DCE17 DCE2® General® All*°
27 2 4 3 +8% 0% +75% 0% -8% +8%
28 2 3 4 +17% +25% +25% 0% 0% +10%
29 2 2 5 0% 0% 0% +13% 0% +2%
30 3 4 4 0% +25% +25% +13% 0% +9%
31 1 3 5 +25% +75% +100% 0% 0% +29%
32 1 2 3 +58% -25% -25% -13% +67% +28%
33 2 3 4 -17% 0% +25% 0% +17% +8%
34 4 4 4 0% 0% -50% 0% 0% -7%
35 2 2 3 0% 0% 0% 0% +22% +10%
36 2 3 4 +25% 0% +25% 0% -17% 0%
37 2 3 3 -25% 0% +50% 0% -17% 4%
38 3 4 4 +25% 0% 0% 0% +17% +11%
39 2 3 5 0% 0% 0% 0% 0% 0%
40 2 3 4 -42% 0% -50% 0% 0% -13%
41 2 3 3 +17% 0% +100% 0% -17% +10%
42 1 1 4 -25% +50% 0% 0% +27% +15%
43 2 3 4 % 0% -50% 0% 0% 7%
44 3 2 4 +17% 0% +75% 0% +33% +27%
45 3 3 4 -42% 0% 0% +38% +17% +7%
46 1 2 3 0% +25% -25% 0% 0% 0%
47 1 4 5 -17% -25% 0% 0% 0% -6%
48 1 2 3 0% 0% -25% -63% 0% -12%
49 2 3 4 0% 0% +50% -38% +17% +9%
50 1 2 5 0% 0% 0% 0% 0% 0%
51 2 3 2 0% 0% 0% 0% 0% 0%
52 2 3 5 -8% -25% -50% 0% 0% -12%
53 1 3 4 % 0% 0% 0% 0% 0%

Table F.2.: Pre- and post-test results of the control group

5CF ... gain scores on the question “Constant Folding”

®CSE ... gain scores on the question “Common Subexpression Elimination”
7DCET1 ... gain scores on the question “Dead Code Elimination (1/2)”
8DCE:2 ... gain scores on the question “Dead Code Elimination (2/2)”
9General ... gain scores on the open-ended questions
T0AIl ... gain scores on all graded questions

79

Appendix F. Experiment Results

Group Count Sum Mean Variance

Experimental 26 0.9167 0.0353 0.0401

Control 27 0.1667 0.0062 0.0443

Source of Variation ~ SS™ aftz MS™ F4 P-value™ Fepiica™
Between Groups 0.0112 1 0.0112 0.2652 0.6088 4.0304
Within Groups 2.1542 51 0.0422

Total 2.1654 52

Table F.3.: Single factor ANOVA on the question “Constant Folding”

Group Count ~ Sum Mean Variance

Experimental 26 0.0000 0.0000 0.0200

Control 27 1.2500 0.0463 0.0434

Source of Variation ~ SS™ aft? MS™ F'4 P-value'd Fopipiog™®
Between Groups 0.0284 1 0.0284 0.8885 0.3503 4.0304
Within Groups 1.6296 51 0.0320

Total 1.6580 52

Table F.4.: Single factor ANOVA on the question “Common Subexpression Elimination”

Group Count ~ Sum Mean Variance

Experimental 26 1.7500 0.0673 0.1078

Control 27 27500 0.1019 0.1839

Source of Variation ~ SS™ daftz MS™ F'4 P-value'> Fopitioq™®
Between Groups 0.0158 1 0.0158 0.1078 0.7440 4.0304
Within Groups 7.4771 51 0.1466

Total 7.4929 52

Table F.5.: Single factor ANOVA on the question “Dead Code Elimination (1/2)”

80

Group Count Sum Mean Variance

Experimental 26 1.7500 0.0673 0.0540

Control 27 -0.5000 -0.0185 0.0273

Source of Variation =~ SS™ afrz MS™ F'4 P-value'> Fopipiog™®
Between Groups 0.0976 1 0.0976 2.4150 0.1264 4.0304
Within Groups 2.0605 51 0.0404

Total 2.1580 52

Table F.6.: Single factor ANOVA on the question “Dead Code Elimination (2/2)”

Group Count Sum Mean Variance

Experimental 26 3.8833 0.1494 0.1283

Control 27 1.5722 0.0582 0.0302

Source of Variation =~ SS™ aft? MS*3 F4 P-value™ Feitica™®
Between Groups 0.1100 1 0.1100 1.4050 0.2414 4.0304
Within Groups 3.9928 51 0.0783

Total 4.1028 52

Table F.7.: Single factor ANOVA on the open-ended questions

Group Count Sum Mean Variance

Experimental 26 2.2952 0.0883 0.0338

Control 27 1.1976 0.0444 0.0131

Source of Variation ~ SS™ aft? MS*3 F4 P-value™ Feiica™®
Between Groups 0.0256 1 0.0256 1.1007 0.2091 4.0304
Within Groups 1.1840 51 0.0232

Total 1.2095 52

Table E.8.: Single factor ANOVA on all graded questions

1SS ... sum of squares
2df ... degree of freedom
BMS ... mean square

MF ... test statistic
'5P-value ... probability

OF itical - Critical value of F with a significance level of 0.05

81

Bibliography

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (2006).
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley
(cit. on pp. 5-7, 9-14, 48, 57, 59-62).

Tab Atkins, Elika J. Etemad, Rossen Atanassov, and Oriol Brufau (2020).
CSS Grid Layout Module Level 1. Available: https://www.w3.org/TR/css-
grid-1/ (visited on Jun 8, 2022) (cit. on p. 26).

Ronald M. Baecker and David Sherman (1981). Sorting Out Sorting. 16mm
color sound film. Shown at SIGGRAPH ’81, Dallas TX (cit. on p. 1).

Manuel E. Benitez and Jack W. Davidson (1988). “A portable global opti-
mizer and linker.” In: Proceedings of the ACM SIGPLAN 1988 conference
on Programming Language design and Implementation, pp. 329—338 (cit. on
p- 17).

David Binkley, Bruce Duncan, Brennan Jubb, and April Wielgosz (1998).
“The feedback compiler.” In: Proceedings. 6th International Workshop on
Program Comprehension. INPC’98 (Cat. No. 98TB100242). IEEE, pp. 198-205
(cit. on pp. 1, 20, 21, 30, 31, 34, 39, 40, 47).

Mickey Boyd and D. Whalley (1993). “Graphical visualization of compiler
optimizations.” MA thesis. Citeseer (cit. on pp. 1, 17-19, 26, 48).

Saumya Debray, William Evans, Robert Muth, and Bjorn De Sutter (2000).
“Compiler Techniques for Code Compaction.” In: ACM Transactions on
Programming Languages and Systems 22, pp. 378—415 (cit. on pp. 13, 61).

Sabin Devkota, Pascal Aschwanden, Adam Kunen, Matthew Legendre,
and Katherine E. Isaacs (2019). LLNL/CcNav: CcNav is a web-based tool for
visualizing compiler optimizations in binaries. Available: https://github.
com/LLNL/CcNav (visited on Jan. 24, 2022) (cit. on p. 21).

Sabin Devkota, Pascal Aschwanden, Adam Kunen, Matthew Legendre, and
Katherine E. Isaacs (2020). “Ccnav: Understanding compiler optimizations
in binary code.” In: IEEE transactions on visualization and computer graphics
27.2, pp. 667-677 (cit. on pp. 2, 21, 22, 24, 26).

83

https://www.w3.org/TR/css-grid-1/
https://www.w3.org/TR/css-grid-1/
https://github.com/LLNL/CcNav
https://github.com/LLNL/CcNav

Bibliography

Dimiter M. Dimitrov and Phillip D. Rumrill Jr. (2003). “Pretest-posttest
designs and measurement of change.” In: Work 20.2, pp. 159-165 (cit. on
PP- 39, 42)-

Florida State University (1993). X-windows Very Portable Optimizer DeBugger.
Available: ftp://ftp.cs.fsu.edu/pub/whalley/xvpodb (visited on Jan.
21, 2022) (cit. on p. 19).

Eric Fouh, Monika Akbar, and Clifford A. Shaffer (2012). “The role of
visualization in computer science education.” In: Computers in the Schools
29.1-2, pp. 95-117 (cit. on p. 1).

JetBrains s.r.o. (2011). Kotlin Programming Language. Available: https://
kotlinlang.org/ (visited on May 11, 2022) (cit. on p. 23).

JetBrains s.r.o. (2017). Kotlin/kotlinx.serialization: Kotlin multiplatform / multi-
format serialization. Available: https://github. com/Kotlin/kotlinx .
serialization (visited on Jun. 15, 2022) (cit. on p. 31).

JetBrains s.r.0. (2022). Kotlin Multiplatform. Available: https://kotlinlang.
org/docs/multiplatform.html (visited on Jun. 17, 2022) (cit. on p. 36).
Meta Platforms Inc. (2013). React — A JavaScript library for building user
interfaces. Available: https://reactjs.org/ (visited on May 12, 2022)

(cit. on pp. 2, 23).

Meta Platforms Inc. (2016). facebook/create-react-app: Set up a modern web app by
running one command. Available: https://github.com/facebook/create-
react-app (visited on Jun. 17, 2022) (cit. on p. 36).

Jonathan Meyer (1996). Jasmin User Guide. Available: http : // jasmin .
sourceforge.net/guide.html (visited on Jun 15, 2022) (cit. on p. 28).

Microsoft Corporation (2012). TypeScript: JavaScript With Syntax For Types.
Available: https://www.typescriptlang.org/ (visited on May 14, 2022)
(cit. on p. 23).

Microsoft Corporation (2015). Monaco Editor. Available: https://microsoft.
github.io/monaco-editor/ (visited on Jun. 10, 2022) (cit. on p. 24).

Palma Rozélia Osztidn, Zoltan Katai, and Erika Osztidn (2020). “Algorithm
Visualization Environments: Degree of interactivity as an influence on
student-learning.” In: 2020 IEEE Frontiers in Education Conference (FIE).
IEEE, pp. 1-8 (cit. on p. 1).

Terence Parr (1992). ANother Tool for Language Recognition. Available: https:
//www.antlr.org/ (visited on Jun 6, 2022) (cit. on pp. 2, 24).

84

ftp://ftp.cs.fsu.edu/pub/whalley/xvpodb
https://kotlinlang.org/
https://kotlinlang.org/
https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.serialization
https://kotlinlang.org/docs/multiplatform.html
https://kotlinlang.org/docs/multiplatform.html
https://reactjs.org/
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/guide.html
https://www.typescriptlang.org/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://www.antlr.org/
https://www.antlr.org/

Bibliography

Georg Sander, Martin Alt, Christian Ferdinand, and Reinhard Wilhelm
(1995). “CLaX—A visualized compiler.” In: International Symposium on
Graph Drawing. Springer, pp. 459—462 (cit. on p. 19).

Purvi Saraiya, Clifford A. Shaffer, Scott McCrickard, and Chris North (2004).
Effective features of algorithm visualizations. Vol. 36. 1. ACM (cit. on pp. 24,
34).

Olin Shivers (1991). “Control-flow analysis of higher-order languages.” PhD
thesis. Citeseer (cit. on pp. 7, 58).

Lars Stdhle and Svante Wold (1989). “Analysis of variance (ANOVA).” In:
Chemometrics and intelligent laboratory systems 6.4, pp. 259—272 (cit. on
p- 42).

John Stasko, Albert Badre, and Clayton Lewis (1993). “Do algorithm anima-
tions assist learning? An empirical study and analysis.” In: Proceedings
of the INTERACT 93 and CHI'93 conference on Human factors in computing
systems, pp. 61-66 (cit. on p. 1).

The JUnit Team (2000). JUnit 5. Available: https://junit.org/ (visited on
Jun. 16, 2022) (cit. on p. 34).

Paolo Tonella and Alessandra Potrich (2005). Reverse Engineering of Object
Oriented Code. Springer Science & Business Media (cit. on p. 13).

Jean-Paul Tremblay and Paul G. Sorenson (1985). Theory and Practice of
Compiler Writing. McGraw-Hill, Inc. (cit. on pp. 5, 48).

VMware Inc. (2002). Spring Framework. Available: https ://spring. io/
(visited on May 11, 2022) (cit. on pp. 2, 23).

Ronald L. Wasserstein and Nicole A. Lazar (2016). The ASA statement on
p-values: context, process, and purpose (cit. on p. 42).

85

https://junit.org/
https://spring.io/

List of Figures

2.1.
2.2,

2.3.
3.1.

3.2.

3-3-

4.1.
4.2.

4.3.
4-4-.
4.5.

4.6.

5.1.
5.2.

Node-link representation of the control flow graph of Listing 2.1 8
Syntax tree and DAG for basic block in Listing 2.2 on page 9 10
Iterative algorithm to compute live variables (Aho et al., 2006) 13

Screenshot of XVPODB’s main window during a reduction

in strength (Boyd and Whalley, 1993) 18
Screenshot of the feedback compiler during a common subex-

pression elimination (Binkley et al.,, 1998) 20
Screenshot of CcNav (Devkota etal., 2020) 22
Screenshot of the input page of VisOpt 25
Grid layout and screenshot of the visualization page using

the flow graph viewo oL 27
Screenshot of the visualization page using the Jasmin view . 29

Example addresses of entities in the intermediate representation 33
Screenshot of the visualization page during an optimization

using the flow graph view 35
Dependencies between the software modules of VisOpt. . . . 37
Participants’ estimation of their level of competence 46
Participants” agreement that the training activity improved

their understanding of code optimization 46

. Node-link representation of the control flow graph of Listing B.1 58

87

List of Tables

. Command usage of code transformations

. Timetable of the experiment
. Achieved scores of the experimental group
. Achieved scores of the control group

ANOVA results of the experiment

Pre- and post-test results of the experimental group
Pre- and post-test results of the control group
Single factor ANOVA on the question “Constant Folding” . .
Single factor ANOVA on the question “Common Subexpres-

sion Elimination”
Single factor ANOVA on the question “Dead Code Elimina-

tion (1/2)” e
Single factor ANOVA on the question “Dead Code Elimina-

tion (2/2)”
Single factor ANOVA on the open-ended questions
Single factor ANOVA on all graded questions

89

Acronyms

ANOVA Analysis of Variance. 40, 42, 78, 79
ANTLR ANother Tool for Language Recognition. 2, 24

CcNav Compilation Navigator. 21, 22, 24, 26, 28
CSS Cascading Style Sheets. 23, 26

DAG Directed Acyclic Graph. 9, 10

HTML Hypertext Markup Language. 23
HTTP Hypertext Transfer Protocol. 23

JSON JavaScript Object Notation. 31
RTL Register Transfer List. 17, 18
SVG Scalable Vector Graphics. 26

VisOpt Visual Optimizer. v, 2, 24, 25, 35-38, 40—42, 45, 46, 6164
VPO Very Portable Optimizer. 17

XVPODB X-windows Very Portable Optimizer DeBugger. 17-19, 26, 46

91

	Abstract
	Introduction
	Requirements
	Outline

	Theoretical Background
	Compiler
	Code Optimization
	Machine-Independent and Machine-Dependent Optimization
	Local and Global Optimization
	Control Flow Graph
	Algebraic Simplification
	Common Subexpression Elimination
	Constant Folding
	Constant Propagation
	Copy Propagation
	Dead Code Elimination
	Reduction in Strength
	Execution Order of Optimizations

	Related Work
	XVPODB
	CLaX
	The Feedback Compiler
	CcNav

	Implementation
	Getting the User's Program
	Visualize the Program
	Flow Graph View
	Code Views

	Getting the User's Optimization Parameters
	Visualize the Optimization
	Compiler Construction
	Intermediate Representation
	Visualization
	User Control

	Testing
	Structure of the Project

	Experiment
	Design
	Participants
	Timetable
	Pre- and Post-Test
	Training Activities
	Results
	Survey

	Conclusion
	Experiment Results
	Future Work

	Pre-Test
	Code Optimization Theory
	Local and Global Optimization
	Control Flow Graph
	Algebraic Simplification
	Common Subexpression Elimination
	Constant Folding
	Constant Propagation
	Copy Propagation
	Dead Code Elimination
	Reduction in Strength

	Experimental Group's Training Activity
	Control Group's Training Activity
	Post-Test
	Experiment Results
	Bibliography

