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Abstract

Analyzing large high-dimensional datasets has found applications in most
fields of research and has drastically increased in importance over the
last few decades. There are many ways to analyze large data heaps and
especially machine learning has attracted most of the public’s attention.
However, over the last few decades, other potentially promising data anal-
ysis methods have been developed. Topological data analysis is one such
analysis method. It provides a general framework to analyze the struc-
ture of high-dimensional data and extract information from this structure.
Techniques used in topological data analysis include, but are not limited
to, manifold estimation, mode estimation, ridge estimation, clustering and
dimension reduction. This paper introduces a new topological data analysis
method that allows users to interactively reduce the number of dimensions
of a given data set, estimate manifolds, parametrize subspaces and inspect
subsets of the original data. This new method was tested by developing a
highly performant software prototype and conducting a user study on its
applicability and usability. The results showed that this novel, interactive ap-
proach can enable users to iteratively simplify a given data set and present
information about the data’s structure.
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1 Introduction

Over the last years and decades the computational power of devices has
increased drastically, and with it the rate at which data is collected has also
increased. Not just the number of data points has increased, but also the
number of attributes has grown and analyses of high-dimensional data has
become an important part of many commercial and scientific application
areas. Because of this, it is now often the case that answers to problems can
be found in a large heap of high-dimensional data, where only a few of the
dimensions are actually relevant. As argued by Carlsson (2009), geometrical
and topological features can be useful to create a better understanding of
the data.

Topological data analysis (TDA) is a recent field of research, that only
tracks back about 20 years to the early works on persistent homology by
Edelsbrunner et al. (2000) and Zomorodian and Carlsson (2005). TDA is
a type of data analysis that uses techniques from the field of topology to
extract information from high-dimensional and possibly incomplete and
noisy data sets. While TDA has found some practical use cases in some
other fields of research, such as astrophysics (Worsley, 1995) or protein
folding research (Kovacev-Nikolic et al., 2016), TDA still has not found
much popularity for general purpose data analysis.

This thesis concerns itself with the field of TDA and its applications. While
Chapter 2 will focus on the current state of this research field, Chapter 3
will explain the new approach of interactively exploring high-dimensional
data sets, that was developed as part of this thesis. Chapters 4 and 5 will
then go into detail about how well this new approach worked.



1 Introduction

1.1 An Overview of Topological Data Analysis

While Some definitions like Munch (2017) focus on the practical applications
of TDA and define it as a "collection of powerful tools", this thesis will
use the definition of Wasserman (2018), who states that "Topological data
analysis (TDA) refers to statistical methods that find structure in data". While
the exact definition varies, most agree that the goal of TDA is to analyze
data by finding topological structures within the data. "These structures
include clustering, manifold estimation, nonlinear dimension reduction,
mode estimation, ridge estimation and persistent homology" (Wasserman,
2018). While TDA is not limited to these kinds of analyses, this section only
serves the purpose of providing the reader with an overview of some ideas
of TDA and will therefore focus mainly on the aforementioned types of
structures.

Clustering is one of the simplest examples of TDA and the easiest to
understand. According to Kaufman and Rousseeuw (2009): "Basically, one
wants to form groups in such a way that objects in the same group are
similar to each other, whereas objects in different groups are as dissimilar
as possible". There are many algorithms to find clusters in data, which often
differ in how they define "similar" and "dissimilar". While relatively simple,
clustering is one of the most popular and powerful techniques to analyze
data because it generates results that are intuitively understood by humans,
as it is in our nature use categorization and classification to simplify and
streamline our perception (Macrae and Bodenhausen, 2000).

An intuitive approach to finding meaningful structure in high-dimensional
data is to reduce the number of dimensions. This is usually done by find-
ing sets of dimensions which are correlated strongly. In case of a linear
correlation this can be done, for example via Principal Component Anal-
ysis (Wold, Esbensen, and Geladi, 1987). While PCA belongs to the group
of linear dimension reduction techniques, there are also many nonlinear
approaches (DeMers and Cottrell, 1992, Teh and Roweis, 2002 and Brand,
2002, just to name a few). Sometimes, dimensionality reduction can also be
done by finding a manifold of lower dimension that the data points lay on
(Tenenbaum, V. d. Silva, and Langford, 2000, McInnes, Healy, and Melville,
2018). This, however, is oftentimes computationally expensive, even under
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Figure 1.1: The Swiss-roll-data set. The data points lay on a two-dimensional plane within
the three-dimensional space. This image was taken from Wasserman (2018)

mild assumptions. An example of such a data set can be seen in Figure 1.1.
This is also called manifold estimation. In Chapter 3, a novel approach to
reducing dimensionality via manifold estimation is presented.

Mode estimation is another way of finding clusters of data points. "The
idea is to find modes of the density and then define clusters as the basins
of attraction of the modes" (Wasserman, 2018). Another intuition is that
mode estimation interprets a given data set as a probability density function
and then tries to find local maxima. These maxima are called modes and
can be used to define a center for a data cluster. For a more rigorous
and mathematical definition of some of these algorithms see Arias-Castro,
Mason, and Pelletier (2016), Chacén (2012), Chacén and Duong (2013),
Comaniciu and Meer (2002) and Cheng (1995).

Similar to mode estimation, ridge estimation describes a data set as a
probability density function and tries to find critical points. While mode
estimation is used to find local and global maxima, ridge estimation merely
attempts to locate low-dimensional ridges where the density has a rela-
tively high local concentration. Examples of ridge estimation can be seen
in Figure 1.2. For further details see Genovese et al. (2014) or Ozertem and
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Figure 1.2: (a) A two-dimensional density function with a one-dimensional ridge (high-
lighted in blue). While some points that make up this ridge are local maxima,
most are not. (b) Data with higher density along a set of intersecting lines
(ridges). Similar structures can be found in galaxy superclusters. Both images
were taken from Wasserman (2018) and originally published in Genovese et al.

(2014).

Erdogmus (2011) for a more precise and rigorous definition of ridges.

Persistent homology is the last type of structure mentioned by Wasserman
(2018) and, according to him, the branch that gets the most attention and
is viewed by some as synonymous with TDA. Persistent homology is a
method of finding features or structures that are visible throughout a large
range of scopes. For example, at a small scale, every single data point could
be considered a cluster. However, this is usually not a useful way of looking
at data, which is why in most cases singular data points that are dissimilar
to all others are classified as outliers. Similarly, one could view the data
at a scale so large that the entire data set could be seen as a single large
cluster, which is not useful for most cases either. Usually, the scope is then
set as a parameter but this comes with problems of its own. For example,
one parameter might yield many more clusters than another. Now a metric
would have to be chosen to decide which of the two results is more "useful’.
By contrast, persistent homology tries to find structures that are visible
for not just a small fraction of all possible scopes, but instead for a wide
range. For our example, this would mean that, when we change the scope
through which we look at our data, the most "useful” result is the one where
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Figure 1.3: An intuitive example of persistent homology. The number of clusters varies
depending on the radius with which the data points are visualized. Clusters
which are more clearly separated, are visible for a wider range or radii. Similar
to the number of clusters, the hole in the middle is not visible for all radii. This
image was taken from Wasserman (2018).

the number of clusters does not change (persist) for the largest interval of
changing scopes. A visual example can be seen in Figure 1.3.

1.2 Challenges

Because topological data analysis is concerned with high-dimensional data,
the ‘curse of dimensionality” arises. This phenomenon, originally coined
by Bellman and Kalaba (1959), describes the idea that with an increasing
number of dimensions, many problems have to be considered that would
not be present in lower dimensions.

For example, an increase in the number of dimensions leads to such a fast
increase in the volume of the space, that the data becomes sparse. Intuitively,
a set of data points might be similar to each other in some number of
dimensions. However, when adding more dimensions, they are likely to
be dissimilar in at least some of these dimensions. Conversely, data points
that are dissimilar from each other in a few dimensions might be correlated
in other dimensions. This leads to problems when trying to find clusters,
modes or ridges in extremely high-dimensional data, as all data points
appear to be more or less equidistant from each other.

While costly, this problem can be overcome by gathering more data to more
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densely populate the data space. However, this also leads to another problem.
While, as mentioned before, the computing power of modern processors
has increased drastically, there are still limits. Data sets with hundreds or
thousands of dimensions and many millions of data points can only be
subjected to a limited subset of analysis methods with sub-exponential
runtime.

Another factor to consider is the quality of data. Of course, there are TDA
methods which are quite robust and yield high quality results, even with
outliers present. However, according to Wasserman (2018), some TDA meth-
ods are not as robust, such as Tenenbaum, V. d. Silva, and Langford (2000).
Once again, this problem can be tackled in numerous ways, for example
cleaning the data beforehand or fine-tuning parameters, but naturally the
number of outliers or incorrect samples will usually increase with the num-
ber of dimensions and data points. Detecting outliers and cleaning data has
always been a challenge in data analysis and are also important tasks for
topological data analysis.

This thesis will introduce a new interactive TDA method that allows users
to find low-dimensional manifolds in high-dimensional data. This new
approach enables users to iteratively reduce the number of dimensions,
remove outliers, and parametrize subspaces.



2 Related Work

Where the previous chapter gave an overview of topological data analysis
as a whole, this chapter will focus on visual methods that allow users to
tind patterns in data. It also serves the purpose of providing context for
the developed prototype, to explain which visualization techniques already
exist and what their strengths and weaknesses are.

Since the underlying data usually lives in a high-dimensional space, there
is no immediate way to visualize all dimensions simultaneously. A com-
mon solution to this problem is to project the high-dimensional points to
a lower-dimensional embedding, usually 2D, which can be viewed on a
screen or sheet of paper. These static images, however, make it difficult to
get a good understanding of the high-dimensional structure of the data.
Therefore, many visualization techniques are most useful when presented
by an interactive visualization tool through which users can manipulate
parameters of the visualization. This is especially important for the explo-
ration of such data, which users typically start with no prior understanding
of the data’s structure.

Another point to consider is that, while many interactive visualizations can
solely be modified manually, the changing of parameters can oftentimes be
supported by automated systems to reduce the amount of data users have
to process.

Visual approaches to TDA also solve some of the previously mentioned
problems. For example, humans are notoriously good at finding outliers,
when equipped with the right tools. Humans are also great at finding clus-
ters or correlations, which cannot be described as a simple scalar function,
such as spirals or concentric circles. These tasks can be very computationally
expensive when encountered in high-dimensional settings, and leveraging
the strengths of the human mind can be beneficial when analyzing data. It
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is also the human mind which is the recipient of the discovered information
and it is often helpful to support human cooperation throughout the entire
data analysis process.

2.1 Visual Topological Data Analysis

Most visualization techniques do not explicitly focus on topological data
analysis and the field of visual TDA strongly overlaps with the field of high-
dimensional data visualization. Because of its relevance to the developed
prototype, a particular focus is laid on scatter plots and Parallel Coordinate
Plots in Sections 2.2 and 2.3.

Before discussing specific visualization techniques, it is also worth men-
tioning that all the following techniques can be use in conjunction with
dimension reduction (DR) techniques and many of the mentioned papers
even explicitly mention some form of DR that is used as a first step to
pre-process the data for later visualization (Jackle et al., 2017, Yuan et al.,
2009). In fact, it is often the case that when the number of dimensions
becomes large enough, some form of DR becomes essential and is just as
important as the visualization technique itself. Some popular forms of DR
include: Principal Component Analysis (Wold, Esbensen, and Geladi, 1987),
Linear Discriminant Analysis (Fisher, 1936) and Latent Semantic Analysis
(Deerwester et al., 1990). Because this chapter focuses on the visualization
technique rather than the data processing steps taken beforehand, we will
not further detail or compare DR techniques but relegate this task to other
works such as Cunningham (2008) and Fodor (2002).

Over the last few decades a wide variety of data visualization techniques
have been developed, many of which are focused on high-dimensional
data since this type of data can be found in abundance in many real world
settings. However, not nearly all of these visualizations are useful for finding
topological features in high-dimensional data. For this reason, and because
it would go beyond the scope of this thesis, this section will only cover a
few of the most popular visualization techniques that are best suited for
topological data analysis.



2.1 Visual Topological Data Analysis

Star Coordinates (Kandogan, 2000) are one such technique. When visualizing
data via Star Coordinates, the different dimensions are initially spread out
equally in a radial pattern. The dimensions are normalized to all have the
same length of 1. Each data point is then represented as a single point
in this circular Cartesian plane. For each dimension, a normalized vector
is calculated corresponding to the data point’s relative position along the
normalized dimension. All of these vectors are then summed up, which
results in the point’s final coordinates. The exact definition of the mapping
of a high-dimensional point D = (dy, dy, ..., d,) to the two-dimensional point
P in Cartesian Coordinates is as follows:

d,‘ — mini

n
P=0+Y a. LM
max; — min;

i=1

(2.1)

where O is the origin of the 2D plot, 4; is the i-th axis vector of the plot, and
min; and max; are the minimum and maximum values of the i-th coordinate
in the whole data set.

Because the coordinates of the resulting point are simply a sum of the
different dimensions opposite dimensions cancel each other out. Naturally,
this is not always wanted, so users can change the angle of dimensions
by dragging them. Additionally, users can stretch or compress the length
of dimensions to change the represented importance of a dimension. Star
Coordinates have two main applications: cluster analysis and decision-
making. An example of such an analysis can be seen in Figure 2.1.

By changing the orientation and length of the dimensions, clusters can
appear and disappear. Similar to the example in Figure 1.3, such clusters
usually exist throughout a range of parameter scales, and depending on
how large this range is, statements with varying degrees of certainty can
be made about them. Star Coordinates also offer the benefit that each data
point is only represented as a single point in a space of fixed area, which
means that even for high-dimensional data, the visualization is still compact
and exhibits little cluttering. Naturally, this comes with a loss of information,
but if a user is mostly interested in finding clusters, this can be a desirable
trade-off.

The Grand Tour (Asimov, 1985) is another visualization technique, which
can allow users to find topological structures in high-dimensional data.
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Figure 2.1: A Star Coordinate visualization of an 8 dimensional car data set. The difference
between these two images is how much focus is placed on the car’s origin. This
image was taken from Kandogan (2000).
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2.1 Visual Topological Data Analysis

The Grand Tour is an animated visualization technique in which the high-
dimensional points are projected orthogonally onto a 2D subspace from
different angles. For a 3D structure, this would be the same as a camera
moving around and object, each frame representing a different angle from
which the data is viewed. This also means that each frame is basically
a 2D scatter plot, but instead of projecting the data exactly along a set
of dimensions, the data is projected from an intermediate angle. While
animated visualizations are often hard to grasp when only viewing them
once, an interactive animation, in which users would be able to play back,
or slow down or speed up the animation could allow them to find clusters,
ridges or other structures in higher dimensions. Since the Grand Tour is
inherently animated, no example is included.

There has also been a lot of research concerning iconography, which, relating
to data visualization, refers to the visual representation of high-dimensional
data as simple shapes or forms called icons. While there are several types of
iconography, and especially ‘Chernoff faces” (Chernoff, 1973) have garnered
a lot of attention, Star Glyphs seem to be best-suited for topological data
analysis. Star Glyphs, just like Star Coordinates, spread out the different
dimensions radially from a common center. However, when using Star
Glyphs each data point is represented as a unique glyph, where the values
for each dimension are plotted along an axes and connected via a polygon
line. These glyphs are oftentimes is star shaped, hence the name.

While almost all types of iconography can be used to detect similarities or
clusters between data points, Star Glyphs make it relatively easy to find
correlations between different dimensions. These correlations can then be
used to infer higher-dimensional structures. Additionally, they scale well to
higher dimensions, which makes it not only possible to represent the data
points as glyphs, but also the dimensions themselves, even for large data
sets.

To compare different dimensions with the help of Star Glyphs, one can rep-
resent each dimension with a glyph instead of each data point. This means
that the axes represent the corresponding values of different data points
instead of dimensions. While similar methods are theoretically possible for
many visualization techniques, since this is nothing more than a transposed
version of the same data, most data sets have a larger number of data points

11
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Figure 2.2: Five Star Glyphs arranged on their pivot axis. This image was taken from Fanea,
Carpendale, and Isenberg (2005).

than dimensions. By transposing the data set, the result would then be a
very high-dimensional space with only a few data points, which is usually
undesirable and makes it harder to visualize. For example, consider the
Chernoff faces.Visualizing a 5-dimensional data set with 100 data points is
comparatively straightforward, however a 100-dimensional data set with
only 5 data points is harder to visualize because there are not enough facial
parameters to assign each dimension a different parameter. Usually each
dimension is mapped to a single facial parameter such as length of nose or
curvature of mouth, but there are only so many different features to map
dimensions to. While this problem could be overcome by mapping several
dimensions to a single facial feature, it would make it harder to differentiate
between the resulting faces.

A question that still needs answering is how to order and present a set of
such glyphs. Depending on the arrangement, groups of similar glyphs can
be easier or harder to find. While there are many possible ways to do this,
an interesting idea was proposed by Fanea, Carpendale, and Isenberg (2005),
who put forward the idea of arranging Star Glyphs along an axis, similar to
a Parallel Coordinate Plot. An example can be seen in Figure 2.2.

12
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2.2 Scatter Plots

Scatter plots are one of the most popular ways to represent data in general.
Scatter plots have been around for many decades and, while many other
visualization techniques are hard to grasp for the uninitiated, they are also
easy to understand and simultaneously extremely powerful. For a history of
how the scatter plot was invented, see Friendly and Denis (2005). A scatter
plot is usually defined by one to three orthogonal axes that each represent
one dimension of the data. Data points are then represented as circles or
dots in the Cartesian space, spanned by the dimensional axes. It is also
possible to vary the points” shape, size and color to represent additional data
attributes or dimensions. However, these additional visual differentiations
can interfere with each other.

While scatter plots are usually used to represent continuous data, they can
also be used to visualize categorical data, by equally spacing the different
categories along an axis. When using continuous data, it can both be useful
to normalize the scales of the axes or leave them at their original relative
scales.

While the number of axes is not fixed, the two-dimensional scatter plot is
by far the most popular choice. While three-dimensional scatter plots might
appear more useful, because they can represent an additional dimension,
they suffer from the same problem as all three-dimensional data represen-
tations, which is that most media is viewed on either 2D screens or sheets
of paper. While three-dimensional scatter plots are also often used, but it
is easier to get an understanding of the data’s 3D distribution when users
have the option to rotate the scatter plot. Since this is not always possible,
especially in print or with static images, 2D scatter plots are considered to
be the default.

One aspect to consider about 2D scatter plots of high dimensional data is
that they are a projection of the data along the other axes. For example, in a
3D data set, any 2D scatter plot consisting of two of the three axes simply
represents a different angle from which the 3D points are viewed. While
this axis-aligned point of view is oftentimes interesting, structures may
not necessarily appear more clearly when viewed like this. For example,
consider a set of three-dimensional points that lie on the surface of a cylinder.

13
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When the cylinder’s flat sides are aligned with one of the axes, the patterns
that would appear by looking at a two-dimensional scatter plot would
be a clear circle and rectangles, depending on which two dimensions are
chosen as the base for the scatter plot. By looking at all possible 2D scatter
plots, one could then ascertain the 3D shape of the data. However, if the
cylinder were to be rotated in 3D space, it can be almost impossible to see
any correlation whatsoever. This means that scatter plots can have varying
degrees of usefulness when trying to ascertain the topological structure of a
high dimensional data set. The idea that low-dimensional scatter plots are
nothing more than projections of the original data along particular axes is
important to keep in mind when talking about more complex visualization
techniques involving scatter plots.

There is also the one-dimensional scatter plot, but they generally only
allow us to get a broad overview of how the data is distributed in this one
dimension. Linked together, however, this can also be a useful representation
of high-dimensional data as will be discussed in Section 2.3.

At first glance, scatter plots might not appear to be particularly well-suited
for topological data analysis, since the number of dimensions of a scatter
plot is inherently limited to three. This, however, is not the case since a
combination of 2D scatter plots can be used to give the user different 2D
perspectives into the high dimensional data space.

2.2.1 Scatter Plot Matrices

The most natural approach to representing high-dimensional data via scatter
plots is to create a 2D scatter plot for every combination of dimensions. By
arranging these scatter plots in a 2x2 matrix one ends up with a Scatter
Plot Matrix. An example can be seen in Figure 2.3. Scatter Plot Matrices
are a popular tool because they are easy to understand and oftentimes
correlations can already be found between just 2 sub-dimensions. However,
they also have an obvious limitation in that a Scatter Plot Matrix grows
quadratically with the number of dimensions. This means that for data
sets with more than a few handful of dimensions the matrix becomes so
large that it takes users a long time to sift through the numerous 2D scatter
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.

Weight

Figure 2.3: A Scatter Plot Matrix of a 7-dimensional car data set. This image was taken
from Elmqvist, Dragicevic, and Fekete (2008).

plots. Additionally, only a few scatter plots will contain relevant information
to a user. Scatter Plot Matrices are a popular research subject and many
approaches have been proposed through which to alleviate this problem.

For example, Shao, N. Silva, et al. (2017) propose a recommendation-based
approach, which shows users interesting and previously unseen scatter
plots based on the user’s eye movements. They allow users to freely explore
the Scatter Plot Matrix while simultaneously recording the eye movements
of the user. The duration for which a scatter plot is looked at is then used
as the basis for the recommender system, which uses a k-nearest-neighbor
(KNN) search to identify similar scatter plots and then recommend scatter
plots which are different to the ones previously explored. The idea of adding
recommender systems to the exploration process has been used before and
can be a powerful aid in the exploration process.

Another paper by the same author (Shao, Behrisch, et al., 2014) explored
the idea of using manual sketches as a search modality to find scatter plots
with similar patterns. They gave users the ability to sketch a visual pattern
they were looking for and returned a range of 2D scatter plots which best
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matched the sketch. This made it relatively easy to find structures of a
certain kind. They also added a shadow drawing mechanism (Lee, Zitnick,
and Cohen, 2011), which overlays similar results already during the drawing
process and allows users to get an overview of similar results or even adapt
their query with immediate feedback.

Elmqvist, Dragicevic, and Fekete (2008) proposed a set of tools that allows
users to quite literally traverse a Scatter Plot Matrix by animating the
change between two scatter plots where one axis stays the same. In their
prototype, the Scatter Plot Matrix was used as both an overview of the
entire exploration space and a navigation tool. They allowed users to look
at a single 2D scatter plot, and via a variety of movement options travel
through the Scatter Plot Matrix. While still only using two- and three-
dimensional scatter plots, this method is intuitive and allows for a target-
oriented exploration of a Scatter Plot Matrix.

2.3 Parallel Coordinate Plots

Parallel Coordinates or Parallel Coordinate Plots (PCPs) were first invented
by Hewes and Gannett (1883) and then later independently reinvented by
Inselberg and Dimsdale (1990) and are commonly used to display multivari-
ate data. When using parallel coordinates, each dimension is mapped onto
onto one of N (usually vertical) lines with equal lengths. These lines, or axes,
are then placed next to each other and each data point is represented as a
polygon line that intersects each axis at the respective coordinate value of
this corresponding dimension. An example can be seen in Figure 2.4.

PCPs derive much of their popularity from the fact that their size scales
linearly with the number of dimensions, since each dimension is represented
by a single coordinate. This is a clear benefit over Scatter Plot Matrices which
scale quadratically. Additionally, many common correlations between two
dimensions can be discerned by looking at the line intersections between
them. Some examples can be seen in Figure 2.5.

It is worthy of mention that many of these correlations, especially the
exponential e* correlation, can be hard to see when too many lines are
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Figure 15: — On the first 3 axes a set of coplanar
points is shown

The points are not equally spaced with respect to
any of the variables.

Figure 2.4: A Parallel Coordinate Plot with six dimensions. This image was taken from
Inselberg and Dimsdale (1990).

(x, —x) (x,x) (x, sin(x)) (x, ") (sin(x), cos(x))

Figure 2.5: Common patterns in two dimensions visualized via a scatter plot (top) or a PCP
(bottom). This image was taken from Heinrich and Weiskopf (2013).
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shown simultaneously, because when drawn fully opaque, the differences in
line densities can be difficult to discern. These patterns can become clearer
by lowering the line opacity, but finding an opacity value that fits for all
types of data sets is a difficult task. An easier solution would be to allow
users to change the opacity on their own, but this is not always an optimal
solution either.

While these patterns help users understand the topology of the data, they
are also just combinations of two sub-dimensions. This means that the order
of the dimensions is of high relevance since interesting patterns can only
be found in adjacent dimensions. Naturally, it would also be possible to
visualize all 2D combinations, similar to a Scatter Plot Matrix, as suggested
by Heinrich, Stasko, and Weiskopf (2012), which results in a visualization
they aptly named a parallel coordinates matrix. However, this approach
forfeits the main benefit of PCPs over scatter plots, which is their linear
scaling with the number of dimensions. Other researchers have also focused
on how to arrange the dimensions in PCPs (Tilouche, Partovi Nia, and
Bassetto, 2021) but this problem is still a topic of research.

While the order of dimensions in PCPs is important, reordering dimensions
only allows users to see more relevant patterns in 2D subspaces. However,
Li, Martens, and Van Wijk (2010) even showed that generally scatter plots
are more effective at finding correlations between two dimensions than
PCPs, but this does not mean that there is no benefit to also visualizing
these correlations in PCPs. Sometimes patterns become clearer and can
be more easily found when they are visualized in several different ways.
Furthermore, PCPs visualize more than just a subset of all 2D combinations,
they show all dimensions simultaneously in a single window, which makes
them a powerful tool for finding structures that might not be visible in
any 2D subspace. Especially clusters can be easily detected because they
appear as tight bundles of polylines across all dimensions. Naturally these
clusters could also become more or less visible when rearranging the order
of dimensions, but generally they can be detected either way. Clusters also
become more apparent when using different line opacities or line colors.
However, besides clusters, it seems difficult to find structures such as ridges
or low dimensional manifolds on which the data points lie solely by looking
at the different polygon lines.
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2.4 Hybrid Techniques

Both scatter plots and PCPs have different strengths and weaknesses and
there have been efforts to combine both techniques into one visualization.
These combined techniques aim at leveraging the strengths of scatter plots
and PCPs while minimizing redundancy and clutter.

The first technique that combines both techniques directly was proposed
by Wegenkittl, Loffelmann, and Groller (1997). They replaced the normal
one-dimensional lines in a PCP plot with two-dimensional planes and
therefore called their technique "three-dimensional parallel coordinates”. In
their paper they aligned the planes in such a way that the sides of the planes
were facing each other. Figure 2.6 shows an example. This also reduces
both the number of lines that have to be shown on screen simultaneously
and the number of possible arrangements within the PCP. This last point
is especially noteworthy, since as discussed, the arrangement of PCPs is of
high relevance. However, Johansson Westberg, Forsell, and Cooper (2013)
showed, that users prefer the normal PCP plot over its three-dimensional
counterpart for detecting subspace correlations. While their sample size was
too small to make general assumptions with certainty, it seems reasonable
as there are many more patterns between the different dimensions that
would have to be recognized than in a normal PCP. While this version
allows the connecting lines to occupy the most space and thus encode
the most information, three-dimensional parallel coordinates can also be
created by rotating the planes by go°such that all of them face in the same
direction. This allows for a representation with a static camera and the 2D
patterns within the planes are all visible simultaneously. Especially the fact
that all 2D scatter plots are visible at the same time seems to have a lot of
merit, since scatter plots show some correlations more clearly than parallel
coordinates. However, in this approach the connecting polygon lines all have
to be projected onto a plane, which in turn leads to a loss of information.

Similar to how three-dimensional parallel coordinates expand the nor-
mal PCP by increasing the number of dimensions represented by each
layer, three-dimensional parallel coordinates can also be extended to four-
dimensional parallel coordinates by replacing the 2D scatter plots by 3D
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Figure 2.6: A simple example of how a normal PCP can be converted to a three-dimensional
PCP. Depending on which dimensions are used to create 2D scatter plots, the
resulting line patterns change. This image was taken fromJohansson Westberg,
Forsell, and Cooper (2013).

ones. Naturally, this exacerbates the problems previously mentioned, but
can sometimes reveal structures in 3D that would not be visible otherwise.

Yuan et al. (2009) introduced another idea, which bears similarity to a three-
dimensional scatter plot. They proposed to insert scatter points into the
space between two parallel coordinate axes, P; and P,. With their default
setting, the coordinates of the scatter plot points within two such axes would
be the value of the data point on P, as y coordinate and the value of the data
point on P, as the x value. While a normal PCP would produce a straight
line for each data point between P, and P,, they proposed to use splines
instead, such that three conditions are fulfilled:

¢ Each spline intersects the parallel coordinate axes at their usual loca-
tion.

¢ Each spline intersects the newly inserted scatter point.

¢ Each spline connects smoothly with the following spline connecting
Pb and PC

The use of these splines leads to fewer overlapping lines and, according
to the authors, improves data comprehensibility, especially compared to
systems with multiple views. Furthermore, there are many possible ways to
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distribute the scatter points. It is also possible to represent several dimen-
sions simultaneously with these scatter points, for example by projecting
them from a high dimensional space to a 2D space via multidimensional
scaling (Wong and Bergeron, 1997).

As mentioned before, the patterns created by PCPs between two dimen-
sions are helpful in understanding correlations in the data, but even more
interesting is the way in which the polygon lines flow through all of the
dimensions. Jackle et al. (2017) investigated this topic by exploring how
patterns in subspaces can be found by observing the change in subspace
patterns. They first find interesting subspaces and project them into a 2D
subspace. These 2D subspaces are then aligned into a three-dimensional
PCP. They grouped these subspaces based on similarity and finally highlight
the change of a user-selected pattern. The selected data points are connected
across all subspaces. The connecting polygon lines can be analyzed to infer
the structure of high-dimensional data sets.

2.5 Unsolved Problems

Almost all of the aforementioned visualization techniques can be used to
detect clusters in high-dimensional data sets. While the approaches vary
drastically, it seems that clusters are the topological structure that is easiest
to identify visually. Other structures such as holes or ridges seem to be
much harder to identify.

For example, consider a data set in which all the data points lie on the
surface of a 4D hypercube. The fact that this hypercube is completely empty
on the inside would be difficult to detect with any of these visualization
techniques. Similarly, the fact that all data points lie on a 2D manifold,
embedded in the four-dimensional space would also be hard to detect.

Now imagine that the data points form some sort of interesting pattern on
the surface of this hypercube. Since a cube is a relatively simple structure,
such a pattern could still be detected in a subspace, for example, via a
simple Scatter Plot Matrix. However, if we were to rotate the cube such that
its surfaces are no longer axis-aligned and we were to stretch and compress
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Figure 2.7: The top image shows a normal PCP. The bottom image shows a PCP with
scatter points between some dimensions. This image was taken from Yuan et al.

(2009).
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parts of its surface, such a pattern would become increasingly difficult to
find.

This example illustrates that manifold estimation or even just detection is
still a largely unsolved problem in visual topological data analysis. The aim
of this thesis is to address these problems by introducing a novel interactive
visualization concept, which should allow users to simplify the data by
reducing the number of dimensions and reveal structural properties of the
data.
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3 Concept and Implementation

This chapter covers the functions and ideas behind the interactive TDA tool
that was developed as part of this master thesis. This includes a description
of the initial ideas and concepts and how these ideas changed over the course
of the development, as well as a technical description of the frameworks
and languages used.

3.1 Core ldeas

Because it was desirable for the chosen visualization technique to not be
limited by the number of dimensions of the data set, it was decided to
choose a Parallel Coordinate Plot as the foundation of the prototype. One of
the most obvious problems with Parallel Coordinate Plots is the question of
how to arrange the dimensions. As discussed in Chapter 2, there are many
approaches to tackling this issue. Due to the fact that this work focuses on
interactive data exploration, the chosen method of arranging the parallel
coordinate axes was to use the order provided in the data set as a starting
point, and then allow users to rearrange them interactively as desired. A
screenshot of the PCP that is shown immediately after loading a data set
can be seen in Figure 3.1. This decision gives users more freedom to explore
the data on their own, but comes with the obvious drawback of having to
sift through many arrangements.

In addition to the base PCDP, the initial design concept consisted of 3 main
pillars:

¢ merging and unmerging of dimensions
¢ unrolling of embedded dimensions
e tracking and visualizing data provenance
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Figure 3.1: The standard PCP view, that is shown upon loading a data set. The order of the
axes is the same order as in the imported CSV file.

These functionalities are the main ways by which users can interact with
and explore their data.

3.1.1 Merging and Unmerging of Dimensions

Merging different dimensions within the PCP allows users to create two-
and three-dimensional scatter plots. Because parallel coordinate axes can
already be seen as one-dimensional scatter plots, this does not change
the way the data is projected, but simply changes the relation between
two dimensions, from being parallel to being perpendicular to each other.
Note that the term scatter plot refers to the general concept of a scatter plot
including points on a one-dimensional axis of a PCP, as well as the more
commonly known two and three-dimensional scatter plots.

Merging scatter plots into higher-dimensional scatter plots allows users
to find correlations and clusters within these dimensions more easily. A
PCP with one-, two- and three-dimensional scatter plots can be seen in
??. While any pattern that can be found in a two-dimensional scatter plot
could also be found by looking at the same two dimensions when they are
adjacent in the PCD, they are oftentimes harder to spot. Furthermore, it gives
users the option to choose their preferred way of looking at the data, and
three-dimensional scatter plots can reveal structures that cannot be seen
by just looking at a PCP. Merging dimensions should be reversible, and it
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Figure 3.2: A PCP layer with one-, two- and three-dimensional scatter plots. The three-
dimensional scatter plot has been rotated to better showcase its three-
dimensional nature.

should be possible to restore the original PCP by unmerging scatter plots
back to their original one-dimensional form.

Additionally, when looking at three-dimensional data points through a two-
dimensional screen, the user needs to have the ability to rotate either the data
points, or the camera to get a better feeling for the three-dimensional posi-
tion. Otherwise, most users struggle to accurately identify the depth of ob-
jects. For this prototype, it was decided to let users rotate three-dimensional
scatter plots by dragging them with the mouse after entering rotation mode
(see Figure 3.2, second scatter plot from the left).

3.1.2 Unrolling of Embedded Dimensions

After merging two or three dimensions, users are able to project the data
points into a space with one less dimension. This can be done in three dif-
ferent ways. The simplest way to achieve this is to fit a polynomial function
onto a 2D scatter plot via linear regression (Montgomery, Peck, and Vining,
2021). After constructing such a polynomial function, all data points are
projected to the nearest point on the polynomial and reparameterized along
it to create a new one-dimensional scatter plot. An example of a polynomial
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Figure 3.3: A polynomial function has been used to calculate the least-squares error in the
2D scatter plot. All data points are then projected onto this polynomial, which
results in the new 1D scatter plot in the second PCP layer.

line fit can be seen in Figure 3.3. Alternatively, users can interactively draw
a curve into a 2D scatter plot, in which case points are similarly projected
onto the curve to create a new, reduced one-dimensional axis. Lastly, users
can also draw a curve on a 3D scatter plot, in which case the line is extruded
along the view-space z-axis to form a developable surface. In this case, the
resulting scatter plot has two dimensions. Drawing such curves by hand is
especially helpful for structures such as circles, which cannot be described
by a polynomial function.

Projecting and unrolling a new axis this way leads to the creation of a new
PCP within the user interface, which is a duplicate of the original PCP,
except that the scatter plot with the fitted function or drawing is replaced
by a scatter plot of lower dimension. This allows users to iteratively reduce
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the number of dimensions by merging and unrolling embedded dimensions.
Of course, this leads to a greater loss of information when the chosen
dimensions are correlated less strongly. Therefore, it is only meaningful to

unroll such embedded dimensions when a relatively clear correlation can
be found.

3.1.3 Tracking Data Provenance

The third pillar of this prototype is the visualization of data provenance.
Users are allowed to modify and simplify the underlying data in various
ways, but the topological structures that can be found with these processes
have to be tracked back to the data’s original form in order to draw conclu-
sions. This was done in three ways.

Firstly, some actions, like unrolling an embedded dimension, lead to the
creation of a copy of the previous PCP, as explained above. This means
that users can scroll down to see which embedded dimensions have been
unrolled, since the drawing or fitted function is still visible in the lower
layer.

Secondly, scatter plots that represent the same dimensions reflect the same
horizontal position as their counterpart in higher or lower layers, even when
moved. Although each axis of a scatter plot possesses a label, it can be hard
to find a counterpart to a scatter plot when the data set consists of dozens
or hundreds of dimensions. By keeping them vertically aligned, it becomes
easier to focus on the differences between the PCP layers, like the unrolled
dimensions.

Finally, the relation between plots of different layers is visualized via high-
lights and connecting lines. A child plot is a plot that either represents the
same dimension or is a product of unrolling an embedded dimension of a
plot in a lower layer. For example, when unrolling an embedded dimension
of a two-dimensional scatter plot, the resulting one-dimensional scatter plot
would be considered the child of the original 2D plot. Similarly, if a user
were to merge two one-dimensional plots in a higher PCP layer, the two
one-dimensional plots in the layer below would be considered its parents
and highlighted correspondingly. When hovering over a scatter plot, the
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axes of its children and parent plots are highlighted in different colors, red
for the parents and blue for the children. Additionally, they are connected
via a line from the top of the parent plot to the origin of the child plot.
An example of how the state of the application may look like after several
actions have been performed can be seen in Figure 3.4. This figure shows
a more complex state which was achieved after unrolling an embedded
dimension and then merging the resulting 1D axis in the second layer. This
2D scatter plot was then unrolled again and the 1D axis in the third layer
was merged with two more one-dimensional axes to form a 3D scatter plot.
Additionally, two 1D scatter plots were merged in the second layer, revealing
circular structures.

3.2 Supplementary functions

During the development phase of the prototype, it became clear that some
more functions were needed make it more accessible and practical for the
user.

A problem that occurred during the early stages of development was that it
was very hard to see correlations in two and three-dimensional scatter plots
due to the oftentimes large number of lines that would pass through the
plot. While it would be possible to simply set the line opacity lower, or the
point opacity higher, this would have varying results based on the density
of data points. Therefore, density sliders for both opacities were added, to
allow the users to change opacities during runtime.

Additionally, it became clear that when loading a data set with many
dimensions, it would take users a long time to find correlations in two or
three dimensions when they would have to go through all combinations by
hand. For this reason, a recommender system was added that creates all
possible 2D scatter plots from a chosen 1D scatter plot and fits a polynomial
function via linear regression. For a pair of dimensions x and y, both the
scatter plot Plot(x,y) and the transposed version Plot(y,x) are created
and their respective least-squares errors E are calculated as defined in
Equation 3.1.
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Figure 3.4: Three PCP layers, created by unrolling embedded dimensions two consecutive
times. When the user hovers over the 2D scatter plot to the right in the middle
layer, its parents that were merged to create it are highlighted in red and the
3D scatter plot that contains the unrolled dimension is highlighted in blue. All
parent-child relations are visualized via the connecting lines.
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Figure 3.5: The user’s mouse is hovering over a 1D scatter plot. The recommendation pop-
up initially shows the four 2D scatter plots with the best polynomial function
fit. More possibilities can be viewed when the slider is moved to the right.

n

E=Y (F(x) i) (1)

i=0

where x; and y; are the X- and Y-Axis values of a point P; = (x;,y;) and f is
the polynomial function. Since the same structures can be seen in both plots,
the one with the higher error E is discarded. These 2D scatter plots are then
sorted in descending order by their least-squares error E and shown below
the chosen 1D scatter plot.

Small previews of these possible merges are presented to the user in a
pop-up, when hovering over a 1D scatter plot. An example of how this
might look can be seen in Figure 3.5. The same recommendation, with a few
more details, can also be viewed in a separate window by right-clicking a
1D scatter plot. The user can then click on a 2D scatter plot to automatically
merge them. They could also choose to additionally use the polynomial to
unroll an embedded dimension.
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Another common feature that was added was a color gradient for the
polylines of the PCP. This color gradient is a simple rainbow color spectrum
based on the Y-position of a data point in the selected scatter plot. When
starting the application, the color is based on the leftmost 1D scatter plot.
Afterwards, the user can choose which scatter plot to use to define the color.
If the user selects a 2D or 3D scatter plot the Y-Axis is chosen to define the
polyline colors. Many PCP implementations only use a single color because
it more clearly shows line density and is supportive of people with color
deficiencies. However, a colored PCP can make it easier to spot clusters
and follow lines through several dimensions. This trade-off was considered,
and at least for the current prototype, it seemed that a colored PCP was
beneficial.

Additionally, it became clear that selecting a subset of data would open up
interesting exploration options. Selecting a subset of the current data is done
via lasso selection, by encircling the data the user wants to take a closer
look at. An example can be seen in Figure 3.6. This can be done in one, two
or three-dimensional scatter plots. Just like when unrolling an embedded
dimension, this action creates a new PCP layer which contains copies of
the same scatter plots as the last layer, but this time only the selected data
points are shown. This can sometimes mean that the data points are spread
out more among certain dimensions to still make use of the entire space
of a scatter plot. The lasso sketch is then permanently displayed to show
which selection was made.

Lastly, during the testing state we observed that another tool was needed to
unroll embedded dimensions. Projecting points onto a hand-drawn hyper-
plane (line or 2D plane) was the most powerful tool for users, but sometimes
not very intuitive. Additionally, it is difficult to draw perfectly straight lines.
This is a shortcoming, since many correlations found in real-world data are
linear. Therefore, another option was added to project the points of a 3D
plot onto a plane that is parallel to the screen. This can be helpful when
structures are found by rotating the 3D plot and the user would like to use
the image they have in front of them to flatten the 3D plot to a 2D plot in
which the same structures are visible. An example can be seen in Figure 4.3,
where the second layer contains a 3D scatter plot with the extruded dragon
shape. Without this new function, it would have been difficult to accurately
project this structure onto a plane.
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Figure 3.6: After encircling a subset of the data, a new PCP layer is created in which only
the selected points are displayed. In order to use the entire space available, the
data points in the upper layer are spread out.
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Figure 3.7: The user interface of the current prototype. The visualized data set is the
popular “iris” machine learning data set (Anderson, 1935). 1. Opacity Sliders
for the Points (especially in 2D and 3D) and lines. 2. Different Tools to perform
actions. From top left to bottom right: Curve Sketch Tool, Function Fit Tool,
Rotate Tool, Selection Tool, 3D Projection Tool. 3. Interaction points at the
bottom of each scatter plot. Actions such as dragging, merging and unmerging
can be performed by clicking this point.

3.3 Usability

Currently, the user interface only contains the most basic features, with a
small widget at the top left to select which action should be taken and to
change the point and line opacities. A screenshot is shown in Figure 3.7.
This allows users to focus on the main visualization. An effort was made to
integrate all visualization into one window, instead of having many different
views, but clearly this has some limitations. For example, it might be useful
to also have a scatter plot matrix in a different window, to explore many 2D
scatter plots with ease.

To keep the user interface as simple as possible, we decided to have users
mainly interact via the black circle at the origin of each scatter plot axis. This
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means that different actions can be performed by using different actions
with this button. A right click undoes the last action. Therefore, if the scatter
plot contains a selection or curve drawing, it is deleted. Otherwise, a single
axis is removed from the scatter plot, reversing the last merge. If the rotation
mode is active, right-clicking the origin will reset a 3D scatter plot’s rotation.
Double-clicking the origin will use the Y-axis of the selected plot to define
the colors of the polylines and clicking and dragging the origin moves the
axis.

Another interesting design decisions was made when it comes to creating
or deleting new layers. Currently, a layer is only created when selecting a
subset of the data for future analysis, or when an embedded dimension is
unrolled. However, a layer is only deleted after all the selections and unrolled
dimensions in the layer below are undone and all the newly merged scatter
plots are unmerged. This was decided to keep the user’s analysis safe from
accidental deletion, as large amounts of work could otherwise be deleted
by an accidental right-click. For the same reason, it is not possible to undo
actions in lower layers, when the resulting scatter plots have been used in a
higher layer. For example, in the scenario shown in Figure 4.3, it would not
be possible to unmerge the 2D scatter plot in the lowest layer because the
layers above depend on this merge. This design decision leads to the fact
that layers have to be undone one by one, which can sometimes take several
clicks.

3.4 Languages and Frameworks

Since topological data analysis can oftentimes involve large datasets with
many data points, each having many attributes, the decision was made to
use a language which allows for high-performance computations to provide
interactive frame rates. Therefore, the C++ programming language was
chosen.

The fact that the C++ standard libraries are not well suited for front end
development, meant that a framework for user interaction was required. For
this purpose, Qt was chosen as it is one of the most popular GUI frameworks
for C++.
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While Qt contains a data visualization framework, the requirements for
this project were different enough such that it was necessary to use a
graphics APIL Qt does offer relatively low-level drawing functionality in
their QPainter class, but after some tests it became apparent that with
this approach only a few thousand data points could be rendered while
keeping the application running smoothly and responsively. This led to
the decision to also use the OpenGL framework to achieve an even better
performance and to allow for larger data sets to be visualized. To use
OpenGL in conjunction with Qt, Qt’s class QOpenGLWidget was used.

The combination of these highly performant frameworks and libraries allows
the prototype to visualize quite large data sets. The largest ones tested on a
standard PC, with an NVIDIA GEFORCE GTX 1660 Ti GPU and an Intel
Core i7-8700k CPU and 64 GB of RAM contained just over 32,000 data points
and 15 dimensions. The prototype was also tested with a data set containing
2,000 data points and 65 dimensions, still running smoothly.
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4 Results

This chapter illustrates the capabilities of the current version of our interac-
tive topological data analysis tool.

4.1 Use Cases

The prototype’s capabilities have been tested using different data sets with
varying numbers of data points and dimensions. To illustrate some specific
analysis scenarios, synthetic data sets were created.

4.1.1 Structures in Two Dimensions

Because the recommended 2D plots are sorted by their least-squares error,
after fitting a polynomial function of degree 3, linear or polynomial correla-
tions can be found within a few seconds. Patterns that cannot be expressed
as polynomial functions are harder to find via this automatic ranking of the
recommendation system because they often produce high least-squares er-
rors. Scrolling through all recommendations would be similar to inspecting
and comparing all plots in a scatter plot matrix, and can therefore take a
long time. However, here the coloring can come in useful. When coloring
the polygon lines according to the order of a particular dimension, other
uncorrelated dimensions usually look similar to each other when the line
opacity is low enough. In contrast, dimensions with clear correlations often
seem to show the color gradient at least partially. An example can be seen
in Figure 4.1. This, however, is not a reliable method to detect correlations
and cannot be used in every scenario. Additionally, it would still require
the user to try out each dimension as the color defining dimension.
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Figure 4.1: While there are no clear polyline patterns visible, the color gradient defined
by ‘dim_o” can be found again in ‘dim_4’. This suggests that there exists a
correlation between these two dimensions.

There is currently no automated way to find clusters. However, clusters can
be found found in 2D scatter plots or even in the PCP view when comparing
two dimensions. After clusters are found the dynamic coloring allows users
to easily track the polygon lines through all dimensions and compare them.
Additionally, single clusters can be selected for further analysis in higher
layers.

4.1.2 Structures in Three Dimensions

While many 3D structures can be found by looking at the possible 2D scatter
plot combinations, and can therefore be found via the 2D recommender
system, some structures are not axis-aligned and are harder to find. This
means that such patterns can be hard to find in high-dimensional data
sets, because many 3D scatter plot combinations would have to be tested.
However, once a 3D scatter plot has been created, 3D structures are clearly
visible when rotating the scatter plot in 3D.

More examples of analyses of a 3D data set can be seen in Figure 4.2. After
analyzing this data set, a user could describe the data to lie on the surface
of two disjointed concentric 3D cylinders. This means that there are two
distinct clusters. After selecting the inner cylinders and unrolling it, it is
revealed that the surface of the smaller cylinder is shaped like a smiley face.
This means that the inner cylinder also consists of four smaller clusters, two
for the eyes, one for the mouth and one for the outer circle. When viewing
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the data in a simple 3D scatter plot, it would be hard to recognize such
patterns, or how the data is distributed on the surface of such a cylinder.

4.1.3 Structures in Higher Dimensions

To demonstrate how high dimensional structures can be analyzed with our
approach, a data set has been synthetically created. A screenshot of the
analysis can be seen in Figure 4.3. Naturally, the structure of the data set
was known beforehand, so this example is not an accurate illustration of
how easy or hard it is to find structures but rather should demonstrate what
kinds of statements can be made about a data set just by looking at the
finished analysis.

The most prominent feature of this data set is that all points, except for
three outliers lie on a four-dimensional dragon shape. This dragon shape
has been rolled up into a spiral in dimensions o and 4. After the user in-
teractively unrolls this spiral to a new axis (Subsection 3.1.2) and merges
it with dimensions 1 and 7 (Subsection 3.1.1), it is revealed that there is a
dragon shaped structure, which is not clearly aligned with any of the three
dimensions, but rather is rotated 45 degrees along the unrolled dimension.
Additionally, the dragon shape has been extruded in the other two dimen-
sions. By projecting the dragon shape onto a plane (Subsection 3.1.2), a
dimension can be removed with minimal loss of information.

Furthermore, there are two clusters in dimensions 3 and 6, both of which
are 2D Gaussian distributions. After selecting the smaller cluster for further
analysis, it is revealed that there is a strong nonlinear correlation between
dimensions 2 and 8, which was previously hidden by the larger cluster.
Dimensions 5 and g9 only contain noise and can be disregarded when only
considering the topology of the data.

Finally, some statements can be made about the connection between these
patterns. By coloring the points along the unrolled dimension, it can be seen
that the dragon’s tail corresponds to the innermost part of the spiral, and
also to the smaller cluster visible in the combination of dimensions 3 and 6,
which in turn form the parabola in dimensions 2 and 8.
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Figure 4.2: A synthetically created data set with three dimensions. (a) After selecting only
the data points of the inner cluster, the data is parametrized by sketching along
the circle to reduce the number of dimensions. A merge action with the third
dimension reveals a smiley face. (b) An alternative way to discover the smiley
face. All three dimensions are merged in the first layer. The data points of the
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dim_OMim_473d im 1O im_70) dim 303 dim_80) im0

Figure 4.3: An analysis of a synthetically created data set with ten dimensions. The dimen-
sions o, 1, 4 and 7 form a 4D dragon shape. This dragon shape appears to be
curled into a spiral in the dimensions o and 4. There appear to be two clusters
in dimensions 3 and 6 (third layer). The smaller cluster has a strong quadratic
correlation between dimensions 2 and 8 (top layer). Dimensions 5 and 9 only
contain white noise.
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To summarize, it can be said that when disregarding the completely noisy
dimensions 5 and 9, the data appear to lie on a rolled-up dragon shape
which can be separated into two clusters visible in the combination of
dimensions 3 and 6. While the dimensions 2 and 8 are also mostly noisy,
they also contain a strong quadratic correlation of the points contained in
the smaller cluster, which is also the dragon’s tail.

While this data set has been created synthetically with the explicit pur-
pose of demonstrating the capabilities of our technique, we believe that a
similar analysis would be hard to conduct with conventional data analysis
approaches.

As previously mentioned, this example is not representative of natural data
sets, for which the structure is not known beforehand as it does not consider
the exploration process. For this reason, a user study was conducted with
this exact data set, to see if other users can effectively use this tool, and
understand how the data is visualized. In the next chapter, we give a detailed
description of this user study and its results.
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In order to evaluate whether users can understand the visualization method
of the developed prototype and to see whether they can effectively and
efficiently find interesting patterns in high-dimensional data sets, a user
study was conducted. The study contained 11 participants who used the tool
for explorative analysis in individual interactive sessions. While this number
of participants is not enough to draw statistically significant conclusions, it
still provided an overview of how uninitiated users would understand the
visualizations and how they interact with the application.

5.1 Setup

Because the prototype is meant for expert users to analyze large, high-
dimensional data sets, only users with some experience in information
visualization or data analysis were asked to participate. The study was
conducted online via video calls, and was divided into four parts. The users
were asked to participate separately, so that no information was shared
between them.

First, the participants were given a 10-minute demo of our tool to show
how data can be visualized, explored, and the visualization be manipulated.
Although we assumed all participants to have basic knowledge in infor-
mation visualization, the introduction also included a short summary of
how scatter plots and parallel coordinates visualize data, as well as a brief
overview of TDA. This demo was conducted by running the prototype on
the study supervisor’s computer and sharing the screen to the participants.
For the demo a data set with 150 data points and 7 dimensions was chosen.
The data set contained 2 clusters which could be found in all dimensions
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Figure 5.1: The dataset used to show participants the tool’s various functions.

but one. This last dimensions contained only noise. A PCP visualization of
this dataset can be seen in Figure 5.1

During the second part of the study, the participants were asked to run the
prototype on their computer and share their screen. They were given 15
minutes to analyze a second data set with 150 data points and 8 dimensions
and were explicitly asked to look for clusters, outliers, topological structure
or correlations. During this time, the supervisor would answer any questions
they had and give some helpful advice on how the visualization could be
interpreted or how they might proceed. The data set contained three clusters
in several dimensions, two concentric circles in two dimensions and a
polynomial correlation of degree 3 in two other dimensions. A visualization
of the second dataset can be seen in Figure 5.2.

The third and longest part of the study consisted of the users again running
the tool on their own computer, to analyze a larger data set with 3736 data
points and 10 dimensions. The data set for this part is the data set shown
in Figure 4.3. Once again, users were explicitly asked to look for clusters,
outliers, topological structures or correlations. Additionally, they were asked
to think out loud and to verbalize any problems they might encounter or
patterns they find interesting. This time, however, the supervisor provided
as little help as possible and did not give hints on how a user might proceed.
The supervisor did, however, ask questions to see if the users understood
how the data was visualized and what statements could be made about the
structure and topology of the data.
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Figure 5.2: The second dataset used during the study. Users used this dataset to try out
the tool on their own. This is a version of the popular “iris” dataset (Anderson,
1935) with 3 additional artificially created dimensions.

Finally, users were asked to answer several questions about themselves and
their experience during the study in order to record their thoughts and
opinions, and to compare results. A list of the questions can be found in
Table 5.1 and Table 5.2, along with the participants” answers.

5.2 Study Results

After the study was concluded, the questionnaire data was aggregated
and evaluated. The participants” answers can be found in Table 5.1 and
Table 5.2.

The questionnaire contained questions about the participants” age, gender,
their highest degree of education and whether they have a color vision
deficiency. To keep the participants” identities anonymous, the answers
to these questions are not listed separately. All the participants were age
27 - 50, the participants” highest degrees varied between BSc., MSc. and PhD
and none of them had a color vision deficiency. Three participants were
women and the remaining eight participants were men.

The questionnaire contained two questions about the structure of the data
set.
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] User ID ‘\1‘2\3\4\5‘6\7\8‘9\10\11HAvg.‘

How familiar were you
with scatter plots 513(3/5/4|3/4/5|5| 5] 2 || 400

prior to this study?
How familiar were you
with paralell coordinate 41114(42|1|4|5|5|5 1| 3| 345
plots prior to this study?

How familiar are you
with topological 3l1|1(2[1|3(3[3[|3] 4] 2| 236
data analysis?

How useful did you find
the dynamic polyline
coloring for exploring

the dataset?

How useful did you find
inline 2D scatter plots 5/5/5(4|5|5(4|5|5| 5|5 | 482

for exploring this dataset

How useful did you find

the 2D scatter plot previews || 5|55 |4 (5|54 (44| 4 | 4 || 445
for exploring the dataset?

How useful did you find
inline 3D scatter plots 415|545 |4(1(2|5| 4| 5 | 4.00

for exploring the dataset?

How useful did you find

the function fit
for dimension unwrapping
when exploring this dataset?

How useful did you find
the curve sketch tool

for dimension unwrapping
when exploring this dataset?

How useful did you find
the provenance lines 3/3/5(5(4/4(3|5|5| 4| 3 | 4.00

for exploring this dataset?

5/3/4(314/2|3|5|2|4 |3 | 345

4/4|5/4(5(3(4[2]5] 4|3 | 391

Table 5.1: The first half of the questionnaire with the participants” answers. For the first
three questions, an answer of 1 represents "Not at all familiar” and an answer of 5

48 represents "Very familiar. For the remaining questions, an answer of 1 represents
"Not at all useful" and an answer of 5 represents "Very useful".
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User ID H1\2\3\4\5\6\7\8\9\10\11HAvg.\
I think that I would
like to use 414/5(3(4|4/4(4|5|4|5 | 418

this system frequently.
I found the system
unnecessarily complex.
I thought the system
was easy to use.
I think that I would
need the support
of a technical person to
be able to use this system.
I found the various
functions in this system || 5|5(5|4(4|5(4|5|5| 4 | 4 || 455
were well integrated.
I thought there was
too much inconsistency || 3|1 |13 |1 |1 |1 |1|1| 2 | 1 || 1.45
in this system.

I would imagine that most
people would learntouse |4 |4 [5|3(4(3|2|2|5| 3 | 3 | 345
this system very quickly.
I found the system
very cumbersome to use.
I felt very confident
using the system.

I needed to learn
a lot of things
before I could get going
with this system.

21|23 |1|1|2|1|1| 2| 1| 155

4(5044(5/4/3(4|5|3 |4 | 409

3(1(2|2(1|2|2|1|1| 1| 1| 1.55

41314(3[5/3|4(4|5|4|4]|3091

3(4(1(3|1|2|1|1|1]| 1| 2| 182

Table 5.2: The second half of the questionnaire with the participants” answers. These
questions comprise the System Usability Scale (Brooke, 1996), in which an answer
of 1 represents "Strongly disagree" and an answer of 5 represents "Strongly
agree".
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* "After analyzing the data set with the tool, how would you describe
its structure (clusters, correlations, topological features, etc.)?"

* "Which features of the dataset did you find interesting (one para-
graph)?"

As mentioned before, the data set which the questions refer to is visualized
in Figure 4.3. All users, without exception, found the most prominent
structures in two dimensions, that being: the spiral between dimensions o
and 4, the two clusters between dimensions 3 and 6 (although some users
described the smaller cluster as a set of outliers) and the diamond shape
between dimensions 1 and 7, which is part of the four-dimensional dragon
shape. These three structures were also the ones the participants found most
interesting, especially the spiral.

Four users found the quadratic polynomial correlation between dimensions
2 and 8, which is only contained in the subset of the data that is the smaller
of the two clusters in dimensions 3 and 6. Two users found the 4-dimensional
dragon shape and one found that there was a pattern on the 3D spiral after
unrolling one dimension, but could not identify it, and did not think of
using the curve sketch tool to unroll the spiral. Four users found that there
are some outliers which can be found between dimensions 1 and 7. All
users expressed that the data set contained a lot of noise and some even
explicitly stated, that dimensions 2, 5, 8 and 9 only contain noise. This is
mostly correct, except for the quadratic polynomial, which can only be
seen after selecting a subset of the data. 5 of the 11 participants also found
varying correlations in higher dimensions. For example, the fact that the
inner part of the spiral consists of the smaller of the two clusters or that
there are several correlations between the rhombus shape in the dimensions
1 and 77 and the spiral shape in dimensions o and 4. Both of these examples
showcase correlations in 4 dimensions.

Concerning the first 3 questions, it can be said that the participants were
generally familiar with data visualization techniques and most of them had
at least heard of topological data analysis. This means that the participants
can be seen as an expert group in the field of data visualization. This was
a deliberate choice, because the prototype is meant to be primarily used
by individuals with a certain degree of expertise in this field. The users
found the basic functionalities such as the inline 2D and 3D scatter plots,
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the polyline coloring and the 2D previews very useful, with average scores
greater than or equal to 4.0 with the inline 2D scatter plots achieving the
highest average score of 4.82.

Most participants found both the curve sketch tool and the function fit
tool to be useful, with average scores of 3.45 and 3.91. Here it is worth
mentioning that the two lowest scores of 2 were given by people with a
high level of expertise in data visualization. This might be the case because
these users were familiar with other tools and did not quite know how
to use this new approach to extract additional information from the data.
Users with more experience in data visualization also tended to spend
more time analyzing the parallel coordinates instead of experimenting with
the different tools and trying to merge and unmerge 2D and 3D scatter
plots, which is not the optimal approach for analyzing this data set. The
most useful features, according to the participants, are the inline 2D scatter
plots and the 2D scatter plot previews, with average scores of 4.82 and 4.45
respectively. This might indicate that most participants had more previous
experience interpreting 2D scatter plots than PCPs, which appears plausible.
More surprising was how useful most people found the dynamic polyline
coloring. While this feature was not the main focus of this research, it seems
that the simple ability to use a PCP axis to set a rainbow color scheme
for the polylines seemed effective. Lastly, the provenance lines and the 3D
scatter plots scored an average of 4.0. For a clearer picture of the answer
distributions, see Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6.

The participants were also asked the questions contained in the System
Usability Scale (Brooke, 1996). Overall, the usability of the prototype seemed
relatively high, with participants strongly agreeing with most positive
statements (average above 4.0) and disagreeing with negative statements
(average below 2.0). The only two statements with a less positive response
were "l would imagine that most people would learn to use this system very
quickly" and "I felt very confident using the system".

Concerning the first statement, most participants questioned what was
meant by "most people", because they thought that it would be quite difficult
for the average population to use the prototype effectively. However, since
this technique was developed for data analysts using it to analyze complex
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data sets, these questions might not accurately represent the time needed to
learn how to use the system for expert users.

The statement with the second lowest score concerned the confidence of the
users while using the prototype. The answers to this question seemed to
correlate with the user’s previous knowledge of scatter plots, parallel coor-
dinates and topological data analysis. This again shows that the application
is meant for users with previous knowledge of data visualization.

While the remaining statements showed that the system’s usability was
decent, there are several chances for improvement of the user’s experience
when using a system. A discussion of possible future improvements is given
in Section 6.2.
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Figure 5.3: Histograms of the results of the questions concerning the participants” previous
knowledge and the usefulness of the prototypes” functionalities. For the first
three questions, an answer of 1 represents "Not at all familiar" and an answer of
5 represents "Very familiar". For the last two questions, an answer of 1 represents
"Not at all useful" and an answer of 5 represents "Very useful".
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Figure 5.4: Histograms of the results of 5 questions concerning the usefulness of the
prototype’s functionalities. An answer of 1 represents "Not at all useful" and an
answer of 5 represents "Very useful".
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Figure 5.5: Histograms of the results of the first 6 questions of the System Usability Scale.
An answer of 1 represents "Strongly disagree" and an answer of 5 represents
"Strongly agree". The scores show that overall the system was relatively easy to

use.
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Figure 5.6: Histograms of the results of the last 4 questions of the System Usability Scale.
An answer of 1 represents "Strongly disagree" and an answer of 5 represents
"Strongly agree". The scores show that overall the system was relatively easy to
use.
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While the previous chapter already contained the results of the user study,
this chapter will contain a summary of the work done, an overview of the
user study’s results as well as an outlook to the future and some reading
recommendations.

6.1 Results

A new and interactive way to visualize and analyze high-dimensional data
sets was developed in the form of a software prototype. The prototype
combined several popular visualization techniques such as 2D and 3D
scatter plots, parallel coordinates and a recommender system to give users
an idea of what to explore next. The prototype was written in C++ with
OpenGL and Qt as user interface and allows for the visualization of many
thousands of data points simultaneously in tens of dimensions.

The new interactive approach of unrolling embedded dimensions allows
expert users to reduce dimensions, explore high-dimensional manifolds
and find structures in high-dimensional spaces. The parametrization of
subspaces can also be used to separate clusters and parametrize structures
which can not be described by a normal function, such as circles, spirals,
or other overlapping shapes. The prototype also offers a variety of tools to
explore and analyze subsets of two and three dimensions and find correla-
tions between such subspaces. The recommender system for interesting 2D
subspaces worked well, but might not be sufficient to explore data sets with
hundreds of dimensions.

The user study showed that users can use the prototype’s functions effec-
tively, but that users did not immediately know how to effectively use the
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curve sketch tool. More time might be needed to get a good understanding
of how this functionality can be applied. However, users were able to find
structures in higher dimensions and understand how they related to the
original data. The user study also showed that currently the exploration
process is still heavily reliant on trial and error and that more and stronger
recommender systems are required.

6.2 Future Work

The current prototype is a proof of concept which illustrates the analysis
methods that are possible by unrolling embedded dimensions. To develop
the prototype into a practically applicable tool, some more features could
be implemented and a bigger emphasis should be placed on usability.

The most requested feature during the user study was a recommendation
system for 3D scatter plots. This could be done similarly to how the 2D
recommendation system in the current version of the prototype. Instead of
2D scatter plots, the 3D scatter plots could be shown in a small popup, while
slowly rotating to give users different angles to view the data. The ordering
could again be done by fitting a plane into the 3D space and sorting by the
least squares error.

Currently, the application requires a data set to be selected on startup, but
for a stand-alone application it would be necessary to have ‘load” and ’save’
options to save the current analysis state, and later load it again. This would
also allow users to more easily switch between different data sets.

Other tools offer more interaction methods with the parallel coordinate plot.
For example: selection of poly line bundles (currently, only the selection of
data points on 1D scatter plots is possible), different color schemes (currently
only the rainbow color scheme is available) or dynamic opacity settings
to highlight more or less dense parts of the PCP. Especially, a selection of
different color schemes would seem like a useful feature, not just because it
would also allow users with a color vision deficiency to use the tool, but
also because the current rainbow color scheme is generally not regarded
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as a good color scheme to convey information (Stoelzle and Stein, 2021,
Borland and Ii, 2007).

The current version of the prototype is also limited in the number of di-
mensions that can be analyzed because of the limited recommendation and
exploration options. A 3D merge recommendation has been mentioned be-
fore, but other visualizations such as a scatter plot matrix or star coordinates
could also be integrated and could help users to explore larger data sets, or
at least to give them a starting point in their analysis.

The most novel features of the prototype are the different possibilities a
user has to project points onto a line or plane. Currently, there are three
options:

* Draw a line by hand. In case of a 3D scatter plot, this line is extruded
in the third dimension.

¢ Automatically fit a polynomial in two dimensions.

* project 3D points onto a plane parallel to the screen.

All of these options could be enhanced and more could be added. For
example, when drawing by hand, it might be helpful to be able to draw
straight lines or poly lines instead of drawing completely free hand. The
automatic polynomial fit could be extended to 3D, which would be necessary
either way for a 3D merge recommendation system. Finally, all 3D drawings,
including the plane projections, could be modified in retrospect by dragging
edges or vertices of the 3D plane, similarly to how such modifications are
made in 3D modelling software.

Finally, it is worth mentioning that a second user study with more partici-
pants could give better insights into what users struggle with, and which
additional features would help users in analyzing high-dimensional data
sets. It could also be interesting to see how users participating in the first
study benefited from additional features such as a 3D recommendation
system and how much their analysis improved.
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6 Conclusion

6.3 Further Reading

While many of the cited publications are interesting in their own right, this
section provides some reading recommendations, chosen by the author.

In case the reader finds themselves interested in Topological Data Analysis
in general, Wasserman (2018) is a great starting place. It also served as a
starting point for the first chapter of this thesis, because it is easily readable,
contains illustrations to make points more easily digestible, and references
many other publications which can be sought out to further deepen the
reader’s knowledge.

While it was not the focus of this thesis, dimension reduction is an inter-
esting and important topic when discussing high-dimensional data. While
some techniques such as PCA (Wold, Esbensen, and Geladi, 1987) are
generally well-known, Cunningham (2008) provides a well-structured and
detailed list of many dimension reduction techniques. The techniques are
well explained and compared to understand what their respective strengths
and weaknesses.

Similar to how Cunningham (2008) provides an overview of different dimen-
sion reduction techniques, Chan (2006) and Grinstein and Trutschl (2001)
provide great overviews of high-dimensional data visualization techniques.
They both include pictures of the mentioned visualizations, which allows for
a quick overview and can serve as a starting points if the user is interested
in any specific kind of visualization.
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