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Abstract

This thesis focuses on developing and testing an Ultra-Wideband (UWB) ranging and
positioning measurement setup based on the NXP Ranger4 UWB chip, and the implemen-
tation and evaluation of tracking filters with the application in smart car access systems.
A novel tracking filter is proposed, which combines a particle-based probabilistic data
association (PDA) filter with a machine learning (ML)-fingerprinting approach. The mea-
surement setup was built and developed based on a previous project and adapted to
enable wireless, real-time measurements using the Ranger4 chips. In combination with
an optical reference tracking system, five training datasets and eight test trajectories were
captured in a car-based scenario, using different combinations of robot and human agents.
A metal obstruction was used for parts of the measurements to simulate Non-Line-of-Sight
(NLOS) situations and collect data for testing the tracking filter in suboptimal conditions.
As baseline tracking filters, an Extended Kalman filter (EKF) and a Particle filter were imple-
mented in Python. A particle-based PDA filter was also implemented, tracking not only the
position but also the probability of detection for Line-of-Sight (LOS) components. This PDA
filter was combined with a Gaussian process regression (GPR), to map and predict signal
parameters from the measurement area based on the predicted agent position, and match
these parameters to the observed signal parameters. Two variants of the two PDA-based
filters were implemented respectively, one with a fixed probability of LOS detection, and
the other with a tracked probability. Analysis of the filters on the test trajectories showed a
performance gain for the filter using the ML augmentation without tracking the probability
of LOS detection, while the same filter that was tracking the LOS detection probability
showed showed poorer performance when compared to the other PDA filters. Performance
gains for the ML augmentation were different, depending on the match of obstruction
layout between training and test datasets.
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Kurzfassung

In dieser Masterarbeit liegt der Fokus auf der Entwicklung und der Testung eines Ul-
trabreitband Entfernungs- und Positionierungsmessungssystems, das auf NXP Ranger4

UWB-Chips basiert, sowie auf der Umsetzung und Evaluierung von Trackingfiltern mit
der Anwendung in Smart Car Access Systemen. Ein neuartiger Trackingfilter, der eine
partikelbasierten Probablistic Data Association-Filter PDA-Filter mit dem ML-fingerprinting
Zugang kombiniert, wird vorgeschlagen. Die Messanordnung wurde basierend auf einem
vorangegangenen Projekt entwickelt und gebaut bzw. adaptiert, um wireless Echtzeit-
Messungen mit dem Ranger4-Chip zu ermöglichen. In Kombination mit einem optischen
Referenz-Trackingsystem, wurden fünf Trainingsdatensätze und acht Testtrajektorien in
einem autobasierten Szenario aufgenommen, wobei unterschiedliche Kombinationen an
Roboter- und menschlichen Agenten verwendet wurden. Ein metallisches Hindernis wurde
für einen Teil der Messungen verwendet, um eine Non-Line-of-Sight (NLOS)-Situation
zu simulieren und Daten für Tests der Tracking-Filter unter suboptimalen Umständen zu
sammeln. Als Referenz-Trackingfilter wurde ein Extended Kalman Filter und ein Partikelfil-
ter in Python implementiert. Ein partikelbasierter PDA-Filter, der nicht nur die Position
sondern auch die Detektionswahrscheinlichkeit von LOS-Komponenten schätzt, wurde
ebenso implementiert. Der PDA-Filter wurde mit der Gauß-Prozess Regression kombiniert,
um Signalparameter im Messbereich basierend auf der vorhergesagten Agenten-Position
zu vermessen und vorauszusagen und diese mit diesen Parametern mit den gemessenen
Signalparametern übereinzustimmen. Zwei Varianten der zwei PDA-basierten Filter wer-
den jeweils implementiert: einer mit einer fixen Wahrscheinlichkeit für die Detektion von
LOS und ein anderer mit einer geschätzten Wahrscheinlichkeit. Die Analyse der Filter
anhand der Testtrajektorien zeigte eine Verbesserung der Filter, die ML-Augmentation
ohne dem Tracking der Wahrscheinlichkeit der LOS-Detektion nutzen, während der gleiche
Filter mit dem Tracking der LOS-Dedektionswahrscheinlichkeit im Vergleich mit den PDA-
Filtern schlechtere Leistungen zeigten. Niedrigere Fehler konnten für die ML-Augmentation
beobachtet werden, dies war abhängig von der Übereinstimmung der Hindernisaufstellung
zwischen Trainings- und Testdatensätzen.
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1 Introduction

Wireless positioning has, in recent years, become a topic of significant interest in both the
scientific communities and in the industry. With the advances on the Internet of Things,
location awareness has become increasingly important in many aspects of digitalisation.
This work is focused on the specific use case of on-person agent tracking in an unknown
area. The primary application which is used as the basis of the project is positioning a
keyfob agent in relation to a car for smart car access features, such as automated locking and
unlocking of doors or opening of the trunk. This work focuses on tracking and positioning
an agent using the NXP Ranger4 Ultra-Wideband (UWB) system, developed for this and
similar applications needing precise wireless ranging.

Ultra-Wideband technology enables measuring distances between an agent/anchor pair by
estimating the round-trip Time of Flight (ToF) of the electromagnetic waves between the
two antennas. Using at least three anchors with known positions xi = [xi, yi]

T, the position
of the agent x = [x, y]T can be estimated via trilateration. The technical advantage of using
UWB signals compared to other ranging technologies is the low pulse duration of UWB
pulses (pulse duration Ts = 2 ns for a bandwidth of B = 500MHz), and therefore their
high Nyquist resolution. This leads to an accuracy level in the cm-range, with theoretical
limits below 1 cm for Signal-to-Noise-Ratios (SNRs) ≳ 25 dB. [1] Current research branches
into several different aspects of tracking and positioning. The combination of tracking
with Machine Learning (ML) based approaches has gained a lot of traction, either directly
estimating positions as presented in [2], [3], or as ranging error mitigation [4], [5]. In this
thesis, a new approach is proposed, combining a tracking filter with a fingerprinting ML
concept using signal parameters.

1.1 Goals and Outline of this Thesis

The goal of this master thesis is to develop a wireless, real time data acquisition and
tracking system based on the NXP Ranger4 UWB chip. Building on the hardware setup
of a prior project [6], the measurement setup needs to be adapted to manage channel

1



1 Introduction

impulse response (CIR) data transmissions to enable the use of more advanced tracking
filters. A dataset is acquired using this updated hardware setup. The dataset consists of
multiple scenarios with different impairments to the UWB ranging to evaluate algorithm
performance in sub-optimal conditions.
Different advanced tracking filters are implemented and evaluated, using different tech-
niques to overcome the ranging impairments, such as probabilistic data association (PDA),
tracking of the likelihood of a Line-Of-Sight detection, and ML. A comparison of the
different tracking algorithms on multiple scenarios concludes this thesis, as well as a
measurement setup to be used for further works in the field of UWB positioning.

Starting with a brief introduction to UWB ranging concepts, the theoretical concepts of
positioning and tracking are presented. The tracking algorithms are discussed, followed
by a description of the hardware and software setup and the data acquisition scenarios.
Lastly, the results of the filter analysis are presented for the various scenarios, showing
filter performance in different situations.

2



2 Ultra-Wideband Ranging

Wireless ranging describes the estimation of distances between two wireless ranging nodes.
Many different protocols exist to determine the distance between two antennas, for example
Received Signal Strength (RSS), Time of Arrival (ToA), Time Difference of Arrival (TDoA),
Angle of Arrival (AoA), etc. [1]
With the NXP Ranger4 chips, a ToF protocol is used, measuring the time difference between
a transmission and the reception of the answer. The transmission structure for UWB is
defined in [7]. A ranging preamble is defined, consisting of a sequence of pseudo-random
pulses with a ”perfect” autocorrelation function close to an isolated UWB pulse s(t). This
characteristic causes the correlation of the received signal with the known sequence to
represent the channel impulse response. This correlation is approximated by the signal
model, which is discussed in the next section. Ranging algorithms and LOS detection
methods will also be shortly discussed, as well as the Cramer-Rao Lower Bound for
distance estimation.

2.1 Signal Model and Error Sources

Under real-life conditions, many different effects affect the received signal. Main sources
of errors are multipath propagation, shadowing or fading of the wireless channel, as well
as noise. The noise is modelled as additive white complex Gaussian with double-sided
power spectral density N0/2. It cannot be mitigated, but needs to be incorporated into the
models for tracking filters. The second challenge is the presence of multipath components
(MPCs) in the received signal. Due to the high bandwidth of UWB, individual reflected
components from the environment appear as resolvable components in the received signal.
Geometrically, the first signal component, which travelled along the line-of-sight (LOS),
arrives with a delay of τ

(j)
n,0 and a complex gain α

(j)
n,0, with n denoting the timestep and j

the anchor index. Reflected components, which take a geometrically longer path, arrive
later with delay τ

(j)
n,k and a complex gain α

(j)
n,k. For an unobstructed LOS between transmitter

and receiver, α
(j)
n,0 will be significantly larger than α

(j)
n,k for k > 0. In situations where the

3



2 Ultra-Wideband Ranging

LOS path is obstructed, or constructive interference happens between two MPCs, α
(j)
n,k can

also be larger than α
(j)
n,0, or α

(j)
n,0 can drop close to zero, corresponding to a non-line-of-

sight (NLOS) measurement. In these situations, a more complex algorithm is necessary
to correctly estimate τ

(j)
n,0, as simply detecting the peak of the signal will not result in

an accurate estimate. If the LOS component and an MPC arrive in close proximity, the
distance estimate can also be degraded or biased due an interference of the two components.

Another source of errors with ranging, especially for the keyless car access scenario
investigated in this thesis, is the human body [8]. UWB pulses are attenuated strongly by the
human body and radio waves bend around the body, causing either NLOS measurements
or biased detections, and hence degrading the results.
Additional error sources in UWB ranging are posed by timing errors and clock drift between
the two nodes, introducing errors on the hardware level [1].

The complex baseband signal model incorporates these two error sources. It is modelled for
timestep n and anchor j in (2.1), an example of a received signal is shown in Figure 2.1.

r(j)
n (t) = α

(j)
n,0s(t − τ

(j)
n,0) +

K(j)
n

∑
k=1

α
(j)
n,ks(t − τ

(j)
n,k) + w(j)

n (t) (2.1)

with the variables defined as:

n ... timestep

j ... anchor index

k ... multipath component index

s(t − τ) ... transmitted pulse shape

τ ... delay

α ... complex gain

w(t) ... additive white complex Gaussian noise

The pulse shape s(t) used by the NXP Ranger4 chip is a Root-Raised Cosine pulse, shown
in (2.2). The pulse has a bandwidth of B = 500 MHz, resulting in a sampling rate Ts = 1 ns,
and a roll-off factor β = 0.5.

s(t) =
cos(πβ t

Ts
)

1 − (2β t
Ts
)

sin(π t
Ts
)

π t
Ts

(2.2)

4



2.2 Line-Of-Sight Detection and Estimation

Figure 2.1: Supersampled plot of a CIR.

Due to hardware effects and filtering, the actual pulses differ from the analytic Root-Raised
Cosine pulse. The received pulse was extracted by averaging and oversampling a large set
of received CIRs. This derived pulse shape improves matching of signal components in the
received signal. The two pulse shapes are compared in Figure 2.2.

2.2 Line-Of-Sight Detection and Estimation

To estimate the delays and the complex gains of the signal components from the received
signal, various methods can be used. The NXP Ranger4 chip utilizes a threshold detector to
detect the reception of a signal, and then uses a Search-Back Algorithm as presented in [9].
After estimating the CIR, the noise power and a detection threshold are determined. The
strongest path is found as a maximum of the CIR, and going back from this index, the first
index exceeding the detection threshold is found. The corresponding peak to the index is
found, and then a timestamp can be accurately estimated by interpolation of the received
signal and matching of the pulse shape.

Another option is to jointly estimate the parameters α
(j)
n,k and τ

(j)
n,k . A channel estimation

and detection algorithm, approximating a joint maximum likelihood estimator for these
parameters, will be discussed in Chapter 3.

5



2 Ultra-Wideband Ranging

Figure 2.2: Analytic vs. actual Root Raised Cosine pulses.

2.3 Double-Sided Two-Way Ranging

To measure the ToF between two nodes, at least two transmissions are necessary to be able
to measure a time difference. The NXP Ranger4 node uses a double-sided two-way ranging
protocol to achieve a precise ranging estimate, illustrated in Figure 2.3. Node (a) sends a
message to Node (b), which takes time Db to reply. Node (a) measures the time Ra between
transmitting and receiving the messages. Node (a) also answer after time Da, with node (b)
also measuring the time Rb between transmission and reception of the messages. The ToF τ

can be calculated using (2.3).
While the ToF could be calculated from Ra and Db only, the double-sided two-way ranging
procedure cancels linear clock drift errors between the two nodes, reducing error introduced
by mismatching clock frequencies. The conversion from time to distance is easily done by
multiplying the speed of light c with the delay time τ. [10]

τ =
RaRb − DaDb

Ra + Rb + Da + Db
(2.3)

d = cτ (2.4)

6



2.4 Distance Cramer-Rao Lower Bound

Figure 2.3: Double-sided two-way Ranging sequence. NXP Semiconductors, NCJ29D5 Ultra-Wideband ICs for
Automotive Applications, 2021.

2.4 Distance Cramer-Rao Lower Bound

A theoretical limit for estimating distances from pulse transmissions in an AWGN en-
vironment is described by the Cramer-Rao Lower Bound (CRLB). This bound defines a
lower limit to the mean-square error (MSE) achievable for a noisy estimation. It is based
on the inverse Fisher Information Matrix, details can be found in [1]. Assuming only
AWGN as error source, the lower bound for the distance estimation σd is defined by the
Rott-Mean-Square (RMS) bandwidth B̂ and the SNR, with bandwidth B and roll-off factor
β:

σd ≥ c
2
√

2π
√

SNRB̂
(2.5)

B̂ =

√
B2(

1
12

+
π2 − 8

4π2 β2) (2.6)

For 20 dB SNR, B = 500 MHz and a roll-off factor β = 0.5, the CRLB results to:

σd ≥ 3 × 108 m s−1

2
√

2π
√

20 dB · 154 MHz
(2.7)

σd ≥ 0.022 m (2.8)

In real-world applications, as with the NXP Ranger4 chip, AWGN is not the main source
of error, resulting in the CRLB being significantly lower compared to achieved errors. As

7



2 Ultra-Wideband Ranging

mentioned above, clock drift and multipath are potential error sources, neither of which is
taken into account in the model for this CRLB estimate [1].

8



3 Positioning and Tracking Algorithms

Following ranging in Chapter 2, this chapter will discuss algorithms for positioning and
tracking the agent. The simplest setup for positioning in a 2-D plane is comprised of a
minimum of three anchor nodes and one agent node. Through the three distances between
the agent and the anchors, and the anchor positions, the agent’s position is unambiguously
defined:

Figure 3.1: Trilateration

3.1 Positioning with a Single Signal Snapshot

The distance d(j) between the agent and the j-th anchor is defined as the norm of the vector
between the points x and x(j), with the measurement function h:

d(j) = h(j)(x) = ∥x(j) − x∥ =
√
(x(j) − x)2 + (y(j) − y)2 (3.1)

The measurement equation follows, defining d̂ as the measured distance, taking into account
the inaccuracies of the measurement system and various effects and modelling them as an
additive Gaussian distance error, with N denoting a Gaussian distribution, as:

9



3 Positioning and Tracking Algorithms

d̂(j) = h(j)(x) + w(j), w(j) ∼ N (0, σ(j)2
) (3.2)

The noise components are assumed to be independent for each distance measurement. In
vector notation, with measurement vector z and the measurement covariance matrix R:

z = h(x) + w w ∼ N (0, R) (3.3)

R =

σ(1)2 0 0
0 σ(2)2 0
0 0 σ(3)2

 (3.4)

The probability p(z|x) describes the probability density function (PDF) which arises from
the measurement. Due to the noise, the distances d(j) are modelled as Gaussian random
variables (RVs), with µ = d(j) and σ(j)2

. With the prior probability p(x), which entails all
knowledge about the possible values of x, the posterior probability p(x|z) is calculated:

p(x|z) = p(z|x)p(x) (3.5)

By maximizing this likelihood with regards to x, the likeliest estimate x̂ will be found. The
PDF of the posterior probability p(x|z) will not be Gaussian or independent, because of
the nonlinear mapping between the measurement and position.

x̂ = arg max
x

p(x|z) (3.6)

A simple approach to solve the maximization problem would be a grid search, calculating
the distance vector d̃ for all possible agent positions x̃, and then minimizing the Euclidean
distance between d̃ and z to find the most likely estimate x̂. This approach is limited due
to high computational cost and limited accuracy and range [1]

3.2 Tracking Model

To incorporate prior knowledge in form of a previous position and a physical model of
the agent’s movement, a recursive update of the position estimate can be used in form of
a tracking filter. This physical model of the movement is given in form of a discrete-time
state-space model, with the transition matrix A , state vector xn and sampling time Ts.

10



3.2 Tracking Model

Generally, due to the lack of detailed information about the movement, a constant velocity
state-space model is used for the tracking filter, as found in [11]:

xn = Axn−1 + vn−1 (3.7)

xn =


xn

yn

ẋn

ẏn

 (3.8)

A =


1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

 (3.9)

vn−1 = N (0, Qn−1) (3.10)

This state vector evolves as a Markov sequence, meaning that the conditional distribution
depending on the previous steps p(xn|xn−1, xn−2, ...x1, x0) is entirely described by the
distribution assuming only the (n − 1)− th timestep p(xn|xn−1). By combining this Markov
sequence with the state-space model, a recursive update of the position estimate can be
formulated. The state-space model incorporates the process noise vn. This noise describes
the inaccuracy of the physical model compared to the actual movement of the agent.

At each timestep, the marginal prior distribution p(xn|xn−1) is calculated, which can be
interpreted as a prediction of the state vector with regard to the previous state xn−1 and all
previous measurements z0:n−1 by applying the Chapman-Kolmogorov equation. [12]

p(xn|z0:n−1) =
∫

p(xn|xn−1)p(xn−1|z0:n−1)dxn−1 (3.11)

To get the posterior distribution p(xn|z0:n), the prediction and the measurement are com-
bined with Bayes law. The resulting probability is a weighted combination of the prediction
and the measurement.

p(xn|z0:n) =
p(zn|xn)p(xn−1|z0:n−1)

p(zn|z0:n−1)
(3.12)

11



3 Positioning and Tracking Algorithms

3.3 Extended Kalman Filter

This iterative prediction and update sequence is the basis for the Kalman filter. The deriva-
tion of the Kalman filter can be found in [11], [13]. Because of the Gaussian assumptions,
the trilateration problem needs to be linearised around the operating point to allow the
posterior distribution p(xn|z0:n) to be approximated by a Gaussian distribution. The oper-
ating point for the linearisation is the predicted state vector. The approximation are found
in [12],(22)-(24), with the estimate covariance matrix P, as:

Prior: p(xn|z0:n−1) ≈ N (x̂n|n−1, Pn|n−1) (3.13)

Posterior: p(xn|z0:n) ≈ N (x̂n|n, Pn|n) (3.14)

LHF: p(zn|xn) ≈ N (zn, Rn) (3.15)

The linearisation is done using the Jacobian matrix, the derivative of the measurement
function h(x) at the predicted state x̂n|n−1. This linearised variant is called the Extended
Kalman filter (EKF). The linearisation is formulated in (3.16), as found in [12] (30).

Hn =
∂h(x)

∂x

∣∣∣∣
x=x̂n|n−1

(3.16)

Additionally, the process noise matrix Qn is used, shown in (3.10), describing the random-
ness in the state evolution. Since the constant-velocity model does not depict the actual
movement of the agent very well, the uncertainty of this mismatch needs to be accounted
for. The process noise is an important parameter, essentially weighting the prediction
against the measurement by widening or narrowing the predicted covariance. The second
relevant matrix is Rn, the measurement covariance matrix, shown in (3.4). Because the three
measurements are assumed to be independently distributed, Rn is a diagonal matrix with
the diagonal elements being the variance of the single measurements. The variance for
the individual measurements can be fixed to a heuristically defined value, or adapted for
each timestep based on measurement quality. Assuming the signal model in Section 2.1
is correct and the signal components can be resolved by the CEDA or the LOS detection
algorithm, the elements of Rn can be calculated via the distance CRLB from measurement
SNR, as in (2.6).

12



3.4 Particle Filter

The filter equations are entirely based on matrix/vector algebra:

Prediction: (3.17)

x̂n|n−1 = Ax̂n−1|n−1 (3.18)

Pn|n−1 = APn−1|n−1AT + Qn−1 (3.19)

Update: (3.20)

Kn = Pn|n−1HT(HPn|n−1HT + Rn) (3.21)

x̂n|n = x̂n|n−1 + Kn(zn − h(x̂n|n−1)) (3.22)

Pn|n = (I − KnHn)Pn|n−1 (3.23)

The signal flow for the EKF is shown in Figure 3.2. The EKF directly uses the distances
estimates from the Ranger4 Chip, together with the SNR estimate.

Signal ADC
NXP R4 LOS

Detection Algorithm
EKF

Prediction

Tracked State xn

Figure 3.2: Factor Graph for the PDA filter.

3.3.1 Discussion

For linear Gaussian estimation problems, the Kalman filter is the optimal tracking solu-
tion [13]. In our case, with the resulting posterior probability not following a Gaussian
distribution, it is not an optimal solution but only an approximation. Other tracking filters
can estimate the resulting posterior probability more accurately. Because of the very low
amount of operations necessary, this is by far the fastest filter presented here. However,
the EKF is prone to NLOS measurements, instantly losing its track upon receiving wrong
measurements.

3.4 Particle Filter

The particle filter, more specifically the Sampling Importance Resampling filter (SIR) is
a sequential Monte Carlo approach. Instead of mean and covariance, N particles, each
a sample of the state vector xn, are assigned a weight and used to represent the current

13



3 Positioning and Tracking Algorithms

posterior probability. With large N, the characterization of the likelihood approaches an
equivalent representation to a functional description of the likelihood. The implementation
is based on [12]. The particles are given as {xi

n, wi
n}N

i=0, where the particle i represents a
support point xi

n with the weight wi
n, to approximate the posterior PDF p(xn|z0:n) for time

n. The weights are normalized to ∑i wi
n = 1. The posterior PDF can then be approximated

by:

p(xn|z0:n−1) ≈
N

∑
i=1

wi
nδ(xn − xi

n) (3.24)

Again, the same sequential approach will be applied. Starting from a state {xi
n−1, w1

n−1}N
i=1,

the particles are propagated through the state-space equations, with a sample of the process
noise vi

n−1 ∼ N (0, Qn) being drawn and added to particle i. The process noise takes the
dynamic model mismatch in form of changes of velocity into account by adding random
acceleration to the particles. This sampling from the importance density p(xn|xi

n−1) is
similar to the prediction step of the Kalman filter. For particle i, the prediction works as
follows:

xi
n|n−1 = Axi

n−1|n−1 + Bvi
n (3.25)

B =

[
T2

s
2 0 Ts 0

0 T2
s

2 0 Ts

]

After the prediction step, the weights of the particles are updated:

wi
n = p(zn|xi

n|n−1) (3.26)

wi
n =

wi
n

∑N
i=1 wi

n
(3.27)

While the measurement likelihood p(zn|xn) is not Gaussian and therefore not trivial to
evaluate, the measurement function can be applied to the particles, yielding ẑi

n = h(xi
n|n−1).

Using this particle measurement ẑi
n, the distribution becomes Gaussian with the mean

being the measurement zn, and the covariance being the measurement matrix Rn. As with
the EKF, the measurement matrix Rn can either be fixed, or updated based on SNR.

p(zn|ẑi
n) = N (ẑi

n|zn, Rn) (3.28)

After the weight updates, the particles are resampled according to their weight to avoid
the particle degeneracy effect, i.e. particles drifting apart. The resampling concentrates the
particles by drawing particles with replacement from the probability mass function (PMF)
represented by the weights {wi

n}I
i=1.

xi
n|n = resample(xi

n|n−1, wi
n) (3.29)
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3.4 Particle Filter

Algorithm 1 shows the resampling procedure used in the presented work, also found in
[12]. ”Systematic Resampling” is a fast and valid approximation of the optimum resampling
procedure.

Algorithm 1 Systematic Resampling

1: Initialize CDF: c1 = 0
2: for i = 2 : N do
3: ci = ci−1 + wi

n

4: end for
5: Start at bottom of CDF: i = 1
6: Draw a starting point: u1 ∼ U [0 1

N ]

7: for j = 1 : N do
8: Move along CDF: uj = u1 +

1
N (j − 1)

9: while uj > ci do
10: i = i + 1
11: end while
12: Assign Sample: xj

n = xi
n

13: Assign weight: wj
n = 1

N

14: end for

After resampling, the final estimate x̂n is calculated by finding the mean of the posterior
PDF, which means taking the average of the particles. The signal flowchart shown in Figure
3.3 is the same as for the EKF, with the particle filter also using the Ranger4 distance
estimate.

x̂n =
∑N

j=1 xj
n|n

N
(3.30)

Signal ADC
NXP R4 LOS

Detection Algorithm
PF

Prediction

Tracked State xn

Figure 3.3: Factor Graph for the PDA filter.
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3.4.1 Discussion

The particle filter requires propagation of all N particles through the state-space model,
2 ∗ N samples drawn from the process noise distribution (independent samples from
v = [vx, vy]T), and N evaluations of the measurement likelihood as well as resampling. It is,
therefore, much more computationally costly, but approximates the posterior likelihood
precisely (for N → ∞ particles), as it represents a non-Gaussian distribution.

3.5 Probabilistic Data Association Filter

The Probabilistic Data Association (PDA) filter is used when multiple measurements per
anchor are available, compared to the particle filter and the Extended Kalman filter, which
both only use one measurement per anchor. The measurements used in the presented work
originate from a channel estimation and detection algorithm (CEDA), as described in the
following section. The detection probability (PD) of the LOS component can either be fixed,
or tracked to dynamically adjust to NLOS situations, as they do not occur randomly when
there are obstructions. We use a special variant of the PF-based multi-sensor PDA filter, as
proposed in [14], with the amplitude tracking neglected to reduce the feature space, and
allow for a lower number of particles and therefore a lower filter runtime.

3.5.1 Channel Estimation and Detection Algorithm

The CEDA aims to isolate the individual signal components from the received signal and
estimate the components’ amplitudes αn,k and delays τn,k. The CEDA was implemented as
in [14].

r(j)
n (t) = α

(j)
n,0s(t − τ

(j)
n,0) +

K(j)
n

∑
k=1

α
(j)
n,ks(t − τ

(j)
n,k) + w(j)

n (t) (3.31)

After sampling the signal model in (3.31), a discrete-time specular signal vector can be
defined as:

r(j)
n = S(τ(j)

n )α
(j)
n + w(j)

n (3.32)
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3.5 Probabilistic Data Association Filter

To estimate the complex amplitude vector α
(j)
n = [α

(j)
n,0...α(j)

n,K(j)
n
] and the delay vector τ

(j)
n =

[τ
(j)
n,0...τ(j)

n,K(j)
n
], a maximum likelihood approach can be formulated, resulting in the following

set of equations. The indices are omitted for simplicity, and α̂, τ̂ denote the estimations.

α̂(τ) = (S(τ)HS(τ))−1S(τ)Hr (3.33)

τ̂k = arg max
τk

|rH
ress(τk)|2
||s(τk)||2

(3.34)

rres = r − S(τ̂k−1)α̂(τ̂k−1) (3.35)

σ̂2 =
1

N − 1
||rres||2 (3.36)

û =
|α̂|2
σ̂2 (3.37)

These equations can be used in an iterative way to search and subtract the individual
components from the signal, as shown in algorithm 2. It should be noted that this specific
CEDA assumes the τm to be uncorrelated and estimates them independently, while the gain
αm is estimated jointly for each iteration. This can cause small errors for cases where two
signal components arrive in close vicinity (i.e. τm − τm′ is small).

Algorithm 2 Snapshot-based CEDA

1: Initialization:
2: m = 0, τ̂0 = [], û0 = []

3: while ûm > γ do
4: m ++

5: if m > 0 then
6: compute rres = r − S(τ̂m−1)α̂(τ̂k−1)

7: end if
8: add component τ̂m = arg max

τm

|rH
ress(τm)|2
||s(τm)||2

9: τ̂m = [τ̂m−1; τ̂m]

10: compute σ̂2 = 1
N−1 ||rres||2

11: compute α̂(τ) = (S(τ)HS(τ))−1S(τ)Hr
12: compute ûm = |α̂m|2

σ̂2

13: ûm = [ûm−1; ûm]

14: end while

By using the complex gain α̂m and the estimated noise variance, the SNR ûm is calculated for
each measurement. The distance standard deviation σ̂

(j)
n = [σ̂

(j)
n,0, ..., σ̂

(j)
n,M] is calculated using

(2.6). The vector τ̂
(j)
n can easily be transformed to the distance vector d̂

(j)
n = [d̂(j)

n,0, ..., d̂(j)
n,M]
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3 Positioning and Tracking Algorithms

using (2.4). The result is a combined measurement vector ẑ(j)
n = [d̂

(j)
n , σ̂

(j)
n ] which is used by

the PDA filter as input.

3.5.2 Data Association Model

For every timestep n and anchor j, the components of the measurement vector ẑ(j)
n are

subject to data association uncertainty. Any of the M(j)
n measurements could originate

from the LOS component, an NLOS component or it is a clutter measurement without
a physical source. It is also uncertain whether the LOS component is present for this
instance. The model for this filter implementation only distinguishes between LOS and
NLOS measurements. An association variable is defined:

a(j)
n =

m ∈ M(j)
n , ẑ(j)

n,m is the LOS measurement in ẑ(j)
n

0, no LOS measurement in ẑ(j)
n

(3.38)

Together with the probability of a LOS measurement p(j)
D,n(q

(j)
n ), which will be discussed

shortly, the probability mass function of a(j)
n and M(j)

n is proportional to:

hm(a(j)
n , M(j)

n ; q(j)
n ) =


p(j)

D,n(q
(j)
n )

M(j)
n

, a(j)
n ∈ M(j)

n

1 − p(j)
D,n(q

(j)
n ), a(j)

n = 0
(3.39)

The following likelihoods and the filter do not distinguish the components per se, but
weight each measurement into the final posterior likelihood depending on distance d̂(j)

n,m and
standard deviation σ̂

(j)
n,m. That way, all possible information of the received measurements is

used for the final estimation of xn.

3.5.3 Distance Likelihood

The distance likelihood function is also defined for the LOS event and the NLOS event. The
LOS likelihood function for measurement ẑ = [d̂(j)

n,m, σ̂
(j)
n,m] is defined as:

pLOS(ẑ
(j)
n,m|xn) = N (d̂(j)

n,m; h(j)(xn), σ̂
(j)
n,m) (3.40)

and the NLOS likelihood function as a uniform distribution U (0, dmax), since all measure-
ments except the LOS measurement are modelled as clutter.

pNLOS(d̂
(j)
n,m) = U (0, dmax) (3.41)
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3.5 Probabilistic Data Association Filter

The overall distance likelihood function follows as:

p(ẑ(j)
n,m|xn, a(j)

n ) =

pLOS(ẑ|xn), a(j)
n = m

pNLOS(d̂
(j)
n,m), a(j)

n ̸= m
(3.42)

3.5.4 LOS Existence Model

The PMF p(j)
D,n(q

(j)
n ) describes the PMF of a LOS measurement for timestep n at anchor j. It

is modelled as:
p(j)

D,n(q
(j)
n ) = q(j)

n (3.43)

For simplicity, it is assumed that a LOS component only exists if it is detectable by the
CEDA. The random variable q(j)

n , which is tracked for each anchor individually, describes
the probability of a LOS detection. It is tracked as a discrete random variable in form of a
first-order Markov process, with values from the set Q = {v1...vQ}, vi ∈ (0, 1] and transition
matrix [Q]i,k = Ψ(q(j)

n = vi|q
(j)
n−1 = vk).

3.5.5 Joint Measurement Likelihood

The joint measurement likelihood can be written as:

p(ẑ(j)
n |xn, a(j)

n ) =
M(j)

n

∏
m=1

p(ẑ(j)
n,m|xn, a(j)

n ) (3.44)

By neglecting constant terms, a pseudo likelihood function can be defined as:

g(ẑ(j)
n ; xn, a(j)

n ) =
M(j)

n

∏
m=1

×

pNLOS(d̂
(j)
n,m), a(j)

n = 0

pLOS(ẑ), a(j)
n ∈ M(j)

n

(3.45)

The joint posterior likelihood for all anchors p(x0...n, a0...n, q0...n|z0...n) (indices will be omitted
for simplicity) can be derived up to a constant factor to be as follows. Υ(xn|xn−1) denotes
the state transition PDF of the dynamic model for the agent, similar to Kalman and particle
filter.

p(x0...n, a0...n, q0...n|z) ∝ p(z|x, a, q)p(x, a, u, q) (3.46)

= p(z|x, a, q)p(a|q)p(x)p(q)

∝ p(x0)
J

∏
j=1

p(q(j)
o )

n

∏
n′=1

Υ(xn′ |xn′−1)Ψ(q(j)
n′ |q(j)

n′−1)...

...hm(a(j)
n′ ; q(j)

n′ )g(ẑ(j)
n′ ; xn′ , a(j)

n′ )
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3.5.6 Posterior Likelihood

To derive an estimate of the agent position, the minimum mean square error (MMSE)
estimate needs to be calculated for xn [13].

x̂MMSE
n =

∫
x̂n p(xn|z)dxn (3.47)

These marginal posterior functions can easily be calculated by executing the Sum-Product
algorithm, presented in [15], [16]. On the factor graph, messages are passed between parts
of the filter algorithm, representing the joint posterior in (3.46). For this application, the
graph passes messages only forward in time, resulting in exact results for the posterior
distributions. The concepts and derivation of message-passing algorithms for tracking can
be found in [15]; a similar filter is also presented in [16]. The graph for timesteps (n− 1), (n)
and anchor (j), is shown in Figure 3.4.

x0

q(j)
0

Υ xn−1 Υ xn

ξ
(j′)
n−1 ξ

(j′)
n

Timestep n − 1 Timestep n

g̃(j)
zn−1

g̃(j)
zna(j)

n−1
a(j)

n

q(j)
n−1

q(j)
nΨ Ψ

px,0 ϕn−1 px,n−1 ϕn px,n

ξ
(j)
n−1

χn−1

ξ
(j)
n

χn

1 1

η
(j)
n−1 β

(j)
n−1

η
(j)
n β

(j)
n

η
(j)
n−1

p(j)
q,n−1 η

(j)
n p(j)

q,npq,0

Figure 3.4: Factor Graph for the PDA filter.

As with Kalman and Particle filter, the PDA filter consists of a prediction step and an
update step. For the PDA, the prediction step consists of the two prior likelihoods ϕn and
η
(j)
n :
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3.5 Probabilistic Data Association Filter

ϕn(xn) =
∫

Υ(xn|xn−1)px,n−1(xn−1)dxn−1 (3.48)

η
(j)
n (q(j)

n ) =
Q

∑
q(j)

n−1=1

Ψ(q(j)
n |q(j)

n−1)p(j)
q,n−1(q

(j)
n−1) (3.49)

The first equation, ϕn, is the same propagation through the state-space model as for the
other filters. The prediction for q(j)

n is the multiplication with the transition matrix of the
Markov sequence model Q.

The measurement update messages η
(j)
n , ξ

(j)
n and β

(j)
n are based on the combined measure-

ment function g̃(j)
zn (a(j)

n′ , q(j)
n′ , ẑ(j)

n′ , xn′) = hm(a(j)
n′ ; q(j)

n′ )g(ẑ(j)
n′ ; xn′ , a(j)

n′ ):

η
(j)
n (xn) =

Q

∑
q(j)

n =1

η
(j)
n (q(j)

n )
M(j)

n

∑
a(j)

n =1

g̃(j)
zn (a(j)

n′ , q(j)
n′ , ẑ(j)

n′ , xn′) (3.50)

ξ
(j)
n (xn) = ϕn(xn)

J

∏
j′=1

ξ
(j′)
n−1(xn)

ξ
(j)
n−1(xn)

(3.51)

β
(j)
n (q(j)

n ) =
∫

χ
(j)
n (xn)

M(j)
n

∑
a(j)

n =1

g̃(j)
zn (a(j)

n′ , q(j)
n′ , ẑ(j)

n′ , xn′)dxn (3.52)

The final posterior likelihoods follow as:

p(xn|z) ∝ pxn = ϕn(xn)
J

∏
j=1

ξ
(j)
n−1(xn) (3.53)

p(q(j)
n |z) ∝ pqn = η

(j)
n (q(j)

n )× β
(j)
n (q(j)

n ) (3.54)

As aforementioned, we use a particle-based implementation of the filter represented by
(3.50)-(3.54), which means the posterior likelihood p(xn|z) is approximated by particles and
not analytically calculated. Details on the particle based implementations can be found in
[16].

3.5.7 Filter Equations

Due to the particle approach, all integrals over dxn become sums over the state {xi
n, wi

n}N
i=0.

The filter can be implemented using the following set of numerical equations, starting

21
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with particles {xi
n−1|n−1, wi

n−1}N
i=0, vector qi

n−1|n−1 as the anchor-wise weight vector for the

discrete LOS detection probability and measurement vector ẑ(j)
n = [d̂

(j)
n , σ̂

(j)
n,m]:

Prediction:

xi
n|n−1 = Axi

n−1|n−1 + Bvi
n (3.55)

q(j)
n|n−1 = Qq(j)

n−1|n−1 (3.56)

Weight Update:

w̃m,i,(j)
n = N (d̂(j)

n,m|h(j)(xi
n|n−1), σ̂

(j)
n,m) (3.57)

w̃q,i,(j)
n =

M(j)
n

∑
m=1

dmax

M(j)
n

vqw̃m,i,(j)
z + (1 − vq) (3.58)

wi
n =

J

∏
j=1

Q

∑
q=0

qvq,(j)
n|n−1w̃q,i,(j)

n (3.59)

Resampling, Estimate:

xi
n|n = resample(xi

n|n−1, wi
n) (3.60)

x̂n =
∑N

j=1 xj
n|n

N
(3.61)

Update for q:

q′(j)
n|n = q(j)

n|n−1

M

∑
m=1

w̃q,i,(j)
n (3.62)

q(j)
n|n =

q′(j)
n|n

∑ q′(j)
n|n

(3.63)

A second filter variant with a fixed LOS detection probability PD was also used as com-
parison to evaluate the benefit of the tracking. The fixed PD variant is described in the
following equations:
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3.5 Probabilistic Data Association Filter

Prediction:

xi
n|n−1 = Axi

n−1|n−1 + Bvi
n (3.64)

Weight Update:

w̃m,i,(j)
n = N (d̂(j)

n,m|h(j)(xi
n|n−1), σ̂

(j)
n,m) (3.65)

wi
n =

J

∏
j=1

M(j)
n

∑
m=1

dmax

M(j)
n

PDw̃m,i,(j)
n + (1 − PD) (3.66)

Resampling, Estimate:

xi
n|n = resample(xi

n|n−1, wi
n) (3.67)

x̂n =
∑N

j=1 xj
n|n

N
(3.68)

x̂n =
∑N

j=1 xj
n|n

N
(3.69)

The signal flowchart is shown in Figure 3.5. Instead of the Ranger4 distance estimate, the
captured CIR is used as input for the CEDA.

Signal ADC CEDA PDA-PF

Prediction

Tracked State xn

Tracked PD

Figure 3.5: Factor Graph for the PDA filter.

3.5.8 Discussion

In terms of computational cost, the PDA filter is itself is similar to the particle filter,
with the exception of needing MN ∗ N measurement likelihood evaluations and some
additional computations for the PD tracking. The CEDA is quite complex with the iterative
optimization process, taking about half the total execution time of a PDA filter iteration.
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3.6 Machine Learning Augmented PDA Filter

To enhance the performance for the PDA filter, an augmentation with machine learning
(ML-PDA) was proposed in this thesis and tested. As a novel approach, machine learning as
an additional measurement likelihood was added to the filter, similar to what is proposed
in [17]. To facilitate the implementation, a Gaussian Process, as found in [18], was chosen
as inference model, because it estimates a PDF p(z f |t̃ f (pn); Ptrain, Z f ,train), as a Gaussian
distribution z f ∼ N (µz, σz), which is convenient for using it in the Bayesian filter framework.
The features to be learned and predicted were chosen as a set of signal parameters derived
from the CIR, which have already been used for ML-supported UWB positioning methods,
e.g. in [4] and [5]. The input was chosen as the agent position pn.

3.6.1 Gaussian Process

Gaussian processes describe a machine learning approach using kernel functions. The used
kernel function k(xn, xm) is the main design parameter for a Gaussian process, largely
influencing the mapping between target t f ,n and input values pn. Detailed explanations
for Gaussian Processes can be found in [18]. The regression for input pn and output t̃ f ,n is
done using the following equations, with kT(pn) as the vector of kernel function evaluated
for k(pn, Ptrain). The matrix C denotes the covariance of the N training data points Ptrain,
Z f ,train are the training target values, and c = k(pn, pn) + β−1, β−1 being a hyperparameter
describing the noise precision. [18]

µt(pn) = kT(pn)C−1Z f ,train (3.70)

σt(pn) = c − kT(pn)C−1k (3.71)

The training of a Gaussian process is done by maximizing the likelihood p(ttrain|Θ), with Θ
being a kernel specific set of hyperparameters, which can be done using gradient algorithms
or similar approaches. In this work, the kernel function was chosen heuristically to be
a combination of a Radial Basis function and a White Kernel, with the White Kernel
modelling AWGN in the training data. The hyperparameter l defines the width of the
Radial Basis functions and is tuned during training.

k(pn, pm) = exp(−||pn − pm||2
2l2 ) + σδδ(n − m) (3.72)
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3.6 Machine Learning Augmented PDA Filter

3.6.2 Signal Parameters

As outputs, a set of six signal parameters was chosen based on [4], [5]. The parameters
are:

Signal Energy: Er =
∫

T
|r(t)|2dt (3.73)

Max. Amplitude: rmax = arg max
t

|r(t)| (3.74)

Rise Time: trise = tH − tL (3.75)

tL = min{t : |r(t)| ≥ ασn}, α > 0 (3.76)

tH = min{t : |r(t)| ≥ βrmax}, 0 < β ≤ 1 (3.77)

Mean Excess Delay: τMED =
∫

T
t
|r(t)|2

Er
dt (3.78)

RMS Delay Spread: τRMS =
∫

T
(t − τMED)

2 |r(t)|2
Er

dt (3.79)

Kurtosis: κ =
1

σ4
|r|T

∫
T
(|r(t)| − µ|r|)

4t (3.80)

µ|r| =
1
T

∫
T
|r(t)|dt (3.81)

σ|r| =
1
T

∫
T
(|r(t)| − µ|r|)

2dt (3.82)

The integrals of the parameters were approximated by sums. The parameter α was chosen to
be 20 and β to be 0.8, based in heuristic testing. The details on training data will be shown
in Section 5.2.1, together with the measurement scenarios. The parameters are transformed
to the logarithmic domain for better scaling and normalized to reduce the difference in the
numerical ranges of the individual outputs values to a minimum for the GP regression,
similar to [17].

3.6.3 Integration into PDA Model

The Gaussian process is integrated into the filter as an additional measurement likelihood
between the predicted parameter vector

t̃(j)
f ,n(pn) = [Ẽ(j)

r , r̃(j)
max, t̃(j)

rise, τ̃
(j)
MED, τ̃

(j)
RMS, κ̃(j)], Σ̃

(j)
f ,n(pn) = Diag.[σ̃Er , σ̃rmax , σ̃trise , σ̃τMED , σ̃τRMS , σ̃κ]

and the parameter vector calculated from the current measurements CIR:

z(j)
f ,n = [E(j)

r , r(j)
max, t(j)

rise, τ
(j)
MED, τ

(j)
RMS, κ(j)]
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3 Positioning and Tracking Algorithms

The parameters are assumed to be distributed independently, with the covariance between
the parameters being zero. This assumption is done to simplify the filter, while the actual
covariance will not be zero due to the parameters depending on each other, and originate
from the same CIR.

Using the estimated PDF of the Gaussian process we can evaluate the measurement
likelihood pGP(z

(j)
f ,n|t̃

(j)
f ,n(pn), Σ̃

(j)
f ,n(pn)) as:

p(j)
GP(z

(j)
f ,n|t̃

(j)
f ,n(pn), Σ̃

(j)
f ,n(pn)) = N (z(j)

f ,n|t̃
(j)
f ,n(pn), Σ̃

(j)
f ,n(pn)) (3.83)

A measurement function λ(z f ,n; t̃ f ,n(pn)) is defined as:

λ(z f ,n; t̃ f ,n(pn)) =

1, a(j)
n ∈ M(j)

n

p(j)
GP(z

(j)
f ,n|t̃

(j)
f ,n(pn), Σ̃

(j)
f ,n(pn)), a(j)

n = 0
(3.84)

For the factor graph of the PDA filter, this means an additional input for the joint measure-
ment equation g̃zn,GP. We assume the features to contain only NLOS information, i.e. to
be uncorrelated to the LOS measurements ẑ(j)

n′ and to be uninformative in LOS conditions
(a(j)

n = 0). This way, the algorithm only uses the GP likelihood only in NLOS condition.

g̃(j)
zn,GP(...) = hm(a(j)

n′ ; q(j)
n′ )g(ẑ(j)

n′ ; xn′ , a(j)
n′ )λ(z f ,n; t̃ f ,n(pn)) (3.85)

=


p(j)

D,n(q
(j)
n )

M(j)
n

pLOS(ẑ
(j)
n,m), a(j)

n ∈ M(j)
n

(1 − p(j)
D,n(q

(j)
n ))pNLOS(d̂

(j)
n,m)p(j)

GP(z
(j)
f ,n|t̃

(j)
f ,n(pn), Σ̃

(j)
f ,n(pn)), a(j)

n = 0
(3.86)

3.6.4 Filter Equations

The filter equations for the ML-PDA filter are summarized below. The likelihood p(j)
GP(t

(j)
n |t̃(j)

n (pn)),

Σ̃
(j)
t,n(pn))) weighted with (1 − vq), getting more weight for a low probability of LOS detec-

tion.
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Prediction:

xi
n|n−1 = Axi

n−1|n−1 + Bvi
n (3.87)

q(j)
n|n−1 = Ψq(j)

n−1|n−1 (3.88)

t̃i,(j)
n , Σ̃

i,(j)
t,n = GP Regression(xi

n|n−1) (3.89)

Weight Update:

t(j)
n = Calc. Params(r(j)

n (t)) (3.90)

w̃m,i,(j)
n = N (d̂(j)

n.m|h(j)(xi
n|n−1), σ̂

(j)
n,m) (3.91)

w̃q,i,(j)
n,GP =

M(j)
n

∑
m=1

dmax

M(j)
n

vq ×+

+ (1 − vq)N (z(j)
f ,n|t̃

(j)
f ,n(pn), Σ̃

(j)
f ,n(pn)) (3.92)

w̃q,i,(j)
n,Q =

M(j)
n

∑
m=1

dmax

M(j)
n

vqw̃m,i,(j)
n + (1 − vq) (3.93)

wi
n =

J

∏
j=1

Q

∑
q=0

qvq,(j)
n|n−1w̃q,i,(j)

n,GP (3.94)

Resampling, Estimate:

xi
n|n = resample(xi

n|n−1, wi
n) (3.95)

x̂n =
∑N

j=1 xj
n|n

N
(3.96)

Update for q:

q′(j)
n|n = q(j)

n|n−1

M

∑
m=1

w̃q,i,(j)
n,Q (3.97)

q(j)
n|n =

q′(j)
n|n

∑ q′(j)
n|n

(3.98)
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A second filter variant with fixed PD was also implemented:

Prediction:

xi
n|n−1 = Axi

n−1|n−1 + Bvi
n (3.99)

t̃i,(j)
n , Σ̃

i,(j)
t,n = GP Regression(xi

n|n−1) (3.100)

Weight Update:

w̃m,i,(j)
n = N (d̂(j)

n,m|h(j)(xi
n|n−1), σ̂

(j)
n,m) (3.101)

wi
n =

J

∏
j=1

M(j)
n

∑
m=1

dmax

M(j)
n

vqw̃m,i,(j)
n +

+ (1 − vq)N (z(j)
f ,n|t̃

(j)
f ,n(pn), Σ̃

(j)
f ,n(pn)) (3.102)

Resampling, Estimate:

xi
n|n = resample(xi

n|n−1, wi
n) (3.103)

x̂n =
∑N

j=1 xj
n|n

N
(3.104)

The signal flowchart, shown in Figure 3.6, visualizes how the captured CIR is used for
the CEDA and the calculation of the signal parameters. The Gaussian Process Regression
outputs an estimate based on the predicted position.

Signal ADC CEDA

Feature
Extraction

PDA-PF

Prediction

Tracked State xn

Tracked PD

Gaussian Process
Regression

Figure 3.6: Factor Graph for the PDA filter.

3.6.5 Discussion

In addition to the CEDA and the multiple measurement likelihoods, the prediction of the
Gaussian process is quite computationally costly, with a vector-matrix product between
training data and its inverse covariance matrix, taking O(N2) operations, depending on the
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3.6 Machine Learning Augmented PDA Filter

number of training data points. For small data sets this will not add relevant amounts of
execution time, but will quickly dominate the overall execution time for large datasets.
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4 Measurement Setup

To enable wireless and real-time measurements, the NXP Ranger4 PCBs need to be con-
nected to a power supply, and the control signals and data need to be transmitted to and
from the nodes. A first iteration of the measurement setup was done in a previous project
work, based on ESP8266 microcontrollers transmitting and receiving control data to the
three anchors and the agent. Due to the limited memory on the ESP8266, transmission
of the CIR was not possible, which is necessary for the more advanced tracking filters
discussed in this work. Power for the nodes was provided by LiPO batteries with charging
and voltage control electronics. The nodes were contained in 3D-printed housings with
openings for a Micro-USB connector for charging, an On-Off switch and the UWB antenna.
This chapter will present the updated measurement setup and the additional hardware
used. The software setup for collecting data is shortly described, as well as the filter and
ML software details.

4.1 The Ranger4 Chip

The NXP Ranger4 Evaluation Board is a PCB board featuring the NXP NCJ29D5 IC. This is
an Ultra-Wideband IC that is used for ranging measurements in the automotive sector. The
IC uses 500 MHz of bandwidth, with a carrier frequency between 6 and 8.5 GHz. Different
radio modes are supported, offering IEEE 802.15.4 compliance as well as data transmission
and secure ranging modes.

Figure 4.1: The NXP Ranger4 Evaluation Board. NXP Semiconductors, NCJ29D5 Ultra-Wideband ICs for Automotive
Applications, 2021.
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4.2 Hardware Setup

Communication with the chip is done via Universal Asynchronous Receive/Transmit
(UART) interface with a baud rate of 921600 bit/s. Only the Ranger4 board acting as the
agent needs to have a data connection to collect the ranging data and control ranging
parameters. A Raspberry Pi Computer was mounted on the board to enable wireless
communication. A custom adapter PCB was soldered, to enable mounting the Ranger4

board onto the Raspberry Pi, and a case was 3D-printed to protect the boards during
measurements and to ensure ease of handling. A USB battery pack is used as a power
source. [10]
The three anchor nodes were kept in their casings from the previous setup, only removing
the ESP8266, but keeping the LiPo batteries and charging boards.

Figure 4.2: Wiring between the Raspberry Pi and the Ranger4 board.

To enable dynamic measurements without human body interference, an iRobot Create 3

robot was set up and used to run trajectories with the agent mounted in a 3D printed stand
on the robot. This robot was chosen for its simplicity in handling and programming. A
web-based Python environment is available, offering basic movement functions to program
trajectories. The trajectories can be programmed based on lengths and angles, which is
automatically supervised by the on-board wheel encoders and optical odometry sensor,
leading to high accuracy and repeatability. A charging dock is also available with an
automatic homing function, as well as an on-board USB-C power connection which was
used to run the agent and the Raspberry Pi for the measurement scenarios on the robot
[19].
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4.2 Hardware Setup

Figure 4.3: Robot with the agent mounted on top.

In addition to the connecting PCB, a casing for the nodes was designed and 3D-printed to
protect the boards and hold the battery, shown in Figure 4.4a. A holding clamp was also
printed for the casing, to mount the nodes on microphone stands. This reduces the issue of
floor reflections and the height can be adjusted easily, matching the height of the agent in
different setups to ensure the 2D assumption of the scenario.

For antennas, the Decawave WB002 UWB antenna was used for all nodes, mounted directly
onto the boards with the SMA connector. The antenna design and parameters are described
in [20]. The WB002 antenna shows good performance for UWB ranging, with <6dB vari-
ation of radiated power on the azimuth plane, and low variation of the group delay at
6.5GHz. An angle-dependent variation of group delay directly translates to a ranging error,
since the introduced delay is added to the estimated ToF.

To collect the data and run live filters as well as archive the data, the Raspberry Pi is
connected to a laptop via a WiFi router. For referencing the nodes’ positions, an Optitrack
Motion Capture System was provided by NXP Semiconductors, Gratkorn, Austria. The
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(a) Picture of the nodes in their casings. (b) The Decawave WB002 antenna.

Figure 4.4: •

system consists of 4 cameras facing the measurement area from different angles, connected
to a central laptop running the tracking software. This laptop was connected to the mea-
surement laptop via a network connection, streaming time sync and position data to be
collected and archived. A schematic overview of the entire setup is shown in Figure 4.5,
with the two laptops, the three anchors and agent as well as the Optitrack cameras.

Figure 4.5: Overview of the setup and data flow.

The Optitrack system requires optical markers to be mounted onto any object that needs to
be tracked. At least three markers in a geometrically fixed constellation need to be used
per object, with the tracking point being in a fixed relation to the markers. An anchor with
the markers is shown in Figure 4.6. This tracking point can be calibrated in relation to the
markers, which was used to center the tracking points into the center of the antennas on
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the nodes.

Figure 4.6: A node with the optical markers mounted.

4.3 Software Setup

To enable a single workflow across all needs of this project, Python was chosen as a
programming language. It offers a wide variety of hardware- and mathematical libraries
to work with, as well as good networking capabilities. Python is also well supported on
the Raspberry Pi. NumPy was used as a math library, scikit-learn for some additional
functionalities like the Gaussian Process and Matplotlib for all plots. The referenced files
can be found in a supplementary git folder.

4.3.1 Measurement Software

The basis of the project is the control and measurement software between the PC and he
Raspberry Pi. The Python file ”main.py” was written to run on the Raspberry Pi to set
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up a web socket connection between the Raspberry and the PC, with the counter piece
”Data Receiver.py” running on the PC. This code is used to start and stop measurements,
transmit measurement data and control the measurement parameters. The commands to
the Ranger4 chip are passed via the UART interface as UTF-8 strings, offering the following
options:

Key Description

a X Set nr. of anchors to X
q Set to idle mode

p X Set peak output power
C X X Set radio mode (0...8) and carrier frequency in kHz

i X start ranging and return distance only
c X start ranging and return CIR and distance

The control string used for setting up and starting the measurements was as follows: ”a
3 C 0 6500 c”. This string starts a measurement with three anchors, radio mode 0 at 6.5
GHz and returns the CIR, the distance estimate and the CIR information string for each
anchor and each timestep. For the distance-only mode, the sampling time Ts is 20 ms, while
for the CIR mode Ts is 300 ms. The slower sampling time is necessary due to the time the
CIR transmission takes on the UART interface. The CIR is transmitted as 2048 integers in
string format, with every other element of the array being an imaginary value, representing
the complex baseband CIR. These CIR values are relative values, meaning they do not
directly represent the physical signal amplitude. This scaled amplitude depends on the
gain settings the RF frontend on the Ranger4 chip used to scale the signal to the proper
dynamic range to be digitized. The additional information transmitted by the chip can
be used to convert the relative amplitudes back to voltage values, although with limited
accuracy due to the integer representation used for the transmission. This also effects the
noise floor, potentially causing mismatches between the noise power given by the chip
and a noise power calculated off of the transmitted CIR. A Python function was written to
convert the relative amplitudes to voltage levels, which is necessary for comparing different
CIR, which potentially do not have a matching scaling otherwise.

The additional information returned by the Ranger4 chip contains the following entries:
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Index Description

0 Counter
1 Initiator ID
2 Anchor ID
3 Single-Sided Ranging 1

4 Single-Sided Ranging 2

5 Double-Sided Ranging
6 Error Code
7 Ranging Algorithm
8 Anchor Group
9 Detection Threshold Power

10 Edge Index
11 First Path Detected
12 First Path Index
13 First Path Power
14 Max Tap Index
15 Max Tap Power
16 Noise Power
17 Overall Received Power
18 First Path Offset

All these return strings are converted to NumPy arrays, analysed in the receiving part of
the script, and stored and archived at the end of the measurement.

The receiving script also has the option of running a set of filters for each received timestep,
to analyse filters in real-time. A live plot option to show the CIR for three anchors and the
position estimate for each timestep was also added.

4.3.2 Optitrack

The Optitrack system, which is installed in a measurement facility of NXP, was connected
to the measurement laptop via a network cable. To time-synchronize the two separate
measurement setups, a local Network-Time Protocol server was running on a Raspberry Pi.
The Optitrack position data was transmitted to the measurement laptop, using the Message
Queuing Telemetry Transport (MQTT) protocol. The MQTT messages were received by a
proprietary C# interface and stored in a SQlite database for later use.
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4.3.3 Filters

The filters presented in Chapter 3 were each implemented as a class, with an initialization
method and a method for iterating the next timestep. The implementations can be found
in the file ”filters.py”. Parameters for the filters can be set with a setup class containing
relevant tuning variables like sampling time Ts, process noise σQ and the fixed detection
probability PD. The filters were implemented following the filter equations given in Chapter
3. The filter objects store the estimates, facilitating storage after analysis runs.

4.3.4 Gaussian Process

For Gaussian Process Regression, as used with the ML-augmented PDA filter described in
Section 3.6, the scikit-learn GaussianProcessRegressor module was used. The GPR objects
were trained per anchor, with the training data sets presented in Chapter 5. After training,
the objects were stored in a file using the joblib library.
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Following the implementation of the measurement system presented in Chapter 4, capturing
a dataset was an important goal of this master thesis. The measurements were taken at
a facility of NXP in Gratkorn, with the Optitrack system described in Section 4.3.2. The
combination of wireless ranging setup and Optitrack system, as discussed in Section 4.2,
enabled capturing dynamic trajectories with precise time and position references. The
measurement campaign was, hence, focused on capturing different dynamic trajectories.

5.1 Design and Challenges

The goal of the measurement campaign was to obtain real-world data on which different
tracking filters can be tested and compared. Impairments to the measurement were added
to enable evaluation of the filters in non-optimal environments.
The individual scenarios were chosen to vary both in trajectory, impairments and agent
type, with a human and a robot agent. The anchors were fixed in position for all scenarios,
spread around a car similar to an application scenario. Besides the obstruction, no changes
in geometry or environment were made. Figure 5.1a shows the schematic layout of the
measurement area, Figure 5.1b shows a picture of the car with the anchor nodes and the
robot agent, with the agent node mounted on top.

5.1.1 Obstruction

To simulate an NLOS situation between the respective anchors and the agent, an obstruction
between the two nodes is necessary to block the LOS path. In initial heuristic trials, shown
in Figure 5.2a, it proved difficult to reliably dampen or block the UWB signal on the
direct path, with the Ranger4 chip’s Search-Back algorithm still mostly detecting the LOS
component correctly. RF absorbers as well as different combinations of metal plates were
tested.
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(a) Floorplan of the measurement scenarios. (b) The anchors around the car.

Figure 5.1

(a) Test of different obstructions. (b) Final obstruction set up.

Figure 5.2

After testing and evaluating, two large metal plates mounted on stands were used as an
obstruction, as shown in Figure 5.2b. The width of the obstruction was beneficial for a
longer phase of obstructed ranging, posing a higher challenge for the filters. The double
plate setup showed good shadowing for the LOS components, although no perfect NLOS
scenario could be achieved. A comparison between a LOS CIR and the obstructed CIR is
shown in Figure 5.3.
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(a) CIR without an obstruction. (b) CIR with an obstruction between nodes.

Figure 5.3

5.1.2 Human Body Interference

As mentioned in Chapter 2, the human body poses a big challenge to UWB ranging. As
shown in [8], the human body shows strong shadowing and dispersion on the UWB signals,
causing loss of the LOS component as well as additional MPCs. While these effects were
not included in the models used for the filters, evaluation of the filters under these effects
is important, considering the UWB keyfob usecase. Two on-body positions for the agent
were used, one on the side of the body, one in front.

(a) Agent position in front of the body. (b) Agent position on the side of the body.

Figure 5.4

The on-body positions of the agent were difficult to track with the Optitrack system, since
the optical markers were often shadowed from the cameras by the body, causing a loss of
track and incomplete position references. As a workaround, a wooden pole with optical
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markers at the top end was fixed to the agent, to elevate the optical markers above the
head. The tracking point was then calibrated to the antenna, resulting in a correctly tracked
continuous reference position despite the on-body position.

Figure 5.5: Agent with the attached tracking extension.

5.1.3 Robot

To gather data without human-body interference, the iRobot Create 3 robot was used, as
described in Section 4.2. The robot’s deterministic trajectories enabled running a near-exact
path with and without the obstruction in place, making it possible to directly compare the
effect of the obstruction on filter behaviour and performance.
The robot also made it possible to systematically take measurements across the measure-
ment area, to generate a training data set for ML applications. Otherwise, this would have
been a very time-consuming task, because either the agent needs to be moved in small
iterations across the area between measurements, or with a walking trajectory, human body
effects would have distorted the training data.

42



5.2 Acquired Data

5.2 Acquired Data

In the measurement campaign, a total of 13 datasets were captured and stored, consisting
of both Ranger4 measurement data and the Optitrack position reference data. Of these 13

datasets, five are training datasets for the GP, and eight are trajectories with four of them
using the robot, and four are on-body measurements. The datasets are listed below:

Dataset Description

1 Training dataset 1

2 Training dataset 2

3 Training dataset 3

4 Training dataset 4

5 Training dataset 5

6 Trajectory 1, on-body, without obstruction, side
7 Trajectory 2, on-body, without obstruction, front
8 Trajectory 3, on-body, with obstruction, side
9 Trajectory 4, on-body, with obstruction, front
10 Trajectory 5, robot, with obstruction
11 Trajectory 6, robot, with obstruction, human obstruction
12 Trajectory 7, robot, with obstruction, dynamic human obstruction
13 Trajectory 8, robot, without obstruction

5.2.1 Training Datasets

The training datasets cover most of the measurement area, to be able to match a position to
a set of parameters using the GPR. This process is called fingerprinting, comparable to what
was shown in [2], [3]. Training datasets 2, 3 and 4 were taken with the obstruction in place,
datasets 1 and 5 were taken without the obstruction. Figure 5.6 shows all training datasets,
Figure 5.7 shows the datasets with the obstruction. The area occupied by the obstruction is
clearly visible, since no datapoints can be taken there. This subset of the training datasets
was used to train the GPR.

Taking a look at the CIR of the individual anchors for training dataset 4, shown in Figure 5.8,
the drop-off in amplitude for the LOS component behind the obstruction can be observed.
Also, stronger MPCs can be seen, following the LOS component with a bias between 5-8
meters. This can possibly be explained by a strong wall reflection, or the blue steel door as
seen in the back of Figure 5.2b.
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Figure 5.6: All 5 training datasets.

5.2.2 On-body Datasets

The first four trajectory datasets were done by carrying the agent on the body, as described
above. Two measurements were done with the obstruction, and two without, both paths
are shown in Figure 5.9. For both cases, one measurement was done with the agent in front
of the body, and the second measurement with the agent on the side of the body.

As expected, Figure 5.10 shows strong fading of the LOS component, caused by the body
obstructing the path between agent and anchor. Also visible are white lines, which represent
timesteps were no data connection between the agent and the anchor was possible, and
therefore no ranging happened.
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Figure 5.7: The 3 datasets with obstruction.
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Figure 5.8: The CIRs of the three anchors.
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Figure 5.9: The two on-body trajectories.
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Figure 5.10: The CIRs of the three anchors.
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5.2.3 Robot Datasets

For the four trajectories captured with the robot, the same path was used each time, shown
in Figure 5.11. Trajectory 5 was taken with the obstruction in place, for trajectories 6 and 7

two people were added in front of the obstruction as additional dampening. Trajectory 8

was done entirely without any obstruction.

Figure 5.11: The robot trajectory.

Figure 5.12 shows a comparison between the CIRs of trajectory 5 (with obstruction) and
trajectory 8 (without obstruction). The areas marked by the red rectangles show where the
LOS component is shadowed in trajectory 5, compared to the continuous LOS components
in trajectory 8.

5.3 Preparation of the Measurement Data

To be able to use the dataset for filter analysis, the position reference had to be imported
into the python environment and matched to the samples of the ranging results. Due to
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the much higher sampling rate of the Optitrack system (0.03 s vs 0.3 s for the ranging
system), and different delays in data transmission and processing, the correct position
reference samples had to be fitted to the ranging samples. This was done by calculating
the Maximum Likelihood position estimates as described in the beginning of Chapter 3,
and then jointly matching all estimated positions to a sub-sampled, shifted version of the
reference points, finding an optimal time shift to minimize the difference between estimate
and reference. The corresponding code is found in the file ”MoCap-CombineData.py”.
In addition, some parts of the reference trajectories were still missing sections due to
track losses of the Optitrack system. These sections were interpolated with a cubic spline
interpolation scheme, using the scipy.interpolate.splprep function.
Finally, all trajectories were saved in individual archives, containing the measurement
samples with distance, CIR, additional ranging information vectors, and the matched
reference positions.
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Figure 5.12: CIR comparison between trajectories with and without obstruction.
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As a final step in this thesis, the different filters were tested and compared. Some tuning
parameters and the analysis environment are briefly discussed, before the results of the
analysis are presented.

6.1 Filter Variants

A total of six filter variants was compared in the final analysis. As a baseline comparison,
the EKF filter was tested as well as the implementation of the SIR/ Particle filter. Next, the
PDA filter was tested, one variant with the PD fixed, and a second variant with PD tracked.
Lastly, two variants of the ML-augmented PDA filter were tested; again one with fixed PD,
and the other one with tracked PD. The filters are listed below, with the abbreviations used
in the plots:

1 EKF Extended Kalman filter
2 Part Particle filter
3 PDA, f. PD PDA filter with fixed PD

4 PDA, t. PD PDA filter with tracked PD

5 ML-PDA, f. PD ML-augmented PDA filter with fixed PD

6 ML-PDA, f. PD ML-augmented PDA filter with tracked PD

The tuning parameters used are shown in table 6.1.

The number of particles was chosen relatively low with N = 1000 due to the focus on
real-time tracking in this project. Also, the fixed PD was chosen relatively high, due to the
fact that it proved difficult to generate long NLOS situations, with the NXP Ranger4 chips
mostly still finding the LOS distance, even under strong shadowing. The measurement
noise for the filters was calculated via the distance CRLB from the measurement SNR for
each timestep.
The CEDA was set to finish after six signal components for each CIR to reduce runtime,
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Parameter Value

Sampling time Ts 0.3 s
Process noise σQ 250 m (∼ 2, 5 m

s2 )
Fixed PD 0.9
Particles N 1000

Table 6.1: The tuning parameters.

and limit the complexity of the filter calculations, again with the goal to keep the design
as close to real-time as possible. The start positions were initialized as the first reference
position, with some noise added.

For the PD tracking, a discrete Markov Chain with four states was used. The state vector
Q was chosen to spread evenly between 0.01 and 1, depicting the entire possible range
for the random variable q(j)

n . The transition matrix Q was designed in a way to keep
the detection of probability relatively high. The transition likelihood towards higher q(j)

n ,
Ψ(q(j)

n = vk−1|q
(j)
n−1 = vk), was chosen to be 0.4, while the transition likelihood toward lower

q(j)
n , Ψ(q(j)

n = vk+1|q
(j)
n = vk), was chosen to be 0.05. This choice was made by running test

runs, which showed better performance for transition matrices with a strong trend for high
q(j)

n .

Q =


0.01
0.333
0.666

1

 (6.1)

Q =


0.6 0.05 0 0
0.4 0.55 0.05 0
0 0.4 0.55 0.05
0 0 0.4 0.95

 (6.2)

6.2 Training the Gaussian Process

To train the GP for the filter application, the reduced training dataset with the obstruction
was used, as described in Section 5.2.1. Tests showed that using the full dataset led to badly
matching predictions for both trajectories with and without obstruction, possibly due to
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the fact that two conflicting datasets were used for training. With the obstructed trajectories
being more interesting for the evaluation of the filters, the training data was limited to
the training datasets with the obstruction. Based on this training dataset, the parameters
discussed in Chapter 3.6 were calculated, normalized and transformed into logarithmic
scale. These conditioned parameters were then used to train the GPR objects to be used in
the ML-augmented PDA filter. A separate object was trained for each anchor. The training
results show a good match between the model and the training data, with the predicted
areas between the training data areas running smoothly. For visualization, the parameters
were plotted together with a grid of the regression results for the entire used area. Figures
6.1a through 6.1f show the results for Anchor 1. Figure 6.2 shows the predicted standard
deviation for the energy parameter. The standard deviation is close to 0 for areas where
training data points are close and rises with higher distance to the training datapoints.
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(a) Maximum amplitude parameter, training data vs. predic-
tion. (b) Energy parameter, training data vs. prediction.

(c) trise parameter, training data vs. prediction. (d) τMDS parameter, training data vs. prediction.

(e) τRMS parameter, training data vs. prediction. (f) Kurtosis parameter, training data vs. prediction.

Figure 6.1
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Figure 6.2: Predicted standard deviation for the energy parameter.

6.3 Analysis Setup

For the filter analysis, a testbed script was written to run the six different filters for the
given trajectories with the prepared data described in Chapter 5.3, the corresponding code
can be found in file ”MoCap Filter Analyzer.py”. To augment the analysis with long NLOS
sections, the robot trajectories were used twice, with the second run having the CEDA
results close to the ground truth LOS distance, obtained by the Optitrack system (see
Section 4.3.2), removed from the measurement vectors. The distance estimate closest to the
correct distance of the resulting measurement vector was then used as input for the EKF
and particle filter. The resulting CEDA estimates for one anchor are shown in Figure 6.3,
the unmodified results on the left, the one modified to have a NLOS section on the right.
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6 Evaluation of Algorithms

Figure 6.3: Comparison of the CEDA estimates for the modified trajectory.

To achieve a statistically meaningful analysis result, a Monte Carlo simulation was done,
running all six filters 500 times on each trajectory. To create variation between the multiple
runs on the trajectories, AWGN was added to the measured CIRs and the ranging estimates
to achieve constant 20 dB SNR in relation to the maximum tap power of each individual
CIR. The noise realizations were drawn individually for each run.

6.4 Position CRLB

To find a lower limit for position accuracy, the individual distance CRLBs can be combined,
and, by using the Jacobian matrix as with the EKF, the position CRLB can be approximated,
as found in [16], [21]. It results in an estimate for the optimal filter performance achievable
for a given measurement SNR. Starting with the Fisher Information Matrix for the range
estimations Fd, which consists of the inverse of the measurement variances σ(j)2, and the
Jacobian Hn(x̂n), the estimated position CRLB can be formulated as:

Fd,n ≤


1

σ(1)2 0 0
0 1

σ(2)2 0
0 0 1

σ(3)2

 (6.3)

Σpos,n ≥ F−1
pos,n = (HnFdHT

n )
−1 (6.4)

As shown in [22], the position CRLB for nonlinear tracking filters can be formed as a
posterior CRLB, combining the position CRLB of the prior, which is calculated from the
state-space model, with the measurement CRLB at each timestep.
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Σpos,pred,n ≥ AΣpos,n−1AT + Q (6.5)

Σpos,n ≥ ((Σpos,pred,n)
−1 + Fpos,n)

−1 (6.6)

Based on the position CRLB, the lower bound for the position MSE can be calculated as:

MSEn ≥ σ2
x,n + σ2

y,n (6.7)

This posterior MSE was plotted alongside the error plots from the analysis, to illustrate
a theoretical lower bound for the position estimation. It should be noted that only the
measurement SNR is considered with this variant of the CRLB, neglecting all other sources
of error and hence estimating a comparably low bound for measurements with high
multipath or shadowing effects. For ideal tracking cases, this lower bound matches the
achieved errors quite well, as will be shown shortly.

6.5 Example Run

To visualize the behaviour of the filters on the real-world data, two trajectories are shown
and discussed here. One example trajectory is chosen as on-body measurement, the other
one is a robot trajectory with an NLOS section.

6.5.1 Trajectory 1, On-Body

This trajectory illustrates effects introduced by the human body quite well, with the agent
being shadowed from the anchors by the body on the first half of the trajectory, and then
facing them on the second half. No obstruction was used on this trajectory. The trajectory
starts at the rear end of the car, walking around the car towards the driver’s door, turning
around and walking back behind the car.

Figures 6.4 shows the reference trajectory, with the numbers denoting the timesteps next to
the track. Figure 6.5 shows the resulting filter estimates for the given ranging data on this
trajectory. While the plot does not allow for a statistical analysis of the filter performance, a
general idea of how the filters behave under the given conditions is presented. The EKF
and Particle filter show quite a random behaviour, given the data, and both lose the track.
The PDA filters manage to track the agent more reliably, with the filter variants using a
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Figure 6.4: Reference path for Trajectory 1.

tracked PD staying closest.

The behaviour of the tracked PD is shown in Figure 6.6. The plots illustrate how the
estimated likelihood of detection falls for sections of the trajectory were the strongest CEDA
estimate do not match the reference distance, indicating partially (degraded, but present
LOS component) or fully (no detectable LOS component) shadowed LOS paths between
agent and anchor. The timesteps were the Ranger4 chip returned a distance estimate of
0 m indicate unsuccessful ranging sequences, meaning no communication between the two
nodes.

Figures 6.7 and 6.8 show the results of the CEDA for Anchor 3. The deviating trajectories
for the PDA filters can be seen where no LOS measurements were detected, for example
between timesteps 40 to 55. In the bottom plot, the behaviour of the particles for the PDA
filters are compared. While both filters diverge around timestep 40, different effects can
be observed around timestep 70. The filter variant with the fixed PD diverges faster due
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Figure 6.5: The filter trajectories for Trajectory 1.

to additional measurements giving weight to particles (around timestep 72), while the PD

tracking tunes the measurement likelihood down for the tracking model and follows the
geometric proposition supplied by the state-space model. For both filters, the particles
concentrate around the track again after the LOS measurements return.

Figure 6.9 shows the same plot as in Figure 6.8, only for the two ML-PDA variants. For
the fixed-PD variant, the additional likelihood evaluated from the GP predictions seems
to constrain the particles, compared to the standard variant. The combination of the GP
likelihood with the tracked PD seems to worsen the effect of the NLOS section, causing the
filter to lose the track quickly. The assumption is that due to the scaling of the likelihoods
via the PD as described in Chapter 3.6, the filter relies largely on the GP likelihood if the PD

drops. If the trajectory proposed by the GP estimates does not fit the CEDA estimates, this
causes a downward spiral: the low PD causes the measurements to be weighted less, which
in turn causes the PD to fall even more. While the filter recovers again around timestep 60

for the first NLOS section, the track is lost again after the second NLOS section. Due to the
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Figure 6.6: The ranging measurements with the reference distance and the PD for Anchor 3.

weighting with the GP likelihood, the particles do not diverge wide enough to re-capture
the track.

The final evaluation is done by calculating the position estimation error. The estimation
errors, together with the position CRLB, are plotted in Figure 6.10. The EKF and the Particle
filter perform, as expected, worst. The Particle filter loses the track almost immediately,
the EKF deviates quite badly for the NLOS sections also. Taking a look at the PDA filter
variants, the filters without the additional GP likelihood perform better. The ML-augmented
filters were expected to perform less ideal for the on-body trajectories, since the training
data was taken with the robot and not on a human body, making this a scenario with
limited match to the training. The table below shows the RMSE for the six filters for this
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Figure 6.7: The CEDA estimates with the filters for Anchor 3.

trajectory:

Filter RMSE (m)

EKF 1.725

Part 2.067

PDA, f. PD 0.181

PDA, t. PD 0.262

ML-PDA, f. PD 0.362

ML-PDA, f. PD 0.561

Table 6.2: RMSE results for Trajectory 1.
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Figure 6.8: The CEDA estimates with the filters for Anchor 3.

Figure 6.9: The CEDA estimates with the filters for Anchor 3.
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Figure 6.10: Error analysis of the six filters.
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6.5.2 Trajectory 9, Robot with NLOS modification

The second example trajectory is the first robot trajectory, modified to a full NLOS situations
from timestep 70 to timestep 100. This was chosen to show the effect of the artificially
created NLOS section, with a complete loss of the LOS component for 30 timesteps.

Figure 6.11: Reference path for Trajectory 9.

Figures 6.11 shows the reference trajectory, with the numbers denoting the timesteps next
to the track. The NLOS section is located at the straight part of the trajectory, meaning the
dynamic model should match the actual movement. Figure 6.12 shows the resulting filter
estimates for the given ranging data on this trajectory. Again, no qualitative assessment can
be done with the plot alone. Again, the Particle filter and EKF quickly lose the track.

The behaviour of the tracked PD is shown in Figure 6.13. The PD drops quickly after
timestep 70, indicating a correct detection of the NLOS measurements. Again, the PD of
the ML-PDA does not recover from a section of suboptimal measurements, staying low for
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Figure 6.12: The filter trajectories for Trajectory 9.

the rest of the scenario, mainly following the GP likelihood instead of the measurement
likelihood, although measurements would be available.

Figures 6.14 and 6.15 show the results of the CEDA for Anchor 3. The plots show how the
PDA filter variants lose the track for the NLOS section, but can mostly recover the track after
LOS measurements become available again. Figure 6.15 illustrates how both the tracked
and the fixed PD PDA filters diverge from the true track, with the particles spreading. The
particles of the fixed PD filter spread among the available CEDA estimates, while the other
filter just spreads according to the dynamic model. Since close to no weighting is happening
for the tracked filter, the particles reconverge much quicker when measurements become
available, compared to the fixed PD PDA filter.

The ML-PDA filters behave differently, as shown in Figure 6.15: The particles of the fixed-PD

filter stay much tighter throughout the NLOS section, quickly recovering the path again.
Due to the low PD of the tracked-PD ML-PDA filter, the particles do not concentrate around
the trajectory again, instead relying on the GP likelihood and the dynamic model.
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Figure 6.13: The ranging measurements with the reference distance and the PD for all Anchor 3.

The numerical evaluation can be found in Figure 6.17. The EKF and the Particle filter again
perform worst. The results are similar as before, although, as shown in the table below, a
small performance gain was found for the fixed-PD ML-PDA filter with this trajectory.
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Figure 6.14: The CEDA estimates with the filters for Anchor 3.

Filter RMSE (m)

EKF 1.055

Part 7.223

PDA, f. PD 2.682

PDA, t. PD 0.599

ML-PDA, f. PD 0.515

ML-PDA, f. PD 1.377

Table 6.3: RMSE results for Trajectory 9.
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Figure 6.15: The CEDA estimates with the filters for Anchor 3.

Figure 6.16: The CEDA estimates with the filters for Anchor 3.
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Figure 6.17: Error analysis of the six filters.
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6.6 Results

6.6.1 Entire Dataset

The overall analysis of the six filters with the averaged RMSE values, as well as the three
trajectory groups (On-Body, Robot, Robot with NLOS section) are summarized in table
6.4.

Filter RMSE (m) Entire Dataset On-Body Robot Robot, NLOS section

EKF 2.082 2.685 1.457 2.070

Part 4.019 1.387 2.554 8.756

PDA, f. PD 1.740 0.433 1.190 3.753

PDA, t. PD 0.883 0.3807 0.857 1.517

ML-PDA, f. PD 0.283 0.333 0.109 0.373

ML-PDA, t. PD 1.953 1.043 2.082 2.854

Table 6.4: Mean RMSE results for the analysis.

Across all trajectories, the ML-PDA with fixed PD performs best, showing 0.5 m less av-
eraged RMSE over the entire set of the test trajectories than the second-best filter, the
PDA filter with tracked PD. The ML-PDA filter with tracked PD shows comparably bad
performance, being outperformed by the PDA filter with fixed PD for all types of trajecto-
ries except for the trajectories with artificial NLOS sections. While these result cannot be
entirely explained, the interaction of the PD tracking with the GP-likelihood does not seem
to be beneficial to the overall tracking result. As explained above, a mismatch between
GP-likelihood and CEDA estimates might lead to a degradation of the PD, causing the
loss of the track. Further work would likely lead to better understanding of this combined
filter, potentially improving its performance beyond the fixed-PD variant. An error in the
implementation of the tracked-PD ML-PDA filter can also not be ruled out, since the time
invested into filter development was limited. The particle filter performs worst, with almost
the RMSE being almost 2m higher than for the EKF. This indicates too few particles for the
scenario, causing the filter to easily lose the track. A low amount of particles was chosen
on purpose, to compare the (also particle-based) PDA filters with the Particle filters for
applications with limited processing power.

Figure 6.18 shows a cumulative density function (CDF) plot for the RMSE errors. The
distribution of error magnitude can be compared with this plot, with a quicker rise of
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the curve meaning more estimations with a small error magnitude. It can be seen how
the fixed-PD ML-PDA filter reduces errors over 90% of the errors to below 1 m, while the
fixed-PD PDA filter only manages a 90% error rate of 6 m.

Figure 6.18: Error CDF plot for the six filters, all trajectories.

6.6.2 On-Body Trajectories

Figure 6.19 shows the RMSE CDF plot for the on-body trajectories. The tracked-PD PDA
filter and the fixed-PD ML-PDA filter show very similar performance, with almost identical
error distributions. The performance of the fixed-PD ML-PDA filter is unexpected, because
of the mismatch in scenario between the training data and the trajectory. The fixed-PD PDA
filter also performs well. The EKF shows worse performance compared to the entire dataset.
Table 6.5 shows the RMSE results for the individual trajectories. Trajectories 1 and 3 show
higher error rates than the other two trajectories. This is due to the stronger shadowing
effects from carrying the agent at the side of the body.
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Filter RMSE (m) Traj. 1 Traj. 2 Traj. 3 Traj. 4

EKF 3.781 0.980 2.486 3.495

Part 1.370 1.535 1.535 1.492

PDA, f. PD 0.261 0.288 0.918 0.266

PDA, t. PD 0.356 0.289 0.563 0.315

ML-PDA, f. PD 0.436 0.349 0.278 0.269

ML-PDA, t. PD 0.698 1.098 1.493 0.887

Table 6.5: RMSE results for the on-body trajectories.

Figure 6.19: Error CDF plot for the six filters, on-body trajectories.

6.6.3 Robot Trajectories

In Figure 6.20, the RMSE CDF for the robot trajectories are shown. The fixed-PD ML-PDA
filter performs best, with no error exceeding 4m. The two PDA filters behave similarly, with
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the tracked-PD variant performing slightly better. The Particle filter shows many larger
errors, as with all the other scenarios also. The EKF performs better than for the on-body
trajectories. Table 6.6 shows that a larger part of the mean error shown above originates
from Trajectory 7. This is the trajectory with the additional dynamic human obstruction
between anchors and agent, meaning a person was actively shadowing the agent from
the anchors. This is also cause of the overall worse performance compared to the on-body
trajectories shown above.

Figure 6.20: Error CDF plot for the six filters, robot trajectories.

6.6.4 Robot Trajectories with NLOS Section

The RMSE CDF of the robot trajectories with NLOS sections are shown in Figure 6.21. The
NLOS section covers roughly 1/4 of the trajectories, causing high errors on this section and
raising the amount of higher errors. Again, fixed-PD ML-PDA filter performs best, followed
by the tracked-PD PDA filter. A larger gap between the fixed-PD and tracked-PD PDA filters
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Filter RMSE (m) Traj. 5 Traj. 6 Traj. 7 Traj. 8

EKF 0.997 1.148 3.631 0.054

Part 1.268 2.549 5.580 0.820

PDA, f. PD 0.095 0.740 3.869 0.058

PDA, t. PD 0.101 0.509 2.764 0.057

ML-PDA, f. PD 0.099 0.148 0.136 0.057

ML-PDA, t. PD 1.118 2.528 4.447 0.237

Table 6.6: RMSE results for the robot trajectories.

is observable, showing that the PD tracking results in a performance gain especially under
long NLOS situations. The EKF outperforms the fixed-PD PDA filter, indicating a large
amount of lost tracks for the PDA filter. Table 6.7 shows the mean RMSE for the individual
trajectories.

Filter RMSE (m) Traj. 9 Traj. 10 Traj. 11 Traj. 12

EKF 2.206 1.768 2.173 2.271

Part 6.197 7.7679 7.896 10.696

PDA, f. PD 3.132 3.899 3.845 3.515

PDA, t. PD 1.089 1.460 1.948 1.145

ML-PDA, f. PD 0.505 0.438 0.309 0.374

ML-PDA, t. PD 2.368 2.715 3.883 1.965

Table 6.7: RMSE results for the robot trajectories with NLOS section.
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Figure 6.21: Error CDF plot for the six filters, robot trajectories with NLOS section.
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The goals of this master thesis were to develop a real-time wireless data acquisition system,
based on the NXP Ranger4 UWB chip, collect real-world test data and test and compare
a set of tracking algorithms on the acquired datasets. The basics of tracking were briefly
discussed, and the used algorithms were presented based on literature. Two reference
filters, the EKF and the Particle filter, were discussed, as well as a message-passing based
Probabilistic Data Association filter, also based on particles. The factor graph for the
message-passing algorithm was discussed. A novel machine learning-based augmentation
of the filter was presented, based on ML approaches found in [4], [5] and also [2], [3].
The data acquisition system was developed based on a previous project’s hardware, up-
graded and extensively tested. The measurement system was set up in combination with an
Optitrack system provided by NXP, to generate reference position data to enable algorithm
performance evaluation. A robot was added to capture trajectories without human body
interference. A setup containing an obstruction and a car was designed for the measure-
ments to be taken, loosely imitating a smart car access scenario. Multiple trajectories on the
human body and on the robot were taken, as well as a training dataset covering most of
the relevant area around the car.
To compare the different algorithms, six filter variants were run in a Monte Carlo simulation
with added AWGN and 500 runs to evaluate the performance under varying real-world
conditions. The analysis showed a performance gain achieved by the ML-probabilistic
data association filter with fixed probability of LOS detection PD, with all PDA variants
outperforming the EKF and Particle filter in all scenarios. The performance of the tracked-
PD ML-PDA filter was found to be worse than a fixed-PD PDA filter, with the poorer
performance being accredited to a potential negative feedback loop between the tracking of
the PD and a mismatch in channel estimation and detection algorithm based likelihood and
the GP-based likelihood.

The developed measurement hardware and software aims to facilitate future work in the
area of UWB ranging and positioning, enabling quick and easy capturing of dynamic
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trajectories. Further work on the ML-augmented PDA filters would potentially improve
both the PD-tracked as well as the fixed-PD variants even further, with focus on the fusion
of the information from the GP in NLOS situations. This was not developed further in this
thesis due to time and resource constrains, but the combination of tracking filters and ML
might hold potential as a novel approach.
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