TU

Grazm

Sebastian Girtl, BSc

MOSAIC: Empowering a Modular
Framework for Configurable and Tailored
Web Search based on an Open Web
Index

Master’s Thesis
to achieve the university degree of
Master of Science
Master's degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor
Gutl, Christian, Assoc.Prof. Dipl.-Ing. Dr.techn.

Co-Supervisor
Nussbaumer, Alexander, Dipl.-Ing. Dr.techn.

Institute of Interactive Systems and Data Science
Head: Kappe, Frank, Univ.-Prof. Dipl.-Ing. Dr.techn.

Graz, July 2024

TU

Grazm

Sebastian Gurtl, BSc

MOSAIC: Aufbau eines mpdglaren
Frameworks fur eine kontigurierbare und

angepasste Websuche auf der Grundlage
eines offenen Webindex

Masterarbeit
zur Erlangung des akademischen Grades eines
Diplom-Ingenieur
Masterstudium: Software Engineering and Management

eingereicht an der

Technische Universitat Graz

Betreuer
Gutl, Christian, Assoc.Prof. Dipl.-Ing. Dr.techn.

Mitbetreuer
Nussbaumer, Alexander, Dipl.-Ing. Dr.techn.

Institute of Interactive Systems and Data Science
Vorstand: Kappe, Frank, Univ.-Prof. Dipl.-Ing. Dr.techn.

Graz, Juli 2024

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TuGRAZonline is identical to the present
master’s thesis.

Date Signature

vi

Eidesstattliche Erklarung

Ich erklédre an Eides statt, dass ich die vorliegende Arbeit selbststdndig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den
benutzten Quellen wortlich und inhaltlich enthommenen Stellen als solche
kenntlich gemacht habe. Das in TuGrAaZonline hochgeladene Textdokument ist
mit der vorliegenden Masterarbeit identisch.

Datum Unterschrift

viii

Abstract

In an era where information is a key resource, the ability to effectively search
and retrieve relevant data from the web is vital. Modern web search engines
are essential tools that enable users to efficiently navigate and retrieve relevant
information from extensive digital repositories. As the amount of digital content
continues to grow, the need for effective and alternative search capabilities
becomes increasingly crucial.

The proprietary nature of many existing web search engines limits trans-
parency and user customization, thereby raising concerns about privacy and the
concentration of control over information access. In addition, the indices used
by these search engines are often not accessible to the public or only available at
a cost. This highlights the need for more transparent alternatives that provide
greater control over how information is accessed and managed.

Therefore, this work proposes a modular and scalable web search engine
framework utilizing the Open Web Index from the OpenWebSearch.eu initiative
to tackle these issues. The framework is designed to be open and it allows
for extensive customization and integration of various components to meet
specific user needs. By leveraging the Open Web Index, its goal is to promote
transparency and user control and to support a more democratic approach to
information retrieval of web documents.

In this thesis, we develop the Modular Search Application based on Index Fractions
(MOSAIC) framework which demonstrates the capability to utilize Open Web
Index partitions for creating tailored search engines. The modular architecture of
the MOSAIC framework ensures flexibility, scalability, and adaptability, which
makes it an effective solution for developing customizable search engines.

Through a comprehensive practical user study and focus group discussions
with experts, we evaluate the framework’s technical approach, modular archi-
tecture, and usability and applicability. The results offer valuable insights into
the framework’s potential to enhance the web search landscape by fostering in-
novation and improving access to information. These assessments highlight the
framework’s strengths and areas for improvement, thereby providing direction
for future developments.

Hence, this thesis introduces the MOSAIC framework as a valuable addition
to web search technology. It integrates features such as the incorporation of
Open Web Index partitions, modular architecture, and customization options
in an open and accessible manner to support search engine developers and
operators across a wide range of technical expertise.

Kurzfassung

In einer Zeit, in der Informationen eine zentrale Ressource sind, ist die Fahigkeit,
relevante Daten im Internet effektiv zu suchen und abzurufen, von entscheiden-
der Bedeutung. Moderne Websuchmaschinen sind unverzichtbare Werkzeuge,
die es den nutzenden Personen ermoglichen, effizient zu navigieren und rele-
vante Informationen aus umfangreichen digitalen Bestanden abzurufen. Da die
Menge der digitalen Inhalte weiter wéachst, wird der Bedarf an effektiven und
alternativen Suchfunktionen immer wichtiger.

Der proprietdare Charakter vieler bestehender Websuchmaschinen schréankt
die Transparenz und die individuelle Anpassung durch die benutzende Per-
son ein, was Bedenken hinsichtlich des Datenschutzes und der Konzentration
der Kontrolle iiber den Informationszugang aufkommen lésst. Dariiber hinaus
sind die von diesen Suchmaschinen verwendeten Indizes oft nicht 6ffentlich
zugdnglich oder nur gegen Bezahlung abrufbar. Dies hebt den Bedarf an trans-
parenteren, benutzerfreundlicheren Alternativen, die eine grofiere Kontrolle
tiber den Zugriff auf Informationen und deren Verwaltung ermaglichen, hervor.

Aus diesem Grund wird in dieser Arbeit ein modulares und skalierbares
Websuchmaschinen-Framework vorgeschlagen, das den Open Web Index der
OpenWebSearch.eu-Initiative nutzt, um diese Probleme zu l6sen. Das Frame-
work ist offen gestaltet und ermoglicht eine umfassende Anpassung und In-
tegration verschiedener Komponenten, um spezifische Anforderungen von
benutzenden Personen zu erfiillen. Durch die Nutzung des Open Web Index
sollen Transparenz und Benutzerkontrolle geférdert und ein demokratischerer
Ansatz fiir die Informationsbeschaffung von Webdokumenten unterstiitzt wer-
den.

In dieser Arbeit entwickeln wir das Modular Search Application based on Index
Fractions (MOSAIC)-Framework, das die Fahigkeit demonstriert, Open Web Index-
Partitionen fiir die Erstellung mafigeschneiderter Suchmaschinen zu nutzen.
Die modulare Architektur des MOSAIC-Frameworks gewihrleistet Flexibilitt,
Skalierbarkeit und Anpassbarkeit, was es zu einer effektiven Losung fiir die
Entwicklung personalisierter Suchmaschinen macht.

Durch eine umfassende praktische Nutzerstudie und Fokusgruppendiskussio-
nen mit Experten bewerten wir den technischen Ansatz, die modulare Architek-
tur sowie die Nutzbarkeit und Anwendbarkeit des Frameworks. Die Ergebnisse
bieten wertvolle Einblicke in das Potenzial des Frameworks, die Websuch-
landschaft durch die Férderung von Innovationen und die Moéglichkeiten des
Zugangs zu Informationen zu erweitern. Diese Bewertungen heben sowohl die

Xii

Stiarken als auch die Verbesserungsperspektiven des Frameworks hervor und
geben so die Richtung fiir zukiinftige Entwicklungen vor.

In dieser Arbeit wird daher das MOSAIC-Framework als wertvolle Erganzung
zur Websuchtechnologie vorgestellt. Es integriert innovative Funktionen wie
die Einbeziehung von Open Web Index-Partitionen, modularem Design und
Anpassungsoptionen in einer offenen und zugédnglichen Weise fiir benutzende
Personen mit einem breiten Spektrum an technischem Fachwissen.

Xiii

Acknowledgment

Primarily, I would like to express my deepest gratitude to my co-supervisor
Dr.techn. Dipl.-Ing. Alexander Nussbaumer and to my supervisor Assoc.Prof.
Dr.techn. Dipl.-Ing. Christian Giitl for their professional support and invaluable
advice and suggestions throughout all phases of this project. Their insightful
ideas, constant availability, and encouragement were instrumental in guiding
me through my thesis. I would also like to extend my heartfelt thanks for the
opportunity to be part of the OpenWebSearch.eu project and to conduct this
thesis within this remarkable initiative.

I am deeply thankful to Dr.rer.nat. Mag.rer.nat. Alexander Steinmaurer who
guided me for years and from whom I have learned a great deal. His mentorship
and support have been invaluable throughout my academic journey. Moreover,
I would like to thank the entire CoDiS Lab team for their support, collaboration,
and for creating an enjoyable working environment throughout this project.

Finally, I would like to express my heartfelt gratitude to my entire family
for their unwavering support, especially during the challenging times. Their
patience and belief in me fueled my determination and drive to succeed. I
am also grateful to all my friends for their constant encouragement and for
providing enjoyable distractions that helped me stay balanced and motivated.

XV

Contents

1.

Introduction

1.1. Aims and Objectives Lo L.
1.2. Methodology and Contribution
1.3. Structure

Background and Related Work

2.1. Information Retrieval
2.1.1. Information Retrieval Process
2.1.2. Information Retrieval Models
2.1.3. Query Languages.
2.1.4. Advanced Techniques in Modern Information Retrieval .

2.2. Web Search Engines
2.2.1. History and Evolution
222, Anatomy L o
223. Crawling L oo
2.2.4. Web Documents Indexing
2.2.5. Web Search Interface
2.2.6. QueryProcessing
2.2.7. Matching and Ranking
2.2.8. Types of Web Search Engines

23. Related Work
2.3.1. OpenWebSearcheu.
2.3.2. IR and Web Search Engine Frameworks

24 Summary

Requirements and Design

3.1. Motivation o oo

3.2. Analysis of Requirements
3.2.1. Functional Requirements
3.2.2. Non-Functional Requirements

3.3. Conceptual Architecture Design
3.3.1. Index Partitions
3.3.2. Indexing Component.
3.3.3. Core Application
3.3.4. Modules and Components
3.3.5. RESTAPL

XVii

Contents

3.3.6. Web Interface 47

3.4. Design Decisions 48
3.5. Limitations o oo 50
3.6, Summary 50
4. Development 53
4.1. Architecture oo oo 53
4.2. Core Application, 57
4.2.1. OWI Partitions Utilization. 57
4.2.2. QueryProcessing 58
4.2.3. Matching and Ranking 59
4.2.4. Metadata Filtering 61
4.2.5. Metadata Enrichment 61
4.2.6. Result Representation 63

43. RESTAPL. 63
4.3.1. Search with JSON Response 63
4.3.2. Search with XML Response 65
4.3.3. Index Information 66
4.3.4. Full Plain Text Retrieval 67

4.4. Web User Interface 67
4.4.1. Search Control Area 68
4.4.2. Search Result Representation 69
4.4.3. Index Information 69

4.5. Module Management 69
4.5.1. Technical Concept 70
4.5.2. Metadata Modules 70
4.5.3. Optional Application Components 75

4.6. Installation and Configuration 75
4.6.1. Framework Setup. 76
4.6.2. Framework Startup Process 77

4.7. MOSAIC2go 77
4.7.1. Architecture 79
4.7.2. Configuration Service 80
4.7.3. Visual Editor 81

4.8. Summary 83
5. Evaluation 85
5.1. Scope and Evaluation Goal 85
5.2. Practical UserStudy 85
5.2.1. Participants 000 86
5.2.2. Materials and Methods 86
5.23. Procedure L. 89
524. Results 90

XViil

Contents

53. FocusGroups 97
5.3.1. Participants 97

5.3.2. Materials and Methods 97

5.3.3. Procedure 99

53.4. Results 99

5.4. Discussion 102
5.4.1. Technical Approach 102

5.4.2. Modular Design 104

5.4.3. Usability and Applicability 105

5.5. Limitations L o 106
56, Summary 107
6. Lessons Learned 109
6.1. Literature. 109
6.2. Development 110
6.3. Evaluation 111
6.4. Personal 111
7. Conclusion and Future Work 113
7.1. Conclusion 113
7.2. Future Work oo 114
Bibliography 117
A. Metadata Module Creation Guide 127
B. Practical User Study Questionnaire 129

XIX

List of Figures

2.1.

2.2.

2.3.
2.4.
2.5.

2.6.
2.7.

3.1.
3.2.

4.1.
4.2.

4.3
4-4.

4.5.

5.2.

53

Conceptual architecture of the information retrieval process based
on Baeza-Yates and Ribeiro-Neto (2010) 6
Functionality of web search engines based on the crawler-indexer
architecture based on Jones et al. (2004) and Wachsmuth et al.

(2017) .« o o 17
Prototypical distributed web crawler architecture (Olston, Najork,
etal.,2010) L 19
Comparison of established web search engines (Granitzer et al.,
2024) ¢ v e e e e e e e e e e e e e e 28
Concept of the Open Web Index (Granitzer et al., 2024) 29

Overview of the OWSE-Hub architecture (Granitzer et al., 2024) . 33
Decentralized architecture of Harvest for efficient indexing and

data access (Bowmanetal,1995) 34
Conceptual architecture of the MOSAIC framework 45
Schema of an OWI index partition 46

Simplified technical system architecture of the MOSAIC framework 54
Example structure of index partitions imported into the MOSAIC
framework L 58
Initial ranking of documents based on Lucene’s BM25Similarity . 60
Text snippet creation based on the plain text with optional on-

demand loading of the full plain text of a document 62

Basic web user interface implementation within the MOSAIC

framework Lo Lo 68
. Metadata fields added by the modules to the search results . .. 72
. Simplified technical system architecture of MOSAIC2go 79
. Web user interface of MOSAIC2go 82

. Practical user study participants” self-assessed levels of experi-

ence and knowledge in computer science and their knowledge of

web searchengines 86
a. Distribution of level of experience in computer science . . 86
b. Distribution of knowledge of web search engines 86
Practical user study participants’ response on different aspects of

MOSAIC . . . e 94

Actions taken by practical user study participants with MOSAIC 95

XXI

List of Figures

XX

5.4. Willingness of practical user study participants to work and share

5:5-

experience with MOSAIC
Focus group participants’ self-assessed levels of experience and
knowledge in computer science and their knowledge of web
searchengines
a. Distribution of level of experience in computer science . .
b. Distribution of knowledge of web search engines

. Distribution of ratings for the focus group evaluation measures

of MOSAIC’s technical concept, modular architecture and appli-
cability

List of Tables

2.1.

4.1.
4.2.
4.3.
4-4-
4.5.

5.1.
5.2.

53

5.4.

57

5.8.

Comparison of selected IR and web search frameworks

REST API endpoints supported by MOSAIC
Existing modules in the current version of MOSAIC
URL query parameters processed by the core module
URL query parameters processed by the geo module
Supported CLI options for MOSAIC core application startup

Overview of hackathon tasks and allocated time for each task . .
Summary of the projects developed by participants during the
hackathon, highlighting the diverse applications and enhance-
ments made to the MOSAIC framework
Statistical analysis of various questionnaire aspects of MOSAIC,
sample size (n), mean (¥), and standard deviation (s)
Qualitative analysis of MOSAIC’s strengths, weaknesses and

room for improvement, based on practical user study participant
feedback

. Focus group discussion questions

Overview of focus group discussion activities and allocated time
foreachtask 0 .
Qualitative analysis of MOSAIC’s strengths, weaknesses and
room for improvement, based on focus group discussions
Statistical analysis of evaluation items rated by experts in a ques-
tionnaire after the focus group discussions, sample size (1), mean
(¥), and standard deviation (s)

89

XXV

Listings

4.1.

4.2.
4.3.

Import of Parquet files from an index partition to a database table
using DuckDB o oo o 57
Method stub providing the possibility to rewrite the original query 59
Method stub providing the possibility to use another existing

query analyzer or an own custom analyzer 60
. Snippet of the metadata filtering and enrichment procedure

demonstrating the manual filtering process 62
. Example response of the /search endpoint 64
. Example response of the /searchxml endpoint 65
. Example response of the /index-info endpoint 66
. JSON response structure of the /full-text endpoint 67

. Excerpt from the configuration file showcasing the enabled mod-

ulesand components oL 70

. Simplest approach to define an additional metadata filter and

inclusion in the search results illustrated by the implementation
of the keywords module, 74

XXVII

Acronyms

Al Artificial Intelligence. 5, 25, 40, 93, 104, 109—111, 114, 115

API application programming interface. 36, 37, 39, 42, 44, 45, 47-49, 53, 55, 56,
58, 63, 64, 68, 69, 76, 79-81, 83, 87, 90, 96, 101, 110

BBB BigBlueButton. 97
BERT Bidirectional Encoder Representations from Transformers. 15

CIFF Common Index File Format. 31, 32, 43—46, 48, 50, 55, 57, 76, 87, 100-103,
108, 109, 113, 114

CIR conversational information retrieval. 13

CLI command line interface. 43, 76, 77, 87

CoDiS Cognitive and Digital Science. 86

CSS Cascading Style Sheets. 49, 56, 76

DLR German Aerospace Center. 97
FTP File Transfer Protocol. 15
GPT-4 Generative Pre-trained Transformer 4. 14

HITS Hyperlink-Induced Topic Search. 24

HPC high-performance computing. 30, 31

HTML HyperText Markup Language. 5, 16, 20, 30, 35, 49, 56, 68, 69, 76
HTTP Hypertext Transfer Protocol. 30, 44, 56, 64, 65, 68

IDE integrated development environment. 127

IR Information Retrieval. 2, 3, 5-15, 18, 26, 33, 35-37, 3941, 48, 98-100, 103,
109, 113

ISDS Institute of Interactive Systems and Data Science. 86

JDBC Java Database Connectivity. 49, 55
JSON JavaScript Object Notation. 37, 39, 42, 55, 56, 63, 64, 66, 67, 69, 71, 83

LLM Large Language Model. 6, 13, 14, 21-23, 55, 58, 67, 70, 90, 92, 93, 95—97,
105, 108, 110, 115
LTR Learning to Rank. 25

MOSAIC Modular Search Application based on Index Fractions. 3, 41, 42, 44—

51, 53, 54, 56-58, 61, 63, 66, 67, 69, 70, 75-81, 83, 85-92, 94, 95, 97-100,
102-111, 113-116

XXIX

Acronyms

NLP Natural Language Processing. 7, 13, 15, 22, 24

OWI Open Web Index. 1-3, 5, 28-31, 33, 40—42, 44—46, 51, 53, 55-57, 69, 72, 76,
83, 101-105, 108, 113, 114, 116

OWSAI Open Web Search and Analysis Infrastructure. 28, 76

OWSE-Hub Open Web Search Engine Hub. 32, 33

PDF Portable Document Format. 20

RAG retrieval-augmented generation. 13, 21, 96, 97
REST representational state transfer. 44, 45, 47, 53, 56, 58, 63, 65, 66, 79-81, 83,

87, 90
RQ research question. 2, 85, 102, 108

SEO Search Engine Optimization. 42

SOIF Summary Object Interchange Format. 34
SQL Structured Query Language. 12, 49, 71
SSPL Server Side Public License. 36

TF-IDF term frequency-inverse document frequency. 8
TIRA TIRA Integrated Research Architecture. 31
TTS text-to-speech. 93

URL Uniform Resource Locator. 16, 18, 21, 29, 30, 43, 45, 47, 56, 68-70, 72, 74,
80, 81, 83

WARC Web ARChive. 29, 30, 67, 69, 72
WWW World Wide Web. 1, 2, 7, 14-16, 50

XML Extensible Markup Language. 42, 44, 55, 56, 63, 65, 69, 72, 77, 83

XXX

1. Introduction

The pursuit of knowledge is an intrinsic part of human nature, propelling
innovation and discovery throughout history (Kvanvig, 2003). From the ancient
libraries of Alexandria to the meticulous cataloging of the natural world by
Renaissance scholars, humanity has consistently endeavored to collect, organize,
and access information. In the modern era, web search engines have emerged
as the latest evolution in this quest for knowledge, fundamentally transforming
how we navigate the immense amount of digital information accessible in the
World Wide Web (WWW).

Web search engines have become an indispensable tool in our daily lives,
as they shape the way we access and interact with the extensive volume of
information available on the internet. From their humble beginnings with simple
keyword searches, search engines have evolved into sophisticated systems
capable of understanding and processing complex queries. The importance of
search engines in modern society cannot be overstated, as they facilitate the
efficient retrieval of information, support academic research, drive business
decisions, and even influence social interactions. Despite their crucial role, many
existing search engines operate as black boxes, offering little transparency or
control over the data they process. This lack of transparency underscores the
need for more open, customizable, and transparent search engine frameworks.

The OpenWebSearch.eu' project aims to address these issues by promoting
open and transparent search technologies to counteract the dominance of pro-
prietary search engines, thus offering an alternative. By maintaining digital
sovereignty in Europe, the initiative intends to ensure that web search infras-
tructure remains under public control and accessible to all. It aims at creating
an open and transparent search infrastructure for the web and to democra-
tize access to web data by developing decentralized, community-driven search
technologies that prioritize privacy and user control. By providing access to
the Open Web Index (OWI)?, the project enables researchers and developers to
build customized search engines and innovative web services.

Thttps:/ /openwebsearch.eu
https:/ /openwebindex.eu

https://openwebsearch.eu
https://openwebindex.eu

1. Introduction

1.1. Aims and Objectives

The primary aim of this thesis is to develop a scalable and modular web search
engine framework leveraging the OWI from the OpenWebSearch.eu initiative.
This framework seeks to address the limitations of existing web search engines
by offering greater transparency, control, and customization, although it is not
intended to serve as a large-scale search engine for the entire WWW but as a
demonstration framework for utilizing partitions of the OWL

Additionally, the framework aims to support a modular architecture, allow-
ing for easy integration and customization of various components to meet
specific domain and user requirements. Ensuring compatibility with diverse
data formats and external systems is another important objective, maximizing
the framework’s applicability and flexibility.

The system’s design prioritizes sustainability and applicability, thereby ensur-
ing it can adapt and evolve in response to emerging needs and technologies. By
contributing to the OpenWebSearch.eu ecosystem, the framework aims to foster
a collaborative environment where continuous improvements and innovations
can be shared and integrated. This contribution not only enhances the system’s
long-term viability but also supports the broader goals of creating open and
transparent search solutions. Through these efforts, the thesis aims to provide a
versatile and effective solution for developing custom search engines based on
OWTI partitions.

Subsequently, the following research questions (RQs) emerge concerning
the development and implementation of a modular search engine framework
utilizing the OWI:

* RQ1: How can partitions of the OWI be effectively integrated and utilized
to enhance web search engine capabilities?

* RQ2z: What are the advantages and limitations of incorporating a mod-
ular web search engine architecture, and how does it affect the system’s
flexibility and scalability?

* RQ3: How applicable and user-friendly is a modular framework that
utilizes partitions of the OWI for developing and deploying custom web
search engines tailored to specific domains or needs?

1.2. Methodology and Contribution

The methodology of this thesis involves designing a framework that addresses
the key features and gaps identified in existing Information Retrieval (IR) and
web search solutions, while also adhering to the technical specifications of the
OpenWebSearch.eu initiative. The design process was informed by a compre-
hensive literature review, which ensured the integration of best practices and
innovations from the field into the framework. Utilizing an iterative approach,

1.3. Structure

the development process incorporated feedback continuously to refine and
enhance the system. The framework’s evaluation included a practical user study
to assess its applicability and effectiveness and expert evaluations through focus
group discussions to gain insights into its practical applicability.

This thesis advances the field of IR and web search systems by demonstrating
the practical utilization of OWI partitions by the Modular Search Application
based on Index Fractions (MOSAIC) framework. By leveraging the OWI from
the OpenWebSearch.eu initiative, it highlights a solid approach to integrate
open and transparent search technologies. The modular design of the MOSAIC
framework not only enhances flexibility, scalability, and customization but
also provides a valuable blueprint for developing adaptable and even declar-
ative search engines. This work enhances the OpenWebSearch.eu ecosystem
by providing a system that can be seamlessly integrated into the existing in-
frastructure, thereby extending its overall capabilities. Moreover, the insights
and recommendations presented in this thesis aim to inspire future research
and development, further advancing the field of open and transparent search
technologies particularly within the OpenWebSearch.eu project.

1.3. Structure

This thesis is organized into seven chapters, each detailing a distinct phase of
the project. Chapter 2 explores the structure and functionality of IR systems
and web search systems. It delves into the technical aspects of the Open-
WebSearch.eu project, including the OWI generation pipeline. Additionally,
it reviews existing IR and web search systems, particularly highlighting their
features and identifying the gaps they present.

Building on the background and related work, Chapter 3 identifies both
functional and non-functional system requirements. It then outlines a conceptual
architecture based on these requirements and discusses the design decisions
for specific components of the architecture. The chapter also addresses the
limitations reflected upon the design phase.

Chapter 4 details the development phase of the project, thereby presenting
the technical architecture and key features such as index utilization, metadata
enrichment and modular aspects.

The system is evaluated through a practical user study and expert assessments
conducted in focus group discussions. Chapter 5 provides insights into the
system’s effectiveness and usability from both user and expert perspectives.

Chapter 6 reflects on the lessons learned throughout the project, discussing
challenges encountered and how they were addressed, as well as insights gained
during the development process.

Eventually, Chapter 7 synthesizes the overall research process by summariz-
ing major findings and takeaways. It proposes potential directions for future

1. Introduction

research and development, and offers a forward-looking perspective on the
project’s impact and opportunities for further exploration.

2. Background and Related Work

This chapter introduces relevant concepts that are pertinent to this thesis,
thereby providing a thorough background for the subsequent sections. It starts
by exploring IR in Section 2.1, detailing key processes such as indexing, query
processing, and ranking, and discussing models such as Boolean, Vector Space,
and Probabilistic models. The focus then shifts in Section 2.2 to the architecture
of web search engines and algorithms that assess page relevance based on
several factors and signals. Modern advancements are highlighted, including the
integration of Artificial Intelligence (Al) to improve query understanding and
result accuracy. Section 2.3 examines technical details of the OpenWebSearch.eu
project, as well as vertical search engines, which specialize in specific domains,
and modular search frameworks. This overview provides a foundation for a
more detailed exploration of modern search technologies and is utilized to
define requirements to create a search framework that leverages OWI partitions
generated by the OpenWebSearch.eu infrastructure.

2.1. Information Retrieval

IR is the process of extracting relevant information from a collection of resources
in response to a user’s query. It encompasses both the techniques and method-
ologies used to find and retrieve documents, data, or other forms of information
that meet specific criteria determined by particular information needs. The
primary goal of IR is to minimize the gap between the information a user needs
and the immense amount of data available, thereby ensuring that the retrieved
information is both relevant and of high quality. In contrast to data retrieval,
which mainly deals with structured data in databases, IR frequently tackles
semi- or unstructured data such as text documents, particularly HyperText
Markup Language (HTML) from web pages (Baeza-Yates & Ribeiro-Neto, 2010).
Essentially, an IR system endeavors to understand the user’s information needs
and retrieve relevant documents that are likely to assist the user in their partic-
ular task. Typically, users articulate their information needs through queries
consisting of keywords, which the IR system then processes and interprets
accordingly. IR systems can be applied to various types of data, spanning from
text documents to multimedia data. Although web search is presumably the
most prominent application of IR nowadays, searchable systems are also used
in other application areas such as digital libraries or knowledge management

2. Background and Related Work

________________ | Text
v et User Interface l:
Information Need
)2 ¢ Text
| Text Operations l—
Logical View Logical View
\ 4 \ 4

:_[J ______)| Query Operations | | Indexing |(—| DB Manager Module
ser

Feedback

Query Inverted File

\4
| Searching |<

Retrieved Docs

Y
| Ranking |

Doc
Collection

Ranked Docs

A 4

[i Result Representation |

Figure 2.1.: Conceptual architecture of the information retrieval process based on Baeza-Yates
and Ribeiro-Neto (2010)

systems. In contrast to browsing, which entails users exploring content more
broadly without a specific target in mind, searching focuses on tracking down
the relevant information (Ellis, 1989).

2.1.1. Information Retrieval Process

The retrieval process in IR is a complex and multifaceted sequence of actions
designed to locate and present relevant information from large datasets based
on user queries. This process is fundamental to the functioning of different
application areas of IR systems where users seek specific pieces of information
from vast collections. According to Baeza-Yates and Ribeiro-Neto (2010), at
its core, the general retrieval process transforms a user’s information need,
expressed through a query in a user interface, into a set of relevant documents
or data items (see Figure 2.1). Beyond this fundamental concept, modern
approaches in the IR pipeline, such as the use of Large Language Models
(LLMs), have since emerged.

2.1.1.1. Indexing

Indexing is a fundamental step in the IR process and plays a crucial role
in enabling efficient and effective search capabilities within large datasets. It
involves creating a structured representation of the document collection, which
facilitates quick and accurate retrieval of relevant documents in response to

2.1. Information Retrieval

user queries. Indexing transforms raw data into a format that is optimized for
searching, thereby significantly enhancing the performance of an IR system.
The primary purpose of indexing is to organize the information in a way that
allows the system to quickly locate and retrieve documents that match the
user’s information need. Without indexing, a search system would have to scan
every document in the collection each time a query is made, which would be
computationally expensive and time-consuming, especially for large datasets
such as the WWW.

The process of indexing documents consists of different steps to organize and
optimize data for efficient and quick retrieval. First, documents are collected
and processed to extract text. This text is then normalized through established
Natural Language Processing (NLP) techniques such as tokenization, stemming,
and removal of stop words, resulting in extracted terms. In the next step, an in-
dex structure using the extracted terms is constructed. Ultimately, compression
and optimization techniques such as delta encoding and variable-byte encoding
are applied to reduce storage requirements and improve search performance
(C. D. Manning, 2008).

The most widely used indexing technique in text retrieval systems is the
creation of an inverted index. It involves constructing a list of all unique terms
in the document collection and mapping each term to a list of documents
in which it appears. This allows the system to quickly find all documents
containing a given term. The inverted index structure comprises two main
components: a vocabulary and a posting list. The vocabulary is a set of all distinct
terms in the collection, while each posting list is a list of document identifiers
where the corresponding term appears. The efficient construction and storage
of the inverted index are critical for achieving fast query response times and
minimizing resource usage (Zobel & Moffat, 2006).

Among many others, another indexing technique worth mentioning is the
forward index. It is a data structure used in IR systems that maps each document
to the terms it contains. This is the inverse of an inverted index, which associates
terms with the documents in which they are found. In particular, forward
indexes are useful for tasks that require processing documents as whole entities,
such as document classification and clustering (C. D. Manning, 2008).

Indexes utilize algorithms that consider the frequency and distribution of
terms to help prioritize documents that are more likely to be relevant to the
user’s information need. This capability also supports the handling of complex
queries, including Boolean operations and phrase searches, which allows for
more precise and nuanced search capabilities. Moreover, modern indexing sys-
tems can update dynamically, thereby efficiently incorporating new documents
or changes to existing ones without needing a complete reindexing. This en-
sures that the IR system remains current and responsive to new information to
maintain its usefulness and accuracy over time (Croft et al., 2010; C. D. Manning,
2008).

2. Background and Related Work

2.1.1.2. Query Processing

In order to search in indexes, users express their information needs in the
form of queries. The process from query formulation to document ranking is
critical for enhancing search effectiveness and efficiency. In the first step of
query processing, users define their search based on perceived information
needs. However, initial user queries can often be vague or imprecise and may
require refinement to improve retrieval accuracy.

Once the query is received by the IR system, query parsing is performed.
During this stage, the query is analyzed to determine its syntactic structure
(C. Manning & Schutze, 1999). This helps in understanding the parts of the
query that are crucial for retrieving relevant information.

An optional yet commonly used next step is the application of query expansion
to improve the retrieval effectiveness. This involves modifying the original query
to include additional terms that are related to the terms in the user’s initial
query. For instance, this could be synonyms, hypernyms, or other semantically
related terms, aiming to bridge the gap between the user’s language and the
language in the document collection of the system and increasing the likelihood
of retrieving relevant documents (Efthimiadis, 1996).

Additional steps can involve term reweighting, where the significance of each
query term is adjusted based on its distribution across the document corpus, as
well as query optimization by refining the query execution strategy against the
database index reducing the computational resources required, and enhancing
retrieval speeds (Buttcher et al., 2016; Croft et al., 2010).

Each of these steps contribute to the overall effectiveness of IR systems,
which demonstrates an interplay of linguistic, statistical, and computational
techniques designed to optimize both the relevance and precision of retrieved
information.

2.1.1.3. Ranking

The core function of the retrieval process is to match the processed query against
the indexed data and subsequently rank the matched documents accordingly.
The process begins with the matching phase, where the system evaluates which
documents in the collection or database correspond to the user’s query based on
the occurrence of query terms within the documents. Typically, this is achieved
through different models such as the Boolean model, the Vector Space model,
or Probabilistic models, each providing a different approach to determine how
well documents match a query (Baeza-Yates & Ribeiro-Neto, 2010).

Once documents are identified as matches, the ranking phase sorts these
documents by relevance. This relevance is often calculated using scores based
on textbook approaches such as cosine similarity or term frequency-inverse
document frequency (TF-IDF), which assesses the significance of a word to a
document within a collection or corpus (C. D. Manning, 2008).

2.1. Information Retrieval

However, the relevance scoring might also involve more sophisticated algo-
rithms such as the feature weighting algorithm BM25 or language modeling
approaches, which consider the probability of terms appearing in documents
to estimate their relevance to a query (Robertson et al., 1995).

The system may further refine these scores using additional heuristics or
metrics, such as document freshness, user engagement metrics, or the semantic
relationships between query terms and document content. For instance, recent
documents or those with higher click-through rates from users might be ranked
higher under the assumption that they are more useful or relevant. In addition,
these ranking algorithms are also capable of adjusting for query-specific features.
For instance, if a query implies a need for very recent information, the ranking
algorithm may prioritize recency more heavily than it would for a general
informational query (Baeza-Yates & Ribeiro-Neto, 2010).

Eventually, the goal of the matching and ranking functionality in IR systems
is to deliver the most relevant, useful, and timely information to users in a
ranked list. This makes it easier for them to find what they are looking for, thus
increasing the user experience.

2.1.1.4. Result Representation

The result representation in IR systems is a critical aspect that directly impacts
user satisfaction by determining how search results are displayed. After the
matching and ranking phase, the IR system presents the results in a manner
that users can easily interpret and use. This typically involves displaying a list
of matched documents, where each document is usually accompanied by a
context indicating why the document is relevant to the query (Baeza-Yates &
Ribeiro-Neto, 2010).

In particular, result snippets are important as they often include highlighted
query terms, allowing users to quickly assess the relevance of the document
without needing to open it (Buttcher et al., 2016). These snippets are generated
either by extracting relevant sentences directly from the document or by creating
summaries that capture the essence of the content where the query terms appear.

Furthermore, the organization of results on a page is crucial. Systems often
employ user-centric design principles to prioritize clarity and usability. This
may include categorizing results into tabs or sections (e.g., images, videos,
news) and providing filters or facets that allow users to refine their search based
on specific criteria such as date, location, or document type (Hearst, 2009).

Result representation aims not only to inform but also to facilitate further
interaction with the retrieved information, for instance, through refining the
search, accessing detailed document views, or exploring related topics. Con-
sequently, this functionality comprises the fields information science, graphic
design, and human-computer interaction principles.

2. Background and Related Work

2.1.1.5. User Interaction and Relevance Feedback

An essential component of IR systems is the user interaction and relevance
feedback, allowing the system to enhance search accuracy and user satisfaction
through iterative refinement. User interaction involves how users engage with
the system, from the initial query input to retrieving, navigating and manip-
ulating search results. This interaction can provide implicit feedback on user
preferences and behaviors, such as which links they click on, how long they
view a page, or how they modify their queries in response to search results
(Baeza-Yates & Ribeiro-Neto, 2010).

In contrast, relevance feedback is a more explicit method of interaction where
users directly inform the system about the relevance of retrieved documents.
For example, this can be done by marking results as relevant or not relevant,
which the IR system then uses to adjust the search algorithm. This feedback
helps the system to better understand the user’s specific needs and refine the
search results accordingly. The use of relevance feedback loops enables the
system to learn and adapt, potentially improving the precision and recall of the
search results over time. For instance, if a user consistently marks documents
containing certain terms as relevant, the system may boost the weighting of
these terms in future searches (C. D. Manning, 2008).

The opportunity of user interaction and relevance feedback enables IR sys-
tems to evolve with user needs and preferences, ultimately improving the
general search experience.

2.1.2. Information Retrieval Models

The foundation of any effective search engine or database system is built upon
its underlying retrieval model that makes the IR process possible. These models
are theoretical constructs that describe how systems can determine the relevance
of documents to a user’s query (Baeza-Yates & Ribeiro-Neto, 2010). Each model
offers a unique approach to handling and interpreting the large amounts of
data encountered in search tasks, varying significantly in terms of complexity,
effectiveness, and suitability for different types of data or queries. Baeza-Yates
and Ribeiro-Neto (2010) formally define the characterization of IR models using
the four components D, Q, F and R(g;, dj).

1. D denotes the representations for the documents in a database or a
collection.

2. Q denotes the representations for the information needs of a user, also
named queries.

3. F denotes the framework that is utilized for modeling representations of
documents, information needs and the relationships between document
representations and queries.

10

2.1. Information Retrieval

4. R(g;,d;) denotes the ranking function constructed by the framework. For
a query q; € Q and a particular document representation d; € D, the
ranking function yields a real number contributing to an overall ordering
of the documents depending on the query.

In general, IR models serve as planning tools for actual implementations
of IR systems. Focusing on classic IR, the fundamental models comprise the
Boolean model, Vector Space model and Probabilistic model.

2.1.2.1. Boolean Model

As an exact match model, Boolean models operate based on Boolean logic, using
operators such as AND, OR, and NOT to combine search terms. Documents are
retrieved based solely on whether they contain or do not contain the specific
terms stipulated by the query, making the results very explicit and dependent on
exact matches with the query terms. This model treats each document as a set of
keywords, allowing for straightforward matching but without considering the
context or frequency of the terms within the documents. While Boolean models
provide clear and easy-to-understand results, they lack nuance in ranking since
they do not differentiate documents by relevance beyond meeting the query
criteria in its classic form (Salton et al., 1983). Consequently, this can lead
to either overly broad or overly restrictive results, depending on the user’s
formulation of the query.

2.1.2.2. Vector Space Model

In order to be able to rank documents, Salton (1983) introduced an approach
to measure the similarity between a query and documents. Given a multidi-
mensional Euclidean space, both the query and the index representations are
vectors that are embedded in this space, where each dimension corresponds to
a unique term in the overall corpus. Similarity between a document and a query
is determined by calculating the cosine of the angle between their respective
vectors, with a smaller angle indicating higher relevance. The Vector Space
model allows for partial matching and ranking of documents based on their
cosine similarity scores, which offers a more nuanced approach to retrieval than
Boolean models (Hiemstra, 2009).

2.1.2.3. Probabilistic Model

An alternative approach that utilizes probability theory to determine the like-
lihood that a document is relevant to a given user query is defined by the
Probabilistic model. These models calculate the probability of relevance based
on the presence or absence of terms in the documents, assuming that each
term independently contributes to the document’s relevance. It operates on the

11

2. Background and Related Work

principle that there exists an “ideal answer set” of documents which are exactly
relevant to a user’s query. However, the challenge lies in defining the properties
of this ideal set, which are not known at the query time but are estimated
using index terms to improve the retrieval process. During the search, initial
guesses of these properties help generate a preliminary probabilistic description,
which is refined through user interaction as they identify relevant documents.
This iterative process aims to converge the system’s understanding of an ideal
answer set closer to the actual set, thereby enhancing the accuracy of document
retrieval based on the calculated probabilities of relevance (Robertson, 1977).

2.1.3. Query Languages

A compelling component of a model in an IR system are queries specifying
the information need of users. Serving as the bridge between user queries
and the comprehensive document collections and databases of information
these systems search in order to assist users in finding and retrieving the
information they need, query languages are a fundamental tool. They enable
users to articulate their information needs in a structured format that the system
can understand and process efficiently. The development and refinement of
query languages have been central to the evolution of IR systems, reflecting
advances in technology and changes in user behavior ranging from simple
keyword-based systems to complex languages capable of handling structural
and natural language queries (Baeza-Yates & Ribeiro-Neto, 2010).

Keyword-based queries are the most basic form of query language used in
information retrieval systems. Users input one or multiple keywords or phrases
that they believe are relevant to their information need, and the system searches
for these terms across its database. While this type of query language is easy to
express and intuitive, it may not always deliver precise results due to its reliance
on exact matches between the query terms and document content (Baeza-Yates
& Ribeiro-Neto, 2010).

Boolean queries enhance the precision of search results by allowing users to
combine keywords with Boolean operators such as AND, OR, and NOT. This
approach enables users to refine their search criteria significantly, dictating how
different terms relate to each other within the search process, thus exploiting
the compositional scheme by using combinations to create complex queries
(C. D. Manning, 2008).

Structural queries are used predominantly in database management systems
but are relevant to IR when dealing with structured data. For instance, the
Structured Query Language (SQL) allows for precise queries about specific
data attributes stored in structured database formats. In IR systems, the usage
of such languages and query protocols is beneficial for queries that require
specific criteria to be met, such as dates, tags, or metadata fields, providing
a high level of precision in searches. Additionally, structural queries can be

12

2.1. Information Retrieval

utilized to enrich relevant aspects and search in certain parts (Croft et al., 1991).

Opposed to structural queries, natural language queries represent a more
advanced type of query language that allows users to enter search terms in
the form of conversational language. This type of query language uses NLP to
parse and understand the user’s intent, which makes the search process more
intuitive and less restrictive. While such languages offer a more user-friendly
interface, they present significant challenges in accurately interpreting and
processing the user’s intent due to the complexity and ambiguity of natural
language (Lewis & Jones, 1996).

2.1.4. Advanced Techniques in Modern Information Retrieval

Modern approaches in IR systems encompass several advanced techniques
aimed at improving the accuracy and relevance of search results. One significant
development is the use of neural networks and deep learning models, which
enhance traditional methods by better understanding the semantic context
of queries and documents. To process and generate human-like text, thus
significantly improving query processing and document ranking, transformer
models and LLMs can be integrated (Tang et al., 2024).

Neural approaches to conversational information retrieval (CIR) have gained
prominence, enabling interactive and multi-turn conversations with users to
refine and clarify their search intents, leading to more accurate results. CIR sys-
tems utilize advanced NLP and dialogue management techniques to maintain
context and coherence across interactions, making the search experience more
intuitive and user-friendly (Gao et al., 2023).

Particularly important for addressing the user’s information needs is the
incorporation of retrieval-augmented generation (RAG), where LLMs are used
to generate responses based on retrieved external knowledge, thus reducing
the likelihood of generating irrelevant information. Furthermore, modern IR
systems often utilize topic modeling techniques to improve the representation
and indexing of text documents by identifying the underlying topics within
them. The adoption of multilingual retrieval models has also been critical in
making IR systems more accessible and effective across different languages and
regions (Tang et al., 2024). Word embeddings provide dense vector representa-
tions of words that encapsulate semantic meanings and relationships. Useful
in various NLP tasks, including document classification, question answering,
and named entity recognition, they offer a more sophisticated representation
of text compared to traditional keyword-based methods. Consequently, word
embeddings improve the indexing of documents and the retrieval accuracy
by capturing semantic relationships between terms, as well as by allowing
the system to understand contextual nuances and synonyms in queries and
documents (Kusner et al., 2015).

Additionally, the use of graph databases is gaining traction, particularly for

13

2. Background and Related Work

handling complex, multi-hop queries by modeling data as interconnected nodes
and edges, which improves retrieval accuracy and efficiency (Barcel6 Baeza,
2013).

Zhu et al. (2023) outline the integration of traditional term-based approaches
with modern neural architectures to combine the strength of both. Traditional
methods guarantee fast response times and high efficiency, while neural models
are characterised by their ability to capture complex contextual signals and
semantic nuances. For instance, the introduction of LLMs such as Generative
Pre-trained Transformer 4 (GPT-4) has further impacted IR by improving key
components including query rewriters, retrievers, rerankers, and readers. This
enhancement leads to increased accuracy and relevance of retrieved information.
Subsequently, the integration of traditional and modern techniques creates a
robust and efficient IR pipeline, capable of effectively addressing user queries
and challenges such as data scarcity and interpretability. (Zhu et al., 2023).

These advancements collectively improve the performance and user expe-
rience of modern IR systems, making them more robust and adaptable to
handling complex search queries.

2.2. Web Search Engines

One particular application area of an IR system is the possibility to search having
digital information stored in the WWW as underlying large-scale dataset. In
the rapidly evolving landscape of digital information with a current estimated
size of around 60 billion web pages' in the WWW, web search systems stand
as key tools that empower users to navigate the immense expanse of the
internet efficiently. These systems, which range from ubiquitous search engines
such as Google* and Bing3 to specialized academic search platforms such
as Google Scholar4, utilize complex algorithms to fetch, index, and retrieve
information in response to user queries. The effectiveness of a web search
system is significantly influenced by its ability to provide relevant and timely
results. Relevance algorithms, which assess the significance of a web page to a
given query, are continually refined to improve accuracy and user satisfaction
(C. D. Manning, 2008).

Moreover, these systems must also navigate the challenges posed by the
dynamic, heterogeneous and rapidly changing nature of web content, the
large scale of data, and the diverse and changing information needs of users
(Lewandowski, 2015).

Thttps:/ /www.worldwidewebsize.com
https:/ /google.com

3https:/ /bing.com

“https:/ /scholar.google.com

14

https://www.worldwidewebsize.com
https://google.com
https://bing.com
https://scholar.google.com

2.2. Web Search Engines

2.2.1. History and Evolution

While the first hypertext systems had been developed in the 1960s and 1970s,
Tim Berners-Lee and his colleagues started the development of today’s famous
global information medium at the international scientific organization CERN
in Geneva, Switzerland in 1989 (C. D. Manning, 2008). Since then, the history
of web search engines is marked by significant milestones and continuous
evolution. The journey began with Archie in 1990, the first search engine
created to index File Transfer Protocol (FTP) archives. This was followed by
the development of web crawlers such as JumpStation and WebCrawler in the
early 1990s, which automated the process of indexing web pages. For instance,
WebCrawler, launched in 1994, was the first to index entire pages, allowing full-
text search capabilities. During the mid-1990s, various search engines such as
Lycos, AltaVista, and Ask Jeeves introduced innovative features that improved
the relevance and user-friendliness of search results (Seymour et al., 2011).

Also developed in the 1990s by Bowman et al. (1995), Harvest offered a
decentralized approach to IR on the WWW by distributing the tasks of collecting,
organizing, and searching documents across multiple nodes. Unlike traditional
methods that centralize all web documents into a single collection, Harvest
uses customizable tools, so-called Gatherers and Brokers, to efficiently gather,
summarize, replicate, distribute, and search documents. In consequence, this
significantly reduced server load and network traffic while directing user
queries to the most relevant sources (Bowman et al., 1995).

Google emerged in 1998 and revolutionized web search with its PageRank
algorithm, which assessed the importance of web pages based on link structures.
This approach significantly improved the relevance of search results, making
Google the dominant search engine by the early 2000s. The introduction of
advanced filters, crawling patterns, and later, machine learning algorithms such
as RankBrain and Bidirectional Encoder Representations from Transformers
(BERT), continued to enhance Google’s search capabilities (Kathuria et al., 2016;
Padaki et al., 2020).

The evolution of web search engines also saw the rise of mobile and personal-
ized search, driven by the emergence of mobile devices in the 2000s. This shift
made search engines context-aware and highly personalized, further improving
user experience. Emerged in the late 2000s and utilizing NLP and knowledge
graphs, semantic search enabled search engines to understand the intent behind
queries and deliver more accurate results (Seymour et al., 2011).

Early search engines often returned irrelevant results, and the rise of auto-
mated crawlers led to issues such as spam. Recent and modern search engines,
while highly sophisticated, face challenges related to privacy, data security,
and the complexity of maintaining and updating algorithms to handle the
large-scale and dynamic nature of the web (Cambazoglu & Baeza-Yates, 2022).

15

2. Background and Related Work

2.2.2. Anatomy

At their core, web search systems are built upon three fundamental processes:
crawling, indexing, and querying (see Figure 2.2). Web crawlers, also known
as spiders, systematically browse the WWW to collect data from web pages
(Brin & Page, 1998). This data is then organized into indexes, massive databases
that use sophisticated data structures to efficiently store and access information
(Page et al., 1999).

The architecture of these systems encompasses several key components to
handle these processes effectively. The web crawler, or spider, navigates through
web pages using a Uniform Resource Locator (URL) Frontier to manage and
queue URLs for visitation. Once web pages are fetched, an HTML parser
processes the pages and extracts links for further crawling and content for
indexing. The deduplication component ensures that only unique content is
indexed, preventing redundancy in the search index (Brin & Page, 1998; C. D.
Manning, 2008).

As the data is collected, the indexer tokenizes the text into individual terms,
applies stemming and lemmatization to normalize the terms, and organizes
them into an inverted index. This inverted index maps terms to their occur-
rences in the document collection, enabling efficient query processing. During
query processing, the system may employ advanced approaches such as query
expansion techniques to enhance the query with related terms, which can
substantially improve the retrieval of relevant documents (C. D. Manning,
2008).

When a user submits a query, the query parser processes it by extracting key
concepts and generating a structured query. The search engine then uses this
structured query to retrieve relevant documents from the inverted index. The
ranking component, which may involve both large-scale and small-scale ranking
algorithms, evaluates the relevance of these documents based on various signals
and factors, such as term frequency, document popularity, and user engagement
metrics (Gudivada et al., 2015; C. D. Manning, 2008).

Eventually, the search results aggregation component compiles the ranked
results and they are presented to the user through a search interface. User
engagement and relevance feedback mechanisms are employed to continuously
refine and improve the search algorithm to ensure that the search engine delivers
the most relevant results over time (Kopliku et al., 2014; C. D. Manning, 2008).

16

2.2. Web Search Engines

1 1 1 1
! Web Crawler ! ! Indexer !
1 1 1 1
1 1 1 1
1 URL Fro 1 1 Tokenizer 1
: I : :
1 1 1 1
World Wide Web ' HTML Parser ! > ' Stemming :
' : ' '
' Deduplication ! ' Lemmatization !
1 1 1 1
1 1 1 1
, Link Extraction . ' ,
1 1 1 1

(Inverted) Index

Aggregation Ranking

1 1] 1
1] 1 1
1 1 1 1
1 1 1 1
y oottt T T 1 1 1 1
ooy SR L :
: : 1 1] 1
1 ' 1 1 1 1
! Query Expansion ! ! !
C—o)— A .
1 N 1 1] 1
S—— o . =
! Extraction ! 1 1
1 —— 1 1
1 1 1 1
I S I I ;
1 1 1 1
1 1 1 1
O U U U R U g] | l_ _______]
FoTTT T T e T |
—P Ranking !

1
1 1
y oottt Tr T User Engagement & > ,
1 Search Results 1 Relevance Feedback T '
: : 1 Large-Scale 1
' ' ! Ranking !
i [oo0 . ! '
: = | :
. : Small-Scal :
\ |lo— mall-Scale !

1

:
1
1

34_‘_ Search Results P
! 1
! 1
1
1
1

Figure 2.2.: Functionality of web search engines based on the crawler-indexer architecture based
on Jones et al. (2004), Kopliku et al. (2014), and Wachsmuth et al. (2017)

17

2. Background and Related Work

2.2.3. Crawling

Textbook IR systems typically handle structured and homogeneous data sources,
such as academic databases, where documents are well-organized and the user
base consists of researchers and professionals who are experienced at forming
precise search queries. However, the web contains unstructured information
from various sources, necessitating more complex indexing and retrieval mech-
anisms (Garg & Sharma, 2012).

A crawler, also known as a spider or bot, is a fundamental component of
web search systems, designed to systematically browse the web and collect
data for indexing. The crawling process begins with a seed URL list, which
the crawler visits to fetch web pages. Upon fetching these pages, the crawler
extracts hyperlinks and adds them to its list of URLs to visit next, ensuring
a comprehensive exploration of the web. This process involves several stages:
downloading web pages, parsing the content, and storing relevant information
in a structured format (Brin & Page, 1998).

Crawlers must handle vast amounts of data and operate efficiently to keep up
with the dynamic nature of the web. They employ techniques such as parallel
processing and distributed crawling, where multiple bots work simultaneously
across different segments of the web to speed up data collection. To avoid
overloading web servers, crawlers adhere to the robots.txt protocol, which
specifies rules and restrictions set by websites on how they should be crawled
(Garg & Sharma, 2012).

One of the key challenges in web crawling is dealing with duplicate content
and ensuring that the index remains free of redundant information. Advanced
algorithms help in detecting and filtering out such duplicates. Additionally,
crawlers prioritize URLs based on various factors, including the freshness
of content and the importance of the page, often determined by relevance
algorithms and metrics such as PageRank (Brin & Page, 1998).

Efficient data storage and management are crucial, as crawlers gather large
volumes of web pages. The collected data is then parsed and indexed, creating
a searchable database that enables quick retrieval of relevant information in
response to user queries. This process is essential for maintaining an up-to-date
and comprehensive index, which forms the backbone of any effective web
search system (Garg & Sharma, 2012).

Figure 2.3 illustrates a typical architecture of a distributed web crawler, fea-
turing multiple processes across different machines. Each process contains
multiple worker threads that continuously cycle through tasks. During each cy-
cle, a worker thread fetches a URL from the Frontier data structure, downloads
the web page, extracts hyperlinks, filters out unwanted or duplicate URLs, and
prioritizes them for future crawling (Olston, Najork, et al., 2010).

18

2.2. Web Search Engines

g

Crawling process 1

Crawling process 2

Y

DNS servers

DNS resolver &
cache

A

names IP addresses

A 4

Web servers

Figure 2.3.: Prototypical distributed web crawler architecture (Olston, Najork, et al., 2010)

HTTP fetcher

HTML pages
v

Link extractor

URLs

URL distributor

Custom URL filter

s URLs
v

Duplicate URL
eliminator

URLs

URL prioritizer

URLs

Frontier

URLs URLs URLs URLs

DNS resolver &
cache

A

A

Host names IP add

h 4

resses

HTTP fetcher

-

HTML pages
v

Link extractor

URLs

URL distributor

Custom URL filter

URLs
A 4

Duplicate URL
eliminator

URLs

URL prioritizer

URLs

Frontier

N

N

P DNS servers

— Web servers

19

2. Background and Related Work

2.2.4. Web Documents Indexing

Once a crawler fetches a web page, the indexer processes its content, extracting
relevant information such as text, metadata, and hyperlinks. This extracted data
is then converted into a structured format, most commonly into an inverted
index. The indexing process itself begins with parsing the HTML content of web
pages to remove unnecessary elements such as scripts and styles, focusing on
the extraction of the main text and important metadata. To ensure uniformity,
the text is then tokenized into individual terms, which are standardized through
processes such as stemming and lemmatization. For instance, different inflected
forms of a word (e.g., “search”, ”"searching”, “searched”) are grouped to a single
root form (e.g., “search”) (Hyusein & Patel, 2003).

To enhance search relevance, indexers also incorporate additional contextual
information, such as the importance of a term based on its location within the
web page (e.g., title of the page, headers) and the anchor text of hyperlinks
that point to the page. This helps in ranking the pages more effectively during
search queries. The index is stored in a highly optimized and compressed
format to ensure quick access and efficient use of storage space. Advanced
indexing algorithms and data structures, such as B-trees, Skip-Lists and hash
tables, are employed to manage the index and facilitate rapid lookup operations
(Malki, 2016).

However, indexing is not limited to HTML content of web pages. For instance,
Google indexes images by analyzing their alt text and surrounding context,
and it also processes structured data using schema.org markup to provide
rich search results for specific types of content such as events and reviews.
Additionally, Google considers various document types in its indexing process,
including Portable Document Format (PDF), Word documents, and PowerPoint
presentations, extracting their text content for indexing similarly to HTML
pages. This extensive indexing capability allows Google to deliver accurate
and diverse search results, responding to the wide-ranging needs of its users
(Adnan & Akbar, 2019).

2.2.5. Web Search Interface

The search interface is an essential component of web search engines, acting
as the main point of interaction between users and the search system. A well-
crafted search interface not only facilitates the retrieval of relevant information
but also enhances the overall user experience by making the process intuitive
and efficient.

2.2.5.1. Key Components

One of the primary elements is the search box, which allows users to input
their queries. Auto-suggestions and spell-checking enhance user experience by

20

2.2. Web Search Engines

predicting queries and correcting errors. Search buttons and controls enable
query submission and refinement. Advanced search options provide filters to
narrow down results by various criteria. Navigation tools such as pagination
and breadcrumbs streamline the process of moving through search results,
while personalization options including customized layouts and personalized
suggestions adapt the search environment to meet individual preferences.
(Wilson et al., 2010).

The representation and visualization of search results in web search engines
are particularly relevant to user interaction and information comprehension. Fox
et al. (2005) outline that effectively displayed results significantly enhance user
satisfaction and engagement. Typically, results are organized in a list format
that includes the title along a snippet of content, and the source URL, which
provides a quick overview of the information relevance. Modern search engines
employ rich snippets and visual previews, such as images and summarizations,
to provide more context and assist in quicker decision-making. In addition,
graph-based visualizations are emerging as they illustrate relationships between
different search outcomes or their relevance over time, thus making the data
more accessible and easily understandable (Hearst, 2009).

Timeline visualizations for search results have been particularly beneficial for
queries related to historical data or progression, enhancing the user experience
by facilitating a more natural exploration of information (Alonso et al., 2009).

2.2.5.2. Enhancements in Modern Search Interfaces

Modern search interfaces incorporate voice search and visual search capabilities.
Voice search enables users to vocalize their queries instead of typing them by
leveraging speech recognition technology, while visual search leverages image
processing technologies. These features increase the number of possibilities
users can interact with search engines (Schalkwyk et al., 2010; Smith & Chang,
1997).

Interactive features such as maps, instant previews and carousels, combined
with a focus on accessibility and intuitive design, are essential for enhancing
the overall user experience (Qvarfordt et al., 2013).

Recent advancements in search interfaces include the integration of LLM and
RAG systems. These technologies enhance the search experience by providing
more accurate and context-aware responses directly within the interface. LLMs
can understand and process complex natural language queries, so the search
interface can return more precise and relevant results, often displayed in a more
conversational and human-like manner. RAG systems combine the generative
capabilities of LLMs with traditional retrieval methods to ensure that the
information provided is both relevant and grounded in factual data. This
integration allows search interfaces to present results that are not only accurate
but also contextually enriched, thereby improving user satisfaction. Additionally,

21

2. Background and Related Work

these systems can dynamically generate answers and summaries, which enhance
the interactivity and responsiveness of the search interface (Zhu et al., 2023).

Query expansion techniques powered by LLMs improve the search interface
by suggesting additional relevant terms or concepts that can assist users refine
their queries and explore related topics effortlessly. This leads to a broader and
more accurate set of search results, yet displayed in an intuitive manner. Word
embeddings further enhance this by understanding and representing semantic
relationships between words. Consequently, this allows for more sophisticated
search result matching and ranking (Bacciu et al., 2024; Kusner et al., 2015).

Moreover, advanced re-ranking algorithms, often enhanced by LLMs, re-
fine the order of search results based on deeper contextual relevance. This
enhances the search interface by making the results more immediately useful
and accessible to users (Xu et al., 2024).

2.2.5.3. Challenges

Web search interfaces face several challenges that can affect their efficacy and
user satisfaction. One major challenge is the diverse structure and functionality
of online resources, which makes consistent and effective searching difficult.
Each resource may require different search techniques, complicating the design
of universal search strategies and interfaces (Stansfield et al., 2016).

Advanced algorithms are needed to ensure that search results align with
user expectations. In addition, privacy concerns require secure data handling to
protect personal information, yet maintaining transparency with users about
how their data is used. Enhancements in technology must balance quick re-
sponse times with the computational demands of processing large data volumes
(Hearst, 2009; Shou et al., 2012).

Moreover, the rapid evolution of web technologies and the continuous expan-
sion of information on the internet demand ongoing updates and improvements
to search interfaces. This requires the development of sophisticated algorithms
and designs that are capable of adapting to evolving user behaviors and expec-
tations, incorporating increasingly personalized and context-sensitive search
features, also addressing the accessibility needs of users with disabilities, par-
ticularly blind users (Naseer et al., 2023).

2.2.6. Query Processing

The query processing component is responsible for interpreting and refining
user queries to enhance search accuracy and relevance. This process involves
parsing and semantic analysis of the query, often employing NLP techniques to
grasp the contextual meanings of words. Techniques such as query expansion
are used to broaden the search by including synonyms or related terms, thereby
enhancing the retrieval effectiveness. Additionally, modern search engines

22

2.2. Web Search Engines

may apply machine learning models to predict and refine query intent based
on previous user interactions and other contextual data. This sophisticated
approach helps in accurately aligning search results with what the user is truly
seeking, improving both user satisfaction and the efficiency of the search engine
(Chen et al., 2021; Rose & Levinson, 2004).

2.2.6.1. Query Expansion

By appending additional, contextually relevant terms to the original search
query, query expansion improves the breadth and precision of search results. It
is especially effective in resolving ambiguities within short queries by drawing
on user-specific data, such as personal information repositories, to personalize
and refine search outputs (Chirita et al., 2007).

Furthermore, utilizing LLMs for query expansion represents a significant
advancement in enhancing search engine performance as they are able to inter-
pret the nuanced intent behind user queries. This allows web search systems
to automatically expand queries with additional relevant terms or phrases.
This process not only enriches the query but also increases the likelihood of
retrieving highly relevant and comprehensive search results. Moreover, the use
of LLMs for query expansion helps in addressing the ambiguity and context-
specific nature of queries, thereby providing a more tailored and insightful
search experience (Wang et al., 2023).

2.2.6.2. Query Rephrasing

Query rephrasing is an approach in web search engines that involves transform-
ing user queries into alternative versions to improve the retrieval of relevant
documents. For instance, this process can be achieved using LLMs, which can
generate multiple paraphrases of the original query. This enables to capture
different expressions of the same intent. By rephrasing queries, search engines
can match a broader range of documents, thereby increasing the likelihood of
retrieving relevant information. This technique enhances the search experience
by addressing issues such as vocabulary mismatch and varying ways users may
phrase their search requests (J. Liu & Mozafari, 2024).

2.2.6.3. Query Contextualization

Query contextualization, for instance, by employing user-embeddings, leverages
a user’s historical search data to enhance the understanding of their current
queries. By creating embeddings that represent a user’s search behavior and
preferences, search engines can more effectively interpret the context of a query
within the user’s broader search session. This approach ensures that search
results are more personalized and relevant, effectively addressing the user’s
specific information needs (Ning et al., 2024).

23

2. Background and Related Work

2.2.7. Matching and Ranking

The ranking of search results in web search systems is determined by evaluating
various on-page and off-page factors. On-page factors include the presence and
frequency of keywords, the structure of content, and the use of metadata such as
title tags and descriptions. Off-page factors, such as the number and quality of
backlinks, indicate the authority and relevance of a web page. User engagement
metrics, such as click-through rates and bounce rates, also play a crucial role
in assessing the relevance of search results. Advanced algorithms incorporate
NLP and machine learning to understand query context and improve accuracy
(Adnan & Akbar, 2019). By combining these elements and employing various
ranking approaches, web search systems aim to deliver the most relevant and
proper results to users.

2.2.7.1. HITS

The Hyperlink-Induced Topic Search (HITS) algorithm, developed by Kleinberg
(1999), is a foundational link analysis algorithm used in web search systems to
identify authoritative web pages. It assigns two scores to each page: an authority
score, which reflects the value of the content, and a hub score, which measures
the quality of its outbound links to other pages. The algorithm operates on a
recursive principle where good hubs link to good authorities, and vice versa,
enhancing the effectiveness of search results by emphasizing both the quality of
content and the structure of the web. (C. D. Manning, 2008; Najork et al., 2007).

2.2.7.2. PageRank

Another popular and widely used algorithm is Google’s PageRank. The PageR-
ank algorithm is a method utilized to rank web pages in search engine results
based on their importance, which is determined by analyzing the quantity and
quality of links pointing to them. Developed by Larry Page and Sergey Brin,
PageRank treats each link to a page as a vote, where votes from more significant
or highly-ranked pages carry more weight. Initially, all pages are assigned an
equal rank, which is then adjusted iteratively based on the link structure of the
web. This process involves the redistribution of rank through outbound links,
with each iteration refining the ranks until they converge (Brin & Page, 1998).

A key component of PageRank is the damping factor, typically set around 0.85,
which simulates the likelihood that a user will continue clicking on links rather
than starting a new search. This factor helps ensure a more even distribution of
rank and prevents certain pages from accumulating excessive influence. The
algorithm effectively captures the idea that important pages are those linked to
by many other important pages (Page et al., 1999).

The computational efficiency of PageRank is achieved through the power
method, an iterative technique that finds the dominant eigenvector of the link

24

2.2. Web Search Engines

matrix, representing the PageRank scores. This method allows for the practical
application of PageRank on the web’s vast and complex structure, enabling it
to scale effectively with the size of the web (Franceschet, 2011).

2.2.7.3. Weighted PageRank

The Weighted PageRank algorithm introduces an enhancement to the traditional
PageRank by incorporating the importance of both the inbound and outbound
links of pages into the ranking process. Unlike the standard PageRank, which
equally distributes the rank value among all outbound links, Weighted PageR-
ank assigns weights to these links based on the popularity of the linked web
pages. This popularity is measured by the number of inlinks and outlinks a
page has, allowing Weighted PageRank to differentiate between links based
on their relevance and importance. Weighted PageRank thus distributes rank
scores not uniformly but proportionately to the significance of each link, aiming
to return more relevant and higher quality pages in response to a user’s query
(Xing & Ghorbani, 2004).

2.2.7.4. Fairness-Aware Ranking

Fairness-Aware ranking frameworks are designed to address and mitigate
algorithmic bias in systems used for ranking individuals, typically in web-scale
search and recommender systems. This is accomplished using specialized re-
ranking algorithms that modify the order of results to meet fairness criteria,
with the goal of achieving a balanced representation among diverse groups.
This not only enhances fairness but also adheres to principles such as equality
of opportunity and demographic parity, tailored to the specific distribution
goals set for the protected attributes. Subsequently, this methodology represents
a significant step towards more ethical web search and Al practices by actively
counteracting bias and promoting diversity (Geyik et al., 2019).

2.2.7.5. Advanced Matching and Ranking Techniques

Improving the relevance and accuracy of search results in web search engines
relies on modern sophisticated ranking algorithms. Learning to Rank (LTR)
models utilize machine learning techniques to rank search results based on
their predicted relevance. These models are trained on extensive datasets to
optimize performance. Neural ranking models enhance this process by ap-
plying deep learning to understand and evaluate the semantic relevance of
documents, which offers a more nuanced and precise ranking. Furthermore,
these algorithms adapt rankings in real-time by incorporating user feedback
and engagement metrics. Additionally, leveraging embeddings significantly
enhance the semantic understanding of queries and documents. By capturing
and representing semantic relationships between terms, embeddings improve

25

2. Background and Related Work

the matching process, resulting in more accurate and contextually relevant
search rankings (Guo et al., 2020; T.-Y. Liu et al., 2009).

2.2.8. Types of Web Search Engines

Web search engines come in various types, each designed to meet specific
requirements or to enhance particular types of IR.

2.2.8.1. General Search Engine

General search engines are the most widespread type of search platforms,
designed to address a broad spectrum of queries by indexing extensive amounts
of diverse and unstructured content from the internet. The strength of general
search engines is their ability to quickly deliver extensive results across various
types of content, including news articles, academic papers, multimedia, and
social media posts. However, they can sometimes prioritize popular or trending
content, which may not always align with more specific or academic research
needs (Chau et al., 2005; Shu et al., 2017).

2.2.8.2. Vertical Search Engine

In contrast to general search engines, specialized search systems, called vertical
search engines, are platforms that focus on a specific segment of online content,
such as academic literature, images, or news. These search engines are designed
to provide more precise and contextually relevant results within a specific
domain. They utilize appropriate algorithms to deeply index and understand
the specific types of data they handle. Vertical search engines enhance user
search experiences by filtering out unrelated information and providing quicker
and more accurate access to the needed resources within a particular field
(Bostoen, 2018).

2.2.8.3. Meta Search Engine

Meta search engines are a unique type of search tool that aggregates results
from multiple other search engines without conducting their own crawling and
indexing. By sending a user’s query to several other engines simultaneously and
compiling the results, meta search engines provide a comprehensive overview
of available information across various platforms. This approach can offer a
broader search coverage and help users discover a diverse range of sources
and content types more quickly than using a single search engine. However,
the quality of meta search results is largely influenced by the choice of search
engines used for querying. In addition, there may be challenges related to
duplicate results and the integration of results from different sources (Meng
et al., 2002).

26

2.3. Related Work

2.2.8.4. Private Search Engine

With a focus on preserving privacy and ensuring security, private search engines
do not track personal data, such as search history or location, which contrasts
with many search engines that often collect extensive user data for advertising
and personalization purposes. These engines, such as DuckDuckGo3, StartPage®
and Brave Search’, offer anonymous browsing experiences and do not use
tracking cookies, ensuring that users’ search activities remain confidential.
Moreover, private search engines typically utilize encryption techniques to
secure search queries and prevent unauthorized data access, aiming to provide
a secure and private search environment for users concerned about digital
privacy and data security. Such features are crucial in maintaining user trust
and providing safe browsing experiences in an era where data privacy is a
significant concern (Castella-Roca et al., 2009).

2.2.8.5. Enterprise Search Engine

Designed for use within corporations, enterprise search engines index and
retrieve content from private repositories within a corporate environment.
These search engines are tailored to handle the specific needs of businesses,
allowing employees or members to quickly find internal documents, data, and
other resources essential for their work. Unlike public web search engines,
enterprise search engines focus on indexing private databases, intranets, and
other internal data sources, ensuring that sensitive information remains secure
and accessible only to authorized users (Hawking, 2004).

2.2.8.6. Hybrid Search Engine

Hybrid or federated search engines integrate features from both traditional and
innovative search technologies to enhance search capabilities and performance.
By blending automated indexing with curated content or user feedback, hybrid
search engines can effectively address the diverse needs of users. For example,
a hybrid engine might incorporate both general web search and deeper, topic-
specific searching capabilities (Ding et al., 2012).

2.3. Related Work

In this section, the infrastructure and its single components of the OpenWeb-
Search.eu project are explored. In addition, existing modular web search engine
frameworks are discussed and compared.

Shttps:/ /duckduckgo.com
®https:/ /www.startpage.com
7https:/ /search.brave.com

27

https://duckduckgo.com
https://www.startpage.com
https://search.brave.com

2. Background and Related Work

Years
Search engine active Alexarank Country Ind. Scale User data Funding Transparency
MetaGer 1996-today 64,210 DE No Uses Bing 4 Scopia None Ads, Open source
donations
Google 1997-today 1 USA Yes Own datacenters Own traffic Ads Closed
Yandex 1997-today 62 RU Yes Own datacenters Own traffic Ads Closed
Startpage.com 1998-today 1895 NL No Uses Google None Ads Closed
Naver 1999-today KR Yes Own datacenters Own traffic Ads Closed
Baidu 2000-today 5 CN Yes Own datacenters Own traffic Ads Closed
Gigablast 2002-today 19,819 USA Yes Own datacenters None B2B, donations Open source
YaCy 2003-today Yes Decentralized None Donations Open source
Exalead 2004-today 47,873 FR Yes Own datacenters Own traffic B2B Closed
Mojeek 2004-today 414,308 UK Yes Own datacenters ~ None B2B Closed
Wikia Search ~ 2007-2009 USA Yes Community- User contribution Ads Open source
moderated
DuckDuckGo 2008-today 182 USA Hybrid Uses Yahoo, Bing None Ads Open source
Bing 2009-today 38 USA Yes Own datacenters Own traffic Ads Closed
Ecosia 2009-today 471 DE No Uses Bing None Ads Closed
Qwant 2013-today 7408 FR Hybrid Uses Bing + own None Ads Closed
index
Cligz 2015-2020 52,948 DE Yes Own index Human web Ads Mostly closed
Brave Search ~ 2021-today
Neeva 2021-today
You.com 2021-today USA No Uses Bing Hybrid Venture capital Closed

Figure 2.4.: Comparison of established web search engines (Granitzer et al., 2024)

2.3.1. OpenWebSearch.eu

As the internet continues to grow, both in size and in importance to daily
life, the role of web search engines becomes increasingly critical. Therefore, a
large number of established web search engines exist (see Figure 2.4). Most
of them operate with indexes that are not public or transparent, concealing
the mechanisms and data that drive their search results. Furthermore, many
web search engines do not maintain their own proprietary indexes but instead
access indexes provided by third-party providers. This approach can impact
the autonomy and customization of the search services they offer, as they rely
on external sources for key components of their search process (Granitzer et al.,
2024).

This dependency raises questions about the control and integrity of search
results, underscoring the need for more open and transparent indexing practices
in the field of web search. The OpenWebSearch.eu project aims to address these
issues by providing a more accountable and understandable search ecosystem
with the OWI as central component.

2.3.1.1. Open Web Index

In Figure 2.5, Granitzer et al. (2024) describe the creation pipeline of the OWI
within the Open Web Search and Analysis Infrastructure (OWSAI) by the
OpenWebSearch.eu project. It involves a structured pipeline designed to foster

28

2.3. Related Work

The Web Index Creation The Open Web Index Verticals & Applications

i hm,mLA,

‘ ‘Enrichment EF
Pages

| |Contributor | T
] Index
Creation
Legal & License Information t
J

Content Usage Information / Transparency

SearchTerms

User

Webmaster
Content Owner

Figure 2.5.: Fundamental concept of the Open Web Index, serving as the foundation for an
open, scalable, transparent, and legally compliant web search ecosystem. Different
colors represent various segments of the web and the contributions from multiple
third parties in constructing a web index. (Granitzer et al., 2024)

an open and collaborative web search ecosystem. This pipeline emphasizes
principles such as open data access, adherence to legal standards, and joint
technology development, ensuring the index is both transparent and scalable.
Central to this is the construction of the OWI through coordinated web crawling,
advanced data processing, and indexing across decentralized computing centers.
This approach not only enhances the accessibility and utility of the index but
also supports the creation of various specialized search engines as well as
innovative web data products, such as language models and knowledge graphs
(Granitzer et al., 2024).

2.3.1.2. Web Documents Crawling

The OpenWebSearch.eu project employs an innovative web crawling approach
to build its OWI. Dinzinger et al. (2024) highlight that this crawling process is
designed to be collaborative and distributed across multiple computing sites
in Europe, enhancing both the scale and the efficiency of data collection. A
specialized web crawler called OWLer, developed specifically for this project,
is central to this operation. It is based on the StormCrawler (Nioche, 2019)
framework but has been extensively modified to meet the specific needs of
the OpenWebSearch.eu project. For instance, the modifications include the
integration of advanced topic classification functionalities to enable more tar-
geted crawling. The OWLer operates by systematically downloading web pages,
which are then processed and stored in Web ARChive (WARC) file format. This
approach ensures that they are preserved with comprehensive metadata. This
crawler is distinctive because it employs a decentralized architecture, which
allows multiple crawler nodes to work simultaneously in different locations,
coordinated through a central component known as the URL Frontier. With this
setup, the OWLer can efficiently manage and distribute URLs based on thematic
or geographic criteria, thus optimizing the crawling process for relevance and

29

2. Background and Related Work

efficiency (Dinzinger et al., 2024).

The URL Frontier service acts as a central repository that maintains known
URLs and assigns new ones to the appropriate crawler nodes based on their
specialization. This system ensures that each part of the crawler network can
focus on its specific area of interest, whether that be a particular topic or
region, thus maximizing the relevance of the collected data. The flexibility and
scalability of this system are crucial to its ability to handle the large-scale and
unstructured nature of web content (Dinzinger et al., 2024).

Furthermore, the OWLer’s ability to classify content at the point of crawling
allows for the immediate categorization of data, which significantly enhances
the efficiency of the indexing process. By integrating a machine learning model
directly into the crawler, the OWLer can make intelligent decisions about the
relevance of content in real-time. In doing so, the overhead associated with
processing and storing irrelevant data can be reduced (Dinzinger et al., 2024).

The crawling and archiving as WARC files happens on a daily basis, which
enables the provision of fresh and incremental index updates (Hendriksen et al.,
2024).

The OpenWebSearch.eu infrastructure introduces crawling on demand, a ser-
vice created to reduce the substantial costs and resources usually associated
with web crawling. This feature allows authorized users to initiate a customized
crawling process by submitting a selected list of initial URLs. Subsequently,
specifically configured for this task, a containerized crawl cluster is triggered.
The system checks if a URL has already been crawled to avoid redundancy,
thus optimizing resource use. Users are ensured access to the most current
and relevant data through daily updates of WARC files. Moreover, an index on
demand feature can clean, enrich, and convert the crawled data into index files
ready for immediate use in web search engines (Hendriksen et al., 2024).

Overall, Dinzinger et al. (2024) and Hendriksen et al. (2024) outline that the
crawling strategy employed by the OpenWebSearch.eu project represents a
significant advancement in web crawling technology, with its distributed and
customizable approach building an open and accessible web index.

2.3.1.3. Data Preprocessing

The preprocessing step in the OWI generation pipeline is essential for preparing
data for indexing and further analysis and use. After daily web crawling activi-
ties, WARC files generated are processed to extract web page-level metadata
and cleaned text. This preprocessing occurs in daily batch jobs across various
data centers, utilizing Apache Spark® on high-performance computing (HPC)
clusters set up via the Magpie? script collection. The extracted data, including
plain text and metadata from HTML, WARC, and Hypertext Transfer Protocol

8https:/ /spark.apache.org
https:/ / github.com/LLNL/magpie

30

https://spark.apache.org
https://github.com/LLNL/magpie

2.3. Related Work

(HTTP) headers, is then stored in Apache Parquet® file format (Hendriksen
et al., 2024).

Metadata such as the language of the document and domain labels, which are
based on Curlie’ community data, are extracted to facilitate the partitioning
of index files. This allows for the efficient organization and retrieval of data
tailored to specific linguistic or domain-based queries (Granitzer et al., 2024;
Hendriksen et al., 2024).

The preprocessing pipeline’s modular architecture supports the integration of
third-party content analysis modules. This enables the expansion of metadata
extraction capabilities. Using the TIRA Integrated Research Architecture (TIRA)
developed by Gollub et al. (2012) and Potthast et al. (2019), these modules
are evaluated, which ensures quality and reproducibility by running software
in a controlled environment. This evaluation process leverages task-specific
benchmark data which encourages the development of strong content analysis
tools that comply with stringent research standards. As part of continuous im-
provement, efforts are made to increase the diversity and number of benchmark
datasets and modules, thereby advancing the quality and comprehensiveness
of the OWI (Hendriksen et al., 2024).

2.3.1.4. Indexing and Representation

The indexing task of the OWI process begins with the cleaned text obtained from
the preprocessing pipeline, which is then transformed into a comprehensive
full-text index. Using this full-text index, it is partitioned into distinct index
shards based on various metadata values such as top-level range, language, and
specific topics from Curlie. Each shard, stored as a separate Common Index
File Format (CIFF) index, can be downloaded alongside Apache Parquet files
that include the pertinent metadata and cleaned text. With this, custom search
applications for public, commercial, or personal needs can be created. Following
the completion of preprocessing for the day’s content, the indexing operation
is conducted daily as an Apache Spark batch job, with Magpie facilitating the
setup of the Apache Spark cluster within a HPC environment. This systematic
approach ensures the index is continuously updated and particularly accessible
for creating vertical search applications (Hendriksen et al., 2024).

Within the OWI, CIFF serves as a standardized method for search engines to
share and access index structures. Lin et al. (2020) introduced CIFF to enhance
interoperability between different search engines by allowing them to export
their inverted indexes into a unified format, which can then be imported and
utilized by other systems. This standardization is achieved through the use of
Protocol Buffers, which offer a platform-agnostic, language-neutral approach
to serializing structured data. Therefore, the index data remains consistent

ohttps:/ /parquet.apache.org
TThttps:/ /curlie.org

31

https://parquet.apache.org
https://curlie.org

2. Background and Related Work

and accessible across different platforms and search engine implementations.
The use of CIFF allows for the efficient exchange of index data, subsequently
facilitating more accurate and fair comparisons between different search systems
(Lin et al., 2020).

One possibility to consume CIFF files is provided by the application lucene-
ciff*, which can import a CIFF index in Apache Lucene'3. Lucene is an open-
source search library widely used for full-text indexing and search capabilities.
It provides comprehensive features for text analysis, various query mechanisms,
and sophisticated indexing technologies. It supports efficient high-volume text
retrieval and enables complex search functionalities crucial for modern search
engines (Biatecki et al., 2012).

Since the CIFF files only store the inverted index but no metadata, Apache
Parquet files are used that are associated to a specific index partition. The
columnar storage of the open-source format Parquet is ideal for big data
processing frameworks. It is particularly well-suited for complex data processing
tasks involving large-scale querying and analysis because it enables efficient
data compression and encoding schemes. Parquet files provide excellent support
for read-heavy operations, allowing for highly efficient data retrieval by storing
data in a way that allows for selective reading of specific columns without
needing to process entire rows. This file format is widely used in data analysis
ecosystems due to its compatibility with different data processing tools, for
instance, Apache Hadoop'4, Apache Spark, and data analysis libraries in Python
(Vohra & Vohra, 2016).

One effective data processing tool that seamlessly integrates with Apache
Parquet for enhanced data analysis is DuckDB. It is an embeddable analytical
database that is specifically designed for efficient analytical SQL query exe-
cution within host processes. DuckDB is particularly beneficial for interactive
data analysis and edge computing scenarios where local data processing is
essential. Unlike traditional client-server database systems, DuckDB operates
directly within the application’s process, avoiding overhead and increasing data
processing speed (Raasveldt & Miihleisen, 2019).

2.3.1.5. OWSE-Hub

The Open Web Search Engine Hub (OWSE-Hub), conceptualized as part of the
OpenWebSearch.eu project, is intended to function similarly to the Docker Hub
as a distributed information system, but tailored specifically for search engines.
It aims to facilitate the easy creation and customization of search engines by
providing a platform where users can access prebuilt indexes and search engine
stacks. Similar to pulling container images from Docker Hub, users can pull

https:/ /github.com/informagi/lucene-ciff
B3https:/ /lucene.apache.org
“https:/ /hadoop.apache.org

32

https://github.com/informagi/lucene-ciff
https://lucene.apache.org
https://hadoop.apache.org

2.3. Related Work

i | /i\ : owse pu“ web-search
: owse P““ compomy)(/?;[es
i : owse pu“ compamyz/mail
' : owse build my-enterprise-search

i owse push mt/-enterprise-seamh

77
e

i e

A

aL WL

<< -
<---p FILES.s%g o R 4
: FILES.GFf

N £
3, &
B
SN T
"
[
\
JEPL A

Federated au

r
|
(72>

<
T g 1
i

©----- >>[Ar-eNTERPRISE-SEARCH pec |

i [il H
E IY]] Search Ens,‘me_

Figure 2.6.: Overview of the OWSE-Hub architecture allowing specifications for declarative
search engines (Granitzer et al., 2024)

search engine configurations from the OWSE-Hub. Additionally, they can build
their own customized search engines using these configurations, as well as
then push their custom solutions back to the hub so that the configurations are
accessible by others, as illustrated in Figure 2.6 (Hendriksen et al., 2024).

This system supports the creation of diverse search applications, ranging from
personal to commercial use, and accommodates both centralized and federated
search setups. By emulating the functionality of Docker Hub within the context
of search engine development, the OWSE-Hub simplifies the process of search
engine customization and deployment. Therefore, this approach makes it easier
for developers and organizations to utilize specific segments of the OWI for
various applications (Granitzer et al., 2024, Hendriksen et al., 2024).

2.3.2. IR and Web Search Engine Frameworks

Existing frameworks for IR and web search engines are available that offer
interactive, configurable environments for specific needs. These frameworks
allow users to engage directly with the system, customizing and extending
functionalities through modular components to optimize search processes and
outcomes. Therefore, this subsection explores and compares selected systems
and frameworks that are central to the field of modular or customizable IR and
web search technologies.

2.3.2.1. Harvest

Harvest is an distributed information discovery and retrieval system developed
in the 1990s designed to manage the increasing volume and diversity of internet
data. It features customizable tools for gathering, replicating, and searching
documents, which significantly reduce server load and network traffic. Addi-
tionally, Harvest’s architecture supports the use of partial indexes through its
flexible and modular components, called Gatherers and Brokers. These partial
indexes can then be managed and queried by Brokers, which can aggregate
information from multiple Gatherers and other Brokers (Bowman et al., 1995).

33

2. Background and Related Work

Replication
Manager

/'/// - \7\7\7\\\\
_— Storage Manager /(Broker >
and Indexer / -
/
, SOIF
/

Query
Manager

Gatherer

object & -_

2. retrieve —

access
methods

Provider

Figure 2.7.: Decentralized architecture of Harvest for efficient indexing and data access (Bow-
man et al., 1995)

As depicted in Figure 2.7, the architecture of the Harvest system is designed
to decentralize access to crawled data and facilitate common indexing through
a modular and distributed approach. The system includes Gatherers, which
collect and update indexing information periodically from various sources. The
information is then processed and indexed by Brokers, which provide an indexed
query interface and support incremental updates. The use of the Summary
Object Interchange Format (SOIF) allows efficient sharing and integration of
indexing information across different nodes. This architecture enables the
distributed management of data and ensures that the indexed data is accessible
and efficiently searchable across the network.

2.3.2.2. Apache Solr

Apache Solr'5, built on Apache Lucene, is a powerful open-source search plat-
form that provides flexible and reliable search functionality. Offering a range
of features including full-text search, faceted search, hit highlighting, dynamic
clustering, and advanced document handling, it is designed to handle diverse
search applications across websites. Solr supports complex configuration and
customization, enabling it to meet a wide range of enterprise search require-
ments. Its architecture ensures high scalability and supports both distributed
search and replicating indexes (Shahi, 2016).

In particular, Solr is capable of indexing a variety of data types, including

'5https:/ /solr.apache.org

34

https://solr.apache.org

2.3. Related Work

HTML content from web pages. The file schema.xml defines the schema of
the documents that Solr will handle. It specifies the fields and field types
for the documents, so Solr knows how to index and process incoming data.
This schema configuration allows for customization of how fields are indexed,
such as setting fields to be searchable, stored, tokenized, or used for sorting.
Essentially, schema . xml serves as a blueprint for how Solr interacts with the
data (Shahi, 2016).

2.3.2.3. Terrier

The Terrier IR platform, developed at the University of Glasgow, is an IR soft-
ware specifically designed for research and educational purposes. It is based
on the programming language Java and offers a comprehensive framework
for quickly developing large-scale retrieval applications. Terrier is highly mod-
ular, which allows researchers to experiment with different components and
algorithms. This makes it particularly valuable for academic research in IR.
Moreover, Terrier’s architecture supports a variety of weighting models and
provides tools for performance evaluation. Additionally, PyTerrier*® is an open-
source Python IR platform that is based on Terrier and provides the declarative
formulation of search engines (Ounis et al., 2005).

Terrier is capable of indexing web pages and retrieving information from
them. It includes functionalities for web crawling and processing HTML content.
With this, the platform can gather and index data from web pages effectively.
This makes Terrier suitable for web search applications, where it can be used to
build and manage searchable indexes of web content.

2.3.2.4. Infret

Focusing on the educational perspective, Infret is an interactive e-learning plat-
form specifically designed for teaching IR concepts through hands-on coding
exercises. Bobi¢ et al. (2020) highlight that this tool allows students to engage
directly with IR theories by programming solutions, which are then evaluated
within the system. Infret’s architecture integrates a user-friendly interface that
manages the complexities of IR tasks while providing an instrumental learning
environment. The platform’s design effectively bridges the gap between theo-
retical knowledge and practical application and supports students in computer
science and information technology courses (Bobi¢ et al., 2021).

2.3.2.5. Elasticsearch

Elasticsearch, built on Apache Lucene, is a prominent search and analytics
engine noted for its rapid indexing and retrieval capabilities which are essential

Ohttps:/ / github.com/terrier-org /pyterrier

35

https://github.com/terrier-org/pyterrier

2. Background and Related Work

for handling large-scale web data. It supports the creation of custom indices,
making it highly suitable for indexing web pages and facilitating complex
search functionalities across diverse digital content. A notable advantage of
Elasticsearch is its ability to perform real-time analysis and scalable search-
ing. However, challenges such as managing large data volumes and ensuring
consistency during data indexing require robust system configuration and
maintenance to leverage its full potential effectively (Kononenko et al., 2014).

2.3.2.6. OpenSearch

Established after Elastic moved Elasticsearch from an Apache 2.0 license to a
Server Side Public License (SSPL), OpenSearch is forked from Elasticsearch and
is an open-source search and analytics suite. OpenSearch includes capabilities
for full-text search, distributed search, and analytics, similar to Elasticsearch. It
allows users to maintain compatibility with existing Elasticsearch application
programming interfaces (APIs) and manage large volumes of data effectively.
OpenSearch aims to differentiate by fostering a broader open-source community
and ensuring long-term flexibility and openness in its licensing (Papadopoulos
et al., 2024).

2.3.2.7. Sphinx

Sphinx, an open-source full-text search server, offers fast, scalable, and rele-
vant search functionalities across various platforms. It supports indexing of
custom data sources, which includes web pages, and allows fine-grained con-
trol over indexing and querying processes. Sphinx is particularly noted for its
high-performance capabilities in handling large datasets and complex queries
efficiently. However, it demands considerable technical expertise for configu-
ration and optimization, and it might offer fewer ready-to-use web-specific
features compared to other search engines (Ali, 2011).

2.3.2.8. Indri

Designed for efficient large-scale IR, Indri is a search engine that integrates
language modeling and inference networks. This system facilitates complex
query constructions that integrate various types of evidence from document
attributes such as text, structure, and metadata. Additionally, Indri’s modular
architecture accommodates various data types and retrieval strategies, which
enhances its adaptability and effectiveness across diverse information retrieval
applications (Strohman et al., 2005).

36

2.3. Related Work

2.3.2.9. Google Programmable Search Engine

Particularly relevant to vertical search, Google’s Programmable Search Engine'”
allows users to create a custom search engine tailored specifically to their
websites or specified pages. This tool enables the search through web pages from
own selected domains and a direct integration into personal or organizational
websites. A key advantage is the ability to harness Google’s powerful search
algorithms, providing accurate and fast search results with customization
options such as prioritizing or excluding specific content. Furthermore, the tool
offers an API known as the Custom Search JavaScript Object Notation (JSON)
API. With this API, developers can programmatically request search results in
JSON format by utilizing the same capabilities as the Programmable Search
Engine interface. However, the scope of indexing is limited to the domains
specified by the user, and it relies on Google’s infrastructure, which may limit
some aspects of search customization and data privacy (Shamaeva & Galley,
2021).

2.3.2.10. Spinque

Spinque® is a versatile proprietary search engine design tool that allows users
to tailor search solutions specifically to their needs. By integrating data from
various sources into a unified knowledge graph, this tool enables users to create
customized search functionalities using its visual editor. This platform supports
the deployment of these search solutions via a web API, so that the solution is
easily and broadly accessible. Spinque is particularly useful for professionals
and organizations aiming to optimize their search processes with precision and
efficiency.

2.3.2.11. Analysis and Discussion

In comparing diverse search engine frameworks, builder and tools, each has
unique features tailored to specific needs. Apache Solr offers scalability and
robust data handling, ideal for enterprise applications, while Terrier provides a
flexible platform for academic research with its modular design. Elasticsearch
and its fork OpenSearch excel in rapid indexing and real-time analytics, with
OpenSearch further focusing on community-driven development. Google’s
Programmable Search Engine allows for customized search within specific do-
mains but may restrict customization due to reliance on Google’s infrastructure.
Sphinx, although powerful for complex queries, requires substantial technical
expertise. Focusing on IR methods, Indri combines language modeling with
inference networks for complex queries. Similar to Google’s Programmable

7https:/ /programmablesearchengine.google.com
Bhttps:/ /spinque.com

37

https://programmablesearchengine.google.com
https://spinque.com

2. Background and Related Work

Search Engine, Spinque offers visual configuration to tailor search solutions,
whereas Spinque is also able to integrate varied data sources into a knowledge
graph. Table 2.1 compares the findings of the exploration of these tools by
highlighting their features related to configuration, customization and modular-
ization, as well as their key advantages, key disadvantages and the required
technical expertise.

38

2.3. Related Work

Tool Features Advantages, | Dis- Technical
Concepts & | advantages | Expertise
Ideas & Problems | Required
Harvest Distributed re- | Flexible con-| Complex con- | Moderate
trieval, customiz- | figuration, figuration, no
able indexing modular visual inter-
components | face
Apache High customiza- | Visual editor | Requires Moderate
Solr tion with schema | for index | rather com-
configuration, management | plex configu-
modular plugins ration
Terrier Highly modular, | Modular Complex High
supports various | architecture, | configura-
IR models and | research- tion, limited
components oriented visual tools
Infret Moderately cus- | Visually facil- | Limited to | Low
tomizable for ed- | itates practi- | educational
ucational settings | cal and learn- | use
ing
Elastic- API-driven Easy setup | Requires Moderate
search customiza- of tields | solid system
tion, plugins mapping maintenance
Open- Distributed Open-source | Complexity | Moderate
Search search, toolkit for | community, | of managing
components flexible li- | architecture
censing
Sphinx Fine-grained con- | Faceted Complex High
trol over index- | search, configura-
ing and querying | real-time tion, limited
indexing scalability
Indri Modular archi- | Supports Complex con- | Moderate
tecture, supports | complex tiguration
complex query | queries, and cus-
constructs adaptable tomization
Google Customization Customizable | Relies on | Low
Pro- to specified do-| search ex-| Google’s in-
grammable| mains, offers API | perience, frastructure
Search En- | for JSON results | enhanced
gine precision
Spinque | Highly customiz- | Highly cus- | Proprietary | Moderate
able with visual | tomizable tool

editor, integrates
various data

search pro-
cesses

Table 2.1.: Comparison of selected IR and web search frameworks

39

2. Background and Related Work

2.4. Summary

This chapter introduced important concepts related to this thesis and offered a
detailed background. It began with an exploration of IR and an explanation of
associated essential processes such as indexing, query processing, and ranking.
Additionally, various IR models, including the Boolean model, Vector Space
model, and Probabilistic model, were discussed to illustrate their roles in
enhancing the efficiency and effectiveness of IR systems. Understanding these
foundational concepts is crucial as they underpin the development of more
advanced search technologies.

Transitioning to web search engines, the chapter traced the history and evolu-
tion of these technologies, from early web crawlers to sophisticated algorithms
such as Google’s PageRank. Fundamental components such as crawling, in-
dexing, and querying were examined, along with modern advancements such
as Al integration to improve query understanding and result accuracy. The
ongoing development of search engine technologies was emphasized, particu-
larly highlighting the increasing ability to process complex queries and large
datasets by demonstrating the increasing sophistication of these systems.

The chapter then delved into the technical details of the OpenWebSearch.eu
project, highlighting its aim to create a more open, transparent, and collaborative
web search ecosystem. This initiative involves the creation of the OWI through
coordinated web crawling, data processing, and decentralized indexing. By
providing prebuilt indexes and search engine stacks, the project seeks to address
transparency issues in current web search engines, with the goal to provide
greater accessibility and fairness in the digital information landscape. The
project’s architecture and potential impact on web data indexing and search
were discussed, emphasizing its innovative approach.

Finally, the chapter explored and compared existing modular web search
engine frameworks, including Apache Solr, Terrier, Elasticsearch, and others.
These tools offer varying levels of customization and modularization, which
enable users to tailor search functionalities towards vertical search engines
to specific needs. In particular, Terrier, Google Programmable Search Engine
and Spinque were highlighted for their flexibility and possibility for config-
uration and modularization. This comparison (see Table 2.1) summarizes the
understanding of the strengths, limitations and room for improvements of these
tools.

In conclusion, this chapter provided a thorough background on the fun-
damental concepts and advancements in IR and web search technologies. It
explored the evolution and increasing sophistication of search engines, dis-
cussed the technical details of the OpenWebSearch.eu project, and compared
various modular search engine platforms. This comprehensive overview estab-
lishes a solid foundation for understanding the development and selection of
search technologies for diverse applications.

40

3. Requirements and Design

This chapter transitions from the theoretical foundations of IR systems and
web search engines, and the technical background of the OpenWebSearch.eu
project as well as a comparative analysis of existing search technologies to the
practical application of these insights in developing a new system. It starts by
outlining the motivation for the research and the approach taken to integrate the
identified requirements into the design process in Section 3.1. The chapter then
outlines the specific requirements for the system in Section 3.2, followed by a
detailed conceptual architecture that highlights the abstract design decisions for
each component as described in Section 3.3. Finally, it addresses the rationale
behind these decisions in Section 3.4, as well as the limitations relevant to
developing the system detailed in Section 3.5.

3.1. Motivation

As outlined by Granitzer et al. (2024), given the immense resources required
for crawling and indexing the entire web, only few entities besides Google,
Microsoft’s Bing', and long-established regional search engines such as Baidu®
and Yandex3 maintain their own index infrastructure and ranking algorithms.
The indexes of these big players can be accessed, but the process behind their
creation often lacks transparency and offers no control over their formation.
Additionally, reliance on these indexes means bearing associated access costs
and having limited insights into the underlying data and ranking methodologies.
The goal of this thesis is to support the development of web search applications
based on OWI partitions by introducing the MOSAIC.

Nussbaumer et al. (2023) showed through a prototype application that indexes
generated by the OpenWebSearch.eu index generation pipeline can be used
for searching and retrieving information. However, this application stored all
index data in memory, thus problems occurred as soon as the index partitions
became too large. Therefore, the primary motivation is to demonstrate the
effective utilization of OWI partitions in search engines as they provide a
technological foundation for custom applications while maintaining a modular
and configurable framework.

Thttps:/ /www.bing.com
https:/ /www.baidu.com
3https:/ /yandex.com

41

https://www.bing.com
https://www.baidu.com
https://yandex.com

3. Requirements and Design

Bevendorff et al. (2024) found that search engines such as Google, Bing, and
DuckDuckGo are significantly impacted by Search Engine Optimization (SEO)
spam, especially in product review queries, with persistent low-quality, affiliate-
marketed content despite periodic algorithm updates to combat it. Therefore,
developing independent web search engines becomes essential to ensure greater
control over indexing and improve the relevancy and effectiveness of search
results. In addition, the integration of index partitions and the creation of
a search engine like this should be designed to require minimal technical
expertise while still offering extensive customization and configuration options.
Essentially, the framework presented in this thesis should provide the possibility
to support developers creating a configured and personalized web search engine
utilizing the OWI, while preserving independence and control over the entire
process. Moreover, the system should incorporate important key features of
existing solutions while addressing and bridging the gaps and problems present
in these tools.

3.2. Analysis of Requirements

The system’s requirements of MOSAIC were classified as either functional or
non-functional requirements based on the distinctions made by Sommerville
(2011). While functional requirements specify the core tasks and services the
system must provide, non-functional requirements describe the overall proper-
ties and constraints of these tasks. The requirements were identified, analyzed,
and derived from a review of the background literature and the related work to
ensure they align with established theories and practices.

3.2.1. Functional Requirements

1. Search Functionality: The system is required to offer comprehensive
search functionality that enables users to perform search queries through
API endpoints. Users can perform searches by entering keywords or
phrases, which the system then processes. The system should deliver
search results in both JSON and Extensible Markup Language (XML)
formats which is essential for meeting diverse user needs and providing
relevant data in the preferred format. In addition, the system must offer
the option to paginate search results.

2. Faceted Search: The system must include the functionality of a faceted
search so that users can refine and filter their search results based on cer-
tain attributes. Additionally, the filtering capabilities should be managed
via customizable modules.

3. Index Management: The system must support OWI data created by the
index generation pipeline. In addition, the support of index partitions

42

3.2. Analysis of Requirements

created by the local indexing pipeline4 is required. In particular, the system
should support the import of an arbitrary number of index partitions. This
includes the import of CIFF files into Apache Lucene indexes together
with the associated metadata as Apache Parquet files. Additionally, it
is required that the search can be performed in either one or multiple
index partitions simultaneously. Updating indexes should be achievable
by replacing outdated CIFF files and their corresponding Parquet files
with updated versions.

4. Metadata Enrichment: Metadata enrichment capabilities are essential for
enhancing the system’s search results. While CIFF files store the terms
and their occurrences in web documents for matching and initial ranking,
metadata enriches this information by adding contextual details such as
the title of the web page, URL, full text, and more. This enrichment allows
users to see more comprehensive information when viewing search results
to improve the relevance and usability of the retrieved data.

5. Module Management: The system should support seamless module man-
agement, which allows for the easy incorporation of various metadata
tields into search results. Specifying fields for both display and filtering
should be straightforward to enable customization of search results based
on different metadata. This also includes user-defined fields added at a
later date that are not part of the fixed metadata schema>. Furthermore,
integrating additional components, such as custom search query analyz-
ers, should be uncomplicated to ensure the system remains flexible and
adaptable to diverse user needs.

6. Snippet Creation: The system must support the creation of text snippets
to provide concise and relevant portions of documents in search results.
These snippets should be generated dynamically based on the search
query to highlight the relevant information. Considering performance,
the user should be able to specify whether the full plain text of a web
document or only a part of it is used for the creation of the snippet.

7. Full-Text Retrieval: Functionality for accessing the full plain text of a
document within the index on demand is essential to allow that the
complete text information can be retrieved when needed.

8. Setup and Execution: The setup and execution of the system must be
streamlined. It has to incorporate steps for compilation, index manage-
ment, and other necessary configurations. To facilitate system execution,
a command line interface (CLI) should be provided with various options,
enabling users to specify parameters such as index paths, configuration
files, and server ports. This ensures that a customized search engine can be

+https:/ / openwebsearcheu-public.pages.it4i.eu/ows-the-book/content/howto/
local_index.html

Shttps:/ /opencode.it4i.eu/openwebsearcheu-public/preprocessing-pipeline#
fixed-columns

43

https://openwebsearcheu-public.pages.it4i.eu/ows-the-book/content/howto/local_index.html
https://openwebsearcheu-public.pages.it4i.eu/ows-the-book/content/howto/local_index.html
https://opencode.it4i.eu/openwebsearcheu-public/preprocessing-pipeline#fixed-columns
https://opencode.it4i.eu/openwebsearcheu-public/preprocessing-pipeline#fixed-columns

3. Requirements and Design

deployed and operated efficiently while minimizing the technical expertise
required for initial setup and ongoing management and maintenance.

3.2.2. Non-Functional Requirements

1.

Performance: The system is required to maintain high performance, ca-
pable of efficiently handling large volumes of data. Optimizing query
processing and result retrieval is essential to deliver rapid search results
and minimize latency as it must be able to operate the system on a
computer or server without requiring high-end hardware.

Usability: Clear and comprehensive documentation should be available
to guide users through setup, configuration, and operation processes.
Additionally, the system should offer straightforward configuration op-
tions and customizable settings to accommodate diverse user needs and
preferences.

. Maintainability: The system must be designed to allow for easy updates

and modifications. Its modular architecture along comprehensive docu-
mentation should facilitate the addition or removal of components without
disrupting the overall system.

Reliability: It is essential that the system implements solid error handling
and recovery to minimize downtime and potential data loss.

. Compeatibility: The system must ensure broad compatibility and interop-

erability with various data formats and external systems, including the
OpenWebSearch.eu index generation pipeline, the OpenSearch® protocol
and other external services. Additionally, the system must support the
specification that each index partition of the OWI consists of a CIFF file
and Parquet files, with the Parquet files adhering to a specific column
format.

API Integration: The system must include a representational state trans-
fer (REST) API that is accessible by any external service through HTTP
requests, thereby ensuring broad interoperability and integration pos-
sibilities. Additionally, the API must support the OpenSearch protocol
in XML format to facilitate standardized search and aggregation across
various platforms. The API must also provide essential information about
the indexes available within the system, as well as information about the
system configuration and errors that have occurred.

3.3. Conceptual Architecture Design

Building upon the identified both functional and non-functional requirements,
a conceptual architecture of MOSAIC was designed. Figure 3.1 illustrates

6ht’rps: / / github.com/dewitt/opensearch

44

https://github.com/dewitt/opensearch

3.3. Conceptual Architecture Design

return results execute

import

CIFF File

R Matching
> Index Component a & Ranking
Figure 3.1.: Conceptual architecture of the MOSAIC framework, proposing the integration of

index partitions, core application components, metadata modules, REST API, and
web interface for efficient search and retrieval operations.

Index Partition MOSAIC Web Any Service ° Search Request
(from OWI or ., Framework Interface & Response
locally created) ! 4+
1 forward query & forward query &
: return results return results
U NSNS R
: : A 4 E
i i REST API i
: : N :
: : enrich & 1
: : f ; filter :
orwar [
i | query& resuls | Metadata | |
! I return results Modules H
: ! i
1 1 v H
! H c Web Framework ! Filteri
. 1 import 1 ore ; ittering
Parquet File(s) L = Aoplication Query Processing | | °

! E PP Result Serialization | } & Result
: : ’

— 1
i V perform Additional | 1
H | search& i Components | !
H : include & p :
i i i
1 1 1
1 1 I
I 1 I
1 1 1
i H i
1 H 1
i 1

the main components and how they are related to each other. This design
allows to use MOSAIC depending on individual needs: it can be used out-
of-the-box including a web interface, configured as a service with a REST
API for integration into a search application, extended with custom metadata
modules, and its source code can be modified before utilizing the search
engine. Furthermore, this conceptual architecture lays the basis for the system’s
development.

3.3.1. Index Partitions

OWI partitions encompass CIFF files and Parquet files which are crucial compo-
nents of the MOSAIC framework, and each serve different but complementary
purposes. CIFF files store the occurrence of terms and document identifiers and
provide a standardized format for efficient indexing and retrieval. Parquet files,
utilizing columnar storage, contain additional metadata such as titles, URLs,
and language to improve retrieval performance and storage efficiency. The
high-level schema of an OWI partition, consisting of a CIFF file and one or more
Parquet files, is depicted in Figure 3.2. Collectively, these files ensure that search
results are both comprehensive and contextually enriched, thereby optimizing
data management and improving the usability of the MOSAIC system.

45

3. Requirements and Design

CIFF/Lucene
Term List of (Document, Frequency)
Term1 (doclID A, 1) (docID B, 3) (docID C, 1)

Parquet

Term2 (doclID D, 2)

Document Lang Fulltext WARC date
Term 3 (doclID E, &) (docID F, 2)

docID A eng ..text.. 2024-07-01
Term 4 (doclID H, 2) (docID 1, 1)

docID B deu ..text.. 2024-07-01

docID C deu ..text.. 2024-07-01

docID D eng ..text.. 2024-07-01

Figure 3.2.: Schema of an OWI index partition, illustrating the integration of CIFF and Lucene
for inverted indexing and Parquet for tabular metadata storage, as created by the
OpenWebSearch.eu index generation pipeline

3.3.2. Indexing Component

To offer robust and scalable search functions, an index component acts as the
central search engine within the MOSAIC framework. It efficiently handles
large volumes of data, enables fast query processing, and ensures powerful
and sophisticated search processes. By utilizing advanced indexing and search
teatures, the MOSAIC framework delivers precise and accurate search results.
Essentially, the integration of this index component provides a reliable and
effective foundation for the entire system.

3.3.3. Core Application

The core application in the MOSAIC framework centralizes and orchestrates the
interaction between various components and manages the overall search process.
Integrating CIFF and Parquet files, it constructs and maintains search indexes
to ensure that data remains up-to-date and accessible. The core application is
responsible for executing search queries, performing tasks such as matching,
ranking, and filtering to deliver relevant results. Additionally, it supports the
modular addition of metadata and other functionalities, thereby enhancing the
system’s flexibility and adaptability.

A sub-component of the core application is the query processing, which
involves a series of essential steps to ensure accurate and efficient search results.
Initially, the user’s query is parsed to identify its structure and components by
breaking it down into manageable elements. Subsequently, the query is used to
perform a search utilizing the index component.

The core application also coordinates the interaction between various mod-
ules and components within the MOSAIC framework. It ensures seamless
communication and coordination among different parts of the system, such
as the index component, metadata modules, and query processors. By manag-
ing these interactions, the core application maintains a cohesive and efficient

46

3.3. Conceptual Architecture Design

operation, thereby allowing the system to function as a unified whole.

In addition, an integral sub-component of the core application is a web server
framework to facilitate the efficient handling of web requests and responses.
This framework supplies the essential infrastructure for managing client-server
interactions and enables the system to process search queries and deliver results
promptly and reliably.

Eventually, the core application is also responsible for preparing the search
results to be exposed via the REST API. This involves serialization by formatting
the results appropriately, incorporating necessary metadata, and ensuring that
the data is structured according to the API specifications.

3.3.4. Modules and Components

Metadata modules in the MOSAIC framework enrich search results with associ-
ated metadata values and specify filters. These loosely coupled modules process
metadata from Parquet files, integrating it into the filtering process and search
results to provide users with comprehensive details about each document, in-
cluding titles, URLs, and language. Additional components, comprising custom
query analyzers and specialized query operations such as query expansion
and query rephrasing, further enhance the system’s functionality. For instance,
this design allows users to include custom query analyzers to optimize query
processing and improve result accuracy.

3.3.5. REST API

The REST API in the MOSAIC framework offers a flexible and versatile interface
for interacting with the search engine. Most importantly, this allows external
services to execute search queries and retrieve results. Supporting standard
protocols and query formats, it ensures broad compatibility, interoperability,
seamless communication, and easy integration with other applications and
services. The API also provides endpoints for accessing essential information
about available indexes and the system’s configuration information.

3.3.6. Web Interface

The web interface of the MOSAIC framework provides a basic yet functional
platform for demonstrating search capabilities and presenting search results. It
is designed to be easy and straightforward, thereby allowing users to perform
search queries and view the results without complexity. This interface showcases
the core functionalities of the search engine and ensures that even users with
minimal technical expertise can navigate and utilize the system effectively.
Additionally, the system can be used with another service and even without a

47

3. Requirements and Design

web interface at all, by directly accessing the search service via the provided
APL

3.4. Design Decisions

Following the design of the conceptual architecture, several decisions were
made regarding the selection of specific approaches as well as technologies.

Although there exist importing tools of CIFF files to JASSv27, Pisa®, OldDog?
and Terrier, Lucene was chosen as the core search engine for the MOSAIC
framework due to its reliable and scalable indexing and search capabilities,
as well as its independence of the existing IR solutions mentioned above.
CIFF files can be imported to Lucene indexes using the standalone application
lucence-ciff via the Anserini toolkit'. Lucene’s comprehensive documentation,
active community support, and proven success in high-performance search
applications contributed to its selection as a reliable choice. Even though a
Python wrapper around Java Lucene named PyLucene'! exists, PyLucene was
not selected due to its relatively cumbersome installation process compared
to Lucene, as well as the less active community support for PyLucene. These
factors could lead to potential performance overhead and compatibility issues
in future.

Influenced by the choice to use Lucene, which is inherently Java-based,
Java™ was selected as the primary programming language for the MOSAIC
framework. Furthermore, Java features important aspects such as robustness,
platform independence, and an extensive ecosystem of libraries and tools, which
support the development of scalable and high-performance applications. Java’s
strong community support and well-documented best practices further enhance
reliability and ease of maintenance.

Building on the decision to use Java, Apache Maven'3 was selected for
dependency management and to support the modular structure of the MOSAIC
framework. Maven’s robust dependency management capabilities streamline
the integration of necessary libraries and tools and ensure consistent and reliable
builds. Additionally, Maven facilitates a modular architecture by allowing the
project to be divided into discrete, manageable modules, each with its own set
of dependencies and build configurations. This modular approach not only
simplifies development and maintenance but also enhances the scalability and

https:/ / github.com/andrewtrotman/JASSv2
8https:/ / github.com /pisa-engine/pisa
https:/ / github.com/chriskamphuis/olddog
Thttps:/ /github.com/castorini/anserini
"Thttps:/ /lucene.apache.org/pylucene/
https:/ /www.oracle.com/java
Bhttps:/ /maven.apache.org

48

https://github.com/andrewtrotman/JASSv2
https://github.com/pisa-engine/pisa
https://github.com/chriskamphuis/olddog
https://github.com/castorini/anserini
https://lucene.apache.org/pylucene/
https://www.oracle.com/java
https://maven.apache.org

3.4. Design Decisions

extensibility of the MOSAIC framework, thereby making it easier to incorporate
new features and improvements over time.

The prototype application developed by Nussbaumer et al. (2023), which
stores the metadata in memory, has shown that problems appear when index
partitions become larger and the machine runs out of memory. Therefore, the
incorporation and handling of metadata in the MOSAIC framework is facilitated
using DuckDB'4, a high-performance in-process SQL database management
system. DuckDB can efficiently read Parquet files and generate tables from
them, which enables seamless integration and querying of structured data
within the MOSAIC framework. Essentially, DuckDB enables efficient storage,
retrieval, and querying of metadata, which enhances the overall performance
of the search engine. Its ability to handle complex queries and large datasets
makes it a practical choice for managing the extensive metadata associated with
search indexes. In addition, DuckDB integrates seamlessly with Java via the
Java Database Connectivity (JDBC) API, thereby allowing for straightforward
incorporation into the MOSAIC framework.

Another key design decision was to include a web server framework in the
system, with Quarkus?> being selected for this role. As compared to Spring'®
and similar frameworks, Quarkus offers several advantages, including its ability
to provide fast startup times and low memory usage, which are essential
for developing efficient and responsive applications. Furthermore, Quarkus
supports a wide range of standards and libraries, which facilitates integration
with other components of the MOSAIC framework. Its developer-friendly
features, such as live coding and streamlined configuration, further enhance
productivity and ease of development. Moreover, Quarkus offers a strong
foundation for developing a scalable and efficient APIL. By leveraging Quarkus,
the system can achieve high performance and scalability while maintaining a
flexible and efficient development process.

The design decision for the web user interface within the MOSAIC framework
emphasizes simplicity and accessibility, utilizing HTML, JavaScript, and Cascad-
ing Style Sheets (CSS) and deliberately leaving out JavaScript-based front-end
libraries. These technologies were chosen for their widespread support and ease
of use, which ensures that the interface is both functional and user-friendly.

Considering the requirement that the system should be easy to install and
deploy, the design decision to use Docker'” for containerization was made.
This approach reduces setup complexity, enhances portability, and ensures
that all parts of the MOSAIC framework can be easily managed and operated
coherently.

Hhttps://duckdb.org
tShttps:/ /quarkus.io
Ohttps:/ /spring.io
https:/ /www.docker.com

49

https://duckdb.org
https://quarkus.io
https://spring.io
https://www.docker.com

3. Requirements and Design

3.5. Limitations

The OpenWebSearch.eu project is an ongoing initiative aimed at creating a
comprehensive and transparent search infrastructure for the web. As an evolv-
ing project, it continuously integrates new features, tools, and improvements.
Particularly relevant to this system is the incorporation of additional meta-
data. Being in an active development phase, the project offers opportunities for
early adopters to contribute to and benefit from the latest advancements. As
new components and updates are regularly added, users and developers can
expect a dynamic and evolving platform that adapts to emerging needs and
technologies. This ongoing development phase presents both opportunities for
innovation and challenges in terms of ensuring reliability and performance.

Scalability presents a significant challenge for the MOSAIC framework, as it
is not designed to operate as a search engine for the entire WWW, but rather
for specific, targeted areas by providing a vertical search engine. The system
is optimized for handling special data sets and domains and ensures high
performance and relevance in these special contexts. Moreover, MOSAIC is
designed to be able to run on a computer or server without high-end hardware
configurations while maintaining adequate performance. However, the integra-
tion of extensive metadata and custom modules can put a further strain on
system resources, so that ongoing optimization efforts are required.

3.6. Summary

This chapter acts as a link connecting the review of background literature and
related work, and the practical section of the thesis. It starts by emphasizing
the motivation driving this research, particularly focusing on the need in
establishing a web search framework that leverages indexes created by the index
generation pipeline within the OpenWebSearch.eu project. The development of
such a framework is crucial to address the limitations of existing search engines,
which often lack transparency and control, thereby enhancing the ability to
create customized and efficient search solutions.

The chapter outlines both functional and non-functional requirements for the
MOSAIC system. Functionally, the system must include key features of existing
solutions, such as reliable search functionality, efficient index management, and
customizable metadata enrichment. Non-functional requirements emphasize
performance, usability, maintainability, and reliability, ensuring the system is
not only effective but also user- and developer-friendly and adaptable to various
needs.

The conceptual architecture of the MOSAIC framework is then detailed,
focusing on design decisions such as the use of Lucene for indexing and
search capabilities, and the integration of CIFF and Parquet files for data

50

3.6. Summary

management. Furthermore, limitations of the system are also discussed, which
include scalability challenges and dependency on ongoing developments within
the OpenWebSearch.eu project. These design choices ensure a balance between
functionality, efficiency, and ease of use.

In conclusion, this chapter establishes a solid foundation for the development
of the MOSAIC system by providing an overview of its design and requirements.
This groundwork supports the development of a modular, scalable, and user-
friendly framework for vertical search engines using OWI partitions tailored to
specific domains.

51

4. Development

This chapter details the development of the MOSAIC framework. The primary
objective of this system is to create a modular and scalable vertical search engine
that leverages indexes from the OpenWebSearch.eu initiative. The development
of MOSAIC represents a critical phase of this thesis, laying the groundwork for
its practical application and subsequent evaluation.

This chapter delves into the development process, critical design considera-
tions, as well as technical components and the startup process of the system,
which is discussed in Section 4.1. The primary phase during development,
outlined in Section 4.2, involves integrating OWI partitions into the MOSAIC
framework, as well as the processing of queries, matching and initial ranking
and the representation of search results. Section 4.3 delves into the accessibility
of the system via a REST API, focusing on the endpoints provided by the MO-
SAIC framework. The web user interface is detailed in Section 4.4. Furthermore,
the modular aspect of the system is explored in Section 4.5, highlighting the
ability to add customizable components and modules. Section 4.6 delves into
the setup, installation and configuration capabilities of the MOSAIC framework.
Eventually, Section 4.7 explores the MOSAIC2go tool to visually configure a
tailored search engine.

4.1. Architecture

Based on the conceptual architecture outlined in Section 3.3 and the design
decisions made in Section 3.4, Figure 4.1 presents a simplified technical version
of the overall architecture of the MOSAIC system. Additionally, the subsequent
sections delve into the development and integration of the subsystems and
components within the system.

53

4. Development

CSS, Docker)

User
T et [K
! Front-end: Web Search Text Box i
I User Interface - Search Result i
i (HTML, jQuery, Search Filter Representation E
1 1
1 1

Response

Request

URL Parameters JSON (Proprietary),

-
1
1
1
1
i
XML (OpenSearch) :
1
1
1
1
1
1
1

API Endpoints

Text Snippet

Serialization Creation based
JSON, XML on Query Terms

Query Rewriting Web Application
Expansion, Rephrasing Quarkus

Query Parsing

Module Management Metadata Core Module

Maven Modules + e
Lucene Configuration File Enrichment

Standard

Query Analyzer Geo Module

S EGELE]

Lucene Custom Filtering

Query Analyzer SQL & Manual Filter Keywords
Module

Lucene Search Metadata Access
Engine Library Java JDBC API
Matching and Ranking

Back-end:
Core Application
(Java, Docker)

Inverted Index Metadata
Lucene DuckDB

1

1

]

1

1

1

1

]

1

1

1

1

]

1 1
i

lucene-ciff !
Java Importing Tool !
(Dockerized) !
1

1

1

1

1

1

1

1

1

1

]

1

1

1

CIFF Files Parquet Files
OWI Partitions

Utilization

Legend . Core Application Component - Optional Application Component . Metadata Module - HTTP Message

Figure 4.1.: Simplified technical system architecture of the MOSAIC framework, including
important subsystems and components and how they are related to each other

54

4.1. Architecture

At its core, the architecture integrates multiple subsystems and components
to facilitate efficient search and retrieval processes. The utilized OWI partitions,
comprising CIFF and Parquet files, are managed by the inverted index of the
Lucene core search engine library (9.5.0)" and enriched with metadata stored
in DuckDB through the Java JDBC API?. This setup ensures a separation of
concerns, where Lucene handles the indices and DuckDB manages metadata.
Thus, multiple index partitions can be efficiently managed and easily integrated.

The query processing pipeline includes an optional query rewriting compo-
nent for expansion and rephrasing with the capability to easily integrate LLMs.
This is realized by providing a simple interface where the query string can be
modified. In the following, queries are parsed and analyzed using Lucene’s
standard or optionally custom query analyzers. The system achieves this by
offering an interface that allows either the direct use of Lucene’s custom query
analyzers or the development of a custom analyzer from scratch. The processing
ensures that queries are interpreted accurately and comprehensively.

The core application includes a matching and ranking subsystem based on
Lucene’s advanced algorithms to deliver relevant search results. This phase
evaluates the relevance of documents based on various factors, which ensures
that the most pertinent information for the given query is presented to the user.
The utilization of the sophisticated ranking algorithm BM253 as default ranking
method helps prioritize search results.

The architecture also includes a metadata module management subsystem,
which enhances the search engine’s capabilities. This subsystem handles the
integration and operation of various metadata modules that enables enriched
search results and more precise filtering options. Each module can be incorpo-
rated into the core application to ensure that metadata is effectively processed
after matching and ranking.

After filtering and enriching the search results with metadata, the results are
passed to the result representation subsystem. The search result serialization
supports both JSON and XML formats to ensure compatibility with diverse
client applications. With this, the core application ensures that search results
are accurately serialized and presented to maintain consistency and reliability
in the user experience.

The architecture also includes a central plugin management component,
which is crucial for incorporating various modules and optional components
into the core application. This component is responsible for managing the
integration of these modules. The plugin management is realized using Apache
Maven modules, which provide a structured and efficient way to handle de-
pendencies and module integration. Modules and components can be easily

Thttps:/ /lucene.apache.org/core/9_5.0/index.html

https:/ /duckdb.org/docs/api/java.html

3https:/ /lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/similarities /
BM25Similarity.html

55

https://lucene.apache.org/core/9_5_0/index.html
https://duckdb.org/docs/api/java.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/similarities/BM25Similarity.html

4. Development

enabled or disabled through a configuration file, which allows for flexible
customization to add or remove modules as needed as well as maintenance.

HTTP requests from the front-end or other services, including URL query
strings and filter parameters, are processed through a REST API built on the
Quarkus web framework. The system supports both JSON and XML responses,
thereby complying with a proprietary format as well as the OpenSearch protocol.
API endpoints handle different functionalities, most importantly searching
in OWI partitions. The REST API architecture ensures that the system can
seamlessly interact with modern web services and applications, which makes it
versatile and adaptable to a broad range of use cases.

The front-end of the framework is a web user interface, developed using
HTML, jQuery (3.6.0)%, and CSS, which provides user interaction points, includ-
ing a search box, filters for specific metadata, and search result representation.
This interface is designed to demonstrate the search functionality and to be
user-friendly in order to provide the system across a wide range of technical
expertise.

The system offers flexible usage options to accommodate various user needs
and preferences. It can be used out-of-the-box by deploying a pre-built Docker
image>. The system offers a selection of Docker images for users to choose from:
one image that contains the whole framework including the index partitions
available in the repository, one image that only contains the back-end without
direct integration of OWI partitions, one image to easily utilize the index
importing tool, and one image that contains the front-end. Docker containers
can be created using either the images provided in the container registry or
using images created locally. This allows users to quickly set up and run the
application with minimal configuration. For those who wish to customize
or extend the framework, the source code can be modified, and the entire
application can be built and run manually.

In addition to these options, the MOSAIC framework supports live coding,
which enables developers to see their changes in real-time without the need for
manual compilation after every code modification. This feature can significantly
enhance the development experience by streamlining the code update process.

Overall, this architecture aligns with the conceptual design by incorporating
modular components such as metadata enrichment and query analyzers, so the
system is adaptable and can evolve with future requirements. The combination
of Lucene for indexing and DuckDB for metadata management ensures a
separation of concerns, while the use of a REST API and Quarkus framework
supports straightforward integration and scalability.

+https:/ /jquery.com
Shttps://opencode.it4i.eu/openwebsearcheu-public/mosaic/container registry

56

https://jquery.com
https://opencode.it4i.eu/openwebsearcheu-public/mosaic/container_registry

4.2. Core Application

String sqgl = "CREATE TABLE " + indexName.replace(’'-’, ’'_") + " AS " +
"SELECT " + columns + " " +
"FROM read_parquet (" + CoreUtils.getParquetDirPath() +
indexName + File.separator + "x.parquetx’) " +
"ORDER BY " + CoreUtils.getIdColumn () ;
s|try |
conn.createStatement () .execute (sqgl) ;

} catch (SQLException e) {
LOGGER.error ("Failed to create table using DuckDB for index " +
indexName, e);

}

Listing 4.1: Import of Parquet files from an index partition to a database table using DuckDB

4.2. Core Application

This section highlights technical aspects of the core application development.
It comprises the integration of several key components and how they interact
with each other.

4.2.1. OWI Partitions Utilization

The MOSAIC framework utilizes OWI partitions by importing CIFF files and
Parquet files to facilitate efficient search operations. CIFF files are imported into
the Lucene index using the lucene-ciff tool, which is executed through a
dedicated import_index script. The tool generates a Lucene index from CIFF
files by utilizing Lucene’s codecs module, thereby creating wrappers for the
reading part to convert CIFF data into Lucene’s internal formats and then using
the writing part to produce an index that is compatible with various codecs. This
process ensures that the term-document mappings are accurately integrated
into the search engine.

In addition, one or multiple Parquet files are imported into a database table
using DuckDB which creates the table based on the schema of the provided
Parquet files. For this, a DuckDB database file is created on the file system by
default. The import of Parquet files of a particular index partition is illustrated
in Listing 4.1.

This dual-import strategy ensures that both the raw index data and the
associated metadata are seamlessly integrated into the MOSAIC framework.
Moreover, the MOSAIC framework supports both compressed and uncom-
pressed index partition files. Figure 4.2 illustrates an example of the structure
for two imported index partitions.

57

4. Development

~ lucene
> simplewiki
? unis-graz
Vv resources
v simplewiki

simplewiki.ciff

simplewiki.parquet.gz

' unis-graz
unis-graz.ciff

unis-graz.parquet

Figure 4.2.: Example structure of index partitions imported into the MOSAIC framework

4.2.2. Query Processing

Once the index partitions are imported, users can perform search queries
through the MOSAIC framework. A search query is submitted via the web user
interface, any other service or directly via the REST API, which then forwards
the query. Before the query is actually analyzed, query manipulation operations
can be performed.

4.2.2.1. Query Rewriting

The query rewriting component in the MOSAIC framework is an optional
teature that provides an interface for enhancing search queries. It can be used to
expand, rephrase, or modify queries to improve search accuracy and relevance.
This component ensures that the search engine can interpret and respond to
user queries more effectively, even when the initial input may be ambiguous
or incomplete. Additionally, a LLM can be integrated into this component to
turther enhance the sophistication and precision of the query rewriting process.
Listing 4.2 shows the method stub where users can implement custom query
rewriting operations before the query is actually parsed analyzed.

4.2.2.2. Query Parsing

The search query is parsed and analyzed prior to executing the actual search
in the Lucene index. The optional query analysis component in the MOSAIC
framework is responsible for parsing and understanding the search queries.
By default, Lucene’s Standard Analyzer® is used, which tokenizes the input
text, removes common stop words, and applies lowercase normalization to

®https:/ /lucene.apache.org/core/9_5.0/core/org/apache/lucene/analysis/standard /
Standard Analyzer.html

58

https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/analysis/standard/StandardAnalyzer.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/analysis/standard/StandardAnalyzer.html

4.2. Core Application

/ %%

* Modifies the query string before it is analyzed and parsed.

* Change the implementation of this method stub to modify the query

string.

* @param g Original query string

* @return Modified query string

*/
7| @Override
sfpublic String modifyQuery (String qg) {

String modifiedQuery = g;
// Implement the desired query modification

return modifiedQuery;

Listing 4.2: Method stub providing the possibility to rewrite the original query

standardize the query terms. Users have the flexibility to choose an alternative
existing analyzer or implement their own custom analyzer to suit their specific
requirements, as shown in Listing 4.3.

4.2.3. Matching and Ranking

After the query has been analyzed within the MOSAIC framework, the matching
and ranking process begins. The system accesses the appropriate Lucene index
stored in the file system, thereby verifying the existence of the specified index.
A Lucene IndexReader” is then created to read the index from the file system,
and a Lucene IndexSearcher® is initialized to perform the search operations. The
IndexSearcher uses the BM25Similarity? algorithm to rank the search results
based on their relevance to the query, as shown in Figure 4.3. This algorithm, a
state-of-the-art ranking function, calculates the similarity between queries and
documents based on term frequency and document length. The search results
are fetched from the Lucene index, processed, and returned as a list of relevant
documents. This method guarantees the identification and effective ranking of
the most relevant documents by delivering accurate and valuable search results
to users.

https:/ /lucene.apache.org/core/9_5_0/core/org/apache/lucene/index/IndexReader.
html

8https:/ /lucene.apache.org/core/9_5.0/core/org/apache/lucene/search /IndexSearcher.
html

9https:/ /lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/similarities /
BM25Similarity.html

59

https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/index/IndexReader.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/index/IndexReader.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/IndexSearcher.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/IndexSearcher.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/search/similarities/BM25Similarity.html

)

4. Development

/ * %
* Returns the appropriate Lucene Analyzer. Use this stub to define
the Analyzer for the Lucene index.
* As an alternative to the default analyzer, use either an existing
Lucene Analyzer or create a custom one.
* Change the implementation of this method stub to return the
desired Analyzer.
* (@param defaultAnalyzer Default Lucene Analyzer defined in the core
module
* @return Custom Lucene Analyzer
*/
public Analyzer getAnalyzer (Analyzer defaultAnalyzer) ({

Analyzer analyzer = defaultAnalyzer;
// Implement the desired analyzer

return analyzer;

}

Listing 4.3: Method stub providing the possibility to use another existing query analyzer or an
own custom analyzer

Score: .897

Lucene's

N Score.
BM25Similarity core: .632

Query

Score: .509

Lucene
Inverted Index

Figure 4.3.: Initial ranking of documents based on Lucene’s BM25Similarity

60

4.2. Core Application

4.2.3.1. Optional Re-Ranking

The MOSAIC framework also includes the capability to re-rank search results
after they have been retrieved from the Lucene index. Currently, a demon-
stration implementation provides the option to re-rank documents based on
their word count, which illustrates the potential for adjusting ranking criteria
post-retrieval. This example underscores the flexibility of the framework to in-
corporate additional re-ranking algorithms tailored to specific needs. Essentially,
the re-ranking process allows for further refinement of search results.

4.2.4. Metadata Filtering

The system incorporates a dual approach comprising metadata filtering and
enrichment. User-provided filtering parameters are processed by the MOSAIC
core application to refine search results based on specific criteria. This filter-
ing can be executed directly using metadata columns or through advanced
algorithms, so-called manual filtering, that leverage these metadata columns
for more sophisticated filtering. The manual filtering procedure for a single
document is demonstrated in Listing 4.4.

4.2.5. Metadata Enrichment

Once the filtering process is complete, the system enriches the search results
by adding relevant metadata from the Lucene index. This metadata enhance-
ment ensures that the final search results are comprehensive and contextually
informative, ready to be returned by the MOSAIC back-end to the user. Fur-
ther details on the incorporation of metadata is explored in Section 4.5 which
describes the modular architecture of the MOSAIC framework.

4.2.5.1. Text Snippet Creation

Metadata enrichment in the MOSAIC framework includes creating text snippets,
which are crucial for providing users with quick, relevant previews of search
results. Within MOSAIC, text snippets are generated from the full text available
in the document’s metadata table record. The snippet creation process identifies
the most pertinent section of the text, particularly the sentences where the query
terms appear most frequently.

In scenarios where only a portion of the full plain text of documents is
stored in the table to optimize storage and performance, MOSAIC offers an
on-demand loading mechanism, as depicted in Figure 4.4. This mechanism
allows the complete plain text to be retrieved from the Parquet file when it is
necessary to generate more accurate and satisfying text snippets for documents.
Dynamically loading the full text as needed ensures that, despite storage
optimizations, the quality and relevance of the text snippets are maintained.

61

4. Development

N

)

// Create a map of metadata columns and their values for the search

result
Map<String, String> result = new TreeMap<>();
for (int i = 1; i <= rsMetadata.getColumnCount (); ++i) {

result.put (rsMetadata.getColumnName (i), rs.getString(i));
}

result.put ("index", indexName) ;

// Check if the search result passes the manual filter of the
metadata modules

boolean passedManualFilter = true;

for (MetadataModule module : PluginManager.getInstance () .getModules ()
.values()) {
if (!module.inManualFilter (result, queryParams)) {

LOGGER.info ("Search result did not pass manual filter of
module: {}", module.getClass () .getSimpleName ()) ;

passedManualFilter = false;

break;

// Add the enriched search result to the list of results
if (passedManualFilter) {

rs.close();

dbConn.closeConnection () ;

return result;

}

Listing 4.4: Snippet of the metadata filtering and enrichment procedure demonstrating the
manual filtering process

Query Terms

Snippet
Satis-
fying?

Text Snippet
Creation

Partial Plain
Text

Java JDBC API Text Snippet

Metadata Full Plain Parquet
DuckDB Text File(s)

Figure 4.4.: Text snippet creation based on the plain text with optional on-demand loading of
the full plain text of a document

62

4.3. REST API

4.2.6. Result Representation

After filtering and enrichment of metadata, the search results are formatted
and prepared for presentation. The framework supports multiple formats,
including JSON and XML serialization, to accommodate various user needs
and integration requirements. Section 4.3 delves into the exact format of the
result representation of search results within the MOSAIC framework.

In JSON format, search results are grouped by index partition, presenting
a structured list where each group contains the relevant documents from
a specific index partition. This grouping can help users easily identify and
navigate through results from different data sources and facilitates parsing in
the web user interface since the results are already categorized.

For the XML format, which aligns with the OpenSearch protocol (1.1, Draft
6), the results are not grouped by index partition. Instead, each search result
includes an additional field that indicates the index partition from which the
document originates. This approach maintains compliance with the OpenSearch
standard while providing users with essential context about the source of each
search result. The OpenSearch protocol not only allows the application to accept
search requests via defined query parameters and process these requests, but
also generate Atom-based' XML responses.

4.3. REST API

The MOSAIC framework offers a comprehensive REST API for receiving search
queries and returning responses containing the search results. In its current
version, four distinct endpoints are available, which can be accessed using a web
browser or any API testing platform, for instance, Postman''. Table 4.1 shows an
overview of the endpoints provided by the MOSAIC framework. By default, the
MOSAIC back-end is accessible via the API on port 8008. The port definition
can be adjusted according to user requirements and the specific environment in
which the framework is deployed. Further details on the endpoints and their
functionalities are provided in the following subsections.

4.3.1. Search with JSON Response

The endpoint /search performs searches within one or multiple index par-
titions using the provided REST query parameters and returns the results in
JSON format. The available query parameters may vary depending on the
enabled modules, which are explored in Section 4.5. Generally, while no query
parameter is strictly required, the parameter g is commonly used to specify

https:/ /datatracker.ietf.org/doc/html/rfc4287
TThttps:/ /www.postman.com

63

https://datatracker.ietf.org/doc/html/rfc4287
https://www.postman.com

4. Development

Endpoint Description

/search Handles search queries and returns search
results in a proprietary JSON format.

/searchxml Handles search queries and returns re-

sults in XML format compliant with the
OpenSearch protocol.

/index—-info Provides a list of available index partitions
including essential properties of each index
partition in JSON format.

/full-text Retrieves the full text of a document based
on its identifier.

Table 4.1.: REST API endpoints supported by MOSAIC

query terms. A trivial HTTP GET request for this endpoint using the default
port 8008 is http://localhost:8008/search?g=europe.

Through the API, the core application returns a response containing a list of
search results, with each result comprising the fields specified by the enabled
modules. If no index name is provided as a parameter, the back-end searches
across all available index partitions and returns a separate list of results for
each index partition.

For instance, a response having only the core module enabled could yield a
JSON object as illustrated in Listing 4.5.

"results": [
{
"simplewiki": [
{
"id": "cfed9c84-2244-430e-83e3-fe3f30aae2le",
"url": "https://simple.wikipedia.org/wiki/Anthem_of_Europe

"title": "Wikipedia: Anthem of Europe",

"textSnippet": "https://simple.wikipedia.org/wiki/
Anthem_of_FEurope",

"language": "eng",

"warcDate": "2024-01-15T22:19:462",

"wordCount": 11

by

]
}I
{
"unis-graz": [

(U

64

4.3. REST API

by

Listing 4.5: Example response of the /search endpoint

4.3.2. Search with XML Response

Similar to the /search endpoint, the endpoint /searchxml facilitates search-
ing within one or multiple index partitions based on REST query parameters
provided in the HTTP GET request. However, the results are returned in XML
format in accordance with the OpenSearch protocol. Listing 4.6 exemplarily
shows the structure of such an XML response. In the response, the node item
represents one search result and contains the fields specified in the enabled
modules.

<feed xmlns="http://www.w3.0rg/2005/Atom"
xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">
<title>MOSAIC Search: {searchTerms}</title>
<description>Search results for "{searchTerms}" at MOSAIC
Search Service</description>
<author>
<name>OpenWebSearch.eu</name>

</author>

<opensearch:totalResults>1121</opensearch:totalResults>

<opensearch:startIndex>1</opensearch:startIndex>

<opensearch:itemsPerPage>20</opensearch:itemsPerPage>

<opensearch:Query role="request" searchTerms="{searchTerms}"

startPage="1"/>

<link rel="alternate"
href="{baseUrl}/search?g={searchTerms}&pw=1&1imit=20"
type="application/Jjson"/>

<link rel="self"
href="{baseUrl}/searchxml?g={searchTerms}&pw=1&1imit=20"
type="application/atom+xml" />

<link rel="next"
href="{baseUrl}/searchxml?gq={searchTerms}&pw=2&1imit=20"
type="application/atom+xml"/>

<link rel="last"
href="{baseUrl}/searchxml?g={searchTerms}&pw=56&1imit=20"
type="application/atom+xml"/>

<link rel="search"
type="application/opensearchdescription+xml"
href="{baseUrl}/opensearch.xml"/>

65

4. Development

<item> ... </item>

</feed>

Listing 4.6: Example response of the /searchxml endpoint

4.3.3. Index Information

The /index—-info endpoint is not related to search in the narrower sense but
provides more contextual and detailed information about the index partitions
used in the current MOSAIC core application execution. It does not require
any REST query parameters and returns the response in JSON format. For
each index partition, the information includes the index partition name, the
number of indexed documents, and a list of languages present in the index
partition. The number of indexed documents is determined using Lucene’s
indexing capabilities, while the list of languages present in the index partition
is determined by referencing the associated metadata stored in the database
table. An example response of the /index—info endpoint is shown in Listing

4.7.

{
"results": [
{

"simplewiki": {
"documentCount": 285392,
"languages": [

"deu",

" eng" ’
"est",
"fra",
"ltz",
"pol",
"unknown",
"zho

Listing 4.7: Example response of the /index—-info endpoint

This endpoint can be utilized to display the available indexes in the front-end
interface, thereby providing users with a clear overview of the data sources
being queried. By accessing detailed information about each index partition,

06

4.4. Web User Interface

such as the number of indexed documents and the languages present, users
can better understand the scope and content of the available data present in the
current MOSAIC core application execution. This transparency enhances user
interaction and allows for more informed query formulation.

4.3.4. Full Plain Text Retrieval

As detailed in Table 4.5, the option -n <num> allows importing only a portion
of the full plain text of each document into the database. This approach is
particularly beneficial for larger index partitions, as it helps to reduce both the
creation time and the file size of the database. To retrieve the full plain text of a
web document, the MOSAIC framework provides the /full-text endpoint.
This endpoint requires the parameter id to identify the specific document. Ad-
ditionally, the parameter column can be used to specify which metadata column
the provided document ID should match, with the default being record_id.
For scenarios involving multiple index partitions, the optional parameter index
can be included if the index partition name containing the document is already
known. Listing 4.8 illustrates the structure of the JSON response.

{
midgdv. <id>,
"fullText": <fullText>

Listing 4.8: JSON response structure of the /full-text endpoint

This endpoint can be used for tasks such as retrieving the full content of
documents for detailed analysis or for automatic summarization by LLMs.
It enables comprehensive access to document text and facilitates advanced
processing and content generation applications.

4.4. Web User Interface

Mainly conceptually designed and further developed by Alexander Nuss-
baumer, the web user interface* within the MOSAIC framework is intention-
ally kept very simple to demonstrate the functionality of MOSAIC and not
to distract end users from the actual purpose. The structure and functionality
of the web user interface are illustrated in Figure 4.5. Below this, the search
results are displayed in a list format, similar to established search engine user
interfaces. Depending on the module configuration, each result returned by the
MOSAIC back-end includes the title of the web page, a text snippet, the WARC

2https:/ /qnode.eu/ows/mosaic/webinterface /

67

https://qnode.eu/ows/mosaic/webinterface/

4. Development

£ MOSAIC
Geo Filter: West: East: North: South:

Index: Language: Limit: Keyword:
O default / all © default /all ® default /20 flood

O Demo SimpleWiki O English 10 items

O Demo Graz Universities O German 50 items

O 1,000,000

:8008/search?q;

Search result for term: “flooding in europe’
Index: dirprototype
Number of items: 20

Flooding in Europe | Copernicus

Flooding in Europe | Copernicus skip to main content 3 5-contactback-esotc-
b

date:2024-02-06 07:04
ermany « Rhine » Baltic Sea « Hills « North Atlantic Ocean » Meuse « River «

and central Europe threatening the health of thousands of displaced residents

urope threatening the health of thousands of displaced residents Croce Rossa Italiana

Flooding in Tuscany Flooding in Tuscany October 2, 2023 Flooding in Tuscany November 3, 2023JPEG October 2, 2023
November 3, 2023 November 3, 2023JPEG View Image Comparison View Both Images A

Figure 4.5.: Basic web user interface implementation within the MOSAIC framework

date, the extracted locations from the full plain text, the extracted keywords,
and the URL of the web page. Furthermore, when a search is performed across
multiple index partitions, the results are separated by index partition, which
allows users to easily identify which index partition each result originates
from. Additionally, the retrieval time for each search query is measured in the
front-end and displayed to the end user. In general, this structured approach
ensures that end users can efficiently navigate and interpret the search results.

4.4.1. Search Control Area

At the top of the web user interface, there is a search control area where end
users can enter their search queries in a search box and utilize various filtering
options. Search criteria specified by end users are used to assemble the HTTP
query string.

4.4.1.1. Search Box

The search box in the front-end is a fundamental component designed for end
user interaction. Implemented as a simple HTML input element, it allows end
users to formulate their search queries. Upon submission per clicking the button
or pressing the enter key, these queries are transmitted to the back-end via the
API endpoint /search for further processing. The content of the search box is
used as the content of the URL query parameter q.

68

4.5. Module Management

4.4.1.2. Search Filter

Depending on the integrated OWI partitions and the enabled metadata modules,
end users can select and specity filter options to narrow down search results.
End users can choose available indices for searching and apply filtering options
such as the language of indexed documents, coordinates for bounding boxes for
geospatial data, and keywords extracted from the full plain text. The available
indices and languages present in these indices are fetched from the back-end
via the API endpoint /index-info.

4.4.2. Search Result Representation

The search result representation in the front-end is organized by the indices
in which the search was performed, with results displayed in a structured list
format. Each search result, received either as a JSON object or XML node, is
presented with several key attributes. These include the title, a text snippet, the
URL as link to the web document, and the WARC date, which is converted to an
ISO 8601 date string'3. Additionally, if available in the metadata, the locations
and keywords associated with each result are also displayed.

End users have the option to interact with the location data by clicking on the
displayed locations, which will then open the coordinates in OpenStreetMap'4.
It is important to note that the extracted locations may not always be completely
precise due to limitations in the OpenWebSearch.eu preprocessing pipeline.
This feature allows end users to visually explore the geographical context of
the search results.

4.4.3. Index Information

The web user interface also provides detailed information about the available
index partitions in the current MOSAIC core application execution by utilizing
the /index-info API endpoint. This feature is realized by providing a simple
HTML button and displays upon request the available index partitions along
with the corresponding number of documents and the languages present in
each partition. By presenting this information transparently, the interface helps
users understand the scope and content of the index partitions being searched.

4.5. Module Management

Following a plugin architecture, the MOSAIC framework adopts a modular
approach that allows for flexible integration of metadata modules and optional

Bhttps:/ /www.iso.org/iso-8601-date-and-time-format.html
t4https:/ /www.openstreetmap.org

69

https://www.iso.org/iso-8601-date-and-time-format.html
https://www.openstreetmap.org

4. Development

system components. This design enables users to customize their search engine
by selectively enabling or disabling specific modules according to their needs.
In addition, by supporting a wide range of modules and components, the MO-
SAIC framework offers a scalable infrastructure that can evolve with emerging
technologies, such as LLMs, and user demands.

4.5.1. Technical Concept

In the technical implementation of the MOSAIC framework, each module and
component is managed using Apache Maven, which handles the dependencies,
build processes, and lifecycle management. Modules are defined with clear
interfaces and can interact with the core system and other modules through
interfaces. This approach allows for straightforward integration and communica-
tion between different subsystems, components and modules of the framework.
Additionally, the integration of modules is managed through a configuration
tile, which provides the option for users to easily enable or disable specific
functionalities without altering the core system. Listing 4.9 shows an excerpt of
a configuration file entry for modules and components that are enabled and
subsequently included in the back-end when executing the application.

"modules": {
"core": "eu.ows.mosaic.CoreMetadata",
"geo": "eu.ows.mosaic.GeoMetadata",
"keywords": "eu.ows.mosaic.KeywordsMetadata",
"query": "eu.ows.mosaic.CustomQuery",
"analyzer": "eu.ows.mosaic.CustomAnalysis"

}

Listing 4.9: Excerpt from the configuration file showcasing the enabled modules and
components

4.5.2. Metadata Modules

MOSAIC incorporates metadata modules that can be used to enrich search
results with additional contextual information, such as titles, URLs, language
and other metadata. These modules facilitate additional filtering of search
results and can append extra fields to the response, which enhances the detail
and relevance of the returned data. Table 4.2 provides an overview of currently
existing metadata modules within the MOSAIC framework. Moreover, MOSAIC
is based on Maven modules and allows users to simply add new modules by
themselves. Thus, a few actions, which are shown in Appendix A, are required
to incorporate a new metadata module for additional filtering capabilities and
metadata enrichment.

70

4.5. Module Management

Module Name Necessity Description

Core Required Responsible for the basic search
and the response and contains
the web framework.

Geo Optional ~ Extends text-based search by uti-
lizing geographical information.
Keywords Optional Incorporates extracted keywords

from the full plain text.

Table 4.2.: Existing modules in the current version of MOSAIC

In order to function properly, every metadata module must include a Java
class that extends MetadataModule®. Subsequently, by overriding the follow-
ing methods from the base class, users can specify filtering options, as well as
the inclusion of additional metadata columns:

getMetadataColumns (): Returns the set of metadata columns expected
to be used by the module. Subclasses should override this method to
specify the necessary metadata columns available in the Parquet file(s).
getFilterColumns (): Provides the set of filter columns used for fil-
tering results via DuckDB. Subclasses in modules should override this
method to define the required filter columns present in the Parquet file(s).
validateParams (): Validates the query parameters passed to the mod-
ule. Subclasses in modules should override this method to implement
additional validation logic as needed.

parseQueryParams (): Parses the query parameters, returning a map
of parameters that match the defined filter columns. It ensures that only
relevant parameters are processed for filtering.

getSglFilterClauses (): Generates SQL filter clauses based on the
query parameters and available metadata columns. By default, it con-
structs additional WHERE clauses for each filter column using the equal
sign (=) for comparison.

getSglFilterValues (): Returns a list of SQL filter values used as
parameters for a PreparedStatement. It gathers values from the query pa-
rameters that correspond to the defined filter columns.
inManualFilter (): Checks if a search result meets the criteria of a
manual filter. Subclasses in modules should override this method to
implement custom filtering logic that extends beyond SQL-based filters.
serializeJson (): Serializes a search result into a JSON object. By de-
fault, it includes metadata columns defined in getMetadataColumns ()

'Shttps:/ /opencode.it4i.eu/openwebsearcheu-public/mosaic/-/blob/main/
search-service/shared/src/main/java/eu/ows/mosaic/MetadataModule.java?ref_type=

heads

71

https://opencode.it4i.eu/openwebsearcheu-public/mosaic/-/blob/main/search-service/shared/src/main/java/eu/ows/mosaic/MetadataModule.java?ref_type=heads
https://opencode.it4i.eu/openwebsearcheu-public/mosaic/-/blob/main/search-service/shared/src/main/java/eu/ows/mosaic/MetadataModule.java?ref_type=heads
https://opencode.it4i.eu/openwebsearcheu-public/mosaic/-/blob/main/search-service/shared/src/main/java/eu/ows/mosaic/MetadataModule.java?ref_type=heads

4. Development

Metadata
Modules

Geo Keywords

- ID « List of location names « List of keywords

+ URL and associated entries extracted from full
- Title (consisting of plain text

+ Text Snippet coordinates and 1SO-

+ Language 3166-1 alpha-2 country

« Warc Date codes)

+ Word Count

Figure 4.6.: Metadata fields added by the modules to the search results

that are present in the result.

* serializeXml (): Serializes a search result into an XML string. It in-
cludes metadata columns specified in getMetadataColumns () and
processes each value to ensure it is properly formatted for XML.

Figure 4.6 depicts the metadata fields used for enrichment by each module.
The core metadata fields include essential information such as ID, URL, title,
text snippet, language, WARC date, and word count. The geo module contains
a list of location names and the corresponding entries consisting of coordinates
and ISO-3166-1 alpha-2 country codes®. Additionally, the keywords module
includes extracted keywords from the full plain text of documents. Based on
the metadata modules configuration, these fields are added to the search result
after matching, initial ranking and filtering.

4.5.2.1. Core Module

As the only required module along the shared module, the core module pro-
vides the possibility to search in one or multiple index partitions from the
OWL. It is the main architectural component, and all other components and
modules depend on this module. The core module is responsible for the basic
search, filtering and metadata enrichment. Table 4.3 highlights the URL query
parameters which are processed by this module.

4.5.2.2. Geo Module

The geo module extends the text-based search by using geographical informa-
tion that is stored in the metadata. This module leverages detailed metadata
to accurately parse and incorporate geographic information into the search

©https:/ /www.iso.org/iso-3166-country-codes.html

72

https://www.iso.org/iso-3166-country-codes.html

4.5. Module Management

Parameter Value

Necessity

Description

d

string

Optional

Search term(s) to be searched for in
the Lucene index.

index

string

Optional

Specifies the Lucene index to be
searched in. The passed value must
match the folder name of the Lucene
index. If no index is specified, a sep-
arate search in all indexes that are
present is performed.

lang

string

Optional

Restricts the search result to only con-
sider pages in the specified language
(e.g., eng). If no language is specified,
the search results are language inde-
pendent.

ranking

string

Optional

Specifies the order of the search result
based on the number of words a page
has. Can be either asc or desc. If no
ranking is specified, the order of the
search result yielded by Lucene’s sim-
ilarity search is used.

pw

int

Optional

Defines the page number of the set of
search results desired by the search
client. If no page number is specified,
1 is used.

limit

int

Optional

Sets the maximum number of results
to be returned. If no limit is specified,
a maximum of 20 results are returned
by default per page.

fulltext boolean

Optional

Loads the full plain text on-demand
from the Parquet file(s) to generate the
text snippet if the query term(s) are
not present in the plain text which is
stored in the database. If not specified,
the full text is not loaded dynamically.

Table 4.3.: URL query parameters processed by the core module

73

4. Development

Parameter Value Necessity Description

east float Optional Specifies the max. longitude.
west float Optional Specifies the min. longitude.
north float Optional Specifies the min. latitude.
south float Optional Specifies the max. latitude.

operator string Optional Specifies whether all locations (i.e.,
and) or at least one (i.e., or) location
of the search result must be inside the
bounding box. The default operation
is or.

Table 4.4.: URL query parameters processed by the geo module

results. For instance, a bounding box comprising four coordinates can be used
as a filter to ensure that the extracted locations of a web page fall within spe-
cific geographic areas. Table 4.4 outlines the URL query parameters which are
processed by this module.

In the response, each search result includes the location name and coordinates,
thereby providing precise geographic context. This inclusion of location names
and coordinates is particularly beneficial for visualizing search results on a map
in the front-end interface. Essentially, this module exemplifies a sophisticated
implementation, featuring extensive manual filtering, metadata parsing, and
enrichment processes.

4.5.2.3. Keywords Module

In contrast to the geo module, the keywords module demonstrates the simplest
approach for a metadata module. It allows for simple filtering by specific
keywords and enriches the search results with previously extracted keywords.
Outlined in Listing 4.10, the keywords module achieves this by specifying a
single metadata column for both filtering and inclusion in the search results
response.

@Override
public Set<String> getMetadataColumns () {
return Set.of ("keywords");

}

;| @Override

public Set<String> getFilterColumns () {
return Set.of ("keywords");

}

74

4.6. Installation and Configuration

L 1
Listing 4.10: Simplest approach to define an additional metadata filter and inclusion in the
search results illustrated by the implementation of the keywords module

4.5.3. Optional Application Components

In addition to metadata modules, optional application components are further
Apache Maven modules that can be integrated into the MOSAIC framework to
extend its capabilities beyond the core functionality. Two of these components
are detailed in Section 4.2 as they illustrate the flexibility and extensibility of
the framework. These components demonstrate how additional functionalities
can be integrated into the existing system to enhance its capabilities, while the
functionality of the core application and other components is still ensured.

To add these optional components, the MOSAIC framework utilizes Maven
modules to manage dependencies and build processes. Depending on the
purpose of the component, interfaces are defined to allow these components
to interact with the core application at specific integration points. This ensures
that the components can communicate effectively with other subsystems and
other modules. As for the metadata module, the configuration file is used to
eventually enable or disable these components.

4.6. Installation and Configuration

The MOSAIC framework is designed with usability and accessibility in mind,
and is aimed to a broad spectrum of users, including developers and search
engine operators with varying levels of technical experience. For those with
minimal technical expertise, MOSAIC provides an easy-to-use platform where
users can simply download the framework, make necessary adaptations, select
the desired index partitions, and then build and run the application with
minimal effort. This ensures that the inhibition threshold for working with
MOSAIC remains low, thereby making it accessible to users with little to no
technical background while maintaining a configurable setup and execution.
Such accessibility also makes MOSAIC suitable for academic settings, where
students and researchers can quickly set up and experiment or prototype with
search engine technologies.

75

4. Development

4.6.1. Framework Setup

MOSAIC is publicly available in a GitLab'’ repository’® hosted by Open-
WebSearch.eu project partners. The technical project setup for the MOSAIC
framework involves organizing the core application and additional modules
and components within the search-service directory. This directory is the
central part of the project, encompassing the web framework, providing the AP]I,
and managing the integration of index partitions, as well as the incorporation
of various metadata modules and optional components.

OWI partitions, consisting of CIFF and Parquet files, are stored in the
resources directory by default, with each partition named specifically. The
imported Lucene indices are stored in the lucene directory by default, also
organized by partition name. However, it is also possible to modify the direc-
tory paths for both resources and lucene by specifying the associated CLI
startup option. The lucene-ciff directory contains the tool for importing
CIFF files into Lucene indices. Noteworthy, in the repository of the MOSAIC
framework there are already two index partitions available, particularly useful
for testing the framework independently of required own partitions:

* simplewiki: An index partition used for demonstration purposes con-
taining abstracts of Simple Wikipedia'® pages (241,839 documents).

* unis-graz: An index partition used for demonstration purposes con-
taining documents related to the University of Graz and Graz University
of Technology (1,935 documents).

Moreover, additional index partitions can be downloaded and used via the
NextCloud?®® instance of Graz University of Technology. Some of these index
partitions were created by the index generation pipeline of the OWSAI, while
others were created using the pipeline locally.

Additionally, the scripts folder includes several shell scripts and batch files
for both Unix-like operating systems and Windows respectively: one for import-
ing CIFF files into Lucene indices, one for compiling the MOSAIC back-end
and importing any unimported CIFF indices, and one for starting the core
application with various configuration options via a CLL

The front-end directory contains a basic web user interface using HTML,
JavaScript (jQuery) and CSS, that demonstrates the core application’s capabili-
ties of the MOSAIC framework.

7https:/ / gitlab.com

Bhttps:/ /opencode.it4i.eu/openwebsearcheu-public/mosaic
https:/ /simple.wikipedia.org/wiki

2%https:/ /cloud.tugraz.at/index.php/s/xHnJNCozTgjoedt

76

https://gitlab.com
https://opencode.it4i.eu/openwebsearcheu-public/mosaic
https://simple.wikipedia.org/wiki
https://cloud.tugraz.at/index.php/s/xHnJNCozT9joedt

4.7. MOSAIC2go

4.6.2. Framework Startup Process

Once the framework is compiled using the script build. sh, the start.sh
script executes the compiled application. During the startup process of the
MOSAIC back-end, numerous actions are executed in the following order:

1. The path to the index directory containing the Lucene indices of one or
more index partitions is set.

2. The path to the metadata directory containing the Parquet file(s) of one or
more index partitions is set.

3. The ID column used to match Lucene documents with corresponding
metadata in the Parquet files is specified.

4. The path to the framework configuration file is defined.

5. Components and modules are loaded according to the framework config-
uration file.

6. The path to the DuckDB database file, that is used for storing the metadata
from Parquet files of an index partition in a table, is specified.

7. The database table containing the metadata of an index partition is created
if it does not already exist. Additionally, if the option -n <num> is passed
during startup, the full plain text in the plain_text column is truncated
to <num> characters for each row.

8. The OpenSearch XML document is updated in accordance with the frame-
work configuration file.

4.6.2.1. CLI Startup Options

To facilitate flexible and straightforward use and development based on the
MOSAIC framework, the MOSAIC core application supports several CLI op-
tions which can be passed optionally at the application startup, as outlined in
Table 4.5. In particular, the options -1 and —p can be beneficial to map existing
directory structures directly into the framework without the need to explicitly
move or copy all index partition files into the directories provided for this
purpose.

4.7. MOSAIC2go

Built on top of MOSAIC, the MOSAIC2go platform provides a web user in-
terface designed to facilitate the creation of customized search engines. The
motivation behind MOSAIC2go is to focus on empowering end users to cre-
ate their own search engines based on the MOSAIC framework, rather than
primarily supporting developers as the MOSAIC framework does.

f

4. Development

Option

Description

_l,

——lucene-dir-path <dir>

path of directory containing the
Lucene index(es)
(default = 1ucene directory as
in the repository)

b,

——parquet-dir-path <dir>

path of directory containing the
Parquet file(s)

(default = resources directory
of this repository)

_i,

——id-column <col>

column that contains the docu-
ment identifiers
(default = record_id)

-n,

——num-characters <num>

number of characters selected
from the full plain text column
to be stored in the associated
database table column

-d,

——db-file-path <dir>

path of directory containing the
database file (file is created
when starting the MOSAIC back-
end for the first time) (default =
/tmp/mosaic_db)

78

Table 4.5.: Supported CLI options for MOSAIC core application startup

4.7. MOSAIC2go

5 [H
H i
! — OWI Partitions H
1
H 1
1 . .
! — Modules Archive File i
! Front-end: !
| Visual Editor Configurations i
1 (Next.js) H
e e] 1
P e e
1
1 Request
! Selected Index Partitions
: and Modules, Configurations
! REST API
__ -
i i
! i
. 1
i . . Incorporation of 1
H ety Wil search engine URL !
i i
: 1
1 Removal of Non- :
H Selected Repository UpdaJsee(:ﬁmgrnglcCeWeb H
: Index Partitions :
1 I
1 1
: Back-end: . Adding of Selected Removal of Non- :
: Conﬁguratlon Non-Repository Index Selected Metadata :
! Service Partitions Modules 1
1 (Python, FastAPI) !
I 1

MOSAIC

GitLab Repository

OWI Partition

Figure 4.7.: Simplified technical system architecture of MOSAIC2go, including important sub-
systems and components and how they are related to each other

4.7.1. Architecture

MOSAIC2go’s technical architecture, as depicted in Figure 4.7, is composed of
several interconnected subsystems that work together to facilitate the creation
and configuration of customized MOSAIC search engine instances.

The back-end of the MOSAIC2go architecture is developed using Python and
FastAPI**, which together provides the configuration service. This subsystem
is responsible for processing user requests related to the selection of index
partitions and modules, as well as managing various configurations related to
the web user interface and search engine settings. Upon receiving a request
through the provided API, the configuration service packages the selected
components and configurations into a .zip file, which is then sent back to the
user via the APL

The REST API acts as the intermediary layer between the front-end visual

2Thttps:/ /fastapi.tiangolo.com

79

https://fastapi.tiangolo.com

4. Development

editor and the back-end configuration service. It facilitates communication by
handling requests and responses between these subsystems. Users interact with
the API to submit their configurations and selections, which are then processed
by the back-end service. Furthermore, the API ensures that also other services
can access the configuration service of MOSAIC2go.

Developed using the framework Next.js**, the front-end of MOSAIC2go
delivers a user-friendly visual editor for configuring the MOSAIC search engine
instance. This visual editor allows users to select index partitions, modules, and
other configurations through an intuitive interface. The editor communicates
with the back-end service via the REST API to submit user selections and
receive the configured .zip file.

4.7.2. Configuration Service

The MOSAIC2go configuration service is integral to the system as it manages
the processing and packaging of user-defined configurations. Each configuration
request to the service is assigned an ID which is returned in the response along
the customized MOSAIC instance. The customization and assembly process
of a MOSAIC instance generated by the current version of the MOSAIC2go
configuration service is detailed as follows:

1. Clone MOSAIC Repository: The MOSAIC repository is cloned into a
temporary directory named after a generated unique ID. The cloning
process is realized using the Python package GitPython?3.

2. Remove Non-Selected Index Partitions: Non-selected indexes are re-
moved from the resources and lucene directories within the cloned
repository to ensure only the selected indexes are retained.

3. Add Selected Index Partitions: Additional indexes specified by the user
are downloaded and extracted into the resources directory of the cloned
repository.

4. Remove Non-selected Metadata Modules: Non-selected modules are
removed from the search-service directory, and references to these
modules are updated in the pom.xml files and config. json file.

5. Update Front-end: Set the title and the surrounding color in the basic
front-end within the MOSAIC framework.

6. Modify Base URL in Config: The config. json file is updated with the
specified base URL to configure the OpenSearch template URL.

7. Create a Zip Archive: A zip file of the configured instance is created and
stored in the temporary directory named after the session ID. The unique
instance ID and the URL to the zip file are returned, which allows users

22https:/ /nextjs.org
23https:/ / github.com/gitpython-developers/GitPython

80

https://nextjs.org
https://github.com/gitpython-developers/GitPython

4.7. MOSAIC2go

to download and subsequently share their configured search engine. The
cloned repository is removed after the zip file is created to free up space.

By providing a REST API, the use of MOSAIC2go is not limited to the existing
web user interface, but it can also be used with other services. For instance, it
is also possible to configure and download a tailored MOSAIC search engine
instance using command-line tools such as cURL?4.

Configured MOSAIC search engine instances are stored on the file system
for 24 hours until they are deleted. Furthermore, the download link of these
customized instances is publicly accessible, thus they can be shared with others.

4.7.3. Visual Editor

MOSAIC2go provides visual configuration options that facilitate the customiza-
tion and management of search engines. Figure 4.8 depicts how users can select
from a variety of provided index partitions and metadata modules, which
enables tailored configurations to meet specific requirements and preferences.
Additionally, the platform allows users to personalize their search engine by
specifying a title, choosing a color theme, and defining the URL for their own
search service. The available index partitions and the modules are fetched from
the configuration service via the APIL

Upon completion of the customization process, users can download the
configured search engine as an archived file. This archive is available for 24
hours, during which users can download it again or share the download link
with others. The archived file contains the source code of the customized
MOSAIC instance. Once extracted, the downloaded source code of the MOSAIC
instance can be executed by either running the provided scripts build. sh and
start.sh as outlined in Section 4.6 or by creating a Docker container utilizing
the Dockerfile shipped in the archived file.

This functionality simplifies the distribution and deployment of custom
search engines. Moreover, it encourages collaboration and sharing within the
community. By streamlining the customization process and providing easy
access to downloadable search engines, MOSAIC2go enhances the usability and
accessibility of the MOSAIC framework.

24https:/ /curl.se

81

https://curl.se

4. Development

MOSAIC2g0

Welcome to the OpenWebSearch.eu MOSAIC2go configurator! Customize your personalised search engine
based on the MOSAIC framework step by step based on your preferences.

Step 1: Select Index(es)

Choose one or multiple indices that should be served by your search engine. It is not required to select one of the
provided indices since you can create your own index or download an existing index using Owler at a later date.

Simple Wiki [Unis Graz] [Unis Austria]

DLR Prototype DLR Prototype Extended OWI Snapshot

Step 2: Select Modules

Choose one or multiple metadata modules that should be included in your personal search engine.

[Core (Required)] [Shared (Required)] Geo

[Keywords]

Step 3: Customize the Web User Interface

Select your own title and a color for the surrounding area of the title.
Title

My Personal Search Engine

Surrounding Color

#8b61ff

Step 4: Set Search Engine URL

Set the base URL of your search engine if you already know the URL that will expose the search service.

Base URL

https://my-personal-search-engine.eu/
Download as e file

Generated Search Engines

The following search engines have been generated. You can download the archive file for each search engine instance.
The instances will be available for 24 hours.

mosaic_q0dBQImWije.zip & Download as arcl file

OpenWebSearch.eu

The project OpenWebSearch.EU has received European Union's Horizon research and innovation programme under grant agreement No 1010700

Figure 4.8.: Web user interface of MOSAIC2go, allowing users to create their own search engine
by selecting or deselecting index partitions and modules

82

4.8. Summary

4.8. Summary

This chapter describes the development of the MOSAIC framework, particu-
larly highlighting its modular approach and the various components involved.
The MOSAIC framework is designed to leverage the OWI from the OpenWeb-
Search.eu initiative, in order to provide a scalable and customizable web search
engine. The development phase is crucial for integrating various features and
ensuring the system’s overall functionality.

The core application of MOSAIC is central to its operation and encompasses
components responsible for query processing, matching and ranking, metadata
filtering, and enrichment. Query processing involves parsing and analyzing user
queries to ensure precise search results. The matching and ranking component
utilizes algorithms to retrieve and rank documents based on their relevance to
the query. Metadata filtering allows for refined search results based on specific
criteria, while metadata enrichment enhances the information provided in the
search results.

Furthermore, the REST API serves as the primary interface for interacting
with the MOSAIC framework. It offers endpoints for performing search queries,
retrieving search results in both JSON and XML formats, and obtains detailed
index information. This API ensures that users can effectively communicate
with the search engine and retrieve relevant data as needed.

The web user interface within the MOSAIC framework provides a basic yet
user-friendly platform for conducting searches. It features a search control area
for query input and filtering options and displays search results in a list format,
including titles, snippets, URLs, and other relevant metadata. This interface
ensures that users can easily interact with the MOSAIC back-end and access
the information they need.

MOSAIC’s modular design allows for flexibility and customization, with
metadata modules handling URL query parameters and enriching search results.
Based on the modular design of the framework, MOSAIC2go was developed as a
tool that enables users to create and configure their own search engine instances
easily. This modular approach ensures that the system can be tailored to meet
specific user requirements and integrate seamlessly into the OpenWebSearch.eu
ecosystem.

Usability and accessibility are key considerations during the development of
the MOSAIC framework, focusing on both novice and experienced developers.
The framework can be used out of the box with Docker images or customized
through direct modifications to the source code. This versatility ensures that
MOSAIC is accessible to a wide range of users and can be adapted to various
use cases and technical environments.

The development of the MOSAIC framework has established a comprehensive
and adaptable foundation for web search engines that are based on the OWI. By
integrating modular components, user interfaces, and an API, the framework

83

4. Development

meets diverse user needs and technical requirements. This phase provides a
solid groundwork for future improvements and further integration within the
OpenWebSearch.eu initiative.

84

5. Evaluation

This chapter presents the two studies conducted to evaluate the MOSAIC
framework. The initial Section 5.1 outlines the scope of these studies and
depicts the evaluation goal. The subsequent Section 5.2 details the practical user
study conducted at a hackathon event, where MOSAIC was a central focus, as
well as the focus group discussions held with experts as described in Section
5.3. Furthermore, Section 5.4 discusses the findings from the two studies, and
Section 5.5 delves into identified limitations in the evaluation of the MOSAIC
framework.

5.1. Scope and Evaluation Goal

The scope of MOSAIC’s evaluation encompasses two primary studies designed
to assess the technical approach, the modular design and the applicability and
acceptance of the system. Therefore, this chapter will significantly contribute
to addressing the RQs outlined in Section 1.1 by providing valuable insights
and empirical data. Focusing specifically on the strengths and weaknesses of
the MOSAIC framework, a partial SWOT analysis was conducted, while the
opportunities and threats aspects were not included (Mintzberg, 1998).

The first study is a user-focused evaluation conducted during a hackathon
event, with the aim to gather feedback from participants with varying levels
of technical expertise. This study seeks to understand how easily users can
adopt, customize, and utilize the framework in real-world scenarios. The second
study involves focus group discussions with experts in the field of information
retrieval and web search technologies. These discussions aim to provide a
deeper technical evaluation of the framework’s architecture, modularity, and
applicability. By combining insights from both user perspectives and expert
analyses, the evaluation aims to provide a holistic assessment of MOSAIC’s
strengths, opportunities and areas for improvement.

5.2. Practical User Study

This section details the practical user study conducted to evaluate the MOSAIC
framework’s usability, functionality and applicability. The hackathon provided
a practical setting to observe how participants interact with and implement the
framework in applied scenarios. The study was carried out within a one-day

85

5. Evaluation

hackathon event in the context of the OpenWebSearch.eu, organized by the
Cognitive and Digital Science (CoDiS) Lab, a research group of the Institute of
Interactive Systems and Data Science (ISDS) at the Graz University of Technol-
ogy. It took place on Friday, 24 May 2024, in the institute building in Sandgasse
36 in Graz, Austria, and online. The hackathon started at 09:00 CEST in the
morning and ended at 18:00 CEST in the evening.

5.2.1. Participants

The practical user study for evaluating the MOSAIC framework was conducted
during a hackathon event involving a total of 13 participants. Eleven participants
were computer science students from Graz University of Technology (84.62%),
with six enrolled in bachelor’s programmes (46.15%) and five in master’s
programmes (38.46%). Additionally, two external participants (15.38%), both
holding master’s degrees in computer science, participated in the practical
user study. The gender distribution among the participants included 2 women
(15.38%) and 11 men (84.62%). Participants were divided into four teams, with
to two to four people per team, including one team that participated online.

Of the 13 participants in total, eleven (84.62%) also completed a questionnaire
at the end of the hackathon. The distributions of these participants’ self-rated
experience in computer science and their knowledge of web search systems are
visualized in Figure 5.1a and Figure 5.1b respectively, both using a score range
from 1 (less experienced) to 5 (highly experienced).

Distribution of Level of Experience in Computer Science

6 Distribution of Knowledge of Web Search Engines

5

Number of Participants
w N
Number of Participants

~

ol
1 2 3 4 5 o
Experience Level

a) Distribution of level of experience in computer sci-
ence b) Distribution of knowledge of web search engines

1 2

4 5

3
Knowledge Level

Figure 5.1.: Practical user study participants’ self-assessed levels of experience and knowledge
in computer science and their knowledge of web search engines

5.2.2. Materials and Methods

The hackathon began with a presentation introducing participants to the con-
cepts of web search, the OpenWebSearch.eu project, and the MOSAIC frame-
work. Participants were provided with technical details and various possibilities

86

5.2. Practical User Study

for utilizing MOSAIC in their applications. Throughout the event, participants
had access to general explanations, documentation, and developer guides to
support their development activities. Collaboration and communication were
facilitated through a cloud folder for each team, a dedicated Discord" channel,
and a Jitsi* meeting room for online participants.

5.2.2.1. Team Projects

The organizers suggested various development possibilities to guide partic-
ipants and maximize the potential applications of the MOSAIC framework.
These suggestions included:

Create Your Own Index Partition: Participants could create their own
index partition by moving or copying CIFF and Parquet files to the des-
ignated directory. This involved serving the files using CLI options to
integrate them into the MOSAIC framework.

Create or Improve a Front-End: Participants were encouraged to modify
the existing front-end located in the front-end directory or to create a
new web user interface utilizing the REST API. This allowed for enhanced
customization and improved user interaction.

Create an Application Using MOSAIC as a Service: This option involved
integrating a new index partition into MOSAIC, modifying or creating a
front-end, and accessing the REST API to use MOSAIC as a service. This
approach demonstrated how MOSAIC could be utilized as a back-end
service for various applications.

Undertake Web Data Analysis: Participants could use existing or locally
created index partitions to perform web data analysis, such as topic model-
ing or implementing PageRank. This showcased the analytical capabilities
of the MOSAIC framework.

Feed a Large Language Model: This involved using existing or locally
created index partition to develop a use case and analysis goal, thereby
demonstrating the integration of MOSAIC with advanced language mod-
els for enhanced information retrieval.

Create a New Module: Participants were encouraged to follow the steps
in the developer guide to create new modules. An example provided was
using the existing, at that time unused metadata column domain_label
in the Parquet file, allowing for further customization and extension of
the framework.

Thttps:/ /discord.com
https:/ /meet jit.si

87

https://discord.com
https://meet.jit.si

5. Evaluation

5.2.2.2. Questionnaire

The questionnaire used in the study was created with Tally3 and included a
range of questions designed to gather comprehensive feedback from partici-
pants. It began with demographic questions to capture basic information about
the participants. Following this, the questionnaire addressed various aspects
of the MOSAIC framework, including the approach, technical concept, and
design. Questions were also included to assess the usability and applicability
of MOSAIC, focusing on what participants were able to accomplish with the
framework. Additionally, participants were asked to evaluate the strengths and
weaknesses of MOSAIC and provide suggestions for improvements.

Participants were asked to rate the following five statements with 1 (Strongly
Disagree) to 5 (Strongly Agree):

* | appreciate the concept of OpenWebSearch.eu to create vertical search
engines.

The technical concept and design of MOSAIC is useful to create own
applications.

The installation of MOSAIC is easy.

Using MOSAIC in the development process is easy.

* When using and integrating MOSAIC, no problems occurred.

To assess the internal consistency of these five items, Cronbach’s Alpha was
used (Cronbach, 1951). The calculated value of « = 0.79 indicates acceptable
reliability. The 95% confidence interval of [0.498,0.935] further supports the
reliability, which indicates a reasonable range within which the true value of «
lies.

In addition, participants provided responses using predefined options to the
following questions:

What did you do with MOSAIC?

From a developer’s point of view, to what extent would you be willing to
work and share the experience with MOSAIC?

In your opinion, what are MOSAIC’s strengths and/or weaknesses?
What features do you think are missing in MOSAIC?

What suggestions for improvement do you have?

Eventually, participants were able to share their thoughts about strengths,
weaknesses, and room for improvement through open-ended responses to the
following questions:

* In your opinion, what are MOSAIC’s strengths and/or weaknesses?
¢ What features do you think are missing in MOSAIC?
* What suggestions for improvement do you have?

3https:/ /tally.so

88

https://tally.so

5.2. Practical User Study

The full questionnaire used for the practical user study, including selectable
answer options, can be seen in Appendix B.

5.2.3. Procedure

The hackathon began with an introductory presentation addressing general
web search principles, the OpenWebSearch.eu project’s approach, and the
concept of the MOSAIC framework, followed by team formation and idea
generation sessions. Participants were tasked with creating applications using
MOSAIC or developing extensions or modules for the framework. After initial
brainstorming, each team presented their ideas in a plenary session, receiving
feedback and suggestions. The development phase of their projects then began,
with organizers providing technical support and further discussions to refine
the ideas. Throughout the day, participants engaged in collaborative problem-
solving and utilized the provided materials and tools to develop their projects.
The event concluded with teams presenting their final work, followed by a
voting session* using Menti’® to evaluate the results within this setting. Each
participant was also asked to complete a questionnaire before the voting session
in order to provide feedback on their experience with MOSAIC, covering aspects
such as ease of installation, usability, and potential improvements. Furthermore,
all participants were awarded a prize for their involvement in the hackathon.
The tasks of the hackathon and the time allocated for each are detailed in Table
5.1. In general, this approach ensured a thorough evaluation of the framework
from both technical and user-centric perspectives.

Task Allocated Time
Group Formation 15 minutes
Idea Generation 60 minutes
Presentation of Ideas’ 15 minutes
Working Session 285 minutes
Online Questionnaire 15 minutes
Presentation of Results’ 45 minutes
Voting Session and Prices’ 15 minutes

“Plenary session, broadcasted to online participants

Table 5.1.: Overview of hackathon tasks and allocated time for each task

4Each participant was allowed to award 1 (moderate) to 10 (excellent) points for the
evaluation of each team
Shttps:/ /www.mentimeter.com

89

https://www.mentimeter.com

5. Evaluation

5.2.4. Results

This section presents the outcomes of the hackathon event, focusing on the
projects developed by the participants during the hackathon and the feedback
gathered through the questionnaire.

5.2.4.1. Project Outcomes

The hackathon’s project outcomes are described in the following, outlining each
team’s objectives, addressed problems, as well as the technical development
details. In addition, Table 5.2 synthesizes the outcomes and numerous technical
aspects regarding the MOSAIC framework.

Team 1: Improve Search Queries and Results Summarization with Zero-Shot
LLMs®

¢ Use Case: Enhance user search queries and provide useful summaries to
deliver interesting insights and valuable information, even if the original
query was vague.

* Addressed Problem: Users often enter vague or poorly defined search
queries. By using zero-shot LLMs, the team aimed to enhance and refine
these queries and provide valuable summaries.

¢ Development:

— A QueryOptimizer refines and expands user queries using a zero-shot
prompt for a LLM.

— An online demonstration version of MOSAIC searches five separate
instances using the original query, the optimized query, and three
sub-queries via REST API.

— Resulting text snippets from these searches are processed by a Sum-
marizer in three ways: original query results, improved query results,
and combined queries.

- Both the QueryOptimizer and Summarizer are zero-shot prompts for a
LLM.

— Technical details include using the open-mixtral-8x7b model via
Mixtral” API, LangChain framework®, and Python versions 3.9 and
3.11 with a LLM temperature of 0.7.

®https:/ /github.com /vedelsbrunner/ MOSAIC-LLM
7https:/ /mistral.ai
8ht’rps: / /www.langchain.com

90

https://github.com/vedelsbrunner/MOSAIC-LLM
https://mistral.ai
https://www.langchain.com

5.2. Practical User Study

Team 2: MOSAIC-Lens?

* Use Case: Develop a mobile application that uses a camera to take a
picture of an object and provides a short explanation of the object as a
text summary, which is then read aloud by the phone.

* Addressed Problem: Providing search functionality using a picture taken
with the camera of a mobile device (similar to the concept of Google
Lens™).

¢ Development:

— An Android" app developed with Flutter'? allows users to take a
photo.

— The photo is sent to a back-end service where the image is analyzed
and translated into a description using the image-to-text library
xtuner'3, based on the LLaVA-LLama3-8b model™.

— The description is sent to MOSAIC as a search query, and the text
snippets of the top three search results are used to retrieve a short
summary from a summarizer.

— A BART model®> fine-tuned on the CNN/Daily Mail dataset'® was
used for summarization, and the text summary is translated to speech
using the built-in Flutter library flutter_tts'7.

— The back-end server uses the Express.js'® framework.

— Topics were extracted from the plain text column of the Parquet file
using BERTopic' and stored in a new column in the Parquet file. A
new MOSAIC module was created to filter search results based on
the extracted topics.

Team 3: Next.js Front-End with MOSAIC API and OpenAl GPT-3.520

e Use Case: Improve and enrich the front-end and user experience of MO-
SAIC by providing a new design and adding functionality including text
summarization, translation, and re-ranking of the results.

* Addressed Problem: The current version of the MOSAIC front-end is in a
very basic development stage. Users expect a better web user interface.

Shttps:/ / github.com/NeXTormer/ows-hackathon-2024
https:/ /lens.google/

"Thttps://android.com

https:/ /flutter.dev

Bhttps:/ /github.com/InternLM/xtuner

Mhttps:/ /llama.meta.com

IShttps:/ /huggingface.co/facebook/bart-large-cnn
16h’ttps: / / paperswithcode.com/dataset/cnn-daily-mail-1
7https:/ /pub.dev/packages/flutter_tts

Bhttps:/ /expressjs.com

Yhttps:/ /maartengr.github.io/BERTopic/index.html
2%https:/ / github.com/thenextmz/Hackathon-OpenWebSearch.eu

91

https://github.com/NeXTormer/ows-hackathon-2024
https://lens.google/
https://android.com
https://flutter.dev
https://github.com/InternLM/xtuner
https://llama.meta.com
https://huggingface.co/facebook/bart-large-cnn
https://paperswithcode.com/dataset/cnn-daily-mail-1
https://pub.dev/packages/flutter_tts
https://expressjs.com
https://maartengr.github.io/BERTopic/index.html
https://github.com/thenextmz/Hackathon-OpenWebSearch.eu

5. Evaluation

¢ Development:

— A back-end developed to coordinate the improvement of search
results, adding summaries and translations generated by GPT-3.5*"
LLM.

— The original MOSAIC back-end was extended to add the possibility
of re-ranking the search results by date.

— The results are displayed by a front-end created with Next.js.

— The implementation was demonstrated at the end of the hackathon.

Team 4: OWS X Enhanced??

¢ Use Case: Enhance the search user interface by providing summaries of
retrieved search results and summarizing the most prominent narratives
present in the search results using LLM capabilities.

¢ Addressed Problem: Currently, the MOSAIC front-end only offers “com-
mon” web search. The proposed solution offers a new way for users to
interact and explore information from retrieved search results.

¢ Development:

— Retrieved a set of web documents for a specific user query through
the MOSAIC framework.

— Pre-processed the retrieved documents by clustering them into similar
narratives and topics (topic modeling) and then passing them into a
LLM chain.

— The goal of the LLM chain is to create summaries of retrieved docu-
ments or topic clusters using LangChain, which includes different
steps of text processing and prompt engineering.

— Due to time constraints and integration problems, the implementation
could not be demonstrated.

— Initial proposal for LLMs included Llama 2 and Mistral 7B.

5.2.4.2. Questionnaire Analysis

The analysis of the questionnaire responses involved both statistical and quali-
tative methods. A statistical analysis was performed to quantify the responses
to closed-ended questions, thereby providing insights into overall trends and
patterns. Additionally, a qualitative analysis of the free-text answers was con-
ducted to capture more detailed and nuanced feedback, thus common themes
and specific suggestions from the participants could be identified.

Figure 5.2 illustrates the distribution of participant ratings for the five state-
ments outlined in Subsection 5.2.2 of the MOSAIC framework. In addition,
Table 5.3 summarizes various aspects of MOSAIC asked in the questionnaire.

2Thttps:/ /platform.openai.com/docs/models
22https:/ / github.com/johndolier/OWS-Hackathlon

92

https://platform.openai.com/docs/models
https://github.com/johndolier/OWS-Hackathlon

5.2. Practical User Study

Team 1 Team 2 Team 3 Team 4
(online)
Index used existing | updated with | used existing | used existing
Partition | ones columns on | ones ones
topics (AI)
Query improvement, | image recogni- | unmodified unmodified
expansion tion (LLM)
(LLM)
MOSAIC | unmodified created new | updated re-| unmodified
Search module for | ranking
Service topic filtering
and enrich-
memnt
Search summarization| summarization| summarization| summarization
Result (LLM) (Ilm) and text- | (LLM), trans-| (LLM), classi-
to-speech lation (LLM) | fication
(TTS)
Web User | unmodified Android new front-end | concept of vi-
Interface application (Next.js) sualization
(Flutter)
with camera
(image recog-
nition) and
TTS function-
ality
Outputs | concept, im-| concept, im-| concept, im-| concept, par-
plementation, | plementation, | plementation, | tial implemen-
demonstrator | demonstrator | demonstrator | tation
Voting 8.4 points 9.3 points 7.2 points 6.3 points
(2" place) (1% place) (3™ place) (4™ place)

Table 5.2.: Summary of the projects developed by participants during the hackathon, highlight-
ing the diverse applications and enhancements made to the MOSAIC framework

93

5. Evaluation

Aspect n X s

I appreciate the concept of OpenWeb- 11 4.73 047
Search.eu to create vertical search engines.
The technical concept and design of MO- 11 4.64 0.50
SAIC is useful to create own applications.

The installation of MOSAIC is easy. 11 4.00 1.10
Using MOSAIC in the development process 9 4.56 0.53
is easy.

When using and integrating MOSAIC, no 10 3.90 0.99
problems occurred.

Table 5.3.: Statistical analysis of various questionnaire aspects of MOSAIC, sample size (n),
mean (X), and standard deviation (s)

Ratings Distribution for Various Aspects of MOSAIC

Rating
B Strongly Disagree

| appreciate the concept

of OpenWebSearch.eu to 1 3
create vertical search engines.
The technical concept and
design of MOSAIC is useful |
to create own applications.

The installation of MOSAIC | 3
is easy.

Disagree
Neutral

Agree
B Strongly Agree

Using MOSAIC in the | 4
development process is easy.

When using and integrating | | 2
MOSAIC, no problems occurred.

0 2 4 6 8 10
Number of Responses

Figure 5.2.: Practical user study participants’ response on different aspects of MOSAIC

04

5.2. Practical User Study

What did you do with MOSAIC?

| used it as service (i.e., | used
the REST API to send queries and get responses)

| changed something in the source code

| added and used another/a new index

| modified an existing module

| added a new module

| modified the existing front-end

| created a new front-end

| integrated MOSAIC with an LLM

0 | 2 3 4 5 6
Number of Participants

Figure 5.3.: Actions taken by practical user study participants with MOSAIC

Each bar represents the number of responses in different rating categories:
Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree. The majority of
participants rated the concepts of OpenWebSearch.eu and MOSAIC highly, with
a substantial number indicating Agree and Strongly Agree. However, there was a
more varied response for the ease of installation and problem-free usage, with
some participants indicating Disagree and Neutral.

Furthermore, Figure 5.3 depicts the distribution of various actions taken by
participants while working with the MOSAIC system. The participants had the
option to select multiple actions they performed. The histogram illustrates that
the most common action was using MOSAIC as a service, followed by creating
a new front-end and integrating MOSAIC with a LLM.

The distribution of developers” willingness to work with and share their
experiences with MOSAIC is highlighted in Figure 5.4. The participants were
asked to indicate their level of willingness across several contexts and could
select multiple options.

The options included using MOSAIC in a private or non-professional en-
vironment, using it in a professional environment, finding MOSAIC helpful
for current or future tasks, willingness to modify or improve MOSAIC in the
future, and recommending MOSAIC to other developers. The chart shows that
the highest willingness is for modifying or improving MOSAIC in the future,
followed by using it in a professional environment and recommending it to
other developers.

Table 5.4 summarizes the qualitative analysis of MOSAIC, focusing on
strengths, weaknesses, and areas for improvement as reported by participants.
The strengths of MOSAIC include its quick and straightforward installation and

95

5. Evaluation

From a developer's point of view, to what extent would you
be willing to work and share the experience with MOSAIC?

| would be willing to use MOSAIC as a
service in a private/non-professional environment

| would be willing to use MOSAIC as a
service in a professional environment

MOSAIC can be helpful to complete
current or future tasks

| would be willing to modify or
improve MOSAIC in the future

| would be willing to recommend
other developers to use MOSAIC

0 2 3 4 5 6
Number of Participants

Figure 5.4.: Willingness of practical user study participants to work and share experience with
MOSAIC

Category Observations

¢ Easy and fast installation and development

* Flexibility in integration with other systems and ap-
plication scenarios

¢ Efficient and transparent search capabilities (i.e., ro-
bust API for querying and receiving responses)

* Modular architecture

Strengths

¢ Limited availability of data (i.e., index partitions)

¢ Limited performance of online demonstration version

* Some components and features are not fully docu-
mented

Weaknesses

* Proper ranking and re-ranking capabilities
¢ Enhanced web user interface
Room for * Direct integration of LLMs and RAG features
Improvement ¢ Improved documentation for advanced features
¢ Pagination feature

Table 5.4.: Qualitative analysis of MOSAIC’s strengths, weaknesses and room for improvement,
based on practical user study participant feedback

96

5.3. Focus Groups

development process, flexibility in system integration, efficient and transparent
search capabilities, and modular architecture. Identified weaknesses involve
limited data availability, performance issues with the online demo version, and
incomplete documentation for some features. Participants suggested improve-
ments such as better ranking and re-ranking capabilities, an enhanced web
user interface, integration of LLMs and RAG features, and the addition of a
pagination feature.

5.3. Focus Groups

Following the practical user study conducted at the hackathon event, focus
group discussions were held to gain deeper insights into the perception and
assessment of the MOSAIC framework. These discussions aimed to capture the
perspectives of experts and gather detailed feedback on various aspects of the
system. The following section details the methodology, participants, and key
findings from these focus group sessions.

5.3.1. Participants

All experts who participated in the focus group discussions were members
of the OpenWebSearch.eu consortium. The group comprised a diverse set of
experts, including three representatives from Radboud University (30.00%),
one from the University of Passau (10.00%), three from the German Aerospace
Center (DLR) (30.00%), one from CERN (10.00%), and two from the Webis
research group (20.00%). Among the ten participants, seven held a master’s
degree (70.00%) and three had a doctorate (30.00%). Four participants were PhD
students (40.00%), four identified their profession as researchers (30.00%), and
three were professors (30.00%). The gender distribution among the experts that
participated in the focus group discussions included 3 women (30.00%) and 7
men (70.00%). This diverse representation fostered a multifaceted discussion
by incorporating the varied expertise and perspectives of the consortium’s
members.

The distributions of these participants” self-rated experience in computer
science and their knowledge of web search systems are visualized in Figure 5.5a
and Figure 5.5b, respectively, both using a score range from 1 (less experienced)
to 5 (highly experienced).

5.3.2. Materials and Methods

The focus group discussions were conducted online using BigBlueButton (BBB)
meeting rooms?3. Each partner from the OpenWebSearch.eu consortium was

#3https:/ /bigbluebutton.org

97

https://bigbluebutton.org

5. Evaluation

Distribution of Level of Experience in Computer Science Distribution of Knowledge of Web Search Engines

«

N

o
-

«

Number of Participants
N
o

Number of Participants

~

0

1 2 3 4 5 0-
Experience Level

1 2 3 4 5
Knowledge Level

a) Distribution of level of experience in computer sci-
ence b) Distribution of knowledge of web search engines

Figure 5.5.: Focus group participants’ self-assessed levels of experience and knowledge in
computer science and their knowledge of web search engines

able to select a 30-minute time slot during which their members could partici-
pate. Table 5.5 outlines the specific questions used to initiate dialogue during
the focus group discussions, categorized by technical approach, modular archi-
tecture, and applicability of MOSAIC.

Category Questions

Technical What is your opinion on the overall technical ap-

Approach proach of MOSAIC used as a web search engine?
What features do you expect from a web search
engine and what can be improved?

Modular What is your opinion of the modular approach of
Architecture MOSAIC? How good is this approach compared
to existing IR and web search frameworks?

Applicability How suitable is MOSAIC for creating your own
search application? Would you recommend MO-
SAIC to others for creating an own search appli-
cation?

Table 5.5.: Focus group discussion questions

Audio recordings of the sessions were made with the participants” consent
and were promptly deleted after the analysis was completed. Additionally,
participants were asked to complete a Tally questionnaire after the respective
discussion to provide quantifiable responses. In the questionnaire, participants
provided ratings for the following six statements using scores from 1 (Strongly
Disagree) to 5 (Strongly Agree):

1. The overall technical concept of MOSAIC makes sense regarding the

98

5.3. Focus Groups

development of search engines.

2. MOSAIC includes features that I would expect from a web search engine.

3. The modular approach of MOSAIC is sensible.

4. Compared to existing IR and web search systems, the modular approach
of MOSAIC is adequate.

5. MOSAIC is suitable for creating own search applications.

6. I would recommend others to use MOSAIC as a basis for developing their
own search engine.

Cronbach’s Alpha for the questionnaire statements 1 & 2,3 & 4, and 5 & 6
were calculated. The Cronbach’s Alpha values for the focus group discussion’s
measures varied significantly. The first value, for statements 1 & 2 , with
a = 0.8621 and a 95% confidence interval of [0.445,0.966], indicates a high level
of internal consistency, although some variability is present across different
samples. The second value, for statements 3 & 4, with « = 0.4483 and a wide 95%
confidence interval of [—1.221,0.863], suggests questionable internal consistency
and high uncertainty, and indicates potential issues with the reliability of this
measure. The third value, for measures 5 & 6, with &« = 0.9437 and a 95%
confidence interval of [0.773,0.986], demonstrates excellent internal consistency
and strong reliability, with minimal variability across samples.

5.3.3. Procedure

An email was sent to OpenWebSearch.eu project partners inviting them to select
a time slot for the focus group discussion. At the beginning of the online focus
group discussion, experts were informed that the discussion was part of the
evaluation of MOSAIC, alongside an already conducted practical user study.
They were briefed that the discussion would cover three categories within a
30-minute session, with approximately 10 minutes dedicated to each category.
Participants were also asked for their consent to audio record the session.
The moderators then posed the questions, and notes were taken throughout
the discussion. At the conclusion of the 30-minute session, participants were
requested to complete an online questionnaire. Table 5.6 outlines an overview
of the allocated time for each focus group discussion topic and the online
questionnaire. The audio recordings were deleted after the qualitative analysis
was completed.

5.3.4. Results

The results of the focus group discussion encompass a qualitative analysis of the
experiences, insights, and feedback provided by experts during the sessions, as
well as an analysis of the responses collected from the subsequent questionnaire.

99

5. Evaluation

Activity Allocated Time

Discussion about the technical 10 minutes
approach of MOSAIC

Discussion about the the modu- 10 minutes
lar architecture of MOSAIC

Discussion about the applicabil- 10 minutes
ity of MOSAIC

Online Questionnaire 5 minutes

Table 5.6.: Overview of focus group discussion activities and allocated time for each task

5.3.4.1. Qualitative Analysis

The focus group discussions highlighted several key strengths, weaknesses, and
areas for improvement of the MOSAIC framework, as summarized in Table
5.7. Participants appreciated the core functionality and modular approach of
MOSAIC, noting its effective integration of index partitions and compatibility
with the OpenWebSearch.eu project. The framework’s ease of use and suit-
ability for prototyping were also emphasized. However, several weaknesses
were identified, including limitations in advanced index management, poten-
tial complexity, and dependency on the CIFF format. The web user interface
and ranking system also required enhancements to meet user expectations.
To address these issues, participants suggested improvements such as better
index partition management, simplified examples, enhanced modular func-
tionality, and more advanced search features. Additionally, they recommended
extending metadata handling capabilities, providing detailed documentation
and blueprints, implementing automatic updates, and developing methods for
cross-index ranking.

5.3.4.2. Questionnaire Analysis

Following the focus group discussion, a questionnaire was sent to the partici-
pants and subsequently analyzed statistically. Figure 5.6 illustrates the distribu-
tion of scores for various evaluation items related to the MOSAIC framework,
as assessed by experts after the focus group discussion. The items evaluated
include the overall technical concept, the inclusion of expected features, the
sensibility and appropriateness of the modular approach compared to existing
IR and web search systems, the suitability for creating custom search applica-
tions, and the likelihood of recommending MOSAIC to others. The responses
are categorized into five levels: Strongly Disagree, Disagree, Neutral, Agree, and
Strongly Agree.

100

5.3. Focus Groups

Category Observations

* MOSAIC effectively serves as a basic search engine,
functioning as expected

* The plugin functionality and the ability to add or not
use modules/components are highly valued

* Easy integration of index partitions and compatibility
with the OpenWebSearch.eu project

 Particularly useful for prototyping and low-code devel-
opment

* Simplifies the creation of custom search engines, includ-
ing providing a nice installation process

* The framework offers satisfactory performance and
speed

* Potential for a community-driven approach where oth-
ers can add and share modules

Strengths

* Lacks support for index partition updates, additions,
and removals

* Risk of becoming too complex; currently suitable more
as a demonstrator than a production system

e Currently, rank results are separately for each index
partition rather than a combined ranking

* Dependency on CIFF format, since CIFF is not widely
known as an index exchange format

* The web user interface could be improved to show more
detailed search results and match the user’s expectations

* More suitable for specific use cases using OWI schema
(CIFF + Parquet), not for broader applications.

Weaknesses

* Need to effectively combine CIFF files and support vari-
ous metadata versions.
* Ensure modules and components can be accessed and
added easily via APIs
¢ Implement advanced search features such as bounding
Room for boxes in the web user interface and more filters
Improvement e Implement features for automatic downloading and up-
dating of modules and index partitions
* Offer blueprints and more detailed documentation for
creating custom modules and components
* Develop methods for combined ranking across multiple
index partitions and address duplication issues

Table 5.7.: Qualitative analysis of MOSAIC’s strengths, weaknesses and room for improvement,
based on focus group discussions

101

5. Evaluation

Distribution of Scores for MOSAIC Focus Group Measures

The overall technical concept Rating X
of MOSAIC makes sense regarding [W Strongly Disagree
the development of search engines. Disagree
Neutral
MOSAIC includes features that 3 Agree
| would expect from a search engine. B Strongly Agree
The modular approach of MOSAIC | |
is sensible.
Compared to existing IR and web
search systems, the modular | |
approach of MOSAIC is adequate.
MOSAIC is suitable for creating 3
own search applications.
| would recommend others to use
MOSAIC as a basis for developing 3
their own search engine.

0

N~

4 6 8
Number of Responses

S

Figure 5.6.: Distribution of ratings for the focus group evaluation measures of MOSAIC’s
technical concept, modular architecture and applicability

The majority of participants rated the technical concept and expected features
(items 1 and 2) positively, with most responses falling under the Agree and
Strongly Agree categories. Items 3 and 4, which focus on the modular approach
and its adequacy compared to existing systems, also received high ratings,
indicating strong support for MOSAIC’s modular framework. Items 5 and 6,
which assess the suitability of MOSAIC for creating custom search applications
and the likelihood of recommending it to others, were also rated favorably,
reflecting participants” confidence in MOSAIC’s practical applicability and
utility. Table 5.8 provides a statistical summary of these six evaluation items.

5.4. Discussion

This discussion aims to address the three RQs posed in this thesis by utilizing
insights from both the practical user study and the focus group discussions.

5.4.1. Technical Approach

RQ1: How can partitions of the OWI be effectively integrated and utilized to
enhance web search engine capabilities?

The integration and utilization of MOSAIC partitions were central to the
MOSAIC framework’s development. Through the dual use of CIFF files and
Parquet files, MOSAIC demonstrated a straightforwad and effective method
of importing and managing OpenWebSearch.eu index data. This approach
was evaluated through a practical user study at a hackathon event, where
participants were able to integrate index partitions seamlessly and use them

102

5.4. Discussion

=i
©w

Item n

The overall technical concept of MOSAIC 10 4.50 0.71
makes sense regarding the development of
search engines.

MOSAIC includes features that I would ex- 10 4.70 0.48
pect from a search engine.

The modular approach of MOSAIC is sen- 10 4.70 0.67
sible.

Compared to existing IR and web search 10 4.10 0.74
systems, the modular approach of MOSAIC
is adequate.

MOSAIC is suitable for creating own search 10 4.10 0.88
applications.

I would recommend others to use MOSAIC 10 4.30 0.95
as a basis for developing their own search
engine.

Table 5.8.: Statistical analysis of evaluation items rated by experts in a questionnaire after the
focus group discussions, sample size (1), mean (), and standard deviation (s)

for various search and analysis tasks. The integration process, supported by
scripts for importing CIFF files into Lucene and Parquet files into DuckDB,
showed that OWI partitions could be efficiently managed and queried within
the MOSAIC framework. The results from the hackathon indicated that users
found the system capable of handling comprehensive index data, thus the
potential to enhance web search engine capabilities, especially for vertical search
engines in demonstration and academic settings. Furthermore, the practical user
study highlighted that the framework’s ability to handle datasets in different
sizes without significant performance degradation was crucial for practical
applications.

Additionally, experts in the focus group discussions noted that the dual
approach of using both CIFF and Parquet files provided flexibility in managing
metadata and full-text search capabilities. They suggested that offering different
approaches, such as using only CIFF where metadata is included, relying solely
on DuckDB due to its support for full-text search, or even integrating alternative
methods such as Solr, could further enhance the framework’s adaptability. The
experts appreciated the ease of integrating OWI partitions and recognized this
flexibility as a significant advantage for various use cases and data manage-
ment requirements. They also mentioned that a few more concrete examples
showcasing the integration process would be beneficial. The core search func-

103

5. Evaluation

tionality was praised for its effectiveness, indicating that the integration of OWI
partitions enhances search engine capabilities. Experts suggested exploring
options in the direction of conversational search to further utilize these parti-
tions effectively. Additionally, they emphasized the importance of considering
appropriate ranking and re-ranking mechanisms in future developments, which
would further refine the search results and maximize the benefits of utilizing
OWI partitions.

The integration of OWI partitions through MOSAIC has demonstrated an
enhancement in web search engine capabilities by providing scalable and
tlexible indexing solutions. The feedback from both the user study and focus
group discussions confirms that MOSAIC effectively utilizes these partitions,
thereby addressing diverse search and retrieval needs while also presenting
opportunities for further improvements in areas such as the integration of
generative Al features including conversational search and common features
including proper ranking mechanisms.

5.4.2. Modular Design

RQz2: What are the advantages and limitations of incorporating a modular web
search engine architecture, and how does it affect the system’s flexibility and
scalability?

The modular architecture of the MOSAIC framework provides significant
advantages in terms of flexibility and scalability, as highlighted in both the
practical user study and focus group discussions. This design supports the
seamless integration of various components, such as metadata modules and
optional system components, which can be enabled or disabled according to
specific requirements. Both the practical user study and focus group discussions
indicated that this modular approach enhances customization and adaptability
to diverse use cases. Furthermore, the MOSAIC2go tool exemplifies this flexi-
bility by allowing users to create personalized vertical search engines through
the selection of specific modules and index partitions.

However, the focus group discussions also highlighted certain limitations.
Experts pointed out that while the modular approach is beneficial, it requires
careful management of dependencies and consistent updates to ensure compati-
bility across modules and metadata schema versions. Additionally, the potential
complexity of configuring and maintaining a modular system could be a barrier
for users with limited technical expertise. The discussions emphasized that pro-
viding more concrete examples such as blueprints and detailed documentation
would help mitigate these challenges and make the modular components more
accessible to a wider range of users.

The hackathon supported these findings, with participants noting the ease

104

5.4. Discussion

of adding or removing modules to suit specific needs, thus demonstrating the
practical benefits of a modular architecture. Additionally, this is underlined by
the fact that two participants in the practical user study added a new module,
and three integrated MOSAIC with a LLM. However, they also encountered
challenges related to managing the dependencies between modules and en-
suring smooth integration. Despite these challenges, the participants in the
practical user study and in the focus group discussions appreciated the mod-
ularity for prototyping and low-code development, which allowed for rapid
iteration and testing of new features.

Regarding scalability, the modular design of MOSAIC supports extensive
customization while maintaining performance. Users can tailor the system
by enabling or disabling specific modules, allowing the framework to scale
according to their needs. This flexibility ensures that MOSAIC can adapt to
various applications and user requirements by providing a scalable solution for
developing custom web search engines.

Despite some challenges, the modular architecture of MOSAIC offers signifi-
cant benefits in terms of flexibility, customization, and scalability. Subsequently,
it can be considered as a valuable framework for building tailored web search
engines. Addressing the identified limitations through improved examples,
documentation and user support can enhance its accessibility and effectiveness.

5.4.3. Usability and Applicability

RQ3: How applicable and user-friendly is a modular framework that utilizes
partitions of the OWI for developing and deploying custom web search engines
tailored to specific domains or needs?

Participants in the hackathon event found the framework to be highly ap-
plicable for creating custom web search engines tailored to specific domains.
The ability to create, select and integrate specific index partitions and modules
allowed users to build search engines that met their unique requirements. The
MOSAIC2go tool demonstrated how the framework could be used to easily
create and deploy a personalised search engines, even for users with minimal
technical expertise. This tool facilitated the customization process by provid-
ing a straightforward web user interface for selecting desired features, thus
lowering the barrier to entry.

The focus group discussions reinforced these findings, with experts noting
that the framework’s user-friendly architectural design and comprehensive doc-
umentation made it accessible for both novice and experienced developers. They
highlighted that MOSAIC’s modular design allows for extensive customization
without requiring in-depth technical knowledge, thereby making it suitable
for a wide range of users. Experts also suggested that the inclusion of more

105

5. Evaluation

intuitive interfaces and additional support resources could further enhance
usability.

The feedback from participants in the practical user study and focus group
discussions indicated a strong willingness to recommend the MOSAIC frame-
work to others. Many participants expressed positive experiences with MOSAIC,
particularly highlighting its flexibility and ease of use. They appreciated the
ability to tailor the framework to specific needs and found the process of creat-
ing custom search engines straightforward and efficient. This positive reception
was reflected in their willingness to share their experiences with colleagues and
peers.

Additionally, the feedback from practical user study participants empha-
sized that MOSAIC'’s straightforward installation process and clear instructions
contributed to its user-friendliness. Focus group discussion participants high-
lighted the framework’s potential in academic settings for teaching and research
purposes, further demonstrating its wide applicability. Despite these strengths,
there were suggestions for improving user support and simplifying the con-
tiguration process to enhance the overall user experience. Moreover, experts
reported that they do not think that MOSAIC should be applied in production
environments.

The MOSAIC framework’s modular approach and user-friendly design
demonstrate its applicability for developing and deploying custom web search
engines tailored to specific domains or needs. The framework is accessible to
users with varying levels of technical expertise. Implementing suggestions for
enhanced user support and simplified configuration will further improve its
usability and effectiveness.

5.5. Limitations

The evaluation of the MOSAIC framework, while thorough, has several limita-
tions that must be acknowledged. These limitations identify areas where future
research can enhance the assessment to provide a more comprehensive and
accurate understanding of the framework’s capabilities.

The relatively small sample size, with 13 participants in the practical user
study and 10 experts in the focus group discussions, is a notable limitation of
the evaluation. While these numbers provided valuable insights, a larger sample
size would offer a more comprehensive and statistically significant assessment
of the MOSAIC framework. Increasing the number of participants in future
studies would enhance the reliability of the findings and ensure that a wider
range of user experiences and expert opinions are considered.

Additionally, all focus group participants were partners in the research project.
Consequently, their feedback might be more favorable or less critical compared
to external, independent evaluators. To mitigate this, future studies should

106

5.6. Summary

include a more diverse group of participants, thereby encompassing a broader
range of perspectives from outside the project consortium. This approach would
provide a more balanced and comprehensive assessment of the framework’s
strengths and areas for improvement.

Another limitation is that participants in both the practical user study and
the focus groups used the index partitions provided to them rather than their
own data or data they were specifically interested in. This limitation may have
affected their ability to fully evaluate the framework’s capabilities and relevance
to their unique needs. Future studies should allow participants to use their
own datasets to provide a more thorough and personalized evaluation of the
MOSAIC framework.

Moreover, the evaluation was conducted within a controlled environment,
such as a hackathon event, which might not fully capture typical usage condi-
tions. Participants were aware that they were part of a study, which could have
influenced their behavior and feedback. Conducting evaluations in more varied
and naturalistic settings would help in understanding how the framework
performs under typical user conditions.

5.6. Summary

This chapter encompasses the evaluation of the MOSAIC framework through
two distinct studies: a practical user study and focus group discussions. The
practical user study was conducted within the context of a hackathon event,
where participants actively engaged with the MOSAIC framework to develop
custom search applications. The focus group discussions involved experts in
the field to provide a deeper analysis and critical insights into the framework’s
design, functionality, and potential improvements.

The scope of these evaluations aimed to comprehensively assess the MOSAIC
framework’s technical approach, modularity and applicability. By addressing
specific research questions, the studies should gather qualitative and quantita-
tive data that would inform the overall effectiveness and user satisfaction with
the framework. The evaluations also intended to identify areas for enhancement
and potential challenges that users might face when interacting with the system.

The practical user study engaged participants of varying technical back-
grounds, who utilized the MOSAIC framework during a hackathon event in
the context of the OpenWebSearch.eu project. This study focused on user expe-
riences, system performance, and the practical application of the framework
in different scenarios. Participants were tasked with developing projects using
MOSAIC, which allowed for a hands-on assessment of its capabilities and limi-
tations. The focus groups comprised experts who provided critical feedback on
the MOSAIC framework. These discussions highlighted strengths, weaknesses,
and opportunities for improvement. Therefore, they offered a comprehensive

107

5. Evaluation

understanding of the framework’s applicability in personal, academic and
professional settings. In addition, the expert evaluations were instrumental in
validating the technical approach and modular design of MOSAIC.

The discussion of the findings addresses the RQs posed in this thesis, thereby
integrating insights from both the practical user study and focus group dis-
cussions. For RQ1, which investigates the technical approach to utilizing OWI
partitions, feedback indicated that the dual approach of CIFF and Parquet
tiles is beneficial for flexibility and performance. Experts suggested additional
examples showcasing different configurations and pointed out the core search
functionality’s effectiveness. RQ2 explores the modular aspect of MOSAIC. Both
the hackathon participants and focus group experts highlighted the framework’s
flexibility and customization capabilities. However, they also noted challenges
such as the need for better documentation and user support to facilitate easier
integration and usage. RQ3 examines the applicability and usability of the
framework for developing custom search engines. The practical user study
demonstrated a high level of user satisfaction, with participants successfully
implementing new modules and integrating MOSAIC with LLMs. The focus
groups supported these findings and outlined the framework’s potential for
wide applicability and stressing the need for ongoing enhancements to improve
the user experience.

The evaluation of the MOSAIC framework has several limitations that must
be acknowledged. The relatively small sample size, with 13 participants in the
practical user study and 10 experts in the focus group discussions, limits the
comprehensiveness and statistical significance of the findings. Additionally, all
focus group participants were partners in the research project, which may have
influenced their feedback. Including a more diverse group of participants in
tuture studies would provide a more balanced assessment. Furthermore, the
evaluation was conducted within a controlled environment, which might not
fully capture typical usage conditions. Future studies should allow participants
to use their datasets and conduct evaluations in varied settings to provide a
more thorough and personalized assessment.

108

6. Lessons Learned

This chapter shares the significant learnings and perspectives gained across the
design and development phases of the MOSAIC framework, as well as during
the composition of this thesis. It examines crucial insights from the review
of literature and the processes of development and evaluation. Additionally,
personal reflections and observations are included.

6.1. Literature

The landscape of web search engines is vast and encompasses a multitude of
platforms tailored for diverse purposes. From general search engines such as
Google and Bing to specialized ones such as Google Scholar and PubMed?*, each
serves a unique function. Despite this variety, it remains challenging to find
an open-source search engine framework that encourages the utilization of an
openly available index, one that is feasible for covering substantial portions of
the web. This gap highlights the need for a solution that not only democratizes
access to web data but also provides the technical robustness required to handle
at least parts of the web’s expansive and dynamic nature. Nevertheless, creating
a web search engine architecture from the ground up would be redundant, as
the fundamental structures and methodologies are already well-established and
have been extensively studied.

One of the core insights from the literature is the importance of a robust
technical pipeline for efficient data handling. This involves the use of advanced
indexing techniques, such as the combination of CIFF and Parquet files, to
manage large-scale datasets effectively. The dual approach allows for flexibility
and performance optimization, which are crucial for handling the diverse
and extensive datasets typical of modern web search engines. Integrating
these formats into a modular architecture, as seen in the MOSAIC framework,
enhances scalability and customizability, which allows developers to tailor the
system to specific needs and data sources.

In the modern era, the integration of Al, particularly generative Al, has be-
come a crucial consideration in the design of web search engines. As outlined in
Chapter 2, traditional IR systems have evolved significantly with the emergence
of neural networks and deep learning models. These advancements enhance
the semantic understanding of queries and documents, thereby improving the

Thttps:/ /pubmed.ncbinlm.nih.gov

109

https://pubmed.ncbi.nlm.nih.gov

6. Lessons Learned

relevance and accuracy of search results. Generative Al, such as LLMs, offers
capabilities beyond pure retrieval. The literature particularly highlights the
potential of LLMs to improve query understanding, provide semantic search
capabilities, and even generate summaries of search results, which enrich the
user experience. Although the MOSAIC framework does not leverage these
technologies directly, this was considered in the design of the framework as it
provides easily accessible entry points and interfaces to integrate such advanced
Al technologies.

Moreover, the modular design of the MOSAIC framework, as mainly derived
from the literature, allows for seamless integration of various components,
including LLMs, through well-defined APIs and other interfaces. This architec-
ture ensures that new features can be added or existing ones can be modified
without disrupting the overall system. The literature underscores that such
a design is essential for maintaining flexibility and adaptability in a rapidly
evolving technological landscape.

6.2. Development

The development phase of the MOSAIC framework provided several critical in-
sights into the challenges and strategies associated with building a scalable and
modular web search engine. One key lesson was the importance of adopting a
robust yet flexible architecture that could accommodate various components
and functionalities without compromising performance. The use of a mod-
ular design allowed for the straightforward integration of new features and
improvements, which facilitates ongoing development and innovation.

Another significant lesson learned during the development was the neces-
sity of optimizing the codebase when processing large-scale datasets typical
of web search engines. Given the substantial volumes of data involved, even
minor inefficiencies can lead to significant performance issues. Performance
was continually improved throughout the development phase, thanks to regular
benchmarking and the valuable input of experts. Their insights were instru-
mental in identifying bottlenecks and optimizing critical components of the
system.

Flexibility to adapt to changes is essential when utilizing data from an ongo-
ing research project. Research projects are dynamic and often involve updates
to methodologies, data sets, and findings. This necessitates a development
approach that can quickly integrate new information and adjust to evolving
requirements. The MOSAIC framework’s modular design supported this need,
which allows for updates and modifications without disrupting the overall
system. By remaining adaptable and responsive to changes, the framework
could continuously utilize the most current and relevant data.

110

6.3. Evaluation

6.3. Evaluation

The practical user study provided valuable insights into the usability and
effectiveness of the MOSAIC framework. Participants from diverse backgrounds
interacted with the system, thus offering a broad perspective on its strengths
and areas for improvement. One key lesson was the importance of a user-
friendly web interface. Users consistently highlighted the need for intuitive
navigation and clear visual cues, which are crucial for enhancing the overall user
experience. Feedback from the study emphasized the necessity of simplifying
complex features and providing comprehensive help resources to support
users with varying levels of technical expertise. This insight underscored the
importance of prioritizing user-centric design principles in future iterations of
the framework. Additionally, the project outcomes from the hackathon event
were impressive, with all participants successfully integrating MOSAIC with
Al technologies. This demonstrated the framework’s versatility and potential
for innovative applications.

The experts in the focus group discussions provided a detailed evaluation
of the technical aspects of the MOSAIC framework, thereby complementing
the findings from the practical user study. Experts recognized the strengths of
the modular design and the easy integration of various components, which
enhanced flexibility and scalability. However, they identified a lack of index
management options, such as index updates, additions, or removals within
index partitions, as well as for merging index partitions. Additionally, they
suggested improvements in more detailed guidelines and concrete examples to
facilitate developer use and adoption. The acceptance of the system by experts,
indicating their willingness to use it in their work, reflects confidence in the
framework’s design and functionality.

6.4. Personal

Collaborating closely with experts throughout the development of the MO-
SAIC framework was highly valuable. The insights gained from their extensive
knowledge and experience provided a deeper understanding of the complex-
ities involved in creating a web search engine framework. This collaboration
not only enhanced the technical aspects of the project but also contributed
significantly to understanding the standards and methodologies involved in
advanced research.

Discussing web search technologies with real technical and non-technical
end users was also very insightful. These interactions highlighted the practical
needs and challenges faced by users, thereby providing a grounded perspective
that is often missing in purely theoretical work. Listening to their feedback and
observing how they interacted with the system emphasized the importance of

111

6. Lessons Learned

user-centric design and the need for intuitive, accessible interfaces.

112

7. Conclusion and Future Work

In this chapter, the thesis is concluded by summarizing the efforts made in
developing and evaluating the MOSAIC framework as a contribution to web
search technologies using index partitions from the OWI. Furthermore, it will
discuss potential future work aimed at enhancing and extending the capabilities
of the MOSAIC framework.

7.1. Conclusion

Web search engines play a crucial role in modern society as the primary means
for retrieving information from the vast expanse of the internet. They have
become indispensable tools for academic research, business decision-making,
and everyday information needs. The effectiveness and efficiency of web search
engines significantly impact how users interact with digital information, which
makes the development of advanced and transparent search technologies essen-
tial.

This thesis aims to contribute to the field of web search technologies by
developing the MOSAIC framework, which leverages the OWI from the Open-
WebSearch.eu initiative. The objective was to create a scalable, flexible, and
transparent search engine framework that addresses the limitations of existing
proprietary systems. By focusing on modularity and the utilization of openly
available data, this work seeks to enhance the accessibility, applicability and
customizability of web search technologies.

Based on a review of literature and existing IR and web search tools, the
design of the MOSAIC framework was informed by the need for flexibility,
usability and transparency in web search technologies. The review revealed that
existing proprietary systems frequently lack transparency and customization
options, which results in both user and developer dissatisfaction as well as
limited adaptability.

The design of the MOSAIC framework was shaped by these insights, thereby
leading to several key decisions to address the identified gaps. Modularity was
prioritized to ensure that different components could be developed, tested, and
integrated independently. The integration of OWI partitions from the OpenWeb-
Search.eu initiative, consisting of CIFF and Parquet files, was chosen to support
developers in creating their own search engines utilizing the OWI, but also to
promote openness and collaboration. Additionally, interfaces to core application

113

7. Conclusion and Future Work

components, such as metadata enrichment, and optional components, such as
the integration of emerging Al technologies, were designed to offer extensive
customization options, so users can tailor the search engine to their specific
needs.

To realize the design principles of the MOSAIC framework, Lucene was used
as index component to import CIFF indices, which enhances their programmatic
accessibility. Therefore, the core application of the framework was developed
using Java, and consequently, Maven modules were used to ensure a modular
architecture for the core application and additional components. To provide
an efficient and flexible solution for handling the structured metadata of OWI
partitions, DuckDB was utilized.

With this, one significant finding is that MOSAIC successfully demonstrates
an application how to make OWI partitions practical and usable for search
engines in a straightforward manner, particularly in personal and academic
contexts. This was evidenced by its practical application during the hackathon
and was also highlighted by experts in the field. Additionally, both the practical
user study and focus group discussions revealed that the modular architecture
of the system contributes to creating a customized search engine that is not
only easy to use as a service but also simple to configure and extend, thereby
offering flexibility and adaptability to meet diverse user needs.

Clearly, the approach of the MOSAIC framework shows considerable potential
to support developers creating customized search engines utilizing the OWI,
though it requires further investigation. By addressing deficiencies in existing
systems and integrating insights from literature and practical evaluations, the
framework offers a feasible approach to developing open, customizable, and
efficient web search solutions.

7.2. Future Work

Despite receiving positive feedback during the evaluation phase, the practical
user study and the focus groups also revealed several areas for improvement
and additions.

Currently, the MOSAIC framework supports a dual approach to index man-
agement, utilizing both CIFF files and DuckDB for data storage. As highlighted
by experts in the focus group discussions, future enhancements should provide
more flexibility by allowing users to choose their preferred index manage-
ment and access method. Options could include using a single CIFF file for
an index partition that contains all necessary data, importing all the index
partition data into DuckDB, or implementing alternative indexing approaches.
Additionally, introducing capabilities for index operations such as updating,
merging, and deleting partitions without a lot of effort would significantly
enhance the framework’s functionality. Expanding these capabilities would not

114

7.2. Future Work

only potentially improve performance and efficiency in certain cases but also
offer greater customization to meet diverse user needs and preferences.

Moreover, obtaining index partitions is a challenging task, particularly for
external users. To address this issue, future work should focus on integrating
the owilix" tool, which facilitates straightforward access and downloads of index
partitions. This integration will simplify the process for users to create a tailored
search engine with their desired index data.

Another significant area of development involves the implementation of
an effective ranking algorithm or ranking framework that considers multiple
factors in a scoring pipeline for indexed documents. The design of this scoring
pipeline should be inspired by existing solutions to leverage proven techniques
and best practices. Particularly highlighted by experts and also mentioned in
the practical user study, the ranking algorithm should be capable of functioning
not only within a single index partition but also across different index partitions
to ensure comprehensive and consistent search results.

Future enhancements of the MOSAIC framework should focus on integrating
advanced Al technologies. This includes a direct incorporation of LLMs to
improve query understanding and provide more relevant search results. Ad-
ditionally, Al-driven features such as automatic query expansion, relevance
feedback, and personalized search experiences can significantly enhance the
system’s functionality. By leveraging these advanced Al capabilities, MOSAIC
can offer a more intelligent and user-centric search experience.

Additionally, to encourage a user-centric search experience, it will be essential
to develop a comprehensive web user interface for the MOSAIC framework.
This interface should not only demonstrate the capabilities of MOSAIC but also
provide an interactive platform for end users to experience and evaluate its
features. By offering a user-friendly web user interface, MOSAIC can reach a
broader audience and facilitate more widespread adoption.

Expanding the use cases and applications of the MOSAIC framework is
essential for identifying additional requirements that should be integrated
into the system. By exploring diverse domains and real-world scenarios, the
framework can be adapted to meet the specific needs of various industries
and research fields. This process will uncover new functionalities and features
that are necessary for broader applicability. Consequently, such expansion
efforts will drive the continuous improvement and relevance of the MOSAIC
framework.

Eventually, advancing MOSAIC2go should aim to minimize the technical
expertise required for users to build their own web search engines. The goal is
to create a comprehensive user-friendly tool where users can easily click and
select index partitions and modules, configuring everything directly within the
web interface. This enhancement will make the framework more accessible to a
broader audience and allow individuals without extensive technical knowledge

Thttps:/ /opencode.it4i.eu/openwebsearcheu-public/owi-cli

115

https://opencode.it4i.eu/openwebsearcheu-public/owi-cli

7. Conclusion and Future Work

to leverage the capabilities of the OWI and MOSAIC. By focusing on this
development, MOSAIC2go can become an intuitive, all-in-one solution for
creating customized and tailored web search engines.

116

Bibliography

Adnan, K., & Akbar, R. (2019). An analytical study of information extraction
from unstructured and multidimensional big data. Journal of Big Data,
6(1), 138 (cit. on pp. 20, 24).

Ali, A. (2011). Sphinx search beginner’s guide. Packt Publishing Ltd. (Cit. on p. 36).

Alonso, O., Gertz, M., & Baeza-Yates, R. (2009). Clustering and exploring search
results using timeline constructions. Proceedings of the 18th ACM conference
on Information and knowledge management, 97—106 (cit. on p. 21).

Bacciu, A., Palumbo, E., Damianou, A., Tonellotto, N., & Silvestri, F. (2024). Gen-
erating query recommendations via llms. arXiv preprint arXiv:2405.19749
(cit. on p. 22).

Baeza-Yates, R., & Ribeiro-Neto, B. (2010, December). Modern information retrieval
(2nd ed.). Addison-Wesley Educational. (Cit. on pp. xxi, 5, 6, 8-10, 12).

Barcel6 Baeza, P. (2013). Querying graph databases. Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems,
175-188 (cit. on p. 14).

Bevendorff, J., Wiegmann, M., Potthast, M., & Stein, B. (2024). Is google get-
ting worse? a longitudinal investigation of seo spam in search engines.
European Conference on Information Retrieval, 56—71 (cit. on p. 42).

Biatecki, A., Muir, R., Ingersoll, G., & Imagination, L. (2012). Apache lucene 4.
SIGIR 2012 workshop on open source information retrieval, 17 (cit. on p. 32).

Bobi¢, A., Cheong, C., Filippou, J., Cheong, F., & Guetl, C. (2020). Infret: Enhanc-
ing a tool for explorative learning of information retrieval concepts. The
Impact of the 4th Industrial Revolution on Engineering Education: Proceedings
of the 22nd International Conference on Interactive Collaborative Learning
(ICL2019)-Volume 1 22, 67-78 (cit. on p. 35).

Bobi¢, A., Giitl, C., & Cheong, C. (2021). Infret: Preliminary findings of a tool for
explorative learning of information retrieval concepts. Cross Reality and
Data Science in Engineering: Proceedings of the 17th International Conference
on Remote Engineering and Virtual Instrumentation 17, 849-865 (cit. on
p- 35).

Bostoen, F. (2018). Online platforms and vertical integration: The return of
margin squeeze? Journal of antitrust enforcement, 6(3), 355-381 (cit. on
p. 26).

Bowman, C. M., Danzig, P. B.,, Hardy, D. R., Manber, U., & Schwartz, M. F.
(1995). The harvest information discovery and access system. Computer
networks and ISDN Systems, 28(1-2), 119-125 (cit. on pp. xxi, 15, 33, 34).

117

Bibliography

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search
engine. Computer networks and ISDN systems, 30(1-7), 107-117 (cit. on
pp. 16, 18, 24).

Buttcher, S., Clarke, C. L., & Cormack, G. V. (2016). Information retrieval: Imple-
menting and evaluating search engines. Mit Press. (Cit. on pp. 8, 9).
Cambazoglu, B. B., & Baeza-Yates, R. (2022). Scalability challenges in web search

engines. Springer Nature. (Cit. on p. 15).

Castella-Roca, J., Viejo, A., & Herrera-Joancomarti, J. (2009). Preserving user’s
privacy in web search engines. Computer Communications, 32(13-14), 1541
1551 (cit. on p. 27).

Chau, M., Fang, X., & Liu Sheng, O. R. (2005). Analysis of the query logs of
a web site search engine. Journal of the American Society for Information
Science and Technology, 56(13), 1363—1376 (cit. on p. 26).

Chen, J., Mao, J., Liu, Y., Zhang, F,, Zhang, M., & Ma, S. (2021). Towards a
better understanding of query reformulation behavior in web search.
Proceedings of the web conference 2021, 743-755 (cit. on p. 23).

Chirita, P.-A., Firan, C. S., & Nejdl, W. (2007). Personalized query expansion for
the web. Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, 7—14 (cit. on p. 23).

Croft, W. B., Metzler, D., & Strohman, T. (2010). Search engines: Information
retrieval in practice (Vol. 520). Addison-Wesley Reading. (Cit. on pp. 7, 8).

Croft, W. B., Turtle, H. R., & Lewis, D. D. (1991). The use of phrases and
structured queries in information retrieval. Proceedings of the 14th an-
nual international ACM SIGIR conference on Research and development in
information retrieval, 32—45 (cit. on p. 13).

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.
psychometrika, 16(3), 297-334 (cit. on p. 88).

Ding, Z., Gao, X., Guo, L., & Yang, Q. (2012). A hybrid search engine framework
for the internet of things based on spatial-temporal, value-based, and
keyword-based conditions. 2012 IEEE International Conference on Green
Computing and Communications, 17-25 (cit. on p. 27).

Dinzinger, M., Zerhoudji, S., Al-Maamari, M., Istaiti, M., Mitrovi¢, J., & Granitzer,
M. (2024). Owler: Preliminary results for building a collaborative open
web crawler (cit. on pp. 29, 30).

Efthimiadis, E. N. (1996). Query expansion. Annual review of information science
and technology (ARIST), 31, 121-87 (cit. on p. 8).

Ellis, D. (1989). A behavioural approach to information retrieval system design.
Journal of documentation, 45(3), 171212 (cit. on p. 6).

Fox, S., Karnawat, K., Mydland, M., Dumais, S., & White, T. (2005). Evaluating
implicit measures to improve web search. ACM Transactions on Information
Systems (TOIS), 23(2), 147-168 (cit. on p. 21).

Franceschet, M. (2011). Pagerank: Standing on the shoulders of giants. Commu-
nications of the ACM, 54(6), 92—101 (cit. on p. 25).

118

Bibliography

Gao, J., Xiong, C., Bennett, P., & Craswell, N. (2023). Neural approaches to conver-
sational information retrieval (Vol. 44). Springer Nature. (Cit. on p. 13).

Garg, D., & Sharma, D. (2012). Information retrieval on the web and its evalu-
ation. International Journal of Computer Applications, 40(3), 26—31 (cit. on
p. 18).

Geyik, S. C., Ambler, S., & Kenthapadi, K. (2019). Fairness-aware ranking in
search & recommendation systems with application to linkedin talent
search. Proceedings of the 25th acm sigkdd international conference on knowl-
edge discovery & data mining, 2221-2231 (cit. on p. 25).

Gollub, T., Stein, B., Burrows, S., & Hoppe, D. (2012). Tira: Configuring, exe-
cuting, and disseminating information retrieval experiments. 2012 23rd
International Workshop on Database and Expert Systems Applications, 151-155
(cit. on p. 31).

Granitzer, M., Voigt, S., Fathima, N. A., Golasowski, M., Guetl, C., Hecking, T.,
Hendriksen, G., Hiemstra, D., Martinovi¢, J., Mitrovi¢, J., et al. (2024).
Impact and development of an open web index for open web search.
Journal of the Association for Information Science and Technology, 75(5), 512—
520 (cit. on pp. xxi, 28, 29, 31, 33, 41).

Gudivada, V. N., Rao, D., & Paris, J. (2015). Understanding search-engine
optimization. Computer, 48(10), 43-52 (cit. on p. 16).

Guo, J., Fan, Y,, Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C,, Croft, W. B., &
Cheng, X. (2020). A deep look into neural ranking models for information
retrieval. Information Processing & Management, 57(6), 102067 (cit. on p. 26).

Hawking, D. (2004). Challenges in enterprise search. ADC, 4, 1524 (cit. on
p. 27).

Hearst, M. (2009). Search user interfaces. Cambridge university press. (Cit. on
pp- 9, 21, 22).

Hendriksen, G., Dinzinger, M., Farzana, S. M., Fathima, N. A., Frobe, M.,
Schmidt, S., Zerhoudi, S., Granitzer, M., Hagen, M., Hiemstra, D., et al.
(2024). The open web index: Crawling and indexing the web for public
use. European Conference on Information Retrieval, 130-143 (cit. on pp. 30,
31, 33).

Hiemstra, D. (2009). Information retrieval models. Information Retrieval: searching
in the 21st Century, 1-19 (cit. on p. 11).

Hyusein, B., & Patel, A. (2003). Web document indexing and retrieval. Computa-
tional Linguistics and Intelligent Text Processing: 4th International Conference,
CICLing 2003 Mexico City, Mexico, February 16—22, 2003 Proceedings 4, 573~
579 (cit. on p. 20).

Jones, C. B., Abdelmoty, A. L, Finch, D., Fu, G., & Vaid, S. (2004). The spirit
spatial search engine: Architecture, ontologies and spatial indexing.
Geographic Information Science: Third International Conference, GIScience
2004, Adelphi, MD, USA, October 20-23, 2004. Proceedings 3, 125-139 (cit.
on pp. xxi, 17).

119

Bibliography

Kathuria, M., Nagpal, C., & Duhan, N. (2016). Journey of web search engines:
Milestones, challenges & innovations. International Journal of Information
Technology and Computer Science, 12, 47-58 (cit. on p. 15).

Kleinberg, J. M. (1999). Hubs, authorities, and communities. ACM computing
surveys (CSUR), 31(4es), 5—es (cit. on p. 24).

Kononenko, O., Baysal, O., Holmes, R., & Godfrey, M. W. (2014). Mining modern
repositories with elasticsearch. Proceedings of the 11th working conference
on mining software repositories, 328—331 (cit. on p. 36).

Kopliku, A., Pinel-Sauvagnat, K., & Boughanem, M. (2014). Aggregated search:
A new information retrieval paradigm. ACM Computing Surveys (CSUR),
46(3), 1-31 (cit. on pp. 16, 17).

Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings
to document distances. International conference on machine learning, 957—
966 (cit. on pp. 13, 22).

Kvanvig, J. L. (2003). The value of knowledge and the pursuit of understanding.
Cambridge university press. (Cit. on p. 1).

Lewandowski, D. (2015). Evaluating the retrieval effectiveness of web search
engines using a representative query sample. Journal of the Association for
Information Science and Technology, 66(9), 1763—1775 (cit. on p. 14).

Lewis, D. D., & Jones, K. S. (1996). Natural language processing for information
retrieval. Communications of the ACM, 39(1), 92—101 (cit. on p. 13).

Lin, J., Mackenzie, J., Kamphuis, C., Macdonald, C., Mallia, A., Siedlaczek, M.,
Trotman, A., & de Vries, A. (2020). Supporting interoperability between
open-source search engines with the common index file format. Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2149—2152 (cit. on pp. 31, 32).

Liu, J., & Mozafari, B. (2024). Query rewriting via large language models. arXiv
preprint arXiv:2403.09060 (cit. on p. 23).

Liu, T.-Y,, et al. (2009). Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval, 3(3), 225-331 (cit. on p. 26).

Malki, Z. (2016). Comprehensive study and comparison of information retrieval
indexing techniques. International Journal of Advanced Computer Science
and Applications, 7(1) (cit. on p. 20).

Manning, C., & Schutze, H. (1999). Foundations of statistical natural language
processing. MIT press. (Cit. on p. 8).

Manning, C. D. (2008). Introduction to information retrieval. Syngress Publishing,
(cit. on pp. 7, 8, 10, 12, 14-16, 24).

Meng, W, Yu, C., & Liu, K.-L. (2002). Building efficient and effective metasearch
engines. ACM Computing Surveys (CSUR), 34(1), 48-89 (cit. on p. 26).

Mintzberg, H. (1998). Strategy safari: A guided tour through the wilds of
strategic management (cit. on p. 85).

120

Bibliography

Najork, M. A., Zaragoza, H., & Taylor, M. J. (2007). Hits on the web: How does it
compare? Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, 471—478 (cit. on p. 24).

Naseer, S., Rashid, U., Saddal, M., Khan, A. R., Abbas, Q., & Daadaa, Y. (2023).
Wsreb mechanism: Web search results exploration mechanism for blind
users. Applied Sciences, 13(19), 11007 (cit. on p. 22).

Ning, L., Liu, L., Wu, J., Wu, N., Berlowitz, D., Prakash, S., Green, B., O'Banion,
S., & Xie, J. (2024). User-llm: Efficient llm contextualization with user
embeddings. arXiv preprint arXiv:2402.13598 (cit. on p. 23).

Nioche, J. (2019). Stormcrawler: A collection of resources for building low-
latency, scalable web crawlers on apache storm. DigitalPebble Ltd (cit. on
p- 29).

Nussbaumer, A., Kaushik, R., Hendriksen, G., Giirtl, S., & Giitl, C. (2023).
Conceptual design and implementation of a prototype search application
using the open web search index (cit. on pp. 41, 49).

Olston, C., Najork, M., et al. (2010). Web crawling. Foundations and Trends® in
Information Retrieval, 4(3), 175246 (cit. on pp. xxi, 18, 19).

Ounis, 1., Amati, G., Plachouras, V., He, B., Macdonald, C., & Johnson, D. (2005).
Terrier information retrieval platform. Advances in Information Retrieval:
27th European Conference on IR Research, ECIR 2005, Santiago de Compostela,
Spain, March 21-23, 2005. Proceedings 27, 517-519 (cit. on p. 35).

Padaki, R., Dai, Z., & Callan, J. (2020). Rethinking query expansion for bert
reranking. Advances in Information Retrieval: 42nd European Conference on
IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings,
Part IT 42, 297304 (cit. on p. 15).

Page, L., Brin, S., Motwani, R., Winograd, T,, et al. (1999). The pagerank citation
ranking: Bringing order to the web (cit. on pp. 16, 24).

Papadopoulos, S., Saiz, P., Schwickerath, U., & Kleszcz, E. (2024). Architecting
the opensearch service at cern. EP] Web of Conferences, 295, 07006 (cit. on
p- 36).

Potthast, M., Gollub, T., Wiegmann, M., & Stein, B. (2019). Tira integrated
research architecture. Information Retrieval Evaluation in a Changing World:
Lessons Learned from 20 Years of CLEF, 123-160 (cit. on p. 31).

Qvarfordt, P., Golovchinsky, G., Dunnigan, T., & Agapie, E. (2013). Looking
ahead: Query preview in exploratory search. Proceedings of the 36th inter-
national ACM SIGIR conference on Research and development in information
retrieval, 243—252 (cit. on p. 21).

Raasveldt, M., & Miihleisen, H. (2019). Duckdb: An embeddable analytical
database. Proceedings of the 2019 International Conference on Management of
Data, 1981-1984 (cit. on p. 32).

Robertson, S. E. (1977). The probability ranking principle in ir. Journal of docu-
mentation, 33(4), 294—304 (cit. on p. 12).

121

Bibliography

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., Gatford, M.,
et al. (1995). Okapi at trec-3. Nist Special Publication Sp, 109, 109 (cit. on
p-9)-

Rose, D. E., & Levinson, D. (2004). Understanding user goals in web search.
Proceedings of the 13th international conference on World Wide Web, 13—-19
(cit. on p. 23).

Salton, G. (1983). Introduction to modern information retrieval. McGraw-Hill
(cit. on p. 11).

Salton, G., Fox, E. A., & Wu, H. (1983). Extended boolean information retrieval.
Communications of the ACM, 26(11), 1022-1036 (cit. on p. 11).

Schalkwyk, J., Beeferman, D., Beaufays, F., Byrne, B., Chelba, C., Cohen, M.,
Kamvar, M., & Strope, B. (2010). “your word is my command”: Google
search by voice: A case study. Advances in Speech Recognition: Mobile
Environments, Call Centers and Clinics, 61-9o (cit. on p. 21).

Seymour, T., Frantsvog, D., Kumar, S., et al. (2011). History of search engines.
International Journal of Management & Information Systems (IIMIS), 15(4),
47-58 (cit. on p. 15).

Shahi, D. (2016). Apache solr. Springer. (Cit. on pp. 34, 35).

Shamaeva, 1., & Galley, D. M. (2021). Custom search-discover more:: A complete
guide to google programmable search engines. Chapman; Hall/CRC. (Cit. on
p- 37)-

Shou, L., Bai, H., Chen, K., & Chen, G. (2012). Supporting privacy protec-
tion in personalized web search. IEEE transactions on knowledge and data
engineering, 26(2), 453—467 (cit. on p. 22).

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection
on social media: A data mining perspective. ACM SIGKDD explorations
newsletter, 19(1), 22—36 (cit. on p. 26).

Smith, J. R., & Chang, S.-F. (1997). Visually searching the web for content. [EEE
multimedia, 4(3), 12—20 (cit. on p. 21).

Sommerville, I. (2011). Software engineering, 9/e. Pearson. (Cit. on p. 42).

Stansfield, C., Dickson, K., & Bangpan, M. (2016). Exploring issues in the
conduct of website searching and other online sources for systematic
reviews: How can we be systematic? Systematic reviews, 5, 1—9 (cit. on
p- 22).

Strohman, T., Metzler, D., Turtle, H., & Croft, W. B. (2005). Indri: A language
model-based search engine for complex queries. Proceedings of the inter-
national conference on intelligent analysis, 2(6), 2—6 (cit. on p. 36).

Tang, Q., Chen, J., Yu, B, Lu, Y., Fu, C,, Yu, H,, Lin, H., Huang, F,, He, B., Han,
X., et al. (2024). Self-retrieval: Building an information retrieval system
with one large language model. arXiv preprint arXiv:2403.00801 (cit. on

p- 13).

122

Bibliography

Vohra, D., & Vohra, D. (2016). Apache parquet. Practical Hadoop Ecosystem: A
Definitive Guide to Hadoop-Related Frameworks and Tools, 325335 (cit. on
p- 32).

Wachsmuth, H., Potthast, M., Al Khatib, K., Ajjour, Y., Puschmann, J., Qu,
J., Dorsch, J., Morari, V., Bevendorff, J., & Stein, B. (2017). Building an
argument search engine for the web. Proceedings of the 4th Workshop on
Argument Mining, 49-59 (cit. on pp. xxi, 17).

Wang, L., Yang, N., & Wei, F. (2023). Query2doc: Query expansion with large
language models. arXiv preprint arXiv:2303.07678 (cit. on p. 23).

Wilson, M. L., Kules, B., Shneiderman, B., et al. (2010). From keyword search to
exploration: Designing future search interfaces for the web. Foundations
and Trends® in Web Science, 2(1), 1—97 (cit. on p. 21).

Xing, W., & Ghorbani, A. (2004). Weighted pagerank algorithm. Proceedings.
Second Annual Conference on Communication Networks and Services Research,
2004., 305-314 (cit. on p. 25).

Xu, S., Pang, L., Xu, J., Shen, H., & Cheng, X. (2024). List-aware reranking-
truncation joint model for search and retrieval-augmented generation.
arXiv preprint arXiv:2402.02764 (cit. on p. 22).

Zhu, Y., Yuan, H., Wang, S., Liu, J., Liu, W., Deng, C., Dou, Z., & Wen, J.-R.
(2023). Large language models for information retrieval: A survey. arXiv
preprint arXiv:2308.07107 (cit. on pp. 14, 22).

Zobel, J., & Moffat, A. (2006). Inverted files for text search engines. ACM
computing surveys (CSUR), 38(2), 6-—es (cit. on p. 7).

123

Appendix

125

Appendix A.

Metadata Module Creation Guide

1. Create New Maven Module: Create a new Maven module with <MODULE_NAME >
as name (replace <MODULE_NAME> with the actual name of the module)
and search-service as parent module. By default, the newly created Maven
module should have the same folder structure as the existing modules.
You can either use an integrated development environment (IDE) to create
a new Maven module or use the following command in the directory
search-service:

mvn archetype:generate -Dgroupld=eu.ows.mosaic
-DartifactId=<MODULE_NAME>
-DinteractiveMode=false

2. Add Dependency in New Module: Add a dependency for the shared
module in the file pom.xml of the newly created module:

<dependencies>
<dependency>
<groupId>eu.ows.mosaic</groupId>
<artifactId>shared</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>

3. Add Dependency in Core Module: Add a dependency for the newly
created module in the file pom.xml of the core module:

<dependency>
<groupId>eu.ows.mosaic</groupld>
<artifactId>MODULE_NAME</artifactId>
<version>1.0-SNAPSHOT</version>
<optional>true</optional>
</dependency>

127

Appendix A. Metadata Module Creation Guide

4. Register Module in Parent Module: If not done automatically, register
your new module as such in the file pom. xm1 in the parent search-service
by appending it to the existing modules:

<module>MODULE_NAME</module>

5. Create Java File: Create a new Java file in search-service/
<MODULE_NAME>/src/main/java/eu/ows/mosaic/ that contains a
class which extends MetadataModule'. For example, name this Java file
and class <MODULE_NAME>Metadata.

6. Override Methods: Override methods in the newly created class as you
like. Particularly, it is recommended to override getMetadataColumns ()
and getFilterColumns () which are responsible for retrieving addi-
tional metadata columns and defining metadata filter columns respec-
tively.

7. Enable New Module in Config: Add an entry in
search-service/core/src/main/resources/config. json in the
plugins object to enable the module for MOSAIC.

8. If you build and start the framework, MOSAIC should now load and use
the newly created module.

Thttps:/ /opencode.it4i.eu/openwebsearcheu-public/mosaic/-/blob/main/
search-service/shared/src/main/java/eu/ows/mosaic/MetadataModule.java

128

https://opencode.it4i.eu/openwebsearcheu-public/mosaic/-/blob/main/search-service/shared/src/main/java/eu/ows/mosaic/MetadataModule.java
https://opencode.it4i.eu/openwebsearcheu-public/mosaic/-/blob/main/search-service/shared/src/main/java/eu/ows/mosaic/MetadataModule.java

Appendix B.

Practical User Study Questionnaire

Personal Information

1. What is your age?
Under 18
18-24

25-29

30-34

35-39

40-44

45-49

50-54

55-59

60-64

Above 64

O Prefer not to say

ONOCHONONONORCHONONONG

2. Which gender do you identify with?
O Female
O Male
O Inter
O Diverse
O Open
O Prefer not to say

3. What is the highest degree or level of education you have completed?
O No degree
O Compulsory school
O Trade school
O Apprenticeship
O A-levels / High school
O Bachelor’s degree
O Master’s degree
O Doctorate degree
O Prefer not to say

129

Appendix B. Practical User Study Questionnaire

4. What is your current employment status?
Full-time employed

Part-time employed

Student

Full-time employed & student
Part-time employed & student

Seeking opportunities

Retired

Prefer not to say

CHONONORONCHONG,

5. What is your profession?

6. What is your personal field of work/study/research?

7. What best describes your level of education in computer science?

O I'have no education in computer science

O T'am currently enrolled in a computer science (or similar) bachelor’s
programme

O I am currently enrolled in a computer science (or similar) master’s
programme

O I have completed my study in computer science (bachelor’s pro-
gramme or master’s programme) and I am currently not enrolled in a
computer science study programme

8. How would you rate your level of experience in computer science?
no experience O—O—0O—0O—0O expert level

9. How would you rate your knowledge of web search systems/engines?
no knowledge O—0O—0O—0—0 expert knowledge

Experience with MOSAIC

10. How did you get in touch with MOSAIC?
O OpenWebSearch.eu Hackathon (May 2024)
O OpenWebSearch.eu Training Event
O Expert Survey
O Other:

Your opinion on MOSAIC

11. I appreciate the concept of OpenWebSearch.eu to create vertical search
engines.
Strongly Disagree O—O—0O—0O—0 Strongly Agree

130

12.

13.

14.

15.

16.

17.

18.

19.

The technical concept and design of MOSAIC is useful to create own
applications.
Strongly Disagree O—O—O—0O—0 Strongly Agree

The installation of MOSAIC is easy.
Strongly Disagree O—O—0O—0O—0 Strongly Agree

Using MOSAIC in the development process is easy.
Strongly Disagree O—O—0O—0O—0 Strongly Agree

When using and integrating MOSAIC, no problems occurred.
Strongly Disagree O—O—0O—0—0 Strongly Agree

What did you do with MOSAIC?

O I used it as service (i.e., I used the REST API to send queries and get
responses)

I changed something in the source code

I added and used another/a new index

I modified an existing module

I added a new module

I modified the existing front-end

I created a new front-end

I integrated MOSAIC with a LLM

None
Other:

From a developer’s point of view, to what extent would you be willing

to work and share the experience with MOSAIC?

O I would be willing to use MOSAIC as a service in a private/non-
professional environment

O I would be willing to use MOSAIC as a service in a professional
environment

0 MOSAIC can be helpful to complete current or future tasks

O I would be willing to modify or improve MOSAIC in the future

O I would be willing to recommend other developers to use MOSAIC

O None

OoooooOooaa

O

In your opinion, what are MOSAIC’s strengths and/or weaknesses?

What features do you think are missing in MOSAIC?

131

Appendix B. Practical User Study Questionnaire

20. What suggestions for improvement do you have?

132

	Introduction
	Aims and Objectives
	Methodology and Contribution
	Structure

	Background and Related Work
	Information Retrieval
	Information Retrieval Process
	Information Retrieval Models
	Query Languages
	Advanced Techniques in Modern Information Retrieval

	Web Search Engines
	History and Evolution
	Anatomy
	Crawling
	Web Documents Indexing
	Web Search Interface
	Query Processing
	Matching and Ranking
	Types of Web Search Engines

	Related Work
	OpenWebSearch.eu
	IR and Web Search Engine Frameworks

	Summary

	Requirements and Design
	Motivation
	Analysis of Requirements
	Functional Requirements
	Non-Functional Requirements

	Conceptual Architecture Design
	Index Partitions
	Indexing Component
	Core Application
	Modules and Components
	REST API
	Web Interface

	Design Decisions
	Limitations
	Summary

	Development
	Architecture
	Core Application
	OWI Partitions Utilization
	Query Processing
	Matching and Ranking
	Metadata Filtering
	Metadata Enrichment
	Result Representation

	REST API
	Search with JSON Response
	Search with XML Response
	Index Information
	Full Plain Text Retrieval

	Web User Interface
	Search Control Area
	Search Result Representation
	Index Information

	Module Management
	Technical Concept
	Metadata Modules
	Optional Application Components

	Installation and Configuration
	Framework Setup
	Framework Startup Process

	MOSAIC2go
	Architecture
	Configuration Service
	Visual Editor

	Summary

	Evaluation
	Scope and Evaluation Goal
	Practical User Study
	Participants
	Materials and Methods
	Procedure
	Results

	Focus Groups
	Participants
	Materials and Methods
	Procedure
	Results

	Discussion
	Technical Approach
	Modular Design
	Usability and Applicability

	Limitations
	Summary

	Lessons Learned
	Literature
	Development
	Evaluation
	Personal

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Metadata Module Creation Guide
	Practical User Study Questionnaire

