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EXECUTIVE SUMMARY  

Atmospheric Rivers (ARs) - schmale, feuchtigkeitsreiche Bänder in der Atmosphäre, die 

auch Atmosphärische Flüsse genannt werden - sind zentrale Elemente des globalen 

Wassertransports. Bislang sind diese in Afrika wenig erforscht. Diese Arbeit untersucht die 

Dynamik der ARs über Afrika im Zeitraum von 2009 bis 2019. Dabei wird (1) eine 

statistische Analyse auf kontinentaler Ebene zur Erfassung von AR-Mustern sowie (2) eine 

Bewertung der Genauigkeit der ERA5-Reanalysedaten im Vergleich zu Globalem 

Navigation Satelliten System Radio-Okkultation-Daten (GNSS RO) anhand von 

ausgewählten Beispielen gezeigt. Mithilfe von ERA5, CDAAC RO und der 

bildverarbeitungs-basierten Methode zum Tracken der atmosphärischen Flüsse (IPART) 

zeigt diese Studie saisonale, regionale und interannuale Variabilitäten von AR-Vorkommen 

in Afrika auf. 

Die statistische Analyse (1) zeigt klare saisonale Trends: In Südafrika erreicht die AR-

Aktivität während des süd-hemisphärischen Sommers ihren Höhepunkt. In Nordafrika treten 

ARs hingegen bevorzugt im borealen Winter und Frühling auf. Die vergleichende 

Auswertung (2) zeigt, dass ERA5 höhere Werte für die integrierte Wasserdampfsäule (IWV) 

angibt, während GNSS RO systematisch trockenere Werte liefert, da Wasserdampf in den 

unteren Atmosphärenschichten unterrepräsentiert wird. Im Einklang mit früheren Studien 

spiegeln diese Unterschiede die Beiträge beider Datensätze wider. Dennoch erfasst ERA5 

groß-skalige IWV-Muster effektiv, was seine Nutzung für die AR-Analyse in Afrika 

unterstützt. Diese Forschung legt die Grundlage für zukünftige Studien zur Dynamik von 

ARs in Afrika und bietet wichtige Implikationen für das Wassermanagement und die 

Planung von Klima Resilienz. 

 

Schlagwörter: Atmosphärische Flüsse, Afrika, ERA5-Reanalyse, GNSS-Radio-Okkultation, 

IPART, ARtracks, Integrierter Wasserdampf (IWV) 
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ABSTRACT  

Atmospheric Rivers (ARs) - narrow, moisture-rich bands in the atmosphere - play a vital 

role in global water transport but remain understudied in Africa. This thesis explores AR 

dynamics across Africa from 2009 to 2019 through (1) a continent-wide statistical analysis 

of AR patterns and (2) an evaluation of the accuracy of ERA5 Reanalysis data compared to 

Global Navigation Satellite System Radio Occultation (GNSS RO) observations for selected 

events. Using ERA5, RO and the Image-Processing-based Atmospheric River Tracking 

(IPART) method, this study reveals seasonal, regional, and interannual variability in AR 

occurrences over Africa.  

The statistical analysis (1) reveals distinct seasonal trends: Southern Africa experiences 

peak AR activity during the austral summer, while Northern Africa peaks in boreal winter 

and spring, influenced by mid-latitude weather systems. The comparative evaluation (2) 

shows that ERA5 indicates higher IWV values, while RO retrievals are systematically drier 

due to underrepresentation of low-level water vapor. Consistent with previous studies, these 

discrepancies reflect contributions from both datasets. Despite this, ERA5 effectively 

captures large-scale IWV patterns supporting its use for AR analysis in Africa. This research 

lays the groundwork for future studies on AR dynamics in Africa, with broader implications 

for water resource management and climate resilience planning. 

 

Key words: Atmospheric Rivers, Africa, ERA5 Reanalysis, GNSS Radio Occultation, 

IPART, ARtracks, Integrated Water Vapor (IWV) 
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1. INTRODUCTION  

This Master’s thesis consists of two parts. The introduction outlines characteristics and 

importance of Atmospheric Rivers (ARs) in the global water cycle as well as details about 

the datasets used in this research. The second part presents a scientific paper, submitted to 

the Remote Sensing journal (MDPI) in December 2024, which focuses on the analysis of 

ARs over Africa.  

Over 90% of water vapor moving north or south across the midlatitudes travels through 

narrow pathways known as Atmospheric Rivers (ARs). They are organised in elongated, 

narrow corridors of concentrated water vapor  and play a critical role in transporting moisture 

across great distances. Three to five events are typically present at any time in each 

hemisphere. The ARs are spanning over a length of 2,000 km and a width of under 500 km 

(Zhu & Newell, 1994), (Chakraborty et al., 2022). ARs are characterized by their high 

Integrated Water Vapor (IWV) or  Integrated Vapor Transport (IVT) with treshold above 

2 cm or 250 kg m-1 s-1 respectively (Bozkurt et al., 2018). In addition, ARs are associated 

with strong winds near Earth´s surface (Gimeno et al., 2014). Comparable in flow to the 

Mississippi River, ARs often drive heavy rainfall and flooding, impacting water resources 

and extreme weather, particularly in mid-latitudes and subtropics (Gimeno et al., 2014). 

They are known to influence global weather patterns, particularly in regions with complex 

topography and dynamic climate systems (Dacre et al., 2015). To get a better understanding 

what an AR is, Figure 1 A shows the IWV values for an exemplary event over the northern 

Atlantic in 2019, while a general global AR distribution is shown in Figure 1 B. 
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Figure 1. (A) An AR shown via Integrated Water Vapor (IWV, in cm) over the northern 

Atlantic on November 19, 2009. (B) Regions of typical AR occurrence (red contours) from 

Waliser et al. (2012) and Zhu & Newell (1998), with white contours marking areas of AR-

related extreme precipitation and flooding (Gimeno et al., 2014, p.2). 

The occurrence of ARs over Africa is influenced by several factors. For an AR to develop a 

source of atmospheric moisture is essential. The source is typically a large water body where 

evaporation takes place. The presence of large-scale atmospheric pressure systems, like 

cyclones and anticyclones, is fundamental to organizing and transporting this moisture into 

narrow corridors of concentrated vapor (Salimi et al., 2020).  

Wind shear helps maintaining the narrow, elongated structure of the AR characteristic of 

ARs. Jet streams are commonly responsible for generating this wind shear, while also 

enabling the rapid transport of moisture (Gimeno et al., 2016). ARs are most frequently 
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observed over oceans and mid-latitude regions, with strong activity along the west coasts of 

continents. Key regions include North America, Europe’s Atlantic coast, the Andes, Japan, 

and parts of Africa. Southern Hemisphere ARs are less studied, but activity occurs near 

Australia, New Zealand, and Antarctica. AR frequency typically decreases toward the poles, 

with the highest concentrations over oceanic areas (Guan & Waliser, 2019).  

ARs are often associated with cyclones or weather fronts, where rising air over mountains 

or colder air masses causes the water vapor to condense, leading to heavy rain or snow 

(Gimeno et al., 2014). Their ability to transport large volumes of water vapor from oceanic 

sources to inland areas makes them essential in driving both beneficial rainfall and hazardous 

flooding (Dacre et al., 2015). Due to their hydrological impact ARs have mainly been studied 

in Northern Africa and Europe. In the western United States, play a significant role in 

delivering a large share of the annual precipitation, particularly in California. For instance, 

research by Gershunov et al. (2017) indicates that ARs can account up to 50% of the state´s 

total rainfall in, replenishing water resources while also posing flood risks. In Europe, ARs 

have been linked to extreme rainfall and flooding in regions such as the United Kingdom 

and the Iberian Peninsula. Lavers and Villarini, (2013) demonstrated that ARs are 

responsible for approximately 80% of extreme precipitation events in the UK. On a global 

scale, ARs contribute roughly 30% of total precipitation, playing a crucial role in delivering 

moisture to arid and semi-arid regions, sustaining ecosystems, and supporting freshwater 

resources through their impact on snowpack accumulation in mountainous areas. The heavy 

rainfall, however, can lead to flooding, landslides, soil erosion and debris flow. Additionally, 

the high winds accompanying ARs can trigger avalanches and impact forest ecosystems 

(Dettinger et al., 2011), (Wang et al., 2023). 

ARs can be distinguished from tropical cyclones or monsoons by their typical narrow 

and long shape and their short appearance which lasts from a few hours to several days. 

Additionally, ARs are characterised by their horizontal moisture transport along the “river 

in the sky,” while monsoons mainly involve vertical moisture movement (Gimeno et al., 

2016).  

Given their role in extreme weather, recognizing AR dynamics has implications for water 

resource management, climate forecasting, and disaster preparedness worldwide. This study 

applies these global insights to the African continent, where the pathways and impacts of 

ARs remain less understood. While ARs are increasingly recognized for their role in shaping 

global weather patterns, their behaviour over Africa remains poorly understood. Previous 
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research has primarily focused on AR dynamics in North America and Europe, with limited 

emphasis on the African continent. Addressing this gap, we apply advanced tracking 

methods like IPART and high-resolution datasets, such as GNSS RO and ERA5, to analyse 

AR activity. By exploring their seasonal trends and validating data accuracy, we want to 

provide actionable insights for water resource management and climate resilience in Africa.  

1.1.  ATMOSPHERIC RIVERS OVER AFRICA  

ARs have dual impacts: they provide critical freshwater resources to regions like the Western 

Cape, but they also pose risks such as flooding and infrastructure damage during extreme 

events. For example, a 2010 AR event caused widespread flooding in Morocco, impacting 

urban centres like Casablanca (Akbary et al., 2019). Climate projections suggest potential 

increases in AR intensity due to warming oceans, underscoring the need for focused research 

(Wang et al., 2023). In Southern Africa, especially the Western Cape, ARs account for up to 

70% of extreme winter rainfall days (Blamey et al., 2018). Although ARs are less frequent 

in Africa compared to regions like North America, they play a crucial role in delivering 

precipitation to arid and semi-arid areas. Their impacts are more prominent along coastal 

areas, where moisture transport interacts with orographic features to enhance precipitation. 

The understanding of their temporal and spatial variability remains limited. Recent studies, 

however, have expanded our understanding of ARs in Africa. For instance, research has 

identified "aerosol atmospheric rivers" (AARs), which transport aerosols like dust and 

smoke within an AR (Chakraborty et al., 2021), (Rautela et al., 2024). 

1.1.1. Moisture Origins and Atmospheric Dynamics of ARs in Africa  

In Africa, ARs shape regional weather patterns and rainfall. Latest research indicates 

moisture sources including the Atlantic Ocean, Arabian Sea, and Red Sea (Akbary et al., 

2019), (Esfandiari & Shakiba, 2024). The North Atlantic Ocean holds significant importance 

in the transport of water vapor eastward toward Africa, shaping rainfall patterns in areas 

such as Northern Africa and the Middle East. In contrast, ARs affecting Southern Africa 

usually source moisture from the South Atlantic Ocean and tropical regions, where they 

interact with extratropical cyclones and cold fronts, resulting in intense rainfall events 

(Ramos et al., 2019).  
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Northern Africa 

The primary sources of moisture for ARs over Africa include the Arabian Sea, the Red Sea, 

and the Atlantic Ocean, with the North Atlantic serving as a key contributor to ARs 

impacting Northern Africa and the Middle East. The Red Sea acts as a significant 

convergence zone where moist air from multiple directions converges and rises due to the 

influence of local topography (Akbary et al., 2019).  

Moisture transport is significantly influenced by the interplay between upper-level 

cyclonic systems and anticyclonic circulations within the lower to middle troposphere. For 

example, an anticyclonic system over the Arabian Sea can amplify the northward movement 

of moisture originating from the Gulf of Aden and the southern Red Sea. Additionally, the 

position and configuration of jet streams significantly affect AR development (Esfandiari & 

Shakiba, 2024). In Africa, the subtropical jet stream often merges with the polar jet stream, 

creating a more meridional circulation pattern that supports vapor transport. This merger 

facilitates the rapid movement and concentration of moisture, contributing to AR formation. 

Furthermore, mountain ranges, like the western topography of the Red Sea, play a role in the 

ascent and concentration of saturated air (Esfandiari & Shakiba, 2024). 

Influence of the North Atlantic and NAO 

In Northern Africa, the behaviour of ARs is closely tied to the North Atlantic Oscillation 

(NAO), a climate pattern characterized by fluctuations in atmospheric pressure between the 

Icelandic Low and the Azores High (Hurrell et al., 2003). During the positive phase of the 

NAO, a strengthened pressure gradient strengthens the westerlies, allowing ARs to extend 

further into Northern Africa. As ARs move eastward from their origin over the North 

Atlantic, they often make landfall in Mauritania and Senegal, continuing across North Africa 

and into the Middle East, influencing rainfall in Saudi Arabia and beyond. The subtropical 

jet stream, which merges with the polar jet stream, is crucial in guiding these ARs, enhancing 

their moisture transport and intensity (Akbary et al., 2019). The Red Sea acts as an 

"atmospheric well," providing additional moisture and intensifying AR-related precipitation 

as these systems move across Egypt and into the Middle East (Esfandiari & Shakiba, 2024).  

Southern Africa 

Weather patterns associated with ARs in Southern Africa typically involve the transport of 

moist air from the South Atlantic Ocean, and in some cases, from as far as South America. 
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These ARs carry water vapor from tropical and subtropical regions in the Southern 

Hemisphere, which precipitates as heavy rainfall when the ARs interact with the 

mountainous terrain of the Western Cape. This orographic effect enhances rainfall, 

contributing to local watersheds and reservoirs (Blamey et al., 2018), (Ramos et al., 2018), 

(Gimeno-Sotelo & Gimeno, 2022). 

Research by Ramos et al. (2018) using Lagrangian analysis identified the South Atlantic 

Ocean and parts of South America as key moisture sources for ARs reaching South Africa. 

During AR events, moisture is transported from these regions towards the Western Cape. 

The study highlighted the role of the South American Low-Level Jet (SALLJ), particularly 

during phases such as the no Chaco jet event (NCJE), in transporting moisture from the 

Amazon basin towards the South Atlantic, which then feeds into the ARs impacting South 

Africa. The sources of moisture affecting the Western Cape can be traced to four main 

regions. Firstly, the western South Atlantic Ocean, between 20°S and 30°S, sees moisture 

uptake from tropical and subtropical areas. This region includes a hot spot off the central 

coast of Brazil, where moisture uptake intensifies during AR days due to convergence along 

cold fronts and extratropical cyclones moving eastward towards South Africa (Ramos et al., 

2018). Secondly, a major source of moisture uptake takes place in the eastern South Atlantic 

Ocean, close to the Western Cape. This region, covering the Agulhas Current retroflection, 

directs moisture towards the area. The Agulhas Current retroflection is where the Agulhas 

Current, a warm current along Africa’s east coast, loops back into the Indian Ocean near 

South Africa's southern tip. Thirdly, the Agulhas Current, flowing along the east coast 

provides a stream of moisture. Lastly, land areas to the north of the Western Cape, including 

northern and northwestern South Africa, Namibia, and Botswana, serve as continental 

sources of moisture. (Ramos et al., 2018) 

Interaction with SAHS and Cyclonic Systems 

In Southern Africa, ARs follow a pathway, shaped by the South Atlantic Subtropical High 

(SASH) and the interaction with extratropical cyclones and cold fronts. The ARs typically 

follow a southwest to northeast trajectory, drawing moisture from the South Atlantic Ocean 

and sometimes as far as South America. During austral winter (JJA), ARs are more frequent, 

particularly during the early winter and late spring months according to Blamey et al. (2018). 

The Cape Fold Mountains of the Western Cape and other topographical features in the region 

enhance orographic rainfall. Moisture transport in this region is further influenced by the 
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South American Low-Level Jet (SALLJ), which can occasionally channel moisture from the 

Amazon Basin across the Atlantic into Southern Africa during certain phases of the NCJE 

(Grimm & Reason, 2015). The latitudinal positioning of ARs in Southern Africa is shifted 

by the strength and position of the SASH, determining how far inland ARs can penetrate. 

1.1.2. Seasonal and Interannual Variability 

ARs over Africa are subject to seasonal and interannual variability, driven by the interactions 

between global climate oscillations and regional weather patterns, as described before. In 

Northern Africa, AR activity peaks during the boreal fall and winter, when the Azores High 

retreats, allowing more moisture-laden air to penetrate the region (Akbary et al., 2019). 

Conversely, during the boreal summer, AR activity decreases due to the dominance of the 

Azores High and stable atmospheric conditions. 

In Southern Africa, AR activity is highly seasonal, peaking during the austral winter 

(Blamey et al., 2018). The year-to-year variability of the events is further modulated by 

large-scale climate patterns, including El Niño-Southern Oscillation (ENSO) and the 

Southern Annular Mode (SAM), which affect both the frequency and intensity of ARs across 

the continent (Reason, 2001). 

1.2.  SOCIETAL RELEVANCE  

ARs hold significant societal relevance due to their role in shaping precipitation patterns, 

supporting water resources, and causing extreme weather events. Scientists emphasize that 

understanding of climate and atmospheric patterns can have transformative impacts on 

public health, agricultural productivity, and overall resilience.  

Dezfuli et al. (2021) studies the contribution of ARs to major flood events in the Middle 

East, where ARs not only affects water resources but also enables dust transport across arid 

regions. This impacts air quality and health in downwind areas. De Longueville et al. (2010) 

addresses the health implications of desert dust exposure in West Africa, emphasizing the 

urgent need for localized research to fight respiratory and other health conditions caused by 

pollutants. Furthermore, Thandlam et al. (2022) points to the ARs influence on precipitation 

extremes. This is essential in understanding flood risks and planning for climate resilience 

in vulnerable regions. In a broader African context, Papa et al. (2023) underscores their 

critical role in regional water resource variability. Especially as satellite monitoring enables 
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better forecasting and management of hydrological resources. This is important for the 

growing population and agricultural needs. Vaughan et al. (2019) further stress the need for 

investment IN weather and climate service infrastructure. Conway (2011) argues that in sub-

Saharan Africa, where communities  depend on small-scale agriculture, linking climate 

science with development activities is essential for enhancing adaptive capacity. This is 

especially important because climate change is increasing the frequency and intensity of 

extreme weather events. 

Together, these studies underscore the societal benefits of advancing AR research, which 

supports more effective health interventions, sustainable agricultural practices, and the 

resilience of infrastructure in the face of climate challenges (Conway, 2011), (De 

Longueville et al., 2010), (Dezfuli et al., 2021), (Thandlam et al., 2022),  (Baki et al., 2023), 

(Papa et al., 2023). 

1.3.  RESEARCH GAP AND OBJECTIVE  

The primary objective of this thesis is to address the knowledge gaps in AR behaviour over 

Africa by analysing their seasonal, regional, and interannual variability from 2009 to 2019. 

Unlike conventional AR studies, which often rely solely on reanalysis datasets, this work 

validates ERA5's IWV estimates against GNSS RO data. Specifically, we aim to evaluate 

the accuracy of ERA5 IWV data to offer insights for high-moisture conditions. By applying 

IPART, we seek to identify AR landfall patterns and improve the understanding of AR 

dynamics over the whole continent. The application of IPART allows for precise AR 

tracking based on spatiotemporal characteristics, independent of magnitude thresholds. 

This work thus provides a framework for identifying ARs in Africa, enabling more 

precise studies of their role in the continent's hydrological and climatic systems. It bridges 

knowledge gaps by introducing high-resolution datasets offering a baseline for exploring AR 

contributions to rainfall variability and extreme events. The validation of ERA5 with GNSS 

RO data contributes to improving reanalysis datasets, which are crucial for climate modeling 

and risk assessment globally. 
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2. DATA 

This chapter aims to give a more in-depth understanding of the data used. While the paper 

written in the framework of this thesis already includes information, this section 

complements the information by providing more detailed exploration on the datasets. 

Data sources used to analyse AR events, include ERA5 Reanalysis data, GNSS RO data 

and IPART. ERA5 provides high-resolution historical climate data essential for tracking 

hourly water vapor profiles, while RO data offers vertical profiles of atmospheric moisture 

and IPART, an image-processing-based method, enables precise tracking over land. The 

ARtracks catalogue, based on ERA5 and IPART, is used to identify AR landfall locations, 

supporting the study of AR impacts on targeted regions. 

The chosen study period, 2009–2019, provides an ideal period for analysing AR 

dynamics over Africa. This decade allows for a robust examination of seasonal, regional, 

and interannual variability while aligning with the availability of high-resolution datasets, 

such as ERA5 Reanalysis data and RO data. For this period high quality data and spatial-

temporal resolution, which enhance the accuracy of tracking and analysing AR patterns, are 

available. The selection of this period therefore balances data reliability with the ability to 

capture meaningful trends, offering a solid foundation for understanding AR contributions 

to Africa’s hydrological cycle. 

2.1.1. ERA5 Reanalysis 

ERA5 Reanalysis data was used for the interpolation and comparison with RO data. We 

obtained data from the ERA5 hourly data on single level from 1940 to present data set 

available on the CDS website (Hersbach et al., 2020). The “Reanalysis” product type was 

chosen due to its broad historical climate data. Within the “Other” catalogue, the variable 

Total Column Water Vapor (TCWV) is selected. Hourly data was collected for the specific 

day of the landfalling AR event. The required sub-region was extracted based on the 

geographical area necessary for the event.  

ERA5 Reanalysis data, produced by the Copernicus Climate Change Service (C3S), 

offers a detailed record of global climate patterns dating from 1940 onwards. The data, 

accessible through the Climate Data Store (CDS), is available at a 0.25° spatial resolution,   

with hourly, daily, and monthly temporal resolutions.  



DATA 

10 

 

(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-Reanalysis-v5, last access:  

03.10.2024).  

Reanalysis data is produced by combining observational data with model data to create 

a consistent time series of climate information. The ERA5 Reanalysis is based on the 

Integrated Forecast System (IFS), a numerical weather prediction model created by the 

ECMWF. ERA5 combines data from satellites, ground-based instruments like radiosondes 

and weather stations, and ship- and aircraft-based observations using the 4D-Var data 

assimilation technique. This approach works by reducing discrepancies between the model's 

output and observational data over a specified time, thereby enhancing the accuracy of the 

forecast and aligning the model more closely with actual observations. The IFS model 

simulates the atmosphere of Earth, providing a framework for integrating observational data. 

Quality control procedures are applied to the observational data before incorporation. This 

ensures the reliability and accuracy of the Reanalysis product. (Hersbach et al., 2020), 

(Copernicus Knowledge Base: ERA5 Data Documentation, 2024) 

2.1.2. GNSS Radio Occultation Data 

In this research, reprocessed Level 2 wet data (https://data.cosmic.ucar.edu/gnss-ro/, last 

access: 03.10.2024) from a range of satellites, specifically TerraSar-X (TXS), Gravity 

Recovery and Climate Experiment (GRACE), Constellation Observing System for 

Meteorology, Ionosphere, and Climate-1 (COSMIC-1, 6 satellites), Meteorological 

Operational Satellites (Metop series), PAZ and the Korean Multi-Purpose Satellite-5 

(Kompsat 5) is utilized. The data is sourced from the COSMIC Data Analysis and Archive 

Center (CDAAC). Level 2 data represents processed information derived from raw Radio 

Occultation (RO) measurements, including variables such as atmospheric temperature, 

pressure, and humidity. This data is then post-processed to improve accuracy (University 

Corporation for Atmospheric Research, 2024).  

GNSS RO is well-suited for examining ARs from 2009 to 2019 because of its worldwide 

coverage, ability to operate in all weather conditions, and vertical resolution (Shao et al., 

2023). It provides consistent, accurate measurements of water vapor and temperature, 

capturing the structure and intensity of ARs even in severe weather. Its stability over time 

also makes it well-suited for long-term trend analysis, offering insights for climate research 

and weather modelling (S. Ho et al., 2010), (Steiner et al., 2011), (S.-P. Ho et al., 2018), 

(Rahimi & Foelsche, 2024). RO has its origins in the 1960s, when scientists used the Mariner 

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://data.cosmic.ucar.edu/gnss-ro/
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3 and 4 satellites to study the atmosphere of Mars (Fjeldbo & Eshleman, 1968). In 1995, the 

GPS/MET mission adapted this technique for Earth's atmosphere, proving its potential for 

high-resolution atmospheric profiling. Following missions like CHAMP, SAC-C, and 

FORMOSAT-3/COSMIC further confirmed and expanded the use of RO for weather, 

climate, and ionospheric studies (Fjeldbo & Eshleman, 1965). 

The atmosphere can be measured with this technique by observing the changes in a radio 

signal as it passes through the medium. This method involves satellites in low-earth orbit 

(LEO) equipped with receivers that detect the bending of GNSS signals. As the radio signal 

passes through the atmosphere, it experiences refraction due to changes in atmospheric 

density, which vary with altitude, temperature, pressure, and humidity. The bending angles 

measured provide insights into the vertical structure of the atmosphere (Steiner et al., 2011). 

The primary observable in RO is the phase delay of the GNSS signal caused by its 

passage through the atmosphere. By measuring this phase delay at multiple frequencies, 

vertical profiles of the bending angles of the radio wave trajectories are obtained (Anthes, 

2011). From these bending angles, profiles of atmospheric refractivity are derived (Rahimi 

& Foelsche, 2024). The concept of RO is shown in Figure 2.  
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Figure 2. Radio Occultation Scheme (source: Ulrich Foelsche, pers. comm.) 

Retrieving vertical profiles of water vapor involves several critical steps. Initially, as GNSS 

signals cross the atmosphere, they experience bending and delay due to refraction influenced 

by atmospheric conditions (Rahimi & Foelsche, 2024). The bending angles of these signals 

are measured, providing essential data on refractivity. Using these bending angles, 

refractivity profiles are derived through an Abel inversion. The refractivity N is a function 

of pressure P, temperature T, and the partial pressure of water vapor PW, as described by 

Equation 1. 

 

N =  77.6 
𝑃

𝑇
+ 3.73 × 105

𝑃𝑊

𝑇2
 (1) 

 

Given the refractivity, a one-dimensional variational (1D-Var) retrieval algorithm is then 

used to extract temperature and water vapor profiles. This method combines RO data with 

background atmospheric models, such as those from the ECMWF, to enhance accuracy. This 

process allows for near-vertical profiles of water vapor to be retrieved. (S. Ho et al., 2010), 

(Ahmed et al., 2022).  
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Data processing in RO initially uses geometric optics to interpret the signal bending. 

However, this method encounters difficulties in the lower troposphere due to multipath 

propagation. Techniques like wave optics are employed to handle the signal complexity 

more effectively, providing accurate bending angles, especially in the lower atmosphere. 

This enables RO to achieve high vertical resolution, approximately 0.1 km near the surface 

and up to 1 km in the stratosphere. This makes it superior to other remote sensing methods 

in resolving fine atmospheric layers (Vaquero-Martínez & Antón, 2021), (Steiner et al., 

2011). 

2.1.3. SSMIS 

The Special Sensor Microwave Imager Sounder (SSMIS) and the Special Sensor Microwave 

Imager Sounder (SSM/I) have been used on Defence Meteorological Satellite Program 

(DMSP) satellites since the late 1980s. SSMIS is an enhanced version of SSM/I, adding the 

ability to profile temperature in the upper atmosphere. The SSMIS collects data from 24 

channels, ranging from 19 to 183 GHz. The SSMIS sources data from temperature and 

moisture, surface properties, and precipitation. This allows for the construction of 

temperature profiles of the atmosphere. The instrument measures humidity levels in different 

atmospheric layers. Microwave signals penetrate clouds and provide data on surface 

properties such as soil moisture, sea surface temperatures, and sea ice concentrations (Wentz 

et al., 2012). The SSMIS uses a conical scan technique, rotating around a vertical axis to 

scan a swath of the Earth's surface beneath the satellite. (Observing Systems Capability 

Analysis and Review Tool (OSCAR), 2024).  

To visualise SSM/I and SSMIS data, graphic browse images are available (SSM/I and 

SSMIS data are produced by Remote Sensing Systems. Data are available 

at www.remss.com/missions/ssmi, last access: 03.12.2024). Figure 3 shows the global 

distribution of atmospheric water vapor given in mm with data from the F16 instrument on 

the 26th of September 2009. Red and pink indicate higher and purple and blue lower amounts 

of vapor. 

http://www.remss.com/missions/ssmi


DATA 

14 

 

 

Figure 3. SSMIS Visualisation of global water vapor (mm) distribution with SSMIS data on 

26.09.2009 between 12 and 24 UTC. Red contour shows South Africa 2009 event (later 

analysed) (Wentz et al., 2012). 

For tracking ARs over land, additional techniques such as the Image-Processing based 

Atmospheric River Tracking (IPART) method are valuable. While SSMIS excels at 

capturing oceanic moisture, the complex terrain and varied surface properties over land 

necessitate additional methods for tracking ARs accurately. 

2.1.4. IPART 

To identify AR events, the Image-Processing-based Atmospheric River Tracking (IPART) 

is used. IPART is further utilized for the statistical analysis of ARs over Africa 

(https://github.com/ihesp/IPART, last access: 14.11.2024).  

The IPART method, developed by Xu et al. (2020) represents an advancement in the 

detection and tracking of ARs (Xu et al., 2020). Traditional methods of AR detection have 

heavily relied on magnitude thresholding of IWV and Integrated Vapor Transport (IVT). 

This Method offers an approach that is independent of magnitude. It focuses on the 

spatiotemporal characteristics of ARs. Traditional thresholding methods assume a constant 

moisture level throughout the study period and rely on historical observations. One common 

approach involves setting IWV threshold to greater than 2 cm, as studied by Ralph et al. 

(2004) or Dettinger (2011), combined with conditions such as a minimum length of 2000 km 

https://github.com/ihesp/IPART
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and a maximum width of 1000 km. Another approach uses a minimum IVT value of 

250 kg m-1 s-1, as applied by Rutz et al. (2014). An alternative to fixed thresholds is using a 

specific percentile of IWV or IVT, which accounts for seasonal differences and distinguishes 

between midlatitude and polar systems, as demonstrated by Guan and Waliser (2017). This 

percentile-based method is more robust in adapting to varying climatic conditions.  

At the core of the IPART method is the top-heat by reconstruction (THR) algorithm, a 

technique known from image processing, which is designed to detect structures in noisy data 

and helps emphasize the spatial continuity of AR features (Zhu & Newell, 1994). The THR 

algorithm involves several steps including greyscale erosion, greyscale dilation and 

anomalous IVT identification. The subtraction of a “greyscale reconstruction by dilation” 

image from the original greyscale image is the IVT distribution. The process begins with 

defining a “marker” image of the IVT data, using a technique called greyscale erosion. This 

reduces noise and highlights core regions of moisture. The next step expands the highlighted 

regions, which is called the greyscale dilation. When this spread-out version is overlaid with 

the original IVT distribution, it creates a “reconstruction” that captures the primary areas of 

moisture. Comparing the original IVT data with this reconstructed version highlights areas 

with high moisture, which could indicate potential ARs (Xu et al., 2020).  

To identify the AR's central path or “axis,” the method uses a new technique: it builds a 

topological graph based on AR region coordinates and the direction of moisture flow. 

Finding the AR axis then becomes a matter of searching for the best path within this graph. 

This approach ensures that the identified axis accurately follows the main direction of 

moisture flow, staying within the AR boundary and providing a realistic representation of 

the AR’s location and extent. This axis serves as a simple curve that shows the AR's path 

across a region, summarizing its overall orientation and reach (Xu et al., 2020). 

2.1.4.1. ARtracks 

The “[…] Global Atmospheric River Catalogue Based on ERA5 and IPART […]”, known 

as ARtracks is used to find the landfall location of the AR events studied 

(https://github.com/dominiktraxl/artracks, last access: 14.11.2024) (Traxl, 2022). It provides 

a global AR catalogue based on the ERA5 Reanalysis dataset and IPART, allowing to detect, 

analyze and visualize events. The repository provides a tool for studying the AR axis, or 

path, over time, and the location of the landfall. The calculation of the landfall location is 

based on meteorological data, like IVT (Traxl, 2022).  
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In our study we utilized ARtracks to study AR events from 2009 to 2019. Specifically, 

we identified an increase in the event axis as it moved towards the African continent. We 

focused on events whose longitudes and latitudes fell within the geographical boundaries of 

Africa, which was achieved by using coordinates to create a polygon that closely 

approximates the shape of the African continent. The Shapely library, a Python package for 

manipulation and analysis of planar geometric objects, was employed to construct these 

boundaries. Additionally, Cartopy, a library designed for geospatial data processing, was 

used to check if each AR’s landfall location fell within the defined boundaries of Africa. 

This initial screening was crucial in narrowing down the number of events to those 

potentially impacting the continent. The identified axis was later used to show the path of 

the AR for the studied events.  

2.2.  CHALLENGES AND LIMITATIONS  

The initial methodology aimed to integrate Special Sensor Microwave Imager Sounder 

(SSMIS) data with ERA5 Reanalysis data to improve the temporal and spatial resolution of 

atmospheric analysis. Particularly for studying IWV and temperature profiles in the context 

of the chosen AR events. SSMIS, operating a series of instruments (e.g., F16, F17), provides 

valuable microwave measurements that capture atmospheric variables. However, integrating 

SSMIS with ERA5 and RO proved challenging due to temporal and spatial constraints. The 

satellite has a 12-hour orbit pattern, providing two maps of atmospheric conditions per 

location each day. This temporal resolution limits the number of instances available for 

comparison. Thus, it is insufficient for tracking fast-evolving weather phenomena, 

Moreover, effective interpolation between SSMIS and RO data requires at least 20 events 

within narrow, precisely timed windows to ensure robust statistical alignment. This 

condition was rarely met, as RO data within the required windows was too sparse. Various 

approaches were considered, including relaxing temporal constraints (e.g., allowing data 

matches within a ±2 or 3-hour range) or focusing solely on spatial resolution while ignoring 

exact timing, but both options introduced considerable trade-offs. Relaxing time 

requirements compromised temporal accuracy, while focusing only on spatial resolution 

limited the ability to capture accurate atmospheric dynamics over time. Further complicating 

the integration, the RO data had isolated event counts for certain atmospheric conditions, 

particularly during SSMIS overpasses.  
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Due to these technical limitations and time constraints, a complete integration of SSMIS 

data into the ERA5-based analysis was considered not viable. This decision reflects the need 

for alternative approaches or more adaptable datasets for capturing high-resolution 

atmospheric insights in future research. 

The primary obstacles stem from temporal misalignment, sparse RO data within the 

necessary windows, and interpolation constraints. Current solutions provide partial 

improvements but lack precision. An alternative approach may involve loosening time-

matching criteria while simultaneously exploring methods to make the spatial analysis more 

robust. Additionally, further exploration of both high data density with lower temporal 

resolution and precise time-matched profiles could offer insights into which method yields 

the best results for specific applications. 
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Abstract: Atmospheric rivers (ARs) transport significant amounts of moisture and cause extreme 10 

precipitation events, yet their behavior over Africa is not well understood. This study addresses this 11 

gap by analyzing the occurrence, seasonal variability, and spatial dynamics of ARs across the 12 

continent from 2009 to 2019. Utilizing ERA5 reanalysis data, Global Navigation Satellite Systems 13 

Radio Occultation (GNSS RO) measurements, and the Image-Processing-based Atmospheric River 14 

Tracking (IPART) method, distinct seasonal AR patterns are identified. Southern Africa experiences 15 

peak activity during austral summer, while AR occurrence in Northern Africa peaks in boreal winter 16 

and spring, aligning with regional rainy seasons. Moisture sources include the Atlantic Ocean, the 17 

Arabian Sea, and the Red Sea. The moisture transport is influenced by atmospheric dynamics such 18 

as shifts in the Intertropical Convergence Zone or El Niño Southern Oscillation (ENSO). Comparing 19 

ERA5 Integrated Water Vapor (IWV) estimates with high-resolution RO data revealed that ERA5 20 

effectively captures broad-scale moisture patterns, but consistently reports higher IWV values 21 

compared to RO data, highlighting ERA5's tendency to represent a wetter atmosphere and RO's 22 

drier retrievals, particularly due to RO's underrepresentation of water vapor in the lower layers. 23 

Understanding AR dynamics in Africa is essential to improve climate resilience, water management 24 

and understanding extreme precipitation events. 25 

Keywords: Atmospheric Rivers (ARs), Africa, ERA5 Reanalysis, GNSS Radio Occultation, IPART, 26 

ARtracks, Integrated Water Vapor (IWV) 27 

 28 

1. Introduction 29 

Atmospheric Rivers (ARs) are long, narrow corridors of concentrated water vapor 30 
that transport moisture over long distances. They are defined by a maximum width of 31 
500 km and a minimum length of 2,000 km in the (lower) troposphere. Typically ARs are 32 

defined by tresholds, for Integrated Vapor Transport (IVT) this values need to be above 33 
250 kg m-1 s-1. Each AR can carry water vapor quantities comparable to the flow of the 34 

Mississippi River, with three to five events typically present per hemisphere at any time 35 
[1]. Known for influencing precipitation, ARs are responsible for heavy rainfall and 36 
flooding, particularly in mid-latitude and subtropical regions [2]. While AR dynamics are 37 

well-studied in America and Europe, studies in Africa remain limited. Globally, ARs are 38 
crucial in the hydrological cycle, contributing to water availability and extreme weather 39 

events. Their ability to transport large volumes of water vapor from tropical oceanic 40 
sources to inland areas has broad implications for water resource management, 41 
forecasting extreme weather and recognizing climate impacts [3]. Understanding their 42 

role in such processes underscores the importance of an in-depth understanding of AR 43 
characteristics specific to Africa, where weather patterns are uniquely complex. 44 
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1.1. Atmospheric Rivers Over Africa – Moisture Sources 46 

In Africa, ARs influence rainfall patterns but have primarily been studied on a case- 47 
by-case basis, with limited research examining their behavior over an extended period 48 
across the entire continent. Key moisture sources for African ARs include the North and 49 

South Atlantic Ocean, the Arabian Sea, and the Red Sea [4, 5]. The North Atlantic Ocean 50 
plays a particularly important role in AR formation, as water vapor is transported 51 

eastward towards Africa, influencing rainfall in regions such as the Middle East and 52 
Northern Africa (MENA). In Southern Africa, ARs typically draw moisture from the 53 
South Atlantic Ocean and tropical areas, interacting with extratropical cyclones and cold 54 

fronts to produce heavy rainfall. 55 
The occurrence of ARs over Africa is shaped by key factors, including moisture 56 

sources and atmospheric dynamics. A source of water vapor, like an ocean or sea, 57 
provides essential moisture, while large-scale pressure systems, such as cyclones, help 58 
organize this moisture into narrow vapor corridors. Wind shear, often generated by jet 59 

streams, maintains the elongated structure of ARs and drives rapid moisture transport [6].  60 
The North Atlantic plays a particularly important role in AR formation for Northern 61 

Africa, Egypt and the Middle East, as moisture rich air is transported eastward, impacting 62 
rainfall in regions like Mauritania and Egypt [4]. In the Northern Hemisphere, the 63 
subtropical jet stream around 30°N transports tropical moisture toward higher latitudes, 64 

where it interacts with cyclonic systems to form ARs [7]. The interaction between upper- 65 
level cyclonic systems and mid-level anticyclonic circulations is essential for AR 66 

formation. Anticyclonic patterns over the Arabian Sea increase northward moisture 67 
transport from the Gulf of Aden and the Red Sea. In Africa, the merging of the subtropical 68 
and polar jet streams creates a stronger meridional flow, moving moisture inland more 69 

effectively [5]. In Northern Africa, ARs are influenced by the North Atlantic Oscillation 70 
(NAO). A positive NAO phase strengthens westerlies, pushing ARs farther inland, 71 

reaching Mauritania, Senegal, and the Middle East, with the subtropical and polar jet 72 
streams enhancing moisture transport [4].  73 

In Southern Africa, ARs draw moisture from the South Atlantic and tropical sources, 74 

interacting with extratropical cyclones and cold fronts to deliver substantial rainfall, 75 
especially during winter [8]. The analysis by Ramos et al. (2018) [8] identifies four main 76 

moisture sources: (1) the western South Atlantic near Brazil, where tropical convergence 77 
enhances moisture uptake; (2) the eastern South Atlantic near the Cape Agulhas, linked 78 
to the Agulhas Current retroflection; (3) the Agulhas Current itself, which supplies a 79 

steady moisture stream along South Africa’s east coast; and (4) continental sources in 80 
northern and northwestern South Africa, Namibia, and The Republic of Botswana. This 81 

moisture transport is further intensified by the South American Low-Level Jet (SALLJ), 82 
which channels Amazonian moisture to the South Atlantic, reinforcing AR-driven rainfall 83 
in Southern Africa. The pathways are shaped by the South Atlantic Subtropical High 84 

(SASH) and interactions with extratropical cyclones and cold fronts [7]. These ARs move 85 
along a southwest-to-northeast path, drawing moisture from the South Atlantic and 86 

occasionally from South America. In addition, mountain ranges intensify AR-driven 87 
precipitation through orographic lift, like the Cape Fold Mountains [8]. 88 

There they contribute to winter rainfall, since ARs are most common in early austral 89 

winter (May to September) [7, 9, 10]. For instance, Blamey et al. (2018) [7] observed that 90 
atmospheric rivers were responsible for approximately 70% of the 50 most extreme winter 91 

rainfall events, emphasizing their role in contributing to heavy rainfall and flooding risks. 92 
 93 

1.2. Seasonal and Interannual Variability 94 

ARs in both Northern and Southern Africa are subject to seasonal and interannual 95 
variability, largely driven by the interactions between global climate oscillations and 96 

regional weather patterns. In Northern Africa, AR activity peaks during the boreal fall 97 
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and winter, when the Azores High retreats, allowing more moisture-laden air to penetrate 98 
the region [4]. Conversely, during the boreal summer, AR activity decreases due to the 99 

dominance of the Azores High and stable atmospheric conditions. 100 
In Southern Africa, AR activity is highly seasonal, peaking during the austral winter 101 

(May to September), with extratropical cyclones and cold fronts driving moisture from 102 

the South Atlantic toward the southwestern coast of South Africa [8]. The interannual 103 
variability of ARs is further influenced large-scale climate patterns, including El Niño- 104 

Southern Oscillation (ENSO) and the Southern Annular Mode (SAM), which affect both 105 
the frequency and intensity of ARs across the African continent [11]. 106 

 107 

1.3. Societal Relevance 108 

Water resource variability is a critical concern in Africa, especially for agriculture. 109 

With the continent’s growing population climate-driven water variability poses a 110 
significant risk. Understanding patterns that lead to flooding is vital for planning climate 111 
resilience, especially in regions prone to extreme weather events [12]. With the increasing 112 

intensity and frequency of these events, integrating AR dynamics into climate adaptation 113 
strategies will be crucial for safeguarding communities and infrastructure [13]. Papa et al. 114 

(2023) [13] thus emphasizes the role of satellite monitoring for better forecasting, which 115 
can improve water management for agricultural productivity. In regions heavily reliant 116 
on seasonal rainfall, like sub-Saharan Africa, such forecasting tools are essential for 117 

climate adaptation and risk management. Enhanced atmospheric and climate research 118 
will support more effective public health interventions, sustainable agriculture, and 119 

resilient infrastructure, reinforcing the continent’s capacity to respond to climate 120 
challenges. Investing in weather and climate service infrastructure in space is therefore 121 
another priority. This infrastructure is vital for improving daily safety and maintaining 122 

the technology that modern societies rely on [14]. Furthermore, ARs contribute to extreme 123 
weather events, including floods, which impact both water availability and health. Dezfuli 124 

et al. (2021) [15] highlight the role of AR-induced precipitation in the Middle East, where 125 
it not only affects water resources but also influences dust transport, impacting air quality 126 
and health in downstream regions. Similar effects are seen in West Africa, where dust 127 

exposure worsens respiratory and other health conditions. This underscores the need for 128 
localized studies to mitigate impacts and improve public health [16]. 129 

Together, these studies highlight the importance of advancing atmospheric research 130 
in Africa to address critical societal needs, from public health and water management to 131 
climate resilience and technological stability.  132 

 133 

1.4. Research Gaps and Objectives 134 

ARs are increasingly acknowledged as drivers of weather events in Africa, 135 
particularly during the winter seasons, contributing to extreme rainfall and flooding [17, 136 
18, 19, 20]. Despite growing recognition of their impact, there remains a knowledge gap 137 

regarding the behavior of ARs in Africa. Specifically, the mechanisms of moisture 138 
transport within ARs and their interactions with local climate systems are not well 139 

understood. While extensive studies have focused on AR dynamics in regions such as 140 
America and Europe, relatively few analyses have been conducted across the African 141 
continent. 142 

Our study addresses this gap by investigating AR events over Africa from 2009 to 143 
2019. Utilizing the Image-Processing-based AR Tracking (IPART) method, this research 144 

seeks to identify AR patterns and assess seasonal and interannual variability across 145 
Northern and Southern Africa. To improve data accuracy, we compared ERA5 IWV 146 
measurement against Global Navigation Satellite Systems Radio Occultation (GNSS RO) 147 

data. These data were chosen because of their global coverage, high vertical resolution 148 
and stability over time. GNSS RO provides consistent atmospheric profiles unaffected by 149 

clouds or precipitation [21, 22]. This comparison aims to validate the reliability of ERA5 150 
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in capturing moisture levels associated with ARs. Our study aims to deepen the 151 
understanding of AR dynamics and their influence on Africa to improve climate resilience 152 

and water resource management in the region. 153 

2. Materials and Methods 154 

2.1. Data  155 

The ERA5 reanalysis dataset, providing detailed historical climate data, supports 156 
hourly tracking of atmospheric parameters. Complementing this, GNSS RO data offers 157 

vertical moisture profiles, essential for understanding distinctive layers. IPART, an image- 158 
processing-based technique, refines AR tracking over land. The ARtracks catalogue, 159 
combining ERA5 and IPART, aids in identifying precise AR landfall locations. 160 

The study period of 2009–2019 was selected as it provides a widespread timeframe 161 
to assess AR dynamics over Africa. This allows for an in-depth analysis of variability, 162 

supported by high-resolution dataset. The availability of high-quality, spatially and 163 
temporally detailed data during this period ensures accurate tracking and analysis of AR 164 
patterns. This timeframe strikes an effective balance between data reliability and the 165 

ability to capture trends, forming a solid foundation for examining AR contributions to 166 
Africa's hydrological cycle. 167 

 168 

2.1.1. ERA5 reanalysis  169 

The ERA5 reanalysis dataset from the Copernicus Climate Change Service (C3S) was 170 

used for interpolating and comparing with RO data. Data was drawn from the ERA5 171 
hourly dataset available through the Climate Data Store (CDS), specifically focusing on 172 

Total Column Water Vapor (TCWV) to capture AR landfall events 173 
(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, last access: 174 
03.10.2024) [23]. With a 0.25° spatial resolution and hourly data, ERA5 provides high- 175 

quality historical records dating back to 1940. 176 
ERA5 integrates observational data from multiple sources (e.g., satellites, 177 

radiosondes) with model data using the European Centre for Medium-Range Weather 178 
Forecasts (ECMWF) Integrated Forecast System and 4D-Var data assimilation. This 179 
combination enhances accuracy and consistency across the time series, supported by 180 

precise quality control to ensure reliable results [24]. 181 
 182 

2.1.2. GNSS Radio Occultation Data 183 

Additionally, reprocessed Level 2 RO data from multiple satellites: TerraSar-X (TXS), 184 
Gravity Recovery and Climate Experiment (GRACE), Constellation Observing System for 185 

Meteorology, Ionosphere, and Climate-1 (COSMIC-1, 6 satellites), Meteorological 186 
Operational Satellites (Metop series), PAZ and the Korean Multi-Purpose Satellite-5 187 

(Kompsat 5). We obtained the data through the COSMIC Data Analysis and Archive 188 
Center (CDAAC) (https://data.cosmic.ucar.edu/gnss-ro/, last access: 03.10.2024). This 189 
dataset provides profiles of temperature, pressure, and humidity [25]. This RO technology 190 

measures atmospheric refractivity by detecting the bending of GNSS signals as they pass 191 
through the atmosphere, influenced by variations in altitude, temperature, pressure, and 192 

humidity. Bending angles derived from these measurements are used to construct vertical 193 
profiles, capturing the atmospheric structure with high resolution. This enables profiling 194 
of atmospheric layers, particularly in the lower atmosphere, where RO achieves 195 

resolutions of about 0.1 km near the surface [26]. GNSS-RO data have first been used for 196 
accurate monitoring of atmospheric temperature in the upper troposphere and lower 197 

stratosphere (e.g., [27, 28]). However, the potential for observing water vapor in the 198 
(lower) troposphere has already been recognized in the 1990s (e.g., [29, 30]) and GNSS RO 199 
data are increasingly used for observing water vapor (e.g., [31, 32]), even under 200 

particularly dry conditions [33]. GNSS-RO data have already been successfully used to 201 

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://data.cosmic.ucar.edu/gnss-ro/
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observe ARs (e.g., [34, 35]), and the assimilation of GNSS-RO data has been demonstrated 202 
to improve AR forecasts [36]. The dataset used in our study thus provides detailed vertical 203 

moisture profiles, global coverage and all-weather capability crucial for tracking 204 
atmospheric changes [22]. 205 

Analysis of this dataset by Rahimi and Foelsche (2024) [21] highlights the tendency 206 

of RO to underestimate IWV when compared with independent measurements from the 207 
Special Sensor Microwave Imager/Sounder (SSMI/S), a satellite-based instrument that 208 

provides global IWV observations with a horizontal resolution of 25-50 km. SSMI/S 209 
measures thermally emitted microwave radiation, making it especially reliable over 210 
oceans where surface emissivity is uniform. While CDAAC and WEGC show strong 211 

agreement in their GNSS-RO-derived moisture profiles, despite using different retrieval 212 
methodologies, the study reveals that GNSS-RO IWV values are approximately 85% of 213 

SSMI/S values. Since RO data generally do not capture humidity in the lowest few 214 
hundred meters of the atmosphere, this systematic difference can be largely attributed to 215 
RO. Comparisons between WEGC GNSS-RO profiles and ECMWF background data 216 

further show close alignment (~95%), while both datasets remain significantly drier than 217 
ERA5 [21]. 218 

 219 

2.1.3. Image-Processing-based Atmospheric River Tracking  220 

The IPART method is used to identify and analyze AR events across Africa. 221 

Developed by Xu et al. (2020) [37], IPART enhances AR detection by focusing on the 222 
spatial and temporal characteristics of ARs rather than relying solely on threshold values 223 

for Integrated Water Vapor (IWV) or Integrated Vapor Transport (IVT), which are 224 
common in traditional methods (https://github.com/ihesp/IPART, last access: 14.11.2024). 225 

At the core of IPART is the Top-Heat by Reconstruction (THR) algorithm, a technique 226 

from image processing that identifies moisture structures even in noisy data, highlighting 227 
regions of high moisture continuity. The THR algorithm operates through steps like 228 

greyscale erosion and dilation, emphasizing key moisture areas, which are then mapped 229 
to identify ARs. The method constructs a topological graph of the AR's moisture flow, 230 
accurately tracking the AR’s central path or “axis” as it progresses [37]. 231 

 232 

ARtracks 233 

The ARtracks catalogue, a global resource combining ERA5 reanalysis data with 234 

IPART, was used to locate AR landfall points. ARtracks supports the detection, 235 
visualization, and tracking of AR events, providing a detailed AR axis path and landfall 236 
location based on IVT and other meteorological data [38]. This catalogue helps with 237 

precise analyses of AR impact patterns and their geographic extent 238 
(https://github.com/dominiktraxl/artracks, last access: 14.11.2024). 239 

 240 

2.2. Data Preprocessing and Quality Control 241 

To ensure accuracy and consistency across datasets, this section outlines the data 242 

preparation steps for analysis over the African continent. The study centers on two main 243 
analytical objectives: (1) statistical analysis of AR occurrences, highlighting regional and 244 

seasonal trends, and (2) interpolation and comparison of moisture data between RO 245 
observations and ERA5 reanalysis. The preprocessing pipeline is structured to maintain 246 
data integrity, consistency, and relevance for both objectives. 247 

 248 

2.2.1. Statistical Analysis of AR events over Africa 249 

In the initial analysis, ARtracks data from 2009 to 2019 was processed to capture the 250 
spatial and temporal characteristics of AR landfalls impacting Africa. Preprocessing 251 
involved formatting timestamps, filtering by geographic boundaries, and categorizing 252 

events by region (Northern and Southern Africa) to allow for detailed seasonal and 253 

https://github.com/ihesp/IPART
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regional comparisons. The dataset was organized by year and month, enabling analysis 254 
of annual and seasonal trends. Filtering retained only AR events within a custom-defined 255 

African boundary, excluding areas like the Arabian Peninsula. Landfall points were 256 
verified using the Python Shapely library, ensuring that only events within Africa were 257 
included.  258 

Each AR event was classified as either Northern or Southern Africa based on latitude, 259 
facilitating regional impact comparisons. This North-South division allows a comparative 260 

analysis across Africa's diverse climates, with Northern Africa influenced by Saharan and 261 
Mediterranean patterns, while Southern Africa interacts with moisture sources from the 262 
Indian and Atlantic Oceans. Quality control steps included date-time formatting for 263 

consistent filtering, removal of missing or duplicate entries, and verification of landfall 264 
coordinates to maintain spatial accuracy. 265 

 266 

2.2.2. Interpolation and Comparison of RO and ERA5 Data 267 

In the second part of the analysis, moisture data from RO observations were 268 

compared with ERA5 reanalysis data to validate moisture transport estimates and 269 
evaluate ERA5 performance. Given differing spatial and temporal resolutions, 270 

interpolation and alignment steps ensured synchronization. ERA5 data (latitude, 271 
longitude, time, and Total Column Water Vapor (TCWV)) were formatted uniformly, 272 
while RO data were cleaned to ensure numeric values in the IWV column and remove 273 

incomplete records. Domain-specific knowledge was applied by ensuring valid values at 274 
1 km altitude, filtering invalid values and validating the geographic domain to minimize 275 

errors and outliers. 276 
A nearest-neighbor search matched ERA5 points with RO coordinates, and temporal 277 

interpolation estimated ERA5 IWV values at RO observation times, weighting nearby grid 278 

points by distance (see chapter 2.3.2.1.). To ensure alignment, only ERA5 data within a 279 
2.5° spatial and 3-hour temporal range of RO observations were retained. Both datasets 280 

were checked for matching units, non-numeric entries were converted to NaN, and 281 
outliers were reviewed to prevent bias. 282 

 283 

2.3. Methodology 284 

The methodology for analyzing AR occurrences over Africa and validating ERA5 285 

reanalysis data with RO observations is outlined here. First, the IPART method, combined 286 
with the ARtracks catalogue, is applied to detect, visualize, and statistically analyze AR 287 
frequencies and patterns, with a focus on seasonal and regional variations across Africa. 288 

Second, a comparative analysis between ERA5 and RO data assesses the accuracy of the 289 
reanalysis data in capturing moisture transport, utilizing interpolation and statistical 290 

metrics to quantify deviations. 291 
 292 

2.3.1. Statistical Analysis of AR Occurrence over Africa 293 

The IPART method was used to analyze IVT anomalies associated with ARs over 294 
Africa. Seasonal IVT averages from ERA5 were calculated to identify elevated moisture 295 

periods, with anomalies defined as percentage deviations from climatology baselines. The 296 
ARtracks catalogue provided data on AR occurrences and seasonality from 2009 to 2019, 297 
filtered to include only landfalls within Africa, categorized by Northern or Southern 298 

Africa based on centroid latitude. Visualizations, including bar charts, line graphs, and 299 
heatmaps, display annual, monthly, and seasonal AR patterns across these regions, as 300 

detailed in chapter 3. 301 
To assess frequency and trends, AR events with axes extending toward the continent 302 

were prioritized. Africa’s boundaries were defined using a custom polygon in Shapely, 303 

with Cartopy confirming AR landfalls within these limits. This filtering ensured that only 304 
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AR events relevant to Africa were analyzed. Additional data for the Arabian Peninsula 305 
was later included for the research on the MENA region (chapter 2.3.2.). 306 

 307 

Integrated Vapor Transport (IVT) 308 

The ARtracks catalogue data includes each AR event’s date, duration, landfall 309 
location, average IVT value, and IVT-weighted centroid coordinates, useful for tracking 310 

AR movement. Centroids, calculated from IVT vectors (combining wind and specific 311 
humidity), represent the AR’s central moisture transport path. They represent the central 312 
location of the water vapor transport within the AR. IVT is measured in kg m-1 s-1 and it 313 

quantifies the amount of water vapor moving through the atmosphere over a certain 314 
distance each second. Comparing the IVT to a phenomenon on the ground, IVT equals the 315 

flow rate of a river [39]. High IVT values indicate strong moisture transport linked to 316 
heavy precipitation.  317 

The IVT is calculated as follows: 318 

𝐼𝑉𝑇 =  √(
1

𝑔
∫ 𝑞𝑢 𝑑𝑝

𝑝𝑡

𝑝𝑠

)

2

+ (
1

𝑔
∫ 𝑞𝑣 𝑑𝑝

𝑝𝑡

𝑝𝑠

)

2

 (1) 

where q is specific humidity, u and v are the zonal and meridional wind components, ps 319 
and pt are surface and top-of-atmosphere pressures, and g is the acceleration due to 320 
gravity. This vertical integration captures the total atmospheric moisture transport 321 

associated with ARs. 322 

 323 

2.3.2. Comparative Analysis using RO and ERA5 reanalysis data 324 

The validation of ERA5 reanalyses with RO observations is divided into two parts: 325 
(1) interpolation of RO data to create continuous vertical profiles of atmospheric moisture 326 
and (2) direct comparison of these interpolated RO profiles with ERA5 data, aligned in 327 

space and time. 328 
 329 

RO Interpolation – Inverse Distance Weighting 330 

Inverse Distance Weighting (IDW) interpolation generates continuous vertical 331 

profiles from discrete RO data points, producing smooth and accurate representations of 332 
atmospheric moisture. IDW is a spatial interpolation method where the value at an 333 

unsampled location is a weighted average of nearby known values and closer points are 334 
weighted stronger. The nearest neighbors are identified using a k-dimensional tree 335 

(KDTree) that retrieves the coordinates and distances to the closest 4 grid points that then 336 
serve as the basis for weighting the known values during the IDW: 337 

F(s) = ∑ 𝑤𝑖𝑧(𝑠𝑖)
𝑛

𝑖=1
=  

∑ 𝑧(𝑠𝑖)
𝑛
𝑖=1

|𝑠 − 𝑠𝑖|
𝑃

∑
1

|𝑠 − 𝑠𝑗|
𝑃

𝑚
𝑗=1

 (2) 

𝑤 =
1

|𝑠 − 𝑠𝑥|𝑃
 (3) 

where s is the unsampled location, z(si) is the value at a known point, and |s-sx| represents 338 

the distance between the known and unknown points [40]. F is the interpolated value at 339 
position s and P controls the rate at which the weight decreases with distance. A power of 340 
2 was chosen through literature review, it is optimal for climate data, as it balances the 341 

influence of nearer and farther points, providing a realistic spatial distribution [40, 41, 42, 342 
43, 44]. 343 

 344 
 345 
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Integrated Water Vapor  346 

For interpolation, RO data from multiple satellite sources are used to calculate IWV 347 
by integrating temperature, vapor pressure, and pressure data from wet profiles on the 348 
day of the AR event. It is expressed in kilograms per square meter (kg m- 2) and the value 349 

is important to understand the role of water vapor in ARs, particularly for assessing 350 
precipitation potential and moisture transport. The unit represents the total amount of 351 

water vapor present in a vertical column of the atmosphere. IWV is calculated as follows: 352 

IWV =  
1

𝑔
∫ 𝑞

𝑝𝑡

𝑝𝑠

𝑑𝑝 (4) 

Here, q is specific humidity, g is acceleration due to gravity, ps and pt are surface and top- 353 
of-atmosphere pressures, respectively.  354 

The integral (equation 4) represents a continuous atmospheric column, while the sum 355 
(equation 5) approximates this for discrete pressure layers, where qi is specific humidity 356 
at the ith level and ∆pi is layer thickness [45, 46].  357 

IWV =  
1

𝑔
∑ 𝑞𝑖

𝑛

𝑖=1
∆𝑝𝑖 (5) 

 358 

Specific humidity, however, is not directly provided in the CDAAC wet profiles, it 359 
was therefore calculated based on [21]. The equation for the specific humidity is given in 360 

equation 6 and equation 7. 361 

𝑞 =  
𝜀 ∙  𝑝𝑣

𝑝 ∙  𝑝𝑣  ∙ (1 − 𝜀)
 (6) 

𝜀 =  
𝑀𝑤

𝑀𝑑

 (7) 

The constant (ε = 0.622)  represents the ratio of the molar mass of water vapor 362 
(Mw =  18.015 g mol-1) to the molar mass of dry air (Md =28.965 g kg-1) [47]. Profiles of 363 
vapor pressure 𝑝𝑣  and total air pressure 𝑝 are taken from the CDAAC wet profile data.  364 

 365 

Comparative Analysis of RO and ERA5 Data 366 

In the second part of the analysis, ERA5 reanalysis data were compared with RO 367 

satellite data (TXS, GRACE, COSMIC-1, Metop series, PAZ and Kompsat 5). The data 368 
were spatially and temporally interpolated to align with RO observation points, allowing 369 
a direct comparison. Interpolation was conducted using KDTree for nearest neighbors and 370 

IDW for spatial precision, with temporal interpolation aligning observation times to 371 
within a 2.5° spatial and 3-hour temporal range. 372 

The datasets were then assessed using Mean Bias and Root Mean Square Error 373 
(RMSE) to quantify ERA5’s performance, with RMSE values categorized as low (<10%), 374 
medium (10-30%), and high (>30%) relative to observed values, based on literature 375 

standards [48, 49, 50]. Lower RMSE indicated better alignment with RO data, while higher 376 
RMSE suggested greater discrepancies due to differences in atmospheric, spatial, or 377 

temporal factors. 378 
 379 

2.4. Selected AR Events 380 

We selected AR events spanning both the Northern and Southern Hemispheres from 381 
2009 to 2019, covering austral spring and autumn as well as boreal spring and winter. The 382 

events were chosen for their geographic and seasonal diversity. Each event is documented 383 
in prior literature, confirming its classification as an AR. Table 1 includes each event’s date 384 
that was chosen based on precipitation, affected region, study domain, and satellite 385 

sources used for RO observations. 386 
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Table 1. Investigated AR events from 2009 to 2019 387 

Event name Date 
Affected  

region 
Area RO Satellites 

Study domain 

(Lat°/ Lon°) 

South Africa 

2009 
26.09.2009 

West coast of 

South Africa 
Southern Africa 

Cosmic-1 

Metop-A 

GRACE 

TSX 

-10 to -50 / -40 to 

30 

MENA 2010 15.03.2010 MENA Region Northern Africa 

Cosmic-1 

Metop-A 

TSX 

45 to 10/ 0 to 60 

 

Morocco 2010 30.11.2010 Morocco Northern Africa 

Cosmic-1 

Metop-A 

GRACE 

TSX 

45 to 10/ -45 to 

15 

South Africa 

2013 
26.05.2013 

West coast of 

South Africa 
Southern Africa 

Cosmic-1 

Metop-A 

Metop-B 

GRACE 

TSX 

-5 to -45/ -40 to 

30 

MENA 2017 14.04.2017 
Middle East/ 

Iran 
Northern Africa 

Cosmic-1 

Metop-A 

Metop-B 

Kompsat5 

50 to 10/ 10 to 60 

Mauritania 2019 24.03.2019 Middle East North Africa 

Cosmic-1 

Metop-A 

Metop-B 

TSX 

Kompsat5 

PAZ 

40 to 10/ -30 to 

60 

 388 

These events highlight key AR dynamics such as moisture uptake, long-distance 389 
transport, and interactions with geographic features that intensify precipitation impacts. 390 
The selected events, covering diverse regions and seasons, form a robust foundation for 391 

analyzing AR behavior across Africa. The study domains for each event are shown in 392 
Figure 1. 393 
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 394 

Figure 1. Study Domains of Selected Atmospheric River events 395 

The South African 2009 event affecting the west coast of South Africa in September 396 

2009, occurred during austral spring. It showed unusual moisture uptake from regions 397 
typically outside Southern Africa’s moisture sources, exemplifying teleconnections 398 

between South America and South Africa. The event notably impacted the Western Cape 399 
Province, which is especially vulnerable to ARs due to its closeness to the South Atlantic 400 
Ocean [21]. 401 

Taking place in March 2010, in the Middle East and North Africa (MENA) region, the 402 
MENA 2010 event occurred in boreal spring. It influenced dust transport and interacted 403 

with snowmelt processes in the Near East highlands. The AR primarily drew moisture 404 
from the Red Sea and northeastern Africa, impacting the highlands of the Near East and 405 
making it a key event for studying AR influences during the snowmelt season [51]. 406 

In November 2010, an AR event brought intense rainfall to Morocco, causing 407 
substantial flooding, especially in urban areas like Casablanca. The Morocco 2010 event 408 

produced precipitation levels nearing 180 mm at specific rain gauges, severely affecting 409 
infrastructure. Occurring in late boreal autumn, this event provides insight into North 410 
Africa's pre-winter climate conditions [17]. 411 

In the boreal winter of 2011, the Mauritania 2011 event impacted East Sahara, 412 
Mauritania, Morocco, and Guinea. The AR demonstrates high frequency and extensive 413 

reach. ARs in this area are often influenced by upper-level jet streams, enabling long- 414 
distance moisture transport from the North Atlantic and Red Sea, bringing moisture 415 
across arid regions [4]. 416 

The South Africa 2013 austral autumn event in May 2013, contributed to South 417 
Africa's winter rainfall, with intense northward moisture flow originating from the South 418 

Atlantic and moving toward South Africa. The interaction between a subtropical high- 419 
pressure system and a low-pressure system over the continent intensified the event, 420 
highlighting ARs' role in South African winter precipitation [7]. 421 

In April 2017, the MENA 2017 AR event impacting the region, caused flooding and 422 
influenced snowmelt, especially in Iran. Moisture sources included the Red and 423 
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Mediterranean Seas, with effects on areas such as Lake Urmia. The event also carried 424 
Saharan dust, affecting precipitation and ecosystems across long distances [15]. 425 

Illustrating rapid shifts from drought to flooding, the Mauritania 2019 event affected 426 
North Africa and the Middle East in March 2019. It resulted in severe flooding as far as 427 
Iran, causing extensive infrastructure damage and loss of life. This event exemplifies how 428 

climate extremes can intensify under changing climate conditions [5, 52]. 429 

3. Results and Discussion 430 

This chapter presents the results of the (1) statistical analysis of AR events over Africa 431 
using IPART and ARtracks. ERA5 data accuracy against high-resolution RO 432 

measurements is evaluated with the (2) Comparison of RO and ERA5 data.  433 
 434 

3.1. Statistical Analysis of AR Events over Africa 435 

This section presents results from the IPART and ARtracks analysis, highlighting AR 436 
frequency, monthly distribution, and hemispheric differences across the continent. We 437 

identified 1,730 ARs impacting Africa between 2009 and 2019, with annual fluctuations 438 
shown in Figure 2. The number of ARs varies yearly, with the highest count in 2011 (174 439 

ARs) and the lowest in 2009 (139 ARs). Overall, the number of ARs stays relatively 440 
constant over the period, shown by the annual average of 159 ARs. 441 

 442 

Figure 2. Total number of AR events each year filtered for respective seasons 443 

Figure 2 illustrates both seasonal and interannual AR variability, showing event 444 

distribution by season each year. Austral summer (DJF: December, January, February; 445 
pink) and autumn (MAM: March, April, May; light blue) display higher AR frequencies 446 

than winter (JJA: June, July, August; dark blue) and spring (SON: September, October, 447 
November; red). The seasonal averages for AR activity were 29 (JJA), 39 (SON), 47 (DJF), 448 
and 44 (MAM).  449 

Notably, the years 2011, 2016, 2018 and 2019 show elevated AR counts. The DJF 450 
season is the most active season, with a peak in 2019 (59) and a low in 2014 (41) and 2015 451 

(41), while MAM shows a maximum in 2014 (56) and a minimum in 2015 (37) and 2019 452 
(37). JJA consistently records the least AR activity ranging from 18 in 2013 to 40 in 2018, 453 
and SON exhibits moderate variability, with a peak in 2010 (51) and a low in 2009 (29) and 454 

2014 (29).  455 
To analyze potential correlations between the frequency of ARs and climatic 456 

conditions, we examined the ENSO 3.4 index, which measures sea surface temperature 457 
(SST) anomalies in the central equatorial Pacific Ocean and compared it to the number of 458 
ARs making landfall in Africa. This index is an indicator of El Niño and La Niña phases, 459 

with positive values indicating El Niño (warmer ocean temperatures) and negative values 460 
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indicating La Niña (cooler ocean temperatures) [53]. Warm and cold phases happen when 461 
sea surface temperatures in the Niño 3.4 region are either warmer or cooler than normal 462 

by at least 0.5°C for five months in a row [54, 55, 56]. Some general patterns emerged from 463 
the comparison.  464 

The El Niño years 2015-2016, marked by strong SST anomalies (up to +2.6°C in OND 465 

and NDJ 2015), agreed with increased AR activity in certain seasons, such as JJA (37 and 466 
39 ARs respectively, both values above average) and SON (44 and 41 ARs) that were 467 

among the highest recorded for these seasons. The annual totals were 159 events in 2015 468 
and 166 ARs in 2016. 469 

During the study period La Niña conditions prevailed in 2010-2011 and 2017-2018, 470 

with the strongest phase observed in 2010-2011 (ENSO 3.4 index: -1.6 in SON 2010). Those 471 
years are generally associated with more variable AR activity during the seasons, showing 472 

the highest annual counts for the study period (174 in 2011 and 171 in 2018). While JJA 473 
activity was consistently low during La Niña due to a weakened subtropical jet (e.g., 24 474 
ARs in 2010 and 23 in 2017), DJF remained relatively robust, as seen in 2011 (51 ARs) and 475 

2017 (53 ARs). MAM activity during La Niña years also displayed variability, with high 476 
counts in 2011 and 2018 (49 ARs each). Notably is the activity in SON 2010 (52) showing 477 

the highest value of this season (corresponding to the lowest seasonal ENSO 3.4). 478 
Neutral years, such as 2009, 2012-2014, and 2019, were characterized by ENSO 3.4 479 

index values between -0.5 and +0.5. Those years show generally steady AR activity, with 480 

moderate MAM activity, but a notable exception in MAM 2014 (56 ARs, highest for the 481 
season). JJA counts are low, which is typical for that season (e.g., 26 ARs in 2009 and 18 in 482 

2013). 483 
 484 
Average monthly AR distributions from 2009 to 2019 reveal distinct patterns, with 485 

peak activity in January (188 ARs), February (181 ARs) and March (198 ARs), a second 486 
peak in October (163 ARs) and a minimum in July (85 ARs), as shown in Figure 3.  487 

 488 

Figure 3. Average number of ARs making landfall over the period 2009-2019 489 

AR activity gradually declines during April (156 ARs), May (154 ARs) and June (135 490 

ARs) as the seasonal transition progresses into boreal summer. The heatmap in Figure 4 491 
further highlights monthly AR frequencies, with darker shades indicating peak months. 492 
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 493 

Figure 4. Heatmap - monthly number of ARs over the whole continent of Africa 494 

Boreal winter and spring months consistently show more AR events across multiple 495 

years, consistent with the dominance of DJF as the most active season, with peaks such as 496 
January 2011 (26 ARs), February 2018 (22 ARs) or January 2019 (23 ARs) shown in 497 
Figure 2. MAM also shows elevated activity, with the highest monthly count of 26 ARs 498 

occurring in March 2014. In contrast, JJA consistently exhibits the lowest AR counts, with 499 
a minimum of 4 ARs in July 2013 during a neutral ENSO year. 500 

  501 

3.1.1. Southern and Northern Africa 502 

In the statistical analysis, AR activity was separated by hemisphere at the equator, 503 

with results shown in Figure 5 for landfalling ARs from January 2009 to December 2019. 504 
The chart displays monthly AR activity in Northern Africa (blue line) and Southern Africa 505 

(green line). 506 

 507 

Figure 5. Number of ARs making landfall for each month for both hemispheres 508 
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Only ARs making landfall in Africa are included, excluding the Arabian Peninsula. 509 
Southern Africa shows consistently higher AR activity over the entire study period. 510 

Visible is a peak in January (142 ARs), high activity in February (119 ARs) and March (116 511 
ARs) and a secondary peak in October (107ARs). In Northern Africa high AR counts are 512 
observed from February (62 ARs) to May (66 ARs) with a secondary peak in October (56 513 

ARs) and minimal activity in summer, aligning with the study by Francis et al. (2022) [57], 514 
which highlights AR-driven moisture transport toward Europe.  515 

In both regions a minimum activity is shown in July (Southern Africa: 69 ARs, 516 
Northern Africa: 16 ARs). Additionally, there is a secondary peak visible in October 517 
(Southern Africa: 107 ARs, Northern Africa: 56 ARs). The following sections provide a 518 

more detailed analysis of each region, with additional charts for further insight. 519 
While Figure 5 shows the seasonality of AR landfalls in Southern Africa, where AR 520 

activity remains consistently higher than in Northern Africa, Figures 6 and 7 give a more 521 
detailed visualization on annual differences. It presents a heatmap of monthly AR activity 522 
over Southern Africa. 523 

 524 

Figure 6. Heatmap - monthly analysis ARs over Southern Africa 525 

Comparing Figure 5 and 6, AR activity is relatively high from October to March (see 526 

Figure 5 and 6), but strong activity is observed from January to March, with highest peaks 527 
in January (e.g., 22 ARs in 2011 or 21 ARs in 2019) and February 2017 (23). In contrast, 528 

austral winter months (JJA) show minimal AR activity, with July typically recording the 529 
fewest events (e.g., only 2 in July 2014). This seasonal pattern underscores the role of ARs 530 
in Southern Africa’s wet season, contributing to summer precipitation, while winter 531 

remains drier with reduced AR influence [7]. Year-to-year variation is again evident, with 532 
higher AR activity in years like 2014 and 2019 and lower counts in 2009 and 2013, 533 

indicating sensitivity to large-scale atmospheric dynamics. 534 
Although literature (e.g., [58]) often reports peak AR activity during austral winter 535 

(May-September), the 2009-2019 data show prominent activity during austral summer 536 

(DJF) and autumn (MAM), aligning with the region’s summer rainy season but diverging 537 
from some previous findings [6, 7, 59]. Our differing findings may stem from the limited 538 

existing research on Southern African ARs. Although our study period is comparatively 539 
short, we found noteworthy results, including the average number of 158 ARs per year 540 
and a small variation in the absolute number of landfalling ARs per year. 541 



Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 27 
 

 

Northern Africa, situated between the subtropics and mid-latitudes, experiences 542 
most AR activity during boreal winter (DJF), with lower overall frequency compared to 543 

Southern Africa. AR patterns are driven by mid-latitude low pressure systems that 544 
transport moisture from the Atlantic, crucial for this arid region’s water supply [5].  545 

 546 

Figure 7. Heatmap - monthly analysis ARs over Northern Africa 547 

Figure 7 shows monthly AR trends in Northern Africa. Boreal winter (DJF) and 548 
spring (MAM) months again show higher AR frequency, contributing to precipitation, 549 
with peaks in January 2019 (20 events), April 2017 (23 events), or March 2014 and 2019 (20 550 

events). Conversely, summer (JJA) and early autumn (SON) show minimal AR activity, 551 
with July typically showing the lowest AR activity. 552 

Research [19, 52, 58, 60] confirms that ARs peak in boreal autumn and winter, 553 
supporting critical precipitation during these seasons: This AR variability is also 554 
influenced by shifts in the Intertropical Convergence Zone (ITCZ), leading to a marked 555 

decrease in mid-year AR occurrences [4, 18]. 556 
 557 

3.2. Comparison of RO and ERA5 Data 558 

Here we examine the relationship between IWV values from GNSS RO and ERA5 559 
reanalysis data through case studies of six representative AR events in regions like 560 

Southern Africa, Middle East and North Africa (MENA), and West Africa. Through 561 
analysis of regression lines, Mean Biases, and RMSE, we assess ERA5´s accuracy against 562 

high-resolution RO data. It is important to note that while RO data possess high vertical 563 
resolution, they tend to underestimate IWV due to reduced sensitivity in the lower 564 
troposphere—a limitation contributing to the underestimation of IWV (as previously 565 

discussed). 566 
Scatter plots and geospatial maps are utilized to compare IWV values from the two 567 

datasets at corresponding locations and times. The scatter plots illustrate the alignment 568 
between datasets, highlighting patterns and discrepancies. The red dashed line represents 569 
perfect alignment between ERA5 and RO datasets, while the green regression line denotes 570 

the line of best fit. Geospatial maps visualize the spatial distribution of moisture, enabling 571 
the identification of regions with consistent agreement and areas with notable deviations 572 

 573 
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3.2.1. South Africa 2009 event 574 

This event delivered moisture from the South Atlantic and remote sources like South 575 
America to South Africa, causing extreme rainfall at the Western Cape [8]. The scatter plot 576 
(Figure 8 (a)) shows a high number of RO events (131) and a wide IWV range of ~3 to 577 

43 kg m- ², reflecting strong moisture transport. A spread in the data is evident at higher 578 
IWV values. At lower IWV values, below ~10 kg m-2, a good agreement between the RO 579 

data and the interpolated ERA5 IWV values is visible, as indicated by the close alignment 580 
of the data points (blue) the regression line (green). This comparison yields in an RMSE of 581 
4.37 kg m- ². The Mean Bias is -2.01 kg m- ² and together with the regression line slope of 582 

0.82 this event indicates the tendency for ERA5 to show wetter data relative to GNSS RO. 583 
Former findings by Rahimi and Foelsche (2024), support this finding, that prevail 584 

throughout all events. 585 
 586 

 587 

Figure 8. Analysis of the Southern Africa 2009 event. (a) Scatter plot of Radio Occultation (RO) 588 
versus ERA5 Integrated Water Vapor (IWV). (b) Map showing IWV from ERA5 (background) and 589 
from RO (filled circles). Scale reverse to the center latitude. 590 

The spatial map (Figure 8 (b)) visualizes ERA5 IWV distribution overlaid with RO 591 
measurements (filled circles) and demonstrates the capability of the reanalysis dataset to 592 

capture large-scale moisture transport patterns associated with the AR event. The filled 593 
circles represent the IWV values from the RO observations. The scale on the color bar 594 

indicates IWV values with yellow and green indicating lower and blue indicating higher 595 
values. The IWV values derived from the RO dataset are represented by the black-edged 596 
circles. Discrepancies in color indicate differences between the two data sets. In high- 597 

moisture areas ERA5 shows higher IWV than RO, highlighting its tendency to exhibit a 598 
positive bias in regions with finer-scale moisture variations. On the edges of AR events 599 

higher discrepancy is expected due to sharp humidity gradients. 600 
 601 
 602 

 603 
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3.2.2. MENA 2010 event 604 

Occurring during boreal spring, this AR event highlights the impact of AR on 605 
snowmelt and dust transport in the MENA region [51]. 606 

The IWV range in Figure 9 (a) (~2 to 32 kg m- ²) is characteristic of moderate moisture 607 

transport typical of weaker ARs (also evident in Figure 9 (b)). The data points are tightly 608 
clustered around the regression and 1:1 line, indicating minimal systematic bias and 609 

variability. This is indicated by the lowest RMSE amongst all events at 3.11 kg m-2, and 610 
the smallest Mean Bias of -1.61 kg m- ². This relationship between the CDAAC RO and 611 
interpolated ERA5 IWV can be expressed by the equation y= 0.80x + 0.81, showing that 612 

RO values are about 80% of the ERA5 values. 613 

 614 

Figure 9. Analysis of the MENA 2010 event. (a) Scatter Plot of RO versus ERA5 IWV. (b) IWV from 615 
ERA5 (map) and from RO (filled circles) including the path of the AR (red). 616 

The spatial map in Figure 9 (b) illustrates IWV patterns across the MENA region, 617 
with the red line indicating the path of the AR. The path is defined using data from the 618 
ARtracks catalogue (see chapter 2.1.3.1). High moisture areas are shown over the Red Sea 619 

and the Arabian Peninsula. ERA5 exhibits a positive bias of IWV in the eastern 620 
Mediterranean and northern Africa. Limited satellite observations over land reduce AR 621 

visibility for this specific event, though the AR pathway affects regions from the Arabian 622 
Peninsula to the Middle East. 623 

 624 

3.2.3. Morocco 2010 event 625 

The Morocco 2010 event was marked by extreme rainfall leading to widespread 626 

flooding and infrastructure damage [17]. The IWV in the scatter plot (Figure 10 (a)) spans 627 
~7 to 52 kg m- ², underscoring the strong moisture transport associated with this AR, 628 
illustrate in Figure 10 (b). The Mean Bias of -2.33 kg m- ² (largest among all events) and 629 

RMSE of 4.41 kg m- ² reflect moderate discrepancies. For this event ERA5 values are 122% 630 
of the RO values, which is shown by the slope of 0.82 that is the same as in the South 631 

Africa 2009 event. However, the scatter of the sample size of RO observations (44) is 632 
smaller than in the 2009 event. 633 
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 634 

Figure 10. Analysis of the Morocco 2010 event. (a) Scatter Plot of RO versus ERA5 IWV. (b) IWV 635 
from ERA5 (map) and from RO (filled circles). 636 

Figure 10 (b) illustrates high IWV over the Atlantic west of Morocco, captured well 637 
by ERA5, which shows extensive moisture transport toward the Moroccan coast. 638 

However, ERA5 reports systematically higher IWV levels in oceanic and northern 639 
Morocco regions compared to RO, that tends to retrieve drier profiles. IWV decreases 640 
inland, aligning well between datasets, though RO reports slightly lower values in some 641 

areas, particularly north of 35°N and south of 20°N. 642 

 643 

3.2.4. South Africa 2013 event 644 

The South Africa 2013 event, which occurred in austral autumn, contributed to 645 
winter rainfall in South Africa [7]. With an IWV range of ~7 to 47 kg m- ², this event reflects 646 
considerable moisture transport in a strong AR. The scatter plot in Figure 11 (a) shows a 647 

strong positive correlation between RO and ERA5 IWV values with a RMSE of 4.08 kg m- ², 648 
a Mean Bias of - 2.22 kg m- ² and a slope of 0.83. The metrics are similar to the 2009 event 649 

(slope: 0.82, RMSE: 4.37 kg m- ²). However, discrepancies are more apparent at higher IWV 650 
values, particularly above 40 kg m-2. This event additionally shows good data coverage of 651 
the AR event (see Figure 11(b)) itself and a total of 95 datapoints available for comparison. 652 

 653 
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 654 

Figure 11. Analysis of the South Africa 2013 event. (a) Scatter Plot of RO versus ERA5 IWV. (b) IWV 655 
from ERA5 (map) and from RO (filled circles). 656 

The spatial distribution map in Figure 11 (b) highlights ERA5 capturing broad IWV 657 
patterns across the South Atlantic and coastal Southern Africa, showing high values over 658 

the ocean (30-45 kg m- ²) and lower values inland (15-30 kg m- ²). ERA5 aligns well with 659 
RO data over land, particularly in Namibia and Angola, but shows higher IWV values 660 

over the Atlantic between 20°S and 30°S, with ERA5 reporting up to 45 kg m- ² while RO 661 
data provide comparatively drier values. 662 

 663 

3.2.5. MENA 2017 event 664 

Driven by moisture originating over the Red and Mediterranean Seas, this event 665 
triggered flooding and snowmelt across the Middle East and Northern Africa. Concurring 666 

with increased Saharan dust transport, this AR demonstrates the complex impacts of such 667 
events [15, 57]. The RMSE value of 4.29 kg m- ², indicates relatively good agreement 668 
overall, though notable outliers are present (Figure 12 (a)). Additionally, the moderate 669 

Mean Bias of -1.66 kg m- ² and the steepest slope (0.88) among all investigated cases, reflect 670 
the strongest linear relationship between ERA5 and RO IWV datasets.  671 
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 672 

Figure 12. Analysis of the MENA 2017 event. (a) Scatter Plot of RO versus ERA5 IWV. (b) IWV from 673 
ERA5 (map) and from RO (filled circles) including the path of the AR (red). 674 

The spatial distribution map (Figure 12 (b)) reveals good agreement between ERA5 675 
and RO over North Africa, where IWV is lower (10–20 kg m- ²). The red line displays the 676 

AR path. It was plotted based on the AR axis coordinates. Over the Persian Gulf and parts 677 
of Saudi Arabia, ERA5 captures the broad moisture pattern (15–30 kg m- ²) but tends to 678 

report moisture values in areas with rapid moisture transport, particularly in the Middle 679 
East. The higher values of IWV in regions with fast changing conditions arise from model 680 

limitations resolving small-scale transport dynamics and the parameterization of 681 
convection and vertical mixing processes.  682 

 683 

3.2.6. Mauritania 2019 event 684 

The Mauritania 2019 event showcased how dynamic and thermodynamic processes, 685 
including a midlatitude system, subtropical jet, and orography, drove extreme rainfall in 686 
March [61]. The resulting floods in Iran caused severe damage.  687 

 Figure 13 (a) displays the highest RMSE (4.53 kg m- ²), indicating the weakest 688 
agreement between the two datasets and the greatest variability. The IWV in the scatter 689 

plot ranges from 4 to 47 kg m- ². The Mean Bias of - 1.82 kg m- ² highlights ERA5´s 690 
tendency to report elevated IWV values, particularly at lower moisture levels, as reflected 691 
in the large intercept of 3.26 kg m- ² (highest amongst all events). The weakest linear 692 

relationship is evident by the smallest slope (0.72) among the events. Discrepancies are 693 
most pronounced at lower IWV values, contrasting with other events where higher IWV 694 

values showed greater deviations.  695 
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 696 

Figure 13. Analysis of the Mauritania 2019 event. (a) Scatter Plot of RO versus ERA5 IWV. (b) IWV 697 
from ERA5 (map) and from RO (filled circles) including the path of the AR (red). 698 

Despite these discrepancies, Figure 13 (b) shows that ERA5 captures the large-scale 699 
moisture transport across North Africa and the Middle East. However, ERA5 exhibits a 700 

positive bias in regions of high IWV, such as Northwest Africa and Saudi Arabia. Limited 701 
satellite humidity observations over land likely contribute to these biases and the less 702 

distinct depiction of the AR path in ERA5. For clarity, the AR path is highlighted in red to 703 
indicate the observed trajectory. 704 

 705 
Overall, good agreement between ERA5 and RO is prevailing for all events. The 706 

slopes between 0.72 and 0.88 and consistent negative biases show systematic differences 707 

between the two datasets. This finding is consistent with a previous study [21], that 708 
showed that GNSS-RO (CDAAC and WEGC) aligns closely with SSMI/S data, both 709 

consistently reporting lower IWV values than ERA5. This agreement underscores that the 710 
observed differences are due to a combination of ERA5's and the RO´s representation of 711 
moisture, rather than a singular overestimation or underestimation by one dataset. RMSE 712 

values, ranging from 3.11 kg m- ² to 4.53 kg m- ², are moderate, indicating that ERA5 713 
generally performs well when compared to RO but could benefit from further refinement. 714 

 Among the events, the South Africa 2009 event stands out with the largest number 715 
of RO events that provide a robust evaluation, while the Mauritania 2019 event is 716 
impacted by a decrease in RO observations during that time. The primary reason is the 717 

limited availability of RO satellite observations on that specific date. This event exhibits 718 
the weakest performance by ERA5 with the highest RMSE, the lowest slope, and the 719 

largest intercept. The MENA 2017 event demonstrates a strong linear relationship (highest 720 
slope) and minimal baseline offset (lowest intercept), suggesting ERA5 captures IWV 721 
variations well. The MENA 2010 event stands out with the strongest agreement between 722 

RO and ERA5 IWV, with the lowest RMSE and mean bias, reflecting accurate ERA5 723 
representation. 724 

The analysis reveals that ERA5 generally performs well in capturing IWV during 725 
moderate AR events (e.g., MENA 2010 and MENA 2017), where IWV ranges are narrower, 726 
and biases are smaller. However, for stronger ARs with higher IWV values (e.g., Morocco 727 
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2010 and South Africa 2013), ERA5 struggles to accurately represent extreme moisture 728 
levels, leading to higher RMSE and larger systematic biases. The weakest agreement, seen 729 

in the Mauritania 2019 event, emphasizes the need for further refinement of ERA5 to better 730 
capture IWV variability during high-intensity ARs. 731 

4. Conclusion 732 

The findings of this research highlight the characteristics, seasonal trends, and regional 733 

differences in AR activity across Africa from 2009 to 2019. Additionally, this study 734 
evaluates the effectiveness of ERA5 compared to GNSS RO datasets in representing IWV 735 
during landfalling falling AR events. Key findings are summarized below: 736 

 737 
1. Annual Frequency and Distribution 738 

A total of 1,730 AR events made landfall in Africa during the study period, with a 739 
yearly average of 159 ARs. The years 2011 and 2018 showed the highest AR counts 740 
with 174 and 171 events respectively, correlating with La Niña years. El Niño years 741 

(2009 and 2015/16) did not show a significant impact, as the AR count was lowest for 742 
the whole study period in 2009 with 139 events making landfall but comparably high 743 

for 2016 (166 ARs). 744 
2. Seasonal Distribution and Monthly Trend 745 

Peaks of average monthly ARs counts for the whole continent occurred in January 746 
(188 ARs), February (181 ARs), March (189 ARs) and October (163 ARs). The most 747 
active season, with 47 ARs on average, was austral summer (DJF), peaking in 2019 748 

(59 ARs). Consistently the least activity, with the lowest count in 2013 (18ARs) was 749 
austral winter (JJA). SON (austral spring) showed moderate activity from 29 ARs in 750 

2009 and 2014 up to 52 ARs in 2010. The second most active season, MAM (austral 751 
autumn), showed peak activity in 2014 (56 ARs) and a low in 2015 and 2019 (37 ARs). 752 

3. Regional Differences: Southern vs. Northern Africa 753 

Southern Africa experienced consistently higher AR activity throughout the year, 754 
peaking in austral summer (DJF). Northern Africa, however, saw a distinct 755 

seasonality, with AR events peaking in boreal winter (DJF) and spring (MAM), 756 
reflecting the region's interactions with mid-latitude weather systems and seasonal 757 
shifts in the ITCZ.  758 

4. Interannual Variability 759 
The frequency of AR events varied from year to year, with peaks in 2011 and 2018 760 

and lower counts in 2009 and 2013, indicating the influence of large-scale 761 
atmospheric dynamics. 762 

5. Event-Specific Insights 763 

The MENA 2010 event showed the strongest agreement between ERA5 and GNSS 764 
RO IWV values, with the lowest RMSE (3.11 kg m⁻²). While the Mauritania 2019 event 765 

demonstrated the weakest ERA5 performance, with the highest RMSE (4.53 kg m⁻²) 766 
and the largest intercept, indicating challenges in capturing extreme moisture 767 
conditions. 768 

6. IWV and Pattern Consistency 769 
The analyzed AR events demonstrate a good overall agreement between ERA5 and 770 

GNSS RO IWV data. Acknowledging the fact that RO misses a part of the water vapor 771 
in the lowermost part of the profiles, but also that ERA5 reanalyses tend to be to wet 772 
[21], we conclude that this systematic difference is due to both ERA5 and RO. Despite 773 

this, ERA5 effectively captured large-scale IWV patterns and high-moisture zones 774 
associated with AR events.  775 

 776 
Comparisons between ERA5 and RO are currently somewhat limited due to a 777 

comparatively small number of RO profiles. However, expected increases in RO numbers 778 

in the future will allow for more detailed comparisons and for studies of AR events in 779 
other parts of the world. 780 
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