Efficient Polynomial Arithmetic
Architecture for Saber and
Dilithium

Aikata
aikata@iaik.tugraz.at

Institute for Applied Information
Processing and Communications (IAIK)
Graz University of Technology
Inffeldgasse 16a
8010 Graz, Austria

TU

Grazm
Graz University of Technology

Master Thesis
Supervisor: Sujoy Sinha Roy

December, 2021

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline
is identical to the present master's thesis.

Date: 15.12.2021

Signature: i a .

Acknowledgements

I would like to acknowledge all my colleagues and researchers. This thesis would not
have been possible without their support and collaboration. I would like to thank
my supervisor, Prof. Dr. Sujoy Sinha Roy. His friendly guidance and expert advice
have been invaluable throughout all stages of the work. I would also wish to express
my gratitude to Post. Doc. Dr. Ahmet Can Mert for extended discussions and
valuable suggestions that have contributed greatly to the improvement of the thesis.
This work would not be in its best stage without the several brainstorming sessions
with them.

Special thanks are due to my parents for their continuous support and under-
standing throughout the research.

Thank You

ii

Abstract

The tech giants of the world are competing for quantum supremacy- the fight
for who will make the world’s first strong quantum computer. In 2003, Shor’s
algorithm showed that these quantum computers can be used to break the public key
schemes based on the hard problems of integer factorization and discrete logarithmic
problems like RSA and Elliptic Curve Cryptography. The cut-throat competition
and the significant progress made towards making the Quantum computers, has led
the researchers to believe that it is not very far from being a reality. This implies
a need to come up with secure public-key cryptosystems to avoid any breach in the
confidentiality and integrity of the communications.

Realizing this the National Institute of Standards and Technology (NIST) launched
a project in 2019- Post-Quantum Cryptography (PQC) Standardization for devel-
opment of key encapsulation and public key encryption scheme and digital signature
algorithm. This competition is currently in its final stage. Several designers have
presented implementations for the candidate schemes. We realized that it is impor-
tant to design a compact cryptoprocessor that can efficiently implement both kinds
of schemes, the major bottleneck being a polynomial arithmetic unit and other
comparatively simpler building blocks.

In this thesis, we aim to design an efficient yet lightweight polynomial arithmetic
unit for the two NIST’s PQC standardization project finalists- Saber (key encapsu-
lation and public key encryption scheme) and Dilithium(digital signature scheme).
We exploit the synergies between these two lattice-based designs and overcome the
differences between the two schemes to successfully implement a flexible, compact,
and lightweight architecture capable of performing all the polynomial arithmetic op-
erations for all the variants of Saber and Dilithium based on different security levels.
The proposed architecture is an instruction set architecture. The implementation
is done on Xilinx Ultrascale+ ZCU102 and the polynomial arithmetic unit alone
consumes 2,460 LUTSs, 1,084 FFs, 4 DSPs, and 1 BRAM. One NTT/INTT oper-
ation takes 522 clock cycles and one pointwise addition/subtraction/multiplication
requires 138 clock cycles.

Keywords: Polynomial Arithmetic, Dilithium, Saber, Hardware Implementation,
Lattice-based Cryptography, Post-quantum cryptography

il

Kurzfassung

Die Technologiegiganten der Welt konkurrieren um die Quantenvorherrschaft — ein
heifler Kampf darum, wer den ersten starken Quantencomputer der Welt bauen wird.
Im Jahr 2003 zeigte der Algorithmus von Shor, dass diese Quantencomputer dazu
missbraucht werden koénnen, um die 6ffentlichen Schliisselschemata basierend auf
der Problematik der ganzzahligen Faktorisierung und den diskreten logarithmischen
Problemen wie RSA und Elliptische Kurven Kryptografie zu knacken. Der starke
Konkurrenzkampf und die erheblichen Fortschritte bei der Entwicklung der Quan-
tencomputer lassen die Forscher glauben, dass dies nicht mehr weit von der Realitéat
entfernt ist. Dies impliziert die Notwendigkeit, sichere Krypto-Systeme mit 6ffentli-
chem Schliissel zu entwickeln, um jede Verletzung der Vertraulichkeit und Integritét
der Kommunikation zu vermeiden.

Als das Nationale Institute fiir Standards and Technologien (NIST) sich der
Problematik bewusst wurde, startete es 2019 ein Projekt — Post-Quanten Krypto-
graphie (PQK) Standardisierung zur Entwicklung der Schliisselkapselung, des Ver-
schliisselungsschemas mit 6ffentlichem Schliissel sowie des digitalen Signaturalgo-
rithmus. Dieser Wettbewerb befindet sich derzeit in der finalen Phase. Mehrere Desi-
gner haben Implementierungen fiir die verschiedenen Kandidatenschemata préasentiert.
Wir haben erkannt, dass es wichtig ist, einen kompakten Krypto-Prozessor zu ent-
wickeln, der beide Arten von Schemata effizient implementieren kann, wobei die
grofiten Engstellen die polynomische Arithmetik-Einheit und andere vergleichsweise
einfachere Bausteine sind.

In dieser Arbeit zielen wir darauf ab, eine effiziente und dennoch leichte polyno-
miale Recheneinheit fiir die beiden Finalisten des PQC-Standardisierungsprojekts
des NIST - Saber (Schliisselkapselung und Verschliisselungsschema mit 6ffentlichem
Schliissel) und Dilithium (digitales Signaturschema) - zu entwerfen. Wir nutzen die
Synergien zwischen diesen beiden gitterbasierten Designs und {iberwinden die Un-
terschiede zwischen den beiden Schemata, um erfolgreich eine flexible, kompakte
und leichtgewichtige Architektur zu implementieren, die in der Lage ist, alle polyno-
mialen arithmetischen Operationen fiir alle Varianten von Saber und Dilithium auf
unterschiedlichen Sicherheitsebenen durchzufiihren. Die vorgeschlagene Architektur
ist eine Befehlssatzarchitektur. Die Implementierung erfolgt auf Xilinx Ultrascale+
ZCU102 und die polynomiale Recheneinheit allein verbraucht 2.460 LUTs, 1.084
FFs, 4 DSPs und 1 BRAM. Eine NTT/INTT-Operation benétigt 512 Taktzyklen
und eine punktweise Addition/Subtraktion/Multiplikation erfordert 138 Taktzyklen.
Stichworter: Polynomische Arithmetik, Dilithium, Saber, Hardwareimplementie-
rung, gitterbasierte Kryptographie, Post-Quanten Kryptographie

v

Contents

(1 Introduction|

|2

PQC schemes|

[2.1 Saber scheme description |
[2.2 Dilithium scheme description |

Polynomial Multiplication|

[3.1 SchoolBook multiplication|
[3.2 Karatsuba multiplicationlo 0000000
[3.3 ToomCook multiplication|
3.4 Toeplitz Matrix Vector Product(TMVP)
[3.5 NT'T-based multiplication|

(3.5.1 Chinese Remainder Theorem(CRT)[.
[3.6 Summary of the multiplication methods|

4__Modular Reduction methodsl

4.1 Montgomery Reduction|.
1.2 Barrett Reductionl.o
4.3 Lookup-table-based modular reduction methods
4.4 Efficient Reduction unit tor special primes/
[4.5 Summary of the modular reduction methods|

Design strategies|

[>.1 Polynomial Addition and Subtraction unit|
[>.2 Polynomial multiplication unit|.

Implementation in Hardware |

6.3 N'T'T-based unified polynomial multipler{

:6.4 NTT/INTT transformation method|

6.5 Pointwise addition, subtraction, and multiplication]
6.6 M V1 . e e

10

15
16
17
19
21
22
23
25

26
27
28
29
31
32

34
35
36

[7_Results]
(7.1 Our Resultsl

[7.2 Comparison with other results|

[8 Future scope]

9 Conclusions|

(A Appendix|
[A.1_Abbreviations
[A.2 Algorithms and Figures|

(Bibliography|

vi

52
52
53

57

60

63
63
64

68

List of Figures

p1

NIS'T finalists grouped according to security levels supported|

B

Function usage in Key Generation, Encryption, and Decryption for

Saber |61l

B2

Karatsuba’s algorithm reduces an n-bit multiplication to three n/2-

bit multiplications, which in turn are reduced to nine n/4-bit mul-

tiplications and so on. We can represent the computational cost of

all these multiplications in a 3-ary tree of depth [ogsn. where at the

root the extra cost is cn operations, at the first level the extra cost

is ¢(n/2) operations, and at each of the 3* nodes of level ¢, the extra

cost is c(n/2)] | . . - . . .

[3.3

The Toom-Cook-4-way and Karatsuba multiplication used in Saber

— B

21

[3.4 Example showing N'T'T" intermediate values during N'T"-multiplication| 25

4.1 Mapping between the original residue system and the Montgomery |
| residue system [B7)o 28
6.1 Unified modular reduction unitl 40
[6.2 NT'T-based multiplication flow|. 41
[6.3 N'T'T" transtormation using matrix-vector multiplication| 41
[6.4 INTT transformation using matrix-vector multiplication| 41
6.5 Cooley-Tukey NTT/INTT flow diagram | 42
6.6 Gentleman-Sande NTT/INTT flow diagram| 42
[6.7 Internal architecture ot the butterfly unit for unified Cooley-Tukey |
[NTT and Gentleman-Sande INTI}. 0000000 .. 46
[6.8 Coefhicients storage for first 3 steps of the first iteration of N'T'T" trans- [
| formation on a polynomial of coefficient size 16| 47
[6.9 Storage of two polynomials across the two BRAMSs to facilitate the |
| parallel access tor pointwise arithmetic operations| 49
[6.10 Format of the instructions for the designed cryptoprocessor|{. 50
[6.11 Architecture diagram ot the Polynomial Arithmetic Unit{ 51
7.1 Utilization % on the FPGA| 53
[7.2 Implementation Diagram | 54
[8.1 Proposed new Architecture tor the Polynomial Arithmetic Unit| 57

vil

(3.2

Unified cryptoprocessor for Saber and Dilithium| 58

[A.1 Coefhicients storage in single BRAM for full iterations of INT'T" on a |
polynomial having 8 coefficients| 66
[A.2 Coefhcients storage in single BRAM for full iterations of NITT on a |
polynomial having 8 coefficients| 67

viil

List of Tables

2.1 Saber.PKE Parameters L. 6
2.2 Saber. KEM Parametersl L. 6
2.3 Dilithium Parameters| o oo 10
4.1 Pre-computation table for a modulusp 30
[6.1 Proposed primes with experimental failing probabilities| 39
[6.2 Table showing the instructions in two columns. An instruction from [

the first column can be run in parallel with an instruction from the [

second column 50
[7.1 Cycle count for different operations| 52
[7.2 Implementation utilization results| 53

X

List of Algorithms

1 Saber.PKEKeyGen() [33] 7
2 Saber.PKE.Enc(pk = (seeda,b),m € Ro;r) B3] 7
3 Saber.PKE.Dec(sk =s,c= (¢,,,0) B3| 7
4 Saber.KEM.KeyGen() [33] | 8
5 Saber .KEM.Encaps(pk = (seeda,b)) [33]] 8
6 Saber.KEM.Decaps(sk = (s, z, pkh), pk = (seeda,b),c) B3]] 8
[DilithiumGen() [I6]]. 11
8 Dilithium.Verify(pk,M,o = (z,h,0)) [10] 11
9 Dilithium.Sign(sk, M) [I6]. 12
10 Power2Round,(r,d) [16]], 12
11 Decompose (r,a) [T6][. 13
12 HighBits (r,a) [16]| 13
13 LowBits,(r,a) [16lo 13
14 MakeHint,(z,r, o) [16]] o oo oo 13
15 UseHint,(h,r, o) [16|. oo o 13
16 SampleInBall(p) 16l 14
17 SchoolBookMultiplication(a,b,c) [BI| 16
18 KaratsubaMultiplication(a,b,c)|. 19
19 Toom — Cook(a,b,c. k) [BAI|, 20
20 NTT_basedmultiplication(a,b,c)| 24
21 Interleaved Modular Reduction(a,b,c) Bl 26
22 Montgomery Reduction(a,b,c) 27
23 Barrett Reduction(a,b,c) []. 29
24 Basic LUT — based modular reduction (p,k,7,c,l,7) R3] 30
25 Reduction by pseudo — Mersenne prime (c,p,7) [70] 32
26 AdditionOf2polynomials (a,b,c) 35
27 SubtractionOf2polynomials (a,b,c) 35
28 PointwiseMultiplicationOf2polynomials (a,b,c)| 36
29 The Gentleman-Sande InverseNTT algorithm [66, [76] | 43
30 The Cooley-Tukey NTT algorithm [66] | 44
31 Zeta_generation ((, (', zeta_table, zeta_Inv_table,p)| 44
32 Butterfly(alg,pl_in,p2_in,(,plout,p2_out,p)| 45
33 PointwiseMultiplicationOf2polynomials (a,b,c)| 48

[34 Butterfly_data_control(op,p_in|N|,p_out|N|,(_in|[N|,p,jlenk)[. 49
35 Unified_Modular_Reduction(ctr,A.B,p)| 64
36 SubtractionOf2polynomials (a,b,c) 65
37 AdditionOf2polynomials (a,b,c) 65

pal

Chapter 1

Introduction

In the year 2003, Peter Williston Shor proposed the famous Shor’s scheme [59] which
could solve the integer factorization and discrete logarithm problems in polynomial
time using quantum computers. Thus posing a direct threat to some of the most
widely used public-key cryptosystems - RSA and Elliptic curve cryptography. The
tech giants- IBM, Google, Amazon, etc., are already working towards making a
powerful quantum computer for the past five years and have achieved quite great
success. A problem that would take 10,000 years to be solved by a state-of-the-
art supercomputer was solved in 200 seconds by Google’s ‘Sycamore’ [15], a 54-bit
quantum computer proposed in October 2019. Although they are not yet powerful
enough the break the RSA and Elliptic curve-based public-key cryptography, but
owing to the super fast design progress that is being made, in the near future the
present day cryptographic schemes won’t be secure anymore. This would adversely
affect the confidentiality and integrity of the communications.

Fearing the inevitable, the National Institute of Standards and Technology (NIST)
launched a project in 2019- ‘Post-Quantum Cryptography (PQC) Standardization’
to initiate the development and standardization of the schemes which would be
secure even after the advent of quantum computers and can function with the exist-
ing communications protocols and networks. NIST also shared a report discussing
the status of quantum computing and post-quantum cryptography and press on
the design being crypto-agile. Researchers from all-over-the world contributed to
this project with various design strategies using the algorithms which would re-
main unbreakable by the quantum computers. After the first round, 17 public-key
encryption and key-establishment algorithms, and 9 digital signature candidates
moved to the second round. On July 2020 this competition moved to it’s final stage
with four finalists in the public-key encryption (PKE) or key encapsulation mecha-
nism (KEM) category: Classic-McEliece [21], CRYSTALS-Kyber [65], NTRU [25],
and Saber [34]; and three finalists in the digital signature category : CRYSTALS-
Dilithium [I6], Falcon [58], and Rainbow [35]. Amongst the finalists, most of the
schemes are lattice-based constructions except Classic-McEliece and Rainbow which
are code-based and oil-vinegar-based constructions.

After the second round, the project report [I3] published by NIST states that one
of the lattice-based schemes will be chosen as the winner and eventually standard-

CHAPTER 1. INTRODUCTION 2

ized. From the report and the ongoing discussion on the standardization project
more and more emphasis is placed on improving the implementations and side-
channel analysis of these finalists, since it is a challenging task to efficiently imple-
ment these schemes on existing platforms which greatly vary in terms of memory
and performance constraints. Therefore, in this thesis we aim to improve the imple-
mentation aspects of these schemes and realize a unified polynomial arithmetic unit
that is compact, lightweight, and yet high-speed.

After the first round of NIST’s PQC standardization itself in November 2017, var-
ious hardware implementations of the PQC candidates started showing up in 2018.
While most of them focused on giving the results for one particular scheme, some of
them also gave results for unified cryptoprocessors which provided support for 2 or
more lattice-based PQC schemes. In 2019 Sapphire[I7] was proposed, which could
execute multiple lattice-based PQC schemes, namely Frodo, NewHope, qTESLA,
CRYSTALS-Kyber, and CRYSTALS-Dilithium. However, it does not support the
most latest scheme specifications of the two finalists CRYSTALS-Kyber [65] and
CRYSTALS-Dilithium [16]. Then in 2020 a tightly-coupled RISC-V extension[41],
known as ‘RISQ-V’, was proposed for providing hardware acceleration support to
NewHope and CRYSTALS-Kyber (and Saber to a minor extent). Their architecture
mostly focuses on accelerating the Number Theoretic Transform (NTT)-based poly-
nomial multiplication of NewHope. For Saber, due to limited hardware support, the
cycle count is arguably not superior to optimized software implementations on an
ARM Cortex M4 micro controller [27]. No hardware support for the lattice-based
signature schemes Dilithium or Falcon is available in RISQ-V.

From all the previous implementations of these schemes, we conclude that poly-
nomial arithmetic and Keccak based hash and pseudo-random number generation
functions are most expensive and complex to implement. There are many efficient
implementations of Keccak based on different requirements which exist in literature
and because the functionality of the module stays the same for different designs, not
many changes are required in the existing implementations of Keccak. Therefore,
in this thesis, we propose a compact and fast polynomial arithmetic architecture for
performing the multiplication, addition, and subtraction of two polynomials. We re-
alized this unified architecture completely in hardware for the lattice-based finalist
PKE/KEM candidate Saber [34] and the signature candidate Dilithium [16].

In the coming up sections we list the concrete contributions made in the thesis
and the organization of the thesis.

CHAPTER 1. INTRODUCTION 3

1.1 Thesis Contribution

In this thesis the following contributions are made:

e The most area-consuming components in the PQC scheme are Keccak based
hash and pseudo-random number generators, and Polynomial Arithmetic unit-
for performing multiplication, addition, and subtraction of Polynomials. A
unified Polynomial Arithmetic Architecture is designed for the two NIST final-
ists: Saber and Dilithium. Special care is taken to ensure that the architecture
is efficient, scalable, and lightweight.

e The NIST PQC schemes have also provided different parameters for different
security levels. The proposed unified architecture supports all the different
security variants of Saber and Dilithium. Thus, making the architecture eas-
ily suitable for being plugged into any existing implementation of Saber or
Dilithium or both.

e The most expensive components in the Polynomial Unit are the multiplication
unit and modular reduction unit. We use a DSP multiplier for the multipli-
cation unit. An efficient modular reduction unit is designed for three different
‘special’ prime candidates. This gives flexibility to the users to choose the
design option based on the application requirements. Both the DSP multi-
plier and modular reduction unit are well-pipelined to achieve a higher clock
frequency.

e By designing an efficient and lightweight unified Polynomial Arithmetic Ar-
chitecture for a lattice-based Key Encapsulation scheme(Saber) and Signature
scheme(Dilithium), we move a step forward towards designing a unified cryp-
toprocessor which supports both types of schemes, and multiple such schemes

like Kyber, NTRU, etc..

1.2 Organization of the Thesis

Chapters 2-4 provide the background on the design of the two schemes, and various
design methodologies existing in the literature. We discuss our design strategy and
implementation details, along with results and future scope of the work, in Chapters
5-8. In Chapter 9 we conclude our work.

Chapter 2 introduces the design of Saber and Dilithium. We discuss in brief
various building blocks of the two schemes along with algorithms. We also list the
different parameters required for different security levels. The algorithms showcase
the importance of a polynomial arithmetic architecture which can support different
parameters.

We describe various methods to implement the polynomial multiplication unit,
which is a major component of a polynomial arithmetic unit, in Chapter 3. The
different methods used for the implementation of the PQC schemes and their algo-
rithms are discussed. The run-time complexity is given for each of the algorithms.

CHAPTER 1. INTRODUCTION 4

For this architecture, we use the NTT-based multiplication method as the common
method for both schemes.

In Chapter 4 - Modular Reduction methods, we list various efficient modular
reduction methods and algorithms. Some of these are used in the official implemen-
tations of the schemes. From this section, we can conclude that the ‘special’ primes
based reduction method is the best in terms of both time and area consumption.
Therefore, our design also uses this efficient method for an efficient and lightweight
architecture.

In Chapter 5, we discuss the design decisions we took towards the design of the
unified polynomial arithmetic architecture. We discuss the different requirements
of Saber and Dilithium and how we deal with them to make a common module for
different parameters sets.

The implementation strategies are discussed in Chapter 6. We start from the
naive methodologies and progress towards better solutions. We provide the algo-
rithms and architecture diagrams for the modular reduction unit and arithmetic
unit. We also discusses various trade-offs we considered while implementing the
design.

In Chapter 7 we discuss the results of our implementation in hardware and in
Chapter 8 we discuss the future scope of the work.

We finally conclude the work in Chapter 9. Some abbreviations, algorithms, and
figures used in the thesis are given in Chapter A- Appendix. The end of the thesis
has references to the works which greatly helped in designing the architecture.

Chapter 2

PQC schemes

C] Public-key Encryption and Key-establishment
Algorithms

C] Digital Signature Algorithms

Security level 1 [LightSaber/Kyber/McEliece/NTRU I Falcon / Rainbow

Security level 2 [Dilithium IT

[Saber/Kyber/McEliece/NTRU I Dilithium ITI / Rainbow

Dilithium IV /Falcon / J

Security level 5 [FireSaber/Kyber/McEliece/NTRU 1 Rainbow

Figure 2.1: NIST finalists grouped according to security levels supported

Figure [2.1| shows the finalist candidates and different security levels for which
they can be parameterized. In this chapter, we discuss the design specifications of
the two lattice-based schemes: Saber(public-key encryption and key-establishment
algorithms) and Dilithium (Digital Signature scheme). From the figure, it can be
seen that both Saber and Dilithium provide support for at least 3 security levels
out of which 2 are common, which is the most between any other two sets of key-
encapsulation and signature schemes. Saber and Dilithium are both lattice-based
schemes and are based on similar design principles and we aim to exploit these
similarities to make a very efficient and lightweight hardware polynomial arithmetic
unit that supports all the variants of both the schemes.

CHAPTER 2. PQC SCHEMES 6

2.1 Saber scheme description

The finalist candidate for Public-key Encryption and Key-establishment algorithms-
Saber [34] is an IND-CCA secure scheme. Its security relies on the hardness of
Module learning with rounding problem(MLWR), which is presumed to be com-
putationally infeasible, both on classical and quantum computers. Saber uses this
hard problem in conjunction with two moduli p and ¢, both of them being powers-
of-two, to construct a Chosen Ciphertext Attack (CCA) secure key encapsulation
mechanism (KEM).

Based on the different security levels, as shown in Figf2.1] it has three variants:
LightSaber, Saber, and FireSaber targeting low, medium, and high security levels
respectively. Even though they are for different security levels, they use the same
polynomial rings R, = Z,[z]/{2**® + 1) and R, = Z,[z]/{2*°® + 1) with the power-
of-two moduli ¢ = 2 and p = 2!°. The difference between the three variants lies
in their use of different module-dimensions and secret-distributions. These differ-

ent parameters for both public key encryption and key encapsulation are listed in
Tab. 2.1l and Tab. 2.2

Security level 1(LightSaber) 3(Saber) 5(FireSaber)

Failure Probability 2-120 2-130 27165
pk (Bytes) 672 992 1312
sk (Bytes) 832 1248 1664
ct (Bytes) 736 1088 1472
[2 3 4
n 256 256 256
q 213 213 213
D 210 210 210
T 23 24 26
i 10 8 6

Table 2.1: Saber.PKE Parameters

Security level 1(LightSaber) 3(Saber) 5(FireSaber)

Failure Probability 2-120 2136 27165
pk (Bytes) 672 992 1312
sk (Bytes) 1568 2304 3040
ct (Bytes) 736 1088 1472
[2 3 4
n 256 256 256
q 213 213 213
p 210 210 210
T 23 24 20
" 10 8 6

Table 2.2: Saber. KEM Parameters

CHAPTER 2. PQC SCHEMES 7

Here, n is the degree of the polynomial ring, and [is the dimension of the
matrix. Increasing [increases the security level but lowers the correctness. p, q are
the moduli 2'° and 2'% as discussed earlier, which can be seen from the table, stay
the same for different security variants. 7' is the parameter such that ¢, > ¢, > er
where, p = 2% ,q = 2%, and T = 2°7. So T'|p|q. Higher T" implies lower security but
higher correctness. g is the range in which the coefficient of the secret polynomial
is sampled using a binomial distribution. Higher y implies higher security but lower
correctness. Next, we describe the design of the Saber scheme. It is a two-step
process. The first step is to establish a public key encryption scheme and it is
IND-CPA secure.

The public key encryption scheme- Saber.PKE consists of three algorithms:

e Saber.PKE.KeyGeneration() specified in Alg[]]

Algorithm 1: Saber.PKE.KeyGen() [33]

1 seedy < U({0,1}%9)

2 A = gen(seedy) € R

3 r=U({0,1}*)

a 8= [,(RX)

5 b= ((A"s +h) mod q) > (g, — &) € R
6 return (pk := (seeda,b), sk := (s))

e Saber.PKE.Encryption() specified in Alg[2]

Algorithm 2: Saber.PKE.Enc(pk = (seeds,b),m € Ry;7r) [33]
1 A = gen(seedy) € R
2 if r is not specified then
| r=Uu({0,1}*")
s = Bu(Réﬂ; r)
v = ((As' + h) mod q) > (¢, — ¢,) € R
v' =b" (s’ mod p) € R,
cm = (' +hy — 27 "mmod p) > (¢, —er) € Rr
return ¢ := (¢, b')

w

® N o o

e Saber.PKE.Decryption() specified in Alg[3]

Algorithm 3: Saber.PKE.Dec(sk = 8,c = (¢, b)) [33]
1 v=""(smod p) € R,

2 m' = ((v—2%"T¢,, + hy) mod p) > (¢, — 1) € Ry

3 return m’

CHAPTER 2. PQC SCHEMES 8

Next, a post-quantum variant of the Fujisaki-Okamoto transform is applied on
the top of the IND-CPA encryption scheme to realize an IND-CCA KEM. The
IND-CCA algorithms used in Saber-KEM are:

e Saber.KEM.KeyGeneration() as specified in Alg. [4]

Algorithm 4: Saber KEM.KeyGen() [33]

(seeda,b,s) = Saber.PKE.KeyGen()

pk = (seedy, b)

pkh = F(pk)

z=U({0,1}*°)

return (pk := (seeda,b), sk := (s, z,pkh))

U

[

e Saber KEM.Encapsulation()) as specified in Alg. [5|

Algorithm 5: Saber KEM.Encaps(pk = (seeda,b)) [33]

1 m <+ U({0,1}?%)

2 (Kv r) = G(F(pk), m)

3 ¢ = Saber.PKE.Enc(pk,m;r)
14 K =F(K,c)

5 return (¢, K)

e Saber.KEM.Decaps() as specified in Alg. [6]

Algorithm 6: Saber KEM.Decaps(sk = (s, z, pkh), pk = (seeda,b), c) [33]

1 m’ = Saber.PKE.Dec(s, ¢)

2 (K',1") = G(pkh,m')

3 ¢/ = Saber.PKE.Enc(pk, m/; ")

4 if ¢ = ¢ then return K = H(K', ¢) ;
5 else return K = H(z,c¢) ;

The function gen() expands a uniform seed p € {0, 1}?°¢ using the Keccak-based
expandable output function (XOF) SHAKE-128 and generates the public matrix
Ac R’; Xl The CCA transforms in Alg. , , and @also use the Keccak-based hash
functions SHA3-256 and SHA3-512.

Secret polynomials are sampled from a binomial distribution with parameter p
using a binomial sampler. To compute these binomial-distributed samples, first a
p-bit pseudo-random string is generated using SHAKE-128, and then it is split into
two substrings of length 11/2. Next, the Hamming weights of the two substrings are

CHAPTER 2. PQC SCHEMES 9

subtracted to produce a binomial-distributed sample. As a subtraction is performed
in this step, the output sample can have a positive or a negative sign with equal
probability.

As shown in the three IND-CPA algorithms [I} | and [8] polynomial multi-
plications are performed several times. That makes polynomial multiplication a
performance-critical building block.

The algorithms also use other less-complicated operations, such as polynomial
addition/subtraction, coefficient-wise rounding using bit-shifting, equality check of
two polynomials, pack/unpacking of polynomial-coefficients into/from byte strings,
etc. These operations are of linear time complexity.

CHAPTER 2. PQC SCHEMES 10

2.2 Dilithium scheme description

The digital signature finalist candidate Dilithium [I6] is built upon the well-known
Fiat-Shamir with aborts framework [52]. Its security is based on the computational
hardness of the Module Learning With Errors (MLWE) and Module Short Integer
Solution (MSIS) problems, i.e., finding short vectors in lattices.

As mentioned earlier Dillithium also provides support for three different security
levels. Depending on the size of the module R’;Xﬁ with k,¢ > 1, Dilithium comes
with three variants, namely Dilithium-2, 3 and 5 for the NIST-specified security
levels 2, 3 and 5 respectively [16]. The parameters are listen in Table 2.3] All
the three variants of Dilithium use the polynomial ring R, = Z,[z]/{x*°® + 1) with
q=2% -2 —1 a prime modulus.

NIST Security Level 2 3 5

q [modulus] 8380417 8380417 8380417
d [dropped bits from t] 13 13 13

T [# of £ 1's in (] 39 49 60
challenge entropy 192 225 257
7 [y coefficient range] 217 219 219
72 [low-order rounding range] | (¢-1)/88 (¢-1)/32 (g¢-1)/32
(k,1) [dimensions of A] (4, 4) (6, 5) (8, 7)
n [secret key range] 2 4 2

B [r 1] 78 196 120
w [max. # of 1’s in the hint h] 80 55 75

Table 2.3: Dilithium Parameters

Dilithium signature scheme has the following three basic procedures as discussed
in [11]:

e Key Generation: The key generation of Dilithium (Alg. 7)) samples random
secret-key vectors §; and 85 in line 3. The polynomials in these vectors have
coefficients of magnitude at most 1. The random polynomial-matrix A € R’;Xl
is generated by expanding a 256-bit seed p. After computing the vectort € R’;,
it is split into two vectors ¢, and ¢; in line 6 using Power2Round, (). Finally, ¢r
is computed in line 7 by applying CRH() to the concatenated string p || ;. The
key generation as shown in Algorithm [7] generates a k x [matrix A each of
whose entries is a polynomial in the ring R, = Z,[X]/(X,, + 1). Afterwards,
the algorithm samples random secret key vectors s; and s, . Each coefficient
of these vectors is an element of R, with small coefficients of size at most 7.
Finally, the second part of the public key is computed as t = Asy + s, . All
algebraic operations in this scheme are assumed to be over the polynomial ring
R, .

e Verfication : The verification operation (Alg.|8) is cheaper than key-generation
and signing. It accepts a signature if all the three conditions specified in line
5 are satisfied.

CHAPTER 2. PQC SCHEMES 11

Algorithm 7: Dilithium.Gen() [16]

1 ¢« {0,1}*%

2 (p,s, K) € {0,1}2°%4 .= H(() > H is instantiated as SHAKE-256.
3 (51,82) € S x S} := ExpandS()

a A € R := ExpandA(p) > A is generated and stored in NTT form as A
5 1:=As; + 8o > As; is computed as NTT™L(A - NTT(s)) .
6 (t1,ty) := Power2Round,(t, d)

7 tr € {0,1}3% := CRH(p|[t,)

8 return (pk = (p,t1), sk = (p, K, tr,s1, 82,10))

Algorithm 8: Dilithium.Verify(pk, M,o = (z,h,¢)) [10]

1 A e R :=ExpandA(p) > A is generated and stored in NTT form as A.
p € {0,1}°* := CRH(CRH(p|[t1)[| M)

3 ¢:= SampleInBall(¢)

4 w; := UseHint,(h, Az — ct,.29,2v,) > NTT (A -NTT(z) — NTT(c) - NTT(t; - 2%)).
return [|| z ||oo< 71 — (] and [¢ = H(p,w;)] and [# of I's in h is < w)]

N

S}

e Signing procedure: The signing operation (Alg. @ contains a loop that

generates a potential signature and checks a set of constraints on the gen-
erated signature. When all the constraints are satisfied, a valid signature is
produced as the output; otherwise, the generated signature is rejected and the
loop continues with generating another potential signature. These rejections
are essential to avoid the dependency of the generated signature on the secret
key. Inside the signing-loop, a masking vector y with coefficients less than
magnitude v, is generated. The polynomial ¢ in line 11 is a sparse polyno-
mial with exactly 7 coefficients set to the values 1 or -1 and the rest 256 - 7
coefficients set to zeros. A potential signature z is computed in line 12 and
then constraints are checked to start from line 14 to 19. Signing as shown in
Algorithm [J] generates a masking vector of polynomials y with coefficients less
than v, . The signer then computes Ay and sets w; to be the “high-order”
bits of the coefficients in this vector. The output c is a polynomial in R, with
exactly 7£1’s and the rest 0’s.

These algorithms use various building blocks which are described below:

e ExpandA(): This function generates the polynomials in matrix A € R’; *t sepa-

rately by expanding the common seed p € {0,1}?°® along with different 16-bit
nonce values. To generate a polynomial, SHAKE-128 is used to expand a seed-
nonce pair and then the expanded bit string is post-processed using rejection
sampling to ensure that all the coefficients are uniform in the set {0,--- ,¢—1}.
The polynomials are generated in the NT'T representation directly.

ExpandS(): This function is used to generate the secret polynomial vectors s;
and s, € Sf; X ST"; . For each polynomial the seed ¢ and a 16-bit nonce are fed

CHAPTER 2. PQC SCHEMES

12

Algorithm 9: Dilithium.Sign(sk, M) [16]

N O ok W N =

[-
GqUR W N = O ©

16
17

18
19

20
21

A € Rl := ExpandA(p) > A is generated and stored in NTT form as A.
p € {0,1}384 .= CRH(tr|| M)

k:=0,(z,h) =1

p € {0,1}384 := CRH(K||ut) (or p < {0,1}3** for randomized signing)

Before the loop starts, precompute 89 = NTT(sq), §; = NTT(s;), and o = NTT(to)

while (z,h) =1 do

Yy € S‘ﬁl := ExpandMask(p,)

w = Ay > This is computed as w := NTT (A - NTT(y)).
w; = HighBits (w,272)

¢ € {0,1}*% .= H(p || wy)

¢ € B, := SamplelInBall(¢) > ¢ is stored as ¢ = NTT(c)
Z =y +cs > ¢8; is computed as NTT™!(c - &)
ro := LowBits,(w — ¢S2,2.72) > 8y is computed as NTT !(c - &)

if || 2 |[> 71— B or | 7o ||cc> 72 — 3 then
L (z,h) =1
else
h := MakeHint,(—cty, w — ¢Sy + cto,2.72) > cty is computed as

NTT !(c - o)
if || cto ||oo> 72 or Hamming.Weight(h) > w then

L (z,h) =1

Ki=kK+/
return o = (2, h,¢)

to SHAKE-256 and the squeezed output is given to the rejection sampler for

sampling the signed values in the range {—n,n}.

e Power2Round,(): It is used to perform bit-wise break up of an element in Z,
into higher-order and lower-order bits. An element r = 7 - 2¢ + 7 will be
broken into 79 and ry, where ry = mod *2¢ and 7, = (r — ry)/2¢. This is

shown in Alg.

Algorithm 10: Power2Round,(r,d) [16]

1
2
3

r < mod'q
ro < mod¥q
return ((r —ry)/2% 7o)

e HighBits () and LowBits,(): Let a be a divisor of ¢ — 1. The function
Decompose, () as shown in Alg.|11]is defined in the same way as Power2Round()
with « replacing 2 in Power2Round(). Thus Decompose, () breaks an input

CHAPTER 2. PQC SCHEMES 13

r € Zg into r = r; - a 4+ 19. Now r; will be the output of HighBitsq() and
ro will be the output of LowBits,(). This is shown in Alg. [12] and Alg. [13]

Algorithm 11: Decompose,(r,) [16]

1 7 < modtq

2 19 < modta

3 if r—ryp=q— 1 then
4 LT1<—O;T0<—T’0—1
5 else
Lﬁ(—(?”—?“o)/a

return (r,70)

=]

N

Algorithm 12: HighBits,(r,) [16]

1 (r1,70) <= Decomposey(r, a)
2 return r;

Algorithm 13: LowBits,(r,«) [10]

1 (r1,70) < Decompose,(r, «)
2 return rg

e MakeHint,(): It uses Decompose () to produce a hint h. This is shown in

Alg.

Algorithm 14: MakeHint,(z,r, «) [16]

1 71 < HighBits, (1,)
2 v; < HighBits (1 + 2,)
3 return [[r; # v

e UseHint,(): It use the hint h produced by MakeHint,() to recover the high-
bits. This is shown in Alg[T5]

Algorithm 15: UseHint,(h,r, «) [10]

m <« (¢—1)/a

(r1,70) + Decompose,(r, a)

if h=1 and ro > 0 then
L return (11 + 1)mod™m

if h=1 and rg <0 then
L return (r; — 1)mod™m

BROWw N =

[o B

e CRH(): This is a collision resistant hash function which utilizes 384 bits of the
output of SHAKE-256.

e SampleInBall: It uses SHAKE-256 to expand p and bit-packed w; as the seed.
Out of the first 64 output bits, 60 bits are taken as random sign bits and the

CHAPTER 2. PQC SCHEMES 14

remaining 4 bits are simply discarded. Then in every next iteration, rejection
sampling is performed on every next byte of the squeeze output and out of
256 values, only 7 values are non-zero with value either 41 or —1 depending
on the sign bit. This is described in Alg. [16]

Algorithm 16: SampleInBall(p) [16]

1 initializec = cycy - Scass = 00---0
2 for ¢ = 256 - 7 to 255 do

3 | 7« {0,1,--- i}
4 s <« {0,1}

5 G, = Cj

6 | ¢=(-1)

7 return c

e ExpandMask(): This function is used to generate the polynomial vector y used
for deterministically generating the randomness of the signing procedure. It
maps p||k toy € 5’171 The squeeze output is broken into a sequence of positive
integers in the range {0, - - - ,2y; — 1} by breaking down the stream into chunks
of 18 bits or 20 bits depending on the value of ;. These values are then
subtracted from 7; and to obtain the integers comprising y.

e NTT: Polynomial multiplications are performed using the Number Theoretic
Transform (NTT) method.

From the algorithms, it is clear that a major portion of the computation is spent
performing polynomial arithmetic computation. Therefore, it is very important to
build an efficient polynomial arithmetic unit.

In the next chapter, we discuss various strategies to build a polynomial multiplier.

Chapter 3

Polynomial Multiplication

m randombytes m GenMatrix

m shake128 M GenSecret

w randombytes w for

u GenMatrix ® MatrixVectorMul

m GenSecret u for

wforl m POLVEC2BS

= MatrixVectorMul W BS2POLVEC

w for2 mforl

POLVEC2BS w for2

w POLVEC2BS ® InnerProd

W BS2POLVEC

:::POWEC (a) Saber.KeyGen

u for

InnerProd (b) Saber.Encryption
w for

I SABER pack (c) Saber. Decryption

u for

POL2MSG

Figure 3.1: Function usage in Key Generation, Encryption, and Decryption for

Saber [61]

Fig. 3.1 shows that a major part of the computation for Saber is spent on poly-
nomial arithmetic operations, especially polynomial multiplication. The same can
also be concluded for Dilithium from the description given in the previous chapter.
Therefore, it is very important that we chose a good multiplication algorithm for
our design after carefully examining all the multiplication algorithms that have been
used for implementing the PQC schemes.

In this chapter, we describe all of these algorithms. Later in the Design and
Implementation Chapters, discuss which one is the best for our architecture, based
on our design goals.

15

CHAPTER 3. POLYNOMIAL MULTIPLICATION 16

3.1 SchoolBook multiplication

Schoolbook multiplication is the simplest and most basic method for multiplying two
polynomials. Every polynomial coefficient is multiplied with every other coefficient
and then accumulated. For e.g. Let’s say we have two polynomials 22° + z + 1 and
223 + 22 + 2 in Zs[z]/(x* + 1) then the multiplication will be done in the following
way: Since the polynomial multiplication is in Zs[z]/(z* + 1), the coefficients are

203 022 = 1
x 223 22 O0x 2
42 22° 22 T2 222 22 2

mod 3 |

x5 225 22t 3 222 21 2

mod (z* +1) |

3 x?

always mod 3 and the resultant polynomial is mod (z* + 1). For the latter we
use the property z* = —1, as the product of the two polynomials is a negative
convolution. Therefore, accumulation is not a simple addition and instead has a

signed bit (—1)LE+)/m which is 1 if i + j < n, otherwise -1.

Algorithm 17: SchoolBookMultiplication(a,b,c) [51]

1 Input : a,b Polynomials in Z,[x]/(z" + 1)
2 Output : ¢ = a- b Polynomial in Z,[z|/(2" + 1)

3 for : =0 to n-1 do

4 sum <0

5 for j =0 to n-1 do

6 ab < (alj] - b[(i — j)mod n])mod q
7 if i<j then

8 L ab < q — ab

9 sum < (sum + ab)mod q
10 | cli] « sum

11 return c

This algorithm is simple has a time complexity of O(n?) as can be seen in Equa-
tion 3.1. Even though the time complexity is high compared to the other schemes
as discussed in the next sections, due to its simplicity it’s used to design various
efficient polynomial arithmetic architecture for post-quantum schemes [51],[63]. In
[63] show implement a O(n) time-complexity schoolbook polynomial multiplier for

CHAPTER 3. POLYNOMIAL MULTIPLICATION 17

Saber by cascading n MAC units thus paying a high cost in terms of the area while
saving time.

n—1 n—1

c=abmod (2" + 1) Z Z L3 /n] gy d)med (3.1)

=0 75=0

3.2 Karatsuba multiplication

Karatsuba is a divide-and-conquer algorithm which reduces the complexity of poly-
nomial multiplication from O(n?) — O(n'°923) ~ O(n'5®) when n is a power of two.
It was proposed for single-degree polynomials in the beginning. It has 5 steps -
Splitting, Evaluation, Pointwise multiplication, Interpolation, and Re-composition
as shown in the Wikipedia page [8]. Here I give a simplified explanation for the two
polynomials :

f(x) = fiz + fo and g(z) = g1x + go

Then the coefficients of multiplied resultant polynomial h(x) can be expressed in
terms of three multiplications as:

= fo- 9o

=fi-q
hoy = (fo+ f1) - (90 + g1)

Thus the multiplied polynomial can be written as:
h(z) = hz® + (hog — ho — ha)x + ho

For the same polynomials, schoolbook multiplication would take 4 multiplications
and 1 addition. However, here we require 3 multiplications, 2 additions, and 2
subtractions. Note that for large integers or large numbers addition is many times
faster and simpler to implement than multiplications which is a much more area-
consuming circuit, so we can trade one multiplication operation for several addition
operations and still save significant hardware cost and complexity. This was an
example for a 1-degree polynomial, however, we can do the same with an n — 1
degree polynomial. We can split the polynomial into two parts (n/2 coefficients
each) and then use the same formulas above. We will have to do 3 n/2-degree
schoolbook multiplications and 2 additions and 2 subtractions. Let A(z) and B(z)
be two polynomials of degree n-1 such as:

A(x) = ap12" - apr® + ayx + ag

B(z) = by 2™t box® 4 by + by

These two polynomials are divided into two equal parts Ag, A; and By, B; such that
A= Ay+ 2?4, and B = By + 2"/*By:

Ap(2) = ano1 @™+ @) +22 I+ 4oy 3T+ a0

CHAPTER 3. POLYNOMIAL MULTIPLICATION 18

work per level:

n

log, n levels

? =

OO0 0O OO OO wa=-ou=

en/2t =0(1)

Figure 3.2: Karatsuba’s algorithm reduces an n-bit multiplication to three n/2-bit
multiplications, which in turn are reduced to nine n/4-bit multiplications and so on.
We can represent the computational cost of all these multiplications in a 3-ary tree
of depth logan. where at the root the extra cost is cn operations, at the first level
the extra cost is ¢(n/2) operations, and at each of the 3’ nodes of level i, the extra
cost is c¢(n/2%).[1]

Bo(z) = bpyz" ' 4 + b(n/2)+235(n/2)+2 + b(n/2)+1x(n/2)+1 + b2
Ay(r) = Cl(n/z)flf(nﬂ)_1 + o4 + a1 + ag
B1($) = b(n/g)_lx("/2)_1 + -+ b2$2 + b1$ —+ b(]

We then recursively keep on splitting these polynomials until we reach the 1 degree
polynomials and then start multiplying the two parts from the lowest recursion level.
If T'(n) is the time complexity to multiply A(z) and B(z) then:

T(n)=3-T(n/2)+c-n

T(n) — O(nlogz?,) ~ 0(77,1'58)

, where n is an even number representing degree of the two polynomials. This is
called a 2-way Karatsuba Algorithm because we are splitting it into 2 parts every
time and then multiply them once we have 1-degree polynomials. The algorithm is
given in Alg. Similar optimization is possible for a 3-way Karatsuba Algorithm
as well. In this, we split it into 3 parts and break it down to degree 2 polynomials.
In this case the time-complexity will be O(n'%). A generalized k-way Karatsuba
Algorithm can be constructed similarly. For polynomials of degree n-m we multiply
polynomials of degree m coefficients and in the recursive step, the Karatsuba is
applied to the polynomials with n coefficients and merged at the end as shown in
[74].

CHAPTER 3. POLYNOMIAL MULTIPLICATION 19

Algorithm 18: KaratsubaMultiplication(a,b,c)

1 Input : a,b Polynomials of degree at most n — 1 with n = 2¥ and k¥ € N
2 OQutput: c=a-b

3 if n=1 then
4 L returnc< a-b

c1 < ag - by (recursively)
cy < ay - by (recursively)
Cc3 < ag + ax

Cq < b() + bl

cs5 < c3 - ¢y (recursively)
10 Cg < C5 — €1 — C3

11 ¢ ¢ + cgx™? + cox™

12 return c

© 0w N o O«

3.3 ToomCook multiplication

Proposed by Andrei Toom and Stephen Cook, Toom-Cook multiplication can be
considered a generalization of Karatsuba with reduced complexity. It is also a divide-
and-conquer scheme following the same 5 major steps as mentioned for Karatsuba.
A Toom-k algorithm splits a polynomial A(z) of degree n—1 into k polynomials each
having degree n/k — 1 and n/k coefficients. Then these polynomials are evaluated
for 2k — 1 different values and recombined. Below an example for polynomial A(z)
of degree n — 1 is shown [55].

A(x) = ap1z™ - arz + ag

n—1 2n/4—-1 n/4—1
— .’173”/4 E aix173n/4 4.4 xn/4 E aixzfn/4 + § CLZ'I"L
i=3n/4 i=n/4 1=0
= 220 + 22 oy + 2 aq + g

A(X) = Xl + Xy + Xy + ap, where X =n/4

A similar conversion for another polynomial B(z) is done and we get A(X) and
B(X). Next step is to evaluate these two resultant polynomials for 2k — 1 values
of X. We trivially choose the points for Toom-3 as {0,+1, —2, 00}, for Toom-4 as
{0,£1,+£1/2,2,00} and evaluate the polynomial as shown below.

A(0) [0 0 0 1
A(1) 11 1 1
A(-1) 1 1 -1 1| |
A1/2) | = | 1/8 1/4 172 1|-|™ (3.2)
A(-1/2) ~1/8 1/4 —1/2 1| |
A(2) s 4 2 1| L%
| A) | |1 0 0 0

CHAPTER 3. POLYNOMIAL MULTIPLICATION 20

Next we multiply these 2k — 1 evaluated points of both the polynomials and compute
C(i) = A(i) - B(i) for i € {0,+1,£1/2,2, 00}.

co) 1 [A0 1 [B0

C(1) A1) B(1)

C(-1) A(=1) B(-1)

C(1/2) | = | A(1/2) | - | B(1/2) (3.3)
C(=1/2) A(=1/2)| |B(-1/2)

C(2) A2) B(2)
| C(0) | [Aleo) | [B(oo) |

Depending on the size of the polynomials «; different schemes can be used to do the
polynomial multiplication required in the above step. Next we need to invert the
pointwise evaluation of C(X') into polynomial C'(x). For this optimized interpolation
as shown below.

R - -4 -1

0, 0 0 o 0 0 1 [C(0)

0, 1 1 1 11 1 Cc(1)

0 1 -1 1 -1 1 -1 1 c(-1)

65 | = [1/64 1/32 1/16 1/8 1/4 1/2 1 C(1/2) (3.4)
04 1/64 —1/32 1/16 —1/8 1/4 —1/2 1 c(—1/2)

0 64 32 16 8 4 2 1 C(2)

6] | 1 0 o 0 0 0 | | Clo) |

The Toom-Cook algorithm is summarised in Alg. [I9] It has a time-complexity

Algorithm 19: Toom — Cook(a, b, ¢, k) [55]

1 Input : Polynomials a,b and integer k

2 Output : c=a-b

3 [A(X), -, Ag_o(X)] - Evaluation of A(x)

4 [B(X),- -, Bog_o(X)] < Evaluation of B(x)

5 for i = 0 to 2k —2 do

6 | O(X) = A(X) B)(X)

7 C(z) < Interpolation of [C/(X), -+ ,Cor_a(X)]
8 return c

log(2k—1)
of O(n ®sr). So, for Toom-3 the complexity is O(n'46), and for Toom-4 it is

O(n'*0). Karatsuba and Toom-Cook are often use din combination with each other
for optimized implementations of polynomial multiplications. In [54] Toom-Cook-
4-way is coupled with Karatsuba for polynomial multiplication for Saber as shown
in Fig. 3.3l They also couple these further with Schoolbook multiplication for com-
puting multiplication of the polynomials.

CHAPTER 3. POLYNOMIAL MULTIPLICATION 21

poly A(x) poly B()
Toom—Cook + Karatsuba _—) T~ - B - o
evaluation —) - ""'i-—* . I — :
Moo W e A EG Ty el
o , 0) 0; ‘o . e S e 6 < 6, ‘ 6x 6
Ao(x))fBo(x) ----- Ag(x/)xx Bg(x) Ao(x)Xgo(x) ----- Ag(x)r)’ng(x) Ao(x)X\BO(x) ----- As(x)}x Bg(x)
\\:F/r' ‘\\{,,x‘ ‘\;/‘
resr‘_)(w)_c) res'(x) 1};5_76(x)

Toom-Cook + Karatsuba
interpolation

i1 C(x)=A€x)XE(x)

Figure 3.3: The Toom-Cook-4-way and Karatsuba multiplication used in Saber [54]

3.4 Toeplitz Matrix Vector Product(TMVP)

In [56]. Paksoy and Cent use Toeplitz Matrix-Vector Product for computing poly-
nomial multiplication for Saber. TMVP was first proposed in [38] for multiplying
elements in binary fields. This involves the construction of a Toeplitz matrix. One
such matrix is shown below.

ao al a/2 PR PR PR a
aq Qo a; (053
(05} aq Qo a;

/ /
ay G

a; ay a)
_a‘nfl ... “ .. PR a2 a/l a’O

It is symmetric against it’s inverse diagonal and has 2n — 1 different elements. Thus
addition of two n x n Toeplitz matrices only require 2n — 1 additions instead of
n? additions required for normal matrices. Another interesting property is that
every sub-matrix of a Toeplitz matrix is also a Toeplitz matrix, thus making divide-
and-conquer work better over the naive multiplication method for matrix-vector
multiplication. Suppose we want to multiply a Toeplitz matrix 7" with a vector
B = (by,b1,- -+ ,b, — 1), then the product will look as shown below:

Qo ay Ao Qpy bo
ai Qo Up3 Ops by
T-B= : : (3.6)
Qp—2 QAp-3 - Qo Cl/l b1
| On—-1 Qp—2 " a Qo | _bn—l_

CHAPTER 3. POLYNOMIAL MULTIPLICATION 22

Now for a 2-way TMVP we will split the matrix T" of dimension n x n into 4
smaller smaller sub-matrices, each of dimension n/2 x n/2. Because of the structure
of the Toeplitz matrix we get 3 distinct sub-matrices Ty, Tiand T;. We split vector
B of size n into two smaller vectors By, By of size n/2. Now the multiplication takes
the following form:

TV Ty |Bo| |PA— P
T B {TQ TJ {Bl —|nor (37)
where P = Ty(By + By),
Py = (T, — Th) B,
Py = (11 —T5) By

This gives a time-complexity T'(n) = 3M (n/2)4+3n—1, where M(n/2) is the complex-
ity of computing polynomial multiplication for polynomials of degree n/2. Similarly
for a 3-way TMVP we can divide the 7" in 9 sub-matrices out of which only 5 are
distinct, and we divide B in 3 parts as shown below.

T, Tv T By P+ P+ P
TB: T3 T2 T1 . Bl == P2+P4+P6 (38)
T, Ty T, B, Py + Ps+ Fy

where Py = (Ty + 11 + Ty) Bo,
Py = (Ty + Ty + T3) By,
Py = (Ty + T3 + Ty) Bo,
P, =Ti(By + By),
Ps = Ty(By + Bs),
Ps = T3(By + B1)

This gives a time-complexity T'(n) = 6M (n/3)+5n—1, where M(n/3) is the complex-
ity of computing polynomial multiplication for polynomials of degree n/3. Similar
formulae can be constructed for a generalized k-way TMVP. For using this scheme
for Saber one of the two polynomials to be multiplied, is converted to a Toeplitz
matrix 7" and the other is taken as it is as vector B of coefficients. The modular
reduction by prime and ™ +1 is done after every k-degree polynomial multiplication
and addition/subtraction. In [56] 3-way/4-way TMVP is used and the 3/4 degree
polynomials are multiplied using Toom-3/Toom-4 multiplication.

3.5 NTT-based multiplication

NTT- based multiplication [28] further reduces the complexity of polynomial mul-
tiplication to O(n(log n)). A very easy-to-follow explanation of NTT based multi-
plication is provided in [69] by Daan Sprenkels. The multiplication is performed in

CHAPTER 3. POLYNOMIAL MULTIPLICATION 23

the ring R, = Z,[z]/(z™ + 1), where degree n is a power of two and ¢ = 1mod 2n for
complete NTT/INTT. This is similar to Karatsuba and Toom-Cook with respect to
the fact that it also involves evaluation of a n—1 degree polynomial on n-points, their
pointwise multiplication with the n evaluated points of the other polynomial, and
then reconstructing the multiplied polynomial back from the n multiplied points.
However, the difference in complexities is because of the conversion to point domain
and reconstruction. It makes use of the Fast Fourier Transform(FFT) for this. NTT
is FFT in a discrete field instead of a real field.

A complete understanding of NTT requires knowledge of the Chinese Remainder
Theorem(CRT) [6] and Residue Number System(RNS) [7].

3.5.1 Chinese Remainder Theorem(CRT)

It gives a unique remainder for a number divided by product of several pairwise
co-prime integers, given that the different remainders of the number divided by the
each of these integers is known. For example, consider a system of congruence:

x = aj(mod ny)

xr = as(mod ny)

xr = ag(mod ny,)

where the n; are pairwise co-prime, and let N = Hf:o n;. Let’s say for k = 3, and
ny =3,ny =4,n3=>5,and N = 3-4cotb = 60. Then the equations look like:

x = 0(mod 3)
x = 3(mod 4)
x = 4(mod 5)

To find a solution it is sufficient to iterate it for all the values in the 0 to N and
find that = 39(mod 60) satisfies all the 3 congruences. More efficient ways for
finding out x exist in literature. Here {ay, as,-,ax} is the RNS representation of x
in terms of pairwise co-prime integers {ni, ng, -, nx}. The beauty of CRT lies in the
fact that it allows the construction of RNS for larger values of x based on similar
smaller values of a;. For example, if we multiply all the a; for the above example by
3 as follows:

z = 3.0(mod 3) = 0(mod 3)
x = 3.3(mod 4) = 1(mod 4)
xr = 3.4(mod 5) = 2(mod 5)

then the solution for = would be z = 3.39(mod 60) = 57(mod 60). Using this we can
break down big multiplications into very small multiplications and use these results
reconstruct back the bigger multiplied result.

CHAPTER 3. POLYNOMIAL MULTIPLICATION 24

Now that we have established the background we can proceed to its use in the
design of this efficient polynomial multiplication algorithm. As mentioned earlier,
the idea behind N'TT-based multiplication is similar to the Toom-Cook or Karat-
suba, i.e., we wish to split the polynomials of degree n into 0-degree polynomials,
which we can then pointwise multiply and then use CRT to reconstruct back the
original polynomial, as shown in Alg. 20

Algorithm 20: NTT based multiplication(a,b,c)

1 Input : a,b Polynomials in ring R,

2 Output : ¢ = a - b Polynomial in ring R,

3 Antt — NTT(CL)

4 By + NTT(b)

5 Cnyt < Anit - Bue (pointwise multiplication (mod ¢))
6 ¢ < INTT(Cpy)

7 return c

NTT transformation is used to split the polynomial into N points and INTT
transformation is used to reconstruct back the multiplied polynomial. The complex-
ity of these transformations are O(n(log n)) and that of pointwise multiplication is
O(n), thus the overall complexity is O(n(log n)). For ring R, = Z,[x]/(z** + 1),
we try to split the reduction polynomial into smaller parts. We will compute the
multiplications in terms of these smaller parts and then reconstruct the solution
back for the 226 4 1. So, first, we try to find polynomials such that:

(1,256 4 1) — (3:128 _ 770)(3:128 + 770)
= (2% =)@) (@™ =) (=™ +)

= (@ =)@ +n)(@—n)(@+n0) - (x =)@+ ") (@ =) (@ + ™)

This splitting can be visualized as a binary tree and therefore after logn steps of
splittings our polynomials will be in their irreducible forms. When we solve the
right hand side for 7;, we get 79 = n'?® and using the first inequality we get n2 = —1
or g = 1, thus we get 7% = 1. We can conclude that 7 is the 2nth root-of-unity.
In the forward transform the we reduce the polynomials by {etag, eta,,--- ,n} step
by step. In the inverse transform we use inverse-root-of-unity to reconstruct the
polynomial.

For example, let us say we have two polynomials a,b. After NTT transformation
they map to points {2, 3,5,2} and {3, 4,2, 7} as shown in Fig[3.4] Then we multiply
these pointwise and we get polynomial ¢ having points {6, 12,10, 14}. Next, we will
perform INTT transformation on this polynomial ¢, to reconstruct the multiplied
polynomial.

Here a complete NTT/INTT is described however, certain schemes like Kyber
[65] use incomplete NTT/INTT, where they stop at a higher degree polynomial and
uses schoolbook like multiplication for the small polynomial multiplication.

CHAPTER 3. POLYNOMIAL MULTIPLICATION 25

16
14 - C
12

10 4

Figure 3.4: Example showing NTT intermediate values during NTT-multiplication

3.6 Summary of the multiplication methods

In this chapter, we discussed various multiplication strategies, which have different
complexities and based on the optimizations can be used efficiently for different
PQC schemes.

For multiplying two polynomials of degree n, Schoolbook multiplication has a
time-complexity of O(n?), but if we implement it using n multipliers the complexity
becomes O(n), which is very fast. Karatsuba and Toom Cook use the divide-and-
conquer strategy and further reduce the complexity from O(n?) — O(n'?%), O(n!'49)
for 2-way Karatsuba and Toom-3 respectively. Toeplitz Matrix vector multiplication
also provided a similar advantage while multiplying different polynomials with a
divide-and-conquer-based approach. NTT-based multiplication further reduced the
complexity to O(n(log n)).

A very important and expensive part of the multiplication unit is the Modular-
reduction unit. We discuss various existing design methods for an efficient modular
reduction unit in the next chapter.

Chapter 4

Modular Reduction methods

Modular reduction implies we have an integer number ¢ and modulus p, then the
modular reduction of ¢ by p computes the following:

5:cm0dp:c—LEJ.p
p

The naive method to perform this will involve multiplying these values and then
performing a modulo operation. Although it looks simple it is computationally
very expensive. For such an operation, hardware will be required to compute the
division of two numbers and then subtract the dividend x p from the multiplied
value. This method was further improved using an interleaved method. A very
simple interleaved Modular Reduction algorithm for two numbers a, b which are to
be multiplied is given in Alg.[21] In this method, a division is used along with flooring
operation. This is a naive very time-consuming operation. Using fast estimation
techniques its performance has been improved in literature. However, not that
division is more expensive than multiplication, and therefore such an algorithm will
reduce the clock-frequency of the design and also consume a lot of area.

Algorithm 21: Interleaved Modular Reduction(a,b,c) [5]
n01

Input : a,b Integers , primes p such that ™ < p <" for radix-r
Output : ¢ = (a x b)mod p
t<0Ofori=0ton—1do

t <=7+ b; - a (here b; refers to ith digit of b)

tet—[3]p

6 return c

N =

(S B N

Many algorithms like RSA and DSA require the multiplication of two large num-
bers modulo another large number. They will suffer if the implementation is not
efficient. For Dilithium, we have a prime modulus, which requires an efficient modu-
lar reduction unit during polynomial multiplication. Therefore, we investigate more
efficient modular reduction techniques in the next few sections of the Chapter.

26

CHAPTER 4. MODULAR REDUCTION METHODS 27

4.1 Montgomery Reduction

Peter L. in 1985 [37] introduced Montgomery reduction- an efficient method for
computing the multiplication of two integers modulo p while avoiding division by p.
This is used in the official implementations of various PQC schemes like Dilithium
to avoid the expensive computational cost of performing 'naive’ modular reduction.

Let us say we have two numbers a, b, and a modulus p, and we need to compute ¢

Algorithm 22: Montgomery Reduction(a,b,c) [5]

1 Input : a, b Integers
2 Output : ¢ = (a x b)mod p
3 Choose R € N, s.t., R > p and gcd(R,p) =1

Py - R(R™! 'rz:od p)—1

5 a=aR mod p

6 b="0R mod p

7 x =ab

8 s =uxk mod R

9t=x+sp
ot

10 u=g

11 if u < p then

12 c=u

13 else

14 | c=(u—p)
15 ¢ = (R~ mod p)
16 return c

such that:
¢ = (a x bymod p

Now, for Montgomery reduction, instead of multiplying a and b, we chose a number
R € N that is greater than p and is co-prime with p, i.e., ged(R, p)=1, and we use
R to compute residues of a and b given as:

a = aR mod p

b= bR mod p

Generally, R is chosen as a power-of-two to simplify the multiplication and division
operations, as multiplication by 2 is just shifting the value by k bits and division by
2% is taking the least-significant k bits of the number. R~! is defined as the Modular
inverse of R such that:

RR™'=1modp

CHAPTER 4. MODULAR REDUCTION METHODS 28

Original _
Residue System M-Residue System

«

<
<
Il
S
<
=
o
Q
=
[l
-~
<
<
N
2]
=)
o
Q
X

Figure 4.1: Mapping between the original residue system and the Montgomery
residue system [37]

. Thus we can express ¢(residue of ¢) in terms of @ and b and recompute c int he
following way:

=(ax bR

= (aR x bR)R™!
= (a x b)R™' mod p

ol

Since R™! can be easily computed and stored, it can be seen that the above step is
just a few multiplications and additions. The algorithm for Montgomery reduction

is defined in [22| and a figure to explain the transformation is shown in Fig/ . It

w for computing xR~ mod p as shown below:

uses k =

s = (x mod R)k mod R
u=(x+sp)/R
if u>pthen return u—p else u

4.2 Barrett Reduction

Paul Barrett introduced the Barrett reduction in 1987 [I§], aiming to implement
RSA on a standard DSP. It works on the assumption that for two integers a, b that
we wish to multiply, the modulus p € N, p > 3 is constant and 0 < ab < p?. Similar
to Montgomery reduction, we will pre-compute a factor R using division and then
perform basic multiplication, subtractions, and shifts which are computationally

CHAPTER 4. MODULAR REDUCTION METHODS 29

much less expensive and faster than division operation. We chose a value k such
that 2¥ > p and compute R = L%J. The Algorithmic description of the Barrett
reduction is given in Alg. 23]

Algorithm 23: Barrett_Reduction(a,b,c) [4]

1 Input : a,b Integers
2 Output : ¢ = (a x b)mod p
Choose k € N,s.t.,28 > p

— |4
R= %]
x =ab
t=x—[F]p
if t < p then

L c=t

else

10 Lc:(t—p)

11 return c

®w N O oA~ W

©

It bears many similarities with the Montgomery reduction discussed earlier.
They are both used for making the modular reduction fast and require pre-computing
of certain constants for a modulus p. They are both performing two multiplications
and the divisions are always performed by powers of two, which is simple truncation
by some bits. Although the multiplication in Barrett reduction multiplies 2 k-bit
numbers with another k-bit number whereas in Montgomery reduction we multiply
a k-bit number with another k-bit number, thus the former is more expensive to
implement than the latter. Another major difference lies in the fact that Mont-
gomery reduction requires conversion of integers to and from Montgomery form as
residues, whereas Barrett reduction works on normal values as can be seen in the
two Algorithms Alg. 22 and Alg. 23] Montgomery deals with congruence and exact
computations whereas Barrett reduction is performing approximate computations
with a bound on precision. Both of these schemes require multiplications and trans-
formations, however for constraint devices that require high-speed computation, we
can use memory and perform some look-ups instead of multiplications as shown in
the next section.

4.3 Lookup-table-based modular reduction meth-
ods

Basic Lookup-table-based modular reduction is a naive method in which the first
step is to pre-compute the look-up table for a modulus p. We choose an integer k
such that 287! < p < 2%, Then the pre-computation table looks like Tab. The
algorithm is given in Alg. 24]

CHAPTER 4. MODULAR REDUCTION METHODS 30

[RJl]
2k —1 | 22*=1 mod p
2k —2 | 221 mod p

k 2 mod p

Table 4.1: Pre-computation table for a modulus p

Next we compute the binary string of integer ¢ = ab as Bin(c), then:

k-1 k1
c= Z cri Rk + 1) + Z 227 mod p

i=0 j=0

where z; € {0,1}Vj. For example let us say p = 97 = (1100001)y, k = 7, ¢ =
3135 = (110000111111),, and I = 12. We will pre-compute the look-up table for
R[10] = 2" mod p = 11 and R[11] = 2" mod p = 54. Then :

¢ = 3135 = R[11] + R[10] + (111111), = 11 + 54 + 63 = 31 mod 97

Algorithm 24: Basic LUT — based modular reduction (p,k,T,c,l,)
[23]

1

2

3
4

10
11

12

13
14

15
16

17

5 if | = k then

7 s < Bin(c)
g8 740

Input : Modulus p, k = Bitlength(p), c,s.t.,0 < ¢ < 2%k | = Bitlength(c),
Look-up table T’
Output : » = ¢ mod p

if ¢ < p then
L return c

L return c —p

fori=101—-1tokdo
if si] = 1 then
| e+ T

r<—r+2§;és[j]2j
while r > p do
Lrer—p
while » < 0 do
Lr(—rqtp

return r

This method gives bad run-time complexity for strings like 11 - - - 1 and to improve

this another method is known as Run-length-based modular reduction was proposed,

CHAPTER 4. MODULAR REDUCTION METHODS 31

which involves flipping bits of ¢ described in [23]. However, the latter is less efficient
than the former for strings like 1010---10. One way to deal with both types of
the string is that we divide Binary(c) into segments of length [— k, k, and count
the number of 1’s in the left segment. If it is greater than the runs in the left
segment then we use Run-length based method otherwise we use the Basic method.
This combination of the two reduction methods is further refined for a new type
of reduction method called Fast reduction method[23]. The fast reduction method
is twice as fast as Barrett’s reduction. The memory requirement is also not huge
making it portable and suitable for resource constraint devices.

All of these methods perform modular reduction for general moduli. However, if
we chose the modulus carefully, we can use the structure for an even more efficient
modular reduction method as described in the next section.

4.4 Efficient Reduction unit for special primes

In [72] Lim et.al. discuss that for different special primes like - Mersenne primes,
pseudo-Mersenne primes, and generalized Mersenne primes/Solinas primes[67], the
modular reduction can be expressed in terms of simple additions and subtractions.

Mersenne primes are prime numbers having structure 2" — 1 for some integer
n. However such primes occur less frequently in a long-range. Pseudo-Mersenne
primes have the structure 2™ — t for some integer n and a small integer t. These
are comparatively more frequent than the Mersenne primes. Generalized Mersenne
primes/Solinas primes have structure 2" & 2¥ 4= 1 amongst these 2" — 2F — 1 or 40%
more frequent than 2" 4+ 2% 4 1.

For pseudo-Mersenne prime p = 2" — ¢, given an integer ¢, we can express it as
follows:

c=7"2"+¢

= "t + ¢ mod p, since 2" = (mod p)

By applying this method recursively on ¢”, we can obtain ¢ mod p using a few shifts
and additions as multiplication by 2" is left shift by n. The algorithm is given in
Alg. 25 This can be further optimized considering that since ¢ is a product of
two numbers a, b, in the same finite field, the product can never be greater than
2?n. This is shown in [70]. An efficient modular reduction for Solinas primes[67] is
given in [70]. This work shows that using such a dedicated modular reduction unit
for special primes leads to improved performance over other traditional modular
reduction methods like Montgomery reduction. This improvement increase with the
increase in the field size. The only disadvantage is its scalability, as it requires a
dedicated unit if we change the modulus p the structure of the unit will also need
to be changed.

For e.g. let us consider the case when prime is (p = 12289 = 2! —21241)[77]. The
the integer c is the multiplication of two numbers a,b in the same field, therefore

CHAPTER 4. MODULAR REDUCTION METHODS 32

Algorithm 25: Reduction by pseudo — Mersenne prime (¢, p,r) [70]

1 Input : Modulus p = 2" — ¢, Integer ¢ to be reduced
2 OQutput : r =cmod p
q<c/2"
r < c mod 2"
140
while ¢/ > 0 do
r—r+ (tq[z] mod 2")
q[7’+1] <— (tq[l}/zn)
141+ 1

© 00 N O ook W

10 while » > p do
11 L'rer—p

12 return r

¢ can be expressed in 28 bits. The modular reduction of ¢ can be expressed as
following;:

c=2"¢[27 : 14] + ¢[13 : 0]
= 2"2¢[27 : 14] — ¢[27 : 14] + ¢[13 : 0]
= 2M¢[27 : 16] + 2"2¢[15 : 14] — ¢[27 : 14] + ¢[13 : 0]

= 2"2(c[27 : 26] + ¢[25 : 24] + ¢[23 : 22] + c[21 : 20] + c[19 : 18] + ¢[17 : 16] + ¢[15 : 14])
— (|27 : 26] + ¢[27 : 24] + ¢[27 : 22] + ¢[27 : 20] + ¢[27 : 18] + ¢[27 : 16] + ¢[27 : 14])

+ c[13 : 0]

=221 —y +c[13: 0] (mod p)

where x = ¢[27 : 26]4¢[25 : 24]4¢[23 : 22]+¢[21 : 20]+¢[19 : 18]+¢[17 : 16]+¢[15 :
14], and y = ¢[27 : 26]+¢[27 : 24)+¢[27 : 22]+¢[27 : 20]+¢[27 : 18] +¢[27 : 16]+¢[27 :
14]. Now we can further simplify 2'2¢ suing the special property of modulus p as
shown in [77]. Thus computing the entire modular reduction using some additions
and subtractions without even a single multiplication required by the Barrett or
Montgomery reduction. It also does not require any pre-computation of constants
or LUTSs and is, therefore, memory efficient as well. For a chosen special prime it is
the most efficient way and finishes in constant time.

4.5 Summary of the modular reduction methods

In this chapter, we discussed various methods to reduce an integer number modulus
to another integer number. We saw how the naive modular reduction method in-
volves division which is very expensive to implement in hardware. Therefore in the
next sections, we discussed Montgomery and Barrett reduction algorithms which

CHAPTER 4. MODULAR REDUCTION METHODS 33

replace this division with a few multiplication and additions. We see how Mont-
gomery and Barrett reduction can perform the modular reduction with very few
pre-computation steps. We also see the differences and similarities between these
two reduction methods. Next, we discuss lookup-table-based reduction methods
where we spend most of our time in pre-computation and therefore, only require
many additions and subtraction units and no multiplication units.

All of these schemes are generalized for all the integer moduli, however, next,
we see that if we carefully choose are moduli that have a special structure like
that of ‘Mersenne primes’ or ‘Solinas primes’ then we can further optimize our
modular reduction unit with very few additions and subtractions. However, the
only disadvantage is that the implementation is modulus-specific and cannot be
generalized to all the moduli. Therefore, if the moduli change the design will also
change.

We have established the background for our work. We discussed various methods
to implement the polynomial multiplier and modular reduction unit. In the next
chapter, we will discuss our design decisions.

Chapter 5

Design strategies

In this chapter, we discuss the different strategies taken into consideration for im-
plementing an efficient unified polynomial arithmetic unit for Saber and Dilithium.

As described in Chapter [2| both Saber and Dilithium are based on module lat-
tices and therefore they share structural similarities to some extent. For example,
both schemes operate on matrices and vectors of polynomials where the polyno-
mials are always of 256 coefficients. Hence, the underlying elementary polynomial
arithmetic operators are common to Dilithium and Saber. Note that in the ring or
module lattice-based post-quantum public-key schemes, polynomial multiplications,
hash calculations, and pseudo-random number generations are the most expensive
operations.

The design of the two schemes, as discussed in Chapter 1, motivated us to in-
vestigate efficient implementation techniques such that we could design a unified
polynomial arithmetic architecture for accelerating the polynomial arithmetic func-
tions in the two schemes. We discussed in Chapter 3 that polynomial arithmetic
has the major functional usage (> 50%) compared to other functions, and is, there-
fore, very important to make it fast and yet lightweight. Having a compact as well
as a unified implementation of this architecture for two schemes is a step towards
making a common cryptoprocessor that supports lattice-based KEM and digital sig-
nature on resource-constrained platforms. In the following part of this section, we
discuss the challenges in implementing a unified polynomial arithmetic architecture
for Dilithium and Saber.

We would like to remark that synergies also exist in other lattice-based schemes.
For example, CRYSTALS-Kyber [22] shows great similarities with Saber [34] as well
as Dilithium as all are based on module lattices. Hence, our study could be extended
to integrate Kyber along with Saber and Dilithium in the unified cryptoprocessor
architecture. As a hardware architecture implementation typically has a long design
cycle, in this work we stay focused on unifying the polynomial arithmetic unit for
Saber with Dilithium, and by doing so we show that a compact and unified polyno-
mial arithmetic architecture for post-quantum digital signature and key exchange is
feasible.

34

CHAPTER 5. DESIGN STRATEGIES 35

A polynomial arithmetic unit consists of three major operations between two
polynomials- addition, subtraction, and multiplication. Based on the complexity of
implementation we divide this explanation into the following two parts:

e Polynomial Addition and Subtraction unit

e Polynomial multiplication unit

5.1 Polynomial Addition and Subtraction unit

Polynomial addition and subtraction are very simple pointwise operations as shown

in Alg. 26] and Alg. [27]

Algorithm 26: Addition0f2polynomials (a,b,c)

1 Input : a,b Polynomials in R,

2 Output : ¢ = a + b Polynomial in R,
3 N <« LengthO f Polynomial(a or b)
4 for i=0to N-1 do

5 | t< ali] + 0[]

6 if ¢ < q then

7 | i) =t

else

9 L clil =t—q

(o]

10 return c

Algorithm 27: SubtractionOf2polynomials (a,b,c)

1 Input : a,b Polynomials in R,
2 Output : ¢ = a — b Polynomial in R,

3 N < LengthO f Polynomial(a or b)
4 for i=0 to N-1 do

5 | t<q+ali] — bl

6 if ¢ < q then

7 L cli| =t

8 else

9 | il =t—q

10 return c

In addition, we take two coefficients, add them and then check if the sum is
higher than our modulus ¢ or not. If it is we subtract ¢ from the sum otherwise
we return the original sum. Similarly, for subtraction, we subtract a value from

CHAPTER 5. DESIGN STRATEGIES 36

another value that is pre-added with prime ¢ to avoid signed computations. Next,
we perform a similar check as addition and return the subtracted value in mod q.

5.2 Polynomial multiplication unit

In Chapter 3 we discussed various algorithms that we can use for polynomial multi-
plication. Schoolbook multiplication is the most commonly used method, owing to
the simplicity of its implementation, however, it has a very high time complexity of
O(n?). This is further reduced to O(n'°%2() if we Karatsuba method [48], and to
O(c(k) - n°) if we use the Toom-Cook method [73], where e = log(2k — 1)/ log(k).
The Fast Fourier Transform or Number Theoretic Transform method [49], is the
fastest with the time complexities of O(nlogn) as discussed in Chapter[7] Different
hybrid polynomial multiplication techniques which combine the above-mentioned
algorithms are also available in the literature.

Dilithium [16] has prime moduli and therefore makes Number Theoretic Trans-
form (NTT) method an integral part of the protocol to compute polynomial multi-
plications in the least time. It transforms the two polynomials to be multiplied in
the NTT domain and then performs pointwise multiplication as shown in Alg. [2§
Then this multiplied polynomial is reconstructed ted back using Inverse Number
Theoretic Transform (INTT).

Algorithm 28: PointwiseMultiplicationOf2polynomials (a,b,c)

1 Input : a,b Polynomials in R,

Output : c[i] = ali] - b[i]¥i € {0, N} Polynomial in R,
N <« LengthO f Polynomial(a or b)

for i=0to N-1 do

L t < afi] - b[d]

N

(=~ B L]

cli] = ModReduce(t)

return c

N |

However, Saber [34] has power-of-two moduli. It cannot use the NTT method
directly for its application. However, it can use the other multiplication algorithms
or a hybrid of multiple algorithms like Karatsuba and Toom-Cook, or Karatsuba
and schoolbook, etc. Since the coefficient-moduli are powers-of-two in Saber, the
modular reductions become free of cost if schoolbook or Karatsuba or Toom-Cook
or any combination of them is used. In [63] the hardware implementation of Saber
uses a highly parallel schoolbook multiplier that computes one polynomial multi-
plication in just 256 cycles. If we still try to implement Saber using NTT-based
polynomial multiplication [26], it will require computations with respect to a larger
prime modulus and cannot take advantage of free modular reductions.

When implementing a unified cryptoprocessor for both Dilithium and Saber,
we have two options for computing polynomial multiplications. The first option is
to instantiate an NTT-based multiplier for Dilithium and a schoolbook multiplier

CHAPTER 5. DESIGN STRATEGIES 37

(following [63]) for Saber so that both schemes can be executed at their optimal
speeds. This approach requires a large area in hardware and could potentially have
a negative impact on the clock frequency of the implementation due to the increased
routing complexity. The other option will be to instantiate a common polynomial
multiplier for both schemes. In this case, the common multiplier must be NTT-
based as the Dilithium protocol makes the use of NTT an integral part of the
protocol. With the NTT-based multiplication, the temporary coefficient-modulus
(which should be a prime) in Saber needs to be sufficiently large so that correct
results are computed.

We might be able to reduce the size of the modulus required based on certain
assumptions. We will see how to do this in the next Chapter along with implemen-
tation details.

Chapter 6

Implementation in Hardware

As described in the previous section, if we wish to make a common Polynomial arith-
metic unit for Saber and Dilithium we will have to use the NTT-based multiplication
unit. However, for Saber designing such a unit might become very expensive owing
to large modulus size requirements. In the next section, we discuss how we overcome
this problem.

6.1 Prime selection for NTT in Saber

As discussed in Chapter 2, the secret polynomial coefficients of Saber are signed
values in the range [-3,3] for FireSaber, [-4,4] for Saber, and [-5,5] for LightSaber.
For the positive coefficients a modulus of order 22 x 23 x 256 = 224 is sufficient,
however, for negative coefficients it is small. If we convert the negative coefficients
to unsigned values by performing modular reduction by ¢ = 2!3, then the required
modulus size increases to 213 x 213 x 28 = 234 If we don’t convert then we will
have to provide support for signed arithmetic which is also expensive to deal with.
Implementing a common multiplier that supports 23* order modulus will be very
costly as well in comparison to the one supporting 22 order modulus required by
Dilithium.

In 40, 26], the designers also discuss a similar problem and mention that a 24-bit
modulus can be used along with a special provision for signed number representation.
However, we observe that if we still take a prime p’ of the order of 22° and convert the
negative coefficients to unsigned values modulo p’, that is in [0, p’ — 1], the modular
reductions caused are ineffective and we get the correct result. Thus, our aim to
make an efficient and common polynomial multiplication unit can be achieved by
implementing an NTT-based multiplier with support for 22 order modulus. But
the question arises is this the best we can do? What will happen if we take a smaller
modulus, or let’s say Dilihtium’s modulus? Will it completely fail or will there be
some low probability of failure?

We performed various experiments to answer this question and concluded that for
a prime or size 25-bit the failure probability is 0, as expected. For a 24-bit prime, the
failure probability is 273%°, and for Dilithium’s 23-bit prime the failure probability is
27190 These probabilities were obtained for the worst possible cases when the input

38

CHAPTER 6. IMPLEMENTATION IN HARDWARE 39

Prime ‘ Experimental Failing Probability for Saber

225 _ 214 + 1 0
224 o 214 + 1 2—350
223 _ 213 +1 2—100

Table 6.1: Proposed primes with experimental failing probabilities

is generated using a poor random number generator. For uniformly or binomially
distributed inputs as mentioned in the scheme specification, these primes never
fail. However, going by Murphy’s law that the worst will happen, we provide an
implementation for all the 3 different sizes of primes modulus. So, the user can
decide which one is more suitable for his application. If we use Dilithium’s prime we
can have the same multiplication and modular reduction unit however for the other
two primes we will have to design a unified NTT/INTT unit as well as a unified
modular reduction unit. We provide all three different kinds of implementations.

Now we describe how we choose an appropriate prime p’ for Saber. Of all the
modular arithmetic operations that are performed during an NTT, modular multi-
plication is the most expensive in terms of both area and time.

6.2 Efficient modular reduction unit

The original software source code of Dilithium [16] uses the Montgomery modular
reduction. As we discussed in Chapter3, the modular reduction using special primes
is the most optimized and least expensive to implement. The Dilithium prime
p = 223 — 213 1 1 has a sparse structure. If we chose similar 24-bit and 25-bit primes
having sparse structure for Saber as well then their modular reduction circuits can
be unified very well to reduce the area overhead. Therefore, we choose 224 —24 41 as
the 24-bit prime and 22° —2'“ +1 as the 25-bit prime. After carefully choosing sparse
and reduction-friendly primes for Saber, we followed the add-shift-based method [76]
and used a similar fast modular reduction technique. The final primes with failing
probabilities are listed in Tab. [6.1}

We use 22 = 2" — 1 (mod ¢)/2%° =2 — 1 (mod ¢) or 222 = 2!3 — 1 (mod q)
recursively, generate six partial results and add them to perform modular reduction.
Finally, a correction is performed to bring the result to the range {0,...,q — 1} as
shown in Alg. Fig. shows the modular reduction unit which uses a carry-
save adder tree to reduce the critical path. Thus, we choose special primes for
our implementation which do not need to change as long the design specification
does not change and implement a dedicated unified modular reduction unit. Which
just performs very few additions and subtractions. Such efficient modular reduction
units are widely used in literature like in the implementation for NewHope discussed
in Chapter 3.

In the next section we discuss how we implement an efficient unified NTT-based
multiplier for Saber and Dilithium .

CHAPTER 6. IMPLEMENTATION IN HARDWARE 40

Coeft

|

[Bit Selection unit

T A S O R A

dq 4dg d s G G €q € fa fs hg hg
v ¥ | 2 S 2 vl vVoovo v
/ N
v v v v v v

Carry Save Adder Carry Save Adder

. vy p. } "y
L
| Carry Save Adder]
|

Carry Save Adder

A Y y A

(a) [@ -] [«

Y Y A Y Y

MUX /

!

Coeff%Q

Figure 6.1: Unified modular reduction unit

6.3 NTT-based unified polynomial multiplier

After carefully choosing three different prime candidates for Saber, based on their
failing probabilities we now describe the implementation decisions we make for de-
signing the NTT-based polynomial multiplier for both Saber and Dilithium. Fig.
gives an overview of NTT based multiplication described in Chapter 3. We first
convert the two polynomials to be multiplied into the NTT domain, then perform
pointwise multiplication, and the multiplied polynomial back to the normal domain
using Inverse NTT(INTT).

We have already discussed how to implement pointwise multiplication in Chapter
5. Now we discuss how to transform a polynomial into NTT/INTT and its imple-
mentation aspects. The NTT/INTT transformation can be visualized in terms of

CHAPTER 6. IMPLEMENTATION IN HARDWARE

Polynomial A _NTT | Polynomial A

Pointwise Multiplication

NTT

Polynomial B Eemmemend

Polynomial B

Polynomial C

Figure 6.2: NTT-based multiplication flow

Figure 6.3: NTT transformation using matrix-vector multiplication

Inverse

1 1 1 1
Vo 1 ol o2 o (1) fo
“ — l 1 a? a? a2(n-1) h
n :
Up—)) n—
! 1 o) g2ne) a~(=1)-1) | Fra

Polynomial C

_ } 1 1 1 ~ _
fo 1 o o2 a1 Up
fl _ |1 o? ol a2(n—1) U1

L f-1 1 an! Q2D an=-1(n-1) | L Un—1

Figure 6.4: INTT transformation using matrix-vector multiplication

matrix-vector multiplication as shown in Fig. [6.3] and Fig. [6.4] Here, vector V con-
sists of the n polynomial coefficients in the normal domain. After multiplication
pre-generated matrix of various powers of primitive-root-of-unity, we get the vector
f. Now we can use this for pointwise multiplication. Then when we have to convert
back a polynomial f in the NTT domain we again multiply it by a pre-generated
matrix of various powers of primitive-root-of-unity as shown in Fig.

This approach although seems simple will lead to a very expensive hardware
implementation. As instead of requiring O(n(logn)) it requires O(n?) multiplication
and also requires the two hug n x n matrices pre-computed stored in hardware.
We can improve this by generating these values on the fly however, it will cost
us more multiplication units. Thus, we need to find a better way to perform this
transformation as discussed in the next section.

CHAPTER 6. IMPLEMENTATION IN HARDWARE 42

6.4 NTT/INTT transformation method

Following the official reference code of Dilithium, we also decide to use the iterative
NTT/INTT algorithms- Cooley-Tukey (Alg. and Gentleman-Sande (Alg.
butterfly configurations for the NTT and inverse NTT respectively. Cooley-Tukey
as shown in Fig.|6.5]is a decimation-in-time flow whereas Gentleman-Sande as shown
in Fig. is a decimation-in-frequency flow. These are the most common FFT
algorithms. Cooley-Tuley breaks DF'Ts into smaller DFT's recursively, and similarly,
Gentleman-Sande can reconstruct the DF'T from smaller DF'Ts. More details about
the development and use cases of these algorithms can be easily found in literature
and various online sources|[2] [3].

X0 —> Xq
X3 >< ‘: C i s —> X1
"2 XN
Xg >< / > X5
X3 > X6
§ ——_ e .

7 > X7
NTT using Cooley-Tukey configuration
Figure 6.5: Cooley-Tukey NTT/INTT flow diagram
X0 > X0

X2

X1 / : : :
oy — XX
XX

i

Xy — 2
s OO -
X — > XX %,
X7 * \. * > - > >» X7

NTT using Cooley-Tukey configuration

Figure 6.6: Gentleman-Sande NTT/INTT flow diagram

These iterative approaches have a run time complexity O(n(log n)), as can be
seen for the three nested loops. The inner part of the loop which is performing
addition, subtraction, and multiplication is referred to as the Butterfly unit. We
decided to separate the control unit, for the nested loops, and the data operations
in the butterfly unit to make the implementation simple and readable. However,
other than the multiplier in the butterfly unit we will require one more multiplier
to generate the ¢ values on the fly for different iterations. However, to avoid extra

CHAPTER 6. IMPLEMENTATION IN HARDWARE 43

multiplier cost, since the number of (values required are fixed, we can also pre-
generate and store them in a BROM(Block Read Only Memory), using the Alg.
Since our design goal is lightweight and efficient architecture, we decided to go with
the latter. It can be seen that in every iteration we only perform one multiplication
each for NTT/INTT. Thus reducing the design cost significantly.

Post-processing elimination

In the Inverse NTT (INTT) operation the resulting coefficients are scaled by 1/n,
which requires extra n multiplications. Dilithium’s official software implementa-
tion [I6] uses an extra loop at the end of the inverse NTT for scaling the output
coefficients, as shown in [66]. In our implementation, these extra scaling-related

multiplications are removed by processing the coefficients using the following equa-
tion [76] during INTT.

2/2 mod g = (x> 1)+ z[0] x ((¢+1)/2) (6.1)

Here, ¢ is the modulo and x is the result of the butterfly operation during inverse
NTT. This way both the NTT and inverse NTT are of the same cost and require
no post-processing. This optimization helps us reduce the area consumption as well
as clock cycle significantly.

Algorithm 29: The Gentleman-Sande InverseNTT algorithm [66, [76]

1 Input : A vector x = [xg, -, z, — 1] where z; € [0,p — 1] of degree n (a
power of 2) and modulus q = 1 mod 2n

2 Input : Pre-computed table of 2n-th roots of unity (7!, in bit reversed
order

3 Input : n7! mod ¢

Output : z < INTT(x)

function INTT (z)

t<1

m < N/2

while m > 0 do

k+0

10 for i+ 0;e<m;i<i+1do

11 S
12 k+ k+2t

13 142t
14 | m<+m/2

I

© 0 N o w;

15 return

CHAPTER 6. IMPLEMENTATION IN HARDWARE 44

Algorithm 30: The Cooley-Tukey NTT algorithm [66]

1 Input : A vector z = [xg,- - ,x, — 1] where x; € [0,p — 1] of degree n (a
power of 2) and modulus q = 1 mod 2n

Input : Pre-computed table of 2n-th roots of unity (, in bit reversed order

Output : z + NTT(z)

4 function NTT(x)
5 1< n/2

6 m<1

7 while m < n do
8

9

W N

kE+0
for 1< 0;e<m;i<i+1do

10 S
11 k<« k42t

12 t+t/2
13 | m < 2m
14 return

Algorithm 31: Zeta_ generation ({,(!, zeta_table, zeta_Inv_table, p)

1 Input : ¢ primitive root-of-unity,(! Inverse primitive root-of-unity, prime
modulus p

Output : zeta_table, zeta_Inv_table tables containing the pre-generated
constants

cl0] + 1
dl0] <1
for : = 0toN — 1 do
ali] < BitReverse(i)
bli] + BitReverse(i) + 1
if ! =0 then
L cfi] = (cli = 1] -)%p
dli] (dli — 1] - C1)%p

N

© 00 N o bk W

10

11 ¢[0] -0

12 d[0] <0

13 for i = 0toN — 1 do

1 (_tableli] < clali]]

1 ¢_Inv_table[i] < d[bli]]

16 return zeta_table, zeta_Inv_table

SN

Internal architecture of NTT

To further reduce the multiplication cost we decided to implement a common but-
terfly unit for both NTT and INTT transformations as shown in Alg. [35 Fig.
shows the internal blocks of the unified butterfly core. The multiplexers are used to

CHAPTER 6. IMPLEMENTATION IN HARDWARE 45

select the appropriate data paths during the Cooley-Tukey and Gentleman-Sande
butterfly operations. The arithmetic circuits, namely modular multiplier, adder,
and subtractor, are all pipelined in a total of ten stages to achieve high clock fre-
quency. The multiplier is pipelined in four stages and the modular reduction unit
is pipelined in three stages. There are three more pipeline stages other than this in
the butterfly unit to achieve a high-clock frequency.

Algorithm 32: Butterfly(alg,pl_in,p2_in,(,pl_out,p2_out,p)

1 Input : alg- 0 for NTT and 1 for INTT, (pl.in,p2-in) Input coefficients, ,
prime p

2 Output : (pl_out,p2_out) Output coefficients

t < (pl.in - p2_in)%p
tomux < alg 7 t: p2.n

u <— ModReduce((- t-mux)
v+ alg? p2in: u

w + (plin - uw)%p

plout « (plin + v)%p
p2out < alg? u:w

© w0 N o ok W

10 return (pl_out,p2_out)

An example of the memory pattern across a single BRAM for NTTon a polyno-
mial of coefficient size- 8 is shown in Fig. for an NTT iteration when n = 8.
The memory pattern for INTT is shown in Fig[A.T]

As one butterfly core consumes two coefficients of size at most 25-bit each and
simultaneously produces two coefficients, also of size 25-bit each, every cycle, we
always keep two coefficients in a single 64-bit memory-word following [64]. That
enables accessing two coefficients by just one memory-read and storing two coeffi-
cients by just one memory-write. This also helps reduce the memory requirement
by half for storing a polynomial, as now we store the coefficients in pairs instead of
separately. Using one such butterfly unit for NTT/INTT would require 1024 clock
cycles. This is too high since we will be performing this operation for matrices up to
an order of 8 x 7 for Dilithium. We will be spending a considerably huge amount of
time doing NTT/INTT. We note that we can also unroll this NTT/INTT operation
into as many butterfly units as we want to depend on the area available and design
goals.

By using k butterfly units we will reduce the complexity of the NTT/INTT from
O(n(log n)) to (O(n(log n)))/k. However, butterfly units are also expensive units
as they consist of a multiplier and quite a few additions and subtractions, including
the ones from the modular reduction unit. Therefore, special care must be taken
and the trade-off between the latency area must be considered before choosing an
appropriate number of butterfly units. Also, note that this decision also depends
on the read-write latency of coefficients from BRAM. In our case, we can only read
2 pairs of coefficients at a time. Even if we use more butterfly units they won’t be

CHAPTER 6. IMPLEMENTATION IN HARDWARE 46

pljl o
. MUX!
plj+len]
MUX| ®
zeta ;
\
MULTIPLIER
v

{ Modular Reduction Unit J
J @‘V/
e

. MUX
l Q12) @172)
MU @;7
piouytt[jﬂen] pfott[j]

Figure 6.7: Internal architecture of the butterfly unit for unified Cooley-Tukey NTT
and Gentleman-Sande INTT

fed in parallel. Since our butterfly unit is efficiently pipelined, it can already start
processing the next start of coefficients read without waiting for the first pair of
coefficients to finish.

Our NTT unit has two such butterfly cores in parallel to reduce the cycle count
of NTT. To feed the two butterfly cores, we spread the coefficients into two BRAM
sets. This spreading is necessary as one BRAM-set can feed only both the butterfly
cores partially, for the next set of values we will have to wait for another cycle before
we can start the butterfly, due to the limitations in the number of read/write ports.
Instead, if we use two BRAM each having their own read/write ports, and spread
the coefficients in a way that the two coefficients used for a butterfly operation are
either stored across the two BRAMs or together in the same BRAM. Thus making
the read-write latency one. In this way, a polynomial of 256 coefficients occupies a
total of 128 memory words of which 64 are in the first BRAM set and the remaining
64 are in the other BRAM set.

At any time during an NTT or inverse NTT, the two coefficients in a single
memory-word have an index difference of L/2 where L is {N,N/2,N/4,... 4,2}
during the outermost NTT-loops (Alg. [30), and {2,4,...,N/4,N/2, N} during the
outermost inverse NTT-loops (Alg. . In this way when the two butterfly cores
load the j* and (j +1/2)"" coefficients, they also get the (j+1)" and (j +1/2+ 1)
coefficients automatically.

With this approach, NTT or inverse NTT operation takes 512 clock cycles only.

CHAPTER 6. IMPLEMENTATION IN HARDWARE 47

BRAM 1 BRAM 2 BRAM 1 BRAM 2 BRAM 1 BRAM 2
0 1 8 9 0 1 4 5 0 1 2 3
2 3 10 11 2 3 6 7 4 5 6 7

— > — |

4 5 12 13 8 9 12 13 8 9 10 11

6 7 14 15 10 11 14 15 12 13 14 15

Figure 6.8: Coefficients storage for first 3 steps of the first iteration of NTT trans-
formation on a polynomial of coefficient size 16

Fig. shows the arrangement of coefficients in memory words during NTT
loop-iterations using a toy example.

Using the efficient storage of coefficients across the two BRAMs, in every iteration
of the outermost N'T'T-loop, we process the coefficients stored at the same address in
both the BRAMs. For simplicity when we refer to coefficient ¢ we refer to coefficient
stored at index |i/2]. For a polynomial with 16 coefficients, the first three steps in
the first interactions are shown in Fig. We can see the coefficients are stored
pairwise across the two BRAMs.

In the first iteration, we read coefficients zero-and-one, and eight-and-nine. The
coefficients zero-and-eight are input to the first butterfly unit, and the coefficients
one-and-nine are input to the second butterfly unit. After the first iteration, we
want the processed coefficients eight-and-nine to be stored in BRAM 1, at the ad-
dress where currently coefficients four-and-five are stored. This is so that in the
next iterations the coefficients required are stored across the two BRAMs. Because
coefficients four-and-five have not been processed yet, we can not write new values
to their memory location.

We solve the above problem in the following way. To be able to write pro-
cessed coefficients to this address, we read the coefficients four-and-five, and sim-
ilarly twelve-and-thirteen immediately after reading the coefficients zero-and-one,
and similarly eight-and-nine. But what about the read/write conflicts that will
arise when we write the processed coefficients with index values eight-and-nine in
the memory location of the coefficients with index values four-and-five and simulta-
neously read coefficients four and five for the next step? This won’t be a problem
because everything is pipelined using 10 pipeline stages. So the processed output
will be produced after 10 clock cycles. By this time we would have already read the
next 10 coefficients, thus avoiding any read-write conflict.

Now that we have discussed how to efficiently perform NTT/INTT transforma-
tions, in the next section, we discuss how to efficiently implement the pointwise
arithmetic operations.

CHAPTER 6. IMPLEMENTATION IN HARDWARE 48

6.5 Pointwise addition, subtraction, and multipli-
cation

The pointwise arithmetic operations are much simpler to implement and also require
fewer clock cycles. We just need to load coefficient|i] of both the polynomials and
add, subtract, or multiply depending on the instruction. Addition and subtraction
can be performed using simple adders and subtractors, followed by adding a simple
check to keep the coefficients positive and less than the modulus. The multiplication
unit however will require a similar modular reduction unit that we used for the
NTT/INTT transformation. If we make fresh implementations for each of these,
the addition and subtraction unit won’t be very expensive. It will have a control
part responsible for loading the coefficients of two polynomials and writing the added
or subtracted values back. However, the multiplication block will not only have the
control part but also an extra multiplier and modular reduction unit, which are
more expensive than simple addition and subtraction.

In the previous section, we have decided to store the two coefficients in a single
memory word to save up memory and read more coefficients at a time. WE can use
this to optimize our implementation of the pointwise arithmetic operations. We can
process two additions, subtractions and multiplications at once, as shown in Alg[37]
for addition, Alg. |36 for subtraction, and Alg. [33| for multiplication . To optimize
this further, we can implement a common control unit for reading and writing the
coefficients. We just choose which operations are to be performed on the coefficients
depending on the instructions.

Algorithm 33: PointwiseMultiplicationOf2polynomials (a,b,c)

Ju

Input : a,b Polynomials in R,
Output : c[i] = ali] - b[i]Vi € {0, N} Polynomial in R,

N <« LengthO f Polynomial(a or b)
for i=0 to N-1,i=i+2 do

t1 < alt] - b[i]

t2 < ali] - b[i

cli] = ModReduce(t1)

cli + 1] = ModReduce(t2)

return c

N

®» N o ks W

©

However, since we already have adders, subtractors, and multipliers in the but-
terfly unit we can use them to give us the desired result for simple addition, subtrac-
tion, and multiplication by modifying the input in the way shown in Alg. Thus,
we only spend the resources required for a common control unit. For performing
operations on data, we use the arithmetic units which were already of the butterfly
unit.

CHAPTER 6. IMPLEMENTATION IN HARDWARE 49

Algorithm 34: Butterfly_data_control(op,p-in[N],p_out[N],{ _in[N],p,j,len k)

1 Input : (j,len,k)-loop variables, op- 0 for NTT, 1 for INTT, 2 for Pointwise
Multiplication, 3 for Addition, and 4 for Subtraction, p_in[N]in Input
polynomial, ¢_in[N]- table containing pre-generated powers of primitive
root-of-unity , prime p

2 Output : p_out Output polynomial

3alg+op=070:1

4 plin <= op=27 0 : p_inlj]

5 p2.in < p_in[j+len]

6 ¢ < op=0 or op=1 ?(_in[j] : op==2 7 p.infj] : 1
7 Butterfly(alg,pl_in,p2_in,(,pl_out,p2_out,p)

8 return (pl_out,p2_out)

6.6 Memory

Four our proposed architecture we decide to pre-generate all the roots-of-unit to
avoid computing them on the fly, which would require extra multipliers. For stor-
ing the pre-generated root-of-unity for both Saber and Dilithium we will require 1
BRAM. Next, we also require some storage for storing the polynomials which will
be read for different polynomial arithmetic operations. The NTT/INTT implemen-
tation is an in-place operation. Therefore, it does not require extra storage, and 2
BRAMSs each having their read and write ports are sufficient.

With 2 BRAMs we can store half the polynomial in each BRAM and implement
the simplified NTT/INTT transformation described above. For pointwise opera-
tions, we can always fetch 2 coefficients from each polynomial at once if the two
polynomials are alternately stored in the two BRAMs as shown in Fig. [6.9 Thus,
improving the cycle count. We also require one 18k BRAM or 0.5 BRAM to store
the few instructions we receive. So in total, our proposed polynomial arithmetic
architecture requires 3.5 BRAMs.

BRAM 0 Polynomial 1 1st half Polynomial 2 2nd half

BRAM 1 Polynomial 1 2nd half Polynomial 2 1st half

Figure 6.9: Storage of two polynomials across the two BRAMs to facilitate the
parallel access for pointwise arithmetic operations

CHAPTER 6. IMPLEMENTATION IN HARDWARE 20

Instruction code Operation
0 Null instruction
NTT
Inverse NTT
Coeflicient-wise multiply
Coeflicient-wise add
Coeflicient-wise subtract
Null instruction
End instruction

N O U= W N+

Table 6.2: Table showing the instructions in two columns. An instruction from the
first column can be run in parallel with an instruction from the second column.

6.7 Program Controller for Instruction set Archi-
tecture

The proposed design is an instruction set architecture. The user has to first send load
all the polynomials into the memory. Then he sends the instructions for the desired
operation on these polynomials and waits for the done signal. Once he receives the
done signal he then fetches the result back from the memory. The instruction can be
one of the polynomial arithmetic instructions listed in TabJ6.2] Instruction is sent in
the format given in Fig.[6.10] The instruction contains a 3-bit instruction to specify
which operation to perform and the two read addresses and 1 write address each of
size 8-bits. The NTT/INTT is an in-place operation- meaning they read from and
write to the same addresses. Making them write to another address will complicate
the implementation. As they require the same coefficient to be fetched, processed
and written back multiple times. So NTT/INTT requires only Read_address_1/
as this will also be the address they will be writing to. The pointwise arithmetic
operations use the two read addresses to read the two polynomial coefficients and
write the result to the given write address. This can be used as a partial in-place
operation as well- implying that the resultant values can be written to one of the
polynomial addresses as well.

Ins |Read_address1|Read_address2|[Write address
26 2423 1615 8 7 0

Figure 6.10: Format of the instructions for the designed cryptoprocessor

These instructions are sent one by one to the Instruction memory. Once all
the instruction are received the special program controller reads and send the first
instructions to the polynomial arithmetic unit and waits for the dance signal. Once
the first instruction is done it read the next instruction, sends it, and waits for the
done signal. This continues until all the instructions are executed, following which
the program controller sends a done signal to the user. The user is supposed to send

CHAPTER 6. IMPLEMENTATION IN HARDWARE o1

NTT-based multiplication unit

> A
) (Ll

Butterfly unit 1

Butterfly unit 2

\ 4

Conv to NTT

Polynomial Multiplication
wrapper

i

Conv to InvNTT

A
Y

> Multiplication

A

Addition

A

Subtraction

Figure 6.11: Architecture diagram of the Polynomial Arithmetic Unit

all the instructions at once followed by ‘end instruction’ in the end. The program
controller gets to know this is the last instruction by reading the ‘end instruction’.
This is discussed in brief in [I1].

To provide a summary of our implementation, we started by selecting a ‘special’
prime modulus for Saber to implement a common polynomial arithmetic unit. Then
we designed an efficient and unified modular reduction unit, which is an integral part
of the polynomial multiplier. Next, we chose the Cooley-Tukey NTT transforma-
tion, and Gentleman-Sande INTT transformation as the best methods for our design
and perform post-processing elimination on the INTT transformation algorithm to
make the NTT and INTT unit have the same cost. We saw the internal architec-
ture of the unified butterfly unit for both NTT/INTT. We then use the adders,
subtractors, and multipliers present in the butterfly unit to perform the pointwise
arithmetic operations, thus saving area. Finally, we discussed the required Memory
and how we make our design an instruction-set architecture. Thus, we realize an
efficient architecture for the polynomial arithmetic unit. The overview of the design
components in the proposed architecture is shown in Fig. [6.11].

In the coming up sections, we discuss the timing results and area consumption
in comparison with the existing works, and the future scope of the design.

Chapter 7

Results

In this chapter, we discuss our results of implementation on the FPGA and then in
the next section compare them with other implementations.

7.1 Our Results

Operation Cycle count
NTT/INTT 522
Pointwise addition/subtract/multiplication | 138

One full polynomial multiplication 1704

| 2 polynomial NTT |522x2

| 1 pointwise multiplication | 138

| 1 polynomial INTT |522

Table 7.1: Cycle count for different operations

The proposed efficient polynomial arithmetic architecture is described entirely
in hardware definition language- Verilog. Vivado 2019.1 is used to synthesize and
implement the proposed architecture for the three different primes for Saber - 23-bit
prime(2% — 213 + 1), 24-bit prime(22* — 2!* 4 1), and 25-bit prime(2%° — 2! +
1). We target the platform Zynq Ultrascale+ ZCU102 with the strategy being
performance and area explorer. The utilization numbers are given in Tab. and
the utilization percentage is given in Fig[7.1] Fig. shows the area occupied on
the FPGA. The proposed architecture runs at a clock frequency of ~ 270M H z.

From the results, we can see that there is not much difference in terms of area
consumption for the three different primes. Even though the modular reduction
unit for the Dilithium prime is not a unified unit and instead it’s dedicated to only
one prime. Also, the input-output size for the butterfly unit is 23-bits only. The
clock cycle count for different operations in the architecture is given in Tab.
The clock cycles include the extra 10 clock cycles consumed by pipelining stages to
increase the clock frequency of the design.

In the next section, we compare these results with the other implementations of
polynomial multipliers for Saber and Dilithium in the literature.

D2

CHAPTER 7. RESULTS

53
223 — 213 + 1 LUT FF DSP BRAM
Wrapper 3,347 1,594 4 3.5
| Program controller |617 1350 |0 10.5
| Compute wrapper 12,730 [1,244 |4 |3
| | Polynomial Arithmetic unit | 2,430 |[1,044 |[4 |[1
|| BRAM for polynomial storage | || 0 L[O L0 |2
224 21 1 LUT FF DSP BRAM
Wrapper 3,371 1,605 4 3.5
| Program controller |617 1350 |0 10.5
| Compute wrapper 12,754 1,255 |4 |3
| |[Polynomial Arithmetic unit || 2,454 |[1,065 |[[4 [|1
|| BRAM for polynomial storage | || 0 [[0 [0 [|2
225 — oM 4] LUT FF DSP BRAM
Wrapper 3,377 1,634 4 3.5
| Program controller |617 1350 |0 10.5
| Compute wrapper 2,760 |1,284 |4 |3
| [Polynomial Arithmetic unit |[2,460 [1,084 [[4 |[1
|| BRAM for polynomial storage | || 0 L[O [0 [|2

Table 7.2: Implementation utilization results

7.2 Comparison with other results

We compare our work with different related implementation works in terms of both
performance and area consumption. The comparisons are made against hybrid ar-
chitectures which support multiple PQC schemes including at least one of the two
schemes used in our design, and dedicated implementations of Saber and Dilithium.
In the works [17, 41], 42] architectures supporting multiple schemes are proposed.
Sapphire [17] supports multiple schemes which made it to Round-2 of the NIST’s
standardization project, however, the specifications are old for Dilithium implemen-
tation and it does not provide results for Saber.

LUT

LUTRAM

FF

10

BUFG

1%
1%

1%

1%

55%

25

Figure 7.1: Utilization % on the FPGA

50

75

100

CHAPTER 7. RESULTS 95

In [41] the authors implement multiple key encapsulation and public key en-
cryption schemes, one of which is Saber. They use three different primes for Saber
and break down the polynomial into three residue polynomials, perform polynomial
multiplication and convert them back using CRT. Note that this kind of approach is
used for homomorphic implementations when the polynomials and moduli are huge.
This is not the case for PQC schemes, and therefore, we conclude that this opti-
mization although nice and novel, leads to an unnecessary blowup of both area and
clock cycle counts. Their single accelerator for just NTT and modular arithmetic
consumes 2,908 LUTs and 9 DSPs which is much higher compared to our entire Poly-
nomial Arithmetic unit consumption. They perform the implementation for Xilinx
Zyng-7000 and achieve a very low clock frequency of =~ 77M Hz on ASIC which is
very low compared to our design. A Hardware/Software co-design is proposed in
[42] for implementing Saber and Kyber. They prefer using Karatsuba/Toom-Cook
over NTT based polynomial multiplication and end up spending a lot of area and
cycle count giving our architecture a huge advantage in terms of both area and
performance.

Various works implementing the KEM-PKE scheme Saber are present in the
literature. In [63] the authors present a fast implementation of Saber, using the
Schoolbook multiplication method for polynomial multiplication. They use n = 256
MAC units and thus lower the complexity from O(n?) to O(n). Thus they only re-
quire 256 clock cycles plus some additional pipeline stages to perform one polynomial
multiplication. They have a much better cycle count compared to our implementa-
tion however, our area consumption is much less, as we only require 2 multipliers.
Thus, making our implementation a better option for resource-constraint devices.
Dang et. al. [29] present a hardware/software co-design implementation of three
different Round 2 PQC submissions FrodoKEM, Round5 , and Saber. For Saber,
they also use the same approach as [63] and therefore spend 256 DSP units which
is very high compared to our architecture. In [44] the authors implement Saber and
propose a Scalable Matrix Originated Processing (SMOP) strategy for polynomial
multiplication. Their area consumption and performance of the unified architecture
are almost comparable to our design. However, we support all variants of Dilithium
as well with the same architecture. Their design does not perform NTT transforma-
tion and therefore will not be able to support Dilithium. Thus we have an advantage
considering the use case of the architecture.

[10] proposed both unmasked and masked implementation of Saber on Artix-7.
They reduce the MAC units from 256 to 32 for their schoolbook multiplication based
polynomial multiplier, thus, decreasing the area consumption but in turn increases
the cycle count significantly to 2,048 for one polynomial multiplication. Our polyno-
mial arithmetic architecture not just consumes less area but also has a smaller cycle
count of 1704 clock cycles for single polynomial multiplication. This work helps us
see a clear difference in performance and area between the high-speed optimized
schoolbook based polynomial multiplication and NTT based polynomial multipli-
cation depending on the number of MAC units and butterfly units. Toom-cook
multiplication is used in [53] and the design is implemented for FPGA Zyng-7000.
Our results are better, cause even though they show low area but they have a much

CHAPTER 7. RESULTS o6

lower clock-frequency. Our design outperforms both [10, 53] and shows similar
performance compared to the architectures in [29] [44]. The high-speed implementa-
tions [40], 79, [63] although report a better performance for Saber, the design is not
scalable for Dilithium as our design does. Thus, we get the advantage of supporting
multiple schemes for multiple primes.

Dilithium is not very widely implemented in literature because the fixation on
the use of NTT leaves less room for exploration. Nevertheless, [78] 62} 50, 20] present
in the literature provide efficient implementations of Dilithium. Zhou et al. [7§]
proposed a hardware-software co-design of Dilithium. Their NTT unit consumes
2,044 LUTs, 16 DSPs, 6 BRAMSs, and 1,170 clock cycles at a clock frequency of 216
MHz. They do not pre-generate all the twiddle factors and do not use the Post-
processing elimination. From the area consumption, it can be seen that they not only
consume a higher area but also require more clock cycles for NTT transformation.
Ricci et. al. [62] present a high-performance architecture which consumes 2,547
LUTs, 3889 FFs, 84 DSPs, and 3.5 BRAMs. They achieve a very high frequency
of 637 MHz. Their design consumes much more area than our architecture and is
therefore not suitable for a resource constraint device. The work in [50] presents
a Dilithium implementation for FPGA. They target reducing LUT utilization by
employing extra DSP units for computations. They also make use of the efficient
modular reduction unit. However, they end up consuming 45 DSPs which is much
higher compared to our design. DSP units aside, the LUT, FF, BRAM, and clock
cycle count are almost the same as our design. In [20], a high performance Dilithium
implementation is presented. It consumes 9018 LUTs, 6,292 FF's, and 16 DSPs. This
is almost four times more than our area consumption with a clock cycle count almost
comparable to our design. They do not mention a separate clock frequency for the
multiplication unit but their overall design frequency for Dilithium V is 256 MHz.

Thus, from all these comparisons we can conclude that our design provides the
best performance and least area consumption for resource-constraint devices in the
case of Saber and a better area and performance in general compared to Dilithium
implementations.

Chapter 8

Future scope

There is scope for improving the clock cycle count for pointwise polynomial operations-
addition, subtraction, and multiplication, as well as the NTT/INTT transforma-
tions. Currently, two coefficients are processed at a time. If we store the polynomi-
als across 4 BRAMs instead of 2 BRAMs and use two more butterfly units then the
clock cycle count for all of these operations will be reduced by half. However, this
will increase the area, For devices that have enough resources available, this is an
apt solution. An overview of the proposed architecture is given in Fig. [8.1]

NTT-based multiplication unit

< > Butterfly unit 1

Butterfly unit 2

A
\ 4

Butterfly unit 3

Butterfly unit 4

Polynomial Multiplication
wrapper

A 4

Conv to NTT

Conv to InvNTT

A 4

> Multiplication

A

Addition

A

Subtraction

Figure 8.1: Proposed new Architecture for the Polynomial Arithmetic Unit

There are many different directions in which this work can be extended. The

o7

CHAPTER 8. FUTURE SCOPE o8

Building blocks
Verify,
s CMOV,BS2POLVEC
AddPack AddRound

Binomial Sampler

.. Bl 13 bit coefficient write
Communication Data i
Control < > memory |€—» BUS |, o i
Y ™ manager [7 NTT - based i Keccak
BRAM 8 =
A4 multiplication unit . SHA3 & SHAKE
v Decompose rejection samplers
Program -
Memory
Power2Round MakeHint/UseHint
Pack/Unpack SampleInBall

Figure 8.2: Unified cryptoprocessor for Saber and Dilithium

first scope is to include the other building blocks of Saber and Dilithium and make
a complete cryptoprocessor as shown in Fig. 8.2l This would require adding another
expensive module- Keccak. Both Saber and Dilithium require Keccak for gener-
ating pseudo-random numbers and hash. Saber uses a binomial sampler whereas
Dilithium uses a rejection sampler of multiple types for generating different poly-
nomials. Dilithium also requires many different types of packing which will require
several big buffers. This might lead to a significant increase in the design cost and
lower the clock frequency of the design as well. The two major blocks- Keccak and
polynomial multiplication will be common. The remaining building blocks having
complexity O(n) are not expected to be expensive to implement. However, syn-
ergies between the design of the two schemes should be exploited to maintain the
lightweightedness of the architecture.

Another direction of extension is including support for Kyber’s polynomial mul-
tiplication. Kyber also is a lattice-based design with polynomials of coefficients size
n = 256. It uses a small prime moduli ¢ = 3-2!94+-2%+1 even smaller than Dilithium’s
prime. For Kyber we can store 4 coefficients in a 64-bit word, and use the exist-
ing 2 butterfly core as 4 butterfly cores. Thus processing one full NTT in half the
clock cycles as that required by Saber or Dilithium, without a huge increase in the
area. This will only require some changes in the control unit of the multiplier. The
structure of the Kyber prime is sparse and it stays the same for all Kyber variants.
Therefore, we can again make a highly optimized dedicated unified modular reduc-
tion unit for the three schemes. This would work fine for a normal case, but Kyber
computes incomplete NTT/INTT, i.e., it stops at an earlier level during NTT and
starts from this higher level during INTT. This is because the Kyber prime contains

CHAPTER 8. FUTURE SCOPE 29

primitive 256-th roots of unity but not primitive 512-th roots. So, in Kyber after
the NTT transformation we get 1 degree polynomials, i.e., polynomials having two
coefficients and therefore, our existing pointwise multiplication approach won’t work
directly. But with simple modifications in the control unit, this can be supported
by using the Karatsuba optimization.

To summarize the discussion, there are many possible use cases and also fu-
ture scopes of this work. It involves making this a full-fledged cryptoprocessor that
supports both key encapsulation and public key encryption scheme and digital signa-
ture algorithm. Another way is to include more such schemes to provide for different
applications.

Chapter 9

Conclusions

In this work, we use two finalists of the NIST’ PQC standardization project- Saber,
a Public Key Encryption and Encapsulation scheme, and Dilithium, a digital sig-
nature algorithm. The two schemes are lattice-based and have many similarities
discussed earlier, however, while Saber has a power-of-two modulus, Dilithium has
a prime modulus. Thus implementing a common polynomial arithmetic unit was a
challenging and much-needed task to show that these two schemes can co-exist in a
single processor without occupying much area.

The most expensive operations in both Saber and Dilithium are polynomial
arithmetic operations and Keccak based hash and pseudo-random number gener-
ation. Both the schemes can use the same Keccak code with different wrappers.
For the polynomial multiplication unit, Saber’s official implementation uses a high-
speed well-optimized schoolbook multiplier, however, Dilithium, because of its prime
moduli, efficiently use the NTT based polynomial multiplication unit. Having two
different expensive polynomial multiplication units will increase the area consump-
tion. We solved this problem by designing an N'TT-based polynomial multiplication
unit for both the schemes and for this we use a special prime modulus for computing
the NTTs of Saber. This greatly reduces the area overhead of the unified multiplier.

The most expensive unit in a polynomial multiplication unit is the modular re-
duction operation. We discussed several strategies which are used for implementing
an efficient modular reduction unit in literature and also the ones used in the of-
ficial implementations of these schemes. We selected the special primes for Saber
in a way that an efficient and dedicated unified modular reduction unit can be de-
signed. We showed the three different prime candidates for Saber based on the
acceptable failing probabilities and discussed the advantages and disadvantages of
using them. We implemented the polynomial multiplier for all three primes to give
a fair comparison. We also removed the post-processing elimination iteration given
in the Gentleman-Sande INTT transform by using simple addition and shift in every
INTT iteration.

After implementing all the above carefully chosen and optimized design strate-
gies, our polynomial arithmetic architecture consisting of the polynomial arithmetic
unit and also an instruction program controller utilizes 3,377 LUTs, 1,634 FFs, 4
DSPs, and 3.5 BRAMs on a Xilinx FPGA. The polynomial arithmetic unit alone

60

CHAPTER 9. CONCLUSIONS 61

consumes 2,460 LUTs, 1,084 FFs, 4 DSPs, and 1 BRAM. The unit has 10 pipeline
stages and results in a high clock frequency of ~ 270Mhz. One NTT/INTT oper-
ation takes 522 clock cycles and one pointwise addition/subtraction/multiplication
requires 138 clock cycles. The proposed design is much faster compared to many
other Dilithium-only implementations and consumes much less area compared to
many Saber-only implementations on hardware platforms. It supports all the vari-
ants of Saber and Dilithium based on different security levels.

In the future, we intend to add the remaining building blocks of the two schemes
to make a full-fledged cryptoprocessor implementation while maintaining the design
goal of the architecture being lightweight. We also intend to add the polynomial
arithmetic unit of other PQC schemes like Kyber. Kyber being lattice-based is
expected to share some similarities with these two lattice-based schemes we have
already implemented.

In this thesis, we showed how to design a flexible, compact, and lightweight
polynomial arithmetic architecture for computing the lattice-based post-quantum
finalist schemes Crystals-Dilithium for digital signature, and Saber for key encap-
sulation mechanism. To reduce the area consumption, we implemented a common
NTT-based multiplication unit and made both algorithmic and structural optimiza-
tions to reduce the amount of memory and avoid the read-write conflicts. This is a
completely instruction-level architecture, thus giving the users flexibility to perform
the instruction that they wish to perform instead of performing a complete NTT-
based multiplication and other combinations. The design supports all the variants
of Saber and Dilithium and consumes only a small portion of present-day FPGAs.

CHAPTER 9. CONCLUSIONS

62

Appendix A

Appendix

A.1 Abbreviations

PQC Post-Quantum cryptography
NIST National Institute of Standards and Technology
MLWR Module Learning With Rounding
MLWE Module Learning With Errors
MSIS Module Short Integer Solution
KEM Key Encapsulation Mechanism
PKE Public Key Encryption

CCA Chosen Ciphertext Attack

CPA Chosen Plaintext Attack

XOF expandable output function
TMVP Toeplitz Matrix Vector Product
NTT Number Theoretic Transform
MAC Multiply And Accumulate
INTT Inverse Number Theoretic Transform
FFT Fast Fourier Transform

DFT Discrete Fourier Transform

RNS Residue Number System

CRT Chinese Remainder Theorem
RSA Rivest—Shamir—Adleman

DSA Digital Signature Algorithm
DSP Digital Signal Processor(s)

LUT Look-up-tables

FF Flip Flops

BRAM Block Random Access Memory
BROM Block Read-Only Memory

63

APPENDIX A. APPENDIX

A.2 Algorithms and Figures

64

Algorithm 35: Unified_Modular_Reduction(ctr,A,B,p)

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15

16
17

18
19

20
21

22
23

24
25

26
27

Input : ctr- 0 23-bit prime or 1 25-bit prime, prime p, Input value A
Output : Output value B

vl « ctr 7 A[24:0] : A[22:0]

V2« ctr 7 A[49:25] : A[45:23]

v3 < ctr 7 A[35:25] A[49:36] : A[32:23], A[45:33]
vd < ctr 7 A[46:36],11°b0, A[49:47] : A[42:33],10°b0, A[45:43]
V5 < ctr 7 A[49:47],14°b0 : A[45:43),13'b0

v6 < ctr 7 OxDFFBFFB : 0xF7FDFFB

R+ vl +v2+v3+v4+v5+ 06

wl « p+ ctr 7 A[24:0] : A[22:0] w2 < R[27:0] - p
w3 < R[27:0] - 2p

w4 < R[27:0] - 3p

w4 « R[27:0] - 4p

if R/27]!=0 then

L B_temp < wl[24 : 0]

else if w5[27] == 0 then

| wb[24 :]

else if w4[27] == 0 then

| w4[24: 0]

else if w3[27] == 0 then

| w3[24: 0]

else if w2[27] == 0 then

| w2[24 : 0]

else

| R[24:0]

B < ctr ? B_temp[24:0] : B_temp[22:0]
return B

APPENDIX A. APPENDIX

65

Algorithm 36: SubtractionOf2polynomials (a,b,c)

1 Input : a,b Polynomials in R,
2 Output : ¢ = a — b Polynomial in R,

3 N <« LengthO f Polynomial(a or b)
4 for i=0 to N-1, i=i+2 do

5 t1 < q + ali] — bli]

6 | t2< q+ali] — bl

7 if t1 < ¢ then

8 L cli] = t1

9 else

10 L cli] =tl —q

11 if 12 < g then

12 L cli+1] =2

13 else

14 | fi+1]=t2—¢

15 return c

Algorithm 37: AdditionO0f2polynomials (a,b,c)

1 Input : a,b Polynomials in R,
2 Output : ¢ = a + b Polynomial in R,

N < LengthO f Polynomial(a or b)
for i=0 to N-1,i=i+2 do
t1 < ali] + b[i]
12 < ali] + b[i]
if t1 < ¢ then
L cli] = t1
else
10 L cli] =tl —q
11 if 12 < g then
12 L cli+1] =2
13 else
14 | fi+1]=t2—¢

o N O ook ®

©

15 return c

APPENDIX A. APPENDIX 66

___ Loop 1
i [o] [il[e] il
GG) s
s[4 (s [+][5 [
e [7[e] 7.
e e e
o N o N
s[4 ls [a ™ s [a
e] [rlls] 7ls.
___ Loop 2
i [o] [xl[e] il
BEERINER RN
=> =
s [a] (s [a] Y5 [a
T e] [7[e] [7ls
e e
s 2] s 2 s 2
mnkdan i
e] [rlle] 1ls. .
___ oop
i [o] [x[e] il
I I N [N
s[4 (s (s s [a
e] [r[e] [7ls]
e e
e]) (=) s
e Ve ~isla
o [e] [rlls] 7ls.

Figure A.1: Coefficients storage in single BRAM for full iterations of INTT on a
polynomial having 8 coefficients

APPENDIX A. APPENDIX

e [e
Sz L[5z (s 2]
e 1P e | Dls 4]
T el [rls] [7]s]
s EE S
SN ERIN R RIS
s fa ™ s [s ™0s 4]
r] [7)ls] [7l[s]
e [afe] [alle]
B R PN N [
Draidearaidrairs
el [7[s] [71s]
s e
IS0 N ., I [
Eaideaaidri
e [7le] [7l[s]
o] e e
ENERINER ERENERES
e P[5 [e s][4]
T el [7[s] [71s]
s e
SIERENERERINES (N
DEaRd Rl e
T el [ls] [7lls]

67

Figure A.2: Coefficients storage in single BRAM for full iterations of NTT on a
polynomial having 8 coefficients

Bibliography

1]

Karatsuba vs grade multiplication explained. https://introtcs.org/public/
lec_0Ol1_introduction.html|

Online page explaining development and uses of cooley-tukey transformation.
https://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm.

Online page explaining development and uses of gentleman-sande transforma-
tion. http://dsp-book.narod.ru/FFTBB/0270_PDF_C03.pdf.

Pages explaining barrett reduction in brief. https://www.nayuki.io/
page/barrett-reduction-algorithm,https://en.wikipedia.org/wiki/
Barrett_reduction.

Pages explaining montgomery reduction in brief. https://www.nayuki.io/
page/montgomery-reduction-algorithm,https://cryptography.fandom.
com/wiki/Montgomery_reduction.

Website explaining the chinese remainder theorem with examples. https://
brilliant.org/wiki/chinese-remainder-theorem/.

Wikipedia article on residue number system, note = https://en.wikipedia.
org/wiki/residue_number_system.

Wikipedia page for toom-cook multiplication. https://en.wikipedia.org/
wiki/Toom-Cook_multiplication.

NIST. 2015. SHA-3 standard: Permutation-Based Hash and Extendable-
Output Functions. FIPS PUB 202, 2015.

A. Abdulgadir, K. Mohajerani, V. B. Dang, J.-P. Kaps, and K. Gaj. A
lightweight implementation of saber resistant against side-channel attacks.
Cryptology ePrint Archive, Report 2021/1452, 2021.

Aikata, A. C. Mert, D. Jacquemin, A. Das, D. Matthews, S. Ghosh, and S. S.
Roy. A unified cryptoprocessor for lattice-based signature and key-exchange.
Cryptology ePrint Archive, Report 2021/1461, 2021. |selfcitation,https:
//ia.cr/2021/1461.

68

https://introtcs.org/public/lec_01_introduction.html
https://introtcs.org/public/lec_01_introduction.html
https://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://dsp-book.narod.ru/FFTBB/0270_PDF_C03.pdf
https://www.nayuki.io/page/barrett-reduction-algorithm,https://en.wikipedia.org/wiki/Barrett_reduction
https://www.nayuki.io/page/barrett-reduction-algorithm,https://en.wikipedia.org/wiki/Barrett_reduction
https://www.nayuki.io/page/barrett-reduction-algorithm,https://en.wikipedia.org/wiki/Barrett_reduction
https://www.nayuki.io/page/montgomery-reduction-algorithm,https://cryptography.fandom.com/wiki/Montgomery_reduction
https://www.nayuki.io/page/montgomery-reduction-algorithm,https://cryptography.fandom.com/wiki/Montgomery_reduction
https://www.nayuki.io/page/montgomery-reduction-algorithm,https://cryptography.fandom.com/wiki/Montgomery_reduction
https://brilliant.org/wiki/chinese-remainder-theorem/
https://brilliant.org/wiki/chinese-remainder-theorem/
https://en.wikipedia.org/wiki/residue_number_system
https://en.wikipedia.org/wiki/residue_number_system
https://en.wikipedia.org/wiki/Toom-Cook_multiplication
https://en.wikipedia.org/wiki/Toom-Cook_multiplication
self citation, https://ia.cr/2021/1461
self citation, https://ia.cr/2021/1461

BIBLIOGRAPHY 69

[12]

[13]

[15]

[18]

M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
G. L. Miller, editor, Proceedings of the Twenty-FEighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24,
1996, pages 99-108. ACM, 1996. https://doi.org/10.1145/237814.237838.

G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-
K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and
D. Smith-Tone. Status Report on the Second Round of the NIST Post-
Quantum Cryptography Standardization Process. NISTIR 8309, 2020. https:
//doi.org/10.6028/NIST.IR.8309.

E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe. Post-quantum key ex-
change - A new hope. In T. Holz and S. Savage, editors, 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages
327-343. USENIX Association, 2016. https://www.usenix.org/conference/
usenixsecurityl6/technical-sessions/presentation/alkim.

F. Arutel, K. Arya, R. Babbush, D. Baconl, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen,
A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P.
Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble,
S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V.
Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark,
E. Lucero, D. Lyakh, S. Mandra, J. R. McClean, M. McEwen, A. Megrant,
X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rief-
fel, P. Roushan, N. C. Rubin, D. Sank, K. J. S. ans Vadim Smelyanskiy,
K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White,
Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis. Quantum
supremacy using a programmable superconducting processor. Nature, 2019.
https://doi.org/10.1038/s41586-019-1666-5.

S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé. CRYSTALS-Dilithium. Proposal to NIST PQC Standardization,
Round3, 2021.

U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan. Sapphire: A config-
urable crypto-processor for post-quantum lattice-based protocols. TACR Trans.
on CHES, 2019(4):17-61, 2019. https://dblp.org/rec/journals/tches/
Baner jeeUC19.bib|

P. Barrett. Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In A. M. Odlyzko, editor,
Advances in Cryptology — CRYPTO’ 86, pages 311-323, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

https://doi.org/10.1145/237814.237838
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1038/s41586-019-1666-5
https://dblp.org/rec/journals/tches/BanerjeeUC19.bib
https://dblp.org/rec/journals/tches/BanerjeeUC19.bib

BIBLIOGRAPHY 70

[19]

[20]

[26]

[27]

[28]

[29]

K. Basu, D. Soni, M. Nabeel, and R. Karri. Nist post-quantum cryptography-a
hardware evaluation study. TACR Cryptol. ePrint Arch., 2019:47, 2019.

L. Beckwith, D. T. Nguyen, and K. Gaj. High-performance hardware imple-
mentation of crystals-dilithium. Cryptology ePrint Archive, Report 2021/1451,
2021. https://ia.cr/2021/1451.

D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Niederha-
gen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, et al. Classic mceliece:
conservative code-based cryptography. Submission to the NIST Post-Quantum
Standardization project, 2017.

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. Crystals-kyber: a cca-secure module-
lattice-based kem. In 2018 IEEE EuroSéP, pages 353-367. IEEE, 2018.

Z. Cao, R. Wei, and X. Lin. A fast modular reduction method. TACR Cryptol.
ePrint Arch., 2014:40, 2014.

C. Chen, O. Danba, J. Hoffstein, A. Hiilsing, J. Rijneveld, J. M. Schanck,
P. Schwabe, W. Whyte, and Z. Zhang. Ntru: Algorithm specifications and
supporting documentation, 2019. https://ntru.org/f/ntru-20190330.pdf.

C. Chen, O. Danba, J. Hoffstein, A. Hulsing, J. Rijneveld, J. M.
Schanck, P. Schwabe, W. Whyte, Z. Zhang, T. Saito, T. Yamakawa, and
K. Xagawa. NTRU. Proposal to NIST PQC Standardization, Round3,
2021. https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions|

C. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C. Shih, and B. Yang.
NTT multiplication for ntt-unfriendly rings new speed records for saber and
NTRU on cortex-m4 and AVX2. TACR Trans. on CHES, 2021(2):159-188,
2021. https://dblp.org/rec/journals/tches/ChungHKSSY21.bibl

C.-M. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih, and
B.-Y. Yang. Ntt multiplication for ntt-unfriendly rings: New speed records for

saber and ntru on cortex-m4 and avx2. TACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(2):159-188, Feb. 2021.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19:297-301, 1965.

V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj. Implementing and
benchmarking three lattice-based post-quantum cryptography algorithms us-
ing software/hardware codesign. In 2019 Int. Conf. on Field-Programmable
Technology, pages 206-214, 2019.

https://ia.cr/2021/1451
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://dblp.org/rec/journals/tches/ChungHKSSY21.bib

BIBLIOGRAPHY 71

[30]

[31]

[34]

[35]

[36]

V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T. Nguyen, and
K. Gaj. Implementation and benchmarking of round 2 candidates in the NIST
post-quantum cryptography standardization process using hardware and soft-
ware/hardware co-design approaches. TACR Cryptol. ePrint Arch., 2020:795,
2020. https://eprint.iacr.org/2020/795.

V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T. Nguyen,
and K. Gaj. Implementation and benchmarking of round 2 candidates in the
NIST post-quantum cryptography standardization process using hardware and
software/hardware co-design approaches. IACR Cryptol. ePrint Arch., page
795, 2020. https://dblp.org/rec/journals/iacr/DangFAMNG20.bib.

V. B. Dang, K. Mohajerani, and K. Gaj. High-speed hardware architectures
and fpga benchmarking of crystals-kyber, ntru, and saber. Cryptology ePrint
Archive, Report 2021/1508, 2021. https://ia.cr/2021/1508.

J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. SABER. Pro-
posal to NIST PQC Standardization, Round2, 2019. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/round-2-submissions.

J.-P. D’Anvers, A. Karmakar, S. S. Roy, F. Vercauteren, J. M. B. Mera, M. V.
Beirendonck, and A. Basso. SABER. Proposal to NIST PQC Standardization,
Round3, 2021.

J. Ding, M.-S. Chen, A. Petzoldt, D. Schmidt, B.-Y. Yang, M. Kannwischer,
and J. Patarin. FALCON. Proposal to NIST PQC Standardization, Round3,
2021. https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions.

L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. TACR
Trans. on CHES, 2018(1):238-268, 2018. https://doi.org/10.13154/tches.
v2018.11.238-268

V. Ennola and R. Turunen. On totally real cubic fields. Math. Comp.,
44(170):495-518, 1985. https://doi.org/10.2307/2007969.

H. Fan and M. Hasan. A new approach to subquadratic space complexity
parallel multipliers for extended binary fields. Computers, IEEE Transactions
on, 56:224-233, 03 2007.

P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-fourier lattice-
based compact signatures over ntru, 2018.

T. Fritzmann, G. Sigl, and J. Sepulveda. RISQ-V: tightly coupled RISC-V accel-
erators for post-quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(4):239-280, 2020. https://doi.org/10.13154/tches.v2020.14.
239-280.

https://eprint.iacr.org/2020/795
https://dblp.org/rec/journals/iacr/DangFAMNG20.bib
https://ia.cr/2021/1508
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.2307/2007969
https://doi.org/10.13154/tches.v2020.i4.239-280
https://doi.org/10.13154/tches.v2020.i4.239-280

BIBLIOGRAPHY 72

[41]

[42]

[43]

[52]

T. Fritzmann, G. Sigl, and J. Sepilveda. Risq-v: Tightly coupled risc-v acceler-
ators for post-quantum cryptography. JACR Trans. on CHES, 2020(4):239-280,
Aug. 2020.

T. Fritzmann, M. Van Beirendonck, D. B. Roy, P. Karl, T. Schamberger, I. Ver-
bauwhede, and G. Sigl. Masked accelerators and instruction set extensions for
post-quantum cryptography. TACR Cryptol. ePrint Arch., 2021:479, 2021.

K. Gaj. Implementation and Benchmarking of Round 2 Candi-
dates in the NIST Post-Quantum Cryptography Standardization Pro-
cess Using FPGAs. NIST PQC Round & Seminars, October 2020.
https://csrc.nist.gov/projects/post-quantum-cryptography/
workshops—-and-timeline/round-3-seminars.

P. He, C.-Y. Lee, and J. Xie. Compact coprocessor for kem saber: Novel scalable
matrix originated processing.

M. Imran, Z. U. Abideen, and S. Pagliarini. A systematic study of lattice-based
NIST PQC algorithms: from reference implementations to hardware accelera-
tors. CoRR, abs/2009.07091, 2020. https://arxiv.org/abs/2009.07091.

M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini. Design
space exploration of saber in 65nm asic, 2021.

M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. pqm4: Testing
and benchmarking nist pqc on arm cortex-m4. Cryptology ePrint Archive,
Report 2019/844, 2019. https://ia.cr/2019/844.

A. A. Karatsuba and Y. P. Ofman. Multiplication of many-digital numbers by
automatic computers. Doklady Akademii Nauk, 145(2):293-294, 1962.

D. Knuth. The Art of Computer Programming, Volume 2. Third FEdition.
Addison-Wesley, 1997.

G. Land, P. Sasdrich, and T. Giineysu. A hard crystal - implementing dilithium
on reconfigurable hardware. I[ACR Cryptol. ePrint Arch., 2021:355, 2021.
https://eprint.iacr.org/2021/355.

W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill. Optimized school-
book polynomial multiplication for compact lattice-based cryptography on
fpga. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(10):2459-2463, 2019.

V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 598-616. Springer,
2009.

https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline/round-3-seminars
https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline/round-3-seminars
https://arxiv.org/abs/2009.07091
https://ia.cr/2019/844
https://eprint.iacr.org/2021/355

BIBLIOGRAPHY 73

[53]

[54]

[55]

[56]

[57]

[58]

[63]

J. Maria Bermudo Mera, F. Turan, A. Karmakar, S. Sinha Roy, and 1. Ver-
bauwhede. Compact domain-specific co-processor for accelerating module
lattice-based kem. In 2020 57th ACM/IEEE DAC, pages 1-6, 2020.

J. Mera, A. Karmakar, and I. Verbauwhede. Time-memory trade-off in toom-
cook multiplication: an application to module-lattice based cryptography.
TACR Transactions on Cryptographic Hardware and Embedded Systems, pages
222-244, 03 2020.

D. T. Nguyen and K. Gaj. Optimized software implementations using neon-
based special instructions.

I. K. Paksoy and M. Cenk. Tmvp-based multiplication for polynomial quotient
rings and application to saber on ARM cortex-m4. IACR Cryptol. ePrint Arch.,
page 1302, 2020. https://eprint.iacr.org/2020/1302.

G. B. J. D. M. Peeters and G. V. Assche. The Keccak reference.
Round 3 submission to NIST SHA-3, 2011. http://keccak.noekeon.org/
Keccak-reference-3.0.pdf.

T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. FALCON. Proposal to NIST
PQC Standardization, Round3, 2021. https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-3-submissions.

J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. Quantum Info. Comput., 3(4):317-344, July 2003.

O. Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In H. N. Gabow and R. Fagin, editors, Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,
pages 84-93. ACM, 2005. https://doi.org/10.1145/1060590.1060603.

L. A. D. S. Ribeiro, J. P. da Silva Lima, R. J. G. B. de Queiroz, A. B. Chagas,
J. P. Quintino, F. Q. B. da Silva, A. L. M. Santos, and J. R. R. Junior.
Saber post-quantum key encapsulation mechanism (kem): Evaluating perfor-
mance in mobile devices and suggesting some improvements. https://csrc.
nist.gov/CSRC/media/Events/third-pqgc-standardization-conference/

documents/accepted-papers/ribeiro-saber-pg-key-pqc2021.pdf.

S. Ricci, L. Malina, P. Jedlicka, D. Smékal, J. Hajny, P. Cibik, P. Dzurenda,
and P. Dobias. Implementing crystals-dilithium signature scheme on fpgas.
In The 16th Int. Conf. on ARES, New York, NY, USA, 2021. Association for
Computing Machinery.

S. S. Roy and A. Basso. High-speed instruction-set coprocessor for lattice-based
key encapsulation mechanism: Saber in hardware. [ACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(4):443-466, 2020. https://doi.org/10.13154/
tches.v2020.14.443-466.

https://eprint.iacr.org/2020/1302
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1145/1060590.1060603
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/ribeiro-saber-pq-key-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/ribeiro-saber-pq-key-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/ribeiro-saber-pq-key-pqc2021.pdf
https://doi.org/10.13154/tches.v2020.i4.443-466
https://doi.org/10.13154/tches.v2020.i4.443-466

BIBLIOGRAPHY 74

[64]

[76]

S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Com-
pact ring-lwe cryptoprocessor. In CHES 201/, pages 371-391. Springer Berlin
Heidelberg, 2014.

P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, G. Seiler, and D. Stehle. CRYSTALS-KYBER. Pro-
posal to NIST PQC Standardization, Round3, 2021. https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-3-submissions.

M. Scott. A note on the implementation of the number theoretic transform. In
Cryptography and Coding - 16th IMA International Conference, IMACC 2017,
Ozxford, UK, December 12-14, 2017, Proceedings, pages 247-258. Springer, 2017.
https://dblp.org/rec/conf/ima/Scottl7.bib.

J. A. Solinas. Generalized mersenne numbers. Technical report, 1999.

D. Soni, K. Basu, M. Nabeel, and R. Karri. A hardware evaluation study of
nist post-quantum cryptographic signature schemes. In Second PQC' Standard-
wzation Conference. NIST, 2019.

D. Sprenkels. The kyber/dilithium ntt. https://dsprenkels.com/ntt.html.

M. Taschwer. Modular mutliplication using special prime moduli. 2001. http:
//www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf.

K. Team. Keccak in VHDL: High-speed core. https://keccak.team/
hardware.html, Accessed on November 2019.

. Toli. Efficient arithmetic for some finite fields. 2006. https://www.ricam.
oeaw.ac.at/specsem/srs/groeb/download/Toli_poster.pdf.

A. L. Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. Soviet Mathematics Doklady, 3(4):714-716, 1963.

A. Weimerskirch and C. Paar. Generalizations of the karatsuba algorithm for
efficient implementations. TACR Cryptol. ePrint Arch., 2006:224, 2006.

G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng. Vpqc: A
domain-specific vector processor for post-quantum cryptography based on risc-
v architecture. IEEE Transactions on Circuits and Systems I: Regular Papers,
67(8):2672-2684, 2020.

F. Yaman, A. C. Mert, E. Oztiirk, and E. Savas. A hardware accelerator for
polynomial multiplication operation of CRYSTALS-KYBER PQC scheme. In
DATE 2021, Grenoble, France, Feb. 1-5, 2021, pages 1020-1025. IEEE, 2021.
https://dblp.org/rec/conf/date/YamanM0S21.bibl

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://dblp.org/rec/conf/ima/Scott17.bib
https://dsprenkels.com/ntt.html
http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
https://keccak.team/hardware.html
https://keccak.team/hardware.html
https://www.ricam.oeaw.ac.at/specsem/srs/groeb/download/Toli_poster.pdf
https://www.ricam.oeaw.ac.at/specsem/srs/groeb/download/Toli_poster.pdf
https://dblp.org/rec/conf/date/YamanMOS21.bib

BIBLIOGRAPHY 75

[77) N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu. Highly efficient archi-
tecture of newhope-nist on fpga using low-complexity ntt/intt. JACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(2):49-72, Mar.
2020. https://tches.iacr.org/index.php/TCHES/article/view/8544.

(78] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo. A software/hardware
co-design of crystals-dilithium signature scheme. ACM Trans. Reconfigurable
Technol. Syst., 14(2), June 2021.

[79] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and L. Liu. Lwr-
pro: An energy-efficient configurable crypto-processor for module-lwr. [FEFE
Trans. on CAS I: Regular Papers, 68(3):1146-1159, 2021.

https://tches.iacr.org/index.php/TCHES/article/view/8544

	Introduction
	 Thesis Contribution
	Organization of the Thesis

	PQC schemes
	Saber scheme description
	Dilithium scheme description

	Polynomial Multiplication
	SchoolBook multiplication
	Karatsuba multiplication
	ToomCook multiplication
	 Toeplitz Matrix Vector Product(TMVP)
	NTT-based multiplication
	Chinese Remainder Theorem(CRT)

	Summary of the multiplication methods

	Modular Reduction methods
	Montgomery Reduction
	Barrett Reduction
	Lookup-table-based modular reduction methods
	 Efficient Reduction unit for special primes
	Summary of the modular reduction methods

	Design strategies
	Polynomial Addition and Subtraction unit
	Polynomial multiplication unit

	Implementation in Hardware
	Prime selection for NTT in Saber
	Efficient modular reduction unit
	NTT-based unified polynomial multiplier
	NTT/INTT transformation method
	Pointwise addition, subtraction, and multiplication
	Memory
	Program Controller for Instruction set Architecture

	Results
	Our Results
	Comparison with other results

	Future scope
	Conclusions
	Appendix
	Abbreviations
	Algorithms and Figures

	Bibliography

