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Abstract
The estimation of state variables of dynamical systems that are excited by unknown
inputs, such as unmeasurable external disturbances, is of great interest in various
applications in the field of control engineering. The main challenge in the design of
so-called unknown input observers is that the unknown inputs cannot be explicitly
included in the observer dynamics and, thus, also excite the resulting estimation er-
ror dynamics. A detailed literature analysis shows that all existing unknown input
observers suffer from at least one of the following drawbacks:

1. The system must fulfil certain structural conditions, which represent a strong
restriction of the system class.

2. In order to ensure convergence of the estimation error, the trajectories of the
system which is the subject of the state estimation problem must be bounded.
The required tuning parameters of the unknown input observer depend on the
bounds of the state variables.

3. The number of tuning parameters as well as the order of the observer is at least
twice as large as the system order. The main difficulty is the choice of the
mutually influencing observer parameters.

Motivated by the aforementioned disadvantages of existing methods, new design meth-
ods for unknown input observers for strongly observable, linear time-invariant systems
with unknown inputs are developed in this thesis. The key ingredient is given by
a new observer normal form which, in contrast to classical normal forms, also takes
into account the impact of the unknown inputs on the system. This normal form
represents the overall system as coupled subsystems, each with a single output. The
couplings are favourably chosen from the perspective of the observer design, as they
can either be regarded as an output injection or represent purely serial couplings, i.e.,
each subsystem is only influenced by the state variables of previous subsystems.
Different observers can be designed for the individual subsystems. For subsystems
that are not influenced by an unknown input, the choice of a Luenberger observer,
for example, is sufficient to ensure asymptotic convergence of the estimation error.
For subsystems with an excitation by unknown inputs, however, suitable estimation
methods must be applied. The resulting overall observer does not require restrictive
conditions on the considered system class, nor does it rely on bounded trajectories of
the underlying system or unnecessarily increase the observer order and the number
of tuning parameters. In the case of single-input single-output systems, the observer
design can be performed directly in original coordinates. The proposed design formula
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can be considered as a non-linear generalization of Ackermann’s eigenvalue placement.
Several extensions and generalizations in terms of the considered system class, the class
of unknown inputs and the application of the unknown input observer to state-feedback
control are presented. In addition to numerical simulations, the proposed unknown
input observer concept is also verified by means of a practical application. Thereby,
the temperature profile along an aluminium rod is estimated, which is affected by heat
flows unknown to the observer.
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1
Introduction

This introductory chapter explains the background and the motivation
for this thesis which contributes to the field of unknown input observer
design. Limitations and problems of existing unknown input observers are
discussed and the research gap is identified. The main contributions of this
work to the field are summarized and an outline of the thesis’s structure
is given. Finally, the notation used throughout the thesis is introduced.

1.1 Background and Motivation

The behaviour of a wide range of physical, biological, chemical and economic systems
can be mathematically described by means of sets of ordinary differential equations,
often referred to as dynamical systems. The spectrum ranges from weather and global
climate [1, 2] to the combustion of biomass [3], the effects of the suspension system on
the driving behaviour of vehicles [4], the growth of bacteria in a bioreactor [5] and the
evolution of stock prices [6]. The internal state of dynamical systems is characterized
by a set of state variables whose evolution over time in general depends on the system
dynamics and external inputs.
Dynamical systems serve as the basis for the field of control engineering, whereby a
fundamental distinction can be made between two main disciplines: automatic con-
trol and state estimation. The aim of automatic control is to manipulate the system
through so-called control inputs in a targeted manner, such that (a function of) the
state variables follow a desired trajectory. The algorithms used for this are referred to
as controllers. The objective of state estimation is to reconstruct the state variables
from measured outputs and available inputs, where the output signals are functions
of the state variables and, therefore, contain relevant information about the current
system state. For the purpose of state estimation, so-called observers1 are applied.
Observers are dynamical systems which provide estimates of the system’s state vari-
ables. They usually consist of a copy of the mathematical model of the system and an
innovation term that is based on the current error between the actual and estimated
output. This way, non-measurable state variables can be estimated, which can then be

1The observer concept was introduced by David G. Luenberger [7] in 1964.
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1 Introduction

used, for example, to detect faults in the system [8] or in a model-based state-feedback
controller [9].
One of the main challenges in state estimation arises from influences on the system that
are unknown to the observer. These include, for example, unknown external distur-
bances, parameter uncertainties and unmodelled system dynamics. One approach is
to regard them as unknown inputs and to subsequently apply robust state estimation
methods. Such methods, referred to as unknown input observers2 (formerly strong
observers [10]), estimate the state variables from the outputs without knowledge of
the unknown inputs.
Especially for linear time-invariant (LTI) systems, existence conditions for unknown
input observers have already been thoroughly researched, see e.g. [10], and a huge
variety of different methods has been proposed. However, all available methods either

1. rely on restrictive conditions regarding the system structure,
2. require bounded state variables for convergence of the estimation error
3. or unnecessarily increase the observer order and the number of observer param-

eters beyond the original system order, which may drastically complicate their
tuning.

This gap motivates further research in this direction. This thesis aims to develop new
unknown input observers for LTI systems with multiple unknown inputs and multiple
outputs which do not exhibit the aforementioned limitations and problems of the state
of the art.

1.2 Scientific Contribution

In the following, the main contributions of this thesis to the field of unknown input
observer design are summarized:

1. For strongly observable LTI single-input single-ouput (SISO) systems, a non-
linear generalization of Ackermann’s formula for the design of unknown input
observers is proposed, see Theorem 5.4.1. This formula allows for an elegant
unknown input observer design in original coordinates. The unknown input
observer is able to provide exact estimates of the state variables within finite
time despite a bounded unknown input. In addition, a necessary condition on
the choice of the observer parameters is provided. It is pointed out that this
unknown input observer does not suffer from the limitations and problems of
existing unknown input observers.

2. A new observer normal form for strongly observable LTI multiple-input multiple-
ouput (MIMO) systems is proposed, see Definition 6.1.1. This normal form turns
out highly suitable for the design of unknown input observers. The existence of
the required transformations is guaranteed by Theorem 6.1.1 and a transfor-

2The name may seem misleading in the sense that unknown input observers do not estimate the
unknown inputs, but the state variables in the presence of unknown inputs. However, as this is
an established nomenclature, this term is also used throughout this thesis.
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1.3 List of Publications

mation algorithm for the calculation of the transformations is presented, see
Section 6.3.1.

3. An unknown input observer for LTI MIMO systems represented in observer
normal form is proposed in Theorem 6.2.1. The unknown input observer is
able to provide exact estimates of the state variables within finite time in the
presence of bounded unknown inputs. As in the SISO case, a necessary condition
regarding the choice of the observer parameters is provided and the unknown
input observer does not suffer from the limitations and problems of existing
methods.

4. The practical application of the proposed unknown input observer for LTI MIMO
systems is demonstrated by estimating the temperature profile in a thermal
laboratory setup, see Chapter 8.

1.3 List of Publications

The author of this thesis published several articles in journals and proceedings of in-
ternational conferences during his doctoral studies. The following publications provide
the basis for this thesis:

1. H. Niederwieser, S. Koch, M. Reichhartinger, A generalization of Ackermann’s
formula for the design of continuous and discontinuous observers, in: 2019 IEEE
58th Conference on Decision and Control (CDC), IEEE, 2019, pp. 6930–6935.
doi:10.1109/CDC40024.2019.9030192

2. H. Niederwieser, M. Tranninger, R. Seeber, M. Reichhartinger, Unknown in-
put observer design for linear time-invariant multivariable systems based on a
new observer normal form, International Journal of Systems Science 53 (10)
(2022) 2180–2206. doi:10.1080/00207721.2022.2046201

3. H. Niederwieser, S. Koch, M. Reichhartinger, Unknown Input Observer for
Temperature Profile Estimation in Systems with Unknown Heat Fluxes (Ac-
cepted for presentation at European Control Conference 2024).

4. M. Tranninger, H. Niederwieser, R. Seeber, M. Horn, Unknown input ob-
server design for linear time-invariant systems—a unifying framework, Inter-
national Journal of Robust and Nonlinear Control 33 (15) (2023) 8911–8934.
doi:10.1002/rnc.6399

In addition, the following scientific papers on state estimation and some practical
applications were published:

1. H. Niederwieser, M. Reichhartinger, On the characteristic polyno-
mial of the dynamic matrix of linear time-invariant multivariable sys-
tems in Luenberger’s canonical forms, Automatica 162 (2024) 111532.
doi:10.1016/j.automatica.2024.111532

2. H. Niederwieser, C. Zemann, M. Goelles, M. Reichhartinger, Model-
based estimation of the flue gas mass flow in biomass boilers, IEEE
Transactions on Control Systems Technology 29 (4) (2020) 1609–1622.
doi:10.1109/TCST.2020.3016404
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3. H. Niederwieser, C. Zemann, M. Gölles, M. Reichhartinger, Soft-sensor for the
on-line estimation of the flue gas mass flow in biomass boilers with additional
monitoring of the heat exchanger fouling, in: 28th European Biomass Conference
& Exhibition, 2020, pp. 280–284. doi:10.5071/28thEUBCE2020-2AO.8.3

4. B. Andritsch, M. Horn, S. Koch, H. Niederwieser, M. Wetzlinger, M. Re-
ichhartinger, The robust exact differentiator toolbox revisited: Filtering and
discretization features, in: 2021 IEEE International Conference on Mechatronics
(ICM), IEEE, 2021, pp. 01–06. doi:10.1109/ICM46511.2021.9385675

5. C. Zemann, H. Niederwieser, M. Gölles, Operational optimization and error
detection in biomass boilers by model based monitoring: methods and practice,
in: 7. Mitteleuropäische Biomassekonferenz (CEBC), 2023.

1.4 Structure of the Thesis

This thesis is organised into ten chapters. After this introductory part in Chapter 1,
observability properties of LTI systems subject to unknown inputs and existence condi-
tions for unknown input observers are recalled in Chapter 2. In Chapter 3, the relation
between unknown input observation and numerical differentiation is discussed, which
motivates the application of differentiators in unknown input observation problems.
In Chapter 4, the specific unknown input observation problem considered in this thesis
is introduced. Moreover, existing approaches are discussed theoretically, compared by
means of a numerical example and the main gaps motivating further research into this
direction are identified. The limitations and problems of existing methods motivate
the development of new unknown input observers, which are presented in Chapter 5
and Chapter 6 for SISO and MIMO systems, respectively. In Chapter 7, several useful
extensions of the presented unknown input observers are given, such as generalizations
to systems with direct feed-through and to strongly detectable systems and the ap-
plication to state-feedback control with integrated rejection of unknown disturbance
inputs. In Chapter 8, the practical applicability of the proposed methods is demon-
strated by means of a thermal laboratory setup. Chapter 9 concludes the thesis and
suggests possible directions for further research. Chapter 10, the Appendix, shortly
recaps a method for modal model order reduction, which is applied during modelling
of the laboratory setup in Chapter 8. Furthermore, the Appendix contains the major
part of the mathematical proofs required in Chapter 6.

1.5 Notation

Throughout this thesis, bold lowercase letters refer to vectors and bold uppercase
letters refer to matrices. The i-th canonical unit vector is denoted by ei. Furthermore,
I i represents the i� i identity matrix and 0j�k and 1j�k are the zero matrix and the
matrix of ones of dimension j � k, respectively. A block diagonal matrix with the
submatrices A1, . . . ,An on the diagonal is denoted by diagpA1, . . . ,Anq. Moreover,
rank p�q describes the rank of a matrix and spect�u is the spectrum of a matrix, i.e.,
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1.5 Notation

the set of its eigenvalues. The generalized left-inverse and generalized right-inverse of
a matrix A are written as A: and A;, respectively.
The notations piq

� or �
piq

indicate an insertion of equation piq. In order to abbreviate sign
preserving power functions, the notation

t�sγ � | � |γsignp�q and particularly t�s0 � signp�q

is used. The notation

aÐ fpaq

refers to an update step for the value of a required in the description of iterative
algorithms, i.e., the new value of a is some function fp�q of the old value of a. The
ceiling function r�s rounds numbers to their nearest larger integer.
The first derivative d

dt
x is also denoted by 9x, whereas xpiq also allows for represent-

ing higher derivatives di

dtix with respect to time t. Estimates of some variable x are
indicated by x̂. Moreover, the solutions of differential equations with discontinuous
right-hand side are understood in the sense of Filippov [11]. All numbers are repre-
sented rounded to two decimal places and at least two significant digits.
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2
Observability of Linear Time-Invariant
Systems with Unknown Inputs

This chapter explains the basic concepts of observability and detectabil-
ity for linear time-invariant systems that are affected by unknown inputs.
The problem of estimating state variables of systems excited by unknown
inputs, referred to in the literature as problem of unknown input obser-
vation, is introduced and fundamental terms are defined. Subsequently,
the system properties observability and detectability are discussed, which
provide existence conditions for observers for the case without unknown
inputs. Finally, the more general notions of strong observability, strong
detectability and strong* detectability for systems with unknown inputs
are recalled.

2.1 The Unknown Input Observation Problem

Consider the LTI system

9xptq � Axptq �Buptq �Dwptq,

yptq � Cxptq �Euptq � Fwptq,
(2.1)

where x P Rn is the state vector with initial condition xp0q � x0, u P Ro denotes the
vector of known inputs1, w P Rm describes the vector of unknown inputs and y P Rp is
the output vector. Furthermore,A P Rn�n,B P Rn�o,D P Rn�m,C P Rp�n, E P Rp�o

and F P Rp�m are constant matrices. Without loss of generality, the unknown inputs
as well as the outputs are assumed linear independent2, i.e.,

rank
�
D
F

�
� m, rank

�
C F

�
� p. (2.2)

1The elements of u are not necessarily control inputs, but known functions of time t. This includes
control inputs, if the controller communicates the applied signals, as well as measured disturbances.

2In the case of linear dependent unknown inputs or outputs, it is always possible to describe them
by means of a linear independent basis, see Section 4.1.2.
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2 Observability of Linear Time-Invariant Systems with Unknown Inputs

The goal is to estimate the state vector x from the output y and the known input u
in the presence of the unknown input w. An algorithm solving this task is referred
to as unknown input observer. This term, together with some other fundamental
terms related to state estimation in dynamic systems, is defined in the following.

Definition 2.1.1 (observer). Consider system (2.1) without unknown input, i.e.,
let w � 0 for all t ¥ 0. An observer is a dynamical system providing an estimate x̂
of the state vector x using the system structure A, B, C, E, the known input u
and (not necessarily) the output y.

Definition 2.1.2 (unknown input observer). Consider system (2.1) excited by the
unknown input wptq. An unknown input observer is an observer providing an
estimate x̂ of the state vector x without knowledge of the unknown input w.

Definition 2.1.3 (convergence behaviour). An (unknown input) observer is called
(i) an asymptotic (unknown input) observer if the estimation error σ � x� x̂

vanishes asymptotically, i.e., lim
tÑ8

σptq � 0 for all x0.
(ii) a finite-time (unknown input) observer if the estimation error vanishes after

finite time τ ¡ 0, i.e., σptq � 0 for all t ¥ τpσp0qq, where τ depends on the
initial estimation error σp0q.

(iii) a fixed-time (unknown input) observer if the finite convergence time τ is in-
dependent of the initial estimation error σp0q.

The question arises, of course, which conditions system (2.1) must fulfil such that
there exists an (unknown input) observer with desired convergence behaviour. This
question is directly related to the different notions of observability and detectability,
which are discussed in the next sections.

2.2 Classical Observability and Detectability

For the classical notion of observability and detectability, consider system (2.1) without
unknown input, i.e., w � 0 for all t ¥ 0, which yields

9x � Ax�Bu,

y � Cx�Eu.
(2.3)

Definition 2.2.1 (observability/detectability3 [12]). Consider solutions xaptq and
xbptq of system (2.3) for a given input uptq and the respective outputs yaptq and
ybptq. System (2.3) is said to be

(i) observable4, if yaptq � ybptq @t ¥ 0 implies xaptq � xbptq.
(ii) detectable, if yaptq � ybptq @t ¥ 0 implies lim

tÑ8
pxaptq � xbptqq � 0.
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2.2 Classical Observability and Detectability

Obviously, observability is the stronger property and implies detectability. If a sys-
tem is observable, any two different solutions can be distinguished from each other by
means of their output signals only. An observer can specify the convergence behaviour
of the estimation error independent from the system itself. Observability is neces-
sary and sufficient for the existence of a finite-time observer for the considered system
class which is shown e.g. in [13]. If system (2.3) is detectable only, the state vec-
tor x can be reconstructed asymptotically only, i.e., for tÑ 8, as different solutions
producing the same output converge asymptotically to each other. The convergence
behaviour of the estimation error depends on the system itself and cannot be specified
arbitrarily by an observer. In the following, two well-known criteria for testing the
observability/detectability of LTI systems of the form (2.3) are recalled.

2.2.1 Kalman Criterion for Observability

Assuming the input u sufficiently often differentiable5, differentiation of the output
yields

y � Cx�Eu,

9y � CAx�CBu�E 9u,

yp2q � CA2x�CABu�CB 9u�Eup2q,

...

ypn�1q � CApn�1qx�
n�2̧

i�0
CApn�2�iqBupiq �Eupn�1q,

(2.4)

or, equivalently,�
������

y
9y
yp2q

...
ypn�1q

�
������ �

�
������

C
CA
CA2

...
CAn�1

�
������x�

�
�������

E 0 . . . . . . 0
CB E

. . . ...
CAB

. . . . . . . . . ...
... . . . . . . 0

CAn�2B . . . CAB CB E

�
�������

�
������

u
9u
up2q

...
upn�1q

�
������ .

(2.5)
It can be shown that in the LTI case there can not appear additional information from
taking the n-th and further derivatives into account6, see [16, Lemma 4.26]. From

3In the given reference [12, Definition 5] detectability is referred to as asymptotic observability.
4Often, see e.g. [13, 14], a different definition of observability is used: System (2.3) is said to be

observable, if every initial state x0 can be uniquely determined from the measurement yptq and
the input uptq on a finite time interval t P r0, τ s, τ ¡ 0 for every uptq. Note that this definition
is equivalent to Definition 2.2.1(i). From this definition it is clear that the observability of the
system is decisive for the existence of finite-time observers.

5Note that the differentiability assumption of u can be avoided by considering derivatives of linear
combinations of y and u instead. For example, the derivative d

dt py �Euq, which exists for sure,
could be considered rather than 9y. However, for the sake of convenience, the derivatives of y are
considered which require the assumption made.

6This follows directly from the theorem of Caley-Hamilton which states that a square matrix
A P Rn�n satisfies its own characteristic equation ∆psq � sn � αn�1sn�1 � � � � � α1s � α0 � 0.

9



2 Observability of Linear Time-Invariant Systems with Unknown Inputs

(2.5) it can be seen that x can be determined from y, u and their derivatives if and
only if the so-called observability matrix

O �

�
������

C
CA
CA2

...
CAn�1

�
������ (2.6)

is left-invertible, which finally yields

Proposition 2.2.1 (Kalman observability criterion). System (2.3) is observable if
and only if the observability matrix (2.6) has full column rank, i.e.,

rank O � n. (2.7)

2.2.2 Hautus Criteria for Observability and Detectability

In contrast to the Kalman criterion, the Hautus criteria additionally allow for investi-
gation of the detectability. The criteria are recalled in

Proposition 2.2.2 (Hautus observability/detectability criterion). System (2.3) is
(i) observable, if and only if

rank
�
sI �A
C

�
� n @s P C. (2.8a)

(ii) detectable, if and only if

rank
�
sI �A
C

�
� n @s P C with Retsu ¥ 0. (2.8b)

Note that it is sufficient to check the observability rank condition (2.8a) for the eigen-
values si P spectAu, i � 1, . . . , n, as rank psI �Aq � n for all s R spectAu anyway.
Following the same reasoning, it is sufficient to check the detectability rank condi-
tion (2.8b) only for the eigenvalues si P spectAu with Retsiu ¥ 0. The loss of rank
when inserting the respective eigenvalues has to be compensated by the rows of C. It
follows that the respective right-eigenvectors pi of A must not be in the kernel of C,
which leads to the alternative formulation of the Hautus criterion in

Hence, An � �
n°

i�1
αn�iA

n�i can always be represented as a linear combination of lower powers

of A, see e.g. [15]. The same is true for all further powers Ak with exponent k ¡ n, k P N, which
can be shown by induction.

10



2.2 Classical Observability and Detectability

Corollary 2.2.3 (Hautus observability/detectability criterion). System (2.3) is
(i) observable, if and only if all solutions pi of the eigenvalue problem Api � sipi

satisfy Cpi � 0 .
(ii) detectable, if and only if all solutions pi of the eigenvalue problem Api � sipi

corresponding to eigenvalues si with Retsiu ¥ 0 satisfy Cpi � 0.

It is pointed out that the relations stated in Corollary 2.2.3 must be satisfied for all
eigenvectors pi in the eigenspace associated with the particular eigenvalue si. This is
especially important in the case of higher dimensional eigenspaces which can occur for
eigenvalues with multiplicity greater than one.
For an intuitive explanation of Corollary 2.2.3, let A have n linear independent eigen-
vectors. Then, the system (2.3) can be transformed into diagonal form7 using the
state transformation z � P�1x with P �

�
p1 . . . pn

�
, see e.g. [17, Section 7.4],

which yields

9z �

�
��s1

. . .
sn

�
�� z � P�1Bu,

y �
�
Cp1 . . . Cpn

�
z �Eu.

(2.9)

This system consists of n decoupled first-order dynamics. If Cpi � 0 for some i, then
the output does not provide any information about the state variable associated with
the eigenvalue si and, thus, the system is not observable. The system is detectable if
all unobservable eigenvalues satisfy Retsiu   0, i.e., the related first-order dynamics
are asymptotically stable which allows for asymptotically determining the respective
solutions.

2.2.3 Concluding Remarks on Classical Observability/Detectability

From the Kalman criterium as well as from the Hautus criteria it becomes evident
that the observability/detectability of the LTI system (2.3) depends on the dynamic
matrix A and the output matrix C only, i.e., it does not depend on B and E. This
fact is not surprising, since the input u is assumed to be known, and therefore can be
considered easily by a potential observer. For this reason, it is also said that the pair
pA,Cq is observable/detectable.
Obviously, the classical concepts of observability and detectability need to be adapted
for the unknown input case. In addition to the matrices A and C, also the way the
input affects the system matters. The associated notions recalled in the next section
are referred to as strong observability, strong detectability and strong* detectability.

7The following reasoning can be extended in the case there do not exist n linearly independent
eigenvectors. Then, the system can be transformed to Jordan block form, in which the same
conclusions can be drawn.
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2 Observability of Linear Time-Invariant Systems with Unknown Inputs

2.3 Strong Observability, Strong Detectability and Strong*
Detectability

Consider system (2.1) with possibly time-varying unknown input w. As discussed
in the previous section, known inputs do not affect the observability/detectability
properties in the LTI case. Hence, u � 0 is assumed without loss of generality which
reduces the considered system to

9x � Ax�Dw,

y � Cx� Fw.
(2.10)

In contrast to the classical notions of observability/detectability, the related notions
for systems with unknown input are referred to as strong observability/detectability,
which are given in

Definition 2.3.1 (strong observability/detectability, strong* detectability [10]).
System (2.10) is called

(i) strongly observable, if yptq � 0 for all t ¥ 0 implies xptq � 0 for all t ¥ 0, all
inputs wptq and all initial conditions x0.

(ii) strongly detectable, if yptq � 0 for all t ¥ 0 implies xptq Ñ 0 for tÑ 8, all
inputs wptq and all initial conditions x0.

(iii) strong* detectable, if yptq Ñ 0 for tÑ 8 implies xptq Ñ 0 for tÑ 8, all
inputs wptq and all initial conditions x0.

In the case of strong observability there exists no input w that renders the output
y � 0 although x � 0. As the considered system is linear, it follows that two identical
output signals yaptq � ybptq for all t ¥ 0 imply identical state vectors xaptq � xbptq
independent of the unknown input w. Then, it is possible to exactly reconstruct
x within some arbitrary small time interval, i.e., strong observability ensures the
existence of finite-time and fixed-time observers, see e.g. [18–20].
If system (2.10) is strongly detectable, two identical output signals yaptq � ybptq for
all t ¥ 0 do not necessarily imply identical state vectors, but at least asymptotic con-
vergence of the respective solutions to each other, i.e., lim

tÑ8
pxaptq � xbptqq � 0. Hence,

if the system is strongly detectable but not strongly observable, it is not possible to
reconstruct the state vector within finite-time or fixed-time but asymptotically only,
see e.g. [19].
In the case of strong* detectable systems, two output signals converging asymptoti-
cally to each other, i.e., lim

tÑ8
pyaptq � ybptqq � 0, imply that also the respective state

vectors converge asymptotically to each other, i.e., lim
tÑ8

pxaptq � xbptqq � 0. Strong*
detectability is the minimum requirement for the existence of a linear unknown input
observer [10] allowing for asymptotic convergence of the estimation error.
It is pointed out that strong observability as well as strong* detectability imply strong
detectability which becomes evident directly from the definitions. However, strong ob-

12



2.3 Strong Observability, Strong Detectability and Strong* Detectability

servability does not imply strong* detectability. This is demonstrated by the insightful
example given in [10, pp. 356–357].
As this thesis mainly focuses on strongly observable systems, the properties of such
systems are discussed in more detail in the following sections.

2.3.1 Important Properties of Strongly Observable Systems

In order to identify some important system properties, let system (2.10) be strongly
observable and the unknown input w sufficiently often differentiable. Similar to the
case with known inputs, see (2.5), differentiation of the output yields

�
������

y
9y
yp2q

...
ypn�1q

�
������

loooomoooon
ỹ

�

�
������

C
CA
CA2

...
CAn�1

�
������

looooomooooon
O

x�

�
�������

F 0 . . . . . . 0
CD F

. . . ...
CAD

. . . . . . . . . ...
... . . . . . . 0

CAn�2D . . . CAD CD F

�
�������

looooooooooooooooooooooomooooooooooooooooooooooon
J

�
������

w
9w

wp2q

...
wpn�1q

�
������

loooomoooon
w̃

.

(2.11)

Again, the n-th and all further derivatives do not carry additional information, see
e.g. [16, Lemma 4.26]. Hence, differentiation is stopped after the pn� 1q-st derivative.
As in Definition 2.3.1 of strong observability, assume y � 0, which consequently also
implies 9y � yp2q � . . . � ypn�1q � 0. Insertion into (2.11) yields

0 � Ox�J w̃. (2.12)

As the system is strongly observable, y � 0 implies x � 0 independent of the unknown
input w. Equation (2.12) implies x � 0 independent of w (and its derivatives con-
tained in w̃) if and only if there exists a generalized left-inverse O: of the observability
matrix such that

O:J � 0, (2.13)

see [21]. The construction of such a left-inverse can be found e.g. in [20].
From the ensured existence of the left-inverse O: satisfying (2.13), the following con-
clusions are drawn:

• The observability matrix is left-invertible, i.e., rank O � n. Hence, strong
observability implies classical observability, see the Kalman criterion given in
Proposition 2.2.1.

• The state vector x of a strongly observable system can be represented as a linear
combination of the output y and finitely many of its derivatives 9y,yp2q, . . . ,ypn�1q

(if they exist8) only, without requiring w. This can be shown by multiply-
8If y is not sufficiently often differentiable (because w is not sufficiently often differentiable), deriva-

tives of linear combinations of y, w and consequent derivatives can be considered instead. For
example, the derivative d

dt py � Fwq, which exists for sure, could be considered rather than 9y.
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2 Observability of Linear Time-Invariant Systems with Unknown Inputs

ing (2.11) with O: from the left-hand side, which yields

O:ỹ � O:Oloomoon
I

x� O:Jloomoon
0

w̃ ô x � O:ỹ. (2.14)

2.3.2 Strong Observability in the Single-Input Single-Output Case

In the special case of a system with a single unknown input w and a single output
y, further noteworthy system properties arise. Consider the strongly observable SISO
system

9x � Ax� dw,

y � cTx� fw,
(2.15)

where d P Rn�1, c P Rn�1 and f P R. The observability matrix O is an n� n square
matrix and, because of the strong observability assumption, has full rank. As a conse-
quence, its generalized left-inverse O: is uniquely determined and given by its inverse
O�1, i.e.,

O: � O�1. (2.16)

Furthermore,

J �

�
�������

f 0 . . . . . . 0
cTd f

. . . ...
cTAd

. . . . . . . . . ...
... . . . . . . 0

cTAn�2d . . . cTAd cTd f

�
�������

(2.17)

is also an n� n square matrix. Since O�1 has full rank, O�1J � 0 (see (2.13)) can
be satisfied if and only if J � 0 holds, or equivalently9

f � cTd � cTAd � � � � � cTAn�2d � 0. (2.18)

Consequently, the unknown input does not directly act on the output y nor on its first
pn� 1q derivatives. Hence, strong observability implies the relative degree δ � n of y
with respect to w, i.e.,

ypnq�cTAnx� cTAn�1dw with cTAn�1d � 0 (2.19)

is the first derivative with a direct impact10 of w. Furthermore, due to this relative
degree condition, the differentiability of w is not required for the existence of the first
pn� 1q derivatives of y, i.e., 9y, . . . , ypn�1q exist for sure independent of w. For the

9The parameters cTAkd, k P N0 are often referred to as the Markov parameters of system (2.15).
10For non-trivial unknown-input vector d � 0. Otherwise, the unknown input does not act on the

system at all, the relative degree is not defined and the classical notion of observability applies.
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2.3 Strong Observability, Strong Detectability and Strong* Detectability

later observer design it is beneficial to represent this relative degree condition (2.18)
by means of the observability matrix which yields

f � 0 and Od �

�
����

0
...
0

cTAn�1d

�
���� . (2.20)

Based on the above discussion, it is evident that observability and the relative degree
condition (2.20) are necessary for strong observability in the SISO case. Indeed, these
two conditions are also sufficient which can be verified easily by the criterion for strong
observability recapped in the next section.

2.3.3 Characterization of Strong Observability/Detectability

The criteria for strong observability/detectability considered in the following are based
on the so-called Rosenbrock matrix11

P psq �

�
sIn �A �D
C F

�
. (2.21)

The criteria are recalled in

Proposition 2.3.1 (criteria for strong observability/detectability). System (2.10)
is

(i) strongly observable, if and only if rank P psq � n�m for all s P C.
(ii) strongly detectable, if and only if rank P psq � n � m for all s P C with

Retsu ¥ 0.
(iii) strong* detectable, if and only if it is strongly detectable and satisfies

rank
�
CD F
F 0

�
� rank F �m. (2.22)

It becomes apparent that the required rank conditions for P psq can only be fulfilled if
there are at least as many linearly independent outputs as inputs, i.e., p ¥ m. Further-
more, these criteria for strong observability and strong detectability can be regarded
as a generalization of the Hautus criteria for classical observability and detectability
given in Proposition 2.2.2. The matrix considered in the Hautus criteria is augmented
11Originally, the Rosenbrock matrix was called the system matrix in [22, Sec. 1, p. 43], as it contains

all the mathematical information relevant for discussing the system properties. Note that in the
given reference the input matrix and the output matrix appear with reversed sign, i.e.,

P psq �

�
sIn �A D
�C F

�
,

whereas e.g. in [10] uses the convention given in (2.21). In any case, the rank of P psq is not
changed by swapping this sign.
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2 Observability of Linear Time-Invariant Systems with Unknown Inputs

with the unknown-input matrix D and the related direct feed-through matrix F to
account for the impact of the unknown input. The criteria are consistent in the sense,
that the criteria for strong observability and strong detectability reduce to the Hautus
criteria for classical observability and detectability in the special case without unknown
input.
The rank condition (2.22) required for strong* detectability, which is also referred to
as observer matching condition [23], demands a relative degree of all components of
w of either 0 or 1. This means that all unknown inputs act either directly on the
output y or its first derivative 9y.
Other criteria in the literature characterize strong observability/detectability by means
of the invariant zeros of the system [10], weakly unobservable subspaces, see [24, Ch.
7] or [25], or different rank conditions [21]. In the context of this work, it is sufficient
to consider the criteria given in Proposition 2.3.1.

2.3.4 Concluding Remarks on Strong Observability/Detectability

A potential unknown input observer requires the output to contain all relevant infor-
mation for estimating the system state, independent of the unknown input. Therefore,
in contrast to classical observability/detectability, the concepts of strong observabil-
ity/detectability additionally consider the way the unknown input affects the sys-
tem, i.e., the matrices D and F . For this reason, it is also said that the quadruple
pA,D,C,F q is strongly observable/detectable.
In the case of strong observability the state vector can be represented by means of
the output and output derivatives (if they exist) only (independent of the unknown
input), see (2.14). This relation already indicates that differentiation of y might be
useful in order to estimate x in the presence of w and, therefore, motivates to deal
with numerical differentiation in the next chapter.
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3
Numerical Differentiation and
Unknown Input Observation

This chapter deals with the relation of numerical differentiation and un-
known input observation. It is shown that the differentiation problem
can be regarded as a special case of the state observation problem of LTI
systems, namely for a chain of integrators. Furthermore, one prominent so-
lution to the differentiation problem, namely a family of homogeneous dif-
ferentiators including the Robust Exact Differentiator (RED), is recalled.
The application of these differentiators for the construction of unknown
input observers for strongly observable systems is motivated.

3.1 The Differentiation Problem

Consider the noisy signal f̃ptq � fptq � vptq, where fptq � f p0qptq is a (sufficiently often
differentiable) signal to be differentiated and vptq represents the measurement noise.
The goal is to estimate the first pn� 1q derivatives f p1qptq, f p2qptq, . . . , f pn�1qptq from
f̃ptq.
The numerical differentiation problem can be transferred into a state estimation prob-
lem by considering the signal model depicted in Figure 3.1.
Therein, the signal to be differentiated is generated by n times integration of the n-
th derivative f pnq. The signal model is therefore a chain of n integrators, which is

Figure 3.1: The signal model considered for differentiation. The signal fptq � f p0qptq to
be differentiated is generated by n times integrating its n-th derivative f pnq.
In practice, fptq is typically corrupted by some measurement noise vptq.
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3 Numerical Differentiation and Unknown Input Observation

described by the state-space model
df p0q

dt � f p1q,

...
df pn�2q

dt � f pn�1q,

df pn�1q

dt � f pnq,

(3.1a)

with the noisy output

f̃ptq � f p0qptq � vptq. (3.1b)

As the n-th derivative is unknown in general, f pnqptq acts as an unknown input to
system (3.1). It is pointed out that in the absence of measurement noise, i.e., vptq � 0,
system (3.1) is strongly observable as the state variables correspond directly to the
output derivatives and, thus, fptq � 0 @t ¥ 0 implies f p0q � f p1q � � � � � f pn�1q � 0
@t ¥ 0, see Definition 2.3.1(i).
It can be concluded that the estimation of the first n� 1 signal derivates of fptq is
equivalent to the estimation of the state variables of a chain of integrators affected by
the unknown input f pnq. Hence, an unknown input observer for (3.1) can be regarded
as a differentiator.

3.2 Homogeneous Differentiators and the Robust Exact
Differentiator

In the following, a family of homogeneous differentiators proposed in [26] is recalled.
The differentiator is given by the observer

df̂0

dt � f̂1 � κn�1tf̃ � f̂0s
r2
r1 ,

...
df̂n�2

dt � f̂n�1 � κ1tf̃ � f̂0s
rn
r1 ,

df̂n�1

dt � κ0tf̃ � f̂0s
rn�1

r1 ,

(3.2a)

which consists of a copy of the system dynamics (3.1a) and some (probably) nonlinear
output error injection. The observer’s state variables f̂0, . . . , f̂n�1 are the respective
derivative estimates, κ0, . . . , κn�1 are constant positive parameters and r1, . . . , rn are
the so-called homogeneity weights. The constant rn�1 is not a weight but is introduced
for the sake of simplicity. The homogeneity weights are defined as

ri � 1� pn� iqq, i � 1, . . . , n, (3.2b)

where q P r�1, 0s is the so-called homogeneity degree to be chosen:
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3.2 Homogeneous Differentiators and the Robust Exact Differentiator

• For q � 0 one obtains a linear differentiator which is a classical linear observer
for the chain of integrators. In this case, the parameters κ0, . . . , κn�1 are the
coefficients of the characteristic polynomial of the estimation error dynamics.

• The choice q � �1 yields Levant’s RED [27, 28]1. It is pointed out that q � �1
yields a discontinuous right-hand side of system (3.2a) which is a so-called sliding
mode differentiator. Here and hereafter, solutions of such systems are understood
in the sense of Filippov [11].

• For �1   q   0 the differentiator is nonlinear, but with a continuous right-hand
side.

The convergence behaviour of the differentiator is summarized in

Proposition 3.2.1 (convergence of homogeneous differentiator [26]). Consider
the unknown input observer (3.2) for the estimation of the state variables of sys-
tem (3.1). Moreover, suppose v � 0.

(i) If f pnqptq � 0 @t ¥ 0, then for each q P r�1, 0s there exist parameters
κ0, κ1, . . . , κn�1 such that the estimation error variables σi � f pi�1q � f̂i�1 with
i � 1, . . . , n converge to zero globally. In the case q � 0 the convergence is ex-
ponential, i.e., for all initial states there exist constants K ¡ 0 and γ ¡ 0 such
that |σi|   Ke�γt @t. In the case �1 ¤ q   0 the estimation error variables σi

vanish within a finite time, i.e., for all initial states there exists a finite time
T ¥ 0 such that σiptq � 0 @i @t ¥ T .

(ii) If q � �1 and f pnq is bounded, i.e., there exists a constant L � sup
t

∣∣∣f pnqptq∣∣∣,
then there exist parameters κ0, κ1, . . . , κn�1 such that the estimation error vari-
ables converge to zero within finite time despite f pnq, i.e., for all initial states
there exists a finite time T ¡ 0 such that σiptq � 0 @i @t ¥ T . Moreover, a
necessary condition for the choice of κ0 is given by κ0 ¡ L.

It is pointed out that in the case of uniformly bounded measurement noise, i.e.,
|v| ¤ vmax, vmax ¥ 0, the estimation error variables σi � f pi�1q � f̂i�1, i � 1, . . . , n stay
bounded with bounds discussed e.g. in [26]. The estimation error dynamics are given
by

dσ1

dt � σ2 � κn�1tσ1 � vs
r2
r1 ,

...
dσn�1

dt � σn � κ1tσ1 � vs
rn�1

r1 ,

dσn

dt � f pnq � κ0tσ1 � vs
rn
r1 .

(3.3)

1In contrast to the notation used in this thesis, the given references [27, 28] denote n as the numbers
of derivatives to be estimated, i.e., the system order of the differentiator is n � 1.
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3 Numerical Differentiation and Unknown Input Observation

In the case of the RED, i.e., q � �1, and in the absence of measurement noise, i.e.,
v � 0, the last differential equation in (3.3) becomes

dσn

dt � f pnq � κ0signpσ1q, (3.4)

where signpσ1q � tσ1s
0 is discontinuous in σ1 � 0. The necessary condition κ0 ¡ L for

convergence of the RED stated in Proposition 3.2.1(ii) arises from the fact that the
discontinuous function κ0signpσ1q must be able to dominate the n-th derivative f pnq.
A parameter setting for n ¤ 6 is proposed in [29, Section 6.7], where the parameters
are given by

κn�i � λ̃n�iL
i
n , i � 1, . . . , n (3.5)

with λ̃n�1 � λn�1 and λ̃j � λjλ̃
j

j�1
j�1, j � 0, . . . , n� 2, where λ0 � 1.1, λ1 � 1.5, λ2 � 3,

λ3 � 5, λ4 � 8 and λ5 � 12. Another reasonable parameter tuning strategy can be
found e.g. in [30].
It is noted that the discussed differentiator is called homogeneous, because, if v � 0
and f pnq � 0, its estimation error dynamics (3.3) are r-homogeneous2 of homogeneity
degree q with the weights r �

�
r1 . . . rn

�T.

3.3 Motivation for the Construction of Unknown Input Observers

In the absence of measurement noise, the RED is able to provide exact estimates of the
first n� 1 derivatives of fptq within finite time if f pnq is bounded. The stability proofs
exist for arbitrary order [26, 28, 33], there are well-established parameter settings
available in the literature, see e.g. [29, Section 6.7] or [30], and a large variety of
discretization methods has been proposed [34–44]. The RED can be interpreted as an
unknown input observer for a special LTI system, namely a chain of integrators with
a single unknown input and a single output. The central research question deals with
the generalization to a larger class of systems:

How can numerical differentiation methods such as the RED be applied to construct
unknown input observers for the general class of strongly observable LTI systems with
multiple unknown inputs and multiple outputs?

Note that, beside the RED, there exist other established differentiators such as the high
gain differentiator [45, 46], which is exact when its gains tend to infinity, or Moreno’s

2The notion of weighted homogeneity [31] generalizes the classical homogeneity in the following way:
Consider the vector field g : Rn Ñ Rn and the autonomous system dx

dt � gpxq. The vector field
is said to be r-homogeneous of degree q P R if q ¥ � min

0¤i¤n
ri and gpKrxq � kqKrgpxq hold

@x P Rn and @k ¡ 0, where Kr � diagtkriun
i�1 is the so-called dilation matrix. The positive

constants ri ¡ 0 denote the so-called homogeneity weights (also called dilation coefficients), which
are summarized in the dilation coefficient vector r �

�
r1 r2 . . . rn

�
. The autonomous system

is said to be r-homogeneous of degree q if its right hand side is r-homogeneous of degree q. For
more details see e.g. [32].
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3.3 Motivation for the Construction of Unknown Input Observers

bi-homogeneous differentiator [47, 48] which provides exact estimates in fixed time,
i.e., there exists an upper limit for the finite convergence time. However, those are
not explicitly considered in this thesis. It will turn out that the key in constructing
the unknown input observer is to find a suitable representation of the system under
consideration, rather than using a particular differentiator. Once the system is rep-
resented in an appropriate form, the unknown input observer design is simple and
straightforward regardless of the applied differentiator. This thesis focuses on RED-
based observer design only, as it does not require infinite gains for exactness as the
high gain differentiator, and its structure is simpler compared to the bi-homogeneous
differentiator.
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4
Problem Statement and Existing
Unknown Input Observers for Linear
Time-Invariant Systems

Motivated by the previous chapter on numerical differentiation, the goal
is to find a suitable way to apply the RED as an unknown input observer
to arbitrary strongly observable LTI systems. For this purpose, a detailed
problem statement is provided in order to clarify the considered system
class. Subsequently, existing unknown input observers are recalled and
analyzed. Their advantages and disadvantages are discussed by means of
a numerical example. Finally, the research gap that serves as motivation
is explained.

4.1 Problem Statement

A detailed description of the problem statement considered in this thesis is provided
in the following. Furthermore, the assumptions made in the problem statement are
discussed in order to show that they are either non-restrictive or reasonable from a
practical point of view.

4.1.1 Formulation of the Unknown Input Observation Problem

Consider the LTI system1

9x � Ax�Dw,

y � Cx,
(4.1)

where x �
�
x1 x2 . . . xn

�T is the n-dimensional state vector with initial value
xp0q � x0, w �

�
w1 w2 . . . wm

�T denotes the vector of possibly time-varying, un-
1Note that no direct feed-trough term is considered, i.e., F � 0, compare to system (2.1). This is

non-restrictive since one can always get rid of the direct feed-through term for the purpose of
state estimation, which is shown later on in Section 7.1.
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4 Problem Statement and Existing Unknown Input Observers for LTI Systems

known inputs and y �
�
y1 y2 . . . yp

�T is the output vector. Furthermore, the dy-
namic matrix A P Rn�n, the unknown-input matrix D P Rn�m and the output matrix
C P Rp�n are constant matrices. The unknown-input matrix and the output matrix
are partitioned into column and row vectors, respectively, i.e.,

D �
�
d1 d2 . . . dm

�
, C �

�
����
cT

1
cT

2
...
cT

p

�
���� . (4.2)

Assumption 4.1.1. System (4.1) is strongly observable.

Assumption 4.1.2. The unknown inputs are bounded, i.e.,

|wiptq| ¤ Li @t, with 0 ¤ Li   8, i � 1, . . . ,m. (4.3)

Assumption 4.1.3. The columns of D as well as the rows of C are linearly inde-
pendent, i.e., rank D � m and rank C � p.

The goal is to design an unknown input observer for the exact estimation of the state
vector x of system (4.1) from the measured output y despite the unknown input w.

4.1.2 Discussion of the Problem Statement

Assumption 4.1.2 on the boundedness of the input arises from the boundedness as-
sumption of the RED, i.e., it requires the n-th derivative to be bounded. Many physical
systems will naturally satisfy this boundedness assumption. For example, mass and
energy flows entering a physical system as inputs are finite.
Assumption 4.1.3 is non-restrictive, as linear dependent inputs and outputs can always
be summarized by means of a linear independent basis. Consider e.g. linear dependent
unknown inputs w, i.e., rank D � m̃   m. Then, one can introduce the new unknown
input vector

w̃ �Mw, with M P Rm̃�m, rank M � m̃, (4.4)
such that the new unknown-input matrix

D̃ �DM ; (4.5)

satisfies rank D̃ � m̃, where M ; denotes a generalized right-inverse of M .
It is pointed out that the problem statement does not consider a direct feed-through
term. This is non-restrictive since one can always get rid of the direct feed-through
term for the purpose of state estimation, which is shown later on in Section 7.1.
Furthermore, known inputs are not explicitly taken into account as they can always
be easily considered by an observer, see Section 2.2.
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4.2 Existing Unknown Input Observers for Strongly Observable LTI Systems

4.2 Existing Unknown Input Observers for Strongly Observable
Linear Time-Invariant Systems

In this section, different existing unknown input observers for the considered problem
statement are analyzed. Beside a general discussion of each method, the respective
benefits and drawbacks are demonstrated by means of the numerical

Example 4.2.1. Consider the linearized model of the lateral motion of a light
aircraft taken from [49] which has been already used by the unknown input observers
proposed in [50, 51]. The matrices of the system of order n � 7 with m � 1 unknown
input and p � 2 outputs are given by

A �

�
���������

�0.3 0 �33 9.81 0 �5.4 0
�0.1 �8.3 3.75 0 0 0 �28.6
0.37 0 �0.64 0 0 �9.5 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 �10 0
0 0 0 0 0 0 �5

�
���������
,

D �

�
���������

0
0
0
0
0
20
0

�
���������
, C �

�
0 1 0 0 0 0 0
0 0 0 0 1 0 0

�
.

(4.6)

The state vector x �
�
v z r ϕ ψ ζ ξ

�T consists of the sideslip velocity v, the
roll rate z, the yaw rate r, the roll angle ϕ, the yaw angle ψ, the rudder angle ζ
and the aileron angle ξ. The unknown input w models a fault in the rudder. The
output y �

�
y1 y2

�T provides measurements of the roll rate z and the yaw angle
ψ. In the simulation studies presented in this thesis, the initial state vector of the
system is chosen as

x0 �
�
�0.5 0.1 0.02 0.2 �0.1 �0.3 0.2

�T
, (4.7)

and the unknown input is selected as

w � 0.008� 0.01 sinp2tq � 0.002 cosp13tq. (4.8)

Note that the unknown input is bounded2 by L � 0.02. Furthermore, the considered
system is strongly observable which can be e.g. shown by means of the Rosenbrock
matrix according to Proposition 2.3.1. The system is unstable since A has two
eigenvalues with non-negative real part located at s1 � 0 and s2 � 0.1219. Because
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4 Problem Statement and Existing Unknown Input Observers for LTI Systems

of these unstable eigenvalues and the lack of a stabilizing control, the system trajec-
tories diverge which results in unbounded state variables. The goal is to estimate
the state vector x from the output y despite the unknown input w.

4.2.1 Design of a Linear Luenberger Observer

As a first approach the standard linear Luenberger observer [7]

9̂x � Ax̂�Lpy � ŷq,

ŷ � Cx̂,
(4.9)

which ignores the unknown input is investigated. It consists of a copy of the known
parts of the system dynamics and a linear injection of the output estimation error
with the output-injection matrix L P Rn�p. The dynamics of the estimation error
η � x� x̂ are given by

9η � pA�LCqη �Dw. (4.10)

The considered system is strongly observable and, thus, also observable, which allows
for assigning any desired eigenvalues to the dynamic matrix A�LC of the estimation
error dynamics.

Example 4.2.2. Consider the task provided in Example 4.2.1. Assignment of the
desired eigenvalues

s̃1 � �1, s̃2 � �2, s̃3 � �3, s̃4 � �4,
s̃5 � �5, s̃6 � �6, s̃7 � �7,

(4.11)

using the method proposed in [52] yields the output-injection matrix

L �

�
���������

�9.82 �105.14
�2.95 13.06
1.38 19.51
2.01 5.45
0.57 6.71
�0.77 8.81
0.03 �0.08

�
���������
. (4.12)

Figure 4.1 shows the resulting estimation error variables for the initial state (4.7),
the unknown input (4.8) and the initial observer state x̂p0q � 0.

2The bound L � 0.02 is probably not the smallest bound for w. However, for the purpose of observer
design, the existence of a certain bound is sufficient.
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Figure 4.1: Estimation error variables ηi � xi � x̂i, i � 1, . . . , 7 of the linear Lu-
enberger observer (4.9) with eigenvalues s̃i � �1,�2, . . . ,�7. The esti-
mation error variables converge into a band of approximately �0.8.

It becomes apparent that the estimation errors converge within a certain band
around zero, but do not vanish as the unknown input still excites the estimation
error dynamics. The more aggressive choice of the desired observer eigenvalues

s̃1 � �6, s̃2 � �7, s̃3 � �8, s̃4 � �9,
s̃5 � �10, s̃6 � �11, s̃7 � �12,

(4.13)

and assignment using again the method proposed in [52] results in the output-
injection matrix

L �

�
���������

�2459.62 6584.86
2.72 423.81

�117.14 460.08
�735.14 1819.02
�4.73 36.04
0.002 �0.006
0.14 �0.57

�
���������
. (4.14)

Figure 4.2 shows the resulting estimation errors.
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Figure 4.2: Estimation error variables ηi � xi � x̂i, i � 1, . . . , 7 of the linear Lu-
enberger observer (4.9) with eigenvalues s̃i � �6,�7, . . . ,�12. The es-
timation error variables converge into a band of approximately �0.6.

Again, the estimation error converges within a bound around zero. Due to the more
aggressive eigenvalue setting, the transients are stronger and the resulting steady-
state error band is smaller.

Since A�LC is a Hurwitz matrix, the estimation error dynamics are input-to-state
stable (ISS), i.e., the estimation error stays bounded as long as the unknown input is
bounded. The error band can be made arbitrarily small by appropriately selecting the
observer eigenvalues, i.e., with a sufficiently small real part3. However, the observer
gain L and, in consequence, also the amplification of potential measurement noise
increase, which limits the suitable region for the choice of the eigenvalues in practical
applications. Anyway, this linear observer (4.9) (with finite gain L) can not provide
exact estimates of the state even in the theoretical case without measurement noise.

4.2.2 Unknown Input Observers Requiring the Observer Matching Condition

Classical linear unknown input observers [10, 56–62], conventional first-order sliding
mode observers [63–65] as well as the observer proposed in [66] require the so-called
observer matching condition

rank pCDq � rank D (4.15)

to be fulfilled, i.e., all unknown inputs have a direct impact on the first output deriva-
tive. Note that (4.15) is a special case of the general observer matching condition (2.22)
required for strong* detectability. Both conditions coincide in the case without direct
feed-through, i.e., F � 0. These types of unknown input observers therefore require
that the system is not strongly observable, but strong* detectable. Obviously, this
strongly restricts the system class under consideration. This is emphasized by means
of the numerical example.

3This behaviour is exploited in the design of so-called high-gain observers, see e.g. [53–55], which
provide exact estimates as the observer gains tend to infinity.
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4.2 Existing Unknown Input Observers for Strongly Observable LTI Systems

Example 4.2.3. For the system provided in Example 4.2.1

CD �

�
0
0

�
(4.16)

holds and, therefore, the observer matching condition

rank pCDq � 0 � 1 � rank D (4.17)

is not fulfilled. In consequence, the considered system is not strong* detectable
although it is strongly observable. Thus, classical linear unknown input observers
as well as conventional first-order sliding mode method can not be applied.

4.2.3 Unknown Input Observation via Direct Differentiation of the Output

As shown Section 2.3.1 the state vector of a strongly observable system can be rep-
resented by means of the output and finitely many of its derivatives (if they exist)
without requiring the unknown input, i.e.,

x � O:

�
������

y
9y
yp2q

...
ypn�1q

�
������ , (4.18)

where O: is a generalized left-inverse of the observability matrix. This relation nat-
urally suggests the idea of using the RED to estimate the required derivatives of the
output in order to calculate an estimated value for the state. Multiple methods work
in exactly this way, such as [67, 68] for nonlinear SISO systems and [69] for nonlinear
MIMO systems under a restrictive relative degree condition. In [70] differentiation of
the output is applied in order to generate auxiliary outputs used for the design of a
linear observer. In order to successfully apply the RED for output differentiation, the
respective output derivatives acting as unknown input to its estimation error dynamics
are required to be bounded. As shown in Section 2.3.1, the r-th output derivative is
given by

yprq � CArx�
r�1̧

i�0
CAr�1�iDwpiq. (4.19)

It is apparent that, beside of the unknown input, the output derivatives also depend
on input derivatives and the state variables. Hence, boundedness of a certain output
derivative, which is a prerequisite for the application of the RED, requires sufficiently
many input derivatives and the state vector x to be bounded. However, the system
trajectories may be unbounded, e.g. for unstable systems, where state variables can
grow arbitrarily large. Furthermore, in order to keep the differentiator gains as small
as possible, it would be desirable to have the bound independent of x.
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Example 4.2.4. For the system given in Example 4.2.1, the algorithm in [20] pro-
vides

O: �

�
������������

�82.56 0 �8.11 37.5 3.92 �2.3 0.45 �1.65 0 . . . 0
1 0 0 0 0 0 0 0 ... ...
0 0 0 1 0 0 0 0 ... ...

�4.52 0 �9.85 5.28 �2.82 4.82 �0.2 0.75 ... ...
0 1 0 0 0 0 0 0 ... ...

�3.22 0 �0.32 1.39 0.15 �0.2 0.017 �0.064 ... ...
�0.0015 0 �0.0066 0 �0.014 0.0081 �0.0016 0.0058 0 . . . 0

�
������������

(4.20)

for the left-inverse of the observability matrix The algorithm in [20] minimizes the
number of required derivatives, i.e., it maximizes the number of 0-columns at the end
of O:. In this case there are eight nonzero columns, i.e., the outputs y �

�
y1 y2

�T

and the first three respective derivatives 9y,yp2q,yp3q are required to represent x by
means of (4.18). For this reason, two REDs are applied, one for each output to
estimate the first three derivatives. The differentiator parameters are chosen as
κ1,3 � 5.8, κ1,2 � 15.57, κ1,1 � 22.14 and κ1,0 � 15.4 for the differentiation of y1
and κ2,3 � 4.7, κ2,2 � 10.2, κ2,1 � 11.73 and κ2,0 � 6.6 for the differentiation of y2,
based on the setting provided in [29, Section 6.7]. Figure 4.3 depicts evolution of
the state variables and the estimation errors.
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Figure 4.3: State variables xi and estimation errors ηi � xi � x̂i, i � 1, . . . , 7 when
applying two REDs directly as an unknown input observer by estimating
the derivatives of the output. After initial convergence, the observer later
diverges due to the unbounded state variables.
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The estimation errors vanish within a finite time of approximately 2.9 s in the
presence of the unknown input. However, the system is unstable and the state
variables do not stay bounded. As a consequence of (4.19) for r � 4, the fourth
derivatives of the outputs grow arbitrarily large. After 100 s the REDs are not
capable of compensating for the growing fourth derivatives any more which finally
leads to divergence of the estimation errors.

There exists a workaround for the problem of unbounded trajectories, see e.g. [71]
where output differentiation is applied to a certain fourth order LTI system with two
outputs. Therein, the observer additionally includes estimates x̂ of the state vector
in the last differential equation, which for r times differentiation of the j-th output
results in

dŷj

dt � 9̂yj � κj,r�1tσj,1s
r�1

r ,

...
dŷpr�2q

j

dt � ŷ
pr�1q
j � κj,1tσj,1s

1
r ,

dŷpr�1q
j

dt � cT
j A

rx̂� κj,0tσj,1s
0,

(4.21)

where σj,i � y
pi�1q
j � ŷ

pi�1q
j , i � 1, . . . , r are the estimation errors of the respective out-

put derivatives. The error dynamics are given by
dσj,1

dt � σj,2 � κj,r�1tσj,1s
r�1

r ,

...
dσj,r�1

dt � σj,r � κj,1tσj,1s
1
r ,

dσj,r

dt � cT
j A

rη �
r�1̧

i�0
cT

j A
r�1�iDwpiq � κj,0tσj,1s

0.

(4.22)

According to Proposition 3.2.1(ii) on page 19 the errors vanish only if

κj,0 ¡

∣∣∣∣∣∣cT
j A

rη �
r�1̧

i�0
cT

j A
r�1�iDwpiq

∣∣∣∣∣∣ @t ¥ 0. (4.23)

Note that the lower bound for κj,0 in (4.23) depends on the error η � x� x̂ instead of
the state vector x itself. Hence, this approach is able to handle unbounded trajectories
as long as the estimation error is bounded. However, in the case of an unstable system
and if the initial estimation error ηp0q is not sufficiently small, such an observer will
still diverge.
In conclusion, unknown input observers that estimate the system state by directly dif-
ferentiating the output allow only for semi-global stabilization of the estimation error.
Tuning of such an unknown input observer may be cumbersome as the expected sys-
tem trajectories influence the required observer gain. Furthermore, these approaches
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are not applicable in the case when output is not sufficiently often differentiable. In
this case, the output can be additionally filtered to ensure existence of the required
derivatives, see [20], which unnecessarily increases the observer order and the number
of tuning parameters.

4.2.4 Step-by-Step Sliding Mode Observers

In contrast to the direct differentiation of the output, so-called step-by-step sliding
mode observers relax the differentiability assumption on y by differentiating linear
combinations of the outputs and their existing derivatives. In the absence of measure-
ment noise, exact estimates are obtained after finite time, which are then again used
as auxiliary outputs for further differentiation. This procedure is continued until the
complete state space is recovered.
The different methods vary with respect to the applied method of differentiation.
The first approaches [72, 73] apply classical first-order sliding mode techniques for
successive differentiation. In [74, 75] the concept is extended to the use of second-order
sliding mode which doubles the required observer order to 2n. The method proposed
in [50] provides a normal form for LTI MIMO systems, where the successive application
of higher-order sliding mode differentiators, e.g. the RED, is straightforward.
However, step-by-step sliding mode observers require bounded state variables. Similar
to the previously presented unknown input observers based on direct output differen-
tiation, the applied differentiators require the derivative acting as unknown input to
be bounded. As this derivative is a function of x, step-by-step sliding mode observers
also only provide semi-global stabilization of the estimation error.

4.2.5 Cascaded Unknown Input Observers

The assumption on the boundedness of the state vector required by the aforementioned
methods is very restrictive as it excludes their application to unstable systems. Cas-
caded unknown input observers solve this problem and guarantee global convergence.
These observers basically consist of two parts:

1. A stabilizing observer, for instance a linear Luenberger observers as shown in
Section 4.2.1, provides state estimates with a bounded estimation error.

2. An RED based observer determines exact estimates of the bounded estimation
error of the stabilization observer following the ideas of direct differentiation of
the output, see Section 4.2.3.

Since the resulting estimation error of the stabilizing observer convergences into an
error band, the derivatives acting as unknown input on the RED based observer
are bounded. Hence, boundedness of the system trajectories is not required any
more. Different cascaded unknown input observers exist for LTI SISO systems [76],
LTI MIMO systems [18–20, 77], linear time-varying systems [78] and nonlinear sys-
tems [79].
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Example 4.2.5. The cascaded observer proposed in [20] is designed for the system
provided in Example 4.2.1. In this design scheme, a linear Luenberger observer as
shown in Section 4.2.1 is applied as a stabilizing observer. The eigenvalues of its
estimation error dynamics are chosen as

s̃1 � �1, s̃2 � �1.5, s̃3 � �2, s̃4 � �2.5,
s̃5 � �3, s̃6 � �3.5, s̃7 � �4,

(4.24)

which results in yields the output-injection matrix

L �

�
���������

97.82 �291.79
�20.35 43.32

3.84 9.66
�1.57 9.43
�4 13.61

13.46 �15.3
�0.092 0.33

�
���������

(4.25)

using the eigenvalue assignment proposed in [52]. As the original system is strongly
observable, also the estimation error dynamics

9̃η � pA�LCqη̃ �Dw,

η̃y � Cη̃,
(4.26)

are strongly observable, see [20, Equation (31)]. In consequence, the estimation
error η̃ of the Luenberger observer can be represented by means of the output error
η̃y and its derivatives (if they exist), i.e.,

η̃ � Õ:

�
����
η̃y
9̃ηy
...

η̃pn�1q
y

�
���� , (4.27)

where

Õ �

�
����

C
CpA�LCq

...
CpA�LCqn�1

�
���� , (4.28)
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see Section 2.3.1. In this example, the required left-inverse is given by

Õ:
�

�
������������

�33.79 92.06 �6.59 24.96 1.45 �5.4 0.45 �1.65 0 . . . 0
1 0 0 0 0 0 0 0 ... ...
�4 13.61 0 1 0 0 0 0 ... ...
�5.9 21.86 �4.87 18.09 �1.68 6.23 �0.2 0.75 ... ...

0 1 0 0 0 0 0 0 ... ...
�1.45 1.65 0.16 �0.53 0.056 �0.32 0.017 �0.064 ... ...
0.015 �0.052 �0.012 0.044 �0.0051 0.019 �0.0016 0.0058 0 . . . 0

�
������������
.

(4.29)

Since only the first eight columns are nonzero, only the two outputs themselves and
their first three derivatives are required. The calculation of η̃ according to (4.27)
works only if η̃y (or rather w) is sufficiently often differentiable. To deal also with
non-differentiable unknown inputs, the considered method applies linear filtering
instead of differentiation in order to get rid of the non-differentiable parts of the
signal. The filtered version of (4.27) in Laplace domain in given by

ψpsq �
1

µpsq
η̃psq � Õ:

�
����

1
µpsq
η̃ypsq

s
µpsq
η̃ypsq
...

sn�1

µpsq
η̃ypsq

�
���� , (4.30)

where µpsq is a Hurwitz polynomial of sufficiently high order. Note that η̃psq and
η̃ypsq denote the Laplace transforms of η̃ptq and η̃yptq, respectively. Due to the
zero columns in Õ:, only three derivatives need to be estimated in this numerical
example and, thus, the third-order choice

µpsq � ps� 0.5q3 � s3 � 1.5s2 � 0.75s� 0.125 (4.31)

is sufficient. The resulting third-order filters, one for each component of η̃y, can be
efficiently implemented in controllability canonical form, where the state variables
correspond to the four outputs of the filter. According to (4.30), η̃ is given by

η̃psq � µpsqψpsq
(4.31)
� s3ψpsq � 1.5s2ψpsq � 0.75sψpsq � 0.125ψpsq. (4.32)

It becomes apparent that η̃ptq is a linear combination of ψptq and its first three
derivatives. Hence, n � 7 REDs are applied, one for each component of ψptq and η̃
is calculated according to (4.32). The REDs are tuned according to [29, Section 6.7].
The resulting parameter set is given in Table 4.1.
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i 1 2 3 4 5 6 7
κi,3 7.35 3.57 2.39 5.58 3.14 3.57 2.39
κi,2 24.96 5.88 2.63 14.41 4.56 5.88 2.63
κi,1 44.96 5.15 1.54 19.73 3.51 5.15 1.54
κi,0 39.6 2.2 0.44 13.2 1.32 2.2 0.44

Table 4.1: Parameters set for the 7 REDs for the differentiation of ψ. The number
i � 1, . . . , 7 refers to the respective RED for the differentiation of the i-th
component of ψ.

Finally, the estimation error of the Luenberger observer can be corrected by the
obtained error estimate. The estimation error η of the overall observer is depicted
in Figure 4.4.
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Figure 4.4: Estimation error variables ηi � xi � x̂i, i � 1, . . . , 7 of the cascaded
observer proposed in [20]. The estimation error variables vanish within
finite-time despite the unknown input w.

The estimation error vanishes within approximately 1.8 s despite the unknown input
w. The unknown input observer does not diverge in the case of unbounded state
variables, and does not require the unknown input to be differentiable at all.
It is pointed out that the overall observer has order 41, as it consists of a Luenberger
observer of order 7, the two linear filters each of order 3 and seven REDs each
of order 4. Thus, the observer has a substantially higher order than the original
system of order n � 7. The number of tuning parameters is 45, when considering
the components of the matrix L as independent tuning parameters.

The example demonstrates that cascaded unknown input observers require an exten-
sive design procedure. For all previously mentioned cascaded unknown input observers
the order and the number of tuning parameters are at least twice the order of the
original system. Especially the tuning of these unknown input observers can be cum-
bersome, since the parameters of the applied REDs depend on the parameters of the
stabilizing observer and on the bounds of the unknown inputs.
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4.2.6 Unknown Input Observers based on Luenberger’s Observability Canonical
Form

The main disadvantages of cascaded unknown input observers, i.e., the high system
order and the large number of tuning parameters, are avoided by unknown input
observers relying on Luenberger’s observability canonical form [80, 81]. These methods
apply a state transformation x̄ � Tx and an output transformation ȳ � Γy to
represent the system in the form

9̄x � Āx̄� D̄w,

ȳ � C̄x̄,
(4.33a)

with the dynamic matrix

Ā �

�
����������������������

α1,1 1 0 � � � 0 αp,1 0 � � � � � � 0
α1,2 0 1 . . . ... αp,2

... ...
... ... . . . . . . 0 ... ... ...
... ... . . . 1 ... ... ...

α1,µ1 0 � � � � � � 0 αp,µ1 0 � � � � � � 0
... . . . ...

α1,µ1�����µp�1�1 0 � � � � � � 0 αp,µ1�����µp�1�1 1 0 � � � 0
α1,µ1�����µp�1�2

... ... ... 0 1 . . . ...
... ... ... ... ... . . . . . . 0
... ... ... ... ... . . . 1
looooooooooooooomooooooooooooooon

µ1

α1,n 0 � � � � � � 0 looooooooooooooomooooooooooooooon
µp

αp,n 0 � � � � � � 0

�
����������������������

(4.33b)

and the output matrix

C̄ �

�
����

1 0 � � � 0 0 � � � � � � 0 � � � 0 � � � � � � 0
0 � � � � � � 0 1 0 � � � 0 � � � 0 � � � � � � 0
... . . . ...
looooooomooooooon

µ1

0 � � � � � � 0 looooooomooooooon
µ2

0 � � � � � � 0 � � � looooooomooooooon
µp

1 0 � � � 0

�
���� . (4.33c)

In observability canonical form, the system is decomposed into p coupled single-output
systems. The orders µj, j � 1, . . . , p, of these subsystems denote the so-called observ-
ability indices which satisfy

p̧

j�1
µj � n. (4.33d)

Due to the structure of C̄, the coupling coefficients αj,i can be regarded as a lin-
ear injection of the output, which makes this form highly convenient for the design of
classical observers. It is well-known that an LTI system can be transformed into Luen-
berger’s observability canonical form (4.33) if and only if the system is observable. The
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systems under consideration are certainly observable, since the already assumed prop-
erty of strong observability implies observability. However, the observability canonical
form (4.33) does not account for unknown inputs. Hence, D̄ will not show a specific
structure in general, which would be desirable for the design of unknown input ob-
servers. Hence, the unknown input observer proposed in [82, Section 4.5] additionally
requires

D̄ �
�

0 � � � 0 d̄1 � � � 0 � � � 0 d̄p

�T (4.34a)

in order to provide exact estimates of the state vector. Accordingly, the relative
degree δj of each output ȳj of ȳ �

�
ȳ1 . . . ȳp

�T, if it exists, must be greater than or
equal to the respective observability index µj, i.e.,

δj ¥ µj @j � 1, . . . , p. (4.34b)

It is pointed out that this assumption strongly restricts the system class, as strongly
observable systems in general do not satisfy this condition on the output relative
degree. The same holds for the unknown input observer for linear time-varying systems
presented in [83] which coincides with the one proposed in [82] in the LTI case.
The unknown input observer in observability canonical form is given by

9̄̂x � Āˆ̄x� Π̄σȳ � l̄pσȳq, (4.35a)

where

σȳ � ȳ � C̄ ˆ̄x �
�
σ1 σµ1�1 . . . σµ1�����µp�1�1

�T (4.35b)

denotes the error of the estimated output,

Π̄ �

�
��α1,1 � � � αp,1

... ...
α1,n � � � αp,n

�
�� (4.35c)

is the linear output-injection matrix accounting for the coupling coefficients and

l̄pσȳq �

�
���������������

κ1,µ1�1tσ1s
µ1�1

µ1

...
κ1,1tσ1s

1
µ1

κ1,0tσ1s
0

...

κp,µp�1tσµ1�����µp�1�1s
µp�1

µp

...
κp,0tσµ1�����µp�1�1s

0

�
���������������

(4.35d)

is the nonlinear output injection applying an RED to each subsystem. The dynamics
of the estimation error

σ � x̄� ˆ̄x �
�
σ1 . . . σn

�T (4.36)
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of the j-th subsystem under the relative degree assumption (4.34) are given by

9σµ1�����µj�1�1 � σµ1�����µj�1�2 � κj,µj�1tσµ1�����µj�1�1s
µj�1

µj ,

...

9σµ1�����µj�1 � σµ1�����µj
� κj,1tσµ1�����µj�1�1s

1
µj ,

9σµ1�����µj
� d̄

T
j w � κj,0tσµ1�����µj�1�1s

0.

(4.37)

It becomes apparent that (4.37) coincides with the estimation error dynamics of an
RED with unknown input d̄T

j w, see Section 3.2. Since the single components of w are
bounded, also their linear combination d̄T

j w is bounded. Hence, there exist parameters
κj,0, κj,1, . . . , κj,µj�1 such that the errors converge to zero in finite time. This holds for
all subsystems and, thus, the overall observer converges within finite time despite the
unknown input w.

Example 4.2.6. For the system given in Example 4.2.1, the transformation into
Luenberger’s observability canonical form yields the matrices

Ā �

�
���������

�23.98 1 0 0 0 0 0
�235.42 0 1 0 570.04 0 0
�2066.29 0 0 1 3004.45 0 0
�6972.9 0 0 0 0 0 0

0.83 0 0 0 �0.26 1 0
�9.21 0 0 0 32.73 0 1
�75.75 0 0 0 0 0 0

�
���������
, D̄ �

�
���������

0
0

-701.7
�4313.16

0
0

�46.99

�
���������
, C̄ �

�
���������

1 0
0 0
0 0
0 0
0 1
0 0
0 0

�
���������

T

.

(4.38)

The system is decomposed into p � 2 coupled single-output systems. The ob-
servability indices are µ1 � 4 and µ2 � 3, whereas the output relative degrees are
δ1 � δ2 � 3. Since δ1 § µ1, the relative degree condition (4.34) is violated. The
unknown input directly affects the third differential equation of the first subsystem,
which is indicated by the highlighted element of D̄. This impact can not be com-
pensated for by the respective RED and, thus, the unknown input observer will not
able to exactly reconstruct the states.
In order to demonstrate this behaviour, an unknown input observer of the
form (4.35) is constructed. The output-injection matrix is given by

Π̄ �

�
���������

�23.98 0
�235.42 570.04
�2066.29 3004.45
�6972.9 0

0.83 �0.26
�9.21 32.73
�75.75 0

�
���������
. (4.39)
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The parameters of the nonlinear output injection

κ1,3 � 17.84, κ1,2 � 147.14, κ1,1 � 643.56, κ1,0 � 1376.1,
κ2,2 � 6.7, κ2,1 � 23.81, κ2,0 � 41.36,

(4.40)

are chosen according to [29, Section 6.7]. The estimation error variables are shown
in Figure 4.5.
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Figure 4.5: Estimation error variables ηi � xi � x̂i, i � 1, . . . , 7 of the unknown
input observer designed in Luenberger’s observability canonical form.
The method is not able to provide exact estimates, since the consiered
system does not satisfy the relative degree condition (4.34).

The estimation error converges into a vicinity around the origin. However, as the
relative degree condition (4.34) is violated, the observer is not capable of providing
exact estimates of the state variables in the presence of w.

Unlike the cascaded unknown input observer, the unknown input observer based on
Luenberger’s canonical form does neither increase the observer order nor the number
of tuning parameters beyond the order of the original system. Once the system is in
canonical form, the unknown input observer design is straightforward. Furthermore,
neither the observer matching condition nor the differentiability of the unknown input
nor the boundedness of some certain output derivatives are required. However, exact
estimates of the state vector are provided only if the system satisfies an additional
restrictive condition.

4.3 Conclusions on the presented State Of The Art

Table 4.2 summarizes the advantages and disadvantages of the previously discussed
classes of unknown input observers. In addition to those, there exist a few other
approaches such as the adaptive sliding mode observer proposed in [84] that requires
bounded state variables. The unknown input observer [85] exhibits some zero dynamics
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which might be unstable and also requires bounded state variables. It can be concluded
that all available unknown input observers suffer from at least one of the following
drawbacks:

(a) The system must satisfy the restrictive observer matching condition (4.15), i.e.,
the strongly observable system has to be strong* detectable additionally.

(b) Bounded state variables are required for convergence of the observer.
(c) The unknown input must be sufficiently often differentiable.
(d) The choice of the observer parameters depends also on the system trajectory and

not on the unknown input only.
(e) The observer order and the number of tuning parameters are at least twice the

system order which significantly complicates the design and the tuning.
(f) Exact estimates are obtained only if the system satisfies a restrictive condi-

tion (4.34) on the output relative degree.
This research gap motivates for the design of a new unknown input observer presented
in the next chapters.
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5
Unknown Input Observer Design for
Linear Time-Invariant Systems – The
Single-Input Single-Output Case

The aim of this thesis is to overcome all the disadvantages of existing
unknown input observers which are summarized in Section 4.3. In this
chapter, the SISO case is considered in order to obtain useful insights and
ideas for the more complex MIMO case. A new unknown input observer is
proposed that relies on the classical observability canonical form. The ob-
server’s output injection can be calculated by means of an elegant formula,
the main contribution, which can be regarded as a nonlinear generalization
of Ackermann’s formula. A numerical example demonstrates the simplicity
of the design procedure as well as the effectiveness of the unknown input
observer.

This chapter is essentially based on:[86]
H. Niederwieser, S. Koch, M. Reichhartinger, A generalization of Acker-
mann’s formula for the design of continuous and discontinuous observers,
in: 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE,
2019, pp. 6930–6935. doi:10.1109/CDC40024.2019.9030192

5.1 Basic Structure of the Unknown Input Observer

Consider the LTI SISO system

9x � Ax� dw,

y � cTx,
(5.1)

where the unknown input w P R as well as the output y P R are scalar, i.e., m � p � 1
and c P Rn�1, d P Rn�1. The aim is to design an unknown input observer according
to the problem statement provided in Section 4.1. Therein, the system is assumed
strongly observable and the unknown input is assumed to be bounded by a constant
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L, i.e.,

|wptq| ¤ L @t, with 0 ¤ L   8. (5.2)

The unknown input observer proposed in this chapter has the structure
9̂x � Ax̂� lpσ1q,

ŷ � cTx̂.
(5.3a)

It consists of a copy of the known parts of the plant dynamics (5.1) and the output
error injection

lpσ1q �
�
l1pσ1q l2pσ1q . . . lnpσ1q

�T , (5.3b)

where σ1 � y� ŷ denotes the output error. The question remains how lpσ1q should be
selected.

5.2 Representation of Strongly Observable Systems in
Observability Canonical Form

For the SISO case the classical observability canonical form, see e.g. [87, 88], will prove
to be a suitable system representation for the design of an unknown input observer.
For this purpose, a regular state transformation

x̄ � T�1x (5.4a)

is applied, where the transformation matrix is given by

T �
�
An�1tn An�2tn . . . Atn tn

�
, (5.4b)

where

tn � O�1en (5.4c)

is the last column of the inverse observability matrix. It is pointed out that the
existence and the invertibility of T is ensured, as strong observability implies classical
observability. The dynamics of system (5.1) in observability canonical form are given
by

9̄x � Āx̄� d̄w,

y � c̄Tx̄,
(5.5a)

where the dynamic matrix

Ā � T�1AT �

�
�������

�αn�1 1 0 . . . 0
�αn�2 0 1 . . . ...

... ... . . . . . . 0
�α1 0 . . . 1
�α0 0 . . . . . . 0

�
�������

(5.5b)
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contains the coefficients α0, α1, . . . , αn�1 of the characteristic polynomial of A,

c̄T � cTT � eT
1 �

�
1 0 . . . 0

�
(5.5c)

and

d̄ � T�1d. (5.5d)

The unknown-input vector d̄ determines how the unknown input affects the system
and, hence, its particular structure is examined in

Lemma 5.2.1. Consider system (5.1) and the transformation (5.4) into observabil-
ity canonical form (5.5). If system (5.1) is strongly observable, then the unknown-
input vector in observability canonical form is given by

d̄ �

�
����

0
...
0

cTAn�1d

�
���� . (5.6)

Proof. Insertion of the identity matrix O�1O into (5.5d) yields

d̄ � T�1O�1Od. (5.7)

Since the system is strongly observable, it satisfies the relative degree condition

Od �

�
����

0
...
0

cTAn�1d

�
���� � enc

TAn�1d (5.8)

as demonstrated in Section 2.3.2. Insertion into (5.7) yields

d̄ � T�1O�1enc
TAn�1d. (5.9)

Substituting O�1en according to (5.4c) leads to

d̄ � T�1tnc
TAn�1d. (5.10)

The vector tn is the last column of the transformation matrix (5.4b), i.e.,

tn � Ten, (5.11)

which simplifies (5.10) to the relation

d̄ � enc
TAn�1d �

�
����

0
...
0

cTAn�1d

�
���� (5.12)

which was to be proven.
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From Lemma 5.2.1 it follows that the unknown input has a direct impact only on the
last differential equation of the system represented in observability canonical form.
Moreover, (5.12) provides a useful representation of the nonzero coefficient of d̄ by
means of the dynamic matrix, the input vector and output vector of the system in
original coordinates.
Due to the structure of c̄, the coefficients α0, . . . , αn�1 of Ā can be regarded as an
output injection. The remaining part of the system is a chain of n integrators with
unknown input cTAn�1dw and output y, i.e., exactly the structure suitable for the
application of differentiators as unknown input observers.

5.3 Unknown Input Observer Design in Observability Canonical
Form

The previously discussed representation of the system in observability canonical form is
exploited in the design of the unknown input observer. For this purpose, the unknown
input observer (5.3) is also considered in observability canonical form, i.e., the state
transformation

ˆ̄x � T�1x̂ (5.13)
is applied which yields

9̄̂x � Āˆ̄x� l̄pσ1q,

ŷ � c̄T ˆ̄x,
(5.14)

with the output error injection
l̄pσ1q � T

�1lpσ1q. (5.15)

A particular choice of l̄pσ1q is provided in

Lemma 5.3.1. Consider the unknown input observer (5.14) with the choice

l̄pσ1q �

�
����
�αn�1
�αn�2

...
�α0

�
����σ1 �

�
�����
κn�1tσ1s

r2
r1

κn�2tσ1s
r3
r1

...
κ0tσ1s

rn�1
r1

�
����� (5.16)

and constants

ri � 1� pn� iqq, i � 1, . . . , n, (5.17)

for the estimation of the state vector x̄ of the strongly observable system (5.5) rep-
resented in observability canonical form.

(i) If w � 0 @t ¥ 0, then for each q P r�1, 0s there exist parameters
κ0, κ1, . . . , κn�1 such that the estimation error variables σi � x̄i � ˆ̄xi with
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i � 1, . . . , n converge to zero globally. In the case q � 0 the convergence is
exponential, i.e., for all initial states σip0q there exist constants K ¡ 0 and
γ ¡ 0 such that |σi|   Ke�γt @t. In the case �1 ¤ q   0 the estimation error
variables σi vanish within a finite time, i.e., for all initial states there exists
a finite time T ¥ 0 such that σiptq � 0 @t ¥ T .

(ii) If q � �1 and w is bounded, i.e., |wptq| ¤ L @t ¥ 0 with 0 ¤ L   8, then
there exist parameters κ0, κ1, . . . , κn�1 such that the estimation error variables
converge to zero within finite time despite w, i.e., for all initial states there
exists a finite time T ¥ 0 such that σiptq � 0 @t ¥ T . Moreover, convergence
for all admissible unknown inputs wptq is achieved only if κ0 ¡ L

∣∣∣cTAn�1d
∣∣∣.

Proof. Definition of the estimation error

σ � x̄� x̂ �
�
σ1 . . . σn

�T (5.18)

and the application of Lemma 5.2.1 yields the estimation error dynamics

9σ1 � σ2 � κn�1tσ1s
r2
r1 ,

9σ2 � σ3 � κn�2tσ1s
r3
r1 ,

...

9σn � �κ0tσ1s
rn�1

r1 � cTAn�1dw.

(5.19)

These dynamics coincide with the estimation error dynamics of the homogeneous dif-
ferentiators, where cTAn�1dw acts as unknown input, see Section 3.2. Hence, the
results of Proposition 3.2.1 apply which completes the proof.

At this point, the unknown input observer (5.14) with the choice of l̄pσ1q given in (5.16)
can already be implemented. Estimates of the original state vector x can be obtained
by inverting the state transformation (5.13). It may be desirable, however, to directly
implement the observer in original coordinates which is shown in the next section.

5.4 A Nonlinear Generalization of Ackermann’s Formula

In order to express the unknown input observer in original coordinates, see e.g. (5.3),
lpσ1q is calculated by using (5.15). The resulting formula, which constitutes the main
contribution of this thesis to the SISO case, is presented in

Theorem 5.4.1. Consider the unknown input observer (5.3) for the estimation of
the state vector x of the strongly observable system (5.1). Suppose the output error
injection

lpσ1q � σ1χpA, σ1qtn (5.20a)
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with the output error dependent matrix polynomial

χpA, σ1q � A
n �

ņ

i�1
κn�i|σ1|

i�q
1�pn�1qqAn�i (5.20b)

and tn denoting the last column of the inverse observability matrix, see (5.4c).
(i) If w � 0 @t ¥ 0, then for each q P r�1, 0s there exist parameters

κ0, κ1, . . . , κn�1 such that the estimation error variables ηi � xi � x̂i with
i � 1, . . . , n converge to zero globally. In the case q � 0 the convergence is
exponential, i.e., for all initial states ηip0q there exist constants K ¡ 0 and
γ ¡ 0 such that |ηi|   Ke�γt @t. In the case �1 ¤ q   0 the estimation error
variables ηi vanish within a finite time, i.e., for all initial states there exists
a finite time T ¥ 0 such that ηiptq � 0 @t ¥ T .

(ii) If q � �1 and w is bounded, i.e., |wptq| ¤ L @t ¥ 0 with 0 ¤ 0   8, then
there exist parameters κ0, κ1, . . . , κn�1 such that the estimation error variables
converge to zero within finite time despite w, i.e., for all initial states there
exists a finite time T ¥ 0 such that ηiptq � 0 @t ¥ T . Moreover, convergence
for all admissible unknown inputs wptq is achieved only if κ0 ¡ L

∣∣∣cTAn�1d
∣∣∣.

Proof. As the considered system is strongly observable, the existence of an invertible
transformation into observability canonical form is guaranteed. Since the estimation
error η � x� x̂ �

�
η1 . . . ηn

�T is related to the estimation error σ by

η � Tσ, (5.21)

and T is invertible, σ � 0 implies η � 0 and vice versa, i.e., the estimation error η van-
ishes if and only if σ vanishes. Therefore, it is sufficient to prove that lpσ1q

(5.15)
� T l̄pσ1q

is satisfied in order to show that the results of Lemma 5.3.1 also apply to the observer
in original coordinates x. According to (5.15) and (5.16), lpσ1q is given by

lpσ1q � T l̄pσ1q � T

�
�����

�
����
�αn�1
�αn�2

...
�α0

�
����σ1 �

�
�����
κn�1tσ1s

r2
r1

κn�2tσ1s
r3
r1

...
κ0tσ1s

rn�1
r1

�
�����

�
����. (5.22)

Insertion of the definition of T yields

lpσ1q
(5.4b)
�

�
An�1tn . . . Atn tn

�
�
�����

�
����
�αn�1
�αn�2

...
�α0

�
����σ1 �

�
�����
κn�1tσ1s

r2
r1

κn�2tσ1s
r3
r1

...
κ0tσ1s

rn�1
r1

�
�����

�
�����

� �σ1

ņ

i�1
αn�iA

n�itn �
ņ

i�1
κn�itσ1s

ri�1
r1 An�itn.

(5.23)
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5.5 Application to a Numerical Example

Exploiting the theorem of Caley-Hamilton1

An � �
ņ

i�1
αn�iA

n�i, (5.24)

see e.g. [15], and substitution of the constants ri according to (5.17) finally yields the
desired relation

lpσ1q � σ1A
ntn �

ņ

i�1
κn�itσ1s

1�pn�i�1qq
1�pn�1qq An�itn �

� σ1

�
An �

ņ

i�1
κn�i|σ1|

iq
1�pn�1qqAn�i

�
loooooooooooooooooooomoooooooooooooooooooon

χpA,σ1q

tn,
(5.25)

which completes the proof.

The "one-step" design procedure represented in (5.20) in Theorem 5.4.1 can be regarded
as a nonlinear generalization of Ackermann’s formula [89], where the well-known linear
case is obtained for q � 0. The estimation error dynamics are transformable into a
particular representation which coincides with the estimation error dynamics of a
family of homogenous differentiators, see Section 3.2. For q � 0 the approach matches
with the construction of a linear Luenberger observer using Ackermann’s eigenvalue
assignment, where κ0, κ1, . . . , κn�1 are the coefficients of the desired characteristic
polynomial of the estimation error dynamics, i.e.,

wpsq � sn � κn�1s
n�1 � � � � � κ1s� κ0. (5.26)

For q � �1 a nonlinear discontinuous observer is obtained, where the parameters
κ0, κ1, . . . , κn�1 correspond to the gains of an RED. The choice �1   q   0 yields
a nonlinear but continuous observer.
In the nonlinear case the proposed formula can be understood as the assignment of
state-dependent eigenvalues sipσ1q � pi|σ1|

q
1�pn�1qq with pi P C to the estimation error

dynamics. The related concept of homogeneous eigenvalues [90–92] provides necessary
stability criteria for w � 0 which are also sufficient for n ¤ 2.

5.5 Application to a Numerical Example

The application of the proposed unknown input observer is demonstrated with the
help of a numerical example.

1The theorem of Caley-Hamilton states that a square matrixA P Rn�n satisfies its own characteristic
equation ∆psq � sn � αn�1sn�1 � � � � � α1s � α0 � 0, i.e., ∆pAq � 0n�n.
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Example 5.5.1. Consider system (5.1) with

A �

�
���

0 1 0 0
0 0 1 0
0 0 0 1
6 5 �5 �5

�
��� , d �

�
���

0
0
0
1

�
��� ,

cT �
�
1 0 0 0

�
(5.27)

and the unknown input

wptq � cosp0.5tq � 0.5 sinptq � 0.5. (5.28)

This example is taken from [29, Section 7.2.3], where the application of a cascaded
unknown input observer is demonstrated. Note that this system does not fulfill the
observer matching condition as cTd � 0. The system is strongly observable and is
represented in controllable canonical form, where the output corresponds to the first
state variable. In this case, the state variables correspond directly to the output and
its derivatives. Since the matrix A has one positive eigenvalue located at si � 1, the
state variables are unbounded and, consequently, the RED cannot be used to directly
differentiate the output. In contrast, and as stated in Theorem 5.4.1, the proposed
observer with q � �1 is expected to achieve global finite-time convergence of the
estimation errors despite the unbounded state variables and the unknown input. In
this particular example the unknown input is bounded by L � 2 and cTAn�1d � 1.
Calculating the parameters according to [29, Section 6.7] yields κ0 � 2.2, κ1 � 7.5,
κ2 � 12.5 and κ3 � 6 and, thus, the necessary condition

κ0 � 2.2 ¡ L
∣∣∣cTAn�1d

∣∣∣ � 2 (5.29)

given in Theorem 5.4.1(ii) is satisfied. The output error injection

lpσ1q �

�
���
�5
20
�70
231

�
���σ1 �

�
���

6
�30
120
�420

�
��� tσ1s

3
4 �

�
���

0
12.5
62.5
250

�
��� tσ1s

1
2

�

�
���

0
0
15
�75

�
��� tσ1s

1
4 �

�
���

0
0
0

2.2

�
��� tσ1s

0

(5.30)

calculated according to (5.20) consists of linear combinations of some nonlinear
functions of the output error σ1. In the following simulation, the initial state vectors
are selected as xp0q �

�
1 0 1 1

�T for the system and x̂p0q � 0 for the unknown
input observer. The resulting estimation error variables are depicted in Figure 5.1.
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5.6 Conclusions on the Single-Input Single-Output Case
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t in s

η1 η2
η3 η4

Figure 5.1: Estimation error variables ηi � xi � x̂i, i � 1, . . . , 4 of the proposed
unknown input observer. The estimation errors converge to zero in finite
time despite the unknown input.

The estimation error variables vanish within a finite time of approximately 2 s
despite the unknown input w.

5.6 Conclusions on the Single-Input Single-Output Case

In this chapter, a new unknown input observer for LTI SISO systems has been
proposed. The main result, a nonlinear generalization of Ackermann’s formula, allows
for a compact calculation of the output error injection without explicitly transforming
the system. If the parameter q is chosen as 0, a classical Luenberger observer is
obtained. For �1   q   0 the resulting nonlinear continuous observer offers finite
time convergence of the estimation error in the absence of the unknown input. For
a bounded unknown input the choice q � �1 yields of a RED based unknown input
observer that is capable of providing exact estimates of the state variables in finite
time. In this case the tuning procedure is supported by means of a necessary stability
condition. Therein, the involved quantities are the bound L of the unknown input
as well as the vectors c, d and the matrix A of the system represented in original
coordinates. For this reason, the observer tuning is straightforward even in original
coordinates.

In the following, the proposed unknown input observer, which is obtained for
q � �1, is evaluated with respect to the disadvantages of existing methods discussed
in Section 4.3:

(a) The unknown input observer does not require the restrictive observer matching
condition (4.15). For instance, the system considered in Example 5.5.1 does not
satisfy the observer matching condition.

(b) Bounded state variables are not required for convergence of the estimation error
dynamics, as the necessary condition for the choice of κ0 is independent of the
state variables and the estimation errors. This is confirmed by Example 5.5.1
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which deals with an unstable system and, thus, has unbounded trajectories.
(c) The unknown input does not have to be differentiable at all. During the deriva-

tions made, no derivatives of w occur.
(d) The necessary condition κ0 ¡ L

∣∣∣cTAn�1d
∣∣∣ does not involve the state variables.

Hence, the choice of the observer parameters does not depend on the particular
system trajectories, but only on the bound of the unknown input.

(e) The observer order as well as the number of tuning parameters are equal to the
order n of the original system and, thus, not unnecessarily increased.

(f) In order to provide exact estimates, the unknown input requires a full output
relative degree, i.e., δ � n. This condition is the special case of the restrictive
relative degree condition (4.34) of the MIMO case. However, in the SISO case
this condition is intrinsically satisfied due to the strong observability assumption
which has been shown in Section 2.3.2. Hence, it does not restrict the considered
system class.

It can be concluded that the proposed unknown input observer avoids all the draw-
backs of existing approaches. Moreover, the observer’s effectiveness and especially the
simplicity regarding the design and the tuning have been demonstrated by means of
the numerical example.
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6
Unknown Input Observer Design for
Linear Time-Invariant Systems – The
Multiple-Input Multiple-Output Case

In the SISO case the classical observability canonical form has proven to
be the key for the unknown input observer design. As strong observability
implies a full output relative degree of the SISO system, the unknown
input need not be explicitly taken into account by the normal form. In
the MIMO case, however, no such simple and useful property is satisfied
in general. Existing observability canonical forms and observer normal
forms1 do not properly account for the unknown input and, hence, are not
suitable for the unknown input observer design. For this reason, a new
observer normal form for strongly observable LTI MIMO systems with
unknown inputs is proposed. Therein, the unknown input observer design
is straightforward and without any further restrictions regarding the sys-
tem class. A tutorial example and numerical simulations demonstrate the
functionality and the effectiveness of the proposed method.

The main part of the content presented in this chapter is adopted from:[51]
H. Niederwieser, M. Tranninger, R. Seeber, M. Reichhartinger, Unknown
input observer design for linear time-invariant multivariable systems based
on a new observer normal form, International Journal of Systems Science
53 (10) (2022) 2180–2206. doi:10.1080/00207721.2022.2046201

6.1 An Observer Normal Form for LTI MIMO Systems with
Unknown Inputs

In the following the main contributions to the MIMO case, a new observer normal
form for strongly observable LTI MIMO systems and a theorem ensuring its existence,
are presented.

1Such as Luenberger’s observability canonical form, see the discussion in Section 4.2.6.

53

https://doi.org/10.1080/00207721.2022.2046201
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6.1.1 A New Observer Normal Form

The new observer normal form is proposed in

Definition 6.1.1. A strongly observable system

9̄x � Āx̄� D̄w,

ȳ � C̄x̄,
(6.1a)

is said to be in observer normal form if its dynamic matrix takes the structure

Ā �

�
�������������������������������������

α1,1 1 0 � � � 0 α2,1 0 � � � � � � 0 αp,1 0 � � � � � � 0
α1,2 0 1 . . . ... α2,2

... ... αp,2
... ...

... ... . . . . . . 0 ... ... ... � � �
... ... ...

... ... . . . 1 ... ... ... ... ... ...

... 0 � � � � � � 0 ... 0 � � � � � � 0 ... 0 � � � � � � 0

... 0 � � � � � � 0 ... 1 0 � � � 0 ... 0 � � � � � � 0

... ... ... ... 0 1 . . . ... ... ... ...

... ... ... ... ... . . . . . . 0 ... ... ...

... 0 � � � � � � 0 ... ... . . . 1 ... ... ...

... β1,2,1 � � � � � � β1,2,µ1�1
... 0 � � � � � � 0 ... 0 � � � � � � 0

... ... . . . ...

... 0 � � � � � � 0 ... 0 � � � � � � 0 ... 1 0 � � � 0

... ... ... ... ... ... ... 0 1 . . . ...

... ... ... ... ... ... � � �
... ... . . . . . . 0

... 0 � � � � � � 0 ... 0 � � � � � � 0 ... ... . . . 1
α1,n β1,p,1 � � � � � � β1,p,µ1�1 α2,n β2,p,1 � � � � � � β2,p,µ2�1 αp,n 0 � � � � � � 0

�
�������������������������������������

,

(6.1b)

the unknown-input matrix is given by

D̄ �

�
������������������������

0 � � � 0
... ...
0 � � � 0

d̄µ1,1 � � � d̄µ1,m

0 � � � 0
... ...
0 � � � 0

d̄µ1�µ2,1 � � � d̄µ1�µ2,m

... ...
0 � � � 0
... ...
0 � � � 0
d̄n,1 � � � d̄n,m

�
������������������������

(6.1c)
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and the output matrix has the form

C̄ �

�
����

1 0 � � � � � � 0 0 � � � � � � � � � 0 � � � 0 � � � � � � � � � 0
0 � � � � � � � � � 0 1 0 � � � � � � 0 � � � 0 � � � � � � � � � 0
... . . . ...
loooooooooomoooooooooon

µ1

0 � � � � � � � � � 0 loooooooooomoooooooooon
µ2

0 � � � � � � � � � 0 � � � loooooooooomoooooooooon
µp

1 0 � � � � � � 0

�
���� . (6.1d)

The system in observer normal form (6.1) consists of p coupled single-output systems
of orders µ1, . . . , µp. Each subsystem contains a chain of integrators like structure
which serves as the basis for the application of the RED as a state observer. The
couplings between the subsystems can be partitioned into two parts:

(a) The coupling coefficients αj,i with j � 1, . . . , p and i � 1, . . . , n directly corre-
spond to the outputs due to the structure of C̄. Thus, they can be regarded as
an output injection by a potential unknown input observer.

(b) The coupling coefficients βj,k,l with j � 1, . . . , p� 1, k � j � 1, . . . , p and
l � 1, . . . , µj�1 can not be considered as an output injection. However, they
only appear in the blocks below the main diagonal of Ā.

In contrast to Luenberger’s observability canonical form [80] which has been discussed
in Section 4.2.6, the proposed observer normal form also accounts for the unknown
input w by means of the specific structure of D̄. By permitting additional coupling
coefficients βj,k,l to be present, this typical structure of the unknown-input matrix is
achieved. This way, the orders of the subsystems µ1, . . . , µp do not necessarily need
to coincide with the observability indices of the system or the output relative degrees
any more and the restrictive condition (4.34) is no longer required. In the special case
when the considered system satisfies condition (4.34), the proposed observer normal
form coincides with Luenberger’s observability canonical form, i.e., βj,k,l � 0 @j, @k
and @l.
Note that for SISO systems, i.e., p � 1, the proposed observer normal form (6.1) coin-
cides with the classical observability canonical form for linear single-output systems,
see Section 5.2. Thus, it is consistent with the approach for the SISO case presented
in Chapter 5.

6.1.2 Existence of Transformations into Observer Normal Form

Consider the system

9x � Ax�Dw,

y � Cx,
(6.2)

under the assumptions provided in the problem statement in Section 4.1. Every
strongly observable system (6.2) of order n with p linear independent outputs and
m unknown inputs can be transformed into observer normal form (6.1) which is guar-
anteed by
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Theorem 6.1.1. Let the LTI system (6.2) be strongly observable. Then, there exist
non-singular matrices T P Rn�n and Γ P Rp�p such that the state transformation
x̄ � T�1x and the output transformation ȳ � Γy yield a system description in ob-
server normal form (6.1), where the orders of the subsystems given by the integers
µj, j � 1, . . . , p, are sorted in descending order, i.e.,

µ1 ¥ µ2 ¥ � � � ¥ µp ¡ 0,
p̧

j�1
µj � n. (6.3)

The proof of Theorem 6.1.1 and an algorithm which allows for determining suitable
transformation matrices are given in Section 6.3.

6.2 Unknown Input Observer Design in Observer Normal Form

In order to reconstruct the state vector x̄ of system (6.1) in observer normal form,
a finite-time convergent unknown input observer relying on the RED is designed.
Convergence of the estimation error in the presence of the unknown input w is proven
and the observer’s properties are discussed.

6.2.1 Proposed Unknown Input Observer Design

The proposed unknown input observer takes the form

9̄̂x � Āˆ̄x� Π̄σȳ � l̄pσȳq,
ˆ̄y � C̄ ˆ̄x �

�ˆ̄y1 ˆ̄y2 . . . ˆ̄yp

�T
� (6.4a)

�
�ˆ̄x1 ˆ̄xµ1�1 . . . ˆ̄xµ1�����µp�1�1

�T
,

where

σȳ � ȳ � ˆ̄y �
�
σ1 σµ1�1 . . . σµ1�����µp�1�1

�T (6.4b)

is the output error,

Π̄ �

�
��α1,1 . . . αp,1

... ...
α1,n . . . αp,n

�
�� (6.4c)

provides for a linear output injection in order to compensate for the output related
couplings between the single-output subsystems and l̄pσȳq is the nonlinear output
injection. A suitable choice of l̄pσȳq relying on the RED is proposed in
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Theorem 6.2.1. Consider the observer (6.4) for the estimation of the state vector
x̄ of system (6.1), the choice

l̄pσȳq �

�
���������������

κ1,µ1�1tσ1s
µ1�1

µ1

...
κ1,1tσ1s

1
µ1

κ1,0tσ1s
0

...

κp,µp�1tσµ1�����µp�1�1s
µp�1

µp

...
κp,0tσµ1�����µp�1�1s

0

�
���������������

(6.5)

for the nonlinear output injection2and the bounds Li for the unknown inputs given in
Assumption 4.1.2. Then, there exist parameters κj,k, j � 1, . . . , p, k � 0, . . . , µj�1,
such that the estimation error σ � x̄� ˆ̄x converges to zero within finite time despite
the unknown inputs for any initial states. Moreover, convergence of the observer for
all admissible unknown input signals in terms of Assumption 4.1.2 is achieved only
if κj,0 ¡

m°
i�1

Li

∣∣∣d̄µ1�����µj ,i

∣∣∣.

Proof of Theorem 6.2.1. Definition of the estimation error

σ � x̄� ˆ̄x �
�
σ1 σ2 . . . σn

�T (6.6)

yields the estimation error dynamics

9σ � Āσ � Π̄σȳ � l̄pσȳq � D̄w,
σȳ � C̄σ.

(6.7)

Taking into account the structure of the involved matrices allows to rewrite the esti-

2Note that in terms of structure the proposed unknown input observer coincides with the unknown
input observer for systems in Luenberger’s observability canonical form, see Section 4.2.6. The
additional coupling terms βj,k,l in the dynamic matrix do not impair the convergence properties
of the estimation error dynamics which is shown subsequently in the proof of Theorem 6.2.1.
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mation error dynamics (6.7) as p coupled subsystems Σj of order µj, i.e.,

Σ1

$''''''&
''''''%

9σ1 � σ2 � κ1,µ1�1tσ1s
µ1�1

µ1

...
9σµ1�1 � σµ1 � κ1,1tσ1s

1
µ1

9σµ1 � �κ1,0tσ1s
0 �

m°
i�1

d̄µ1,iwi

Σ2

$''''''&
''''''%

9σµ1�1 � σµ1�2 � κ2,µ2�1tσµ1�1s
µ2�1

µ2

...
9σµ1�µ2�1 � σµ1�µ2 � κ2,1tσµ1�1s

1
µ2

9σµ1�µ2 �
µ1�1°
l�1

β1,2,lσl�1 � κ2,0tσµ1�1s
0 �

m°
i�1

d̄µ1�µ2,iwi

...

Σp

$''''''&
''''''%

9σµ1�����µp�1�1 � σµ1�����µp�1�2 � κp,µp�1tσµ1�����µp�1�1s
µp�1

µp

...
9σn�1 � σn � κp,1tσµ1�����µp�1�1s

1
µp

9σn �
p�1°
i�1

µi�1°
l�1

βi,p,lσµ1�����µi�1�l�1 � κp,0tσµ1�����µp�1�1s
0 �

m°
i�1

d̄n,iwi,

(6.8)

where each subsystem Σj, in terms of structure coincides with the estimation error dy-

namics of an RED with unknown input
j�1°
i�1

µi�1°
l�1

βi,j,lσµ1�����µi�1�l�1 �
m°

i�1
d̄µ1�����µj ,iwi

in the last differential equation. According to Proposition 3.2.1(ii) there exist param-
eters κj,k, k � 0, . . . , µj�1 such that the state variables σµ1�����µj�1�1, . . . , σµ1�����µj

of
the respective subsystem Σj converge to zero in finite time if the right-hand side of
the last differential equation is bounded. Therefore, since all the unknown inputs wi

are bounded, the estimation error variables σ1, . . . , σµ1 of subsystem Σ1 converge to
zero within finite time for properly chosen parameters κ1,k. During the convergence of
the state variables of Σ1, the state variables of the other subsystems remain bounded
as the subsystems do not offer a finite escape time. After finite-time convergence of
the state variables of Σ1, the coupling terms of Σ1 and Σ2 through the last differ-
ential equation of Σ2 vanishes and the estimation error variables σµ1�1, . . . , σµ1�µ2 of
system Σ2 converge to zero within finite time for properly chosen parameters κ2,k.
This further decouples Σ3 from Σ2. By induction, it can be shown, that this step-wise
finite-time convergence is achieved for all further subsystems Σ3, . . . ,Σp. Thus, it can
be concluded that the estimation error σ vanishes in finite time despite the unknown
inputs for properly chosen parameters κj,k, j � 1, . . . , p, k � 0, . . . , µj � 1.
Furthermore, the exactness of (6.8) requires that the discontinuity in the last differen-
tial equation of each subsystem Σj is capable of dominating the respective right-hand
side, see Proposition 3.2.1(ii). Since the linear coupling terms in Σj vanish when all

58
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the previous subsystems Σ1, . . . ,Σj�1 have converged, the necessary condition

κj,0 ¡
m̧

i�1
Li

∣∣∣d̄µ1�����µj ,i

∣∣∣ for j � 1, . . . , p (6.9)

is required.

6.2.2 Discussion of the Proposed Unknown Input Observer

The necessary condition (6.9) on the choice of the observer parameters κj,0 depends on
the bounds Li of the unknown inputs only and, thus, is independent of the coupling
terms. Since the subsystems are decoupled of each other after some finite time, the
parameters of each subsystem can be selected independently from the parameters of
the other subsystems.
If there acts no unknown input on the j-th subsystem Σj at all, i.e., d̄µ1�����µj ,1 �

d̄µ1�����µj ,2 � � � � � d̄µ1�����µj ,m � 0, the output injection l̄pσȳq can be modified such
that the corresponding subsystem Σj coincides with the estimation error dynamics of
any other finite-time differentiator, e.g. one of the continuous differentiators considered
in [26, 47, 93].
It is pointed out that, in contrast to the existing unknown input observers discussed
in Section 4.2, the proposed unknown input observer does neither require bounded
state variables, differentiability of the unknown input nor exhibits any restrictions
regarding the system class. Furthermore, the observer order and the number of tuning
parameters is n and, thus, not unnecessarily increased beyond the system order.
For SISO systems, i.e., p � m � 1, the proposed unknown input observer (6.4) with
the output injection (6.5) coincides with the unknown input observer for the SISO
case with homogeneity degree q � �1 proposed in Chapter 5.
If the output is corrupted by additive, uniformly bounded measurement noise
v �

�
v1 � � � vp

�T, i.e., ȳ � C̄x̄� v, |vj| ¤ vj,max, vj,max ¥ 0, j � 1, . . . , p, the es-
timation error σ stays bounded with bounds discussed e.g. in [26].

6.3 Transformation into Observer Normal Form

The transformation of system (6.2) into the proposed observer normal form (6.1) is
achieved by a regular state transformation of the form

x̄ � T�1x with T P Rn�n, (6.10)
and a regular output transformation

ȳ � Γy with Γ P Rp�p, (6.11)
which yield the matrices

Ā � T�1AT , (6.12a)
D̄ � T�1D, (6.12b)
C̄ � ΓCT , (6.12c)
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of the transformed system. An algorithm for the construction of the transformation
matrices T and Γ is presented in the following. Afterwards, the theoretical basis
including the proof of Theorem 6.1.1 is provided.

6.3.1 Description of the Transformation Algorithm

In order to construct the state transformation matrix T and the output transformation
matrix Γ, apply the following four-step algorithm:

Step 1: Output transformation and output-feedback based decomposition of
the dynamic matrix

The first step aims for maximizing the relative degrees of the outputs with respect
to w by means of an output transformation and some linear output-feedback Ξ.
To be more specific, the goal is to find an output transformation (6.11) and a
decomposition of the dynamic matrix into

A � Ǎ�ΞC with Ξ P Rn�p, (6.13)

such that the auxiliary system
.

x̌ � Ǎx̌�Dw,

y̌ �
�
y̌1 y̌2 . . . y̌p

�T
� Čx̌,

(6.14)

with

Č �
�
č1 č2 . . . čp

�T
� ΓC (6.15)

has the following properties:

(i) There exist integers µ1 ¥ µ2 ¥ � � � ¥ µp ¡ 0 satisfying
p°

j�1
µj � n such that

the n� n matrix

OR �

�
�������������������

čT
1
...

čT
1 Ǎ

µ1�1

čT
2
...

čT
2 Ǎ

µ2�1

...
čT

p
...

čT
p Ǎ

µp�1

�
�������������������

(6.16)

is invertible, i.e.,

rank OR � n. (6.17)
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(ii) If the relative degree δ̌j of the output y̌j with respect to the unknown input
w exists, it satisfies δ̌j ¥ µj, i.e.,

čT
j Ǎ

i
D � 0T for j � 1, . . . , p, i � 0, . . . , µj � 2. (6.18)

For this purpose, parts3 of the iterative decomposition algorithm proposed in [25,
Section 5.3, pages 119-127] are applied in a slightly modified way in the following.
First of all, initialize

Z � C, Zj � c
T
j , Ψj � e

T
j P R1�p, Ω �

�
����
ωT

1
ωT

2
...
ωT

p

�
���� �

�
����

01�m

01�m
...

01�m

�
���� , νj � 1,

(6.19)

for all j � 1, . . . , p and the flag vector

f �

�
����
f1
f2
...
fp

�
���� �

�
����

1
1
...
1

�
���� . (6.20)

Note that these quantities are modified from iteration to iteration and Z, Zj and
Ψj will be augmented by further rows. Repeat until all elements of f have become
zero:
For each non-zero element fj consider the last row zT

j,νj
of the corresponding matrix

Zj �

�
��
zT

j,1
...

zT
j,νj

�
�� . (6.21)

Case 1: If

rank
�

Ω
zT

j,νj
D

�
¡ rank Ω (6.22)

set fj Ð 0 and ωT
j Ð zT

j,νj
D. Then, continue with the next non-zero fj.

Case 2: If

rank
�

Ω
zT

j,νj
D

�
� rank Ω (6.23)

calculate coefficients ζj,νj ,k, k � 1, . . . , p which allow to represent zT
j,νj
D as a linear

combination of the rows ωT
j of Ω, i.e.,

zT
j,νj
D �

�
ζj,νj ,1 . . . ζj,νj ,p

�
Ω. (6.24)

3Namely the steps SCB.1, SCB.2 and SCB.3.
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Note that (6.24) may have infinitely many solutions. A reasonable choice is given by
the solution with the minimum Euclidean norm. Update the rows of Zj according
to

zT
j,1 Ð zT

j,1 �
p̧

k�1
ζj,νj ,kz

T
k,νk�νj�1

zT
j,2 Ð zT

j,2 �
p̧

k�1
ζj,νj ,kz

T
k,νk�νj�2

...

zT
j,νj

Ð zT
j,νj

�
p̧

k�1
ζj,νj ,kz

T
k,νk

,

(6.25)

where zk,l � 0T if l   1. Thus, ZT
j D � 0 is satisfied. Furthermore, update

Ψj Ð Ψj �
p̧

k�1
ζj,νj ,k

�
0pνj�νkq�p

Ψk

�
, Z Ð

�
��Z1

...
Zp

�
�� . (6.26)

Sub-case 2.1: If

rank
�
Z

zT
j,νj
A

�
� rank Z (6.27)

set the corresponding flag fj Ð 0.
Sub-case 2.2: If

rank
�
Z

zT
j,νj
A

�
¡ rank Z (6.28)

augment the matrices

Zj Ð

�
Zj

zT
j,νj
A

�
, Ψj Ð

�
Ψj

01�p

�
, (6.29)

update

Z Ð

�
��Z1

...
Zp

�
�� , (6.30)

and increase

νj Ð νj � 1. (6.31)
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This procedure is repeated with the next non-zero element fj until f � 0. Note
that, once all elements in the flag vector f have become zero, Z is an invertible
n�n matrix and

p°
j�1

νj � n is ensured, which is shown later on. Assign the integers

1, 2, . . . , p to j1, j2, . . . , jp such that

νj1 ¥ νj2 ¥ � � � ¥ νjp (6.32)

are sorted in descending order and assign the orders µj of the subsystems as

µ1 � νj1 , µ2 � νj2 , . . . , µp � νjp . (6.33)

Consider the matrices Ψj partitioned into their rows

Ψj �

�
��
ψT

j,1
...

ψT
j,νj

�
�� . (6.34)

and construct the output transformation matrix

Γ �

�
����
ψT

j1,1
ψT

j2,1
...

ψT
jp,1

�
���� . (6.35)

Finally, construct the matrix Ξ introduced in (6.13) according to

Ξ � Z�1

�
����������������

ψT
1,2
...

ψT
1,ν1

0T

...
ψT

p,2
...

ψT
p,νp

0T

�
����������������

, (6.36)

and calculate the matrices Ǎ and Č of the auxiliary system (6.14) from (6.13) and
(6.15), respectively.

Step 2: Calculation of p columns of the state transformation matrix

The construction of the state transformation (6.10) is based on the auxiliary sys-
tem (6.14). Consider the transformation matrix T to be expressed by its column
vectors ti i.e.,

T �
�
t1 t2 . . . tµ1 tµ1�1 . . . tµ1�µ2 . . . tµ1�����µp�1�1 . . . tn

�
.

(6.37)
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Calculate the column vectors tµ1 , tµ1�µ2 , . . . , tn of the transformation matrix T
from �

tµ1 tµ1�µ2 . . . tn
�
� O�1

R
�
eµ1 eµ1�µ2 . . . en

�
, (6.38)

where OR is the observability matrix like matrix of the auxiliary system given
in (6.16).

Step 3: Calculation of the coefficients βj,k,l

For each j � 1, 2, . . . , p� 1 calculate the coefficients βj,k,l of the matrix Ā for
k � j � 1, j � 2, . . . , p and l � 1, 2 . . . , µj � 1 in the following way:
(a) Construct the invertible matrix

Hpjq �

�
��
H

pjq
j�1,j�1 � � � H

pjq
j�1,p

... . . . ...
H

pjq
p,j�1 � � � Hpjq

p,p

�
�� , (6.39)

where the submatrices Hpjq
r,s P Rpµj�µrq�pµj�µsq have the Toeplitz structure

Hpjq
r,s �

$'''''''''''''''''''''''''''''''''''''''&
'''''''''''''''''''''''''''''''''''''''%

�
�����������������

čT
r Ǎ

µs�1
tµ1�����µs čT

r Ǎ
µs
tµ1�����µs � � � čT

r Ǎ
µj�2

tµ1�����µs

čT
r Ǎ

µs�2
tµ1�����µs čT

r Ǎ
µs�1

tµ1�����µs

. . . čT
r Ǎ

µj�3
tµ1�����µs

... . . . . . . ...
čT

r Ǎ
µr
tµ1�����µs

. . . . . . ...
0 . . . . . . ...
... . . . . . . ...
... . . . čT

r Ǎ
µr
tµ1�����µs

0 � � � � � � 0

�
�����������������

if r ¡ s

pñ µr ¤ µsq,

�
�����

1 čT
r Ǎ

µr
tµ1�����µr � � � čT

r Ǎ
µj�2

tµ1�����µr

0 . . . . . . ...
... . . . . . . čT

r Ǎ
µr
tµ1�����µr

0 � � � 0 1

�
�����

if r � s

pñ µr � µsq,

�
�����

0 � � � 0 čT
r Ǎ

µr
tµ1�����µs � � � čT

r Ǎ
µj�2

tµ1�����µs

... ... . . . . . . ...

... ... . . . čT
r Ǎ

µr
tµ1�����µs

0 � � � 0 � � � � � � 0

�
�����

if r   s

pñ µr ¥ µsq.

(6.40)

(b) Build up the vector

ρpjq �

�
����
ρ
pjq
j�1
ρ
pjq
j�2
...
ρpjqp

�
���� , where ρpjqr �

�
�����
čT

r Ǎ
µj�1

tµ1�����µj

čT
r Ǎ

µj�2
tµ1�����µj

...
čT

r Ǎ
µr
tµ1�����µj

�
����� . (6.41)
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(c) Solve the linear system of equations

Hpjqβpjq � ρpjq (6.42)

for the vector βpjq which holds the coefficients βj,k,l for l ¥ µk, i.e.,

βpjq �

�
����
β
pjq
j�1
β
pjq
j�2
...
βpjqp

�
���� , with βpjqr �

�
�� βj,r,µr

...
βj,r,µj�1

�
�� . (6.43)

Set the remaining coefficients to zero, i.e.,

βj,k,l � 0 for l   µk. (6.44)

Step 4: Construction of the state transformation matrix

Calculate the remaining columns of the transformation matrix T given in (6.37)
according to

tµ1�����µj�i � Ǎ
i
tµ1�����µj

�
p̧

r�j�1

i̧

q�1
βj,r,µj�qǍ

i�q
tµ1�����µr , (6.45)

where j � 1, 2, . . . , p and i � 0, 1, . . . , µj � 1. Note that (6.45) is also consistent in
the case i � 0 which is exploited in the proofs in the appendix.

The presented algorithm yields non-singular transformation matrices T and Γ when-
ever the original system (6.2) is strongly observable, which is shown in the the next
section.

6.3.2 Existence of the Proposed Transformations

In this section, the theoretical basis for the previously presented state and output
transformation is established. It is shown that the algorithm proposed in Section 6.3.1
yields a description of the system in the proposed observer normal form (6.1) which
finally proves Theorem 6.1.1.

Proof of Theorem 6.1.1. In order to prove Theorem 6.1.1, the following lemma is use-
ful:

Lemma 6.3.1. Under the conditions given in Theorem 6.1.1, the following state-
ments are true:

(a) The auxiliary system (6.14) generated by Step 1 of the algorithm proposed in
Section 6.3.1 satisfies the conditions (6.17) and (6.18).

(b) The transformation matrix T constructed by the proposed algorithm in Section
6.3.1 is guaranteed to be non-singular, regardless of the specific values of βj,k,l.

(c) There exists a unique solution of the system of equations (6.42) in Step 3 of
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the algorithm proposed in Section 6.3.1.
(d) If the transformation matrices T and Γ are constructed according to the algo-

rithm in Section 6.3.1, then the dynamic matrix Ā of the transformed system
(6.1a) given in (6.12a) takes the proposed form (6.1b).

(e) If the transformation matrices T and Γ are constructed according to the algo-
rithm in Section 6.3.1, then the unknown-input matrix D̄ of the transformed
system (6.1a) given in (6.12b) takes the proposed form (6.1c).

(f) If the transformation matrices T and Γ are constructed according to the al-
gorithm in Section 6.3.1, then the output matrix C̄ of the transformed system
(6.1a) given in (6.12c) takes the proposed form (6.1d).

The proof of Lemma 6.3.1 is provided in the appendix in Section 10.2. Note that
Lemma 6.3.1(a) is a prerequisite for the proofs of Lemma 6.3.1(b) to 6.3.1(f). Lemma
6.3.1(b) ensures T to be non-singular. Moreover, Γ is ensured to be non-singular
which follows directly from the results presented in [25, Section 5.3, pages 119-127].
Lemma 6.3.1(c) states that a unique solution of the system of equations (6.42) exists,
which ensures the existence of the coefficients βj,k,l of the dynamic matrix Ā of the
transformed system. Finally, from Lemma 6.3.1(d), 6.3.1(e) and 6.3.1(f) it follows
directly that the transformed system takes the proposed observer normal form, which
completes the proof of Theorem 6.1.1.

6.4 A Tutorial Example

In order to demonstrate the effectiveness of the proposed unknown input observer, it
is applied to a linearized model of the lateral motion of a light aircraft taken from
[49] which has already been given in Example 4.2.1. The algorithm proposed in Sec-
tion 6.3.1 is applied in order to provide a system description in the presented observer
normal form. An unknown input observer is designed according to Section 6.2 in order
to provide exact estimates of the state vector in the presence of an unknown input w.
The effectiveness of this observer is confirmed by numerical simulations.

6.4.1 Transformation into the Proposed Observer Normal Form

In the following, the construction of the state transformation matrix T and the output
transformation matrix Γ based on the algorithm presented in Section 6.3.1 is illustrated
step by step.
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Step 1: Output transformation and output-feedback based decomposition of
the dynamic matrix

First of all, the initialization of the required quantities yields

Z � C �

�
0 1 0 0 0 0 0
0 0 0 0 1 0 0

�
, Z1 � c

T
1 �

�
0 1 0 0 0 0 0

�
,

Z2 � c
T
2 �

�
0 0 0 0 1 0 0

�
, Ψ1 � e

T
1 �

�
1 0

�
, Ψ2 � e

T
2 �

�
0 1

�
,

Ω �

�
ω1
ω2

�
�

�
0
0

�
, ν1 � 1, ν2 � 1, f �

�
f1
f2

�
�

�
1
1

�
.

(6.46)

Iteration 1: Starting with the first non-zero flag f1 � 1 leads to Case 2 since
zT

1,1D � 0. Thus, ζ1,1,1 � ζ1,1,2 � 0 and z1,1 and Ψ1 remain unchanged. Then,
Sub-case 2.2 is entered and the updates

Z1 Ð

�
Z1
zT

1,1A

�
�

�
0 1 0 0 0 0 0

�0.1 �8.3 3.75 0 0 0 �28.6

�
,

Ψ1 Ð

�
Ψ1
0T

�
�

�
1 0
0 0

�
,

Z Ð

�
Z1
Z2

�
�

�
� 0 1 0 0 0 0 0
�0.1 �8.3 3.75 0 0 0 �28.6

0 0 0 0 1 0 0

�
� , ν1 Ð ν1 � 1 � 2,

(6.47)

are carried out.
Iteration 2: Continue with the non-zero flag f2 � 1. Again, zT

2,1D � 0 leads to
Case 2, where ζ2,1,1 � ζ2,1,2 � 0 and z2,1 and Ψ2 remain unchanged. Sub-case 2.2
occurs and the updates

Z2 Ð

�
Z2
zT

2,1A

�
�

�
0 0 0 0 1 0 0
0 0 1 0 0 0 0

�
, Ψ2 Ð

�
Ψ2
0T

�
�

�
0 1
0 0

�
,

Z Ð

�
Z1
Z2

�
�

�
���

0 1 0 0 0 0 0
�0.1 �8.3 3.75 0 0 0 �28.6

0 0 0 0 1 0 0
0 0 1 0 0 0 0

�
��� , ν2 Ð ν2 � 1 � 2,

(6.48)

are performed.
Iterations 3 & 4: Both, zT

1,2D � 0 and zT
2,2D � 0 and, again, Case 2 and Sub-
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case 2.2 are entered which yield the updates

Z1 Ð

�
Z1
zT

1,2A

�
�

�
� 0 1 0 0 0 0 0
�0.1 �8.3 3.75 0 0 0 �28.6
2.25 68.89 �30.23 �0.98 0 �35.09 380.38

�
� ,

Ψ1 Ð

�
Ψ1
0T

�
�

�
�1 0

0 0
0 0

�
� ,

Z2 Ð

�
Z2
zT

2,2A

�
�

�
� 0 0 0 0 1 0 0

0 0 1 0 0 0 0
0.37 0 �0.64 0 0 �9.5 0

�
� ,

Ψ2 Ð

�
Ψ2
0T

�
�

�
�0 1

0 0
0 0

�
� ,

(6.49)

and

Z Ð

�
Z1
Z2

�
�

�
�������

0 1 0 0 0 0 0
�0.1 �8.3 3.75 0 0 0 �28.6
2.25 68.89 �30.23 �0.98 0 �35.09 380.38

0 0 0 0 1 0 0
0 0 1 0 0 0 0

0.37 0 �0.64 0 0 �9.5 0

�
�������

,

ν1 Ð ν1 � 1 � 3, ν2 Ð ν2 � 1 � 3.

(6.50)

Iteration 5: Again, the non-zero flag f1 � 1 is considered. Since zT
1,3D � �701.7

increases the rank of Ω, Case 1 is applied, i.e.,

f1 Ð 0, Ω Ð

�
ω1
ω2

�
�

�
�701.7

0

�
. (6.51)

Iteration 6: The flag f2 � 1 is the only remaining non-zero flag. Considering
zT

2,3D � �190 leads to Case 2, since zT
2,3D can be expressed in terms of the rows

of Ω, i.e., zT
2,3D � ζ2,3,1ω1 � ζ2,3,2ω2, where

ζ2,3,1 � 0.27, ζ2,3,2 � 0. (6.52)

Updating the rows of Z2 yields

zT
2,1 Ð zT

2,1 � ζ2,3,1z
T
1,1 �

�
0 �0.27 0 0 1 0 0

�
zT

2,2 Ð zT
2,2 � ζ2,3,1z

T
1,2 �

�
0.027 2.25 �0.015 0 0 0 7.74

�
zT

2,3 Ð zT
2,3 � ζ2,3,1z

T
1,3 �

�
�0.24 �18.65 7.54 0.27 0 0 �103

�
.

(6.53)

Furthermore,

Ψ2 Ð Ψ2 � ζ2,3,1Ψ1 �

�
��0.27 1

0 0
0 0

�
� (6.54)
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is updated. Then, Sub-case 2.2 occurs, i.e.,

Z2 Ð

�
Z2
zT

2,3A

�
�

�
���

0 �0.27 0 0 1 0 0
0.027 2.25 �0.015 0 0 0 7.74
�0.24 �18.65 7.54 0.27 0 0 �103
4.73 155.09 �66.91 �2.34 0 �70.38 1048.47

�
��� ,

Ψ2 Ð

�
Ψ2
0T

�
�

�
���
�0.27 1

0 0
0 0
0 0

�
��� ,

Z Ð

�
Z1
Z2

�
�

�
���������

0 1 0 0 0 0 0
�0.1 �8.3 3.75 0 0 0 �28.6
2.25 68.89 �30.23 �0.98 0 �35.09 380.38

0 �0.27 0 0 1 0 0
0.027 2.25 �0.015 0 0 0 7.74
�0.24 �18.65 7.54 0.27 0 0 �103
4.73 155.09 �66.91 �2.34 0 �70.38 1048.47

�
���������

,

ν2 Ð ν2 � 1 � 4,
(6.55)

Iteration 7: The flag f2 � 1 is still non-zero. Hence, zT
2,4D � �1407.61 is exam-

ined which results in Case 2 since zT
2,4D � ζ2,4,1ω1 � ζ2,4,2ω2 with

ζ2,4,1 � 2.01, ζ2,4,2 � 0. (6.56)

The rows of Z2 are updated as

zT
2,2 Ð zT

2,2 � ζ2,4,1z
T
1,1 �

�
0.027 0.24 �0.015 0 0 0 7.74

�
zT

2,3 Ð zT
2,3 � ζ2,4,1z

T
1,2 �

�
�0.038 �2 0.022 0.27 0 0 �45.62

�
zT

2,4 Ð zT
2,4 � ζ2,4,1z

T
1,3 �

�
0.22 16.9 �6.27 �0.37 0 0 285.43

� (6.57)

and

Ψ2 Ð Ψ2 � ζ2,4,1

�
0T

Ψ1

�
�

�
���
�0.27 1
�2.01 0

0 0
0 0

�
��� . (6.58)

Then, Sub-case 2.1 is entered and, hence,

Z Ð

�
Z1
Z2

�
�

�
���������

0 1 0 0 0 0 0
�0.1 �8.3 3.75 0 0 0 �28.6
2.25 68.89 �30.23 �0.98 0 �35.09 380.38

0 �0.27 0 0 1 0 0
0.027 0.24 �0.015 0 0 0 7.74
�0.038 �2 0.022 0.27 0 0 �45.62

0.22 16.9 �6.27 �0.37 0 0 285.42

�
���������

(6.59)
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is updated and the corresponding flag is set to zero, i.e.,

f2 Ð 0. (6.60)

It is noted that now f � 0 and, thus, the iterative procedure is stopped. Further-
more, Z given in (6.59) has become an invertible n � n matrix and ν1 � ν2 � n.
From ν2 � 4 ¡ ν1 � 3 it follows that j1 � 2 and j2 � 1 and, thus,

µ1 � ν2 � 4, µ2 � ν1 � 3, Γ �

�
ψT

2,1
ψT

1,1

�
�

�
�0.27 1

1 0

�
,

Ξ � Z�1

�
���������

ψT
1,2

ψT
1,3

0T

ψT
2,2

ψT
2,3

ψT
2,4

0T

�
���������
�

�
���������

0 0
0 0
0 0
0 0

�2.01 0
0 0
0 0

�
���������
.

(6.61)

Finally, the matrices of the auxiliary system are given by

Ǎ � A�ΞC �

�
���������

�0.3 0 �33 9.81 0 �5.4 0
�0.1 �8.3 3.75 0 0 0 �28.6
0.37 0 �0.64 0 0 �9.5 0

0 1 0 0 0 0 0
0 �2.01 1 0 0 0 0
0 0 0 0 0 �10 0
0 0 0 0 0 0 �5

�
���������

,

Č � ΓC �

�
���������

0 0
�0.27 1

0 0
0 0
1 0
0 0
0 0

�
���������

T

.

(6.62)

Step 2: Calculation of p columns of the state transformation matrix

Calculation of the matrix

OR �

�
�����������

čT
1

čT
1 Ǎ

čT
1 Ǎ

2

čT
1 Ǎ

3

čT
2

čT
2 Ǎ

čT
2 Ǎ

2

�
�����������
�

�
���������

0 �0.27 0 0 1 0 0
0.027 0.24 �0.015 0 0 0 7.74
�0.038 �2 0.022 0.27 0 0 �45.62

0.22 16.9 �6.27 �0.37 0 0 285.43
0 1 0 0 0 0 0

�0.1 �8.3 3.75 0 0 0 �28.6
2.25 68.89 �30.23 �0.98 0 �35.09 380.38

�
���������

(6.63)
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allows for determining the columns t4 and t7 of the state transformation matrix T
according to

�
t4 t7

�
� O�1

R
�
e4 e7

�
�

�
���������

�1.65 0
0 0
0 0

0.75 0
0 0

�0.064 �0.029
0.0058 0

�
���������
. (6.64)

Step 3: Calculation of the coefficients βj,k,l

The coefficients b1,2,l are calculated in the following way:
(a) In the given example, the matrix Hp1q consists of one single submatrix which

actually is a scalar and equal to one, i.e.,

Hp1q �
�
H

p1q
2,2

�
� 1. (6.65)

(b) The corresponding vector ρp1q is also scalar in this case and is given by

ρp1q �
�
ρ
p1q
2

�
� čT

2 Ǎ
3
t4 � �14.93. (6.66)

(c) The coefficient β1,2,3 is given by

βp1q � β1,2,3 �
�
Hp1q

	�1
ρp1q � �14.93. (6.67)

The remaining coefficients are set to zero, i.e., β1,2,1 � β1,2,2 � 0.

Step 4: Construction of the state transformation matrix

The remaining columns of T are given by

t1 � Ǎ
3
t4 � β1,2,3Ǎ

2
t7,

t2 � Ǎ
2
t4 � β1,2,3Ǎt7,

t3 � Ǎt4 � β1,2,3t7,

t5 � Ǎ
2
t7,

t6 � Ǎt7,

(6.68)

which finally yields the state transformation matrix

T �

�
���������

�20.30 �3.63 8.23 �1.64 �10.52 0.15 0
0 0 0 0 1 0 0

18.45 1 0 0 �2.82 0.27 0
0 0 0 0.75 0 0 0
1 0 0 0 0.27 0 0

21.51 �2.15 0.22 �0.064 �2.85 0.29 �0.029
�0.72 0.14 �0.029 0.0058 0 0 0

�
���������
. (6.69)
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Applying the state transformation x̄ � T�1x and the output transformation ȳ � Γy
yields the system

.
x̄ � Āx̄� D̄w,
ȳ � C̄x̄,

(6.70)

in the proposed observer normal form, where the matrices

Ā �

�
���������

�6.4 1 0 0 2.01 0 0
�7.01 0 1 0 11.18 0 0

0 0 0 1 6 0 0
0 0 0 0 1.33 0 0

91.79 0 0 0 �17.89 1 0
593.46 0 0 0 �271.73 0 1

0 0 0 �14.93 �1220.79 0 0

�
���������

, D̄ �

�
���������

0
0
0
0
0
0

�701.7

�
���������

,

C̄ �

�
1 0 0 0 0 0 0
0 0 0 0 1 0 0

�
,

(6.71)

are calculated according to (6.12).

6.4.2 Design of the Unknown Input Observer

In order to reconstruct the state vector x̄ despite the unknown input w, an unknown
input observer is designed according to Section 6.2 which yields

9̄̂x � Āˆ̄x� Π̄σȳ � l̄pσȳq,
ˆ̄y � C̄ ˆ̄x,

(6.72)

where

σȳ � ȳ � ˆ̄y �
�
σ1 σ5

�T (6.73)

is the output error,

Π̄ �

�
���������

�6.4 2.01
�7.01 11.18

0 6
0 1.33

91.79 �17.84
593.46 �271.73

0 �1220.79

�
���������

(6.74)

is the linear output-injection matrix and

l̄pσȳq �
�
κ1,3tσ1s

3
4 κ1,2tσ1s

1
2 κ1,1tσ1s

1
4 κ1,0tσ1s

0

κ2,2tσ5s
2
3 κ2,1tσ5s

1
3 κ2,0tσ5s

0
�T (6.75)
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Figure 6.1: Estimation error variables ηi � xi � x̂i, i � 1, . . . , 7 in original coordi-
nates. The estimation error variables vanish within finite-time despite the
unknown input w.

is the nonlinear output injection vector.
It is pointed out that, since the unknown input w does not directly act on the first
subsystem, it is also possible to choose the nonlinear output injection of the first
subsystem according to e.g. a continuous finite-time differentiator [26], i.e.,

l̄pσȳqñ l̄
1
pσȳq �

�
κ11,3tσ1s

r2
r1 κ11,2tσ1s

r3
r1 κ11,1tσ1s

r4
r1 κ11,0tσ1s

r5
r1

κ2,2tσ5s
2
3 κ2,1tσ5s

1
3 κ2,0tσ5s

0
�T

,
(6.76)

where ri � 1� pn� iqq, i � 1, . . . , n� 1 are the homogeneity weights and q P p�1, 0q
is the homogeneity degree to be chosen.

6.4.3 Simulation Results

The observer parameters

κ1,3 � 5.33, κ1,2 � 13.16, κ1,1 � 17.20, κ1,0 � 11,
κ2,2 � 9.65, κ2,1 � 49.37, κ2,0 � 123.5,

(6.77)

of the nonlinear output injection (6.75) are chosen according to [29, Section 6.7]. Note
that the necessary condition κ2,0 ¡ L

∣∣∣d̄7,1
∣∣∣ � 14.03 given in Theorem 6.2.1 is satisfied.

The initial observer state vector is selected as ˆ̄xp0q � 0 and the unknown input is taken
from Example 4.2.1. The estimation error variables ηi � xi � x̂i, i � 1, . . . , 7 obtained
by a numerical simulation are shown in Figure 6.1. After a finite convergence time of
approximately 2 s, the error variables vanish despite the unknown input w and, thus,
exact estimates of the unbounded4 state variables are obtained.

4Due to the unstable eigenvalues of A, see Example 4.2.1.
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6.5 Conclusions on the Multiple-Input Multiple-Output Case

In this chapter, a new unknown input observer for LTI MIMO systems has been
proposed. The main contribution is given by a new observer normal form for strongly
observable LTI systems with unknown inputs. In contrast to existing observer normal
forms, the proposed observer normal form additionally accounts for the unknown
input by enforcing a specific structure of the unknown-input matrix D̄. Once the
system is represented in observer normal form, the design of a differentiator based
unknown input observer is straightforward, which is exemplarily demonstrated by
applying multiple REDs in Theorem 6.2.1. The proposed unknown input observer is
consistent with the SISO case proposed in Chapter 5 and coincides with the existing
approaches based on Luenberger’s observability canonical form, if the system satisfies
the restrictive relative degree condition (4.34).

In the following, the proposed unknown input observer is evaluated with respect
to the disadvantages of existing methods discussed in Section 4.3:

(a) The restrictive observer matching condition (4.15) is not required. For example,
the system considered in the tutorial example in Section 6.4 does not satisfy the
observer matching condition.

(b) The unknown input observer does not require bounded state variables to ensure
convergence of the estimation error dynamics, as the necessary condition for the
choice of κj,0 is independent of the state variables and the estimation errors. This
is confirmed by the unstable example system in Section 6.4 whose trajectories
are unbounded.

(c) The unknown input does not have to be differentiable. During the derivations
made, no derivatives of w occur.

(d) The necessary condition κj,0 ¡
m°

i�1
Li

∣∣∣d̄µ1�����µj ,i

∣∣∣ for the choice of the observer
parameters does not involve any state variables. Hence, the required parameters
depends on the unknown input only, but not on the particular system trajecto-
ries.

(e) The observer order as well as the number of tuning parameters are equal to the
order n of the original system and, thus, not unnecessarily increased. For the
system considered in the tutorial example an unknown input observer of order 7
with 7 parameters is obtained, see Section 6.4, whereas the cascaded unknown
input observer in Example 4.2.5 has order 41 and 45 parameters to tune.

(f) The restrictive relative degree condition (4.34) is not required. In contrast to
the unknown input observer based on Luenberger’s observability canonical form,
the proposed unknown input observer achieves exact reconstruction of the state
variables for the considered example.

It can be concluded that the proposed unknown input observer avoids all the drawbacks
of existing approaches. The effectiveness of the unknown input observer and especially
the simplicity of its design in observer normal form have been demonstrated by means
of the tutorial example.
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7
Extensions and Generalizations

This chapter demonstrates the versatility and usability of the previously
presented unknown input observer. Several extensions and generalizations
are discussed. The unknown input observer concept is extended to sys-
tems with direct feed-through term, to strongly detectable systems and to
systems with unbounded unknown inputs with bounded time-derivative.
Moreover, The applicability to state-feedback control for systems with
matched disturbance inputs is shown. For the case of asymmetric bounds
of the the unknown input, a method is provided which allows for decreasing
the required observer parameters and, thus, helps to reduce the impact of
measurement noise and chattering effects.

7.1 Extension to Systems with Direct Feed-Through Term

The unknown input observer design proposed in Chapter 6 can also be applied to
systems with direct feed-through in a straightforward manner which is shown in this
section. For this purpose, consider the class of LTI systems of the form

9x � Ax�Dw,

y � Cx� Fw,
(7.1)

where F P Rp�m. First, the state estimation problem is reformulated by introducing
an equivalent system without direct feed-through term. Then, it is shown that the
equivalent system preserves the property of strong observability and, hence, the
methods proposed in Chapter 6 can be applied to this equivalent system.

The content of this section is adopted from Appendix 1 of:[51]
H. Niederwieser, M. Tranninger, R. Seeber, M. Reichhartinger, Unknown input ob-
server design for linear time-invariant multivariable systems based on a new observer
normal form, International Journal of Systems Science 53 (10) (2022) 2180–2206.
doi:10.1080/00207721.2022.2046201
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7 Extensions and Generalizations

7.1.1 Reformulation as System without Direct Feed-Through

In order to obtain an equivalent representation of system (7.1) without direct feed-
through, the algorithm proposed in [25, Section 5.4, page 155] is applied. Regular
transformation matrices U P Rp�p for the output and V P Rm�m for the input are
chosen1 such that

UFV �

�
ImF 0

0 0

�
, (7.2)

where mF � rank F . The application of the output and input transformation

ỹ � Uy �

�
ỹ0
ỹ1

�
, w̃ � V �1w �

�
w̃0
w̃1

�
, (7.3)

allows for an equivalent representation of system (7.1) with the new output ỹ and the
new input w̃, i.e.,

9x � Ax�
�
D̃0 D̃1

� �w̃0
w̃1

�
, (7.4a)�

ỹ0
ỹ1

�
�

�
C̃0
C̃1

�
x�

�
ImF 0

0 0

� �
w̃0
w̃1

�
, (7.4b)

where D̃0 P Rn�mF , D̃1 P Rn�pm�mFq, C̃0 P RmF�n and C̃1 P Rpp�mFq�n. The output
equation (7.4b) is solved for

w̃0 � ỹ0 � C̃0x (7.5)

and substituted into (7.4a) which yields

9x � Ax� D̃0
�
ỹ0 � C̃0x

�
� D̃1w̃1. (7.6)

Combining (7.6) and the remaining outputs ỹ1 given in (7.4b) finally results the equiv-
alent system without direct feed-through

9x � Ãx� D̃1w̃1 � D̃0ỹ0,
ỹ1 � C̃1x,

(7.7)

where Ã � A� D̃0C̃0.
Instead of the original system (7.1) the equivalent system (7.7) without direct feed-
through can be considered for the estimation of x. Since the property of strong
observability is preserved as shown later, the unknown input observer design procedure
proposed in Chapter 6 can be applied to system (7.7). In addition to the unknown
input w̃1, ỹ0 acts as an input to the system. However, as ỹ0 is known it can be easily
considered by an observer, see Section 2.2.3.

1For instance by applying singular value decomposition.
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7.1.2 Preservation of Strong observability

In the following, it is shown that strong observability of the original system (7.1) with
direct feed-through implies strong observability of the equivalent system (7.7) without
direct feed-through.
Since the strong observability property is invariant with respect to to regular trans-
formations of the output and the input, strong observability of system (7.4) directly
follows from the strong observability of the original system (7.1). According to Propo-
sition 2.3.1, the Rosenbrock matrix of system (7.4) satisfies

rank

�
�sIn �A �D̃0 �D̃1

C̃0 ImF 0
C̃1 0 0

�
� � n�m @s P C. (7.8)

Furthermore, consider the Rosenbrock matrix2

P̃ psq �

�
sIn � pA� D̃0C̃0q �D̃1

C̃1 0

�
(7.9)

of the equivalent system (7.7). It follows that

rank P̃ psq � rank

�
�sIn � pA� D̃0C̃0q �D̃1

0 0
C̃1 0

�
� �

� rank

�
�sIn �A �D̃0 �D̃1

C̃0 ImF 0
C̃1 0 0

�
�
�
� In 0
�C̃0 0

0 Im�mF

�
� �

(7.8)
� rank

�
� In 0
�C̃0 0

0 Im�mF

�
� � n�m�mF � n� rank D̃1 @s P C,

(7.10)

and, thus, system (7.7) is strongly observable according to Proposition 2.3.1. In con-
clusion, strong observability of the original system (7.1) implies strong observability
of the equivalent system (7.7). Thus, the unknown input observer design procedure
proposed in Chapter 6 can be applied to the equivalent system (7.7) if the original
system (7.1) is strongly observable.

2Note that the input matrix D̃0 is not considered in the Rosenbrock matrix (7.9) since the input
ỹ0 is known and, thus, does not affect the property of strong observability.
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7.2 Extension to Strongly Detectable Systems

In this section, the presented unknown input observer for strongly observable systems
is generalized to the strongly detectable case. The content of this section shortly sum-
marizes one main idea of the content presented in:[94]
M. Tranninger, H. Niederwieser, R. Seeber, M. Horn, Unknown input observer de-
sign for linear time-invariant systems—a unifying framework, International Journal of
Robust and Nonlinear Control 33 (15) (2023) 8911–8934. doi:10.1002/rnc.6399

7.2.1 Structural System Decomposition

In the case the system is not strongly observable but at least strongly detectable, the
system can be transformed into the representation�

9z1
9z2

�
�

�
Ă1 L̆C̆2
D̆2K̆ Ă2

� �
z1
z2

�
�

�
0
D̆2

�
w,

y �
�
0 C̆2

� �z1
z2

�
,

(7.11)

or, equivalently,
9z1 � Ă1z1 � L̆y, (7.12a)
9z2 � Ă2z2 � D̆2pK̆z1 �wq, (7.12b)
y � C̆2z2, (7.12c)

by means of the state transformation
�
z1 z2

�T
� T̆ x proposed in [25, Chapter 5.4].

In this representation, the system is decomposed into two subsystems:
1. Subsystem (7.12a) with the state vector z1 constitutes the part of the system

which is strongly detectable only. This part of the system is not explicitly influ-
enced by the unknown input w and its state vector z1 does not appear in the
system output y. Due to the strong detectability property, its dynamic matrix
Ă1 is a Hurwitz matrix. Furthermore, the system output y acts as a known
input via the input matrix L̆.

2. Subsystem (7.12b) with the state vector z2 represents the strongly observable
part of the system, i.e., the triple pĂ2, C̆2, D̆2q is strongly observable. In ad-
dition, this subsystem is coupled via K̆z1 to the part of the system that is
strongly detectable only. It is pointed out that the coupling term acts in the
same channels as the unknown input and, hence, can not be distinguished from
the unknown input by means of the output.

7.2.2 Unknown Input Observer Design

An observer is now designed for each of the two subsystems individually. For subsys-
tem (7.12a) a trivial observer

9̂z1 � Ă1ẑ1 � L̆y, (7.13)

78

https://doi.org/10.1002/rnc.6399
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is designed. The dynamics of its estimation error ζ1 � z1 � ẑ1 are given by

9ζ1 � Ă1ζ1. (7.14)

Since Ă1 is a Hurwitz matrix, the estimation error dynamics are asymptotically stable,
i.e., lim

tÑ8
ζ1 � 0. Furthermore, ζ1 converges within an arbitrarily small vicinity around

the origin within some finite time τ1pζ1p0qq ¡ 0, which is exploited by the observer for
the second subsystem later on.
Subsystem (7.12b) is strongly observable and, hence, can be transformed in observer
normal form

9̄z2 � Ā2z̄2 � D̄2pK̆z1 �wq,

ȳ � C̄2z̄2,
(7.15)

by applying suitable transformations z̄2 � T
�1z2 and ȳ � Γy, see Section 6.3.

Therein, the unknown input observer

9̄̂z2 � Ā2 ˆ̄z2 � D̄2K̆ẑ1 � Π̄σȳ � l̄pσȳq,
ˆ̄y � C̄2 ˆ̄z2,

(7.16)

with the output estimation error σȳ � y � ˆ̄y is applied, which additionally considers
estimates ẑ1 of the first subsystem. The dynamics of the estimation error σ2 � z̄2 � ˆ̄z2
are given by

9σ2 � Ā2σ2 � Π̄σȳ � l̄pσȳq � D̄2pK̆ζ1 �wq, (7.17)

which coincide with the estimation error dynamics (6.7) of the proposed unknown
input observer, where K̆ζ1 additionally acts in the channel of the unknown input. As
the error ζ1 convergences into an arbitrarily small vicinity around the origin within
finite time τ1, boundedness of K̆ζ1 for all t ¥ τ1 can be guaranteed. Thus, all the terms
acting in the channel of the unknown input3 are bounded and σ2 vanishes within finite
time for appropriately chosen observer parameters.

3The coupling term error K̆ζ1 and the unknown input w itself.
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7.3 Extension to Unbounded Inputs with Bounded Derivatives

It may happen that some of the unknown inputs wi, are not bounded4, but their γi-th
derivative wpγiq

i is bounded instead, i.e.,∣∣∣wpγiq
i ptq

∣∣∣ ¤ L̃i @t, with 0 ¤ L̃i   8, i � 1, . . . ,m. (7.18)

In this case, the system can be extended and the unknown input observer proposed in
Chapter 6 can still be applied by using the following procedure which regards wpγiq

i as
unknown inputs rather than wi, see e.g. in [95–97].

7.3.1 Augmentation of the State Vector

Without loss of generality assume that the unknown inputs are ordered such that
γi ¡ 0 for i � 1, . . . , m̃ and γi � 0 for i � m̃� 1, . . . ,m. The state vector is augmented
with the unbounded unknown inputs w1, . . . , wm̃ and their first pγi � 1q-st derivatives
accordingly, i.e.,

χ �
�
xT w1 9w1 . . . w

pγ1�1q
1 . . . wm̃ 9wm̃ . . . w

pγm̃�1q
m̃

�T
. (7.19)

System (6.2) given on page 55 in combination with the dynamics of the unknown
inputs is captured by

9χ � Aχχ�Dχw̃,
y � Cχχ,

(7.20a)

with the matrices

Aχ �

�
��������

A d1 0 . . . dm̃ 0
0 0 Iγ1�1 0 0
0T 0 0T 0 0T

... . . .
0 0 0 0 Iγm̃�1
0T 0 0T 0 0T

�
��������

,

Dχ �

�
����

0 . . . 0 dm̃�1 . . . dm

eγ1 0 0 . . . 0
. . . ... ...

0 eγm̃ 0 . . . 0

�
���� , Cχ �

�
C 0p�pγ1�����γm̃q

�
,

(7.20b)

and the new unknown input

w̃ �
�
w
pγ1q
1 . . . w

pγm̃q
m̃ wm̃�1 . . . wm

�T
. (7.20c)

4This means a violation of Assumption 4.1.2.
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7.3 Extension to Unbounded Inputs with Bounded Derivatives

The extended system (7.20) preserves the strong observability property, which is shown
in the next section, and the single components of the unknown input vector w̃ are
bounded by assumption (7.18). Thus, an unknown input observer for the extended
system (7.20) can be designed according to Chapter 6. It is pointed out that the
resulting unknown input observer, in addition to the system state x, also estimates
the unknown inputs and their derivatives contained in χ.

7.3.2 Preservation of Strong Observability

It is shown that the extended system (7.20) is strongly observable, if the original
system is strongly observable. For this purpose, the augmentation of the state vector
with just one single unknown input is considered first. Then, the general result is
obtained by induction.
Consider the original state vector x augmented by the first unknown input w1 which
yields the extended system

�
9x
9w1

�
�

�
A d1
0T 0

� �
x
w1

�
�

�
0 d2 . . . dm

1 0 . . . 0

������
9w1
w2
...
wm

�
���� ,

y �
�
C 0

� � x
w1

�
.

(7.21)

The rank of its Rosenbrock matrix P̃ psq is given by

rank P̃ psq � rank

�
�sIn �A �d1 0 �d2 . . . �dm

0T s �1 0 . . . 0
C 0 0 . . . . . . 0

�
� �

� rank
�
sIn �A �d1 �d2 . . . �dm

C 0 . . . . . . 0

�
� 1 �

� rank
�
sIn �A �D
C 0

�
� 1 � rank P psq � 1,

(7.22)

where P psq is the Rosenbrock matrix of the original system, i.e., without the state
augmentation. Any further augmentation of the state vector with either another un-
known input or one further derivative of an already included unknown input increases
the rank of the respective Rosenbrock matrix by one, which can be shown by following
the same line of reasoning. Thus, it is concluded that the Rosenbrock matrix P χpsq
of the extended system (7.20) satisfies

rank P χpsq � rank
�
sIn�γ1�����γm̃ �Aχ �Dχ

Cχ 0

�
�

� rank P psq � γ1 � � � � � γm̃.

(7.23)

It becomes apparent that the extended system (7.20) is strongly observable, i.e.,
rank P̃ psq � n� γ1 � � � � � γm̃ @s P C, if and only if the original system is strongly
observable, i.e., rank P psq � n @s P C.
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7 Extensions and Generalizations

7.4 Application to State-Feedback Control for Systems with
Matched Disturbance Inputs

The unknown input observer proposed in Chapter 6 can be utilized in the construc-
tion of state-feedback controllers for system with matched disturbance inputs which
is shown in the following. The content of this section is partially adopted from Sec-
tion 5.4 of:[51]
H. Niederwieser, M. Tranninger, R. Seeber, M. Reichhartinger, Unknown input ob-
server design for linear time-invariant multivariable systems based on a new observer
normal form, International Journal of Systems Science 53 (10) (2022) 2180–2206.
doi:10.1080/00207721.2022.2046201

7.4.1 Formulation of the Control Problem

Consider the strongly observable and stabilizable5 system

9x � Ax�Bu�Dw,

y � Cx,
(7.24)

where the unknown input w acts as a matched disturbance with respect to the control
input u P Ro, i.e.,

D � BM (7.25)

with a constant matrix M P Ro�m. Furthermore, assume the first derivative 9w of the
unknown input to be bounded, i.e.,

| 9wiptq| ¤ L̃i @t, with 0 ¤ L̃i   8, i � 1, . . . ,m. (7.26)

The goal is to stabilize system (7.24) at x � 0 by means of a controller despite the
unknown input w.

7.4.2 Disturbance Rejection via Unknown Input Observation and
State-Feedback Control

This task can be achieved by a linear state-feedback controller with additional dis-
turbance feed-forward. However, the state vector as well as the unknown input are
unknown and must be estimated. For this purpose, the method presented in Section 7.3
is applied. The state vector is augmented by w, i.e.,

χ �

�
x
w

�
. (7.27a)

5Stabilizability is the dual property to detectability, see e.g. [98–100]. If system (7.24) is stabilizable,
then there exists a linear state-feedback controller u � �Kx such that the closed-loop dynamic
matrix A�BK is a Hurwitz matrix.

82

https://doi.org/10.1080/00207721.2022.2046201


7.4 Application to State-Feedback Control for Systems with Matched Disturbance Inputs

Rewriting system (7.24) in terms of the augmented state vector χ yields

9χ � Aχχ�Bχu�Dχ 9w,

y � Cχχ,
(7.27b)

where

Aχ �

�
A D
0 0

�
, Bχ �

�
B
0

�
, Dχ �

�
0
Im

�
, Cχ �

�
C 0

�
. (7.27c)

Since the original system (7.24) is strongly observable, also the augmented system
(7.27c) with the unknown input 9w is strongly observable as shown in Section 7.3.2.
Thus, the augmented system (7.27b) can be transformed into the observer normal form.
Furthermore, since the unknown input 9w is bounded, the unknown input observer
presented in Chapter 6.2 can be used to obtain exact estimates of χ̂ �

�
x̂T ŵT�T in

finite time6. A linear state-feedback controller

u � �
�
K M

�
χ̂ (7.28)

is designed, where M yields the disturbance feed-forward and the state-feedback ma-
trix K is designed for the nominal system with w � 0, i.e., such that the dynamic
matrixA�BK of the nominal closed-loop system is a Hurwitz matrix.

Example 7.4.1. Consider the tutorial system of the lateral motion of an aircraft
given in Example 4.2.1 extended by o � 2 control inputs u �

�
ζc ξc

�T, namely the
rudder angle demand ζc and the aileron angle demand ξc. The corresponding input
matrix of the control input u is given by

B �

�
���������

0 0
0 0
0 0
0 0
0 0
20 0
0 10

�
���������
. (7.29)

Augmentation of system (7.24) according to (7.27) and transformation into observer

6The control input u is expected to be known to the unknown input observer and, hence, can be
easily taken into account by the observer.
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normal form yields

Āχ �

�
�����������

�17.84 1 0 0 91.79 0 0 0
�271.73 0 1 0 593.46 0 0 0
�1220.79 0 0 1 0 0 0 0
�19.83 0 0 0 0 0 0 0

2.01 0 0 0 �6.4 1 0 0
11.18 0 0 0 �7.01 0 1 0

6 0 0 0 0 0 0 1
1.33 0 0 0 0 0 0 0

�
�����������

, D̄χ �

�
�����������

0
0
0

�701.7
0
0
0
0

�
�����������

,

B̄χ �

�
�����������

0 0
0 �286

�701.7 �8406.36
0 0
0 0
0 77.44
0 39.52
0 0

�
�����������

, C̄χ �

�
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

�
.

(7.30)

Furthermore, the first derivative 9w of the unknown input is bounded by L̃ � 0.046
which allows for applying an RED-based unknown input observer according to Sec-
tion 6.2. The observer parameters

κ1,3 � 9.98, κ1,2 � 46.07, κ1,1 � 112.76, κ1,0 � 134.92,
κ2,3 � 5.33, κ2,2 � 13.16, κ2,1 � 17.2, κ2,0 � 11,

(7.31)

are chosen according to [29, Section 6.7]. Note that the necessary condition
κ1,0 ¡ L̃

∣∣∣d̄χ,4,1
∣∣∣ � 32.28 stated in Theorem 6.2.1 is satisfied.

The unknown input w acts as a matched disturbance input, i.e., D � BM with
M �

�
1 0

�T. Hence, its estimate ŵ can be incorporated in the control law (7.28) in
order to compensate for the effects of the unknown input and achieve asymptotically
exact stabilization of the state variables. The particular choice

K �

�
�0.024 0.0036 �0.2 0.036 �0.14 0.25 �0.069
�0.026 �0.075 0.9 �0.67 �0.92 �0.8 �0.18

�
, (7.32)

for the state-feedback matrix keeps the stable plant eigenvalues and trans-
fers the unstable plant eigenvalues s1 � 0 and s2 � 0.1219 of A to s11 � �1
and s12 � �2 in the nominal closed-loop system with the dynamic ma-
trix A�BK. The initial state vector of the plant is again selected as
xp0q �

�
�0.5 0.1 0.02 0.2 �0.1 �0.3 0.2

�T and the initial observer state vec-
tor is set to χ̂p0q � 0. Figure 7.1 shows the state variables, the estimation error
variables and the estimate of the unknown input w obtained from numerical simu-
lations of the system with the presented state-feedback controller.
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Figure 7.1: State variables xi, estimation errors ηi � xi � x̂i and estimate ŵ of the
unknown input w. The unknown input observer provides exact estimates
of the plant states and the unknown input within a finite time and the
states variables of the plant converge to zero asymptotically despite the
unknown input.

After a finite convergence time of approximately 2.7 s the estimation errors vanish
despite the unknown input w and, thus, exact estimates of the state variables and
the unknown input are obtained. Once the estimation error has converged, the state
variables converge to zero asymptotically despite the unknown input.

7.4.3 Discussion of the presented State-Feedback Controller

The unknown input observer for the estimation of the augmented state vector χ and
the state-feedback matrix K for the nominal system can be designed separately from
each other. Within the finite convergence time of the estimation error, the state
variables of system (7.24) remain bounded, since the estimation error stays bounded
and the LTI system does not allow for a finite escape time. After convergence of
the estimation error, the closed-loop system is insensitive to the unknown disturbance
input. The system dynamics reduce to the nominal closed-loop system

9x � pA�BKqx, (7.33)
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whose convergence behaviour only depends on the chosen eigenvalues of the dynamic
matrix A�BK.
A major advantage of this observer based state-feedback controller becomes relevant
in the case of saturated control inputs, i.e.,

ui,sat �

$'&
'%
ui,max if ui ¡ ui,max,

ui,min if ui   ui,min,

ui else,
for i � 1, . . . , o. (7.34)

Then, the unknown input observer can be supplied with the saturated control input
usat �

�
u1,sat . . . uo,sat

�T instead of u, which naturally prevents the controller from
wind-up. Other comparable controllers may require complex anti-windup measures,
see e.g. [101–103] and the references therein.

7.5 Unknown Inputs with Asymmetric Bounds

The proposed unknown input observer requires the necessary condition

κj,0 ¡
m̧

i�1
Li

∣∣∣d̄µ1�����µj ,i

∣∣∣, j � 1, . . . , p, (7.35)

for convergence of the estimation error for all admissible unknown inputs

wiptq P r�Li, Lis @t, i � 1, . . . ,m, (7.36)

see Theorem 6.2.1. However, in many practical applications the unknown inputs do
not show such a symmetric characteristic as indicated by (7.36), but rather stay within
asymmetric bounds, i.e.,

wiptq P rwi,min, wi,maxs @t, i � 1, . . . ,m. (7.37)

For example, when wi corresponds to an unknown mass or heat flow with known flow
direction, either wi,min � 0 or wi,max � 0 holds.
One approach to deal with this is by simply ignoring the asymmetric nature of the
unknown inputs in the design of the unknown input observer and considering the
necessary condition (7.35) with Li � maxt|wi,min|, |wi,max|u in the choice of the ob-
server parameters. However, in practice it may be desirable to have smaller observer
parameters in order to keep the amplification of measurement noise and chattering ef-
fects [104, 105] small. The approach described hereafter makes it possible to decrease
the observer parameters required for convergence of the estimation error.
Consider unknown inputs wi with lower bound wi,min and upper bound wi,max as indi-
cated in (7.37). Then, the unknown inputs can be expressed as

wiptq �
wi,min � wi,max

2 � w̃iptq, (7.38)
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which decomposes wi into a constant offset wi,min�wi,max
2 and a part with symmetric

bounds

w̃iptq P r�
wi,max � wi,min

2 ,
wi,max � wi,min

2 s @t. (7.39)

If wi,min and wi,max are known7, the constant offset can be additionally considered as
a known input by the observer (6.4) which yields

9̄̂x � Āˆ̄x� Π̄σȳ � l̄pσȳq � D̄woff,

ˆ̄y � C̄ ˆ̄x,
(7.40)

with

woff �

�
��

w1,min�w1,max
2...

wm,min�wm,max
2

�
�� . (7.41)

Then, the offset of the unknown input cancels in the estimation error dynamics of
the observer. In consequence, the part w̃iptq given in (7.39) with symmetric bounds
remains the only unknown input for the observer. Thus, the necessary condition (7.35)
for the choice of the observer parameters relaxes to

κj,0 ¡
m̧

i�1

wi,max � wi,min

2
∣∣∣d̄µ1�����µj ,i

∣∣∣, j � 1, . . . , p. (7.42)

In the case of symmetric bounds, i.e., wi,max � �wi,min, the necessary condition (7.42)
is consistent with the original one given in (7.35). If the bounds are not symmetric,
the observer parameters required by condition (7.42) are guaranteed to be smaller
than in the original (7.35). In conclusion, the amplification of measurement noise
can be reduced and chattering effects can be diminished by decreasing the observer
parameters.

7Or if one has at least a rough guess of the offset.
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8
Practical Application: Temperature
Profile Estimation of an Aluminium
Rod subject to Unknown Excitation

In this chapter, the practical application of the proposed observer concept
for LTI multivariable systems with unknown inputs is demonstrated using
a thermal laboratory setup. The goal is to estimate the temperature profile
along an aluminium rod, which is excited with heat fluxes unknown to the
observer. The plant is modelled as a distributed parameter system which,
furthermore, is spatially discretized and put into a form suitable for the
observer design. As discussed in this thesis, a continuous-time observer
is designed accordingly. Moreover, an equivalent discrete-time observer is
developed to deal with sampled measurement data and to implement the
observer in a discrete-time operated environment. Finally, exemplary es-
timation results are shown to demonstrate the effectiveness of the observer.

In this chapter, the content of the following article is adopted, whereby
the individual steps are described in much more detail:[106]
H. Niederwieser, S. Koch, M. Reichhartinger, Unknown Input Observer for
Temperature Profile Estimation in Systems with Unknown Heat Fluxes,
in: 2024 22nd European Control Conference (ECC), IEEE, 2024

8.1 Problem Statement

At first, the used laboratory setup [107, 108] is described and the estimation problem
is formulated.

8.1.1 Description of the Laboratory Setup

The considered laboratory setup allows for an application of a wide variety of con-
trol and estimation algorithms to heat conduction problems. A photo of the main
components of the setup is given in Figure 8.1.
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Aluminium Rod

TEM 1

TEM 12
Water-cooled Substructure

Figure 8.1: The laboratory setup. Twelve thermoelectric modules (TEMs) are mounted
along an aluminium rod. The lower surface of the TEMs is kept at ambient
temperature.

The centrepiece is a uniformly shaped rod made of aluminium alloy EN AW-6060 with
length l � 315 mm, width b � 25 mm and thickness d � 3 mm. Along the rod,
different thermal phenomena can be observed, such as heat conduction, convective
heat loss and heat loss due to radiation.
In order to thermally excite the rod, NTEM � 12 so-called thermoelectric modules
(TEMs) [109] are mounted at the bottom of the rod. Each TEM houses several
thermocouples which, with the help of the Peltier effect [110, 111], allow to introduce
a heat flux into the rod at the mounting location. Depending on the direction of the
applied electric current, the rod is either heated or cooled. A water-cooled substructure
keeps the lower surface of the TEMs at ambient temperature Tamb, which enlarges the
achievable temperature range of the TEMs.
An overview of the entire setup is given in Figure 8.2. Beneath the rod, a water tank is
located, which supplies the installed water-cooling system attached to the bottom side
of the TEMs. On the top of the setup, a thermal imaging camera with a resolutions
of 120 � 160 pixels is installed. It allows to measure the temperature at any desired
position along the rod at a rate of 10 frames per second.

8.1.2 Formulation of the Estimation Problem

The estimation problem is sketched in Figure 8.3. The objective is to estimate the rod’s
temperature profile along the z-axis from three punctual temperature measurements
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8.1 Problem Statement

Thermal Imaging Camera

Water Tank

Rod, TEMs and
Electronics

Figure 8.2: Photo of the entire thermal laboratory setup. A thermal imaging camera is
mounted on the top in order to measure the temperature distribution of the
rod. The water tank contains the water for the cooling of the bottom side
of the TEMs. The image is taken from [107, p. 10] and slightly modified
with the authors’ permission.

Rod

Active TEMs

b

z
l

0
zy,1

zy,3

zy,2

Figure 8.3: The goal is to estimate the temperature profile of the rod along the z-axis
based on the temperature measurements at the positions zy,1, zy,2 and zy,3 in
the presence of unknown heat fluxes caused by TEM 3 and TEM 11. The
figure is taken from [108, p. 11] and slightly modified with the author’s
permission.
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located at

zy,1 � 53.5 mm, zy,2 � 186.8 mm and zy,3 � 285.7 mm. (8.1)

These measurements correspond to three single pixels of the thermal imaging camera.
Furthermore, only TEM 3 and TEM 11 are actuated. The actuation, i.e., the supplied
electric currents and the resulting generated heat fluxes, are considered unknown for
the estimation algorithm to be designed. All other TEMs are disabled.
To sum up, the goal is to design an observer that estimates the temperature profile from
p � 3 available measurements in the presence of m � 2 unknown inputs corresponding
to the heat fluxes of both actuated TEMs.

8.2 Physical Modelling and Spatial Discretization

In order to describe the thermal behaviour of the aluminium rod, the physical effects
of heat conduction, heat losses and the external heat input generated by the TEMs
are considered. The resulting model takes the form of a partial differential equation
(PDE), which is then spatially discretized on a regular grid and, thus, is transferred
into a finite-dimensional state-space model suitable for the subsequent observer design.

8.2.1 Modelling of the Aluminium Rod

Assuming constant material parameters, the temperature T of the aluminium rod can
be described by the heat equation [112, eqn. (2.9)]

BT

Bt
�

k

cρ
∇2T �

1
cρ

9q, (8.2)

where k is the thermal conductivity, c is the specific heat capacity, ρ is the density
of the rod material, ∇2 represents the Laplace operator and 9q denotes the volumetric
heat flux used for modelling external heat sources given by the TEMs and ambient
heat losses. Due to the symmetry in transverse direction and because the rod is narrow
compared to its length, i.e., l " b and l " d, the heat transfer mainly takes place along
the longitudinal direction (the z-axis introduced in Figure 8.3) of the rod. Hence,
the temperature is assumed to be constant over the cross-sectional area and the heat
equation (8.2) reduces to the one-dimensional case

BT pz, tq

Bt
�

k

cρ

B2T pz, tq

Bz2 �
1
cρ

9qpz, tq. (8.3)

The volumetric heat flux

9qpz, tq � 9qlosspz, tq �
NTEM̧

j�1
9qTEM,jpz, tq (8.4)
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consists of ambient heat losses 9qloss and volumetric heat fluxes 9qTEM,j generated by the
TEMs. Since radiation losses play a negligible role at the temperatures considered, a
purely convective heat transfer is assumed for the ambient losses, i.e.,

9qlosspz, tq � �h
A

V

�
T pz, tq � Tamb

	
, (8.5)

where h describes the average heat transfer coefficient1, A is the rod’s surface area2,
V denotes the volume of the rod and Tamb is the ambient temperature. The heat
generated by the TEMs is assumed to be uniformly distributed over the entire contact
area. Thus, the volumetric heat flux of the j-th TEM is given by

9qTEM,jpz, tq � 9̄qTEM,jptqfjpzq, (8.6)

where 9̄qTEM,jptq is a time-dependent volumetric heat flux and

fjpzq �

#
1 if pj � 1q l

NTEM
  z   j l

NTEM

0 else
(8.7)

defines the position of the contact surface. It is noted that 9̄qTEM,jptq could be considered
as a function of the applied electric current, the rod temperature at the contact surface
and the bottom temperature of the respective TEM. However, these dependencies are
not modelled here. Both the volumetric heat flux and the electric current are unknown
to the observer being designed. Therefore, modelling this relation would not add any
further value for observer design purposes.
Combining the equations (8.3)–(8.7) finally yields the parabolic PDE

BT pz, tq

Bt
�

k

cρ

B2T pz, tq

Bz2 � h
A

cρV

�
T pz, tq � Tamb

	
�

1
cρ

NTEM̧

j�1

9̄qTEM,jptqfjpzq. (8.8)

For a complete description of the temperature T pz, tq, suitable boundary conditions at
z � 0 and z � l must be specified. This is done by considering convective heat transfer
at the rod’s boundaries to the ambient air according to [112, eqn. (2.23)], which yields

BT pz, tq

Bz

∣∣∣∣∣
z�0

�
h̃

k

�
T p0, tq � Tamb

	
, (8.9a)

BT pz, tq

Bz

∣∣∣∣∣
z�l

� �
h̃

k

�
T pl, tq � Tamb

	
, (8.9b)

1The average heat transfer coefficient h can be considered as the weighted average of the heat
transfer coefficient to the ambient air and the heat transfer coefficient to the TEMs. The weights
correspond to the respective ratios of the contact surface. In the subsequent considerations h is
considered to be constant.

2The surface area A � 2bl � 2dl includes the bottom area, the top area and the two lateral side
areas. The surfaces at the boundary areas are considered later on in the boundary conditions of
the heat equation.
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Figure 8.4: Partitioning of the rod into a grid of N nodes inside of the rod for the
spatial discretization of the PDE (8.8). Two additional auxiliary nodes
are introduced at positions z0 and zN�1 outside the rod to account for the
boundary conditions.

where h̃ is the corresponding heat transfer coefficient. Note that the heat transfer
coefficients h and h̃ do not coincide. On the one hand, h additionally takes into
account the rod’s bottom side with the heat transfer to the TEMs. On the other
hand, the orientation of the surface also plays a significant role in the heat transfer. In
contrast to the top surface of the rod, the heated air can rise along the side surfaces.
This behaviour leads to an increased heat transfer at the side surfaces.

8.2.2 Spatial Discretization of the Partial Differential Equation

In the following, the PDE (8.8) and its boundary conditions (8.9) are spatially dis-
cretized following [112, Chapter 2.4.1]3. Thereby, the z-domain is divided into a regular
grid of nodes at discrete positions in which the spatial derivatives are substituted by
difference quotients. This discretization scheme is sufficiently accurate because the
grid will be chosen fine enough later. The result of the spatial discretization is given
by a system of first-order ordinary differential equations (ODEs), which is a finite-
dimensional approximation of the considered PDE.

Partitioning of the Rod into a Regular Grid of Nodes

The z-domain of the aluminium rod is divided into a regular grid of N � 2 nodes with
a discretization width of

∆z � l

N
, (8.10)

as depicted in Figure 8.4. Instead of the continuous temperature profile T pz, tq along
the rod, only temperatures Tiptq � T pzi, tq at the discrete positions

zi � �
∆z
2 � i �∆z, i � 0, . . . , N � 1, (8.11)

3In contrast to [112, Chapter 2.4.1], no discretization in time but only spatial discretization is
considered here.
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are considered, such that N nodes at z1, . . . , zN are located inside the rod and two
auxiliary nodes at z0 and zN�1 are located outside. The auxiliary nodes are required to
account for the boundary conditions. The boundaries are located centrally between the
respective auxiliary node and the first/last inner node4, i.e., at z 1

2
� 0 and zN� 1

2
� 0.

Approximation of the Second Spatial Derivative

The second spatial derivative of T pz, tq at position zi is approximated by the second
central difference quotient

BT pz, tq

Bz

∣∣∣∣∣
z�zi

�
Ti�1 � 2Ti � Ti�1

∆z2 �Op∆z2q, (8.12)

where the notation Op∆z2q indicates that the approximation error tends to zero
quadratically as the discretization width ∆z tends to zero. In this way, PDE (8.8) is
approximated by the ODE

dTi

dt �
k

cρ
�
Ti�1 � 2Ti � Ti�1

∆z2 � h
A

cρV

�
Ti � Tamb

	
�

1
cρ

NTEM̧

j�1

9̄qTEM,jptqfj,i (8.13)

in each node i � 1, . . . , N inside the rod, where fj,i � fjpziq. It is noted that for
N mod NTEM � 0, the energy balance of the TEMs is violated as a result of the
discretization5 of fjpziq. For this reason, it is beneficial to restrict the number of
nodes N to integer multiples of NTEM, i.e.,

N mod NTEM � 0. (8.14)

should be satisfied. Note that for i � 1 and i � N , the ODE (8.13) requires the
temperatures T0 and TN�1 of the auxiliary nodes, respectively. These dependencies
are resolved next by considering the boundary conditions.

Discretization of the Boundary Conditions

The spatial discretization is exemplarily performed for the left boundary condi-
tion (8.9a) as the result can be transferred directly to the right boundary condi-
tion (8.9b) for symmetry reasons.
The temperature T 1

2
� T p0, tq at the left boundary is approximated by a parabola

through the points z0, z1 and z2, see [112, eqn. (2.264)], which yields

T 1
2
�

1
8p3T0 � 6T1 � T2q. (8.15)

4It is also possible to design the grid in a different way, e.g. to place the first and the last node
directly on the boundary of the rod. For this application, however, the chosen grid (8.11) is
beneficial for consistency with the measurement data later on. For a proper choice of N , each
discretization node is located in the centre of a pixel of the thermal imaging camera, which allows
for a direct comparison of the observer estimates and the temperature measurements.

5In the case N mod NTEM � 0, nodes close to the border of two neighboured TEMs do not corre-
spond to one TEM only but should be shared proportionally between the TEMs. However, this
effect is not covered by the discretization of fjpziq.
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8 Temperature Profile Estimation of an Aluminium Rod subject to Unknown Excitation

The spatial derivative at the boundary is approximated by the central finite difference
quotient

BT pz, tq

Bz

∣∣∣∣∣
z�z 1

2
�0
�
T1 � T0

∆z �Op∆z2q. (8.16)

By substituting (8.15) and (8.16) into the boundary condition (8.9a) and solving for
T0, one gets

T0 �
8� 6B
8� 3BT1 �

B

8� 3BT2 �
8B

8� 3BTamb with B �
h̃∆z
k

. (8.17a)

The representation (8.17a) for T0 is finally substituted into the ODE (8.13) for i � 1
in order to eliminate the dependency on the auxiliary node temperature T0. The same
way,

TN�1 �
8� 6B
8� 3BTN �

B

8� 3BTN�1 �
8B

8� 3BTamb (8.17b)

can be obtained by exploiting the right boundary condition (8.9b), which allows to
eliminate the dependency of (8.13) for i � N on the auxiliary node temperature TN�1.

Temperature Measurements

As already discussed in Section 8.1.2, the rod temperature is measured at the positions
zy,j with j � 1, . . . , p. Hence, each measurement is approximated by the temperature
of the respective closest node, i.e.,

T pzy,j, tq ≊ Tr
zy,j
∆z s

with j � 1, . . . , p. (8.18)

8.2.3 Representation as Continuous-Time State-Space Model and
Parametrization

As a next step, the spatially discretized PDE model is summarized in the form of
a LTI continuous-time state-space model, which serves as the basis for the later ob-
server design. The required model parameters are identified and a reasonable spatial
discretization width is chosen.

Continuous-Time State-Space Model

To get rid of the unpleasant dependency of the model on the ambient temperature
Tamb, henceforth Tamb is assumed constant and the rod temperatures are referred to
Tamb, i.e.,

θi � Ti � Tamb. (8.19)
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8.2 Physical Modelling and Spatial Discretization

Furthermore, the state vector

θ �
�
θ1 . . . θN

�T
, (8.20)

the vector of inputs

u �
�
u1 . . . uNTEM

�T
�
�
9̄qTEM,1 . . . 9̄qTEM,NTEM

�T (8.21)

and the vector of measured outputs

y �
�
y1 . . . yp

�T
�
�
θr

zy,1
∆z s

. . . θr zy,p
∆z s

�T
(8.22)

are introduced. By combining the ODEs (8.13), the auxiliary node temperatures (8.17)
and the temperature measurements (8.18), a model in state-space representation

dθ
dt � Aθθ �Bθu,

y � Cθθ,
(8.23a)

with the dynamic matrix

Aθ �
k

cρ∆z2

�
����������

8�6B
8�3B

� 2 B
8�3B

� 1 0 . . . . . . 0
1 �2 1 . . . ...
0 1 �2 1 . . . ...
... . . . . . . . . . . . . 0
... . . . 1 �2 1
0 . . . . . . 0 B

8�3B
� 1 8�6B

8�3B
� 2

�
����������
�

hA

cρV
IN ,

(8.23b)

the input matrix6

Bθ �
1
cρ

�
�������

1 N
NTEM

�1 0 N
NTEM

�1 . . . 0 N
NTEM

�1

0 N
NTEM

�1 1 N
NTEM

�1
. . . ...

... . . . . . . 0 N
NTEM

�1

0 N
NTEM

�1 . . . 0 N
NTEM

�1 1 N
NTEM

�1

�
�������

(8.23c)

and the output matrix

Cθ �

�
���
eT
r

zy,1
∆z s...

eT
r zy,p

∆z s

�
��� (8.23d)

is obtained.
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8 Temperature Profile Estimation of an Aluminium Rod subject to Unknown Excitation

ρ k c h h̃

in kg{m3 in W{pm �Kq in J{pkg �Kq in W{pm2 �Kq in W{pm2 �Kq
2700 209 898 48.2 1982

Table 8.1: Density ρ, thermal conductivity k, specific heat capacity c and heat transfer
coefficients h and h̃.

Determination of the Model Parameters

The parameters required by the model are depicted in Table 8.1 and 8.2. The density
ρ, the thermal conductivity k and the specific heat capacity c of the rod material7
were taken from tables in the literature [113, pp. 634 and 637] and a data sheet [114]8.
The heat transfer coefficients h and h̃ were determined from a cool-down experiment
by minimizing a quadratic cost function.

l b d Tamb N

in mm in mm in mm in �C -
315 25 3 25 156

Table 8.2: Length l, width b, and thickness d of the rod, ambient temperature Tamb and
chosen number of nodes N for the spatial discretization of the PDE.

For the sake of completeness, the dimensions of the rod are given once more, since they
are required for the calculation of the surface-to-volume ratio of the rod. The ambient
temperature Tamb was measured at the beginning of the experiment and is assumed
constant hereafter. The number of nodes for the spatial discretization N � 156 is
beneficial due to the following reasons:

1. The grid has a discretization width of ∆z � 2 mm. This is sufficiently small
with respect to the resulting discretization error, which is confirmed by the
experimental results later on.

2. Since condition (8.14) is satisfied, the energy balances of the TEMs are not
violated by the spatial discretization.

3. Due to the position and the resolution of the thermal imaging camera, the dis-
tance between two adjacent pixels corresponds exactly to the discretization width
∆z. In other words, each node can be assigned to one pixel in the thermal image,
allowing for a straightforward validation of the node temperatures estimated by
the observer to be designed.

6Assuming N
NTEM

yields an integer number, i.e., condition (8.14) is satisfied.
7Aluminium alloy with material number EN AW-6060.
8Due to an obviously wrong value, the specific heat capacity could not be taken from [113, p. 639].
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8.3 Unknown Input Observer Design for the Estimation of the Temperature Profile

Unknown Inputs and Measured Outputs

In the following, the state-space model (8.23) is tailored with respect to the actually
active inputs and the actually available outputs. As mentioned, only two TEMs (u3
and u11) are actuated and, thus, need to be considered by the model for the observer.
Furthermore, u3 and u11 are considered to be unknown to the observer and, hence, are
considered as unknown input

w �
�
w1 w2

�T
�
�
u3 u11

�T
�
�
9̄qTEM,3 9̄qTEM,11

�T
. (8.24)

The temperature measurements given in (8.1) yield the output

y �
�
y1 y2 y3

�T (8.18)
�

�
θ27 θ93 θ142

�T
. (8.25)

Summary of the Model

Inserting the model parameters in coherent SI-units into (8.23), one finally ends up
with

dθ
dt � Aθθ �Dθw,

y � Cθθ,
(8.26a)

with the dynamic matrix

Aθ �

�
����������

�21.61 21.2 0 . . . . . . 0
21.14 �42.3 21.14 . . . ...

0 21.14 �42.3 21.14 . . . ...
... . . . . . . . . . . . . 0
... . . . 21.14 �42.3 21.14
0 . . . . . . 0 21.2 �21.61

�
����������

(8.26b)

the unknown-input matrix

Dθ � Bθ

�
e3 e11

�
(8.26c)

and the output matrix

Cθ �

�
� eT

27
eT

93
eT

142

�
� . (8.26d)

This LTI system of order N � 156 with m � 2 unknown inputs and p � 3 outputs
serves as the basis for the subsequent observer design.
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Original System
dθ
dt
� Aθθ �Dθw

y � Cθθ

Diagonal System�
9ξ1
9ξ2

�
�

�
Aξ,11 0

0 Aξ,22

� �
ξ1
ξ2

�
�

�
Dξ,1
Dξ,2

�
w

y �
�
Cξ,1 Cξ,2

� �ξ1
ξ2

�

Reduced-order System
9ξ1 � Aξ,11ξ1 �Dξ,1w
y � Cξ,1ξ1 �Cξ,2A

�1
ξ,22Dξ,2w

ξ2 � �A�1
ξ,22Dξ,2w

Augmented System
9x � Ax�D :w
y � Cx

System in Observer Normal Form
9x̄ � Āx̄� D̄ :w
ȳ � C̄x̄

Diagonalization

ξ �

�
ξ1
ξ2

�
� T ξθ

Model Order Reduction
9ξ2 � 0

Augmentation of the State Vector

x �

�
�ξ1

w
9w

�
�

Transformation to Observer Normalform
x̄ � T�1x
ȳ � Γy

Figure 8.5: Transformation of the original system into a form suitable for the observer
design. A modal model order reduction is applied first. The state vector
of the reduced-order system is augmented by the unknown input w and
its derivative. The resulting augmented system is transformed into the
proposed observer normal form for LTI multivariable systems with unknown
inputs, in which the observer is finally designed.
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8.3 Unknown Input Observer Design for the Estimation of the Temperature Profile

8.3 Unknown Input Observer Design for the Estimation of the
Temperature Profile

For the purpose of observer design, model (8.26) is first transformed into an appropriate
form. Figure 8.5 depicts the transformations applied. The original system (8.26)
exhibits a high order that causes numerical problems in calculating the transformation
into observer normal form. For this reason, a modal model order reduction is applied.
The system is transformed into diagonal form to identify the relevant system dynamics
represented by ξ1. The negligible dynamics represented by ξ2 are substituted by
a quasi-static approximation to reduce the system order. Then, the state vector is
augmented by the unknown input w and its first derivative 9w. The augmented system
is transformed into the proposed observer normal form, in which the observer design
is done. An equivalent discrete-time observer is designed for the final implementation
in a digital framework with periodically available measurements. In the following, the
individual steps are motivated and described in detail.

8.3.1 Modal Model Order Reduction

The given system (8.26) has a order of N � 156. A numerically stable transformation
into observer normal form is not possible with a realistic calculation accuracy. For this
reason, a modal model order reduction is applied, such that the reduced-order system
covers only the mainly relevant parts of the dynamics.
In order to identify the relevant dynamics, system (8.26) is transformed into diagonal
form using the regular state transformation

ξ � T ξθ with T�1
ξ �

�
v1 v2 . . . vN

�
, (8.27)

where v1,v2, . . . ,vN are the right eigenvectors of Aθ, see [115, pp. 70–72] or [116,
pp. 416–417]. The matrix Aθ has purely real and distinct eigenvalues and, thus, there
exist N linearly independent eigenvectors which ensure the state transformation (8.27)
to be invertible. The transformed system in diagonal form is given by

9ξ � Aξξ �Dξw,

y � Cξξ,
(8.28)

whereAξ � T ξAθT
�1
ξ � diagps1, s2, . . . , sNq is a diagonal matrix containing the eigen-

values s1, s2, . . . , sN , Dξ � T ξDθ and Cξ � CθT
�1
ξ . Without loss of generality, let

the eigenvalues s1, s2, . . . , sN corresponding to the eigenvectors v1,v2, . . . ,vN be in
descending order9, i.e.,

s1 ¡ s2 ¡ . . . ¡ sN . (8.29)

9As already mentioned, the system has purely real distinct eigenvalues only. In case of conjugate
complex eigenvalues the real part could be considered as the measure for the eigenvalue ordering.
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8 Temperature Profile Estimation of an Aluminium Rod subject to Unknown Excitation

Then, the state vector can be partitioned into ξ �
�
ξ1 ξ2

�T, where ξ1 P RNr corre-
sponds to Nr slow10 or unstable11 modes, whereas ξ2 P RN�Nr represents the remaining
N �Nr fast decaying modes. The dynamics (8.28) are rewritten in terms of the par-
titioned state vector, which yields�

9ξ1
9ξ2

�
�

�
Aξ,11 0

0 Aξ,22

� �
ξ1
ξ2

�
�

�
Dξ,1
Dξ,2

�
w,

y �
�
Cξ,1 Cξ,2

� �ξ1
ξ2

�
,

(8.30)

where Aξ,11 � diagps1, . . . , sNrq and Aξ,22 � diagpsNr�1, . . . , sNq. The transients of ξ2
decay faster with respect to those related to ξ1 and, hence, a quasi-static approximation
of its dynamics is applied. Therein, instead of the negligibly fast dynamics, it is
assumed that the steady-state value is reached immediately, i.e., 9ξ2 � 0. This allows
for reducing the original system order N to the order Nr of the relevant dynamics ξ1.
A detailed description of the quasi-static approximation is provided in Section 10.1 in
the appendix. According to the appendix, the reduced-order system is given by12

9ξ1 � Aξ,11ξ1 �Dξ,1w,

y � Cξ,1ξ1 �Cξ,2A
�1
ξ,22Dξ,2w,

(8.31a)

and the approximation of the remaining state variables yields

ξ2 � �A�1
ξ,22Dξ,2w. (8.31b)

It remains to choose the number of relevant modes Nr. Since a reasonable choice
directly from the eigenvalues is not intuitive, their negative inverses τi � � 1

si
,

i � 1, . . . , N , which can be interpreted as time constants of first-order linear dynam-
ics13, are considered instead. A glance at the set of time constants

τ1 � 54.86 s, τ2 � 32 s, τ3 � 17.12 s, τ4 � 9.83 s,
τ5 � 6.17 s, τ6 � 4.18 s, . . . , τ156 � 0.01 s,

(8.32)

suggests Nr � 4 as a reasonable choice, which takes into account all time constants
larger than 10 s (including τ4 � 10 s).

8.3.2 Augmentation of the Model for Additional Estimation of the Unknown
Inputs

In order to estimate the original system state, it is not sufficient to estimate ξ1 only
as the inverse of the state transformation (8.27) requires an estimate of ξ2. According
10Eigenvalues with small negative real part are considered as slow modes.
11The considered system has eigenvalues with negative real part only, i.e., there are no unstable

modes in this case.
12Note that Aξ,22 is invertible as all eigenvalues si � 0. Due to its diagonal structure, its inverse is

simple to compute and numerically unproblematic.
13In diagonal form, the system consists of decoupled scalar differential equations. In the case of purely

real negative eigenvalues si, these differential equations can be understood as a set of first-order
dynamics with time constant τi � � 1

si
connected in parallel.
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to (8.31b), the approximation of ξ2 requires the unknown input w. Hence, w must
be estimated from (8.31a) in addition to ξ1. For this purpose, the state vector is
augmented with w and its derivative 9w, i.e.,

x �

�
�ξ1
w
9w

�
� . (8.33)

System (8.31a) is rewritten in terms of the augmented state vector x which yields

9x � Ax�D :w,

y � Cx,
(8.34)

where

A �

�
� Aξ,11 Dξ,1 0Nr�m

0m�Nr 0m�m Im

0m�Nr 0m�m 0m�m

�
� , D �

�
�0Nr�m

0m�m

Im

�
� ,

C �
�
Cξ,1 �Cξ,2A

�1
ξ,22Dξ,2 0p�m

� (8.35)

and :w denotes the second derivative ofw. Note that the temperature profile estimation
problem has been reduced to the estimation of the state vector x of system (8.34) in
the presence of the unknown input :w.

8.3.3 Transformation to Observer Normal Form

In order to design an unknown input observer according to Section 6.2, system (8.34) is
transformed into the proposed observer normal form (6.1). The application of the cor-
responding state transformation x̄ � T�1x and output transformation ȳ � Γy yields

9̄x � Āx̄� D̄ :w,

ȳ � C̄x̄,
(8.36a)
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with the matrices

Ā �

�
�����������

0.037 1 0 0 �0.53 0 6.42 0
0.011 0 1 0 0.0076 0 1.71 0
�0.014 0 0 1 0.011 0 0.06 0
�0.001 0 0 0 0.0004 0 �0.0027 0

0.1 0 0 0 0.16 1 0.23 0
�0.025 0 �0.45 2.23 0.017 0 �0.6 0
0.0063 0 0 0 0.028 0 �0.41 1
�0.0005 0 �0.068 0.06 �0.0003 0 �0.11 0

�
�����������
,

D̄ � 10�4 �

�
�����������

0 0
0 0
0 0
0 0
0 0

52.4 �3
0 0

7.7 3.7

�
�����������
, C̄ �

�
� 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

�
� .

(8.36b)

The system in observer normal form (8.36a) has order n � 8, m � 2 unknown inputs
and p � 3 outputs. It consists of p � 3 coupled subsystems, each with a single output.
The second and the third subsystem of order µ2 � µ3 � 2 are directly affected by :w,
whereas the first subsystem of order µ1 � 4 is not.

8.3.4 Unknown Input Observer Design in Observer Normal Form

As proposed in Section 6.2, an observer of the form

9̄̂x � Āˆ̄x� Π̄σȳ � l̄pσȳq,
ˆ̄y � C̄ ˆ̄x �

�ˆ̄y1 ˆ̄y2 ˆ̄y3
�T
�
�ˆ̄x1 ˆ̄x5 ˆ̄x7

�T
,

(8.37a)

is designed, where

σȳ � ȳ � ˆ̄y �
�
σ1 σ5 σ7

�T (8.37b)

is the output error and the linear output-injection matrix compensating for the cou-
plings is given by

Π̄ �

�
�����������

0.037 �0.53 6.42
0.011 0.0076 1.71
�0.014 0.011 0.06
�0.001 0.0004 �0.0027

0.10 0.16 0.23
�0.025 0.017 �0.6
0.0063 0.028 �0.41
�0.0005 �0.0003 �0.11

�
�����������
. (8.37c)
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The remaining task deals with the choice of the nonlinear output injection l̄pσȳq. As
discussed in the previous section, the first subsystem is not directly affected by the
unknown inputs. For this reason, the application of a linear observer for this subsystem
is sufficient for asymptotic convergence14. For the second and the third subsystem, an
RED-based output injection is used in order to compensate for the unknown inputs.
In summary, the nonlinear output injection is given by

l̄pσȳq �

�
�����������

κ1,3σ1
κ1,2σ1
κ1,1σ1
κ1,0σ1

κ2,1tσ5s
1
2

κ2,0tσ5s
0

κ3,1tσ7s
1
2

κ3,0tσ7s
0

�
�����������
. (8.37d)

The particular choice of the tuning parameters κj,i is given in Section 8.4, Table 8.3.

8.3.5 Discrete-Time Implementation of the Unknown Input Observer

The designed unknown input observer should be implemented in a digital framework in
the laboratory. The thermal imaging camera serves as temperature sensor generating
discrete-time measurements with a frame rate of 10 Hz. Hence, a discrete-time imple-
mentation of the continuous-time observer (8.37) with discretization time td � 0.1 s
is required. In the following, all functions of time are considered at discrete-time
instances tk � ktd with k � 0, 1, 2, . . . representing the discrete time variable15. Here-
after, all discrete-time functions are denoted by the corresponding continuous-time
symbol expanded with the discrete time variable in the subscript, e.g. x̄k � x̄pktdq or
ȳk � ȳpktdq.
At first, the Forward Euler discretization of system (8.36) is considered, as it simple
to use and sufficiently accurate in this case16. Furthermore, the Forward Euler dis-
cretization preserves the insightful structure of the coupled subsystems, which allows
for directly applying established discretization schemes for the differentiator-based
output injection l̄pσȳq such as [34–41]. The Forward Euler discretization of (8.36) is
given by

x̄k�1 � Ādx̄k � D̄d :wk,

ȳk � C̄dx̄k,
(8.38)

14Although an RED-based observer theoretically converges in finite time, a linear observer will in
general converge faster into a certain error band from a practical point of view.

15Note that during the modelling, the thermal conductivity is also denoted by k. However, the
thermal conductivity is not required any more and, from the usage, it is easy to distinguish.

16The discretization time td � 0.1 s is small compared to the system dynamics. All remaining modes
are comparatively slow because of the previously applied modal model order reduction.
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where Ād � I � tdĀ, D̄d � tdD̄ and C̄d � C̄ �
�
c̄1 c̄2 c̄3

�T. In accordance with
the continuous-time observer (8.37), the discrete-time observer takes the form

ˆ̄xk�1 � Ād ˆ̄xk � Π̄dσȳ,k � l̄dpσȳ,kq,

ˆ̄yk � C̄d ˆ̄xk �
�ˆ̄y1,k

ˆ̄y2,k
ˆ̄y3,k

�T
�
�ˆ̄x1,k

ˆ̄x5,k
ˆ̄x7,k

�T
,

(8.39)

where the linear output-injection matrix Π̄d � tdΠ̄ partially decouples17 the subsys-
tems and the nonlinear output injection l̄dpσȳ,kq needs to be chosen appropriately. The
subsequently choice of l̄dpσȳ,kq follows the ideas of the so-called matching approach for
the discretization of homogenous differentiators [40, 41], which allows for suppressing
the discretization chattering phenomenon. Therein, the dynamics of the estimation
error

σk � x̄k � ˆ̄xk �
�
σ1,k . . . σ8,k

�T (8.40)

are given by

σk�1 � pĀd � Π̄dC̄dqσk � l̄dpσȳ,kq � D̄d :wk, (8.41)

The matrix Ād � Π̄dC̄d has the block-triangular form

Ād � Π̄dC̄d �

�
�Ād,11 04�2 04�2
Ād,12 Ād,22 02�2
Ād,13 02�2 Ād,33

�
� (8.42)

where the diagonal blocks

Ād,11 �

�
���

1 td 0 0
0 1 td 0
0 0 1 td
0 0 0 1

�
��� , Ād,22 � Ād,33 �

�
1 td
0 1

�
, (8.43)

refer to Forward Euler discretized chains of integrators and Ād,12 and Ād,13 account
for the remaining couplings βj,k,l, see Section 6.1.1. Due to this block-diagonal form, it
is reasonable to choose the l̄dpσȳ,kq such that the output injection into each subsystem
depends on its particular output only, i.e.,

l̄dpσȳ,kq �

�
�ψ̄1pσ1,kqσ1,k

ψ̄2pσ5,kqσ5,k

ψ̄3pσ7,kqσ7,k

�
� . (8.44a)

The functions ψ̄pσ1,kq, ψ̄2pσ5,kq, ψ̄3pσ7,kq are chosen according to [40, eqn. (24)],
such that the eigenvalues of pĀd,11 � ψ̄1pσ1,kqc̄

T
1,dq, pĀd,22 � ψ̄2pσ5,kqc̄

T
2,dq and

17As in the continuous-time case, the linear output injection compensates for the couplings originating
from the coefficients αj,k of Ā only. The couplings originating from the coefficients βj,k,l remain.
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pĀd,33 � ψ̄3pσ7,kqc̄
T
3,dq are located at

z1,i � etdp1,i ,

z2,ipσ5,kq � etdp2,i|σ5,k|�
1
2
,

z3,ipσ7,kq � etdp3,i|σ7,k|�
1
2
,

(8.44b)

respectively, where the constants pj,i, j � 1, . . . , 3, i � 0, . . . , µj are the zeros of
sµj � κj,µj�1s

µj�1 � . . .� κj,1s� κj,0 � 0. (8.44c)
It is pointed out that, since a linear observer has been designed for the first subsystem,
the eigenvalues z1,i and also ψ̄1pσ1,kq are constant, i.e., independent of σ1,k. The
assignment of the state-dependent eigenvalues (8.44b), e.g. by applying Ackermann’s
formula [89], finally yields

ψ̄1pσ1,kq �

�
�������������

4°
j�1
p1� z1,jq

1
td

4°
j1�1

4°
j2�1
j2�j1

p1� z1,j1qp1� z1,j2q

1
t2
d

4°
j1�1

4°
j2�1
j2�j1

4°
j3�1
j3�j1
j3�j2

p1� z1,j1qp1� z1,j2qp1� z1,j3q

1
t3
d
p1� z1,1qp1� z1,2qp1� z1,3qp1� z1,4q

�
�������������
,

ψ̄2pσ5,kq �

��
1� z2,1pσ5,kq

�
�
�
1� z2,2pσ5,kq

�
1
td

�
1� z2,1pσ5,kq

��
1� z2,2pσ5,kq

� � ,
ψ̄3pσ7,kq �

� �
1� z3,1pσ7,kq

��
1� z3,2pσ7,kq

�
1
td

�
1� z3,1pσ7,kq

��
1� z3,2pσ7,kq

�� .

(8.44d)

It is pointed out that the discrete-time observer (8.39) with the choice (8.44) for
l̄dpσȳ,kq formally approaches the continuous-time observer (8.37) as td Ñ 0.

8.4 Experimental Results

The discrete-time observer is implemented in a digital framework in the laboratory.
There, a desired electrical current can be applied to the TEMs and the temperature
measurements are available in real-time.

8.4.1 Experimental Procedure

In this experiment, the electric currents (in Ampere) of TEM 3 and TEM 11 were
chosen as

i3ptq � �0.6� 0.4 sin
�

2π
221pt� t0q



,

i11ptq � 0.6� 0.15 cos
�

2π
100pt� t0q



,

(8.45)
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i 0 1 2 3
κ1,i 0.0037 0.0611 0.3722 1
p1,i�1 �0.3 �0.2667 �0.2333 �0.2
κ2,i 0.44 0.9487 – –
p2,i�1 �0.4743� 0.4637j �0.4743� 0.4637j – –
κ3,i 0.22 0.6708 – –
p3,i�1 �0.3354� 0.3279j �0.3354� 0.3279 – –

Table 8.3: Chosen observer parameters κj,i, j � 1, . . . , 3, i � 0, . . . , µj � 1, see (8.37d).
The coefficients pj,i�1 are required for the discrete-time implementation
of the observer, see (8.44b) and (8.44c). The parameters are represented
rounded to four decimal places.

respectively. The time shift t0 is introduced because the electrical currents are switched
on a while before the observer is launched. This causes an initial temperature profile
different from the ambient temperature and, hence, yields a more interesting transient
response of the observer. Since the respective electrical current i3 is negative, TEM 3
is in cooling mode, whereas TEM 11 is in heating mode.
The observer requires the unknown inputs :w1 and :w2 to be bounded. As the electrical
currents and their derivatives are bounded, also the unknown inputs are bounded,
which follows from [109].
The chosen parameters of the observer are given in Table 8.3. For the linear observer
of subsystem 1, purely real eigenvalues were assigned, which are uniformly distributed
between �0.3 and �0.2. The RED-based observers for subsystems 2 and 3 were
chosen according to [29, Section 6.7]. As the bounds for the unknown inputs :w1
and :w2 are unknown, the scaling parameter was increased until convergence of the
respective output errors σ5 and σ7, see (8.37b), was achieved. The initial estimate
of the temperature profile T̂i is set to T̂ipt � 0q � 18�C, i � 1, . . . , 156. The initial
values for the unknown input estimate ŵ and the derivative estimate 9̂w are set to
ŵpt � 0q � 9̂wpt � 0q � 0. Individual pixels of the thermal camera, which are located
in the centre of the rod, serve as measurements for the observer as well as for its
validation.

8.4.2 Estimation Results

Figure 8.6 and Figure 8.7 depict the convergence of the observer estimates to the
actually measured temperature profile. Since the thermal imaging camera provides
two-dimensional pictures, the measured rod temperature is represented as surface,
where the height indicates the local temperature. In order to comparably represent
the observer estimates, which actually correspond to a line in longitudinal direction,
they are stretched in transverse direction. The position of the measurements used by
the observer are indicated by black lines.
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Measured

Positions of measurements
used by the observer

Estimated

Figure 8.6: Comparison of the measured and the estimated temperature profile along
the aluminium rod at t � 0 s, t � 2 s and t � 29 s. The further evolution
is depicted in Figure 8.7.
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8 Temperature Profile Estimation of an Aluminium Rod subject to Unknown Excitation

Figure 8.7: Comparison of the measured and the estimated temperature profile along
the aluminium rod at t � 66 s, t � 77 s and t � 82 s, see also Figure 8.6.
After approximately 82 s the temperature profile estimate has converged to
the actual temperature profile.
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8.4 Experimental Results

Due to the applied model order reduction, the initial estimate can not be represented
as a constant temperature of 18�C, but shows some small deviations. Furthermore, the
initial estimation is far off the actual temperature profile, also on average, which leads
to strong transients. After approximately 82 s it can be regarded that, practically, the
observer has converged, i.e., it approximates the rod’s temperature.
Figure 8.8 shows a comparison of the temperature measurements Ti and its respective
estimates T̂i at four exemplary positions distributed along the rod. Again, it becomes
apparent that the estimates track the actual temperatures after the transients phase.
It is noticeable that the estimates T9 and T147 located close to the rod boundaries have
lower accuracy than those located further inside the considered domain.
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Figure 8.8: Comparison of measurements Ti and estimates T̂i at four exemplary posi-
tions (out of N � 156 node positions in total) along the rod.

In order to illustrate the achieved estimation accuracy, all estimation errors Ti � T̂i

are shown in Figure 8.9. The majority of the estimation errors converges into a band
with an accuracy of �0.5�C. A few estimates, which are located close to one of the
boundaries, have a larger error band given by �0.7�C.
Figure 8.10 provides further insight in the statistics of the estimation error. Therein,
the mean and the standard deviation in steady-state are depicted as a function of the
position z. In addition to the positions of the measurements used by the observer,
also the positions of the active TEMs are plotted. The standard deviation of the
steady-state estimation error is almost constant along the rod, whereas the mean
varies depending on the particular position. A possible reason is the uncertainty of
the convective heat loss at the boundary, which explains the increasing error close
to the boundaries. Furthermore, the TEMs entail some uncertainty regarding their
position and the distribution of the generated heat flux, which might be not perfectly
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Figure 8.9: Evolution of the errors Ti � T̂i of the estimated temperature profile over
time. Within approximately 82 s, the errors convergence into a small band
around 0.
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Figure 8.10: Mean and standard deviation of the steady-state estimation error as a
function of the position z along the rod. The positions zy,1, zy,2 and zy,3
indicate the temperature measurements available to the observer. The red
areas mark the contact surface of the TEMs that excite the rod with a
heat flux unknown to the observer.
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uniformly distributed over the contact surface as assumed by the model, see (8.7). The
steady-state estimation error around the position of TEM 11 indicates such an error.
Figure 8.11 shows the estimates ŵ1 and ŵ2 of the volumetric heat fluxes w1 and w2.
Note that the actual values are unknown and, thus, not available for comparison.
However, the result seems plausible, as it suggest TEM 3 cooling and TEM 11 heating
the rod. Furthermore, the cycle durations of the estimated signals coincide with the
ones of the applied electrical currents i3 and i11. In comparison to the temperature
estimates, the estimates of the volumetric heat fluxes are quite noisy. This behaviour
can be explained by the fact that the signals are generated by differentiating noisy
temperature measurements with a quantization step size of 0.1�C. The given estimates
of the unknown heat fluxes can be used to identify proper models for the TEMs, see
[109].
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Figure 8.11: Estimates ŵ1 and ŵ2 of the volumetric heat fluxes generated by TEM 3
and TEM 11, respectively.

8.5 Summary, Conclusion and Outlook

The proposed observer design method for LTI multivariable systems with unknown
inputs has been successfully applied for the temperature profile estimation of an alu-
minium rod which is exposed to unknown heat fluxes. The PDE model of the rod was
spatially discretized and simplified by means of a modal model order reduction. The
resulting LTI system of lower order was transformed into the proposed observer nor-
mal form. It was demonstrated that, due the advantageous structure of the observer
normal form, the observer design is straightforward. The applied observer consists of
a linear part for subsystem 1, which is not directly affect by the unknown inputs, and
two RED-based parts for subsystem 2 and subsystem 3, whose dynamics are directly
influenced by the unknown inputs. A discrete-time implementation of the observer
was proposed for its implementation in a digital framework. The estimation results
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8 Temperature Profile Estimation of an Aluminium Rod subject to Unknown Excitation

illustrate that the given observer is suitable for estimating the rod’s temperature pro-
file with high accuracy. The experiment successfully demonstrates that the proposed
observer design method constitutes an applicable solution to practical problems.
The discrete-time implementation of the observer uses the Forward Euler discretized
plant in order to carry over the appreciated structure of coupled subsystems from the
continuous-time model. Future work should deal with more accurate approaches using
zero-order hold (ZOH) discretization of the plant which gets especially important for a
large discretization time td. The available methods for homogeneous differentiators [34,
40] could serve as a basis for work in this research direction.
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9
Conclusion and Outlook

In this final chapter of the thesis, conclusions are drawn on the research
work presented and an outlook on possible new research topics in this field
is given.

9.1 Conclusion

In this thesis, the problem of unknown input observation for LTI systems was consid-
ered. In particular, the class of strongly observable systems was investigated, since
the error dynamics of these systems can be specified entirely by the observer. Once
the unknown input observation problem is solved for the strongly observable case, the
extension to the more general class of strongly detectable systems, which fulfil the
minimum requirement for the design of stable unknown input observers with asymp-
totically decaying estimation error, is straightforward, see Section 7.2.
Although the considered system class is a very basic one, it was found that all existing
unknown input observer concepts exhibit adverse properties. Their application either
requires the system to satisfy restrictive structural conditions, relies on bounded state
variables or yields an unnecessarily high observer order which results in a complex
design and tuning procedure. For this reason, the aim was to develop new design
approaches for unknown input observers to avoid those limitations and disadvantages
of existing methods.
Like many other unknown input observers in the literature, the ones proposed in this
thesis are based on existing numerical differentiation methods. The decisive difference
to existing work is given by the underlying system representation in which these meth-
ods are applied. One of the main findings of this thesis is that it is not the respective
differentiation method that is decisive, but rather the chosen representation of the
system under consideration.
In the SISO case the classical observability canonical form proved to be the key for
the unknown input observer design. Due to the beneficial system structure, numerical
differentiators can be applied as unknown input observers in a straightforward manner
without suffering from the aforementioned limitations and disadvantages of existing
approaches. If the respective differentiator is selected from a particular family of
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homogeneous differentiators, the observer design can even be carried out in original
coordinates, i.e., without explicitly transforming the system. The proposed design
formula for the calculation of the output error injection can be regarded as a nonlinear
generalization of Ackermann’s formula. A necessary condition on the choice of the
observer parameters supports the tuning of the unknown input observer.
In contrast to the SISO case, the MIMO case turned out much more complex, espe-
cially due to the couplings between inputs and outputs. There were no suitable normal
forms for the design of unknown input observers available in the literature, which mo-
tivated the development of a new observer normal form. At first glance, the proposed
observer normal form is reminiscent of Luenberger’s observability canonical form for
multivariable systems. However, by permitting additional coupling terms between
the subsystems, a specific structure of the unknown-input matrix is achieved which is
advantageous in terms of the unknown input observer design. Once the system is rep-
resented in observer normal form, the application of different numerical differentiators
is straightforward. Again, the resulting unknown input observer does not suffer from
the limitations and disadvantages of existing approaches and a necessary condition on
the choice of the observer parameters is provided.
One additional strength of the proposed observer concept is the great degree of ver-
satility. The respective numerical differentiation scheme can be selected individually
for each of the subsystems in observer normal form. For example, it can be chosen
depending on the desired convergence properties of the estimation error. Extensions
to systems with direct feed-through1, strongly detectable systems and systems with
unbounded unknown inputs with bounded derivative were presented. The exemplary
application to state-feedback control for systems with matched disturbance inputs was
demonstrated. Moreover, a method for minimizing the required observer parameters
in the case of unknown inputs with asymmetric bounds was proposed.
Finally, the practical applicability of the proposed unknown input observer was suc-
cessfully demonstrated by estimating the temperature profile along an aluminium rod
subjected to unknown external heat fluxes. For the realization in a digital frame-
work, a discrete-time implementation of the unknown input observer was developed
and promising estimation results were obtained.

9.2 Outlook

Future research could deal with the following two important topics which emerge from
the practical application presented in the Chapter 8.

Numerical stability of the proposed transformations: The spatial discretization of
the PDE considered in Chapter 8 results in a system of high order. Due to numerical
problems, it is not possible to transform this system into the proposed observer normal
form and, hence, a model order reduction is applied. Future research could focus
on a numerically stable implementation of proposed transformations into observer

1The observer normal form considers systems without direct feed-through only.
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normal form. The work presented in [117, 118] may serve as a starting point for the
development of numerically stable algorithms.

Discretization of the unknown input observer: In practical applications, a discrete-
time version of the unknown input observer is typically required. In the application
example presented in Chapter 8, the discretization of the unknown input observer is
based on the Forward Euler discretization of the continuous-time plant. This type of
discretization is advantageous in the sense that it maintains the beneficial structure of
coupled subsystems from the continuous-time domain. However, if the discretization
time is not sufficiently small, this discretization method exhibits a very poor approx-
imation accuracy. Future work should involve more accurate approaches using e.g.
zero-order hold discretization of the plant. The available approaches for homogeneous
differentiators [34, 40] could serve as a basis for research in this direction.
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10
Appendix
10.1 Model Order Reduction for High-Order LTI Systems Using

Quasi-Static Approximation

Consider an LTI system partitioned into�
9x1
9x2

�
�

�
A11 A12
A21 A22

� �
x1
x2

�
�

�
B1
B2

�
u,

y �
�
C1 C2

� �x1
x2

�
�Eu,

(10.1)

where the state vector x1 covers the relevant directions of the system dynamics whereas
the dynamics of x2 are neglected in order to reduce the overall system order. In a
quasi-static approximation as discussed in [119, p. 285] and [120], it is assumed that x2
does not follow the dynamics any more, but that all changes happen instantaneously,
i.e.,

9x2 � 0. (10.2)

Thus, the dynamics of x2 turn into a system of algebraic equations, which is solved
for

x2 � �A�1
22 A21x1 �A

�1
22 B2u (10.3)

assuming that A22 is invertible. Insertion of (10.3) reduces the original system (10.1)
to the reduced order system

9x1 � pA11 �A12A
�1
22 A21qlooooooooooomooooooooooon

Ar

x1 � pB1 �A12A
�1
22 B2qloooooooooomoooooooooon

Br

u,

y � pC1 �C2A
�1
22 A21qloooooooooomoooooooooon

Cr

x1 � pE �C2A
�1
22 B2qlooooooooomooooooooon

Er

u.
(10.4)

In steady-state, x1 and x2 approximated by the low-order system (10.4) and the
algebraic relation (10.3), respectively, coincide with the states of the original system
(10.1).
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10.2 Proof of Lemma 6.3.1

In the following, the parts (a) to (f) of Lemma 6.3.1 are proven. The proofs are adopted
from:[51]
H. Niederwieser, M. Tranninger, R. Seeber, M. Reichhartinger, Unknown input ob-
server design for linear time-invariant multivariable systems based on a new observer
normal form, International Journal of Systems Science 53 (10) (2022) 2180–2206.
doi:10.1080/00207721.2022.2046201

10.2.1 Proof of Lemma 6.3.1(a)

Since Step 1 relies on the steps SCB.1, SCB.2 and SCB.3 of the decomposition al-
gorithm proposed in [25, Section 5.3, pages 119-127] this proof mainly refers to the
results given in the cited book. Therein, a structural decomposition of a general LTI
system of the form (6.2) into four parts is presented. Due to the considered system
class only the strongly observable system parts (labelled as b and d in [25]) need to
be considered. The regular output transformation (6.11) and the regular state trans-
formation x̃ �

�
x̃T

1 . . . x̃T
p

�T
� Zx decompose the system into p coupled chains of

integrators of the form

.

x̃j �

�
������

0 1 0 . . . 0
... . . . . . . . . . ...
... . . . . . . 0
0 . . . . . . 0 1
0 . . . . . . . . . 0

�
������ x̃j �

�
������

0T

...

...
0T

ãT
j

�
������ x̃� Ξ̃jy �

�
�������

0T

...

...
0T

d̃
T
j

�
�������
w,

ȳj �
�
1 0 . . . 0

�
x̃j,

(10.5)

with one single output ȳj, some linear combination of w as unknown input and some
couplings ãT

j x̃ in the last differential equation. In this representation, w either oc-
curs explicitly only in the µj-th derivative of ȳj or does not explicitly act on the jth
subsystem at all if d̃T

j � 0T, i.e., under the output injection Ξ̃jy the relative degree
of ȳj with respect to w, if it exists, is equal or larger than µj. Thus, by applying the
output injection Ξy � Z�1

�
Ξ̃T

1 . . . Ξ̃T
p

�T
y and the output transformation (6.11)

to the original system (6.2) one exactly obtains the auxiliary system (6.14) satisfying
the conditions (6.17) and (6.18).

10.2.2 Proof of Lemma 6.3.1(b)

In order to show that the transformation matrix T given in (6.37) is non-singular, a
procedure similar to the one in [80] is applied. Consider constants ξj,i such that the
linear combination of the column vectors of the transformation matrix T equals the

120

https://doi.org/10.1080/00207721.2022.2046201
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zero vector, i.e.,

p̧

j�1

µj�1̧

i�0
ξj,itµ1�����µj�i � 0. (10.6)

Substituting tµ1�����µj�i according to (6.45) and multiplication of both sides with cT
j̄ Ǎ

ī

from the left-hand side yields

p̧

j�1

µj�1̧

i�0
ξj,i

�
čT

j̄ Ǎ
i�ī
tµ1�����µj

�
p̧

r�j�1

i̧

q�1
βj,r,µj�qč

T
j̄ Ǎ

i�q�ī
tµ1�����µr

�
� 0. (10.7)

Due to the choice of the vectors tµ1 , tµ1�µ2 , . . . , tn in (6.38), they satisfy
�
�������������������

čT
1
...

čT
1 Ǎ

µ1�1

čT
2
...

čT
2 Ǎ

µ2�1

...
čT

p
...

čT
p Ǎ

µp�1

�
�������������������

�
tµ1 tµ1�µ2 . . . tn

�
�

�
������������������

0 0 . . . 0
... ... ...
1 0 . . . 0
0 0 . . . 0
... ... ...
0 1 . . . 0
... ... ...
0 0 . . . 0
... ... ...
0 0 . . . 1

�
������������������

. (10.8)

Consider equation (10.7) for ī � 0. Taking into account (10.8) reduces (10.7) to

ξj̄,µj̄�1 � 0 for j̄ � 1, 2, . . . , p. (10.9)

Furthermore, consider equation (10.7) for ī � 1. Taking into account (10.8) and (10.9)
reduces (10.7) to

ξj̄,µj̄�2 � 0 for j̄ � 1, 2, . . . , p. (10.10)

Continuing in this way, ξj,i � 0 can be shown for j � 1, 2, . . . , p, i � 0, 1, . . . , µj � 1.
Hence, it can be concluded that the columns of the transformation matrix T are
linearly independent and, thus, T is non-singular. Note that this proof does not
require any restrictions regarding the coefficients βj,k,l and, thus, T is non-singular
regardless of the values of βj,k,l.

10.2.3 Proof of Lemma 6.3.1(c)

The existence of a unique solution βpjq of the system of equations (6.42) is ensured,
if and only if the matrices Hpjq are non-singular in any case for j � 1, . . . , p � 1.
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Consider the determinant

detHpjq (6.39)
�

∣∣∣∣∣∣∣∣∣∣∣

H
pjq
j�1,j�1 � � � H

pjq
j�1,p�1 H

pjq
j�1,p

... . . . ... ...
H

pjq
p�1,j�1 � � � H

pjq
p�1,p�1 H

pjq
p�1,p

H
pjq
p,j�1 � � � H

pjq
p,p�1 Hpjq

p,p

∣∣∣∣∣∣∣∣∣∣∣
. (10.11)

Since the block Hpjq
p,p of size pµj �µpq� pµj �µpq is an upper unitriangular matrix, see

(6.40), its determinant satisfies

detHpjq
p,p � 1. (10.12)

Furthermore, its inverse always exists and is again upper unitriangular, i.e.,

Hpjq
p,p

�1
�

�
����

1 � � � � �

0 . . . . . . ...
... . . . . . . �
0 � � � 0 1

�
���� , (10.13)

which allows to rewrite the determinant (10.11) in terms of the Schur complement of
Hpjq

p,p, i.e.,

detHpjq� detHpjq
p,plooomooon

(10.12)
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H

pjq
p,j�1 � � � H

pjq
p�1,p�1 �H

pjq
p�1,pH

pjq
p,p

�1
H

pjq
p,p�1

∣∣∣∣∣∣∣∣∣ .
(10.14)

Furthermore, due to the special structure of the blocks Hpjq
r,p, Hpjq

p,s given in (6.40) and
Hpjq

p,p

�1 indicated in (10.13), the blocks

Hpj,1q
r,s �Hpjq

r,s �H
pjq
r,pH

pjq
p,p

�1
Hpjq

p,s for r � j � 1, . . . , p� 1,
s � j � 1, . . . , p� 1,

(10.15)

of the matrix in (10.14) offer exactly the same structure as the original blocks Hpjq
r,s ,

i.e., the zero elements and also the ones on the main diagonal for the case r � s
of the original matrix Hpjq are preserved. Thus, it is again possible to rewrite the
determinant (10.14) in terms of the Schur complement of Hpj,1q

p�1,p�1 which is again
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upper unitriangular, i.e.,
detHpjq �detHpj,1q

p�1,p�1loooooomoooooon
�1

�

∣∣∣∣∣∣∣∣
�
��H

pj,1q
j�1,j�1 � � � H

pj,1q
j�1,p�2

... . . . ...
H

pj,1q
p�2,j�1 � � � H

pj,1q
p�2,p�2

�
���

�
��H

pj,1q
j�1,p�1

...
H

pj,1q
p�2,p�1

�
��Hpj,1q

p�1,p�1
�1 �

H
pj,1q
p�1,j�1 � � � H

pj,1q
p�1,p�2

�∣∣∣∣∣∣∣∣ �

�

∣∣∣∣∣∣∣∣∣∣
H

pj,1q
j�1,j�1 �H

pj,1q
j�1,p�1H

pj,1q
p�1,p�1

�1
H

pj,1q
p�1,j�1 � � � H

pj,1q
j�1,p�2 �H

pj,1q
j�1,p�1H

pj,1q
p�1,p�1

�1
H

pj,1q
p�1,p�2

... . . . ...
H

pj,1q
p�2,j�1 �H

pj,1q
p�2,p�1H

pj,1q
p�1,p�1

�1
H

pj,1q
p�1,j�1 � � � H

pj,1q
p�2,p�2 �H

pj,1q
p�2,p�1H

pj,1q
p�1,p�1

�1
H

pj,1q
p�1,p�2

∣∣∣∣∣∣∣∣∣∣
.

(10.16)
Again, the blocks

Hpj,2q
r,s �Hpj,1q

r,s �H
pj,1q
r,p�1H

pj,1q
p�1,p�1

�1
H

pj,1q
p�1,s for r � j � 1, . . . , p� 2,

s � j � 1, . . . , p� 2,
(10.17)

of the matrix in (10.16) offer the same structure asHpj,1q
r,s and, thus, also as the original

blocks Hpjq
r,s , which again allows to rewrite the determinant in (10.16) in terms of the

Schur complement of the upper unitriangular matrix Hpj,2q
p�2,p�2 and so on. Continuing

this way until

detHpjq � detHpj,p�j�2q
j�2,j�2looooooomooooooon
�1

�
∣∣∣Hpj,p�j�2q

j�1,j�1 �H
pj,p�j�2q
j�1,j�2 H

pj,p�j�2q
j�2,j�2

�1
H

pj,p�j�2q
j�2,j�1

∣∣∣ �
� detHpj,p�j�1q

j�1,j�1 � 1 � 0,
(10.18)

it finally follows that Hpjq is non-singular and, thus, there always exists a unique
solution of the system of equations (6.42).

10.2.4 Proof of Lemma 6.3.1(d)

Multiplication of (6.12a) with T from the left-hand side and substitution of A by the
decomposition (6.13) yields

TĀ � ǍT �ΞCT . (10.19)
The results of Lemma 6.3.1(f) and the insertion of the identity matrix Γ�1Γ allow to
simplify the term ΞCT to

ΞCT � ΞΓ�1 ΓCTloomoon
(6.12c)
� C̄

(6.1d)
� ΞΓ�1

�
����

eT
1

eT
µ1�1
...

eT
µ1�����µp�1�1

�
���� �

�
�
α̃1 0n�pµ1�1q α̃2 0n�pµ2�1q . . . α̃p 0n�pµp�1q

�
,

(10.20)
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where α̃j P Rn, j � 1, . . . , p. Using (10.20) and the definitions of Ā in (6.1b) and T
in (6.37) allows to express equation (10.19) in terms of its column vectors, i.e.,

�
Tα1 t1 �

p°
r�2

β1,r,1tµ1�����µr . . . tµ1�1 �
p°

r�2
β1,r,µ1�1tµ1�����µr

Tα2 tµ1�1 �
p°

r�3
β2,r,1tµ1�����µr . . . tµ1�µ2�1 �

p°
r�3

β2,r,µ2�1tµ1�����µr . . .

Tαp tµ1�����µp�1�1 . . . tn�1

�
�

�

�
Ǎt1 � α̃1 Ǎt2 . . . Ǎtµ1

Ǎtµ1�1 � α̃2 Ǎtµ1�2 . . . Ǎtµ1�µ2 . . . Ǎtµ1�����µp�1�1 � α̃p Ǎtµ1�����µp�1�2 . . . Ǎtn

�
,

(10.21)

where αj �
�
αj,1 . . . αj,n

�T, j � 1, 2, . . . , p. It follows from (10.21) that the matrix
Ā offers the desired structure (6.1b) if

tµ1�����µj�i �
p̧

r�j�1
βj,r,µj�itµ1�����µr � Ǎtµ1�����µj�i�1 (10.22)

for j � 1, 2, . . . , p, i � 1, 2, . . . , µj�1, is satisfied. This is shown by finally substituting
tµ1�����µj�i and tµ1�����µj�i�1 into (10.22) according to (6.45), i.e.,

Ǎ
i
tµ1�����µj

�
p̧

r�j�1

i̧

q�1
βj,r,µj�qǍ

i�q
tµ1�����µr �

p̧

r�j�1
βj,r,µj�itµ1�����µr �

�Ǎ

�
Ǎ

i�1
tµ1�����µj

�
p̧

r�j�1

i�1̧

q�1
βj,r,µj�qǍ

i�q�1
tµ1�����µr

�
,

(10.23)

which is true for all j � 1, 2, . . . , p, i � 1, . . . , µj � 1.

10.2.5 Proof of Lemma 6.3.1(e)

Insertion of the identity matrix O�1
R OR into the transformation rule (6.12b) for the

unknown-input matrix D̄ of the transformed system yields

D̄
(6.12b)
� T�1D � T�1O�1

R ORD. (10.24)
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Note that OR is invertible which directly follows from Lemma 6.3.1(a). Condition
(6.18) allows to express the product ORD as

ORD
(6.16)
�

�
�����������������

čT
1D
...

čT
1 Ǎ

µ1�2
D

čT
1 Ǎ

µ1�1
D

...
čT

pD
...

čT
p Ǎ

µp�2
D

čT
p Ǎ

µp�1
D

�
�����������������

(6.18)
�

�
����������������

0T

...
0T

čT
1 Ǎ

µ1�1
D

...
0T

...
0T

čT
p Ǎ

µp�1
D

�
����������������

�
p̧

j�1
eµ1�����µj

čT
j Ǎ

µj�1
D.

(10.25)
Substituting (10.25) into (10.24) and taking into account (6.38) yields

D̄
(10.25)
�

p̧

j�1
T�1O�1

R eµ1�����µj
čT

j Ǎ
µj�1

D �

(6.38)
�

p̧

j�1
T�1tµ1�����µj

čT
j Ǎ

µj�1
D.

(10.26)

The vector tµ1�����µj
corresponds to the pµ1 � � � � � µjq-th column of T , i.e.,

tµ1�����µj
� Teµ1�����µj

, which allows to simplify (10.26) to

D̄ �
p̧

j�1
T�1Teµ1�����µj

čT
j Ǎ

µj�1
D �

p̧

j�1
eµ1�����µj

čT
j Ǎ

µj�1
D �

�
����������������

0T

...
0T

čT
1 Ǎ

µ1�1
D

...
0T

...
0T

čT
p Ǎ

µp�1
D

�
����������������

,

(10.27)
which finally completes the proof.

10.2.6 Proof of Lemma 6.3.1(f)

The output matrix C̄ of the transformed system can be expressed by its elements, i.e.,

C̄
(6.12c)
� ΓCT (6.15)

�
(6.37)

�
��
čT

1
...
čT

p

�
���t1 . . . tn

�
�

�
��
čT

1 t1 . . . čT
1 tn

... ...
čT

p t1 . . . čT
p tn

�
�� , (10.28)
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where the single elements can be described as

čT
j̄ tµ1�����µj�i

(6.45)
� čT

j̄ Ǎ
i
tµ1�����µj

�
p̧

r�j�1

i̧

q�1
βj,r,µj�qč

T
j̄ Ǎ

i�q
tµ1�����µr (10.29)

for j̄ � 1, . . . , p, j � 1, . . . , p and i � 0, . . . , µj �1. In the following, the scalar product
čT

j̄ tµ1�����µj�i given in (10.29) is considered for the cases (a) j̄   j, (b) j̄ � j and (c)
j̄ ¡ j:

(a) For j̄   j, all the terms on the right-hand side of (10.29) vanish which follows
directly from (10.8), i.e.,

čT
j̄ tµ1�����µj�i � č

T
j̄ Ǎ

i
tµ1�����µjlooooooomooooooon

(10.8)
� 0

�
p̧

r�j�1

i̧

q�1
βj,r,µj�q č

T
j̄ Ǎ

i�q
tµ1�����µrloooooooomoooooooon

(10.8)
� 0

� 0

(10.30)

for j̄ � 1, . . . , p� 1, j � j̄ � 1, . . . , p and i � 0, . . . , µj � 1.
(b) For j̄ � j, (10.29) simplifies to

čT
j tµ1�����µj�i � č

T
j Ǎ

i
tµ1�����µj

�
p̧

r�j�1

i̧

q�1
βj,r,µj�q č

T
j Ǎ

i�q
tµ1�����µrloooooooomoooooooon

(10.8)
� 0

�

� čT
j Ǎ

i
tµ1�����µj

(10.8)
�

#
1 if i � µj � 1
0 else

(10.31)

for j � 1, . . . , p, i � 0, . . . , µj � 1.
(c) In the case j̄ ¡ j, only the coefficients βj,r,µj�q whose indices satisfy µj � q ¥ µr

are nonzero, see (6.44), and make a contribution to the sum in (10.29) which
allows to change the upper limit of the summation with respect to the index q
as

čT
j̄ tµ1�����µj�i � č

T
j̄ Ǎ

i
tµ1�����µj

�
p̧

r�j�1

µj�µr¸
q�1

βj,r,µj�qč
T
j̄ Ǎ

i�q
tµ1�����µr

(10.32)

for j̄ � 2, . . . , p, j � 1, . . . , j̄ � 1, i � 0, . . . , µj � 1. Since the

term
p°

r�j�1

µj�µr°
q�1

βj,r,µj�qč
T
j̄ Ǎ

i�q
tµ1�����µr reassembles the left-hand side of the�

pj̄ � j � 1qµj � pµj�1 � � � � � µj̄q � i
�th equation (6.42), it equals the corre-

sponding right-hand side of (6.42), i.e.,

p̧

r�j�1

µj�µr¸
q�1

βj,r,µj�qč
T
j̄ Ǎ

i�q
tµ1�����µr � č

T
j̄ Ǎ

i
tµ1�����µj (10.33)
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for j̄ � 2, . . . , p, j � 1, . . . , j̄ � 1, i � 0, . . . , µj � 1. Substituting (10.33) into
(10.32) yields

čT
j̄ tµ1�����µj�i � č

T
j̄ Ǎ

i
tµ1�����µj

� čT
j̄ Ǎ

i
tµ1�����µj

� 0 (10.34)

for j̄ � 2, . . . , p, j � 1, . . . , j̄ � 1, i � 0, . . . , µj � 1.
Putting together the intermediate results (10.30), (10.31) and (10.34) yields

čT
j̄ tµ1�����µj�i �

#
1 if j̄ � j and i � µj � 1
0 else

(10.35)

for j̄ � 1, . . . , p, j � 1, . . . , p i � 0, . . . , µj � 1. Substituting (10.35) into (10.28) finally
proves that C̄ has the desired form (6.1d).
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List of Abbreviations
ISS Input-To-State Stable

LTI Linear Time-Invariant

MIMO Multiple-Input Multiple-Ouput

ODE Ordinary Differential Equation

PDE Partial Differential Equation

RED Robust Exact Differentiator

SISO Single-Input Single-Ouput

TEM Thermoelectric Module

ZOH Zero-Order Hold
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