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Abstract: 
Generative modelling in neural network research involves creating models that generate new data samples resembling a given dataset, 
contrasting with discriminative modelling which classifies or predicts outcomes. First, we show how a tailored generative adversarial 
network can be used to create synthetic TBM data to enhance predictive models in tunnelling. Followed by a variational autoencoder 
model customized for anomaly detection in tunnel boring machine (TBM) data. We show how these techniques improve data-driven 
decision-making, enhancing safety and efficiency in geotechnical engineering and tunnelling projects. 
 

1 Introduction 
The concept of generative modelling in neural network 
research, involves creating models that can generate new data 
samples resembling a given dataset [1]. It contrasts with 
discriminative modelling, which focuses on classifying or 
predicting outcomes based on input data [2]. In generative 
modelling however, the goal is to understand and replicate the 
underlying data distribution of the input data. 
In the context of construction engineering, the application of 
generative networks like Generative Adversarial Networks 
(GANs) and Variational Autoencoders (VAEs) recently 
gained momentum [3]. In this work we will briefly introduce 
GANs and VAEs, with an example application for each. 
GANs consist of two neural networks, a generator and a 
discriminator, that compete against each other [4]. In our 
application example the generator creates synthetic 
representations of the input data, while the discriminator 
evaluates their authenticity. This adversarial process can result 
in highly realistic synthetic data, which is invaluable for 
enhancing predictive models in tunnelling [5]. 
On the other hand, VAEs focus on learning a compressed 
representation of the input data. They encode input data into a 
latent space and then decode it back, ensuring the generated 
data remains similar to the original [6]. We show an 
application of this process for anomaly detection in tunnel 
boring machine (TBM) data, as VAEs can identify deviations 
from normal operational patterns, facilitating early detection 
of potential issues. 
By leveraging these advanced generative modelling 
techniques, geotechnical engineering can significantly 
improve data-driven decision-making, enhancing safety and 
efficiency in tunnelling projects. 

1.1 Synthetic TBM data generation 
Machine learning (ML) models are extremely data hungry 
geotechnical datasets however, are often limited in quantity, 
show unbalanced distributions and thus sometimes fall short in 
fulfilling all requirements for certain empirical, constitutive or 
analytical geotechnical tasks. Aggravatingly, in the field of 
geotechnics, confidentiality limits the use or real datasets for 
ML purposes. 
Synthetically generated data sets, on the other hand, can 
provide a remedy in many situations where the use of real data 
is restricted. Data synthesis is primarily about generating new, 

unprecedented data that can be used to evaluate and train ML 
models. Data generated by GANs has similar properties to the 
original data, but still consists of unique patterns without the 
possibility of tracing the technical content of the original data. 
The requirements we place on the synthetic data are dualistic 
in nature, as described in [5]. On the one hand, the data must 
be sufficiently dissimilar to the original data so that it does not 
cause any confidentiality problems (demand for originality). 
On the other hand, it must show the same patterns and follow 
the same rules as the original data in order that it can be used 
as if it were real data (demand for conformity). Figure 1 shows 
a graphical representation of the GAN's input in the first row 
(i.e., random noise vector); every second row shows examples 
of the original data and rows three, five and seven show 
examples of the generated data. 

 
Fig. 1: Results of the GAN for the generation of synthetic TBM data 

(after [5]) 

By applying a tailored GAN trained on real observations it is 
possible to generate new, synthetic and realistic TBM 
operational data. We confirm that both demands imposed on 
the synthetic data are fulfilled. The newly produced data shows 
the same patterns and follows the same rules as the original 
data and can be used in data analysis as if it were real TBM 
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data (demand for conformity), but still presents unique 
samples with no connection to the technical content of the 
original data (demand for originality). 

1.2 Anomaly detection in TBM data 
In this section a second application of generative networks is 
presented utilising a VAE for anomaly detection in TBM 
operational data [7]. 
The dataset used is the same as in e.g. [8], [9]. Key sections 
were selected for model testing, while the remaining data was 
used to train the ML algorithm. Since training data without 
anomalies is required, sections that have been classified as 
fault zones by the project specific rock mass classification 
system Geological Index (GI) [10] were removed from the 
training data. 
A VAE is an algorithm, that consists of an encoder and a 
decoder neural network, where the encoder performs a 
dimensionality reduction of the input to a latent space, from 
which the decoder learns to reconstruct the input, minimizing 
the reconstruction error. If an Autoencoder is trained on data 
with no anomalies and is then exposed to anomalous data, the 
reconstruction error increases significantly, allowing for 
anomaly detection by setting a threshold for this error. A 
statistical method utilizing an adjusted boxplot for skewed 
distributions [11] as applied in [12] was chosen to define that 
threshold. 
Figure 2 shows the resulting reconstruction errors on the three 
chosen test sections in blue in combination with the skewness 
adjusted threshold in black. The background colours indicated 
the GI classifications as follows: GI 1: dark green, GI 2: light 
green, GI 3: orange and GI 4: red. 
The graphs show that parts, where the threshold is exceeded 
by the reconstruction error, correlate with geologically 
relevant fault zones classified as GI 4. However, significant 
delays occur in the anomaly detection and the width of the 
sections is not fully represented. 

 

 

 
Fig. 2: Results of the anomaly detection with a VAE. The first row 

(test dataset 1) shows a section with two geotechnically 
relevant fault zones; the second row (test dataset 2) a section 
without fault zones and the third row (test dataset 3) a mix of 
good and bad rock mass conditions. (after [7]) 

1.3 Conclusion 
In the presented use cases, we demonstrate the potential of 
generative models to significantly advance ML applications 
within the field of geotechnics as well as serve as valuable 
decision tools in practical engineering. 
Synthetic data provides relief in situations where the use of 
real data is restricted or limited, contributing to the 
improvement of empirical, constitutive or analytical 
geotechnical tasks. 
The subsequent stage of the anomaly detection approach will 
be the real-time adaptation of the proposed system, which will 
enable the TBM driver to receive real-time decision support.  
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