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Abstract
Machine learning systems have increasingly become integrated into decision-
making processes across various domains and their outcomes can significantly
impact individuals’ lives. These systems can perpetuate unfair bias, especially to-
wards subpopulations belonging to certain gender, race, or ethnicities, which are
referred to as sensitive attributes. While tools and algorithms have been devel-
oped to address such biases and mitigate them, a newer and less-explored area of
intersectional fairness has gained more attention. This area examines bias that can
occur at the intersection of multiple sensitive attributes. However, the intersec-
tion of numerous sensitive attributes can lead to an excessive number of obtained
subgroups, challenging the detection of bias.

This Master’s thesis investigates intersectional bias across four datasets that are
publicly available and evaluates the effectiveness of bias mitigation methods in
this context. To address the challenge of selecting the attributes for intersectional
analysis, a detection algorithm is utilized to detect the attributes that are at the
highest risk of discrimination. The results reveal that fairness is decreased in an
intersectional setting compared to a non-intersectional one. Moreover, the findings
demonstrate that bias mitigation methods can increase fairness, however, their ef-
fectiveness varies across datasets and tasks. Furthermore, applying bias mitigation
methods can introduce trade-offs, reducing the models’ accuracy, or introducing
new disparities across fairness metrics.

This work highlights the importance of addressing intersectional fairness and
provides insight into the complexity of achieving it. It demonstrates the bene-
fit of using semi-automated tools to identify high-risk intersectional groups and
underscores the challenges in mitigating the detected unfair biases against these
groups.
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1 Introduction
Recent developments and advances in Artificial Intelligence (AI) systems enable
the possibility of applying them in different domains, including those where AI
is responsible for making decisions that can impact individuals’ lives [4]. In such
domains, sensitive attributes, which are intrinsic and fundamental characteristics
of an individual’s identity, play a crucial role. Since AI systems have become more
prevalent in everyday life, the number of unfair bias incidents towards such sen-
sitive attributes has increased. These biases can change the outcomes of machine
learning models, leading, for example, to wrongly categorized data in the case of
a classification task [5]. In the research field of AI, the issue of fairness has gained
more attention as much recent research has identified several machine learning
applications that create unfair predictions, especially for marginalized groups [5].
Therefore, the field of identifying unfair bias and its sources, as well as addressing
it, has emerged in the last years, various methods and tools [3] offering these pos-
sibilities. Furthermore, bias mitigation methods have been developed [10, 68, 14],
aiming to reduce the effects of bias and improve fairness results.

However, while there has been significant progress in identifying unfair bias
as well as mitigating it, most of the works focus only on ”a single sensitive axis”
such as gender (Men vs. Women) or race (Caucasian vs. Black) [49]. A more
recent growing issue that is often overlooked when discussing bias in machine
learning systems is the challenge of addressing intersection of sensitive attributes,
also referred to as intersectionality [21]. The combination of sensitive attributes
(for example gender and race) creates unique subpopulations that may experience
distinct forms of bias and fairness challenges. An intersectional perspective allows
for a nuanced analysis of bias, revealing hidden biases that might otherwise go
unnoticed. For example, recent studies have demonstrated that machine learning
models exhibiting little or no unfair bias towards individual sensitive attributes
can fail to obtain the same level of fairness at the intersection of these attributes
[12, 43].

Despite its importance, intersectional fairness is still a topic that is relatively un-
explored in the context of AI. Work on bias detection and mitigation focuses mainly
on analyzing data without incorporating intersectional groups [11], therefore fail-
ing to identify this type of bias. Existing literature on this topic focuses mainly on
the intersection of at most two binary sensitive attributes [30]. In practice, data
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1 Introduction

typically contains multiple protected attributes that may lead to a multitude of
subgroups being at risk of discrimination.

Nevertheless, incorporating intersectional groups for fairness analysis can be
challenging. The intersection of non-binary sensitive attributes can lead to a large
number of subgroups which can impede this process. Therefore, the decision about
which attributes to intersect is crucial [77].

The aim of this work is to investigate intersectional fairness in datasets that are
publicly available by using an algorithm that ranks the most sensitive attributes
in a dataset and creates intersectional groups accordingly. Moreover, this work
intends to check whether unfair bias exists or is amplified within these created
intersectional groups. Finally, existing bias mitigation will be applied to investigate
whether these mitigations can yield fairer results.

1.1 ResearchQuestions
To address the challenges mentioned above, this section defines the following three
research questions:

• RQ1: To what extent can a semi-automated approach assist in identifying
sensitive attributes and forming relevant intersectional groups within public
datasets?

One of the challenges in considering intersectionality is choosing which at-
tributes to include. On the one hand, defining and creating new intersec-
tional groups by combining different sensitive attributes can lead to an ex-
cessive number of subgroups within each new group. On the other hand,
ignoring attributes to reduce the amount of data can exclude important at-
tributes that are at risk of discrimination. Therefore, this research question
aims to investigate whether an existing algorithm that detects and ranks the
most sensitive attributes can assist in forming intersectional groups.

• RQ2: Does the consideration of intersectional groups reveal or amplify hidden
biases that are not evident in non-intersectional groups?

There can be the case that a machine learning model exhibits no apparent
bias or little bias when analyzing the dataset without intersectional groups.
However, biases may emerge when considering intersectional groups. This
question aims to explore the effectiveness of bias detection methods in re-
vealing hidden bias within the intersectional groups created, as mentioned
in Q1.

2



1 Introduction

• RQ3: To what extent can existing bias mitigation methods reduce unfair bias
in the case of intersectional groups, and what are the implications on model
performance?

Bias mitigation methods have been integrated into existing fairness toolkits
(for example, Aequitas Flow1, Fairlearn2, or AIF3603), making them accessi-
ble to a wide range of users. However, their effectiveness has been studied in
non-intersectional cases, with little work focusing on their applicability on
intersectional groups [18]. This research question evaluates how such meth-
ods, available through public frameworks, perform in intersectional scenar-
ios. Moreover, the effects on the overall model performance are investigated.

1.2 Contributions
The contributions of this Master’s thesis to the current state of the art of the topic
are the following:

• First, this thesis uses a detection algorithm to identify and rank the most
sensitive attributes in public datasets, including those that might not tradi-
tionally be recognized as sensitive. Previous works [38, 81] have used such
algorithms solely to detect the most sensitive attributes. In contrast, the ap-
proach in this Master’s thesis takes the top-ranked sensitive attributes and
intersects them to create meaningful intersectional groups. This method en-
sures a balance by considering a sufficient number of attributes for inter-
section while avoiding an excessive number of new subgroups. Current un-
derstanding indicates that this has not been previously attempted by other
works.

• Second, it highlights the importance of considering intersectional groups in
unfair bias analysis, especially when datasets have more than two sensitive
attributes. The results demonstrate how unfair biases can emerge or be am-
plified when considering intersectionality, providing insight into hidden bias
that might not be detected in non-intersectional analysis.

• Third, it evaluates the effectiveness of bias mitigation methods in the inter-
sectional case. Moreover, it investigates the trade-offs between achieving
fairness and the classification performance of a model. This analysis also

1https://github.com/dssg/aequitas?tab=readme-ov-file
2https://fairlearn.org/v0.11/userguide/mitigation/index.html
3https://aif360.res.ibm.com/
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1 Introduction

identifies the current limitations when applying bias mitigation methods for
the intersectional case.

An overview of the steps taken to answer the research questions can be observed
in Figure 1.1: first, public datasets are selected and filtered, then sensitive attributes
are detected using an algorithm and based on that detection, intersectional groups
are created (RQ1). Next, the datasets are evaluated for biases associated with the
identified intersectional groups (RQ2), and finally, bias mitigation methods are ap-
plied to reduce or eliminate detected biases (RQ3). The results are then analyzed
and discussed.

Figure 1.1: Flowchart representing the organization of this Master’s thesis.

1.3 Structure
This document is organized as follows: Chapter 2 provides foundational concepts
necessary to understand the topic of unfair bias within AI, along with an overview
of the current state of the art in this field. Chapter 3 outlines the approach taken to
address the research questions. Next, Chapter 4 details the methodology used to
investigate and answer these questions through experiments. Chapter 5 presents
and discusses the results derived from these experiments, offering insights into the
effectiveness of the proposed methods. Finally, Chapter 6 summarizes the findings,
draws conclusions, and discusses open challenges, while in Appendix, a work-in-
progress visualization tool is presented where results from this Master’s thesis can
be incorporated.

1.4 Terms and Definitions
To provide clarity and ensure a shared understanding, this subsection defines key
terms used throughout this thesis.

4



1 Introduction

Protected attributes: These are personal characteristics of individuals that are
protected by laws or regulations4 against discrimination. Examples include age,
disability, race, religion, etc.

Sensitive attributes: These are characteristics of individuals that could be sub-
ject to discrimination in AI systems. These attributes may lead to biased or unfair
outcomes if not handled carefully in the design or deployment of machine learn-
ing models. Sensitive attributes can overlap with protected attributes, but can also
include other characteristics that, while not legally protected, are prone to unjust
treatment in specific contexts (for example: education, income, etc.) [9].

Intersectional groups: These are groups obtained by intersecting sensitive at-
tributes, such as gender and age [80]. This thesis considers only the intersection
of two sensitive attributes. The categories obtained by such intersections will be
referred to as intersectional subgroups (for example, men older than 50 years).

(Un)Privileged groups: Privileged and unprivileged groups refer to popula-
tions often defined by one or more sensitive attributes [15]. Privileged groups are
those more likely to receive positive outcomes or classifications, while unprivi-
leged groups are those disproportionately less likely to do so.

Binary classification: A binary classification task is a type of supervised learn-
ing problem where the goal is to categorize instances into two distinct classes [55].
These classes are usually labeled as 0 or 1 or as True or False. To classify the in-
stances, a machine learning models is trained using labeled data, where each in-
stance has an associated class label. The goal is to predict the class label of unseen
instances, based on the learned model. For a binary classification task, the model’s
output represents the decision that reflects the probability of a instance belonging
to a particular class (class 0 or 1). In this thesis only binary classification tasks are
considered.

Bias in machine learning systems: Bias can be described as the tendency
to produce unjust outcomes due to flawed assumptions. In the context of AI or
machine learning, bias can reflect how models can generate errors that result in
unfair or prejudiced decisions [51].

(Un)Fairness in machine learning systems: In decision-making processes,
fairness refers to the impartial treatment of individuals or groups, without any
favoritism based on inherent characteristics. In comparison, if a machine learn-
ing system makes decisions that favor or disadvantage a specific group, then its
outcome is considered unfair [53].

Bias mitigation methods: These are methods that are developed to decrease
or remove detected unfair bias from a dataset or a classifier’s outcomes [53].

4https://www.equalityhumanrights.com/equality/equality-act-2
010/protected-characteristics
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2 Related Work and Background
This chapter aims to offer a better understanding of the key concepts related to
fairness in AI models, as well as an overview of the current state of the art and
challenges in the field. It presents topics such as sensitive attributes and their
detection and selection, bias, and its sources, bias mitigation strategies, intersec-
tionality in the context of bias in machine learning systems, and its importance.

2.1 Sensitive attributes
Investigating and mitigating unfairness in machine learning systems is centered
around sensitive attributes, which are attributes that can be at risk of discrimina-
tion at any state of AI system’s cycle. Common sensitive attributes include gen-
der, age, or ethnicity, which can reflect real-world social biases or prejudice when
present in datasets. The investigation of bias is based on analyzing how different
bias-indicating metrics differ between the privileged group of a sensitive attribute
and the unprivileged groups. Typically, the privileged group can be defined as the
most represented group within an attribute, but also as the group that is socially
or historically known to have more privileges (for example, white people).

Usually, the sensitive attributes are chosen by taking into consideration differ-
ent anti-discrimination laws or acts 1 2. However, it is possible that attributes other
than those typically defined as sensitive have an influence on the fairness of predic-
tions [15]. It has been shown that even if the sensitive attributes are removed from
the model training, unfairness was not eliminated entirely, due to proxy attributes
[71, 37, 48]. Proxy attributes might not seem sensitive, but they can be related to
the sensitive attributes and can contain hidden sensitive information about an in-
dividual. For example, proxy attributes can include characteristics such as income,
education level, number of working hours, address, postal code, etc. [15].

One well-known term describing such cases is redlining, which originated in the
United States after it was discovered that banks refused to invest in specific neigh-

1https://archive.equalityhumanrights.com/en/equality-act-201
0/what-equality-act

2https://www.eeoc.gov/statutes/title-vii-civil-rights-act-196
4
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2 Related Work and Background

borhoods by marking them with red on maps. Although race did not directly factor
into the decision making process, the neighborhoods marked with red were pre-
dominantly those that had a higher number of residents of color. Thus, attributes
like address or neighborhood postal code acted as a proxy variable that indirectly
influenced decisions [50].

One solution to address the issue of identifying the sensitive attributes is to de-
tect them in an (semi-)automated way. For instance, authors from [38] proposed a
method to automatically detect sensitive attributes based on user queries, assign-
ing weights to attributes such as social security numbers, names, age, or gender.
Similarly, the authors from [81] developed a system that uses regular expressions
and a machine learning model to detect sensitive attributes in medical records.
Despite its strengths, the authors note that their approach is limited due to both
the size of the data used as well as a lack of consideration for other factors such as
socioeconomic status. Moreover, the main focus of these methods is to detect and
remove attributes that could identify individuals, ensuring privacy. As a result,
they also prioritize identifying attributes such as names, social security numbers,
or email addresses. In contrast, for the topic of bias analysis such attributes are
not relevant because they pertain to individuals rather than representing charac-
teristics shared by a group.

2.2 Unfair Bias in Machine Learning Systems
Machine learning systems have become a part of our society as they assist people
in making decisions about music, movies, products, or travel. On top of that, AI
systems have started to be used in domains where the decision-making action is
more serious. Such domains include: hiring decisions [4], advertisements [72],
bank credits [31], or public health [65]. Although one might think that the use of
AI systems should make more precise and fairer decisions than human decision-
makers, in reality, AI systems’ results can be influenced by bias [53]. This leads to
what is known as unfair bias, where the predictions made by a machine learning
model unjustly differ across disadvantaged groups, such as those defined by race
or gender [54].

One known example is the Correctional Offender Management Profiling for Al-
ternative Sanctions (COMPAS) tool which was used in the United States to analyze
the risk of a convicted person committing another crime in the future. Based on
this tool, judges decided whether a person should be released earlier from prison
or not. In the analysis of this software, it was discovered that for black people the
false positive rates are much higher than for white people, meaning that the sys-
tem considered that a black person has a higher chance of committing crime again.

7



2 Related Work and Background

For instance, the software assigned a higher risk score to a young black woman
who was accused of misdemeanors than to a white man who had committed armed
robberies [5].

Another case of unfairness has been identified for an algorithm used to assign
grades to students. The decision was based on students’ information such as pre-
vious grades and teacher-estimated grades. However, the algorithm proved to be
biased against high-achieving students attending schools in poorer neighborhoods
3. For example, students from such neighborhoods who were Spanish native speak-
ers were predicted to fail the Spanish exam.

Unfair bias has also been identified in an AI algorithm built to assess beauty in
a beauty pageant. This algorithm analyzed over 6000 uploaded pictures of people,
but out of 44 winners, only one person had dark skin. This result was later followed
back to the input data that was used for training which did not include enough
diversity 4.

Therefore, it is important to ensure that machine learning systems do not make
decisions that show discriminatory behaviors toward different populations. Given
the increased use of machine learning systems in sensitive domains, numerous
analyses have been undertaken to address the issue of unfair bias and to point out
the importance of ensuring fairer systems [47, 17].

2.3 Metrics
To quantify unfair bias, a set of fairness metrics has been defined in literature [73].
Many of these metrics are based on the confusion matrix. The confusion matrix is a
tabular representation of a classifier’s performance, summarizing the relationship
between predicted and actual outcomes. Table 2.1 displays the confusion matrix
for binary classification tasks. For a binary classification task, the actual and the
predicted classes have two values: positive and negative.

Actual positive Actual negative
Predicted positive True Positive (TP) False Positive (FP)
Predicted negative False Negative (FN) True Negative (TN)

Table 2.1: Confusion Matrix

3https://www.nytimes.com/2020/09/08/opinion/international-bac
calaureate-algorithm-grades.html

4https://www.theguardian.com/technology/2016/sep/08/artificia
l-intelligence-beauty-contest-doesnt-like-black-people

8

https://www.nytimes.com/2020/09/08/opinion/international-baccalaureate-algorithm-grades.html
https://www.nytimes.com/2020/09/08/opinion/international-baccalaureate-algorithm-grades.html
https://www.theguardian.com/technology/2016/sep/08/artificial-intelligence-beauty-contest-doesnt-like-black-people
https://www.theguardian.com/technology/2016/sep/08/artificial-intelligence-beauty-contest-doesnt-like-black-people
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For a binary classification task, the confusion matrix contains four elements
[73]:

• True positive (TP): cases that belong to the positive class and are predicted
positive.

• True negative (TN): cases that belong to the negative class and are pre-
dicted negative.

• False positive (FP): cases that belong to the negative class but are predicted
positive.

• False negative (FN): cases that belong to the positive class but are predicted
negative.

The confusion matrix also offers insight into the overall model performance
through measures such as accuracy. Accuracy [27] is defined as the proportion
of correctly classified instances (both positive and negative) to the total number of
instances, calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN

2.3.1 Statistical Metrics
Statistical metrics are derived from the confusion matrix and can be calculated
individually for each attribute (for example, gender), respectively, for each group
(for example, women or men) within an attribute.

For a better understanding of the definitions that will be presented in this sec-
tion, the following notations are used:

• y ∈ 0, 1: The actual true label of a binary classification problem.

• ŷ ∈ 0, 1: The predicted label for a binary classification problem.

• A = a1, a2, ..., an, sensitive attribute with multiple groups. For example A =
gender, while a1 = men, a2 = women.

• P (Y = 1), P (Y = 0): probability of Y to be 1, respectively 0.

• P (Ŷ = 1), P (Ŷ = 1): probability of Ŷ to be 1, respectively 0.

In [75], the authors provide a list of most known statistical metrics:
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1. Precision (Predictive positive value): represents the probability of cases
predicted positive to actually belong to the predicted positive class.

Precision(PPV ) =
TP

TP + FP
= P (Y = 1|Ŷ = 1)

2. Predictive negative value: represents the probability of cases predicted
negative to actually belong to the predicted negative class [7].

NPV =
TN

TN + FN
= P (Y = 0|Ŷ = 0)

3. Predicted Positive Rate: represents the fraction of a group that was pre-
dicted as positive.

PPR = P (A = ai|Ŷ = 1)

4. True Positive Rate: represents the probability of cases predicted positive
to actually belong to the actual positive class.

TNR =
TN

TN + FP
= P (Y = 0|Ŷ = 0)

5. True Negative Rate: represents the probability of cases predicted negative
to actually belong to the actual negative class.

TNR =
TN

TN + FP
= P (Y = 0|Ŷ = 0)

6. False Discovery Rate: represents the fraction of negative cases that were
predicted positive out of all positive predicted cases.

FDR =
FP

FP + TP
= P (Y = 0|Ŷ = 1)

7. False Omission Rate: represents the fraction of positive cases that were
predicted negative out of all negative predicted cases.

FOR =
FN

FN + TN
= P (Y = 1|Ŷ = 0)
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8. False Positive Rate: represents the fraction of cases predicted incorrectly
positive out of all negative actual cases.

FPR =
FP

FP + TN
= P (Y = 0|Ŷ = 1)

9. False Negative Rate: represents the fraction of cases predicted incorrectly
negative out of all positive actual cases.

FNR =
FN

FN + TP
= P (Y = 1|Ŷ = 0)

2.3.2 Definitions of Fairness
Defining fairness in machine learning systems is challenging because it is difficult
to quantify fairness into a single definition [75]. Depending on the task, the per-
spective of fairness can be different. Fairness metrics are typically computed at the
level of sensitive attributes, comparing the outcomes of specific metrics between
privileged and unprivileged groups within those attributes. Common definitions
of fairness include [75]:

1. Statistical Parity: all groups (both privileged and unprivileged) should
have a similar probability of being assigned to the positive class [23].

2. Predictive parity/Precision: both privileged and unprivileged groups
should have an equal PPV, meaning that all groups should have the same
probability of belonging to the positive class if they have a positive predicted
value [19].

3. Negative predictive value parity: both privileged and unprivileged
groups should have equal NPV, meaning that all groups should have a sim-
ilar probability of belonging to the negative class if they have a negative
predicted value [75].

4. Equal opportunity: the probability of correctly predicting the positive out-
come should be the same across all groups [34].

5. Equalized odds: both privileged and unprivileged groups should have equal
TPR and FPR, meaning that the probability of a subject from the positive class
being assigned to a positive class and the probability of a subject from the
negative class being assigned incorrectly to the positive class should be the
same for both the privileged and unprivileged [34].
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6. False positive error rate balance: both privileged and unprivileged groups
should have equal FPR [19].

7. False negative error rate balance: both privileged and unprivileged
groups should have eqaul FNR [19].

2.3.3 Bias Sources
In machine learning models, bias can occur in different phases of the AI life cy-
cle such as the collection of training data or the model design. This will lead to
obtaining unfair and biased results [61]. In [53], the authors provide an in-depth
description of different types of bias that can influence machine learning mod-
els. They categorize bias definitions into three main categories: data to algorithm,
algorithm to user, and user to data.

1. Data to algorithm bias: If an algorithm is trained on biased data, the patterns
it learns will also reflect that bias. Consequently, when the algorithm is ap-
plied to new data, its predictions are likely to be biased as well. This type
of bias originates from the data itself and propagates through the machine
learning model. Examples of this type of bias can include:

• Measurement bias: This happens during the collection of the features
and labels that will later be used for the prediction task, especially
when one category of the population is measured or observed more
frequently than the others [71].

• Omitted variable bias: Leaving out one or more important attributes
can exclude significant information that the model would base its pre-
diction on. Therefore the exclusion of these attributes can change the
prediction results and can negatively affect the model’s performance
[20].

• Representation bias: If the data collected does not contain enough di-
versity, the machine learning models cannot learn enough information
about the populations that are less represented in the dataset [71].

• Aggregation bias: Occurs when general assumptions are made for the
whole dataset, failing to identify that some attributes might not have
the same importance or significance for all the individuals in the dataset
[71].

2. Algorithm to user : Bias in machine learning algorithms will affect their out-
put which will also lead to a biased user experience and it is not necessarily
connected to the input data:
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• Popularity bias: This occurs in recommendation systems and search
engines when popular items are shown to users more frequently than
less popular ones. However, popularity metrics can be manipulated
through means such as fake reviews, meaning that the increased pop-
ularity and visibility of some items may not reflect their quality, but
rather other biased factors [57].

• Algorithmic bias: This can be caused during the algorithm design, op-
timization, regularization and whenever the developers evaluate the
model’s performance [8].

• User interaction bias: The way the user interacts with various inter-
faces can be biased and it can be influenced by how the information is
presented (presentation bias) or by the fact that most ranked items or
results are the most attractive and the most popular (ranking bias) [8].

• Evaluation bias: This arises during the evaluation phase of a model
when benchmark datasets used to measure a model’s performance do
not represent real-world cases or the broader population. If these
benchmarks are not representative (for example, they lack diverse
data), models may perform well only on the benchmark but fail to gen-
eralize to diverse populations [71].

3. User to data: In many cases, the datasets on which the machine learning
models are trained, are based on data generated by users (polls, web searches,
reviews, etc). The bias in the user will reflect in the choices they make and
therefore the data they create.

• Historical bias: Existing societal bias in the real world can be easily
reflected in data generation [71].

• Population bias: Occurs when the attributes of a platform’s user base,
like demographics or user characteristics, differ from those of the in-
tended broader population. This mismatch leads to data that does not
accurately represent the original target group, which can skew findings
or insights based on the platform’s data [59].

• Social bias: Being influenced by other’s opinions, reviews, and behav-
iors can lead to changes in one’s decisions or judgments [8].

2.3.4 Bias Mitigation Strategies
There are three known types of bias mitigation or reduction mechanisms, depend-
ing on which phase of the AI cycle are applied: pre-processing, in-processing, and
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post-processing methods [15].
• Pre-processing methods: Such methods will attempt to reduce the existing

bias in the data before training a machine learning model on it.
– Sampling methods: Aim to either over-sample or under-sample the

training data in order to change the distribution of samples [35, 16].
– Relabelling or massaging methods: Involve flipping or changing labels

in the training data to balance the positive outcomes across the defined
sensitive attributes, but without changing the class distribution [39].

– Perturbation methods: Change the distribution of specific attributes in
the training data to reduce the bias [78].

– Reweighing methods: Assign weights to the training instances, creat-
ing a balance between the sensitive samples without changing the data
directly [39].

• In-processing methods: Modifies the existing machine learning algorithms in
such a way that the bias is minimized.

– Constraint optimization methods: Integrate fairness constraints into
the classifier’s loss function, aiming to improve the fairness results.
Some methods will attempt to find a balance between the accuracy and
the fairness objective [6].

– Regularization methods: Similar to the constraint optimization, such
methods seek to penalize the classifier for unfair decisions, by adding
penalty terms [40].

• Post-processing methods: This approach usually tries to modify the predicted
labels to achieve certain fairness goals:

– Thresholding methods: Adjust the decision boundaries to reduce the
bias after a model was trained. To obtain the desired fairness results,
a threshold value is set for the sensitive attributes based on various
fairness metrics [34].

Limitations

Although bias mitigation approaches are crucial for improving fairness, they face
several limitations. Modifying the data may compromise it and may create data
that does not reflect real-world characteristics. For the mitigation to be effective,
the modified data should be close to the original. Additionally, mitigation methods
may introduce a trade-off between the accuracy of the models and balancing these
two can be challenging [15].
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2.3.5 Fairness Assessment Tools
Fairness assessment tools are important in analyzing and understanding detected
unfair bias. They help identify unfair patterns, calculate fairness metrics and assist
in mitigating the bias. Some of the most known tools are:

• IBM AI Fairness 360 (AIF360) 5: provides calculation of various fairness met-
rics and mitigation methods for binary classification tasks, as well as visual-
ization options for better understanding of the outcomes.

• Aequitas 6: provides fairness reports evaluated for the subgroups of the pro-
tected attributes, as well as bias mitigation methods, but only for binary
classification tasks.

• Microsoft Fairlearn 7: assesses and mitigates bias for both binary classifica-
tion and regression tasks.

• Responsibly: similar functionalities, but supports natural language process-
ing (NLP) tasks 8.

• Fairlens 9: offers bias and fairness measurements and supports sensitive at-
tributes detection.

2.4 Intersectional Fairness
As noted in the section above, numerous works have investigated unfair bias in
machine learning systems. However, a significant number of these works focus
mainly on singular dimensions such as gender or race. This approach fails to
address the intersectionality of these categories and therefore unfairness is not
checked for individuals that might belong to two categories (black women, Asian
men, etc).

The term ’intersectionality’ was first introduced by [21] in an essay that ex-
plained how multiple dimensions of identity can shape an individual’s experiences
of racism, disadvantages, or privileges. It also highlights how focusing only on one
dimension of identity can overlook intersecting ways of discrimination.

5https://aif360.readthedocs.io/en/stable/
6http://aequitas.dssg.io/
7https://fairlearn.org/
8https://github.com/ResponsiblyAI/responsibly
9https://github.com/synthesized-io/fairlens
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One important work on unfair bias [12] analyzed three facial recognition algo-
rithms from Microsoft, IBM, and Face++ and noted that all three algorithms per-
form worse on women images than men as well as on dark skinned people than
lighter skinned ones. Moreover, they investigated how the algorithms performed
for the intersectional groups (darker females, darker males, lighter females, and
lighter males) and found that again all three algorithms gave poor performances
for darker females, where the error rates were significantly higher (23%-36%) than
the rates for lighter females (0% - 7%).

Such findings drew the attention that intersectionality is a topic that must be
addressed in machine learning systems. There have been recent works that aimed
to define notions of intersectionality and ways to identify it. In [41] the phe-
nomenon of Fairness Gerrymandering is defined, which occurs when a machine
learning model performs well for individual groups but fails to perform the same
way for intersectional subgroups. In their paper, the authors aimed at satisfying
fairness constraints for a ”combinatorially large or even infinite collection of struc-
tured subgroups definable over protected attributes”. The subgroups are based
on the number of protected groups: if there are n number of protected groups,
then the number of subgroups should be 2n. The paper introduces a new concept
called ’subgroup fairness’ that considers notions of fairness such as statistical par-
ity across many structured groups. To decide if an outcome for a subgroup is fair,
the study calculates the difference between the probabilities of positive outcomes
between a subgroup and the entire population. The difference is re-weighted de-
pending on the size of the subgroup with respect to the population. The smaller
the difference then the more fair the result is.

Challenges
One of the biggest challenges when considering intersectional groups is the num-
ber of new attributes obtained. If the number of original protected attributes is
large, considering the approach of 2n would be computationally challenging and
impractical as it could result in many subgroups. This would lead to difficulties in
evaluating fairness across every possible intersectional group and a large number
of intersectional attributes can result in small subgroups with low representation
in the dataset [44]. Therefore, the question of which attributes should be included
in the intersectional case arises.

To address this challenge, several methods have been proposed to automatically
detect intersectional subgroups at the highest risk of discrimination. For instance,
[63] identifies disadvantaged subgroups focusing on groups formed by intersecting
pre-defined protected attributes. In [62], the authors propose a method of detecting
subgroups of a dataset that ”differ from the whole dataset” with respect to defined
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metrics of interest such as false positive and negative rates. The visualization tool
presented in [13] enables users to create subgroups by combining existing dataset
attributes but also suggests the users whose subgroups might be disadvantaged.
In this approach, the suggested subgroups are identified by grouping similar data
points based on their features and are described by highlighting dominant features
(those with values that are most common within each group).

2.5 Summary
This chapter provided an extensive overview of the current approaches to fair-
ness in AI, providing insight into sensitive attributes, unfair bias, and the concept
of intersectionality. While previous works have laid a strong foundation, several
challenges remain, particularly in effectively identifying attributes at risk of dis-
crimination and managing the complexities of intersectional analysis.

This thesis builds upon these efforts by utilizing a semi-automated algorithm to
detect possible sensitive attributes in a dataset. In comparison to the methods dis-
cussed for identifying intersectional subgroups, this approach focuses on detecting
the attributes at risk of discrimination, rather than the subgroups. This is done to
allow the evaluation of bias both in the non-intersectional and intersectional cases
and in the comparison of results. To address the computational challenges associ-
ated with intersectionality, this work constructs intersectional attributes from the
highest-ranked sensitive attributes, limiting the number of groups while maintain-
ing a focus on those most susceptible to bias. The created subgroups, in this case,
are limited to the intersection of only two detected sensitive attributes at once.

The bias analysis is done with existing public fairness tools. Finally, bias miti-
gation techniques are applied to these intersectional cases, showcasing their effec-
tiveness and implications in reducing unfairness.

It is important to note that while there is ongoing research on defining inter-
sectional fairness and developing methods to mitigate bias in the intersectional
case [33], many of these methods are not yet incorporated into ready-to-use toolk-
its. This thesis does not focus on implementing such methods but rather explores
whether existing fairness toolkits can assist in identifying such bias, and more im-
portantly, mitigating it. The findings aim to evaluate the utility and limitations of
these tools in addressing the challenges of intersectional fairness.

17



3 Approach
This chapter outlines the overall strategy of this Master’s thesis. It begins by in-
troducing the datasets selected for analysis, providing a detailed explanation of
the criteria and reasoning behind their selection. Following this, this chapter de-
scribes the approach used to address the research questions, offering insight into
the techniques applied throughout this thesis.

To address RQ1 (To what extent can a semi-automated approach assist in iden-
tifying sensitive attributes and forming relevant intersectional groups within public
datasets?) an algorithm is used to identify which attributes from a dataset are
considered to be the most sensitive. Based on the intersection of ”traditional” sen-
sitive attributes, such as race or gender, and these automatically detected sensitive
attributes, new intersectional groups are created.

In order to answer the next research question, RQ2 (Does the consideration of
intersectional groups reveal or amplify hidden biases that are not evident in non-
intersectional groups?), a set of statistical metrics are calculated for the defined
sensitive attributes in the intersectional case to quantify and investigate unfair
bias.

Finally, to answer RQ3 (To what extent can existing bias mitigation methods re-
duce unfair bias in the case of intersectional groups, and what are the implications
on model performance?), existing bias mitigation methods are applied with respect
to the defined intersectional groups that show unfair bias and the results are ex-
amined.

3.1 Data Selection
All the datasets analyzed for this master’s thesis were downloaded from the
OpenML website [74], a site that provides thousands of free machine learning
datasets. Usually, these datasets come with a short description of their content,
the source of the dataset, the type of data (numerical or categorical) and a target
attribute. All datasets on this website are assigned a unique ID.
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Categorization of Data
In order to filter through all the datasets existing on the website, only those
datasets that contained a set of sensitive attributes were chosen. The sensitive
attributes were defined in accordance with the Equality Act from 2010 1 which pro-
tects people from being discriminated against the following characteristics: age,
disability, gender (re)assignment, marriage and civil partnership, pregnancy and
maternity, race, religion or belief, sex, and sexual orientation. Not all of these
characteristics were found in the public datasets.

The selection process applied several restrictions: First, datasets were required
to include gender or sex as an attribute and at least one additional characteristic
from the Equality Act list. Second, datasets were required to contain a clear de-
scription of their contents and prediction tasks on the OpenML website. Finally,
datasets with excessive missing values, particularly in the sensitive attributes, were
excluded. After applying these criteria and removing datasets duplicates, a total of
over 40 datasets remained.

The datasets were then categorized into four main topics depending on their
classification task: education, job or income, health and banking or finance. From
this final list, four datasets were manually selected to demonstrate the results of
this thesis, one from each of the four topics. These datasets are summarized in
Table 3.1.

Dataset ID Dataset Prediction (yes or
no)

Topic

43141 ACS Income Earn ≥ 39, 000$
per year

job/income

46356 German Credit Risk ”Good” credit risks banking/finance
45069 Diabetes180US Readmitted to the

hospital
health

43904 Law Bar School
Exam

Pass bar exam education

Table 3.1: Datasets overview with their prediction tasks and the assigned topic.

1https://archive.equalityhumanrights.com/en/equality-act-201
0/what-equality-act
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3.2 Sensitive Attributes Detection
Although the selected datasets were filtered to contain at least two sensitive at-
tributes, other attributes that are typically not considered sensitive may still be at
risk of discrimination. Attributes such as education, income level, or place of res-
idence might not be considered sensitive attributes per se but could be linked to
socioeconomic status in certain areas, thus making them indirectly sensitive. To
identify such attributes, a semi-automated sensitive attribute detection algorithm
was used to rank the attributes of a dataset.

The algorithm was executed on each dataset, evaluating both the pre-defined
protected attributes, as well as the attributes highly correlated to them. A range
of metrics was computed for these attributes, and a ranking was established by
aggregating the metric-specific rankings into a single sensitivity score. Based on
this aggregated ranking, new intersectional groups were created.

However, selecting an excessive number of attributes to create intersectional
groups can be challenging since it may result in a large number of subgroups that
may be poorly represented in the dataset. This can make it difficult, or even impos-
sible, to calculate statistical metrics for these subgroups. For each dataset, a min-
imum of three sensitive attributes were used for the intersection. Where dataset
size permitted, additional attributes were included, with a maximum of five at-
tributes considered.

3.3 Intersectional Attributes and Fairness Analysis
The purpose of having such new attributes is to investigate how present bias is
transferred to the intersectional level, and whether undiscovered bias can be iden-
tified. A single sensitive attribute may not show any bias on its own, but when
combined with another, unfair bias can emerge (for example, when combining in-
come level and gender).

The investigation of bias in these cases began by training different machine
learning models on the datasets. Based on the predictions of these models a set of
statistical metrics and fairness metrics were calculated for each defined sensitive
attribute. Statistical metrics were computed individually for each subgroup within
a sensitive attribute, whereas fairness metrics assessed disparities in the statisti-
cal metrics between privileged and unprivileged groups. The privileged subgroups
were always pre-defined. To calculate these metrics as well as to compare and
analyze results, existing fairness frameworks were used.
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3.4 Bias Mitigation Methods
To mitigate the detected unfair bias, a set of existing pre-processing, in-processing,
and post-processing bias mitigation methods were applied to the datasets. The
selected bias mitigation methods were available through public toolkits. Pre-
processing methods modify the original dataset before training, in order to obtain
better fairness results. As discussed in Chapter 2, the way the data was collected
can be a major influencing factor for unfair bias. Therefore, if the sensitive at-
tributes have an imbalanced distribution within their subgroups, pre-processing
methods can help counteract this. In-processing methods will attempt to control
the bias while the model is training, usually by imposing certain constraints. Fi-
nally, post-processing methods will change the predicted labels after training in
such a way that the unfair bias is reduced for the selected sensitive attributes.

These bias mitigation methods were applied to all selected datasets, however,
their effectiveness might differ from one dataset to another. After applying each
method, fairness metrics were re-evaluated and compared to the original fairness
metrics before the mitigation. Additionally, trade-offs between accuracy and fair-
ness results were taken into consideration, because although bias mitigation meth-
ods can reduce bias, this can come at the cost of affecting the model’s performance.

3.5 Summary
This chapter has presented the foundational approach to addressing the research
questions of this thesis. It began with the careful selection and categorization of
datasets, ensuring they contained meaningful sensitive attributes for fairness anal-
ysis. Using a semi-automated detection algorithm, both predefined and indirectly
sensitive attributes were identified and ranked, facilitating the creation of inter-
sectional groups to uncover hidden biases.

By evaluating statistical and fairness metrics, the thesis aims to provide a nu-
anced understanding of how biases manifest at both non-intersectional and inter-
sectional levels. The subsequent application of bias mitigation techniques offers a
practical pathway for reducing these biases, while acknowledging the trade-offs
between fairness and accuracy.

This approach establishes the groundwork for a comprehensive analysis of fair-
ness across datasets and serves as the basis for answering the core research ques-
tions addressed in the following chapters.
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This chapter outlines the experimental setup used to address the research ques-
tions. It begins by introducing the datasets selected for analysis, highlighting their
key characteristics. Then, it presents the algorithm employed for detecting sensi-
tive attributes. Finally, the tools and algorithms used for bias analysis and mitiga-
tion are presented, along with a justification for their application.

4.1 Datasets
This section will describe in detail the datasets that were analyzed in this thesis,
as well as data pre-processing techniques and models used for data training.

ACS Income
This dataset (OpenML id 43141) contains information about 1, 664, 500 individuals’
annual income. On OpenML, the dataset was already converted to numerical data
with no detailed description for the attributes, but information about each attribute
was provided in a link available in the dataset description [22]. Although the tar-
get attribute (yearly income) was initially continuous, it has been converted into
a binary attribute using the median value of all incomes as a threshold (≈ 39, 000
dollars/year) to convert it from a regression task to a binary classification task
while achieving a balanced distribution of the target. The dataset contains 12 dif-
ferent attributes, including attributes that can be considered sensitive: age, race,
marital status, and sex. The original race attribute contained nine different cat-
egories, however, it was extremely imbalanced: one of the categories alone rep-
resented 78% of the dataset. Therefore, the race attribute was converted into a
binary column. Table 4.1 illustrates the unbalance between the races.

Race Percentage
1 (White) 77.99%
2 (Other) 22.01%

Table 4.1: Race categories distribution, ACS Income dataset
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Table 4.2 shows the distribution of the marital status attribute. It can be noted
that over 50% of the whole dataset belongs to group 1 (married).

Marital status Percentage
1 (Married) 54.59%

2 (Separated) 14.52%
3 (Never married) 30, 87%

Table 4.2: Marital status categories distribution, ACS Income dataset

In Figure 4.1, which represents the age distribution, it can be noted that the
majority of individuals are between 30 and 60 years old. To make it possible to
analyze the results, the age attribute was transformed into a categorical one con-
taining three categories: ’Less than 30 years’, ’Between 30 and 50’, and ’More than
50 years’. The distribution of the age categories can be seen in Table 4.3.

Figure 4.1: Distribution of age, ACS Income dataset
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Age category Percentage
Less than 30 years old 23.19%

Between 30 and 50 years old 38.74%
More than 50 years 38.06%

Table 4.3: Age categories, ACS Income

German Credit Risk
This dataset (OpenML id 46356) was designed to classify individuals as either
”good” or ”bad” credit risks based on a set of 21 attributes, including the target one.
The distribution of the target attribute is: 70% of the individuals are considered at
good risks, while 30% are not. It contains 1000 entries and includes financial in-
formation about individuals as well as personal information such as gender and
age. Table 4.4 presents the gender distribution in the dataset, highlighting that the
percentage of men is more than twice the number of women. The age attribute
was converted from numerical data to two categories of age: 30 years old, less,
and more than 30 years old. Figure 4.2 shows the initial distribution of age, while
Table 4.5 shows the categories created.

Gender Percentage
male 69%

female 31%

Table 4.4: Gender categories distribution, German credit risk dataset
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Figure 4.2: Distribution of age, German credit risk dataset

Age Percentage
30 years old or less 62.9%

More than 30 years old 37.1%

Table 4.5: Age categories distribution, German credit risk dataset

Diabetes130US
This dataset (OpenML id 45069) has over 99,000 entries (after the cleanup of missing
values in some attributes) and contains hospital records of patients with diabetes.
The target attribute indicates whether a patient was readmitted to the hospital or
not after hospitalization. Initially, the target attribute contained three categories:
readmitted in less than 30 days, readmitted after 30 days, or not readmitted at
all. Since Aequitas does not support multi-class problems, the target attribute was
reorganized into two categories: readmitted to the hospital (46.6% of samples in
the data set), or not (53.6% of samples). The dataset provides information about
the patient’s medical records, but it also contains personal information such as
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gender, age, and race.
The gender attribute contains balanced data. It can be seen in Table 4.6 below

that the distribution of the two genders is almost equal.

Gender Percentage
male 53.84%

female 46.15%

Table 4.6: Gender categories distribution, Diabetes130US dataset

The race attribute consisted initially of many categories (Caucasian, African-
American, Hispanic, Asian), but since the Caucasian category represented over
76% as seen in Table 4.7, the other categories were combined into one ”Other”
category to help with the interpretation of results.

Race Percentage
Caucasian 76.48%

Other 23.51%

Table 4.7: Race distribution, Diabetes130US dataaset

Table 4.8 shows the distribution of the three age categories. Originally, age was
categorized into nine categories ([0,10], (10,20], etc.), but since the majority of
the patients were 50 years or older, these categories were consolidated into three
broader groups.

Age Percentage
Less than 50 15.69%

[50,70] 39.08%
More than 70 45.22%

Table 4.8: Age categories distribution, Diabetes130US dataset

Law School Bar Exam
The dataset (OpenML id 43904) consists of records for 20,000 law school students
who attended school, with the goal of predicting whether or not they passed the bar
exam. Alongside data on their grades, the dataset includes sensitive information
such as race, gender, and age. The target variable is highly imbalanced: 89% of
students passed the exam, while only 11% did not. The gender attribute is balanced,
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but the race attribute contains imbalanced data: 84% belonging to the Caucasian
category. The rest of the categories were combined into one category. The age
attribute was separated into two categories: less than 60 years old and 60 years
old and more. The following tables present the category distribution of these three
attributes.

Gender Percentage
Male 56.12%

Female 43.87%

Table 4.9: Gender categories distribution, Law school admission dataset

Race Percentage
White 84.1%
Other 15.9%

Table 4.10: Race categories distribution, Law school admission dataset

Age Percentage
White 64.4%
Other 35.6%

Table 4.11: Age categories distribution, Law school admission dataset

Table 4.12 provides an overview of the selected datasets, including their size,
prediction task, and key observations.
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ID Dataset Size Prediction
task (Y/N)

Observations

43141 ACS Income 1,664,500 Earn
≥ 39, 000$
per year

Balanced
class and
gender
distribution;
imbalanced
race
distribution.

46356 German Credit Risk 1000 ”Good” credit
risk

Small sized
dataset,
imbalanced
class
distribution.

45069 Diabetes180US 101,766 Readmitted
to the
hospital

Imbalanced
race
distribution.

43904 Law School Bar Exam 20,000 Pass bar
exam

Imbalanced
class
distribution
and race
distribution

Table 4.12: Overview of Datasets and Observations

4.1.1 Data Cleaning
Before training machine learning models on the datasets above, each of them had
to be pre-processed to ensure that they were suitable for machine learning tasks
and fairness analysis. The data cleanup steps included:

• Handlingmissing values: In cases where the dataset was sufficiently large
and included rows with NaNs or null values, particularly in sensitive at-
tributes, the corresponding rows were removed. Columns with nonsensitive
attributes having too many missing values (more than 50%) were either re-
moved from the dataset or the missing values were imputed: for categorical
data, the most common value of the column was used, and for numerical
data, the average value of the column was used. Datasets with sensitive
columns containing too many missing values were not considered for anal-
ysis.
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• Continuous target columns: The target columns that were continuous
(used for linear regression tasks) were converted to binary columns due to
the limitations of the toolkits used. To convert the target column, the me-
dian value was used to divide the column into two parts of equal size. The
datasets for which the target attribute could not be converted into a binary
class prediction problem were also not considered, since Aequitas can only
be used for binary classification problems.

• Column cleaning: Columns that were not important for the training, nor
for fairness analysis (for example, names, IDs, etc) were removed from the
dataset.

• Data normalization: Continuous data was normalized using the Standard
Scaler1, which transforms the data to have a mean of 0 and standard devia-
tion of 1, ensuring that all continuous features are on a similar scale.

• Sensitive attributes with many categories: If a sensitive column had too
many categories from which some were poorly represented, then these cat-
egories were combined into a single category. Although this step might re-
move information about some underprivileged groups, it was necessary in
order to calculate fairness metrics. When a category is strongly underrep-
resented, the fairness metrics might be impossible to calculate (for example,
due to divisions by 0 in statistical metrics).

• Encoding to numerical: for all the categorical columns, the data was en-
coded to integers. This was done to be able to train machine learning algo-
rithms that do not accept categorical data.

4.1.2 Model Training
Each dataset was trained using several well-known machine learning algorithms.
CatBoost 2 is a gradient boosting algorithm that automatically handles categorical
features, making it efficient for large datasets and classification tasks. Random
Forest 3 is an ensemble method that builds multiple decision trees and aggregates
their predictions, providing robust performance and reducing overfitting. Decision

1https://scikit-learn.org/stable/modules/generated/sklearn.pr
eprocessing.StandardScaler.htmll

2https://catboost.ai/
3https://scikit-learn.org/stable/modules/generated/sklearn.en
semble.RandomForestClassifier.html

29

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.htmll
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.htmll
https://catboost.ai/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


4 Experimental Setup

Tree 4 is a simple model that splits data based on feature values to create a tree
structure, useful for both classification and regression. Logistic Regression 5 is a
linear model for binary classification that estimates the probability of an outcome
using a logistic function.

To optimize model performance, RandomizedSearchCV 6 was used to randomly
sample hyperparameters from specified ranges. For training, the data was split into
training data and test data (75% and 25%, respectively). The model’s performance
was evaluated using the test data. The results from all four models were compared
for each dataset.

4.2 Sensitive Attributes Detection
The algorithm used to answer the first research question is semi-automated and
is based on the approach in [38]. In the original paper, the authors outlined three
key steps for detecting sensitive attributes in a dataset: first, computing a set of
bias-indicating metrics for each attribute; second, ranking all the attributes for
each metric; and finally, ranking the attributes by summing their individual met-
ric rankings. This algorithm extends this approach by incorporating additional
considerations, such as the correlations between attributes. This algorithm is ap-
plied to all four datasets presented in the previous section. The process contains
the following steps:

1. Detect protected attributes: The first step after loading the dataset is to
identify existing protected attributes in the dataset using the Fairlens toolkit
7. This toolkit relies on a dictionary that maps potential protected attribute
names to predefined categories: age, gender, ethnicity, religion, nationality,
family status, disability, and sexual orientation. While this method is effec-
tive for identifying commonly recognized protected attributes, its scope is
limited to the attributes explicitly listed in the dictionary for each category.
The detection of protected attributes results inNP many protected attributes.

2. Calculate correlations between protected attributes and other at-
tributes: After identifying the protected attributes, the next step is to calcu-
late the correlation between these attributes and other features in the dataset.

4https://scikit-learn.org/stable/modules/generated/sklearn.tr
ee.DecisionTreeClassifier.html

5https://scikit-learn.org/stable/modules/generated/sklearn.li
nearmodel.LogisticRegression.html

6https://scikit-learn.org/1.5/modules/generated/sklearn.model
selection.RandomizedSearchCV.html

7https://github.com/synthesized-io/fairlens
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This step helps identify attributes that may be correlated to the protected
ones and could potentially carry unfair bias. Attributes with strong corre-
lations to any protected attributes and a statistical significance level of p-
value ≤ 0.05 are identified for further analysis and are referred to as focus
attributes. This results in NF many focus attributes.
Depending on the type of attributes being analyzed, the correlation coeffi-
cients were calculated using different correlation types:

• Between two numerical attributes: The Pearson correlation coeffi-
cient was used [29]. The correlation value ranges from -1 (perfect neg-
ative correlation) to 1 (perfect positive correlation), with 0 indicating
no correlation:

r =

∑N
i (xi − x)(yi − y)√∑N

i (xi − x)2
∑N

i (yi − y)2
(4.1)

Where:
– xi, yi: Values of the two numerical attributes
– x, y: Means of values x and y
– N: Number of data points.

• Between two categorical attributes: The Chi-Square test with
Cramér’s V was applied to measure the association [42]. This is cal-
culated based on the contingency table - a table that displays frequen-
cies for combinations of two categorical variables- of two categorical
attributes. The value ranges from 0 (no correlation) to 1 (perfect corre-
lation).
Chi-Square Formula:

X2 =
∑ (O − E)2

E
(4.2)

Where:
– O: Observed frequency in each category.
– E: Expected frequency, calculated as E = row total x column total

grand total

Cramer’s V Formula:

V =

√
X2

n(k − 1)
(4.3)

Where:
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– n: Total number of observations.
– k: The smaller of (number of rows - 1) or (number of columns - 1)

• Between a numerical attribute and a binary categorical at-
tribute: The Point-Biserial Correlation Coefficient was computed [46].
The value ranges from 0 (no correlation) to 1 (perfect correlation).

rpb =
X1 −X0

s

√
n1n0

n2
(4.4)

Where:
– X1: Mean of the numerical attribute for group 1 (category 1 of the

binary attribute).
– X0: Mean of the numerical attribute for group 0 (category 0 of the

binary attribute).
– s: Standard deviation of the numerical attribute.
– n1, n0: Sizes of groups 1 and 0, respectively.
– n: Total number of observations

• Between a numerical attribute and a categorical attribute with
multiple groups: was performed to analyze the relationship between
a numerical attribute and a categorical attribute with multiple groups.
The Omega-Squared Effect Size is used to assess the strength of this
relationship [58]. Omega-squared measures how much of the variance
in the dependent variable (numerical attribute) is explained by the in-
dependent variable (categorical attribute), with values ranging from
0 (indicating no relationship) to 1 (indicating a perfect relationship).
Omega-Squared Formula:

ω =
SSbetween − dfbetween ×MSE

SStotal +MSE
(4.5)

Where:
– SSbetween: The sum of squares between groups, which represents

the variability in the data that is explained by the differences be-
tween the group means.

– SSwithin: The sum of squares within groups, representing the vari-
ability within each group.

– dfbetween = k− 1: Degrees of freedom between groups, where k is
the number of attributes analyzed.
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– dfwithin = N − k: Degrees of freedom within groups, where N is
the sum of all individual data points across all k number of groups.

– MSE: Mean Squared Error (within-group variance estimate), cal-
culated as SSwithin

dfwithin

– SStotal = SSbetween + SSwithin: Total sum of squares.
The first three correlation measures were computed using built-in methods
from the SciPy library [76], while the One-Way ANOVA was implemented
using the Statsmodels library [69].

3. Metrics calculation: A set of metrics is calculated for all selected protected
and focus attributes. In total, NA = NP+NF many attributes are considered.
The following metrics are computed:

• Entropy: Measures the amount of randomness or uncertainty in a sys-
tem [52]. If there is high uncertainty, the models might have difficulties
in making accurate predictions.

H(x) = −
∑

p(x) log(p(x)) (4.6)

Where:
– p(x): Probability of event x (likelihood of a specific class outcome).

• Imbalance Ratio (IR): Represents the ratio between the sample size
of the most represented group in an attribute and the lowest repre-
sented group [66]. The larger the ratio, the more imbalance exists in an
attribute.

IR =
Nmaj

Nmin

, (4.7)

Where:
– Nmax: Represents the number of samples in the most represented

group.
– Nmin: Represents the number of samples in the least represented

group.
• Imbalance Degree (ID): Measures the extent of class imbalance in a

dataset, its value reflecting how skewed the class distribution is [60].
In this case, to make this metric comparable across attributes with dif-
ferent numbers of classes, the relative imbalance degree is calculated
by dividing the imbalance degree by the number of classes.
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• Statistical Parity Difference (SPD): Represents the difference be-
tween the probability of positive values in both the privileged and un-
privileged groups [32]. A value smaller than 0 indicates better treat-
ment for the privileged attribute.

SPD = P (Y = 1|G = unprivileged)− P (Y = 1|G = privileged)
(4.8)

Where:
– G: Unprivileged or privileged group.
– P (Y = 1|G = unprivileged): The probability that the outcome

is positive, given that the individual belongs to the unprivileged
group.

– P (Y = 1|G = privileged): The probability that the outcome is
positive, given that the individual belongs to the privileged group.

• Disparate Impact Ratio (DIR): Represents the ratio of positive values
in the dataset between the unprivileged and privileged groups [26].

DIR =
P (Y = 1|G = unprivileged)

P (Y = 1|G = privileged)
(4.9)

• Smoothed Empirical Difference (SED): Measures fairness by com-
paring smoothed probabilities of favorable and unfavorable values
across different intersecting groups in a dataset [28]. It evaluates the
minimum ratio of these probabilities, with values between 0 and 1,
where a higher value indicates more fairness between groups.

Except for the Entropy metric all of the aforementioned metrics require that
privileged and unprivileged groups are defined. The privileged groups are
considered to be the attributes with higher empirical distribution in compar-
ison to the related attribute equiprobability, while the unprivileged groups
are considered to be those with lower empirical distribution. The empirical
distribution of a group is calculated as the ratio between the number of in-
stances in a group over the total number of instances of an attribute. The
equiprobability of an attribute is calculated as below:

eqp =
1

number of subgroups (4.10)

These metrics are calculated using the following existing libraries: Entropy
is calculated using the SciPy library [76], Imbalance Degree using a public
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repository8, while Statistical Parity Difference, Disparate Impact Ratio, and
Smoothed Empirical Difference are calculated using available methods in
AIF360 toolkit 9. Imbalance Ratio is computed by obtaining the sample size
of the groups.

4. Rank attributes for each metric: Once all metrics are computed, each
attribute is ranked individually for each metric based on its value relative to
the other attributes. The ranking is assigned as follows:

a) For Entropy, ID, and IR higher values indicate higher sensitivity.
b) For SPD, greater absolute differences indicate higher sensitivity, with a

difference of 0 being the least sensitive.
c) For DIR, the higher the term 1−DIR is, the more sensitive the attribute

is considered, with a value of 0 being the least sensitive.
d) SED, higher values indicate less sensitivity, 1 being the least sensitive.

For each metric, each attribute is assigned a value from 1 to NA, where 1
means the attribute was the least sensitive with respect to the metric, while
NA means the attribute was the most sensitive with respect to the metric.

5. Final ranking: The individual rankings for all metrics are summed for each
attribute. Attributes with higher total rankings are considered more sen-
sitive, resulting in a final ranked list of attributes ordered by their overall
sensitivity.

The following chart depicting this described method is shown in Figure 4.3

Figure 4.3: Sensitive attributes detection algorithm

8https://github.com/mjuez/py-imbalance-degree
9https://aif360.readthedocs.io/en/stable/
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4.3 Aequitas
This master’s thesis made extensive use of the Aequitas 10 toolkit. Developed by the
Center for Data Science and Public Policy at the University of Chicago, this toolkit
is an open-source bias audit that can be used to analyze whether the predictions
made by a machine learning model are biased or not. The tool can be accessed via
the following interfaces:

• Python library

• Command Line Tool

• WebApp

The developers of Aequitas wanted to make this toolkit accessible not only for
machine learning developers but also for analysts and policymakers. Therefore,
the command line tool and the web audit tool do not require any programming
skills. The only requirement to run these two is to have a dataset that already
contains predictions made by a machine learning model [1]. For this project, only
the Python library was used, as it is simple to integrate it with existing code.

4.3.1 Input Data
In order to obtain the bias report in any case, the input data must be standardized
according to the requirements found on the Aequitas website [2]. The input data
must contain two binary columns: a column called ”score” for predictions and a
column called ”label value” for the true label values. Since they are required to
be binary, the Aequitas tool can only be used for binary class classifications or for
linear regression problems that can be converted into a binary classification after-
ward using a threshold value. Besides these two columns, the sensitive columns
must be added as well. The sensitive columns are those that the user wants to
audit for bias, such as sex, age, race, income, education, etc. They can be either
categorical or numerical, and the user is free to choose which attributes are con-
sidered sensitive. Other attributes that are not considered sensitive do not need to
be added to the input data. For this thesis, the selected sensitive attributes were: 1)
for the non-intersectional case, the sensitive attributes identified by the algorithm,
and 2) for the intersectional case, the intersection of these sensitive attributes

10http://aequitas.dssg.io/
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4.3.2 Output Data
After having the table containing the input data, the tool can be used to obtain the
output reports with the fairness and bias metrics. The reports can include group
metrics, bias reports, disparity metrics, or fairness. To generate the output, the
toolkit expects a reference group for each attribute defined as sensitive. The ref-
erence group is defined by the user and can be either the group with the most
representation in a category or it can be a group that is believed to be more pre-
ferred than the others. In this case, the privileged groups were defined as explained
in Section 4.2.

4.3.3 Measuring Fairness with Aequitas
The tool calculates a set of statistical metrics (such as TPR, TNR, FPR, FNR, FOR,
FDR, etc). To decide whether a fairness definition is met or not, the authors defined
fairness criteria that decide if a group meets the parity. This fairness criteria is
defined as follows:

(1− τ) <=
statistical metric groupi

statistical metric groupprivileged
<=

1

1− τ
(4.11)

This criteria is used for all statistical metrics (FPR, FNR, etc), and it calculates the
parity for each group category. By default, τ = 20%, meaning that any parity that
is between 0.8 and 1.25 is considered fair [67]. The parity for the privileged group
will always be equal to 1.

4.3.4 Aequitas Flow
Besides the bias audit options, the latest release of the toolkit, Aequitas flow frame-
work, contains integrated bias mitigation options, but also other functionalities
such as model selection, hyperparameter optimization, and detailed plotting meth-
ods [36]. For this thesis, some of the bias mitigation methods available in this pack-
age were used, as well as some of the plotting methods that assist in understanding
the bias reports.

4.3.5 Limitations
Although the toolkit provides an in-depth fairness report, there are some limita-
tions to this toolkit that were noted during the work for this thesis. Firstly, this
toolkit cannot be used for multi-class classification tasks, nor for regression tasks,
which leads to either excluding tasks that may have discriminatory behaviors or
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transforming such tasks into binary ones. Another disadvantage is the expected
format for the datasets (always renaming the target column and the predicted la-
bels), which makes it difficult to use multiple fairness toolkits at the same time.

4.3.6 Application
This toolkit was selected for this thesis because of its capability to compute a wide
range of fairness and disparity metrics for sensitive attributes. The bias analy-
sis using this toolkit was performed after training the datasets with the machine
learning models mentioned in section 4.1.2, as it requires the predicted outcomes
for each task. This toolkit generates interpretable bias reports, enabling compar-
isons both across different sensitive attributes and between non-intersectional and
intersectional cases. Its features assisted in addressing RQ2 and RQ3. In this the-
sis, the toolkit was used to perform the following functionalities, as found on the
Aequtias website 11:

• Statistical metrics calculation: Compute group-wise statistical metrics
for the defined sensitive attributes. These metrics include TPR, TNR, FPR,
FNR, FOR, FDR, NVP, PPR, and PPV. This is done using the Group() and
its method get crosstabs(), which calculates these metrics for each defined
group.

• Disparity metrics calculation: Calculate for each sensitive attribute the
disparity metrics between unprivileged and privileged groups for all statis-
tical metrics. This is done using the method get disparity groups() in the Bias
class. The method requires pre-defining the privileged group for each sen-
sitive attribute and computes the disparity as the ratio between the metric
value for the unprivileged and privileged groups. The result is a table con-
taining the disparity values for each group.

• Fairness criteria evaluation: Determine whether each calculated disparity
metric satisfies the defined parity criteria using Equation 4.11. This is done
using the Fairness class and its method get group attribute fairness() which
returns a True or False value depending on whether the parity criteria was
met.

• Bias mitigation: Apply available bias mitigation methods, selecting those
suitable for scenarios with multiple sensitive attributes. The used methods
will be covered in more depth in the following section.

11https://dssg.github.io/aequitas/usingpython.html
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• Visualization tools: Use the built-in visualization tools to better under-
stand and analyze the results. These methods include visual representations
of the calculated metrics and the disparity values obtained during the anal-
ysis.

This workflow was implement following the guidelines provided in the Aequitas
documentation 12.

4.4 Bias Mitigation Methods
For this Master’s thesis, the majority of bias mitigation methods, especially the
pre-processing methods, were developed within the Aequitas Flow toolkit. A short
description of these methods can be found on the repository of the toolkit 13. Ae-
quitas Flow was selected because it is integrated within the Aequitas toolkit, en-
suring consistency with the same preliminaries used throughout the thesis. Addi-
tionally, its functionality addresses RQ3, which focuses on the use of existing bias
mitigation methods.

However, not all methods within Aequitas Flow could be applied, as two of its
methods are restricted to binary sensitive attributes which are not applicable in
this case. Furthermore, the toolkit offers a limited selection of in-processing and
post-processing methods, necessitating the use of additional methods from other
known toolkits. The following methods were used:

Pre-processing Methods
1. Data repairer: Aims to modify the data distribution to ensure that a given

feature is independent of the sensitive attribute, s. This is accomplished
by aligning the conditional distribution P (X|s) with the global distribution
P (X) [25].

2. Massaging: Flips a fixed number of labels in order to reduce the prevalence
disparity between the subgroups of a sensitive attribute without changing
the overall class distribution [39]: This method fits a Naive Bayes Classifier
to the data and then sorts the entries by the predictions. The instances with
positive predicted value belonging to a privileged group are marked as ”De-
motion candidates”, while the ones belonging to the unprivileged class and
with negative predicted value are marked as ”Promotion candidates”. The

12https://dssg.github.io/aequitas/examples/compasdemo.html
13https://github.com/dssg/aequitas?tab=readme-ov-file
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top ranked demotion candidates and the lowest ranked promotion candi-
dates will be relabeled. The number of labels to be flipped is calculated with
the following formula:

number to flip =
((Prevpromotion − Prevdemotion)× ypostive × ynegative)

N
,

(4.12)

Where:
• N : number of instances.
• ynegative: Number of instances predicted as positive belonging to the

privileged group.
• ypositive Number of instances predicted as negative belonging to the

unprivileged group.
• Prevpromotion: Mean of all promotion candidates.
• Prevdemotion: Mean of all demotion candidates.

3. Prevalence sampling: Under-samples or over-samples the original dataset
in order to balance the class prevalence by changing the ratio of protected
and unprotected subgroups within the sensitive attributes and the label dis-
tribution [45].

4. Label flipping: Flips a fixed number of labels based on the Fair Ordering-
Based Noise Correction method [24], aiming to improve the demographic
parity. It adjusts group label prevalence by flipping misclassified instances:
negative to positive if the group’s prevalence is too low and positive to neg-
ative if it is too high. Flipping stops once a target flip rate, margin threshold,
or desired parity is achieved.

In-processing Methods:
1. Fairlearn Classifier: this method will try to train a set of different classi-

fiers that can be chosen by the user while additionally satisfying some fair-
ness definitions for a given sensitive attribute [6]. These definitions can be
any that are available in the Reductions Package of the Fairlearn framework
14 such as Equalized Odds, TPR parity, or FPR Parity.

14https://fairlearn.org/v0.4.6/apireference/fairlearn.reducti
ons.html
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2. GerryFair Classifier: this method is developed based on the proposed idea
by [41] and presented in 2, which aims to obtain subgroup fairness.

Post-processing Methods
1. Group Threshold: Adjusts the decision threshold of a model to achieve

a specific fairness criterion independently for each group (for example,
achieve FPR of 10%) [34]. It can only be applied to one sensitive attribute at
a time.

2. Threshold Optimizer: This method attempts to achieve the same results as
the above mentioned method, however, it can be applied to multiple sensitive
attributes. Moreover, it can try to balance the accuracy score while also
achieving the group constraints.15

3. Equalized Odds Post-Processing: Modifies the predicted labels so that the
equalized odds within a group are optimized, ensuring the TPR and FPR are
equalized [64] 16.

4.5 Summary
This section outlined the experimental setup and methodologies used to address
the research questions. It detailed the datasets chosen for analysis, highlighting
key features such as the type of prediction task, the number of entries, and any
protected attributes present. The section also provided a thorough explanation of
the sensitive attribute detection algorithm, outlining the specific steps taken to
identify potentially sensitive attributes in the dataset. Additionally, it introduced
the Aequitas fairness toolkit, explaining its functionalities and how it was used to
detect unfair bias within the datasets. Finally, the section listed the bias mitigation
methods employed, describing their goals in reducing bias.

15https://fairlearn.org/v0.8/apireference/fairlearn.postproce
ssing.html

16https://aif360.readthedocs.io/en/latest/modules/generated/ai
f360.algorithms.postprocessing.EqOddsPostprocessing.html
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5 Results and Discussion
This chapter provides an overview of the findings obtained after undergoing all the
steps mentioned in chapter 4. The results are organized as follows: for each dataset,
the sensitive attributes were identified, including attributes that normally would
not be considered sensitive. Based on this detection, intersectional attributes were
created (RQ1). Next, biases are assessed for both non-intersectional and intersec-
tional attributes and then compared (RQ2), followed by an evaluation of the effec-
tiveness of the applied bias mitigation methods (RQ3). Depending on the predic-
tion task of the dataset, the focus on the fairness metrics that need improvement
changes. Finally, the last subsection of this chapter contains a discussion of the
findings, which aim to answer the research questions.

5.1 RQ1: To what extent can a semi-automated
approach assist in identifying sensitive
attributes and forming relevant intersectional
groups within public datasets?

This section addresses the first research question. The detection algorithm was
applied to all four datasets to evaluate its effectiveness in identifying sensitive
attributes and forming intersectional groups for bias analysis. The results include
the detected sensitive attributes, their correlations, and the intersectional groups
derived from the top-ranked attributes.

Overview of the detected sensitive attributes
Table 5.1 provides an overview of the findings after using the detection algorithm.
The table lists the detected protected attributes using the Fairlens tool, followed
by the focus attributes for each dataset (those strongly correlated to the protected
attributes). Finally, the last column contains the top-ranked sensitive attributes
selected for further analysis based on their sensitivity scores. This thesis focuses
only on the top five most sensitive attributes, to avoid generating a large number
of subgroups obtained by the intersections of the detected sensitive attributes.

42



5 Results and Discussion

For clarity, the following attributes and abbreviations are explained below:
ACS Income:

• POBC: Continuous attribute representing postal codes of the individual’s
place of birth.

• OCCP: Continuous attribute where each value corresponds to a specific oc-
cupation.

German Credit Risk Dataset:

• empl. time: Employment time measured in years.

• no. people maintenance: Number of people maintenance (number of people
a person is liable for), with a maximum value of 2.

Diabetes130US

• diag1, diag3: Continuous attributes that represent two different diagnostics.

Law Bar School Exam

• LSAT: Law School Admission Test scores, categorized into two categories
based on the median value which was equal to 37.

• family income: Categorical attribute representing five income levels, with
category 5 indicating the highest income.

• cluster: Law schools grouped into six clusters. [79].

43



5 Results and Discussion

ID Dataset Detected
Protected
Attributes

Detected
Focus
Attributes

Top Ranked
Attributes

43141 ACS Income

age,
sex,
race,
marital status

POBC,
OCCP

race,
POBC,
age,
marital status,
sex

46356 German Credit
gender,
race,
age

empl. time,
housing,
no. people
maintenance

housing,
gender,
no. people
maintenance,
empl. time,
age

45069 Diabetes
age,
gender,
race

diag1,
diag3

race,
diag1,
diag3,
gender,
age

43904 Law Bar Exam
gender,
age,
race

LSAT,
full-time,
cluster,
family income

race,
family income,
LSAT,
cluster,
age

Table 5.1: Overview of the selected datasets with detected protected attributes, fo-
cus attributes, and top-ranked attributes. The attributes are ranked based
on their sensitivity, the first one being considered as the most sensitive.
The attributes’ abbreviations are described above.

The analysis of the table reveals that in all datasets, attributes beyond the prede-
fined protected one were identified as sensitive. This suggests that non-traditional
sensitive attributes may also pose a greater risk of discrimination. For example,
in the Diabetes and Law School Bar Exam datasets, gender was included as a pro-
tected attribute but was not ranked among the most sensitive. Similarly, in the
German Credit Risk dataset, race was not prioritized as highly sensitive. These
findings emphasize the importance of considering dataset-specific attributes in
fairness evaluations, as domain-specific factors such as place of birth, diagnostic
types, or LSAT scores may disproportionately impact certain groups.
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Correlations Between Protected and Focus Attributes
The strongest correlations between the protected attributes and focus attributes are
presented in Table 5.2. The table includes the correlation values (Corr. value) and
their associated p-values (p-value). Only the correlations that had a significance
level p ≤ 0.05 were considered. These correlation values determined the focus
attributes’ inclusion for further bias analysis.

Dataset Protected
Attribute

Focus
Attributes

Corr. value p-value

ACS Income race POBC 0.29 p < 0.001
sex OCCP 0.16 p < 0.001

German Credit
age empl. time 0.29 p < 0.001
gender housing 0.23 p < 0.001
age no. people

maintenance
0.22 p < 0.001

Diabetes
age diag1 0.59 p < 0.001
age diag2 1.87 p < 0.001

Law Bar Exam
race LSAT 0.25 p < 0.001
age full-time 0.2 p < 0.001
race cluster 0.14 p < 0.001
age family

income
0.1 p < 0.001

Table 5.2: Correlation values between protected and focus attributes.

In the ACS Income dataset, the race attribute shows a strong correlation with
POBC (place of birth), while the sex attribute is moderately correlated with OCCP
(occupation). The German Credit Risk dataset reveals correlations such as age
with employment time, respectively with number of people maintenance. Addi-
tionally, gender is correlated with housing. In the Diabetes dataset, the strongest
correlations across all four datasets are observed between age and diag1, respec-
tively diag2. The Law Bar Exam dataset shows that race is correlated with LSAT
scores and with cluster (cluster of law schools). Meanwhile, age is associated with
full-time and family income level. Overall, these correlations indicate that focus
attributes may carry indirect biases due to their associations with protected at-
tributes and underscore the importance of identifying and analyzing these rela-
tionships to ensure comprehensive fairness evaluations across datasets.

45



5 Results and Discussion

Intersectional Groups
The highest-ranked sensitive attributes were analyzed based on their distribution
and number of groups, and then it was decided whether to keep all of them for
bias investigation. Some attributes had to be excluded from the list due to their
continuous format and the lack of information that could help categorize them
meaningfully in subgroups. Such attributes were: POBC (ACS income), diag1, and
diag3 (Diabetes). This is unfortunate, as these attributes exhibited strong corre-
lations with protected attributes, indicating that their removal may result in the
omission of potentially significant biases. Another factor in reducing the number
of attributes was the size of the dataset; for example, the size of the German Credit
dataset could not allow a successful creation of all the intersectional attributes be-
cause it would lead to too many under-represented subgroups, which would make
the fairness analysis unreliable. Similarly, in the Law school exam dataset, the
extremely imbalanced class distribution, combined with the intersection of the de-
tected attributes, led to difficulties in calculating the fairness metrics. Therefore,
for these two datasets, only the first three attributes were considered.

After identifying the most sensitive attributes, the next step involved the in-
tersection of these attributes, resulting in new subgroups. The subgroups were
obtained by forming combinations of two attributes at a time. The following Table
5.3 summarizes the obtained intersectional groups, which are considered sensitive
attributes for the intersectional fairness analysis.
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Dataset Sensitive Attribute #Subgroups

ACS Income race/marital status 6
race/age 6
race/sex 4
marital status/age 9
sex/age 4
sex/marital status 6

German Credit
no. people maintenance/gender 4
gender/housing 4
no. people maintenance/housing 4

Diabetes
gender/race 4
gender/age 6
race/age 6

Law Bar Exam
race/family income 10
race/lsat 4
lsat/family income 10

Table 5.3: Intersectional groups obtained by the intersection of the highest ranked
sensitive attributes. These groups are considered as sensitive for the fair-
ness analysis. This table also summarizes the number of obtained sub-
groups for each intersectional group.

It can be noticed in the table that the intersection of sensitive attributes leads
to a larger number of subgroups, the highest number of subgroups being in the
Law Bar School Exam dataset, where the intersections of family income with race,
respectively with LSAT resulted in ten subgroups each.

5.2 RQ2: Does the consideration of intersectional
groups reveal or amplify hidden biases that
are not evident in non-intersectional groups?

To address this research question, a comprehensive bias analysis was performed
for both non-intersectional and intersectional scenarios using the Aequitas toolkit.

This section highlights the biases identified in both cases across all four datasets.
For each dataset, the analysis identifies sensitive attributes affected by bias and
examines how these biases arise in the intersectional scenario. To present the
results effectively, the bias analysis was only performed on the predictions of a
single model. The model with the best accuracy and balanced performance across
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the training and test data was selected separately for each dataset.
Figures are included to visualize group and subgroup disparities, with color-

coded indicators to show whether the fairness criteria were met (green) or not
(red). The fairness threshold was set to the default value of 20%. Specifically, any
ratio between unprivileged and privileged groups outside the range [0.8, 1.25] was
considered unfair, indicating that parity was not achieved. The privileged and un-
privileged groups and subgroups will be introduced for each dataset in particular.

ACS Income dataset
CatBoost emerged as the best-performing classifier for this dataset, achieving an
accuracy of 79% on the test set in both intersectional and non-intersectional sce-
narios. The table below highlights the privileged groups identified in each case:

Attribute Privileged group/subgroup
race 1 (white)

marital status 1 (married)
age 1 (age between 30 and 50 years old)
sex 1 (men)

race/marital status 0 (white, married)
race/age 2 (white, aged between 30 and 50 years old)
race/sex 0 (white, men)

marital status/age 2 (married, aged between 30 and 50 years old)
sex/age 1 (men, aged between 30 and 50 years old)

sex/marital status 0 (men, married)

Table 5.4: Privileged groups and subgroups, ACS Income dataset

Original dataset Disparities were found for FNR, FPR, TNR, and TPR, as illus-
trated in Figure 5.1. Disparities in TPR and TNR suggest that the model struggles
to make correct predictions for certain sensitive groups. Notably, FNR and FPR are
failing for all unprivileged groups of race, sex, and marital status.

The following attributes were affected:

• Category 3 of Marital Status (people who never married) and the youngest
adults (age category 0) are the most affected groups, with all four parities
failing for these groups.

• While TPR and TNR parities for race and sex were met, disparities were
evident in FPR and FNR. The FNR of women (sex category 2) was nearly
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double that of men, meaning that women earning more than 39, 000$ per
year were half as likely to be correctly identified compared to men. Similar
disparities were observed for individuals in race category 2 (”Other”).

• TNR and TPR are unfair for the youngest adults and for the adults whose
marital status belongs to category 3 (people who never married).

Figure 5.1: Detected disparities in the non-intersectional case. Notable are the FNR
and FPR disparities that fail for almost all subgroups.

Intersectional dataset: Due to the unfairness detected in the original dataset,
the disparities are intensified in the intersectional case, as seen in Figure 5.2.

• FNR is now failing for all subgroups, except for older adults from the privi-
leged race (White) and privileged sex (Men). This indicates that the classifier
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struggles to predict the true label for all unprivileged subgroups in the in-
tersectional case.

• For FPR, the highest values are for the privileged subgroups, indicating the
classifier’s tendency to favor these groups as positive when it is not the case.
This means that individuals from the privileged group are more likely to be
predicted to have a higher salary even when it is not the case.

• TPR disparities are the most pronounced for combinations involving the
youngest age group (previously the most affected in the non-intersectional
case) with race and sex attributes, as well as combinations involving marital
status categories ”divorced” or ”never married” with sex and race.

• The combination of unprivileged sex (women) and race (category ”Other”)
leads to disparities in TPR and TNR, even though these metrics passed for
race and sex individually in the non-intersectional case.
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Figure 5.2: Detected disparities for the intersectional case, which highlight the am-
plification from the non-intersectional case.
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German Credit Risk dataset
The best performing training model was Logistic Regression with an accuracy of
70% on the non-intersectional case and 71% on the intersectional case. The privi-
leged and unprivileged groups for both cases are listed below:

Attribute Privileged group/subgroup
housing own
gender male

no. people maintenance 1
gender/no. people maintenance male, 1

gender/housing male, own
no. people maintenance/housing 1, own

Table 5.5: Privileged groups and subgroups, German Credit Risk dataset

Original dataset: TPR and TNR parities were met for all groups. However, FNR
disparities were observed for females and individuals without home ownership, as
seen in 5.3. FOR is failing only for individuals without home ownership. This
indicates that the model disproportionately misclassified these groups as ”bad”
clients, even when they were not.

Figure 5.3: Detected FOR and FNR disparities in the non-intersectional case.

Intersectional dataset: Due to the disparities in the original dataset, in the
intersectional case, the FNR disparities are amplified, being present in all three
sensitive attributes. FNR disparities were observed for:
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• number people maintenance/housing: for all individuals who do not own a
house.

• gender/housing: for all but the privileged subgroup (men that own a house).

• number people maintenance/gender: all subgroups involving women.

Moreover FOR disparities were identified for:

• number people maintenance/housing: for the combination of 1 person in
maintenance and not owning a house.

• gender/housing: for all individuals who do not own a house.

The detected disparities can be observed in 5.4

Figure 5.4: Detected disparities for the intersectional case. The FNR disparities fail
for all subgroups, the exception being the privileged groups and the
low-represented subgroups that had FNR=0.
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Diabetes130US dataset
For this dataset, the results are based on predictions made by the Catboost classi-
fier, which achieved an accuracy of 63% on the test sets in both cases. The table
below outlines the privileged and unprivileged groups and subgroups.

Attribute Privileged group/subgroup
gender female

race Caucasian
age More than 70 years old

gender/race Female, Caucasian
gender/age Female, More than 70 years old

race/age Caucasian, More than 70 years old

Table 5.6: Privileged groups and subgroups, Diabetes130US dataset

Original dataset: Overall, the model performed fairly well for this dataset,
with the exception being FNR for the age attribute (showing disparities for both
unprivileged age groups) as seen in Figure 5.5.
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Figure 5.5: Detected disparities for the non-intersectional case. In this case, the
only failing disparities found were for FNR regarding the age attribute.

Intersectional dataset: The results were similar to the original dataset, how-
ever, disparities emerged for FNR across all three sensitive attributes, even though
such disparities were absent for gender and race in the original dataset. Specifi-
cally, this parity fails for all combinations involving the ”Other” race, as well as for
combinations containing the age groups ”Less than 50 years old” and ”Between 50
and 70 years old”, as shown in Figure 5.6. Overall, the combinations of attributes
with the unprivileged age groups and the race category ”Other” lead to the largest
FNR disparities, placing individuals in these subgroups at a higher risk of being
incorrectly diagnosed as requiring hospital readmission.
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Figure 5.6: Detected disparities for the intersectional case. Notable is the new bias
that emerged in the gender/race group. In the non-intersectional case,
the FNR parities were met for gender, respectively for race.

Law School Bar Exam dataset
The best performing model, in this case, was the Decision Tree classifier, achieving
an accuracy of 88% in both the non-intersectional and intersectional cases. The
following table outlines the privileged and unprivileged groups and subgroups for
each sensitive attribute.
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Attribute Privileged group/subgroup
race white

family income category 4
last score ≥ 37

race/family income white, category 4
race/lsat white, score ≥ 37

lsat/family income score ≥ 37, category 4

Table 5.7: Privileged groups and subgroups, Law Bar School Exam dataset

Original dataset: TPR, and precision were found to be fair across all groups.
However, significant disparities were noticed in FPR and FNR, which may be in-
fluenced by the imbalanced target variable. The FNR values for all three privileged
groups were very low, in some cases even 0, which made it impossible or difficult
to calculate the ratio value between the unprivileged and privileged groups. In
this case, the most disadvantaged subgroups were those involving the race cate-
gory ”Other” and the family income categories 1 and 2 (lowest income levels). For
FPR, the privileged groups had higher chances of being predicted as positive even
though it was not the case. Figure 5.7 highlights the detected disparities.

Figure 5.7: Detected disparities for non-intersectional case, highlighting the dis-
parities in FNR and FPR. FNR fails for all subgroups but the privileged
ones. Similar results are for FPR ratios.

Intersectional dataset: The large number of resulting intersectional subgroups
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led to under-representation in certain subgroups, as seen in 5.8, which impacted
the reliability of the fairness metrics calculated for these groups. However, preci-
sion remained fair across all intersectional groups. In the case of TNR unfairness
was detected in some subgroups that resulted from the combination of the ”Other”
race category. In contrast, in the combination of groups that contained the ”White”
race category, the performance remained fair. The FNR values showed the same is-
sue, as in the original dataset, of low values for the privileged groups, again leading
to poorly defined ratios.

Figure 5.8: Detected FNR and FPR disparities for the intersectional case. Notable is
the low values in FNR for the privileged groups (almost 0-close values),
which cause high disparities in the unprivileged groups.

Table 5.8 summarizes the key observations from the bias detection analysis in
the intersectional case, highlighting instances of amplified and newly detected bi-
ases across datasets.
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Dataset Intersectional Bias Observations
ACS Income Bias amplification occurred in TPR, TNR, FPR, and

FNR. New bias was detected in TPR and TNR for
women in the race category ”Other.”

German Credit Risk Bias amplification occurred in FNR and FOR, with
smaller subgroups experiencing greater disparities.

Diabetes180US Bias amplification occurred in FNR. New bias emerged
for patients in the race category ”Other,” affecting
both men and women.

Law School Bar Exam Bias amplification occurred in FNR and FPR. The class
imbalance caused significant disparities in FNR.

Table 5.8: Overview of the findings in terms of intersectional bias

5.3 RQ3: To what extent can existing bias
mitigation methods reduce unfair bias in the
case of intersectional groups, and what are the
implications on model performance?

To tackle the last research question, nine different bias mitigation methods were
applied to each dataset. Depending on the prediction task, the focus of the mit-
igation changed. This section presents the results for each dataset, highlighting
the changes in various metrics. For simplicity and clarity, the disparities across
the selected sensitive attributes are summarized using their average, and a com-
parison is made between the intersectional case and the results after applying the
mitigation methods. The average of disparities is calculated as below:

avg disp metric = mean(
NA∑
i=1

metric rate unprivileged
metric rate privileged ),

Where:

• NA : Number of sensitive attributes

• metric rate: Any metrics such as FPR, FNR, etc.
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Acs Income dataset
For this dataset, the focus was to improve all four metrics that showed disparities:
TPR, TNR, FNR, and FPR.

Method TPR TNR FNR FPR

Intersectional 0.8 1.35 2.57 0.5
Massaging Method 0.89 1.04 4.68 0.55
Prevalence Sampling 1.02 1.01 0.92 0.95
Data Repairer 0.75 1.4 2.9 0.49
Label Flip 1 1 1 0.82
Fairlean classifier 0.83 1.21 1.5 0.64
GerryFair 0.97 2.67 3.94 0.83
Threshold Optimizer 0.99 0.99 1 1
Group Threshold 0.99 1 0.98 0.99
Equalized Odds Method 0.92 1.16 1.37 0.82

Table 5.9: The average of TPR, TNR, FPR and FNR disparities across the original
intersectional dataset and all applied bias mitigation. Methods that im-
proved these disparities the best are highlighted in bold.

Prevalence Sampling and Label Flip methods were the most effective in reduc-
ing disparities and achieving fair results, without any significant trade-offs. Due to
the large size of the dataset, the Prevalence Sampling method managed to under-
sample the dataset and created an evenly balanced class distribution within each
subgroup. This resulted in much fairer outcomes, highlighting the importance of
a balanced dataset. Massaging achieved the highest accuracy by improving both
TNR and TPR, but it led to higher disparities in the FNR. Similarly, Fairlearn clas-
sifier achieved TPR and TNR parity, but it affected the disparities in FPR and FNR.
The Threshold Optimizer method achieved parity in all four metrics, but it reduced
the accuracy. Finally, the Equalized Odds method improved both the TPR and FPR,
ensuring equalized odds parity. The following figure highlights the model’s accu-
racy across the applied bias mitigation methods.
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Figure 5.9: Accuracy across bias mitigation methods, ACS Income dataset

German Credit Risk dataset
The focus for improvement in this case was the FNR and FOR since disparities in
these two indicates that people from unprivileged subgroups have a higher chance
of not receiving a bank credit, even though they should. The following table shows
the average of the FNR and FOR disparities and how they change across the bias
mitigation methods.
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Method FNR FOR

Intersectional 1.41 0.75
Massaging Method 1.41 1.52
Prevalence Sampling 0.8 0.78
Data Repairer 2.23 0.91
Label Flip 2.15 1.77
Fairlean classifier 0.94 2.35
GerryFair 8.8 1.5
Threshold Optimizer 1.87 0.62
GroupThreshold 0.95 0.79
Equalized Odds Method 0.9 0.36

Table 5.10: The average of FPR and FOR disparities across the original intersec-
tional dataset and all applied bias mitigation, using Logistic Regression
as classifier. Methods that improved these disparities the most are high-
lighted in bold.

Due to the size of the dataset (1000 entries), it was challenging to achieve better
results with the mitigation methods. In general, the methods managed to reduce
the values of FNR at the cost of increasing the TNR disparities. The FairLearn
classifier, as well as the threshold modifying post-processing methods, reduced the
FNR disparities the most, however they came at the cost of reducing the model’s
accuracy. The difference between the accuracies over the applied methods can be
seen in figure 5.10.
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Figure 5.10: Accuracy across bias mitigation methods, German Credit Risk dataset

Diabetes130US dataset
For this dataset, the most significant disparities were observed in the FNR, making
it the primary focus for improvement when applying the bias mitigation methods.
Disparities in FNR indicate that for certain subpopulations, the algorithm dispro-
portionately misclassified patients as needing readmission to the hospital, leading
to unfair treatment.

The table below presents the average FNR disparities for the original dataset and
the changes observed in this metric after applying the bias mitigation methods.
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Method FNR

Intersectional 0.74
Massaging Method 0.88
Prevalence Sampling 0.86
Data Repairer 0.77
Label Flip 0.87
Fairlean classifier 0.76
GerryFair 0.7
Threshold Optimizer 1.01
Group Threshold 0.89
Equalized Odds Method 0.87

Table 5.11: FNR average disparity across all applied bias mitigation methods using
Catboost as classifier. Methods that improved the FNR the most are
highlighted in bold.

Prevalence Sampling, Massaging and Label Flip methods met the FNR parity for
the race/gender attribute and improved the average FNR for the other two sensi-
tive attributes. The reduction in the FNR resulted in a slight impact on the PPR
disparities. GerryFair and Threshold Optimizer reduced the FNR to values close to
zero but increased the disparities in the TNR and GerryFair impacted the accuracy.
Group Threshold method met the FNR parity for all subgroups but it affected the
accuracy the most, with a drop of −8%. Figure 5.11 shows the accuracies obtained
for each bias mitigation method.
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Figure 5.11: Accuracy across bias mitigation methods, Diabetes130US dataset

Law School Bar Exam dataset
The main focus of bias mitigation for this dataset was the reduction of FNR and
FPR disparities. For this prediction task, minimizing FNR is crucial to ensure that
the sensitive groups are not unfairly disadvantaged by being incorrectly labeled
as failing the exam when they should be labeled as passing. Improving the FPR
parities aligns with obtaining the equalized odds parity which requires equal TPR
and FPR across all groups. For TPR, no improvements were needed, since all four
models were capable of correctly identifying positives for all groups. The follow-
ing tables present the modified average disparities for FNR, respectively, FPR after
applying the bias mitigation methods.
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Method FNR FPR

Intersectional 24.07 0.64
Massaging Method 7.6 0.72
Prevalence Sampling 0.96 1.07
Data Repairer 48,4 0.8
Label Flip 10.48 1.04
Fairlearn classifier 3.2 0.99
GerryFair inf 1
Threshold Optimizer 0.99 1.07
GroupThreshold 1.57 1.04
Equalized Odds Method 4.4 0.99

Table 5.12: FNR and FPR average disparities across all applied bias mitigation
methods using Decision Tree as a classifier. Values equal to infinity
(inf) represent the cases of division to 0 (FNR of privileged group = 0).
Methods that improved the best results are highlighted in bold.

Due to the imbalance in the class target, the majority of bias mitigation meth-
ods struggled to improve the FNR parity. The Massaging method and Data Re-
pairer methods reduced the values for FNR to 0-close values, the exception being
for the attributes resulted from intersecting the family income of category 1 with
race of category ”other”, respectively with last of category Score > 37. For these
two, the FNR values were much larger, hence the high average for FNR. Gerry-
Fair model predicted no negative values at all, therefore the ∞ value in the FNR,
respectively the value of 1 in FPR disparities. The goal of improving FPR was to
meet the equalized odds parity and the majority of methods reduced the disparity.
Equalized Odds method improved the FPR parity and it reduced the values of FNR
to < 0.1 for all subgroups. Threshold Optimizer and Group Threshold achieved
the FPR parities, however, the accuracy with Group Threshold was reduced as can
be noted in Figure 5.12 below:
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Figure 5.12: Accuracy across bias mitigation methods, Law school bar exam dataset

Table 5.13 summarizes the key observations from the bias mitigation analysis,
highlighting the challenges encountered in addressing disparities across datasets.
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Dataset Challenges and Observations from Bias
Mitigation

ACS Income The large dataset size contributed to achieving the
best results. However, simultaneously improving all
four metrics often led to trade-offs between them.

German Credit Risk Bias mitigation was challenging due to the small
dataset size and the high number of subgroups,
particularly in reducing FNR disparities.

Diabetes180US FNR disparities were successfully improved with five
bias mitigation methods without significantly
affecting other metrics.

Law School Bar Exam Bias mitigation was highly challenging due to the
imbalanced class distribution, resulting in near-zero
FNR values for privileged subgroups and high FNR
values for unprivileged ones.

Table 5.13: Summary of challenges and outcomes in bias mitigation efforts across
datasets.

5.4 Discussion

5.4.1 RQ1: To what extent can a semi-automated approach
assist in identifying sensitive attributes and forming
relevant intersectional groups within public datasets?

The detection algorithm successfully identified sensitive attributes in the datasets,
including attributes that normally are not considered sensitive. In the German
Credit Risk dataset, housing and the number of people maintenance were detected
as sensitive attributes. These attributes can be seen as a sign of financial stability
and significant disparities were revealed in the intersectional case.

Notable are the results regarding the Law School Bar Exam dataset, where the
second highest sensitive attribute is family income. This attribute introduces a
social-economic bias, with the lowest family income (category 1) showing the
highest FNR disparities in both the non-intersectional and intersectional cases.

Together, these findings emphasize the need to expand bias detection beyond
traditional protected attributes. Attributes like housing, income, or others that
correlate with social or economic factors can also carry biases. When combined
with protected attributes, they may amplify unfairness, leading to intersectional
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bias that would otherwise go undetected.
The detection algorithm also enabled the creation of intersectional groups by

ranking attributes based on their likelihood of disadvantage. This approach facil-
itated a more focused analysis of bias, prioritizing the most critical intersections.
Such a strategy is particularly valuable when the creation of a large number of
intersectional groups is impractical due to imbalanced or insufficient data. While
this method does not fully resolve the challenges associated with numerous in-
tersectional attributes, it ensures attention is directed toward those most prone to
amplified bias.

One challenge encountered during attribute detection was handling continu-
ous attributes like the place of birth (POBC) attribute in the ACS Income dataset.
Such an attribute could introduce unfair regional social-economic bias, but in this
case, there is no additional information on how to aggregate this attribute into
regions or states, hence it was not considered for bias analysis. Similarly, in the
Diabetes180US dataset, two medical attributes (diag 1, diag 3) detected as sensi-
tive could not be utilized due to their continuous nature. Such features, however,
combined with gender or age, could lead to hidden bias.

Findings regarding RQ1: The algorithm proved to be an effective tool for iden-
tifying sensitive attributes. Furthermore, it facilitated the formation of intersectional
attributes, creating a balance between prioritizing attributes and avoiding having
an excessive number of intersectional subgroups. Nevertheless, the ranking of the
attributes requires a thorough analysis, as the number of attributes, as well as the
attributes that can be considered for bias analysis, differ from one dataset to another.

5.4.2 RQ2: Does the consideration of intersectional groups
reveal or amplify hidden biases that are not evident in
non-intersectional groups?

The analysis of intersectional bias revealed that unfair bias becomes more pro-
nounced when considering intersectional cases. Across all four datasets, existing
biases were amplified. Furthermore, new biases emerged for the DiabetesUS180
and ACS Income datasets. In the case of the DiabetesUS180 dataset, the FNR par-
ity, which was fair for both race and gender in the original analysis, failed to be
met for their intersectional combination. Similarly, for the ACS Income dataset, the
subgroup formed by the intersection of the unprivileged sex group (women) and
the race category ”Other” exhibited disparities in both TPR and TNR, even though
these metrics had passed for race and sex individually in the non-intersectional
case.

Figure 5.13 highlights the average disparities amplifications for each dataset.
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This was calculated by averaging the detected and discussed disparities in Chapter
5. Their values were averaged separately for the non-intersectional and intersec-
tional cases. The absolute difference between these averages was then computed
to quantify the overall increase in disparities introduced by considering intersec-
tional groups.

Figure 5.13: Average disparities amplifications per dataset.

Notable is the high spike in amplifications in the Law Bar School Exam dataset.
This was mainly due to its imbalanced class distribution, which created higher
metric disparities for smaller intersectional subgroups compared to those that had
higher representation in the dataset.

Dataset size significantly influenced the intersectional bias analysis. German
Credit Risk dataset contains only 1000 entries and combined with unequal dis-
tribution within the sensitive attributes groups, lead to intersectional subgroups
being under-represented. This limited representation made it difficult to evaluate
fairness, as disparities were magnified in these small subgroups.

These two challenges (imbalanced class distribution and data size), motivated
the merging of under-represented subgroups into broader categories: For in-
stance, in some cases, the race attribute was categorized into ”Caucasian/white”
and ”Other” due to under-representations of other races. This approach allowed
for fairness evaluations, but it obscured the unfair bias that occurred in specific
subpopulations.

Findings regarding RQ2: This analysis revealed that unfair bias emerges when
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evaluating fairness metrics in the intersectional case, that could be otherwise over-
looked. Additionally, imbalanced class distribution and too small dataset sizes seem
to be a large driver of increased disparities in the fairness metrics.

5.4.3 RQ3: To what extent can existing bias mitigation
methods reduce unfair bias in the case of intersectional
groups, and what are the implications on model
performance?

The applied bias mitigation methods yielded different results depending on the
dataset and the metrics for which an improvement was sought. In general, Preva-
lence Sampling and Label Flip proved to be the most effective, without any notable
trade-offs. The Massaging Method predominantly increased the accuracy and im-
proved metrics such as TPR. However, it failed to improve FNR or FPR disparities.
The in-processing methods showed limited success; FairLearn has a limited num-
ber of constraints that can be improved. Similarly, GerryFair improved metrics
like TPR. However, it had little impact on improving other disparities. Among
post-processing methods, the Threshold Optimizer and Equalized Odds methods
were the most successful, although their performance varied by the dataset. Data
size, imbalanced target variable distribution and subgroup representations affected
the efficiency of the applied methods, as also noted in other works [18].

Looking at the effects of these applied methods, two types of trade-offs were
identified:

• Accuracy trade-offs: FairLearn, GerryFair, Threshold Optimizer, and Group
Threshold affected the model’s accuracy. This effect was especially strong for
the Group Threshold, which only met the desired parities at the high cost of
accuracy.

• Metrics trade-offs: Were observed for various methods, depending on the
mitigation task. For the Law School Bar Exam, GerryFair model predicted
no negative predictions, leading to a model impractical in real-world use.
The Massaging Method and FairLearn successfully improved TPR values but
at the cost of affecting the disparities in FNR and FPR. This trade-off can be
best noticed in the ACS Income results table 5.3.

Findings regarding RQ3: Overall, their results underscore that bias mitigation
methods can effectively reduce disparities, however, their performance depends on the
nature of the datasets, as well as the method’s improvement target. Moreover, it is also
crucial to investigate the trade-offs between fairness metrics and overall accuracy to
ensure trustworthy and useful results.
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5 Results and Discussion

5.5 Summary
This chapter provided a comprehensive analysis of the results. It began by present-
ing the sensitive attributes identified for each dataset, along with the intersectional
attributes. The detection algorithm uncovered attributes that might not typically
be considered sensitive, although a manual review of these detected attributes is
necessary. Next, a detailed bias analysis was conducted for both cases, reveal-
ing that in intersectional scenarios, biases can be amplified, and in some cases,
new biases can emerge. Finally, bias mitigation methods were applied to address
the identified unfair biases. The results showed that while existing bias mitiga-
tion methods can improve outcomes, their effectiveness varies depending on the
dataset.
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6 Conclusions and Open
Challenges

This Master’s thesis analyzed intersectional unfair bias across four publicly avail-
able datasets, utilizing a semi-automatic algorithm to identify sensitive attributes
at the highest risk of disadvantage and to form intersectional groups. The fairness
analysis revealed that biases are amplified in the intersectional case compared to
the non-intersectional groups, particularly for smaller and under-represented sub-
groups. Nine existing bias mitigation methods were applied and evaluated across
the datasets, revealing varying levels of effectiveness. Smaller datasets, imbalanced
target distributions, and under-represented subgroups posed significant challenges
to achieving fairness improvements without introducing trade-offs.

These findings highlight the importance of addressing intersectional fairness in
machine learning models, underscoring the need for careful selection of mitigation
methods to balance fairness improvements with model performance. This work
contributes insights into the possibilities of using a semi-automated detection al-
gorithm to identify intersectional groups that might otherwise be overlooked, as
well as the challenges in mitigating unfair bias detected within these groups.

6.1 ResearchQuestions
• RQ1: To what extent can a semi-automated approach assist in identifying
sensitive attributes and forming relevant intersectional groups within public
datasets?

The detection algorithm proved effective in identifying sensitive attributes,
including those not traditionally recognized as sensitive, such as housing
or family income level. Additionally, the algorithm facilitated the forma-
tion of intersectional groups by ranking attributes by their likelihood to be
disadvantaged, enabling a more focused bias analysis. However, challenges
remain in handling continuous attributes and balancing the number of in-
tersectional subgroups, especially in datasets with imbalanced or insufficient
data.
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6 Conclusions and Open Challenges

• RQ2: Does the consideration of intersectional groups reveal or amplify hidden
biases that are not evident in non-intersectional groups?

The analysis revealed that intersectional attributes amplify existing biases
and can uncover new biases that are not evident in non-intersectional cases.
For example, disparities in TPR and TNR emerged in specific subgroups, such
as women in the ”Other” race category in the ACS Income dataset. Small
dataset sizes and imbalanced distributions were also significant drivers of
disparities.

• RQ3: To what extent can existing bias mitigation methods reduce unfair bias
in the case of intersectional groups, and what are the implications on model
performance?

Bias mitigation methods showed varying degrees of success depending on
the dataset, the metrics targeted for improvement, and the mitigation ap-
proach. Prevalence Sampling and Label Flip were generally the most effec-
tive without major trade-offs. In contrast, some methods, such as FairLearn
and GerryFair, improved specific metrics like TPR but introduced trade-offs
in accuracy or other disparities. These findings underscore the need to eval-
uate the effectiveness of bias mitigation methods on a case-by-case basis,
balancing fairness improvements with potential accuracy trade-offs. Task-
specific considerations remain crucial for achieving practical and trustwor-
thy outcomes.

6.2 Open Challenges and Future Work

6.2.1 Open Challenges
During the work for this Master’s thesis, several open problems have been identi-
fied:

• Datasets availability: Finding datasets that contain sufficient and diverse en-
tries to ensure a balanced distribution across intersectional groups is chal-
lenging. Out of the four datasets investigated in this work, only ACS Income
dataset was large enough to provide a more proportional distribution of the
attributes.

• Data sparsity: Under-representation in certain subpopulations leads to dif-
ficulties in accurately analyzing bias. This issue highlights the critical need
to collect data as inclusively as possible, especially when evaluating fairness
in intersectional groups.
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6 Conclusions and Open Challenges

• Integrating bias mitigation methods into toolkits: While the bias mitigation
methods selected for this work are available and incorporated into toolkits,
other bias mitigation methods developed in research are not yet integrated
into user-friendly frameworks [70], [56]. This limits their practicality and
applicability.

• Applicability of bias mitigation methods: Selecting the most effective bias
mitigation method is challenging, as their performance often varies depend-
ing on the dataset and task. In this work, nine methods were evaluated,
with results demonstrating that their effectiveness is context-specific. Even
the methods that demonstrated positive results in this work may fail to re-
produce similar outcomes in different contexts. This emphasizes the need
for task-specific considerations when applying bias mitigation methods.

6.3 Future Work
A possible direction for future work could involve integrating a broader range
of bias mitigation methods into ready-to-use toolkits, with a particular focus on
methods that address intersectional fairness. This integration would streamline
the process of testing and comparing various mitigation approaches under consis-
tent conditions, providing clearer insights into their effectiveness across different
datasets and tasks. Moreover, such toolkits would enhance accessibility by low-
ering technical barriers, enabling more practitioners to incorporate fairness con-
siderations into their workflows. Furthermore, they would raise awareness about
the importance of addressing intersectional biases, encouraging their adoption in
real-world applications.

Reproducibility
The code developed as part of this thesis is made available to support reproducibil-
ity1.

1https://github.com/IoanaSil14/Intersectional-fairness-in-pub
lic-datasets
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Appendix

Visualization Tool for AI Trustworthiness
This section presents a work-in-progress visualization tool designed for evaluating
the trustworthiness of machine learning models based on four key performance
indicators: accuracy, fairness, robustness and transparency. The primary aim of
this toolkit is to provide a comprehensive and reproducible way to evaluate and
compare the trustworthiness of machine learning models.

The tool allows users to upload their datasets (train, test, and prediction data),
machine learning models that were trained on the data, and associated parameters
for analysis and comparison. This supports reproducibility and ensures a trans-
parent evaluation process across the four defined dimensions.

Screenshots and Examples
Figure 1 displays the visualization tool. This example shows the results for the
German Credit Risk dataset, for which the prediction task is to decide if a per-
son represents a ”good” or a ”bad” credit risk. The four dimensions represent the
following:

• Accuracy: The model’s predictive accuracy based on the test set.

• Fairness: Evaluated in this example as the highest FNR between unprivileged
groups and privileged group within the selected sensitive attributes.

• Robustness: The fraction of features that need to be changed to alter the
classifier’s decision.

• Transparency: The explainability of the model, measured by the number of
important features that contribute to the decisions.
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Figure 1: Overview of the visualization tool

Figure 2 displays in more detail the fairness domain of the visualization tool. The
selected sensitive attributes for analysis were gender, age, and their intersection
(gender/age). The unprivileged groups for each sensitive attribute is mentioned in
the details window. The overall fairness is calculated in this case as the average of
the three FNR disparity values.

Figure 2: Detail of the presented fairness metrics
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