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Abstract

Due to high complexity modeling and control of spatially distributed
systems described by partial differential equations is a challenging task.
Formulating system equations based on physical properties is a standard
modeling approach in this area. This thesis focuses on a data driven method
for system modeling. So-called Dynamic Mode Decomposition (DMD) is ap-
plied first to a simple example based on the one dimensional heat equation.
The impact of model order reduction on the model error is investigated.
Then a laboratory setting consisting of multiple heaters, a thermal camera
and a silicon wafer piece is modeled following the data driven approach.
The gained model is used for designing a state controller and a model
predictive controller, both for tracking purposes. Simulating and testing the
controllers on the laboratory setting results into promising behaviours of
the closed loop systems.

Key words. dynamic mode decomposition, system identification, model
order reduction, thermal diffusion

Aufgrund der hohen Komplexität stellt die Modellbildung und Regelung
verteilt-parametrischer Systeme eine große Herausforderung dar. Typis-
cherweise wird das zu untersuchende System durch physikalische Gle-
ichungen mathematisch beschrieben. In dieser Arbeit wird jedoch eine
datenbasierte Methode, die sogenannte Dynamic Mode Decomposition, zur
Modellierung herangezogen. Das Konzept wird Anfangs auf ein einfaches
Beispiel, basierend auf der eindimensionalen Wärmeleitungs-Gleichung,
angewendet. Es wird untersucht, welche Auswirkung die im Ansatz integri-
erte Modellordnungsreduktion auf den Modellfehler hat. Weiters wird ein
Labor-Aufbau, welcher zur Untersuchung der Wärmeausbreitung in einem
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Silizium Wafer verwendet wird, modelliert und geregelt. Dieser Aufbau
stellt ein Mehrgrößensystem dar. Zur Temperaturregelung wird ein Zus-
tandsregler sowie ein modellprädiktiver Regler entworfen und erprobt. Ziel
beider Entwürfe ist es ein vorgegebenes Temperaturprofil entlang der Wafer-
Oberfläche zu erreichen. Numerische Simulationen sowie Experimente am
Labor-Aufbau liefern vielversprechende Ergebnisse.
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1 Introduction

Topic and context. This thesis deals with data driven modeling and con-
trol of systems which dynamical behaviour is governed by partial differential
equations (PDEs). A common way of modeling „simple“ systems governed
by PDEs is e.g. to discretize the PDE in space and time. Often a linear
time-invariant (LTI) system of coupled difference equations results by using
diffenence quotients and simplifying nonlinear terms. Another possibility
to model more complex distributed parameter systems is the Ritz-based
finite element method [14]. Due to fine spatial discretization the resulting
systems are usually of high order. Thus, the gained models are computional
expensive due to the spatial dependence of the variables of interest. In
order to approach model-based controller design models of low order are of
interest. A concept overcoming this issue in combination with a method for
system order reduction is Dynamic Mode Decomposition (DMD) [8]. Another
advantage of DMD in modeling complex systems is its straightforward
usage. There is no need to formulate differential or difference equations de-
scribing the dynamics. A meaningful record of an identification experiment
describing the process by the contained input and output data is all that
is needed approaching DMD. This thesis makes use of this approach for
modeling systems governed by the heat diffusion equation. The dynamical
behaviour of a laboratory setting is modeled by applying DMD to a data-set
of an identification experiment. The gained model is further used to design
controllers. The DMD also provides spatio-temporal coherent structures also
known as modes dominating the investigated process. The graphical repre-
sentation of the modes illustrates the strong connection of DMD to Fourier
analysis. Due to the mode-based model, choosing the weighting matrix of
a linear quadratic regulator or a model predictive control approach may
be more complex compared to other models. This results from projecting
the state vector into the linear subspace where the controller is acting. Also
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1 Introduction

the identification experiment needs to be chosen properly in order to get a
representative model.

Relevance and importance. This research work contributes to the work of
J. Proctor, S. Brunton and N. Kutz [12] by applying the proposed concepts
in several examples, experiments and simulations. The work of Qiugang Lu
and Victor M. Zavala [10] implementing a model predictive control on a 2D
array of heating elements as well as the concept of foreground/background
seperation of J. Grosek and N. Kutz [7] are taken on this thesis.

Overview of the structure. This thesis is divided into three main parts. The
first part introduces the DMD concept. Here the mathematical background
used in the following chapters is discussed and a simple example is given.
In the second part an existing laboratory setup is modeled first as a single
input system in order to check the performance of the data-based modeling
algorithm. The chapter continues with the identification and simulation of
the setting using multiple inputs. The next chapter deals with the simulation
as well as experimental testing of model-based controllers designed using
the obtained system model.

2



2 Introduction into Dynamic
Mode Decomposition

Dynamic mode decomposition is a purely data-driven method for system
modeling. It provides a „best fit“ discrete linear time-invariant model of
the underlying process. The model consists of coupled spatial temporal
modes. Also nonlinear systems can be analyzed using DMD. In this case
the result will be a linear approximation. It is also possible to model time-
varying systems with DMD by applying it on-the-fly [11]. However, this
thesis focuses on offline applications by using data-sets of experiments to
gain models for model-based controller design.

DMD is often used to analyze high-dimensional systems like in the field
of fluid dynamics. More general, DMD is a powerful method regarding
spatially distributed processes based on partial differential equations that
can be captured with, e.g., a video camera. The pixel of the gained video
record are considered as states which may have different values at every
snapshot of the record. Since a video usually contains thousands or millions
of pixels the system order is high. Here a crucial benefit of the DMD comes
into play. The system order can be reduced dramatically by truncating the
model obtained by DMD exploiting singular value decomposition. The loss
of information that goes along with the truncation can often be kept small
despite the drastic order reduction.

Since DMD is purely data-driven there is no need to formulate physically
motivated differential equations describing the system dynamics. Neverthe-
less, it is cruical to perform well chosen experiments on the system to be
identified in order to get meaningful data for the DMD and to gain a useful
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2 Introduction into Dynamic Mode Decomposition

state-space representation of the underlying process. This is necessary be-
cause the resulting model is only valid within the range of the data-set used
for the DMD [8]. Performing validation experiments gives an idea of how
the model behaves outside the data-set of the identification experiment.

Figure 2.1: Thin film fluid distribution on a silicon wafer ([13])

Another requirement for the DMD analysis is that all states of the system
need to be measured over the entire duration of the identification experiment.
This condition may be fulfilled by capturing, e.g., a thermal process with a
camera since the pixel represent the states in this case.

A motivating example is depicted in Figure 2.1. One could think of
modeling how a fluid distributes on a rotating silicon wafer [13] by process-
ing recorded video data of this setting using the DMD. A more extensive
introduction to the DMD framework is provided by [8].

2.1 DMD Algorithms

There exist a variety of DMD algorithms. Some examples are the Least
Squares DMD [11], the Optimized DMD [2] and the Extended DMD [9].

4



2.1 DMD Algorithms

This thesis focuses on the use of the basic DMD and DMDc whereas DMD is
the classic Dynamic Mode Decomposition performing system identification
on autonomous systems. DMDc means Dynamic Mode Decomposition with
Control and provides a method to identify systems with known input signals
[12]. All DMD algorithms use snapshots of the process to be analyzed. Thus
the result of the DMD will be a discrete-time state-space model.

2.1.1 DMD - Identification of Autonomous Systems

DMD is based on an investigation of measurement pairs of a discrete
dynamical system. It is assumed that

xk+1 = Axk (2.1)

approximately captures the process dynamics. Here xk ∈ Rn is a measure-
ment vector capturing the states of the discrete dynamical system at every
time step k. The order of the system results from the spatial discretization
e.g. into pixel using a camera and is denoted by n. The matrix A ∈ Rn×n

describes how x is transfered from one time step to the next. In general, this
can not hold for all pairs of measurements exactly. Especially if a process
contains nonlinearities. So the DMD aims to find a best-fit solution for the
considered dynamics.

Snapshots of an identification experiment (e.g. a video record) containing
all states captured at equidistant time intervals ∆t are put into column
vectors xi whereas i = 1, 2, ..., m are the points in time up to the end of the
record m refering to each snapshot. Then the matrices

X =
[
x1 x2 ... xm−1

]
and

X ′ =
[
x2 x3 ... xm

]

5



2 Introduction into Dynamic Mode Decomposition

are assembled. The relation between the matrices X and X ′ can be expressed
by

X ′ ≈ AX.

The reformulation of this relation defines the linear operator

A = X ′X+,

where X+ stands for the pseudo inverse of X. In the next step a truncated
Singular Value Decomposition (SVD) is carried out by

X = UΣV∗ =
[
Ũ Ũrem

] [Σ̃ 0
0 Σ̃rem

] [
Ṽ∗

Ṽ∗rem

]
≈ ŨΣ̃Ṽ∗,

where Ũ ∈ Rn×r includes all column vectors of U up to the chosen trun-
cation value r. This truncation value provides a degree of freedom in the
DMD. A scheme for choosing r can be found in [6]. The matrix Σ̃ ∈ Rr×r

is a diagonal matrix with the dominant r singular values of Σ. The matrix
Ṽ ∈ Rn×r consists of the first r columns of V . An approximation Ā ∈ Rn×n

of the original A matrix can now be computed by using the truncated SVD
of X by

A ≈ Ā = X ′Ṽ Σ̃
−1Ũ∗.

Expressing A in (2.1) by its approximation leads to

xk+1 = X ′Ṽ Σ̃
−1Ũ∗xk.

In order to gain a computationally more efficient model, the state vector x is
projected onto a linear subspace by performing the linear transformation

x̃ = Ũ∗x. (2.2)

6



2.1 DMD Algorithms

The measurement vector x can be approximated by

x ≈ x̂ = Ũ x̃. (2.3)

In (2.1) the measurement vector can be expressed by (2.2). The fact that
Ũ∗Ũ = I for n > r is used to simplify the result leading to

x̃k+1 = Ũ∗X ′Ṽ Σ̃
−1x̃k.

Reformulating this expression using

Ã = Ũ∗X ′Ṽ Σ̃
−1 (2.4)

leads to

x̃k+1 = Ãx̃k. (2.5)

This means that Ã is the dynamic matrix of the reduced order system.
Relation (2.4) completes the data-driven system modeling. The dynamic
modes φ of a system are spatial temporal coherent structures dominating
the dynamics of the process. The modes are the eigenvectors of Ā. The
eigenvectors of Ā and Ã are related via a linear transformation [12]. For
large values of n the solution of the eigenvalue problem of Ā ∈ Rn×n

might be numerically difficult. Using the eigenvectors w ∈ Rr of Ã and the
relation

φ = X ′Ṽ Σ̃
−1w (2.6)

avoids this issue.

7



2 Introduction into Dynamic Mode Decomposition

2.1.2 DMDc - Identification of Systems with Known Input
Signals

For a discrete-time process providing measurements of all inputs u ∈ Rq

and all states x ∈ Rn at regular time intervals ∆t the following relation
including the linear operators A ∈ Rn×n and B ∈ Rn×q can be formulated:

xk+1 = Axk + Buk. (2.7)

Similar to DMD, for fixed values of A and B the equation can not hold for
every measurement trio xk+1, xk and uk. So the DMDc can only provide
best-fit solutions of A and B. Beside the state measurement matrices X and
X ′ a matrix Y is formulated by

Y =
[
u1 u2 ... um−1

]
.

This matrix describes how the inputs evolve over time. Using the mea-
surement matrix Y , relation (2.7) can be reformulated into matrix form
as

X ′ ≈ AX + BY . (2.8)

At this point of the DMDc procedure two cases are distinguished: Known
and unknown B. In this thesis only the case that both operators are unknown
is considered. Thus the calculations proceed as follows:

Using G =
[
A B

]
and Ω =

[
XT YT]T relation (2.8) is reformulated to

X ′ ≈ GΩ.

In order to directly calculate the best-fit operators A and B this equation is
rewritten to

G = X ′Ω+

8



2.1 DMD Algorithms

and

[
A B

]
= X ′

[
X
Y

]+
where Ω+ is the pseudo inverse of Ω. Similar to the approach of DMD an
order reduction of the system can be embedded performing a truncation in
the SVD of Ω ≈ ŨΣ̃Ṽ∗. The used truncation value is given by

p = r + q,

where r is the system truncation value and q is the number of inputs. An
approximation of A and B can be calculated using the result of the SVD
by

[
A B

]
≈
[
Ā B̄

]
= X ′Ṽ Σ̃

−1Ũ∗. (2.9)

In order to obtain a reduced order model the matrix Ũ is splitted into
two parts Ũ1 ∈ Rn×p and Ũ2 ∈ Rq×p. The next step requires a SVD and
truncation of X ′ by r. This is achieved by calculating

X ′ = U′Σ′V ′∗ =
[
Û Ûrem

] [Σ̂ 0
0 Σ̂rem

] [
V̂∗

V̂∗rem

]
≈ ÛΣ̂V̂∗,

where Û ∈ Rn×r, Σ̂ ∈ Rr×r and V̂ ∈ Rm−1×r. This SVD provides the trans-
formation matrix Û used to project the state vector x onto the linear subspace
x̃ in the manner

x̃ = Û∗x. (2.10)

The measurement vector x can be approximated by

x ≈ x̂ = Û x̃.

9



2 Introduction into Dynamic Mode Decomposition

Seperating the rigth hand side of equation (2.9) using Ũ∗1 and Ũ∗2 leads to
the expression

[
A B

]
≈
[

X ′Ṽ Σ̃
−1Ũ∗1 X ′Ṽ Σ̃

−1Ũ∗2
]

.

In (2.7) the measurement vector can be expressed by (2.10). The fact that
Û∗Û = I for n > r is used to simplify the result leading to

x̃k+1 = Û∗X ′Ṽ Σ̃
−1Ũ∗1Û x̃k + Û∗X ′Ṽ Σ̃

−1Ũ∗2uk

where I represents the identity matrix. Reformulating this expression us-
ing

Ã = Û∗X ′Ṽ Σ̃
−1Ũ∗1Û

and

B̃ = Û∗X ′Ṽ Σ̃
−1Ũ∗2

leads to

x̃k+1 = Ãx̃k + B̃uk

which provids the reduced order system. In DMDc the dynamic modes φ
of the system basically have similar relations and meaning as in DMD. Per-
forming an eigendecomposition on Ã is sufficient. The gained eigenvectors
w are used for the relation

φ = X ′Ṽ Σ̃
−1Ũ∗1Ûw (2.11)

providing the r dominant dynamic modes of the process.

10



2.2 Example: System Identification using DMD

2.2 Example: System Identification using DMD

A first example shows how DMD is applied to a given system. The given
system is modeled and validated using different reduction values r.

2.2.1 Properties of the System

The considered setting consists of an iron rod having length l. The tem-
perature distribution along the single spatial dimension x is captured by a
thermal camera at constant time intervals ∆t. The thermal conductivity λ,
the density ρ and the heat capacity cp of iron are listed in Table 2.1.

Table 2.1: Model parameters
Parameter Value Unit

cp 462 J · kg−1 ·K−1

ρ 7874 kg ·m−2

λ 55 W ·m−1 ·K−1

l 0.2 m
∆t 2 s
∆x 0.01 m

These material properties are constant over the entire rod. Considering the
given setting the one dimensional heat equation

∂T
∂t

= κ
∂2T
∂x2 (2.12)

can be used to describe the thermal behaviour of the rod. Here κ is the
thermal diffusivity

κ =
λ

ρcp
.

11



2 Introduction into Dynamic Mode Decomposition

The partial differential equation (2.12) is discretized in time by using the
forward difference quotient

∂T
∂t
≈

Tk+1
i − Tk

i
∆t

and discretized in space by using the central difference quotient

∂2T
∂x2 =

∂

∂x

(
∂T
∂x

)
≈

Tk
i+1 − 2Tk

i + Tk
i−1

(∆x)2

where k denotes the time step and i the discrete position. The spatial grid
interval ∆x is chosen constant over the entire spatial domain. The discretized
PDE can be reformulated to

Tk+1
i = Tk

i + κ∆t
Tk

i+1 − 2Tk
i + Tk

i−1
(∆x)2 . (2.13)

Both ends of the rod are taken into account as states of the resulting LTI
formulation. This means that Tk

1 is located at x = 0 cm and Tk
21 at x = 20 cm.

Thus, the system has n = 21 states. At both ends, it is assumed that the rod
satisfies the homogeneous Neumann boundary condition

∂T
∂x

∣∣∣∣
x=0cm, x=20cm

= 0.

This means that there are no losses of energy to the ambience. The Neumann
boundary condition modifies equation (2.13) for the first of all spatial indices
i = 1, 2, ..., n to

Tk+1
1 = Tk

1 + κ∆t
Tk

2 − Tk
1

(∆x)2 .

12



2.2 Example: System Identification using DMD

For the last spatial sample i = n = 21 a similar expression results by

Tk+1
21 = Tk

21 + κ∆t
Tk

20 − Tk
21

(∆x)2 .

The resulting discrete-time system is formulated in terms of an autonomous
state-space model by

xk+1 = Axk

It is assumed that the state vector

x =


T1
T2
...

T21


is directly measured and contains the temperature of the rod at the dis-
cretization nodes.

2.2.2 System Identification and Validation

A simulation of m time steps using a random initial temperature distri-
bution is performed. The resulting data-set including the states xk over the
whole duration is depicted in Figure 2.2. The data matrices X and X ′ for the
DMD are extracted from this record. The mean value of the shown data-set
is subtracted before the DMD is performed. This exactly reduces the DMD
to the temporal Discrete Fourier Transform (DFT) [5]. A degree of freedom
in the DMD is the model reduction value r. The resulting model is given by
equation (2.5). This model converges to the origin of the state-space. So, if
the model is used for simulation the mean of the state vector x has to be
subtracted from x before transforming it into the subspace using (2.2). The
estimated state vector x̂ is obtained by performing (2.3) to x̃ and adding the
mean of x. A simulation using the gained model and the same initial states

13



2 Introduction into Dynamic Mode Decomposition

as for the identification is performed. The impact of the model reduction
onto the model error is investigated in Figure 2.3 by using different values
for r. Therefore, the error norm Ek of the state vector is calculated for every
time step k by

Ek =
√

eT
k ek

where

ek = xk − x̂k.

Figure 2.2: Evolution of temperature along a rod over time

14



2.2 Example: System Identification using DMD

Figure 2.3: Error norm of state vector considering the identification experiment

Validation. To further investigate the quality of the gained system approx-
imation another simulation using a different initial state vector is executed
for both the original and the estimated system. The resulting data-set of
the original system is shown in Figure 2.4. Again the data-sets of both
systems are compared using the error norm Ek. The result can be observed
in Figure 2.5.

Discussion. As expected, the error increases by reducing the value of r.
The r dominant dynamic modes of the system are computed using (2.6).
The resulting curves are depicted in Figure 2.6. The eigenvalues of Ã are:

Nr eigenvalue
1 −0.0269
2 0.4264
3 0.8307
4 0.9932
5 0.9246

Table 2.2: Eigenvalues of Ã

The connection between the spatial frequency of each mode and the cor-
responding eigenvalue is investigated. Comparing both properties of each
mode one can observe that they are directly linked to each other. The mode

15



2 Introduction into Dynamic Mode Decomposition

Figure 2.4: Resulting data-set of validation experiment

having the lowest spatial frequency also has the lowest temporal frequency.
This is represented by mode 4. In contrast, mode 1 has the highest spatial
frequency and the highest temporal frequency. Different modes result if a
different data-set gained from the same system is provided to the DMD.

Figure 2.5: Error norm of state vector considering the validation experiment

16



2.2 Example: System Identification using DMD

Figure 2.6: Dynamic modes of the model using r = 5

17





3 Modeling of a Laboratory
Setting using Dynamic Mode
Decomposition with Control

Figure 3.1: Laboratory setting

An existing laboratory setting is modeled by running an identification
experiment and using the obtained data in the DMDc. Basically the setting
was built to investigate and control thermal effects in a silicon-wafer. As a
temperature sensor a thermal camera, detecting the temperature distribution
on the surface of the wafer (see Figure 3.1) is installed. It is assumed that the
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3 Modeling of a Laboratory Setting using Dynamic Mode Decomposition with
Control

Figure 3.2: Setting seen from the perspective of the thermal camera - top view

Figure 3.3: Scheme of the setting - side view of the radial profile

setup is rotationally symmetric. Thus, the observation of the wafer along
a line from the rotational center to the edge is sufficient. In Figure 3.2 the
radial profile is represented by a black line having two different lengths

20



3.1 Sampling Time and Time Constants

meaning that there are two different state vectors. The first captures the
entire profile including n = 138 pixel. The second only captures the heatable
sectors of the profile including n = 88 pixel. In this regard, the states are
directly measured by the camera. The distance between the camera and the
surface of the wafer is chosen such that one pixel approximately corresponds
to 1mm2. The actuators of the system are several hundred high power LEDs
grouped into six circular sections whereas only the outer five are used. As
depicted in Figure 3.2 it is not possible to actuate the innermost section. The
control unit of the setting is realized by a conventional personal computer
(PC). It gathers the data of the thermal camera and outputs actuating signals
using an Arduino Due micro controller. The micro controller provides the
supply units of the LED sections with the actuating signals via power
switches. In order to operate the system, Matlab® is embedded as the main
software component.

3.1 Sampling Time and Time Constants

Figure 3.4: Investigating the fastest responding state of the system by step response

For the modeling procedure the time constants of the system are investi-
gated. Figure 3.4 illustrates the step response resulting from a step from 0%
to 40% heater power at the outermost section. The shown temperature curve
referes to the fastest responding state recorded by the thermal camera. This
state is located in the vicinity of the center of the actuated section. The time
constant τ = 31.72 s is found by looking for the point in time where 63.2%
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of the steady-state temperature is reached. For this calculation the ambient
temperature ϑa has been subtracted from the steady-state temperature. The
maximum allowed samling time ∆tmax is obtained from the nyquist criterion,
i.e.

fc =
1
τ
= 0.03153 Hz

fs > 2 fc = 0.06306 Hz→ ∆tmax = 15.86 s→ ∆tchosen = 0.5 s

As expected in thermal diffusion processes the time constants are large. The
sampling time is chosen as ∆tchosen = 0.5 s.

3.2 System Identification using a Single Actuator

In order to investigate if a system identification via DMDc is suitable for
the present system, only a single actuator is used at first. Looking at the
system from the modeling and control perspective, it is obvious that the
autonomous system must converge towards the ambiente temperature ϑa.
If ϑa is not measured it has to be considered as a disturbance acting onto
the entire state vector. In the present case ϑa is directly recorded by the
thermal camera and can be treated as a known external input. In the DMDc
there are two possibilities to deal with this effect. In the first approach ϑa
is treated as an input of the DMDc. In the second it is subtracted from the
state data-set.

3.2.1 ϑa as Input of the DMDc

Input data for the DMDc is generated by performing an open loop ex-
periment on the laboratory setup. For this experiment only the outermost
actuator is used. The actuating signal u as well as the ambiente temperature
ϑa are shown in Figure 3.5 over the entire duration of the experiment. These
signals form the first input matrix Y of the DMDc. The corresponding record
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of the wafer surface temperature is shown in Figure 3.6. It represents the
evolution of x over the experiment duration and also provides the matrices
X and X ′ for the DMDc. The reduction value is chosen by r = 10 whereas
in the present case the original system order is n = 138 since only the pixel
along a line from the radial center to the edge of the wafer (see Figure 3.2)
are considered as states of the system in this case.

Figure 3.5: Input signals of the system

Figure 3.6: Evolution of the states over time and space
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Results. As a first evaluation of the gained model the input shape functions
of the two input signals ϑa and u are calculated by

B̂ = ÛB̃. (3.1)

This transformation is necessary because the functions of interest refer to
the state vector x and not x̃. An input shape function expresses how an
input acts onto the state vector. An input may influence some states i.e.
with a positive sign, others i.e. with a negative sign or a different intensity.
The functions are investigated by having a look at Figure 3.7. Here one
can observe that the way how ϑa acts onto the states does not make much
sense since the ambiente temperature should affect all states equally. The
impact of the second input signal u seems to match the reality quite well
because the actuated area is located at the outermost region of the wafer.
This is adequately represented by the input shape function of u. Due to the
unrealistic input shape function of ϑa a different approach of providing the
data to the DMDc is tried in the following section.

Figure 3.7: Input shape functions

3.2.2 ϑa as Base Flow

In contrast to considering ϑa as input signal in the DMDc it can also be
seen as an equilibrium point or base flow [5] [7] of the system. This base
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flow is now subtracted from the data-set before the DMDc is performed.
Thus, only the time series of u is used in Y . The matrix X remains the same
as in Section 3.2.1. The reduction value again is chosen by r = 10. As one
can observe in Figure 3.8 the input shape function of u is approximately
identical to the one resulting from the approach of Section 3.2.1. Due to the
fact that the input shape function of ϑa, shown in Figure 3.7, does not match
the reality, the approach of using ϑa as base flow is chosen for the following
investigations and also for the controller designs.

Figure 3.8: Comparing the input shape function of u of both attitudes 3.2.1 and 3.2.2

3.3 System Identification using all Actuators

The input data for the DMDc is now generated by performing an iden-
tification experiment using all 5 actuators. An appropriate sequence how
to switch them over the experiment duration has to be found. A random
pattern like white noise is a common choice in system identification. The pat-
tern used to identify the present setup is depicted in Figure 3.9. The signals
are generated by the Matlab command randi. In order to not exceed the max-
imum temperature, breaks need to be taken frequently during the record.
Figure 3.10 shows how the resulting temperature of the wafer, including
n = 138 pixel along a radial profile, evolves over time and space.
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Figure 3.9: Impulse pattern - identification experiment

Figure 3.10: Behaviour of the wafer surface (n=138) along a radial line from the center to
the edge during the identification experiment
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Having a look at Figure 3.10 it is conspicuous that pixel 1− 62 can not
be actuated. Thus: Any following calculations and controller designs are
aimed to control only the actuatable region of the wafer having n = 88
states!

3.3.1 Applying the DMDc

As mentioned in Section 3.2.2, considering ϑa as baseflow leads to better
results. Thus, for the identification of the Multiple Input Multiple Output
(MIMO) system the value of ϑa is subtracted from the entire state data-set
of the identification record shown in Figure 4.1. This transformed data-set
as well as the data of Figure 3.9 provide the matrices X, X ′ and Y for the
DMDc. The system order reduction value is chosen by r = 10, whereas the
original system order is n = 88. The identification returns a discrete-time
state-space model

x̃k+1 = Ãx̃k + B̃uk (3.2)

discribing the dynamical behaviour in terms of a linear time-invariant (LTI)
system. The state vector x̃k of the reduced order system is computed by

x̃k = Û∗(xk − ϑa) (3.3)

and the measured state vector xk is approximated by

x̂k = Û x̃k + ϑa.

Results. The gained input shape functions are calculated by (3.1) and
picking the columns out of B̂ (see Figure 3.11). The input shape functions
seem to match the reality quite well since the center of each heatable section
is affected the most by the corresponding group of LEDs. Therefore, the
peak of each curve is at the center of each section.
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Figure 3.11: Gained input shape functions of the multiple input system

The DMDc analysis also provides the r dominant dynamic modes of the
system [12]. To obtain these modes equation (2.11) is solved. The modes are
the eigenvectors of the dynamic matrix Ā. A benefit using DMD is that this
large matrix does not need to be computed. The graphical representation of
the modes is depicted in Figure 3.12. The eigenvalues of Ã are:

Nr eigenvalue
1 0.2361
2 0.4457
3 0.5613
4 0.6314
5 0.7331

Nr eigenvalue
6 0.8235
7 0.9905
8 0.9672
9 0.8920
10 0.9388

Table 3.1: Eigenvalues of Ã

A validation experiment is performed in order to get an impression if the
model is useful outside the data-set of the identification experiment. For
this purpose a pseudo random actuating signal is used. The evolution of the
state vector x during the validation experiment is depicted in Figure 3.13.
Also the corresponding simulation data using the model can be found
here. The error norm of the state vector is calculated following the scheme
of Section 2.2.2 providing a qualitative investigation of the gained model
in Figure 3.13. The conclusion can be drawn that the gained LTI model

28



3.3 System Identification using all Actuators

Figure 3.12: Dynamic modes of the system

(a) Measured behaviour of real system (b) Behaviour of model

(c) Error norm of state vector using r = 10

Figure 3.13: Validation experiment

approximates the process sufficiently to approach model based controller
design.
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A desireable goal of the controller design is tracking or stabilization of the
temperature distribution along the wafer to a given constant temperature
profile. In order to achieve that goal, different control approaches can be
chosen. In this section model-based approaches are exploited. First a state
feedback controller based on the Linear Quadratic Regulator (LQR) [1] ap-
proach including tracking is designed. The chapter continues implementing
and simulating a Model Predictive Controller (MPC) [4].

4.1 Controllability

In order to check the controllability of the system resulting from DMDc the
matrices Ã and B̃ are used for the following investigation. The controllability
matrix

C =
[

B̃ ÃB̃ Ã2B̃ . . . Ãr−1B̃
]

is computed via Kalman’s criterion of controllability. If C has full row rank the
system is controllable. In the present case the row rank equals the reduced
system order r. Thus, the system is fully controllable.

4.2 Linear Quadratic Regulator

In order to use a state feedback controller for the present setting, the
state vector x needs to be transformed by using equation (3.3). The resulting
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Figure 4.1: State vector x (n=88) during the identification experiment

state vector x̃ can now be used as an input for the tracking state feedback
controller

uk = V x̃re f ,k − Kx̃k (4.1)

where the transformed reference state vector x̃re f ,k is calculated by applying
(3.3) to the reference state vector xk,re f . Thus the control target is xre f ,k. An
overall scheme of the control loop structure can be found in Figure 4.2. The
feedback matrix K is computed by the Matlab command dlqr. The system
model matrices Ã and B̃ as well as the weighting matrix of the states Q and
the weighting matrix of the input signals R are the parameters.

Beside the preceding reduction value r and the record length m the matrices
Q and R represent the degrees of freedom in the entire controller design
including modeling. Their values are chosen as
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Figure 4.2: Block scheme of closed loop using an LQR

Q =



0.005 0 0 0 0 0 0 0 0 0
0 0.01 0 0 0 0 0 0 0 0
0 0 0.01 0 0 0 0 0 0 0
0 0 0 0.01 0 0 0 0 0 0
0 0 0 0 0.01 0 0 0 0 0
0 0 0 0 0 0.05 0 0 0 0
0 0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 0 0.01 0 0
0 0 0 0 0 0 0 0 0.01 0
0 0 0 0 0 0 0 0 0 0.01



R =


0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0
0 0 0 0 0.1


An advantage of using an LQR approach instead of Ackermann’s formula
is the more intuitive placement of the eigenvalues via a cost function. Since
the model gained from the DMDc is based on coupled modes, tuning Q and
R is not straightforward. Thus the present choice of Q is created following
a trial-and-error procedere.
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4.2.1 Calculation of V

In order to gain a tracking controller the matrix V has to be computed.
Therefor the state-space model (3.2) is reformulated using the feedback law
(4.1) to

x̃k+1 = Ãx̃k + B̃uk = Ãx̃k − B̃Kx̃k + B̃V x̃re f ,k.

In steady-state x̃k+1 = x̃k holds and it is assumed that the transformed
control target

x̃re f ,k = Û∗(xre f ,k − ϑa)

is reached. This means that

x̃k = x̃re f ,k.

This results into the reformulation

x̃re f ,k = (Ã− B̃K + B̃V)x̃re f ,k

and further to

0 = (Ã− B̃K + B̃V − I)x̃re f ,k

where I is the identity matrix. The equation is only valid if

0 = Ã− B̃K + B̃V − I.

This is further reshaped to

B̃V = B̃K + I − Ã = −(Ã− B̃K − I)

and finally

34



4.2 Linear Quadratic Regulator

V = −B̃+
(Ã− B̃K − I),

whereas B̃+ is the pseudo inverse of B̃.

4.2.2 Simulation of the Closed Loop

For the simulation of the closed loop depicted in Figure 4.2 the plant
is realized by an LTI model, generated following the scheme explained in
Section 3.3.1 using r = n = 88. This results into the most exact model of the
process so far. The results of a closed loop simulation are shown in Figure
4.3. Here, a value of 80◦C along the entire spatial domain is chosen as a
control target for t > 0 s. Therefore, no limitation of the actuating signals is
implemented in the simulation. Figure 4.3 shows that the control signal u
only exceeds a possible upper limit of 60% heater power for a short periode
of time at the beginning of the reference step. Having a look at the error of
the state vector in steady-state one can observe that the states near the edge
and the center of the wafer can not be actuated in a way that they match
the set-point temperature due to the fact that there are no LEDs in this area.
Nevertheless the controller seems promissing for trying it at the laboratory
setup.

4.2.3 Closed Loop Experiment using the Laboratory Setting

The actuating signals are limited to 0 − 60% since the LEDs will be
destroyed if powered with more than 60% for a time range exceeding a
couple of seconds. Furthermore the power supply units are not able to run
below 10%. To be able to use this important zone the heaters are switched off
completely by relais. Thus, the actual input signals usat,i follow the scheme

usat,i =


0% f or ui < 5%
10% f or 5% ≤ ui < 10%
ui f or 10% ≤ ui < 60%
60% f or 60% ≤ ui
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(a) State vector over time (b) Actuating signals

(c) Remaining error at steady-state

Figure 4.3: Simulation - step response of closed loop system

which is also represented by the actuating signals in Figure 4.4. A more
continuous representation of the range 0− 10% could be achieved by trans-
lating usat,i to a pulse-width modulation signal. Since the power is switched
by conventional relais having limited number of switching events this is not
approached here.

Results. Comparing Figure 4.3 and Figure 4.4 one can observe that the
results gained from the experiment match with the plots of the closed-loop
simulation. The region of nonlinearity at 0− 10% heater power is entered
by usat,3 and usat,4 when xk is at the vicinity of the setpoint xre f ,k.
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(a) State vector over time (b) Actuating signals

(c) Remaining error at steady-state

Figure 4.4: Experiment - step response of closed loop system

4.3 Model Predictive Control

The model gained using DMDc can also be exploited for designing a
MPC. For a 2D thermal diffusion problem this has been done in [10]. A
benefit of using MPC is the option of embedding constraints. These can be
used to restrict the values of the actuating signals to the present limits since
beneath 0% and upon 60% the corresponding usat,i is in saturation.

4.3.1 Reference Signal

Using an MPC the reference signal is a matrix L ∈ R(Np·n)×tsim whereas
tsim is the number of simulation steps and Np is the prediction horizon. In
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the present case the reference is selected as a constant temperature of 80◦C
over the entire space and time. Thus the matrix L is completely filled with
this constant values. Since the reference is constant in time, L is reduced
to a time-independent reference state vector x̄re f ∈ R(Np·n)×1 including
the desired surface temperature distribution until Np. The reference x̄re f is
transformed by modifying relation (3.3) to

¯̃xre f =
ˆ̄U
∗
(x̄re f − ϑa) (4.2)

where ˆ̄U ∈ R(Np·n)×(Np·r) is the block diagonal matrix

ˆ̄U =


Û 0 . . . 0
0 Û . . . 0
...

... . . . ...
0 0 . . . Û

 .

As an output (4.2) provides the reference input ¯̃xre f of the MPC (see Figure
4.5).

Figure 4.5: Block scheme of closed loop using MPC

4.3.2 Prediction

The MPC is designed using the reduced order system. This is also repre-
sented by the block scheme in Figure 4.5. The state vector x̃k is predicted
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for every time step until the end of the prediction horizon Np is reached.
Therefor the relation

¯̃xk+1 = Fx̃k + Guk−1 + H ∆ūk (4.3)

is used. Here ¯̃xk+1 ∈ R(Np·r)×1 includes the predicted state vector ˆ̃x ∈ Rr×1

for all prediction steps up to Np. The input ∆ūk ∈ R(q·Nc)×1 of the equation
contains the variation of the actuating signal ∆u ∈ Rq×1 up to the control
horizon Nc. Since ∆ūk is an input of (4.3) it represents the degrees of freedom
here. The parameter matrices F, G and H need to be calculated using the
state-space model of the plant by

F =


Ã
Ã2

...
ÃNp

 ,

G =


B̃

(Ã + I)B̃
...

(ÃNp−1
+ · · ·+ Ã + I)B̃

 ,

and

H =



B̃ 0 . . . 0
(Ã + I)B̃ B̃ . . . 0

...
...

. . .
...

(ÃNc−1
+ · · ·+ Ã + I)B̃ (ÃNc−2

+ · · ·+ Ã + I)B̃ . . . B̃
(ÃNc + · · ·+ Ã + I)B̃ (ÃNc−1

+ · · ·+ Ã + I)B̃ . . . (Ã + I)B̃
...

...
. . .

...
(ÃNp−1

+ · · ·+ Ã + I)B̃ (ÃNp−2
+ · · ·+ Ã + I)B̃ . . . (ÃNp−Nc + · · ·+ Ã + I)B̃


.
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4.3.3 Optimization Problem

The objective function used in the MPC approach is quadratic and in-
cludes the control error of the reduced order system up to the prediction
horizon Np and the variation of the actuating signal ∆uk up to the control
horizon Nc. The objective is given by

J =
Np

∑
i=1

(
ˆ̃xk+i − x̃re f ,i

)T Qi
(

ˆ̃xk+i − x̃re f ,i
)
+

Nc

∑
i=1

∆uT
k+i−1Ri ∆uk+i−1

where x̃re f ,i ∈ Rr×1 is picked segment wise out of x̄re f for every step i up
to Np. The matrices Qi ∈ RNp×Np and Ri ∈ RNc×Nc are weighting matrices.
The objective and the constraints are formulated in terms of a quadratic
program [3] by

min
∆ūk ∈ Rm·Nc

∆ūT
k (HTQH + R) ∆ūk + 2 ∆ūT

k HTQēk

s.t. W ∆ūk ≤ w̄ (4.4)

where

ēk = Fx̃k + Guk−1 − ¯̃xre f .

The matrix

W =

[
−M
M

]
and the vector

w̄ =

[
L uk−1 − ūmin
ūmax − L uk−1

]
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are needed for the constraints given by (4.4). Here ūmin ∈ R(q·Nc)×1 stands
for the lower limit and ūmax ∈ R(q·Nc)×1 for the upper limit of the actuating
signal. The values are chosen constant over the control horizon Nc by
ūmin = 0 and ūmax = 60. The lower triangular matrix

M =


I 0 . . . 0
I I . . . 0
...

... . . . ...
I I I I


and the matrix L = [I I . . . I]T are needed to assemble W and w̄. The
matrix I ∈ Rq×q represents the identity matrix. The tuning parameters of
this MPC formulation are the horizons Nc and Np as well as the matrices
Q � 0 and R � 0.

For solving the optimization problem numerically the open source toolbox
Yalmip is embedded into the Matlab simulation environment. A quadratic
programming solver is provided by choosing the option quadprog in the
Yalmip settings. Figure 4.6 shows the inner structure of the MPC used in
Figure 4.5. Here the embedded Matlab function block performs the opti-
mization using Yalmip in every time step. The used optimization variables
are represented by ∆ūk ∈ R(q·Nc)×1.

Figure 4.6: Inner structure of the MPC
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4.3.4 Simulation of the Closed Loop

A block diagram representing the closed loop is shown in Figure 4.5.
The model embedded in the MPC is generated following the scheme of
Section 3.3.1 using r = 8. In order to keep the computational effort of the
optimization low, a small value for r is chosen here. The modes of the
MPC-model are depicted in Figure 4.7. The corresponding eigenvalues are:

Nr eigenvalue
1 0.5471 + 0.0475j
2 0.5471− 0.0475j
3 0.9905
4 0.9679
5 0.9236
6 0.6318
7 0.7547
8 0.8393

Table 4.1: Eigenvalues of Ã

Figure 4.7: Modes of the system using r=8
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For the simulation of the closed loop using the present MPC the plant
shown in Figure 4.5 is realized the same way as the plant of Section 4.2.2.
The parameters of the MPC are chosen by Nc = 8, Np = 10, R = I where
I ∈ Rq×q is the identity matrix and

Q =



0.001 0 0 0 0 0 0 0
0 0.001 0 0 0 0 0 0
0 0 0.45 0 0 0 0 0
0 0 0 2.5 0 0 0 0
0 0 0 0 0.001 0 0 0
0 0 0 0 0 0.001 0 0
0 0 0 0 0 0 0.001 0
0 0 0 0 0 0 0 0.001


.

Figure 4.8: Control error considering the modes

The results of the simulation are depicted in Figure 4.8 and 4.9. The
actuating signals do not exceed the range of 0− 60% heater power. The
remaining error considering x at steady-state can still be improved by tuning
the parameters. Since the MPC works with the reduced order model, the
parameter matrix Q is the weighting for the error of the modes. This matrix
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(a) Temperature over time (b) Actuating signals

(c) Remaining error considering x at steady-state

Figure 4.9: Simulation - step response of closed loop system using MPC

has been tuned empirically. The evolution of the control error x̃re f ,k − x̃k
is investigated in Figure 4.8. Since the modes are coupled and since they
are all linked to every state of x having a non-zero value in dimension y in
Figure 4.7 the control error of the reduced order system never vanishes for
x̃.

4.3.5 Closed Loop Experiment using the Laboratory Setting

Having a look at Figure 4.10 one can observe that an overshoot occurs if a
reference step to 80◦C over the entire state-vector is performed. Comparing
these results to the results of the closed loop simulation the difference
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appears conspicious. Multiple possible reasons could already be excluded.
So the reason for the deviation is still an issue to be declared in the future.

(a) Temperature over time (b) Actuating signals

(c) Remaining error considering x at steady-state

Figure 4.10: Experiment - step response of closed loop system using MPC
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This research aimed to apply the data-based system modeling concept
Dynamic Mode Decomposition first to an illustrative example and further
to a more complex process realized by a laboratory setting consisting of
a silicon wafer heatable by LEDs and observed by a thermal camera. Two
model-based controllers were implemented using the gained model of the
process. Based on the good results in model validation as well as closed
loop simulations and experiments it can be concluded that this approach of
system modeling is convenient to model this distributed parameter system.
The emdedded order reduction proves to be an essential feature especially
when using the computational expensive Model Predictive Control. By
manipulating the input data-sets of the Dynamic Mode Decomposition,
this thesis has shown how to treat constant known external inputs and
the mean of data-sets. The context of the contained spatial and temporal
frequencies is pointed out. Also the input shape functions describing how
every actuator of the setting acts onto the wafer surface was constructed
using the model gained from Dynamic Mode Decomposition. This resulting
estimation seems to match the reality quite well.

A qualitative comparison to a physically motivated model may be pointed
out as a future aim considering the input shape functions. In general an
analytic linear or even nonlinear model of the laboratory setting is of interest
since the plant used in the simulations was generated by Dynamic Mode
Decomposition until now. Discretizing the one dimensional heat diffusion
equation in space and time in the cylindrical coordinate system followed by
an identification experiment on the setting would be a convenient approach.
Further the used plant can be extended by capturing the nonlinearity of
the actuating signals. A more realistic plant will also result from taking
into account the entire radial profile through the wafer. This captures the
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homogeneous Neumann boundary condition in the center of the wafer.
The setting itself can be improved by including a heating section in the
radial center. This will improve the quality and possibilities in modeling
and control. Choosing the parameters m and n of the data-set and the
parameter r of the Dynamic Mode Decomposition in terms of [6] also may
improve the resulting model. The entire method of combining Dynamic
Mode Decomposition with Model Predictive Control can be implemented
on a single wafer machine using a partition into smaller circular rings. This
results into a higher number of actuators. The prediction approach enables
to react onto known future process steps of the machine e.g. a fluid of
certain temperature is spiked onto the rotating wafer. Further research may
investigate if the MPC compensates this variation of the system better than
a robust state controller.
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