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I 

Abstract 

Traditional value stream mapping (VSM) relies on manual data collection and static 

representation of production processes, which are becoming less effective in today’s 

dynamic and flexible manufacturing environments. As product life cycles shorten and 

production systems demand greater flexibility, the need for automated data collection is 

becoming increasingly important. While several methods have been proposed for 

digitizing VSM, few focus on data collection from human centric assembly processes. 

Although existing solutions enable data collection, often increase system complexity and 

disrupt workflow, negatively impacting productivity. Object detection presents a promising 

alternative, enabling non-intrusive data collection. While already being applied in 

industrial settings for various tasks, its potential to collect data specifically for supporting 

value stream map creation remains largely unexplored. 

This thesis investigates the use of object detection for automated data collection for VSM 

creation. A logic was developed to use detection results to track products and workers on 

the shop floor and calculate KPIs such as cycle time and throughput time using the 

captured location and time data.  

The proposed method was tested at the learning factory at TU Graz, where a custom 

trained YOLOv8 model successfully detected and tracked products and workers during 

the assembly process. The data was then processed in excel to digitally visualize the 

VSM. The comprehensive data enabled detailed visualizations, including Gantt charts 

and pie charts, providing a clearer depiction of the situation.  

The non-intrusive nature of object detection technique, requiring only a camera and an 

algorithm, proved advantageous over other sensors-based systems. Such systems often 

require attaching physical sensors to the entities being tracked, adding complexity to the 

process, especially in environments where a high volume of items needs to be tracked. 

Object detection eliminates this need, reducing the workload on employees and 

minimizing the risk of errors associated with misplaced or malfunctioning sensors. 

The test results showed that the digitally collected data closely matched the actual 

assembly scenario, demonstrating the viability of object detection for industrial 

applications. With further validation in larger and more complex environments, this 

approach has the potential to significantly enhance how data is collected and utilized for 

VSM in manual assembly processes. 

 

 

 



 

 
II 

Kurzfassung 

Die traditionelle Wertstromanalyse (VSM) basiert auf manueller Datenerfassung und 

statischer Darstellung von Produktionsprozessen, was in dynamischen und flexiblen 

Fertigungsumgebungen zunehmend ineffektiv ist. Da kürzere Produktlebenszyklen und 

flexible Produktionssysteme eine automatisierte Datenerfassung erfodern, wurden zwar 

verschiedene Methoden zur Digitalisierung von VSM entwickelt, doch nur wenige 

fokussieren auf menschenzentrierte Montageprozesse. Bestehende Lösungen erhöhen 

oft die Systemkomplexität und beeinträchtigen den Arbeitsfluss. Die Objekterkennung 

bietet eine vielversprechende, interaktionslos Alternative zur Datenerfassung, deren 

Potenzial zur Unterstützung von Wertstromkarten jedoch noch wenig erforscht ist. 

In dieser Arbeit wird der Einsatz von Objekterkennung zur automatisierten 

Datenerfassung für die Erstellung von VSM untersucht. Es wurde eine Logik entwickelt, 

um die Erkennungsergebnisse zur Verfolgung von Produkten und Mitarbeitern auf dem 

Shopfloor zu nutzen und anhand der erfassten Positions- und Zeitdaten KPIs wie 

Zykluszeit und Durchlaufzeit zu berechnen. 

Die vorgeschlagene Methode wurde in der Lernfabrik der TU Graz getestet, wo ein 

speziell trainiertes YOLOv8-Modell erfolgreich Produkte und Arbeiter während des 

Montageprozesses erkannte und verfolgte. Die Daten wurden anschließend in Excel 

verarbeitet, um das VSM digital zu visualisieren. Die umfassenden Daten ermöglichten 

detaillierte Visualisierungen, einschließlich Gantt-Diagrammen und Tortendiagrammen, 

die eine klarere Darstellung der Situation ermöglichten. 

Die nicht-invasive Natur der Objekterkennungstechnik, die nur eine Kamera und einen 

Algorithmus erfordert, erwies sich als vorteilhaft gegenüber anderen sensorbasierten 

Systemen. Solche Systeme erfordern häufig das Anbringen physischer Sensoren an den 

zu verfolgenden Objekten, was die Komplexität des Prozesses erhöht, insbesondere in 

Umgebungen, in denen eine große Menge an Gegenständen verfolgt werden muss. Die 

Objekterkennung beseitigt dieses Erfordernis, reduziert die Arbeitsbelastung der 

Mitarbeiter und minimiert das Risiko von Fehlern, die durch falsch platzierte oder defekte 

Sensoren entstehen können. 

Die Testergebnisse zeigten, dass die digital erfassten Daten dem tatsächlichen 

Montageszenario sehr nahe kamen, was die Eignung der Objekterkennung für 

industrielle Anwendungen beweist. Mit weiterer Validierung in größeren und komplexeren 

Umgebungen hat dieser Ansatz das Potenzial, die Datenerfassung und -nutzung für VSM 

in der modernen Fertigung erheblich zu verbessern. 
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1 Introduction 

The manufacturing industry is experiencing a major transformation driven by rapid 

advancements in digital technologies. This shift is being accelerated by growing pressure 

on manufacturers to find solutions that enhance flexibility while simultaneously 

maintaining efficiency. Traditional tools and methodologies that once ensured efficiency 

are increasingly becoming inadequate in addressing these challenges. Digitization is 

seen as a key solution to these problems. By enhancing the capabilities of traditional 

tools, digitization could enable manufacturers to adopt data-driven operations, resulting 

in greater flexibility and improved decision-making.1  

Lean manufacturing is a widely adopted approach used by many companies to improve 

efficiency and productivity. It seeks to minimize waste while maximizing value throughout 

the production process.  One of the key tools used in Lean Manufacturing is Value Stream 

Mapping (VSM), which is an effective methodology for identifying inefficiencies and 

driving continuous improvement. By creating transparency across the entire process, 

VSM provides valuable insights into material and information flows, ultimately aiming to 

reduce waste and enhance productivity.2  

 

 

Figure 1-1: Basic steps in the value stream mapping process3 

 

1 Horsthofer-Rauch, J. et al. (2022). 
2 Tran, T.-A. et al. (2021). 
3 Rother, M., & Shook, J. (1999). 
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This is achieved by mapping the detailed current state of production, and then designing 

the future state with the goal of optimizing the process by eliminating the bottlenecks, 

inefficiencies and wastes identified in the current state.4  

However, today’s production environment is evolving rapidly, making it increasingly 

important to maintain flexible and dynamic production systems. Rising global competition 

and changing customer requirements have significantly affected the way products are 

being manufactured. To remain competitive, manufacturers are compelled to offer a high 

degree of customization, accommodate short-term change requests, and produce a wider 

variety of products. While VSM has proven effective in stable and predictable 

manufacturing environments, it is limited in its ability to capture the increasing complexity 

and dynamism that modern production environments demand.5 

Traditional VSM relies on manual data collection, where the production data from a 

representative unit is captured to evaluate the performance of the production process. 

This static representation is often inefficient for production systems that undergo frequent 

changes and conducting regular data collection is impractical due to the significant effort 

involved in the process. The adoption of digitization, the growing trend driven by industry 

4.0, has been proposed as a solution to address these challenges in value stream 

mapping. Digital technologies enable dynamic, real-time data collection, offering a more 

accurate and responsive approach to identifying inefficiencies and optimizing production 

flows.6  

Real time data collection from shop floors can equip manufacturers with up-to-date 

insights into their production processes, allowing managers to make informed decisions 

and react quickly to changes in demand or production conditions.7   Various approaches 

for digitizing the value stream mapping process have been suggested in the literature, 

including digital data collection, digital analysis, and digital visualization of the collected 

data. However, capturing comprehensive data digitally remains challenging, particularly 

in human-centered production processes, where the level of unpredictability is higher 

compared to automated or mechanized systems.8 This indicates a need for further 

research into new methods for digital data acquisition.  

This thesis aims to contribute to the field by exploring the use of object detection as a tool 

for automating the data collection process in value stream mapping. Object detection’s 

capability to identify and track objects in real-time can enable the collection of diverse 

 

4 Rother, M., & Shook, J. (1999). 
5 Scheder, N. et al.(2023). 
6 Wang, H.-N. et al. (2021). 
7 Tran, T.-A. et al. (2021). 
8 Sullivan, B. et al. (2022). 
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data. Moreover, since object detection algorithms can be trained to detect a wide variety 

of objects of interest, it holds potential for a range of use cases in dynamic manufacturing 

environments.   

1.1 Problem Statement 

The digitization of Value Stream Mapping (VSM) has emerged as a promising solution to 

overcome the limitations of traditional, static VSM process. Even partial digitization of 

VSMs has demonstrated significant benefits, including reduced effort in the mapping 

process and fewer accidental errors.9 However, the true potential of digitization lies in the 

ability to collect, process, and visualize value stream maps in real-time. This would enable 

manufacturers to implement fully flexible, dynamic production systems while maintaining 

the efficiency of traditional manufacturing methods.10  

Despite several proposed approaches for real-time data collection, advanced analysis, 

and real time visualization, comprehensive value stream mapping of entire processes in 

real-time remains challenging. Many existing studies propose using digital tools for 

intelligent analysis and visualization of real-time data, but their usage for continuous 

monitoring is limited by the inability to collect real-time data continuously. While 

information systems such as ERP and MES can provide some of the data relevant for 

mapping information flow, the collection of material flow data from shop floors is more 

complex. 11 

Existing approaches for collecting material flow data tend to focus on machine-dependent 

production by monitoring machine utilization. Whereas solutions for capturing data from 

manual assembly processes are more limited, as these processes are typically harder to 

track due to the unpredictability of human actions. No single sensor maybe capable of 

collecting all the complexities of a production process to create complete value stream 

maps. However, leveraging tools that can monitor multiple KPIs of the production process 

could minimize the number of sensors required, thereby reducing the overall complexity 

of the data collection process.12   

Fraunhofer Austria, along with Fraunhofer IPA developed and tested a sensor-based 

toolkit for digital data collection from shop floors. This included the necessary hardware 

and software to enable near-real-time data transfer from sensors for value stream 

analysis. The validation results showed that the manual triggering required for the sensor-

 

9 Klimecka-Tatar, D., & Ingaldi, M. (2022). 
10 Frick, N., & Metternich, J. (2022). 
11 Tran, T.-A. et al. (2021). 
12 Sullivan, B. et al. (2022). 
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based approaches created additional workload to the production employees and affected 

their productivity. In addition, this creates a new potential source for errors due to 

misplacement or mishandling of sensors. To maximize the benefits of digitization in value 

stream mapping, there is a critical need for non-intrusive methods, that can gather digital 

data from assembly areas without affecting the productivity of the workers. Researchers 

have proposed object detection as a promising solution to overcome this challenge.13 

This thesis addresses this gap by investigating the use of object detection as a tool for 

non-intrusive data collection from shop floors. Unlike existing sensor-based approaches, 

object detection enables data collection without attaching physical tags or labels on the 

entities being tracked. This can reduce the complexity associated with the maintenance 

and physical tagging of the sensors. Object detection algorithms can be trained to detect 

and track a variety of objects simultaneously, enabling the collection of diverse 

information in real-time. This could provide a more efficient and less intrusive method for 

data collection, without interrupting the workflow.  

1.2 Aim and Objectives 

The aim of this study is to evaluate the potential of object detection as a non-intrusive 

method for data collection to enable digital value stream mapping. 

Objectives:  

• To compare available object detection algorithms and select the most suitable 

option for application in an industrial environment. 

• To train object detection models to accurately detect and identify the entities to be 

tracked. 

• To develop a logical framework to use object detection and tracking for collecting 

data relevant for value stream mapping.  

• To test the developed method and thereby evaluate the potential of object 

detection and tracking as a non-intrusive data collection approach for digital value 

stream mapping. 

Primary Research Question: How capable is object detection to enable data collection 

from shop floors for digital value stream mapping? 

Secondary research questions:  

• How are current digital technologies being applied to enhance value stream 

mapping? 

 

13 Nausch, M. et al. (2023). 
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• How is object detection currently utilized in assembly processes and what 

considerations are essential for selecting an algorithm for an industrial application? 

• Which object detection algorithms are most suitable for application in industrial 

environments? 

1.3 Structure of the thesis 

This thesis is structured into eight main chapters, each designed to guide the reader 

through the research journey from initial problem statement to the final conclusions and 

outlook. Chapter 1 introduces the thesis, outlining the problem statement, aim, objectives, 

as well as the research questions.  

This is followed by the theoretical background in Chapter 2, which provides fundamental 

concepts essential for understanding the research. It covers the principle of Lean 

Manufacturing, the concept of Value Stream Mapping, and gives an overview of Industry 

4.0 technologies  

Chapter 3 explains the theory related to the work. It details the methodological approach 

used for the literature review and describes its result on three topics – Digitization in value 

stream mapping, Current applications of object detection in assembly processes, and an 

overview of object detection algorithms.  

Chapter 4 details the practical implementation of the thesis. It begins with the 

conceptualization of the approach and proceeds with a thorough description of technical 

procedure, including model development, data acquisition and processing, KPI 

determination, and visualization. Finally, details of the testing conducted at the LEAD 

factory in TU Graz is explained in detail, covering the approach, experimental procedure, 

and preliminary results.   

Chapter 5 presents the results of the practical experiment. It evaluates the performance 

of the object detection model, detailing training duration, resource efficiency, and 

accuracy. The results from testing in the learning factory are also analysed to assess the 

accuracy of the collected data and overall effectiveness of the approach.  

Chapter 6 presents the discussion of the study. The implications of the results are 

discussed along with its limitations. The potential challenges for industrial applications 

are also discussed.  

The thesis concludes with Chapter 7, which summarizes the key contributions, 

highlighting how the research question was addressed, and the objectives were met. 

Finally, in chapter 8, an outlook for the thesis is presented, mentioning possible future 

works and recommendations for improvement.    



Theoretical Background 

 

 
6 

2 Theoretical Background 

The theoretical background of this thesis describes the foundational concepts essential 

for understanding the research scope, particularly focusing on Lean manufacturing, 

Value Stream Mapping (VSM), and Industry 4.0 technologies.  

2.1 Lean Manufacturing 

Lean Manufacturing is a systematic approach aimed at maximizing the product value by 

minimizing waste. Originating from the Toyota production System(TPS), Lean was 

developed to create efficient production systems that could operate with limited resources 

while still ensuring high quality and flexibility. The philosophy of lean has extended 

beyond its automotive origins and is now widely applied across multiple industries 

globally.14 

The House of TPS framework, shown in Figure 2-1, visually represents the foundational 

structure and guiding principles of Lean Manufacturing. The house of TPS stands on two 

main pillars: Just-in-Time (JIT) production and Jidoka (automation with a human touch). 

JIT ensures that production occurs only when there is demand, thereby minimizing 

inventory, storage costs, and the risk of overproduction. Jidoka, on the other hand, 

focuses on quality by automatically stopping production when a defect is detected, 

ensuring that defects are not passed down the line. In addition to JIT and Jidoka, Lean 

Manufacturing utilizes a range of tools and techniques that support these principles and 

help achieve its primary objective of maximizing value by minimizing waste.15 

 

Figure 2-1: House of Toyota Production System16 

 

14 Sundar, R. et al. (2014). 
15 Lai, N. et al. (2019). 
16 Ibidem 
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2.1.1 Lean Principles  

Womack and Jones, D. defined lean manufacturing through five core principles that guide 

organizations in systematically enhancing processes to maximize customer value while 

minimizing waste. These principles promote continuous improvement within value 

streams by identifying and eliminating non-value adding activities and focusing on 

activities that truly create value.17 

 

Figure 2-2: Key principles of lean manufacturing18 

 

2.1.1.1 Specify Value 

The first principle of lean is understanding what the customer values. Value is defined 

from the customer’s perspective, with the goal of delivering exactly what the customer 

needs without adding any unnecessary complexity. Any activity that does not directly 

contribute to delivering this value is considered waste and should be minimized.19 

2.1.1.2 Map Value Stream 

The second principle involves mapping all the steps in the production process, with an 

aim to identify activities that add value and those that do not. These activities within the 

value stream can be classified into three categories: (i) those that add value, (ii) those 

that do not add value but are currently necessary, (iii) those that add no value and can 

be eliminated. By making this distinction, firms can immediately remove the third category 

 

17 Womack, J., & Jones, D. (1996). 
18 Based on Womack, J., & Jones, D. (1996)., own representation 
19 Čiarnienė, R., & Vienažindienė, M. (2012). 
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and eventually remove the second category of wastes in later steps to further optimize 

their processes.20 

2.1.1.3 Create Flow 

After identifying waste in the value stream, this principle focuses on redesigning the 

process to achieve a continuous, uninterrupted flow of products through each value-

adding step. This is achieved by eliminating waste, which includes any activity not valued 

by the customer, such as excess inventory, waiting times, or unnecessary transportation 

of materials.21 

2.1.1.4 Establish Pull 

Lean production is driven by actual customer demand rather than predictions. In a pull 

system, the customer pulls the product from the manufacturer, ensuring that production 

aligns closely with customer needs. This approach aligns all aspects of production, from 

raw materials through final assembly, minimizing overproduction and inventory levels.22 

2.1.1.5 Pursue Perfection 

The final principle of lean manufacturing emphasizes the need for continuous pursuit of 

perfection. As the first four principles are implemented, activities within the value stream 

become more transparent, enabling ongoing improvements. This principle encourages 

organizations to regularly review and refine their processes to eliminate defects, shorten 

cycle times, and enhance quality.23  

Striving for perfection creates a mindset of continuous waste elimination, where 

improvement is seen as an ongoing process rather than a one-time effort. By this iterative 

improvement approach, lean practitioners aim to reach a point where every resource and 

activity in the process directly contributes value to the end product.24 

2.1.2 Lean Manufacturing Objectives 

As defined in the previous section, the core objective of lean manufacturing is to identify 

and eliminate any unnecessary activities, referred to as muda (waste), in the production 

 

20 Womack, J., & Jones, D. (1996). 
21 Čiarnienė, R., & Vienažindienė, M. (2012). 
22 Thangarajoo, Y. (2015). 
23 Čiarnienė, R., & Vienažindienė, M. (2012). 
24 Ibidem 
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process. Seven categories of waste are defined in the traditional lean manufacturing 

concept as given below:25 

Motion: Unnecessary movement of people or products, such as walking long distances 

between workstations or reaching for tools, that does not contribute value to the product 

or service is regarded as a waste of motion.26 

Waiting: Waiting refers to the time wasted when goods or workers are idle, waiting for 

the next step in the production process. 

Overproduction: Overproduction refers to producing more than what is needed, leading 

to excess inventory and increased storage costs. 

 

Figure 2-3: Types of wastes in manufacturing27 

 

Over-processing: Overprocessing refers to doing more work than what the customer 

demands. Adding unnecessary features or using complex methods when simpler ones 

are available are wastes than does not add any value to the customer. 

Defects: Producing defective products that require rework or scrapping is wasteful, as it 

leads to unnecessary loss of effort, money, and time. 

Inventory: Inventory refers to the stock of raw materials, work-in-process items, and 

finished goods. Holding excess inventory ties up capital, increases storage costs, and 

increases the risk of becoming outdated.28  

Transportation: It costs time and money to move materials from one place to another. 

Unnecessary movement of materials, which does not add value to the product is 

considered a waste.29 

 

25 Womack, J., & Jones, D. (1996). 
26 Kumar, N. et al. (2022). 
27 Čiarnienė, R., & Vienažindienė, M. (2012). 
28 Sundar, R. et al. (2014). 
29 Kumar, N. et al. (2022). 
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2.1.3 Lean Tools and Techniques 

Several tools and techniques are employed to achieve lean manufacturing by reducing 

waste, improving efficiency, and creating value. These tools are essential for applying 

lean principles effectively. Some of the most commonly used lean manufacturing tools 

are described in this section. 

2.1.3.1 5S System 

5S is a method for workplace organization that aims to maintain a productive, clean, and 

efficient workspace. The method emphasizes that the workspace should be properly 

designed with a specific place for everything. This ensures that only the required items 

are present and those are available whenever required. The five S’s stand for Sort, Set 

in Order, Shine, Standardize, and Sustain.30 

2.1.3.2 Total Productive Maintenance 

Total Productive Maintenance (TPM) is a lean manufacturing methodology aimed at 

maximizing the productivity and efficiency of equipment by involving all employees in the 

manufacturing process. TPM focuses on maintaining equipment in optimal working 

condition to prevent unplanned downtime, and reduced defects. The primary goal of TPM 

is to achieve zero breakdown, zero defects, and zero accidents by fostering a sense of 

ownership and responsibility for equipment and tools among the operators using it.31 

2.1.3.3 Value Stream Mapping (VSM) 

A Value Stream Map (VSM) is a visual tool used to map the material and information 

flows necessary to coordinate the activities of manufacturers, suppliers, and distributors, 

with an aim to deliver products to customers efficiently. It covers all actions required to 

bring a product through problem-solving, information management, and physical 

transformation stages within a business.32 

The VSM process begins by creating a current state map, which visualizes the material 

and information flows within the system. This is used to identify waste sources and 

highlight areas for potential improvements. A future state map is then developed as an 

improvement plan, providing a structured approach to continuous improvement.33  

 

30 Palange, A., & Dhatrak, P. (2021). 
31 Sundar, R. et al. (2014). 
32 Ibidem 
33 Ibidem 
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2.1.3.1 Heijunka (Level production) 

Heijunka or production levelling, is a lean manufacturing strategy aimed at reducing 

fluctuations in production by levelling customer demand. In volatile business 

environments where customer demands vary, Heijunka helps prevent issues such as 

man and machine idle times, quantity problems, and breakdowns caused by 

overburdening of capacities. This approach balances workloads by grouping products 

into families and scheduling their production at regular intervals. Heijunka aims to 

manage variability in job arrival sequences to enable higher capacity utilization while 

avoiding peaks and valleys in the production schedule.34  

2.1.3.1 Just-in-Time (JIT) 

Just-in-Time is a production philosophy used in lean manufacturing that minimizes 

inventory by closely aligning production with customer demand. Under JIT, products and 

parts are manufactured and delivered only as needed, following a pull-based approach 

where production schedules are based on the customer demand. JIT aims to provide 

each process with only the parts it needs at the moment they are required, reducing lot 

sizes, buffer inventories, and order lead times. Trained workers, efficient workspace 

organization, and effective equipment maintenance are some of the key components 

required for successfully implementing JIT manufacturing. Efficient communication and 

reliable relationships with suppliers are also essential, as materials must be supplied on-

time according to the requirements.35 

2.1.3.1 Kanban System 

Kanban is a visual scheduling system designed to streamline production by controlling 

inventory levels and synchronizing the production and supply of components. It controls 

the flow of materials and ensures that production aligns with the demand, following the 

pull principle for achieving the Just-in-Time philosophy.36 

Physical Kanban cards or digital e-kanbans are used to signal demand to ensure parts 

are supplied based on customer requirements. The term ‘customer’ here refers to both 

external customers, who are the end users of finished products, and internal customers, 

the production personnel at the succeeding stations in a manufacturing facility.37  

 

34 Sundar, R. et al. (2014). 
35 Kumar, V. et al. (2019). 
36 Sundar, R. et al. (2014). 
37 Palange, A., & Dhatrak, P. (2021). 
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2.1.3.1 Jidoka 

Jidoka or ‘automation with a human touch’ is used to stop production whenever a problem 

occurs, enabling operators to immediately identify and correct issues. In a Jidoka system, 

machines are equipped to halt production automatically upon detecting abnormalities, 

and workers are trained to identify and address these issues. By signalling operators 

when a defect or abnormality occurs, Jidoka ensures that faulty products are not 

processed further, reducing the impact of the problem and ensuring quality standards.38 

2.1.3.2 Poka-Yoke (Mistake Proofing) 

Poka-Yoke is a lean manufacturing tools for achieving mistake proofing. It is designed to 

support the Jidoka system, trying to prevent defects by ensuring that processes operate 

under the correct conditions before the start of each process. This approach enhances 

control, also preventing issues like over-processing and overproduction. Poka-Yoke 

serves as both a preventive and detective mechanism, trying to identify potential errors 

early and correcting them before they impact the final product.39  

2.1.3.1 Kaizen (Continuous Improvement) 

Kaizen, a Japanese term meaning ‘continuous improvement’ is a practice of continuous, 

incremental improvement involving all employees from management to shop floor 

workers, to improve processes and eliminate muda (waste). In manufacturing, Kaizen 

targets inefficiencies in machinery, labour, and production methods.40  

 

 

 

 

 

 

 

 

38 Kumar, V. et al. (2019). 
39 Ibidem 
40 Gupta, S., & Jain, S. (2013). 
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2.2 Value Stream Mapping 

A value stream consists of all the actions required to deliver a product to the customer. 

The core of value stream is to view processes from the customers perspective and 

evaluate them based on whether they add value to the customer. This approach focuses 

on the entire value creation chain rather than individual steps, allowing a high-level 

overview that helps identify areas for improvement across the whole process.41 

In order to optimize the production processes effectively, it is necessary to visualize the 

entire value stream. Value Stream Mapping (VSM) is used to achieve this. It is designed 

to visualise the value stream, with an aim to analyse and optimize it by identifying and 

eliminating the unwanted activities.42 

2.2.1 History of Value Stream Mapping 

Similar to most of the lean manufacturing tools, the history of VSM originates from the 

processes adopted by Toyota. At Toyota, however, it was known as “Material and 

Information Flow Mapping”, and they used the tool to depict current and future states. For 

mapping the current and future states, Toyota defined three types of flows: the flow of 

material, the flow of information, and the flow of people/processes. Mike Rother and John 

Shook, in their book, “Learning to See”, adopted the material and information flow maps 

used by Toyota to present the Value Stream Mapping Method. The book provides a 

detailed explanation of the concept and a step-by-step procedure for implementing the 

method.43 

2.2.2 Value Stream Mapping Process 

Value Stream mapping (VSM) is used to visualise and analyse the flow of materials, 

information, and processes required to deliver a product or service to the customer. The 

primary objective of VSM is to identify and eliminate waste and enhance the overall 

efficiency of production processes. By visualising the entire processes involved in the 

workflow, VSM allows organizations to pinpoint inefficiencies and bottlenecks, thus 

supporting continuous improvement, aligning with lean principles. VSMs are created for 

specific product families, helping managers understand product specific operational 

conditions.44 The steps involved in VSM creation is describes in Figure 2-4. 

 

41 Rother, M., & Shook, J. (1999). 
42 Ibidem 
43 Ibidem 
44 Jasti, N., & Sharma, A. (2014). 
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Figure 2-4: Steps involved in value stream mapping45 

 

2.2.2.1 Selection of product family 

When starting the VSM process, it is essential to focus on a single product family rather 

than attempting to map all products in the facility. VSM is a customer centric process, 

aiming to increase the value for the customers. They are primarily concerned with specific 

products they purchase and not with the entire product line. Also, it is impractical to 

represent every product flow on one map, especially in larger operations.46 

 

45 Jasti, N., & Sharma, A. (2014). 
46 Rother, M., & Shook, J. (1999). 
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A product family consists of items that share similar processing steps and utilize common 

equipment in the production process. Product families are to be identified from the 

customer end of the value stream.47  

2.2.2.2 Current State mapping 

The current state mapping begins by mapping out the entire processes in the workflow, 

detailing each step from start to finish. In traditional value stream mapping, the data is 

collected manually from the shop floor. The employee uses devices such as stop watches 

for time measurement and visual observation to record the process steps, material flow, 

and information flow as they happen in real-time. Each step that the material goes 

through is documented from the receipt to production to shipping.48 

To visualize the current state of the production process, certain key performance 

indicators are measured and displayed within the value stream. These metrics provide 

insight into the efficiency, flow, and responsiveness of the production system and are 

outlined below:49 

Cycle time – Cycle time represents the time taken to complete a specific task or process 

within a single workstation. 

Throughput time – Throughput time is the total duration taken for a single unit of product 

to pass through all stages in the production process, from start to finish. This metric 

includes both value-adding and non-value adding activities included in the production 

process. 

Lead time – Lead time is the total time taken from the point the order is received from the 

customer till the product is delivered to the customer. Reducing the lead time is essential 

to improve the efficiency of the process. 

Takt time – Takt time is calculated based on customer demand and represents the ideal 

production rate needed to meet this demand. It serves as  target time per unit, ensuring 

that the customer demand is satisfied without leading to over production. 

Work in Progress (WIP) – Work in progress (WIP) refers to the total number of units being 

processed at a point of time, but not yet completed. Excessive WIP slows down 

production flow and increase waiting times. 

Transport time – Transport time refers to the time spent moving material or products 

between workstations.  

 

47 Rother, M., & Shook, J. (1999). 
48 Tabanli, R., & Ertay, T. (2013). 
49 Rother, M., & Shook, J. (1999). 
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2.2.2.3 Analysis of the current state 

The primary goal of analysing the current state is to understand where bottlenecks, 

delays, and non-value-added activities occur within the production flow. This analysis 

reveals which processes contribute to inefficiencies and their impact on overall 

performance. During this step, different activities in the value stream are classified based 

on their contribution in the production process, as defined below:50 

Value Adding Activities (VAA) – These activities are fundamental to the production 

process and directly contribute to the delivery of a finished product to the customer. They 

add value from the customer’s perspective. 

Necessary but Non-Value Adding (NNVA) – These activities do not directly add value to 

the customers, but they remain essential for the current operating procedures. Removing 

them would require a fundamental change in the way products are currently being 

manufactured. 

Non-Value Adding (NVA) – These activities are pure waste, meaning they add no value 

to the final product and should be completely eliminated. They involve activities that 

consume time and resources, without contributing to the production process. 

This classification helps prioritize improvement efforts by clearly identifying the wastes in 

production. The NVAs are targeted for immediate elimination, whereas NNVAs are 

eventually eliminated by bringing changes in the production process. 51 

2.2.2.4 Future State Mapping 

Future State Mapping is the step in the VSM process, where an ideal, streamlined version 

of the production process is designed. Based on insights from the current state analysis, 

a future state map is outlined, aiming to eliminate the identified wastes and optimizing 

processes to meet takt time – the ideal rate at which products must be produced to 

precisely meet the customer demand. This alignment ensures that production closely 

matches demand, reducing overproduction, excessive inventory, and other 

inefficiencies.52 

Several guidelines have been defined to help achieve improved future state maps. These 

include setting the production rate based on Takt time, and scheduling production based 

on bottleneck operation. The future state is planned with an aim to maintain continuous 

 

50 Hines, P., & Rich, N. (1997). 
51 Ibidem 
52 Tabanli, R., & Ertay, T. (2013). 
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flow in production, where material and information move smoothly without stoppages or 

delays, minimizing lead times.53 

2.2.2.5 Implementation 

After designing the future state map, the goal is to implement the new plan. The value 

stream map is nearly worthless if it does not contribute to achieving improved efficiency.54 

During this stage, a detailed workplan is established, outlining the specific actions 

required, the personal involved, and the timeline for each step. Regular monitoring and 

feedback loops are essential in the implementation stage to ensure that the planned 

improvements are achieved.55   

2.2.1 Benefits of Value Stream mapping 

VSM offers a range of benefits to manufacturers, which is evident from the popularity of 

the technique. It helps manufacturers to visualize their production processes and discover 

inefficiencies, they never thought existed. It also eliminates potential misinterpretations, 

enabling everyone to see the same picture and discuss it effectively without 

communication barriers.56 

Unlike monitoring individual processes separately, VSM provides a comprehensive view 

of the entire production flow, revealing inefficiencies across the workflow, making hidden 

wastes visible. It not only identifies the presence of wastes within the value stream, but 

also reveals the sources and highlights its root causes, offering actionable insights for 

improvement. By linking information flow with material flow, it gives insights into how 

information exchange affects production. Also, VSM equips managers with a complete 

understanding of the production process, enabling them to make more informed and 

strategic decisions. Finally, by systematically eliminating the wastes in production through 

its iterative approach, it helps production processes become leaner.57 

 

 

 

53 Tabanli, R., & Ertay, T. (2013). 
54 Rother, M., & Shook, J. (1999). 
55 Jasti, N., & Sharma, A. (2014). 
56 Womack, J., & Jones, D. (1996). 
57 Vaibhav, S. et al. (2013). 
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2.3 Industry 4.0 Technologies  

The term ‘industry 4.0’ was first introduced by Siegfried Dais (Robert Bosch GmbH) and 

Henning Kagermann (Acatech) in 2011 at the Hannover Fair.58 The German National 

Academy later published the industry 4.0 manifesto in 2013. The core element of industry 

4.0 is the integration of cyber physical systems with factories, resulting in so-called Smart 

Factories. CPS merges the physical world with virtual cloud environments, forming a key 

component of Industry 4.0. Even though the concept originated in Germany, it is already 

taken up by the researchers and industries around the world and is now a well-

researched topic.59 

Industry 4.0 is referred to as the fourth industrial revolution, transforming manufacturing 

through digitization and automation. Unlike previous revolutions, which introduced 

mechanization, mass production, and automation, industry 4.0 aims to create 

interconnected, data-driven manufacturing systems.  This enables ‘smart’ factories, 

where machines, products, and systems autonomously communicate and coordinate 

activities throughout the supply chain.60  

By integrating advanced technologies such as Internet of Things (IoT), Cyber-Physical 

Systems (CPS), Artificial Intelligence (AI), and Big Data, industry 4.0 supports seamless 

data flow and decision-making, resulting in environments that are flexible, efficient and 

dynamic to real-time demands. This revolution redefines traditional production, focusing 

on agile manufacturing, predictive maintenance, and optimized resource use, that adapts 

to customer requirements.61    

There are many technologies that facilitate interconnectivity and automated data transfer 

between physical and virtual entities. Some of the key industry 4.0 technologies are 

outlined in this section: 

Internet of Things (IoT) 

IoT is an integral part of Industry 4.0, which enables connectivity between devices, 

sensors, and machinery across the manufacturing floor. IoT facilitates real-time data 

collection and remote monitoring, which allows for better visibility and performance 

optimization.62   

 

 

58 Sanders, A. et al. (2016). 
59 Lai, N. et al.(2019). 
60 Frank, A. et al. (2019). 
61 Ibidum 
62 Lampropoulos, G. et al. (2019). 
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Cyber-Physical Systems (CPS) 

CPS connects physical manufacturing components such as machines and tools with 

digital control systems, enabling real and virtual worlds to interact with each other. This 

enables production environments to be more agile, where systems can quickly adapt to 

changes in demand or process adjustments.63  

 

 

Figure 2-5: Theoretical framework of Industry 4.0 technologies64 

Digital Twins 

A digital twin is a virtual model of a physical entity that mirrors its real-time state. The 

literature highlights the potential of digital twins in optimizing manufacturing processes, 

primarily, using simulation and predictive maintenance. By simulating various scenarios, 

digital twins allow manufacturers to test process improvements, predict outcomes, and 

make data-driven adjustments without disrupting actual operations.65  

Artificial Intelligence (AI) and Machine learning (ML) 

AI and ML enable industry 4.0 technologies to make intelligent decision by interpreting 

large datasets and complex analysis based on patterns and predictions. One of the 

applications of AI in industry 4.0 include predictive maintenance where AI algorithms 

analyse sensor data to predict machinery failures as well as quality control, where AI 

detects defects in products.66 

Machine Vision 

Machine Vision, which can be considered a subset of AI, has become an important part 

of industry 4.0 technologies. Machine vision’s ability to “see” and “understand” makes it 

an invaluable component of Industry 4.0. It can be used to automate processes that would 

otherwise rely heavily on human interpretation. This can not only substitute humans but 

 

63 Lampropoulos, G. et al. (2019). 
64 Frank, A. et al. (2019). 
65 Frick, N., & Metternich, J. (2022). 
66 Haffner, O. et al. (2024). 
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can even offer better performance. This is particularly evident in quality control, where 

machine vision offers high accuracy while avoiding the chances of accidental (human) 

errors.67 

The industry 4.0 technologies are already transforming manufacturing, allowing 

companies to achieve better flexibility and efficiency than ever. When applied 

strategically, these technologies can further enhance production capabilities, paving the 

way for smarter, more adaptive manufacturing systems. 

2.3.1 Compatibility of Industry 4.0 with Lean manufacturing 

The interaction between industry 4.0 and lean manufacturing has been evaluated in 

several studies, revealing that the industry 4.0 technologies support lean principles. Lean 

manufacturing aims to reduce waste and improve processes to maximise value. By 

integrating industry 4.0 technologies, manufacturers gain enhanced visibility into 

operations, along with improved responsiveness, and efficiency on the shop floor. Also, 

it facilitates improved communication across the entire production system, as real-time 

data and connectivity enable seamless communication between machines, people, and 

systems.68  

Industry 4.0 also enables techniques such as predictive maintenance and adaptive 

production scheduling, which align with lean’s objectives of minimizing downtime and 

reducing non-value added activities. This integration allows lean initiatives to overcome 

traditional limitations, as digital tools continuously support waste reduction and quality 

improvement without requiring constant manual intervention. In this way, industry 4.0 has 

the potential to act as an enabler of lean, facilitating a more flexible, and efficient 

production environment that remains grounded in lean’s foundational principles.69 

 

 

 

 

 

 

 

 

67 Haffner, O. et al. (2024). 
68 Sanders, A. et al. (2016). 
69 Lai, N. et al. (2019) 
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3 Related Theory 

This chapter covers three main topics, each addressing a specific area relevant to the 

research. The first section, Digitization in Value Stream Mapping, examines the digital 

technologies currently applied in VSM. This section provides an overview of how digital 

tools are used for data collection in VSM and how they enhance traditional VSM method. 

Additionally, the current limitations and potential for improvement  are analysed. 

The second section, Current Applications of Object Detection in Assembly Processes 

explores areas within assembly processes where object detection techniques are already 

in use, understanding the algorithms chosen and the rationale behind their selection. This 

study also aimed to examine whether object detection has been specifically applied in 

value stream mapping. 

 Finally, the third section, Overview of Object Detection and Comparison of Algorithms, 

presents a detailed overview about object detection. In addition, this section includes a 

technical comparison of available object detection algorithms to identify the most suitable 

option for the practical implementation in this study. The findings from these topics 

provide essential insights for effectively conducting the practical part of this thesis.   

3.1 Methodological Approach for Literature Review 

This section outlines the methodological approach used to gather, filter, and analyze 

relevant literature for each of the three topics.  

3.1.1 Digitization in value stream mapping 

The purpose of this part of the study was to explore the current advancements in the 

digitization of value stream mapping (VSM). The review focused on identifying various 

digitization approaches applied to VSM and analysing their outcomes. By grouping and 

reviewing different digitization approaches and analysing their advantages and 

limitations, gaps in the existing research were identified.   

To gather relevant literature on the digitization of value stream mapping (VSM), a 

systematic search was conducted using the query shown in Listing 3-1. The search was 

performed using two major academic databases: Scopus and IEEE Explore. These two 

databases were chosen for their comprehensive coverage of literature. Scopus, being 

one of the largest abstract and citation databases, indexes a wide range of publications 

from major sources including Elsevier, Springer, and Emerald. IEEE Explore is more 

focused on engineering, technology, and computer science, and returned highly relevant 

results for this study.  
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The search covered the title, keywords, and abstract of the papers. The review was 

limited to studies published in English, within the subject areas of Engineering and 

Computer Science, and only included publications from 2015 onwards. The procedure 

followed for selecting the articles is shown in Figure 3-1.  

The articles were filtered based on specific exclusion criteria defined in Table 3-1. These 

criteria ensured that only studies directly related to the digitization of value stream 

mapping in manufacturing were included, while those that did not align with the research 

focus were excluded. 

Table 3-1: Exclusion criteria for studies on digitization in value stream mapping 

Exclusion Criteria Motivation 

Articles not directly related to value stream 

mapping (VSM) will be excluded 

To exclude studies that are not relevant for 

the research topic 

Articles that focus primarily on general 

lean methods, without specific focus on 

VSM, will be excluded 

To ensure the review is focused 

specifically on VSM and not broader lean 

methodologies 

Articles discussing only traditional VSM, 

without including digital methods for VSM, 

will be excluded 

To exclude studies that do not explore the 

digitization of VSM 

Articles unrelated to manufacturing or 

production environments will be excluded 

To exclude articles that are related to the 

application of VSM in other fields of study 

Articles that do not primarily focus on 

digitization or lack detailed information on 

the proposed digital tools and their 

applications will be excluded 

To exclude articles that focus on topics 

other than digitization, such as the 

integration of circular economy or 

sustainability indicators with VSM. 

 

( "value stream map*" OR "value stream design" OR "value stream 

method" OR "value stream analysis" ) AND ( manufactur* OR production 

OR factory ) AND ( digit* OR dynamic OR automated OR "industry 4.0" ) 

Listing 3-1: Search query for digitization in value stream mapping 
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Figure 3-1: PRISMA flow diagram for literature review on digitalization in values stream mapping 

 

 



Related Theory 

 

 
24 

3.1.2 Current applications of object detection in assembly processes 

The purpose of this part of the study was to explores areas within assembly processes 

where object detection techniques are already in use, understanding the algorithms 

chosen and the rationale behind their selection. This study also aimed to examine 

whether object detection has been specifically applied in value stream mapping. 

To gather relevant literature about object detection algorithms, a systematic search was 

conducted using the query shown in Listing 3-2. The search was performed using two 

major academic databases: Scopus and IEEE Explore.  

 

 

 

 

 

 

The search covered the title, keywords, and abstract of the papers. The review was 

limited to studies published in English, within the subject areas of Engineering and 

Computer Science. 

The articles were filtered based on specific eligibility criteria defined in Table 3-2. These 

criteria ensured that only studies that provide comparisons of state-of-the-art object 

detection algorithms were included to maintain research focus. 

Table 3-2: Exclusion criteria for studies on current applications of object detection in manufacturing 

Exclusion Criteria Motivation 

Articles unrelated to assembly processes 

will be excluded. 

To remove the articles that are not related 

to the research topic 

Articles not focused on manufacturing or 

production will be excluded. 

To remove articles that focused on other 

areas such as aerial vehicles tracking or 

Monitoring of construction works  

Articles specific to another field of 

operation will be excluded. 

To remove articles from irrelevant fields. 

E.g. Retail Product recognition 

("manual assembly" OR "manual operation" OR "assembly process") AND 

("progress" OR "monitor*" OR "track*" OR "assist*") AND ("object detection" 

OR "object recognition" OR "deep learning" OR "machine vision" OR 

"computer vision") 

Listing 3-2: Search query for literature review on current applications of object detection in 
assembly processes 
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Articles not focused on object detection 

will be excluded. 

To exclude articles that focused on other 

deep learning technologies. E.g. Pose 

estimation 

 

 

Figure 3-2: PRISMA flow diagram for literature review on current applications of object detection in 
assembly processes 

 

 



Related Theory 

 

 
26 

3.1.3 An overview of Object Detection and Comparison of Algorithms 

The purpose of this part of the study was to provide a comprehensive overview of the 

subject of object detection and to compare various object detection algorithms, with the 

aim of selecting the most suitable one for the practical part of this thesis. The algorithms 

were compared based on their performance against benchmark datasets and also their 

performance in custom studies found in the literature.  

To gather relevant literature about object detection algorithms, a systematic search was 

conducted using the query shown in Listing 3-3. The search was performed using two 

major academic databases: Scopus and IEEE Explore.  

 

 

 

 

 

The search covered the title, keywords, and abstract of the papers. The review was 

limited to studies published in English, within the subject areas of Engineering and 

Computer Science, and only included publications from 2020 onwards.  

The articles were filtered based on specific eligibility criteria defined in Table 3-3. These 

criteria ensured that only studies that provide comparisons of state-of-the-art object 

detection algorithms were included to maintain research focus. 

Table 3-3: Exclusion criteria for studies on object detection algorithms 

Exclusion Criteria Motivation 

Articles not directly related to object 

detection will be excluded 

To exclude studies that are not relevant to 

the research focus 

Articles that do not discuss or compare 

two or more object detection algorithms 

will be excluded 

To ensure that the review covers 

comparative studies of object detection 

algorithms 

Articles that do not compare performance 

characteristics (e.g., speed, accuracy,) of 

algorithms will be excluded 

To focus on studies that provide 

meaningful evaluations of algorithm 

performance  

("Object detection" OR "Object-detection") AND (study OR survey OR 

review) AND (accuracy OR speed OR performance) AND ("comparison" 

OR "comparative study") 

Listing 3-3: Search query for literature review on object detection algorithms 
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Articles that discuss modifications to 

existing algorithms to create variations will 

be excluded 

To exclude articles that are totally 

unrelated to the goal of the review 

Articles discussing only outdated 

algorithms (<= YOLOv3 or Fast R-CNN) 

will be excluded 

To focus on reviewing state-of-the-art 

algorithms and avoid studies based on 

outdated methods 
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Figure 3-3: PRISMA flow diagram for literature review on object detection algorithms 
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3.2 Digitization in value stream mapping 

The digitization of manufacturing, driven by the rise of Industry 4.0 has transformed the 

way products are being manufactured. The shift toward automation, data analytics, and 

interconnected systems is enabling manufacturers to optimize processes, thereby 

become more flexible, efficient, and meet the growing demand for customized products. 

Industry 4.0 technologies, such as IoT, cloud computing, and artificial intelligence have 

helped manufacturers in optimizing processes and enhancing productivity.70 

This trend toward digital transformation has impacted many aspects of manufacturing 

including the widely used tool of value stream mapping (VSM). Value stream mapping is 

a lean management tool that facilitates the analysis of value streams and the identification 

of opportunities for optimization. Value stream maps visualize essential process steps 

and key figures, which improves the understanding of the actual as-is process and 

provides insights about potential areas for improvement.71 Traditionally, VSM has been 

a manual process, relying on direct observation and static data collection to map material 

and information flows across production systems. While this approach has been effective 

in stable and predictable manufacturing environment, it is limited in its ability to capture 

the increasing complexity and dynamism of modern production environments.72 

Digitization has the potential to keep value stream mapping relevant in today’s 

manufacturing by incorporating digital data acquisition, automation, and advanced 

analytics into the process. Employing technologies such as the Internet of Things (IoT), 

different sensors, and simulation tools could enable manufacturers to continuously 

monitor production activities and gain deeper insights into their operations. This shift from 

static to dynamic VSM aligns with the broader goals of Industry 4.0, enabling companies 

to achieve higher levels of flexibility, responsiveness, and operational efficiency.73  

3.2.1 Need for digitization  

Value stream mapping was developed as a paper and pen tool to see and understand 

the material and information flow as the product moves through the values stream.74 This 

concept has been used for decades and have been very effective in helping the 

companies in improving their efficiency. Traditionally, production systems are designed 

for a predefined set of products and production volumes. Adhering to this workflow will 

 

70 Mariappan, R. et al. (2023). 
71 Frick, N., & Metternich, J. (2022). 
72 Horsthofer-Rauch, J. et al. (2022). 
73 Ferreira, W. et al. (2022). 
74 Rother, M., & Shook, J. (1999). 
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ensure optimum efficiency, as any deviation from this can lead to losses. Therefore, 

periodic checks are to be carried out to determine the status of the production and to look 

for areas for improvement. Value stream mapping has served as an efficient tool for this 

purpose in relatively stable production scenarios. However, the requirements are 

changing, and the production systems are evolving accordingly. The traditional data 

collection methods reach its limits when it is required to adjust the value stream quickly 

and objectively to new challenges.75 

According to the literature, lean philosophy in production is currently being successfully 

implemented in only two-thirds of the organizations and only a few are able to sustain it 

in the long run. This shows that the multi-varieties and small batch-oriented 

manufacturing has deteriorated the effectiveness of lean implementation.76 

Manufacturers have to ensure high degree of individualization, flexible assembly assets, 

and short-term change requests to remain competitive in today’s market.77 The static 

nature of the conventional value stream mapping lacks the capability to efficiently 

manage this challenge. The singular data recording on site, used in traditional value 

stream mapping process, may not necessarily reflect the actual situation in the shop floor. 

This approach often struggles in capturing the dynamic nature of modern manufacturing 

environments and provides only a limited view of the current state. As a result, these 

maps often fail to provide accurate insights for decision-making in dynamic manufacturing 

settings. 78  

Another major challenge is the considerable effort required in manual data collection, 

which is a tedious and time-consuming process. This issue is further compounded in 

highly flexible and reconfigurable environments, where products, processes, and 

workflows change frequently. In such situations, regularly updating the VSMs become 

essential to ensure they accurately reflect the current state of the production. However, 

due to the labour-intensive nature of manual data collection, it is often impractical to 

repeat these processes as frequently as necessary. Digitization offers a way to meet this 

need by enabling the automated collection of data from machines, sensors, and IoT 

devices, eliminating the delays and inaccuracies associated with manual methods.79 

The reliance on the worker’s expertise is another limitation of the traditional approach. 

Although this method does not require expensive equipment and relies on basic tools like 

stopwatches and visual analysis, it requires workers to be highly experienced, particularly 

 

75 Frick, N. et al.(2024). 
76 Iyer, S. et al. (2023). 
77 Scheder, N. et al. (2023). 
78 Frick, N., & Metternich, J. (2022). 
79 Horsthofer-Rauch, J. et al. (2022). 
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in dynamic and complex environments.80 There is also a risk of human errors and 

subjectivity during manual data collection. Any resulting inaccuracies can lead to 

misinterpretation of the problem and suboptimal decision-making, undermining the 

effectiveness of lean initiatives. Digitization shifts the focus from manual observation to 

data-driven systems. Digital tools capture objective, consistent data that can be analysed 

in real-time, minimizing the risk of human error and ensuring that decision-making is 

based on comprehensive, up-to-date information.81  

Digitization can also enable manufacturers to fully leverage the data already available 

within many modern production systems. In today’s manufacturing environments, much 

of the data beneficial for value stream mapping is already captured in various digitized 

systems such as Enterprise Resource Planning (ERP), Manufacturing Execution 

Systems (MES) and Supply Chain management (SCM) systems. By connecting VSM to 

these existing information sources, key data such as supplier data, customer orders, and 

production schedule can be updated in real-time.82 

The scope of digitization extends beyond automated data acquisition. It also enables 

manufacturers to employ advanced tools that can transform the collected data into 

actionable insights. Integration of technologies such as process mining, digital twins, and 

simulations, allows manufacturers to analyse data in real-time, identify inefficiencies, and 

aid in decision making. Digitization can help in better visualization and analysis of the 

mapped value streams.83 Making variations to the production processes can be 

expensive and may also affect other processes in different ways. Therefore, it would be 

smart to leverage the existing digital technologies to analyse the impact of any variations 

to the value stream using simulation technologies. This can also help in analysing and 

comparing various possible scenarios thereby aiding the managers in decision making.84  

A study cited by (Frick and Metternich) states that 66% of lean experts believe that the 

advancement of value stream mapping by the incorporation of industry 4.0 technologies 

is beneficial.85 

3.2.2 Areas of Digitization 

There are many approaches in the literature aiming to improve the value stream mapping 

method by the incorporation of digitization. Different approaches focus on different areas 

within value stream mapping. While some focus on material flow, others focus on the 
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information flow. Some focus on the development of current state maps digitally, while 

other focus on the design, comparison and optimization of future state maps. Different 

areas of digitization present in the literature and the existing approaches are outlined in 

this section. 

3.2.2.1 Digital Data Acquisition 

One of the primary motivations for digitizing value stream mapping (VSM) is to eliminate 

the inefficiencies associated with manual data collection methods. Not only is manual 

data collection time-consuming and prone to human errors, but also provides only a 

snapshot of the production process, failing to capture the dynamic nature of activities on 

the shop floor.86 To overcome the challenges with traditional data acquisition, many 

approaches have been presented in the literature to digitally collect data from the shop 

floor. 

RFID tags 

Radio Frequency Identification (RFID) systems have been proposed by many 

researchers for enhancing VSM by enabling real-time data collection and dynamic 

monitoring of production processes in the shop floor. RFID technology uses radio waves 

to automatically identify and track items. The system consists of tags, readers, and a 

software and all the three components work together to facilitate the tracking of an item. 

RFID tags when attached to objects, transmit data to RFID readers, which is then 

processed by software to filter any errors and provide clean data for analysis.87 

A Dynamic Value Stream Mapping (DVSM) system was proposed by M. Ramadan, Z. 

Wang and B. Noche, integrating RFID technology into traditional value stream mapping. 

Unlike static VSM, which provides only a snapshot of the production process, the RFID-

enabled DVSM offers continuous real-time data collection. RFID tags are attached to 

objects such as products, equipment, or tools, allowing them to be tracked throughout 

the production flow. RFID gives this information from the production floor to the already 

built VSM, facilitating comparison with the planned flow. This allows managers to respond 

to situations such as inventory depletions, production delays, or bottlenecks on time.88 

Wang et al. also suggested integrating RFID technology with value stream mapping. They 

suggested a multi sensor approach where RFID tags, or barcode systems attached to 

workers map the workflow information, whereas PLCs or other sensors attached to 
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machines collect the machine data  , and other sensors to collect data related to 

machines, personnel, and materials.89  

RFID has the advantages of  its relatively low cost, wide coverage, and ease of 

implementation, which makes it a good choice for monitoring production processes. 

However, RFID does have its limitations. One significant drawback is its limited precision, 

as it does not offer high level of accuracy required for tasks that demand exact positioning 

of objects. Furthermore, there is a need to physically attach tags to the objects being 

tracked, which introduces additional step in the workflow and increases the workload for 

workers. This can affect the value adding time, especially in environments where large 

volumes of items need to be tagged. The manual handling of tags also opens up the 

possibility for error, such as misplacement or forgetting to attach the tags, which could 

disrupt the data collection process.90 

Real-Time Location Systems (RTLS) 

RTLS have emerged as a promising solution for enhancing data acquisition for VSM. 

These systems enable the continuous tracking of assets such as products, materials, and 

operators, within a facility, providing real-time location data along with corresponding 

timestamps. By utilizing RTLS, manufacturers can track movement and material flow 

more accurately, offering a more dynamic and detailed perspective of the value stream. 

RTLS operates by using active tags , which continuously communicate their positions to 

a network of anchors installed within the facility.91 

Tran, Ruppert and Abonyi proposed the use of Indoor Positioning Systems (IPS) as a 

valuable addition to the data sources for VSM. They demonstrated that positional data 

acquired from IPS can be transformed to determine KPIs used in Lean Manufacturing 

and developed a framework for extracting and analysing manufacturing data through 

process mining. Ultrawide band (UWB) – based RTLS systems which uses active tags 

and anchors for localization were used for the case study where the method was 

validated. IPS tags were attached to carts carrying semi-finished products and to 

operators, with positional data calculated using the Time Difference of Arrival (TDoA) 

method. The integration of this system with existing IT systems like MES allows for 

comprehensive data collection relevant to VSM, providing better visualization of the 

production flow. The study also highlighted how integrating other sensors, such as RFID, 

optical or vibration sensors could further enrich data collection.92 
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On the other hand, Sullivan et al. focused on a stand-alone implementation of UWB - 

based RTLS by developing an excel-based semi-automated VSM creation tool. This 

method allowed for the generation of current state maps using positional data and 

timestamps collected from RTLS sensors. The semi-automated tool was validated in a 

case study. While it still required some human intervention, the approach proved to be 

less time-consuming and less prone to errors compared to traditional methods. Although 

not all the inputs required for a complete value stream map could be derived using the 

sensors, the accuracy of the collected data closely reflected actual production conditions, 

demonstrating the potential of RTLS to reduce manual efforts and to generate a more 

dynamic VSM.93 

RTLS systems offer high precision and accuracy, particularly the UWB RTLS systems, 

which provides centimetre level accuracy. This makes them exceptionally suitable for 

manufacturing environments where exact positioning is critical. UWB signals also 

penetrate most obstacles and cover large distances without significant losses.94  

However, these systems are relatively expensive and the cost increases with the number 

of items being tracked, limiting their use in high-volume applications. They also consume 

considerable power, increasing operational costs, particularly in large-scale 

implementations where many tags need to be tracked. Additionally, the presence of 

metallic objects in industrial environments may block or distort the signals from these 

sensors, leading to reduced accuracy.95 

Also, similar to the case with RFID, the need to physically attach RTLS tags to the objects 

being tracked could increase the workload for workers. This can affect the production 

efficiency, especially in environments where large volumes of items need to be tagged. 

The manual handling of tags also opens up the possibility for error, such as misplacement 

or forgetting to attach the tags, which could disrupt the data collection process.96  

Other IoT devices and sensors 

Many studies proposed the integration of other industry 4.0 technologies with value 

stream mapping to enable it tackle today’s challenges in manufacturing. IoT devices, 

PLCs, sensors, and Human-Machine Interfaces(HMIs) are among the tools that enable 

continuous data collection. Mariappan et al. proposed an intelligent VSM (IVSM) model, 

which incorporates IoT devices, sensors, HMIs and machine interlocks into an Integrated 

Efficiency Monitoring System (IEMS). This system allows for seamless data collection 

 

93 Sullivan, B. et al. (2022). 
94 Ibidem 
95 Ibidem 
96 Tran, T.-A. et al. (2021). 



Related Theory 

 

 
35 

and analysis, using cloud computing to store and process data. The real-time monitoring 

capabilities of the IVSM framework enable faster and more informed decision-making.   

The framework also incorporates alerts and insights to managers, allowing them to react 

to bottlenecks and inefficiencies on time. The framework was validated in an automotive 

electromechanical component manufacturing company in India.97  

Huang et al. proposed a multi-agent system for dynamic value stream. This system 

composed of several embedded Arduino units as agents and a Raspberry Pi as the core 

agent, which when combined with switch sensors can map the material flow. Node-RED, 

an open-source flow-based software, was introduced as a visualization layer.98 In a later 

study by the same author, more focus was given on upgrading legacy machines with 

cyber-physical systems under the framework of industry 4.0. Companies, particularly with 

limited resources are often reluctant to make huge investments in latest machineries. 

These companies continue to use a high number of non-networked legacy machines due 

to their reliable performance and relatively high replacement costs. The study suggested 

equipping these machines with low-cost sensors to collect and share data, allowing them 

to be integrated into modern production networks and to contributing to the development 

of dynamic value stream maps. The framework was validated in a case study conducted 

at an Australian manufacturer of customized alloy ute canopies, where switch sensors 

were used to gather machine data and thereby determine the processing time.99 

 

Figure 3-4: Overview of Digital Data Acquisition Tools for Value Stream Mapping 
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Leitão et al. proposed a real-time KPI monitoring tool specifically designed to enhance 

strategic decision-making in manufacturing environment. The tool’s Data Service Module 

gathers and standardizes data from multiple sources, including PLCs, IoT devices, and 

sensors connected to legacy machines.  Since data is collected from a mix of old and 

new technologies, technological adapters are used to convert the native data structure 

into a unified data model. The system then analyses this data to detect trends, deviations, 

and potential bottlenecks. The tool was validated in a real-world factory setting producing 

microwave ovens. However, the exact sensors or IoT device used for data collection were 

not mentioned.100 Klimecka-Tatar and Ingaldi evaluated the potential benefits of 

digitization in small and medium sized enterprises (SMEs) within the manufacturing 

sector. As SMEs face barriers such as limited resources and resistance to change, 

making huge investments for digitization is often impractical. The study highlights that 

even partial digitization can offer significant improvements. They enriched the VSM with 

data regarding Overall Equipment Effectiveness (OEE) that was collected using a 

software configured to the machine. The operation data of the machine was downloaded 

automatically, while information about defects was manually entered into the software by 

the operator. The study claimed that this enhanced process visualization by providing 

accurate data on machine performance and reduced the errors caused by manual data 

collection.101 

The central focus of these studies is the integration of Industry 4.0 technologies to 

automate data collection directly from machines and equipment. Modern interconnected 

machinery, equipped with technologies such as PLCs and IoT devices, generate a wealth 

of data that is crucial for determining key performance indicators (KPIs). These studies 

provide a framework for leveraging that data for digitized value stream mapping. At the 

same time, the integration of low-cost sensors allows even legacy machines, which may 

not be equipped with digital capabilities, to be incorporated into the value stream mapping 

process.   

Summary of Digital Data Acquisition Methods 

The application of several sensors is suggested in the literature to facilitate data 

acquisition from shop floors. These sensors collect a variety of data, from the location of 

products, tools, and workers to monitoring operational parameters like equipment 

performance, environmental conditions, and machine states. These systems are capable 

of collecting data in real-time, enhancing productivity and enabling faster responses to 

issues in production environments. Technologies like RFID, RTLS, and barcodes are 
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commonly used to track the location and movement of entities on the shop floor, offering 

automatic tracking of material flow. 

On the other hand, PLCs, IoT sensors, HMIs, and other machine-focused sensors 

primarily gather machine data, such as uptime, cycle times, and operational states, which 

help derive key KPIs like processing times and equipment efficiency. These sensors 

enable the digital data collection from both modern machinery and legacy machines, 

ensuring comprehensive data collection across the entire shop floor. 

3.2.2.2 Advanced digital tools for Intelligent Analysis and Decision Support 

Digitization has transformed value stream mapping by not only facilitating efficient and 

dynamic data acquisition, but also by providing tools for deeper analysis of the current 

state, offering decision support to managers for optimizing future state maps. Many 

studies in literature propose the use of various digital tools to enhance value stream 

mapping. These tools range from digital twins and simulations to process mining and 

machine learning, all aimed at improving process visibility, supporting decision-making, 

and designing efficient future state maps. 

Digital twins and Digital Shadows 

Digital twins and digital shadows are digital representations of physical systems. Digital 

twins include a bidirectional flow of data between the physical entity and its digital 

counterpart, meaning that not only does the digital twin update in real-time based on 

changes in the physical system, but it can also send data back to influence or optimize 

the system. On the other hand, digital shadows have a unidirectional data flow, reflecting 

the current state of a system, without influencing the physical entity directly. Different 

researchers proposed integrating digital twins or digital shadows with VSM to realize real-

time visualization and predictive capability.102    

Frick and Metternich proposed a framework for the development of a digital value stream 

twin (DVST), which acts as a comprehensive and dynamic digital representation of a 

value stream. The aim of the DVST is to continuously capture, store, and transfer real-

time or near-real-time data from the shop floor to the virtual layer. This enables 

comparison of the real-time shop floor data with target states in VSM, and to generate 

proposals for improvement using optimization algorithms. However, the proposed 

framework was not validated.103 
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Building on this framework, the same author later introduced the Design Model for the 

Digital Shadow of a Value Stream, narrowing the focus to the digital representation of the 

current state and historical analysis. In this project, the data flow from the physical to the 

digital object was only considered. The study excluded the automated optimization 

concept and focused more on visualization, real-time monitoring, and historical analysis. 

The model was validated at the learning factories at TU Darmstadt and the users were 

able to design a digital shadow of the value stream using the model.104 

The use of digital twins was also proposed by Iyer, Sangwan and Dhiraj to enhance value 

stream mapping. Although referred to as a digital twin, the framework lacked an 

automated data flow from the digital to the physical object. However, the study puts 

forward a comprehensive architecture that covers everything from the data acquisition to 

the visualization of the value streams to the analysis and optimization of the future state 

maps. This architecture was designed to enhance decision-making at both operational 

and strategic levels by providing real-time insights into production processes. The study 

suggested a solution that incorporates low-cost sensors for the collection of data 

necessary for the development of the digital twin. The information from the digital twin is 

visualized on a multi window virtual dashboard that displays the status of each station, 

overall equipment effectiveness (OEE), and different KPIs. The framework was validated 

in an industry 4.0 complaint automated assembly line with five processing stations. The 

digital twin, developed using the AnyLogic software, enabled the simulation of multiple 

‘what-if’ scenarios to analyse and compare future state maps before any changes were 

implemented.105  

For the effective implementation of these methods, researchers have identified three 

critical layers – the physical layer for data collection, the virtual layer for data storage and 

analysis, and the connection layer to manage the data flow between the other two 

layers.106 While existing IT systems such as Enterprise Resource Planning systems 

(ERP) or Manufacturing Execution Systems (MES) could provide critical data to the 

physical layer, the use of other data acquisition methods are often necessary, particularly 

in human-centred production processes. This can be achieved by the integration of 

different sensors. Therefore, a multi-model data acquisition system is necessary to 

ensure comprehensive data collection from various sources to obtain enough information 

about the production process.107 
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Application of simulation 

For companies not yet ready to adopt full digital twin implementations, simulations 

provide a more accessible method to model, analyse, and optimise value stream maps. 

Several studies have explored it’s use in VSM, without all the complexities of a digital 

twin. Simulation can be used to model and simulate the current-state and future-state 

maps of the value stream. Data required for these simulations must be collected either 

using the traditional methods or using modern digital data acquisition techniques. The 

primary role of simulation in VSM is to model the processes, enabling the analysis of 

different scenarios and optimization strategies. This enhances process visualization, 

improving clarity and understanding. This is particularly useful in complex production 

scenarios as it can handle the dynamic nature of the modern manufacturing environment 

better. Simulation can therefore help managers understand the potential impact of 

proposed improvements before they are implemented on the shop floor. 108 

In order to emphasize the potential of using software tools for enhancing classical 

methods such as value stream mapping, Trebuna, Pekarcikova and Edl used Tecnomatix 

plant simulation software to digitize VSM process in a case study that involved the 

production of steel cords. The data collected using traditional methods is entered into the 

software, which creates a digital model of the production process. This can visualize the 

dynamic fluctuations in production due to variation in batch size, procedure, product type, 

or other faults. The model can analyse current maps and can propose and compare 

future-state maps.109  

Other researchers tried to combine various approaches to enhance the effectiveness of 

the solution. Ferreira et al. introduced a hybrid simulation - value stream mapping (HS-

VSM) framework, integrating discrete-event simulation and agent-based modelling with 

value stream mapping. DES has been widely adopted to enhance VSM by modelling the 

material and information flow through a system. Combining it with agent-based modelling 

improves its potential to model and analyse complex, decentralized and dynamic 

production systems typical of industry 4.0. The approach, therefore, compliments the 

integration of industry 4.0 technologies in production and facilitates the transition to 

Industry 4.0 by modelling complex interactions within a distributed production system. 

This method was validated using AnyLogic software at an SME in the furniture 

manufacturing sector, demonstrating the potential to optimize future-state maps by 

leveraging simulation tools.110  
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Meanwhile, Liu and Yang suggested the idea of integrating Grey Taguchi method with 

simulation to improve multiple attribute decision making. In this method, in addition to 

visualizing the future state maps using the simulation model, it also prioritizes them by 

ranking multiple future state maps based on the predefined parameters. Therefore, the 

integration of the Grey Taguchi method enables multiple-attribute decision-making that 

involves the evaluation of multiple decision metrics simultaneously. This results in a 

structured approach to decision-making that allows to evaluate and prioritize multiple lean 

initiatives based on a range of performance criteria. In this study, FlexSim 2019 

simulation software was used to model scenarios at a footwear manufacturing company, 

simulating different flows of material and information to evaluate performance under 

various conditions. This combination of simulation and decision-making methods offered 

more structured insights into optimizing value streams.111  

Process mining 

Process mining is another tool recommended in the literature for enhancing value stream 

mapping (VSM). By analysing collected data, process models can be automatically 

generated to discover, monitor, and improve real-world processes. This method offers an 

effective way to efficiently identify inefficiencies, bottlenecks, and deviations from the 

expected workflow. Visualizing these deviations allows managers to quickly identify 

inefficiencies and take corrective actions.112  

Several researchers have proposed frameworks that integrate process mining with VSM 

to improve process visibility and efficiency. Horsthofer-Rauch et al. introduced a 

framework that integrates process mining with VSM to automatically generate real-time 

process models and KPIs by utilizing event logs recorded in systems such as 

Manufacturing Execution Systems (MES) and Enterprise Resource Planning (ERP). This 

framework enables the continuous monitoring of production flows and helps align actual 

production processes with strategic goals by automating the generation of KPIs. 

Visualizing the KPIs such as cycle time, throughput time, and resource utilization in real-

time, allows for more effective and timely decision-making.113 

While process mining offers significant benefits, its effectiveness relies heavily on the 

availability and quality of event data. Incomplete or inconsistent logs can result in 

inaccuracies in the generated process models. Tran, Ruppert and Abonyi proposed a 

framework to integrate process mining with IPS data to optimize flexible manufacturing 

processes. The study suggested that incorporating location data captured by IPS 
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provides an additional layer of information for process mining, enhancing its effectiveness 

beyond relying solely on data from information systems. This integration is particularly 

useful in environments with high variability, such as those involving manual assembly 

tasks.114 

Decision tree algorithms 

In addition to the tools discussed above, use of algorithms has also been proposed as an 

effective method for automated root cause analysis in value stream mapping (VSM).      

Wang et al. suggested the integration of decision tree algorithms to extract actionable 

knowledge from the data collected in a production workshop. Decision trees are a type 

of machine learning algorithm that uses a hierarchical, tree-like structure to guide 

decision-making processes based on data. The algorithm analyses real-time production 

data to identify the causes of inefficiencies such as machine downtime, delays in material 

delivery, or operator-related issues. It can analyse heterogeneous production data from 

various sources such as machine sensors, RFID systems and can identify patterns 

helping to understand the underlying issues.115  

The proposed framework was validated in a furniture manufacturing workshop, where the 

decision tree algorithm was used to automatically diagnose the root cause of a low 

machine utilization rate.116 

 

 

Figure 3-5: Advanced Digital Tools for Intelligent Analysis in VSM 
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Summary of Tools for Intelligent Analysis 

The tools described in this section offer manufacturers powerful methods to analyse, 

monitor, and optimise production processes in real time. These tools enhance the 

visibility and understanding of value stream mapping (VSM) by transforming collected 

data into actionable insights. By leveraging real-time data, these tools help manufacturers 

respond quickly to issues in production, optimise resource utilization, and design future 

state maps more efficiently. 

The effectiveness of these models depends heavily on the data available for analysis. 

Traditional manual data collection methods are insufficient for capturing the complexity 

and rapid changes of modern production processes. Automated data collection from 

sensors, IoT devices, and existing information systems is essential for feeding these 

advanced tools with accurate, real-time data. 

3.2.2.3 Digitization in VSM Visualization 

With the integration of industry 4.0 technologies into value stream mapping, the traditional 

paper-based VSM visualization is no longer sufficient. It is necessary to have digital 

VSMs capable of visualising the situation in the shop floor in real-time. Digital VSMs must 

also incorporate additional elements that represent the additional data and metrics that 

becomes available. Digitizing the VSM also opens the opportunity to enhance the 

visualization by integrating various visual aids, such as graphs, charts, and dashboards, 

which provide deeper insights to the decision makers.117  

Several studies have proposed different ideas to improve value stream visualization.  

Scheder et al. proposed an approach to structure the information gathered digitally into 

three perspectives in a way to provide maximum value to the user.118  Lewin, Voigtländer 

and Fay proposed an extended approach to VSM including additional elements and 

symbols to better represent the large amount of data that becomes available with the 

digitization of VSM. With the introduction of Swimlanes and new symbols, it visualizes 

the data flow and its source, which improves clarity and transparency.119 The capability 

for real-time monitoring and the subsequent reactivity within the shop floor is the primary 

benefit that comes with the implementation of industry 4.0 solutions. Therefore, Arey, Le 

and Gao also included the time taken for detecting deviations from the defined Key 

Performance Characteristics as a metric in the extended VSM. In addition, the extend of 
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digitization in the transfer of information is visualized by the introduction of an information 

flow scoring system.120 

Finally, different tools for representing VSMs digitally have been suggested in the 

literature. A Visio-based software, VASCO was developed by Fraunhofer Austria to 

visualize value stream maps digitally. Although the data required for the visualization is 

to be collected using the conventional VSM approach, the tool enables easy creation of 

VSMs.121 On the other hand, Fernandes et al. developed a dynamic web application to 

visualize VSMs. The application featured a multi-window approach to toggle between 

current state maps, future state maps, and a page for graphical comparison between the 

two. It integrated the features and symbols of traditional VSM and offered a user-friendly 

interface to interact with the results. A bar graph was also included to visualize KPIs for 

each operation, complementing the conventional VSM.122  

3.3 Current application of object detection in assembly processes 

As outlined in the previous section, manufacturing sector has undergone significant 

digitization with new use cases being integrated frequently due to the potential 

improvement in efficiency and flexibility. This trend extends across industries, where 

digital technologies are being adopted rapidly to enhance productivity and efficiency. One 

such technology is object detection, which has already found widespread application in 

various industries such as logistics, automotive, healthcare, as well as in manufacturing. 

This is due to the general push towards more automation as well as due to the rapid 

advancements in the computer vision field. New innovations, such as self-driving cars, 

autonomous robots, and automated video surveillance demand greater accuracy and 

performance, which has significantly accelerated the research in this field.123  

The manufacturing industry has also begun to adopt object detection as a tool to improve 

productivity and reduce human errors. In this section, the current applications of object 

detection within manufacturing, particularly in manual assembly processes is examined. 

This is to understand the extent of incorporation of object detection in assembly 

processes and to examine if the concept of using it for digital data acquisition from the 

shop floor in the context of value stream mapping has already been studied. 

A survey by Ahmad and Rahimi offers a comprehensive overview of object detection 

algorithms and techniques, along with their applications in smart manufacturing. The 
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three main applications highlighted in the study are defect detection, personal protective 

equipment detection and surveillance. The study emphasize that object detection is being 

used in defect detection in a variety of manufacturing sectors including steel, aluminium, 

and fabric manufacturing. Object detection enables the detection of cracks and other 

defects on the products more quickly and cost-effectively than the conventional quality 

inspection methods. Another critical application is in ensuring the safety of the workers. 

Ensuring that workers use the required safety equipment and adhere to safety standards, 

such as avoiding restricted areas and unauthorized tasks, is critical in manufacturing. 

Slight errors or carelessness from workers can result in danger to the health and safety 

of workers and in financial losses.124  

Object detection can be applied for automated surveillance of workers to quickly identify 

the absence of personal protective equipment or deviations from safety standards, 

offering a faster and more convenient solution than manual inspection. The survey also 

highlights many challenges faced and future directions. A particular challenge in using 

object detection in manufacturing is the lack of large datasets in the industrial 

environment and it is important to increase the availability of industrial datasets. Also, the 

object detection algorithms should be improved to achieve more accurate results 

particularly for real-time applications.125 

3.3.1 Object detection in assisting assembly processes 

One use case where object detection is being applied in manufacturing is in assisting 

assembly processes. Researchers highlight mass customization as a major challenge in 

modern manufacturing, resulting in smaller batch sizes and more process variations. This 

complexity severely reduces worker efficiency, resulting in increased errors and lead 

times.126  

To minimize this impact, Raj et al. proposed combining object detection with augmented 

reality to offer a guidance system for workers to assist them in the assembly task. They 

claimed that object detection could be used to identify and locate components in real-

time, eliminating the need for manual placement of markers on each part, which was a 

limitation of earlier AR systems. The system was applied to the assembly of pneumatic 

cylinders, where the AR system, enhanced by object detection, was used to overlay 

holographic instructions directly onto the workspace to guide workers through the 

assembly. YOLO v5 algorithm was chosen for the object detection task due to its 
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relatively higher speed and accuracy.127 On the other hand, Zamora-Hernández et al. 

proposed a system combining object detection with action recognition to monitor and 

guide operators during assembly. The system captures the motion and interaction 

between the operator and the tools and generates action commands to verify if the 

assembly process is being followed correctly. YOLO algorithm was used for the object 

detection task and an action recognition module based on Deep Activity Description 

Vector (D-ADV) was employed for the action recognition task.128  

3.3.2 Object detection for monitoring assembly processes 

Some studies have evaluated the use of object detection for monitoring manual 

operations. Lou et al. suggested using object detection along with a counting algorithm 

to monitor and count repetitive tasks in manual assembly processes. In this two-stage 

approach, the object detection algorithm identifies and classifies manual operations, 

while a sliding window counter algorithm counts the repetitive tasks based on boundary 

points. The method was validated by using YOLOv4 for detection and a counting 

algorithm for counting repetitive tasks. The authors highlighted that object detection 

enables contactless, real-time monitoring, offering a significant advantage in smart 

manufacturing environments.129  

Kitsukawa et al. also proposed the use of object detection for monitoring assembly 

process, but with the combination of deep metric learning for progress estimation. The 

primary goal was to achieve real-time progress estimation of assembly processes without 

the need for attaching sensors to products or adding additional steps to the assembly 

process. They also followed a two-step approach, where object detection is used in the 

first step to locate the product and crop in to focus on the relevant parts of the assembly 

from images captured by fixed cameras. Faster-RCNN was used for the object detection 

task. In the next step, a deep metric learning model is employed to estimate the current 

progress of the assembly by comparing the captured images to the predefined steps of 

the assembly. The method was validated in a desktop PC assembly experiment, 

achieving an accuracy of 91.8%. However, further studies are needed to assess its 

effectiveness in more complex assembly processes.130  

In addition to estimating the progress of assembly, automated monitoring also serves to 

ensure the safety of workers. This is particularly useful in human-robot collaborative 

(HRC) environments. Kozamernik et al. proposed a system that incorporates machine 
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vision, deep learning, and stereo vision to enhance safety and quality monitoring in HRC 

assembly processes. The system aims to achieve safety of workers through a 

combination of real-time posture tracking, hand detection, and intelligent robot motion 

control. A kinetic depth camera tracks the body posture of the workers to monitor their 

position relative to the robot to ensure a safe distance. An object detection algorithm 

detects the hands of the workers in real-time to prevent the robot from operating when 

the hands of the workers are detected on or near the workspace. This is achieved by the 

robot motion control that takes input from the posture tracking and hand detecting 

systems.131  

3.3.3 Object detection for defect detection 

Chen et al. and Kozamernik et al. suggested using deep learning techniques for detecting 

and identifying components as they are assembled, ensuring correct sequence and 

alignment of the parts. In Chen et al.’s study, a 3D Convolutional Neural Network (3D 

CNN) was employed to recognize actions such as twisting screws, hammering, and other 

manual tasks, identifying missing or incorrect actions in real-time. Additionally, a Fully 

Convolutional Network (FCN) that used depth images for parts recognition and 

segmentation was used to identify missing or misaligned components in the assembly 

process. Kozamernik et al. took a more straight forward approach, utilizing the YOLOv3 

object detection algorithm to detect different classes of errors, such as missing 

components or incorrect part placement during assembly, and displaying it on the 

computer monitor, warning the operator about potential errors in assembly processes. 

Both these methods can be used to achieve quality control during the assembly to 

minimize errors. In addition, the deep learning techniques can again be employed in the 

final inspection to check for any errors in the final assembled product.132  

Tao et al. also proposed using object detection for automating the final quality inspection 

processes in manufacturing. The system captures images of the product surfaces using 

high resolution cameras and processes them using deep learning techniques to identify 

and locate potential defects. The use of robotic arms is suggested to position cameras 

and sensors accurately to ensure thorough coverage of the surface area of the product 

being inspected. The method was tested on industrial products to detect surface defects 

on steel plates. YOLOv3 was employed for initial detection of surface defects in industrial 

products, followed by a level set algorithm that refines the location and nature of the 

detected defects. 133 
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3.4 Object detection 

Object detection is an important task in computer vision which enables identification and 

localization of objects from an image or video streams. It is already being used in 

numerous applications, ranging from autonomous driving and surveillance systems to 

medical imaging and industrial automation. The core objective of object detection is to 

determine both the location of the objects of interest using bounding boxes and to predict 

the class of the detected object.134  

3.4.1 Evolution of object detection techniques 

Over the years, object detection has advanced from traditional methods to modern 

approaches that utilize deep learning techniques. In traditional approaches, object 

detection was carried out in three phases – selection of region, extraction of features, 

and classification. These methods resulted in slow and inaccurate detection. In addition, 

the sliding window approach used in these methods for generating bounding boxes were 

computationally expensive. They had limited ability to generalize across varying 

conditions and scales of objects. Their limitations in handling complex scenarios with 

multiple objects led to the need for more sophisticated methods.135  

The introduction of Deep Convolutional Neural Networks (DCNNs) significantly improved 

the capabilities of object detection. Deep learning-based object detection frameworks are 

designed to detect objects through an end-to-end learning process, which means that the 

model learns feature extraction, object localization, and classification simultaneously. 

These methods learn feature representation from data automatically, which results in 

improved detection accuracy as well as computational efficiency. 136  

One of the notable breakthroughs in deep learning-based object detection came with the 

introduction of the Regions with Convolutional Neural Networks (R-CNN) family. These 

two-stage detectors first generate region proposals and then classify them, resulting in 

good accuracy but often at the cost of speed. On the other hand, one-stage detectors, 

like YOLO and SSD, perform detection and classification in a single pass, prioritizing 

speed without sacrificing accuracy. The performance of object detection models has been 

improved significantly in recent years, making them applicable to a variety of domains 
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and real-time applications.137 A detailed comparison of different state-of-the-art 

algorithms are discussed in a later section. 

3.4.2 Two-Stage vs Single-stage detectors 

Modern object detectors can be broadly classified into two-stage and one-stage 

detectors. Two-stage detectors solve object detection as a classification problem where 

the module classifies candidates as either an object or a background. On the contrary, 

once-stage detectors consider object detection as a regression problem and directly 

predict the image pixels as objects along with its bounding box attributes. Both 

approaches have their own advantages and disadvantages, and the choice of method 

depends on the use case. 138 

 

 

Figure 3-6: Timeline of two-stage and one-stage object detection algorithms139 

 

3.4.2.1 Two-Stage Detectors 

In two-stage detectors, the detection process is split into two phases. In the first phase, 

potential object locations in the image are identified using region-based proposals. These 

proposals are refined in the second phase, and objects are classified into different 

classes. Two-stage detectors are known for their high accuracy, particularly in detecting 

small or overlapping objects. However, this approach is computationally intensive due to 

the additional steps required for region-based analysis of the images and are relatively 

slower making it less suitable for real-time applications.140 
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 This concept was first introduced in the Region-based Convolutional Neural Network (R-

CNN) model. R-CNN achieved higher accuracy than traditional methods but was 

computationally expensive and slow. Fast R-CNN and Faster R-CNN, which came as 

successors to this model improved speed of detection. This also resulted in higher 

accuracy, particularly in detecting small objects. However, due to the approach of 

carrying out the detection in two stages, the process was still slow and computationally 

intensive, affecting its application in real-time applications.141  

R-CNN (Region-based Convolutional Neural Networks) 

R-CNN was one of the first models to successfully apply CNNs for object detection. In 

this approach, the image is first passed through a region proposal module, which uses a 

selective search method to identify approximately 2000 candidate regions from an image 

where objects might be present. Each candidate region is then resized and fed into a 

CNN to extract features and to classify objects. A regression model is then used to define 

the bounding box coordinates. While R-CNN significantly improved detection accuracy 

over traditional methods, it was slow and computationally expensive, with each image 

requiring multiple forward passes through CNN.142 

SPP-net (Spatial Pyramid Pooling Networks) 

As an attempt to address the inefficiency of R-CNN, SPP-net introduced a spatial pyramid 

pooling layer to allow the network to accept inputs of varying sizes, thus eliminating the 

need to resize each region proposal to a fixed size. This enabled faster processing by 

computing the CNN features only once for the entire image, and then applying the region 

proposals directly on these features. Although it improved speed compared to R-CNN, 

the model still required separate training for the classifier, bounding box regressor, and 

region proposal network and did not allow for end-to-end training, making it less 

efficient.143 

Fast R-CNN 

Fast R-CNN further streamlined the object detection process by introducing an end-to-

end training approach. It eliminates the need for separate feature extraction for each 

region proposals by applying region proposals directly to a shared convolutional feature 

map, reducing computational overhead. Additionally, it uses a single stage softmax 

classifier and a bounding box regressor. This resulted in a model that is faster and more 
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accurate than its predecessors, but the region proposal step still relied on external 

algorithms like selective search, which limited real-time performance.144 

Faster R-CNN 

Eliminating the reliance on external algorithms for region proposal, Faster R-CNN 

incorporated a Region Proposal Network (RPN) into the architecture, making the region 

proposal process a part of the CNN itself. Faster R-CNN achieved state-of-the-art 

performance by reducing the time needed for region proposal generation, making it nearly 

real-time while maintaining high accuracy. However, its reliance on a two-stage process 

still makes I slower compared to one-stage detectors.145   

R-FCN (Region-based Fully Convolutional Network) 

R-FCN improves the speed of two-stage detectors by sharing almost all computations 

within the network, unlike previous two-stage detectors which relied on resource intensive 

techniques on each proposal. Instead of fully connected layers, it employs position-

sensitive score maps for better localization. R-FCN enhances the R-CNN framework by 

making the entire network convolutional, which significantly speeds up detection while 

maintaining similar accuracy.146 

 

Figure 3-7: Process of object detection using two-stage detectors147 

 

3.4.2.2 One-Stage Detectors 

One-stage detectors simplify the object detection process by eliminating the region 

proposal step. Instead of first proposing regions and then classifying them, these 

detectors predict bounding boxes and object classes directly from the input image in a 

single step. This approach offers much faster detections, making one-stage detectors 

ideal for real-time applications.148 
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YOLO (You Only Look Once) 

YOLO revolutionized object detection by reframing it as a regression problem, predicting 

bounding boxes directly from the input image rather than relying on region proposals like 

two-stage detectors. It performs object detection by dividing the input image into a grid, 

where each grid is responsible for predicting bounding boxes and class probabilities for 

objects whose center falls within the cell.149 A grid cell predicts multiple bounding boxes, 

with each prediction consisting of coordinates for the center of bounding box, the width 

and height of the box, as well as the confidence score. From these overlapping bounding 

boxes, the one with the highest IOU is selected, while the others are removed. This 

approach of performing detection in a single step makes YOLO much faster than the two-

stage detectors and enables it to process images in real-time. The initial version of YOLO 

lagged behind other prominent models in terms of accuracy, particularly for detecting 

small objects and it also had limitations on the number of objects per cell. However, these 

issues were addressed in the later versions through techniques like anchor boxes and 

multi-scale predictions.150  

YOLOv2 and YOLOv3 improved upon their predecessor, with better detection accuracy. 

However, a significant improvement was observed with the release of YOLOv4 which 

incorporated several enhancements from modern deep learning practices, like CSPNet, 

mish activation and mosaic augmentation. YOLOv5 became popular due to its ease of 

use, compatibility with PyTorch, and improved accuracy. It also offered various model 

sizes to balance speed and accuracy providing more flexibility to the users. Newer 

models were released in short intervals with improved performance. At the time of this 

thesis, the latest model was YOLOv8 which combined features of previous YOLO 

versions with newer innovations, offering improved performance. Also, the compatibility 

with PIP and the inclusion of command line interfaces has made it even easier to use.151 

SSD (Single Shot MultiBox Detector) 

Single Shot MultiBox Detector (SSD) was the first single stage detector to match the 

accuracy of prominent two stage detectors like Faster R-CNN, while still achieving real-

time speed. It introduced a multi-scale detection approach by using a series of 

convolutional layers at different depths to detect objects of varying sizes.152 The design 

of SSD combines YOLO’s regression approach with the anchor mechanism from Faster 

R-CNN. By incorporating YOLO’s regression, SSD reduces the computational complexity 

of the neural network, enabling real-time performance. At the same time, the use of 
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anchors allows SSD to capture features at different sizes and aspect ratios, ensuring 

detection accuracy. However, SSD was relatively weaker in detecting small objects.153  

 

Figure 3-8: Process of object detection using one-stage detectors154 

 

3.4.3 Evaluation Metrics 

Different metrics are available to evaluate object detection models based on their 

performance in accurately detecting objects in images. These metrics help assess the 

ability of the model to localize and classify the objects in images and serve to compare 

various object detection algorithms with each other. Various metrics used are defined in 

this section to understand what they represent 

3.4.3.1 Intersection over Union (IoU)  

Intersection over Union (IoU) is the standard metric used to evaluate the localization 

accuracy of an object detection model. It measures the overall between the predicted 

bounding box and the ground truth bounding box.155  

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠
 

 

 

Figure 3-9: Illustration of IoU calculation156 
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The IoU value ranges from 0 to 1, with 1 indicating a perfect match between the predicted 

and actual bounding boxes, whereas 0 indicating no intersection between the two. A 

threshold value of IoU is used to determine whether the detection can be considered 

successful or not. A common threshold is IoU > 0.5, meaning that at least 50% of the 

predicted bounding box must overlap with the actual bounding box. This metric directly 

influences the calculation of other metrics.157 

3.4.3.2 Accuracy, Precision, Recall, and F1 Score 

Accuracy, Precision, Recall, and F1 score are some basic metrics for evaluating the 

detection performance. The results obtained from calculating Intersection over Union 

(IoU) is used to calculate these metrics. For this, every predicted bounding box must be 

classified as True Positive, True Negative, False Positive, or False Negative. True 

Positives (TP) are correctly predicted detections that match the ground truth objects. True 

Negatives (TN) occur when the model correctly identifies the absence of objects in areas 

where no objects are present. False Positives (FP) are incorrectly predicted detections, 

where the model detects objects that either do not exist or do not correspond to the actual 

ground truth. False negatives (FN) occur when the model fails to detect objects that 

actually exists in the image or video.158 

                                  

                              Figure 3-10: Confusion matrix illustrating classification outcomes159 
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Accuracy 

Accuracy measures the overall proportion of correct predictions made by the model, 

considering both True Positives and True Negatives.160 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Precision (P) 

Precision measures the fraction of correctly predicted positive samples out of all samples 

predicted as positive.161 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (R)  

Recall measures the fraction of correctly predicted positive samples out of all actual 

positive samples.162 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score 

Precision and Recall alone provide only a partial view of a model’s performance. High 

precision means that when the model makes a prediction, it is likely correct, resulting in 

fewer false positives. High recall means that the model successfully detects most of the 

objects that are present, resulting in fewer false negatives. However, improving one of 

these metrics often leads to a decline in the other. The F1 score is often used as a single 

metric to summarize both precision and recall. It is the harmonic mean of precision and 

recall, giving a balanced measure of the model’s performance. 163 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

3.4.3.3 Average Precision (AP) 

Average Precision (AP) is one of the most widely used metrics in object detection for 

evaluating the precision-recall tradeoff at different IoU thresholds. It is derived from the 

precision-recall curve which plots precision against recall at various thresholds. To 
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compute the precision-recall curve, the model’s detections are ranked by confidence 

score, and precision and recall are calculated for different confidence levels. The 

precision-recall curve provides insight into how the model’s precision varies with recall. 

As recall increases, precision typically decreases because of chances for more false 

positives.164 

AP is calculated as the area under the precision-recall curve. In some cases, the AP is 

computed at a single IoU threshold, such as 0.5, and is referred to as AP@0.5. In other 

cases, it may be averaged over multiple IoU thresholds, such as [0.5-0.95], to provide a 

more comprehensive evaluation of the model’s performance across different levels of 

localization accuracy. 

𝐴𝑃 =  ∫ 𝑃 (𝑟) 𝑑𝑟
1

0

 

where P (r) denotes the precision value when the recall is r.165 

3.4.3.4 Mean Average Precision (AP) 

Mean Average Performance (mAP) is a metric used in object detection to evaluate the 

overall performance of a model across all object classes. It is the mean of average 

precision values computed for each class individually, providing a single value that 

summarizes the overall detection accuracy of the model. 

       

𝑚𝐴𝑃 =
∑ 𝐴𝑃 (𝑐)𝑐

𝑐=1

𝐶
 

Where c denotes the total number of classes detected and AP (c) denotes the AP value 

of the model on the c th class.166 

3.4.3.5 Inference time 

Inference time refers to the amount of time required for the object detection model to 

process an image or a single frame from a video to make predictions. It is usually 

expressed in milliseconds. It is an important metric for applications that require real-time 

processing as it directly affects the model’s responsiveness and speed. The lower the 

inference time, the faster is the model.167 
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3.4.3.6 Frames Per Second (FPS) 

The performance of object detection models in terms of speed is commonly evaluated 

using the Frames Per Second (FPS) metric. It measures how many frames an object 

detection model can process in one second, providing a clear indication of the model’s 

inference speed. High FPS values indicate faster processing, which is essential for 

applications requiring real-time detections.168 

3.4.4 Current challenges in object detection 

Even though object detection advanced significantly in recent years, several challenges 

continue to impact the effectiveness of current algorithms in real-world applications. 

These challenges, along with the possible strategies proposed by researchers to 

minimize them are discussed below. 

• Data Annotation 

Currently, object detection algorithms primarily rely on supervised learning, which 

requires human-annotated data for training. This is a very time consuming and tedious 

task. In reality, large amounts of unannotated data are available, and it is very inefficient 

to annotate these manually. Even though data annotation programs currently offer tools 

for semi-automated annotation, it is still very labor intensive. Weakly supervised 

algorithms aim to address this issue by training object detectors using only image-level 

annotations, eliminating the need for precise border annotations. Although these 

algorithms currently face challenges with accuracy and positioning precision, their 

advancement could significantly reduce the effort required for object detection.169 

• Small Object Detection 

Detecting small objects remains one of the most difficult tasks in object detection. Object 

detection algorithms often struggle with small objects due to the lack of adequate feature 

representation in deep convolutional networks, as small objects occupy only a few pixels 

in the overall image. Low-resolution images further worsen the performance as they can 

only carry finite contextual details. To address this issue, solutions such as data 

augmentation or increasing the model’s input resolution have been suggested. For 

applications where detecting small objects is critical, capturing data from a closer 

distance, if feasible, can help ensure the object occupies a sufficient portion of the image 

frame.170 
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• Occlusions 

Occlusion refers to situations in object detection where an object is partially or fully 

blocked, due to different reasons. It is one of the most challenging problems in computer 

vision because the object detector is expected to recognize the object even when it is not 

fully visible. This can lead to errors in detecting, classifying and localizing objects, making 

it a significant issue for many applications. Training object detection models using data 

that includes occlusion scenarios can help the model learn to recognize partially occluded 

objects.171 

• Intraclass Variation 

Intraclass variation refers to differences in different instances of the objects within the 

same object class. These variations, influenced by both inherent factors such as 

difference in size, shape, color, and material and environmental factors such as lighting, 

perspective, and camera quality, pose significant challenges for object detection 

algorithms. Ensuring that the training data includes a wide range of these factors can help 

mitigate this issue by providing the model with more varied examples during training.172 

• Efficiency  

Computational complexity handled by object detection models increases with the number 

of object classes to be detected. This rise in complexity requires high computational 

resources to process numerous locations within a single image. Therefore, high 

performance GPUs often become necessary both during training and inference to ensure 

sufficient performance, particularly for complex models.173 

• Generalization Issues 

Generalization problems are another challenge in object detection, which is caused by 

either underfitting or overfitting of the model. Underfitting happens when the model fails 

to learn the patterns in the data and performs poorly on both the training data and new, 

unseen data. This typically occurs during the early stages of training and can be 

addressed by increasing the number of epochs or the complexity of the model. Overfitting 

occurs when a machine learning model learns the training data too well, resulting in 

exceptional performance on training data, but poor performance on new, unseen data. 

This can be mitigated through techniques such as data augmentation, early stopping, or 

using regularization methods. 174 
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• Video Object Detection 

In real-world applications, object detection is often performed on video sources. In this 

case, object detection algorithms analyze each frame of the video to detect and localize 

objects. However, frames from video sources may often lack the quality of the images 

captured from a camera due to lack of focus or presence of blurred parts due to 

movement of objects. The difference in quality in the images used for training and the 

frames on which object detection is performed can cause performance issues. Including 

frames from video sources in the training dataset can help reduce this problem.175 

• Inference Speed 

Real-time object detection demands not only high accuracy but also fast processing 

speeds. Speed is a critical factor, especially for applications requiring real-time detection 

from video feeds. While several modern object detectors are able to achieve real-time 

performance, they still fall short of achieving speeds comparable to human perception. 

Therefore, it is necessary to improve the speed further.176 

• Class Imbalance 

Irregular data distribution in the dataset is referred to as class imbalance. This can either 

be a foreground-background imbalance or foreground-foreground imbalance. 

Foreground-background imbalance refers to situations where there is a large disparity 

between the number of pixels or regions representing objects and backgrounds in the 

image, making it harder for models to differentiate between actual objects and the 

background. 177 

Foreground-foreground imbalance, on the other hand, arises when the number of 

instances across different object classes are uneven. This occurs when certain object 

classes dominate the dataset, while others are significantly underrepresented. This can 

cause the model to become biased toward the majority class, often resulting in poor 

detection of the minority class. Both of these issues can affect the overall accuracy of the 

model and can be mitigated through techniques like data augmentation, under sampling, 

or oversampling.178 
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3.4.5 Comparison of Object detection algorithms 

In this section, major object detection algorithms are compared to each other. First, their 

strengths and weaknesses are outlined based on findings from review papers. Next, their 

performance is assessed on benchmark datasets, focusing on accuracy and speed. 

Finally, the algorithms are evaluated through comparison results from studies using 

custom datasets, providing insights into their effectiveness in specific, real-world 

applications.    

3.4.5.1 Strengths and weaknesses of major algorithms 

Various object detection algorithms have been developed over the last decade, each 

aiming to improve upon the performance of its predecessors. While accuracy remains a 

crucial metric in object detection, the speed of detection is often just as important, 

especially in applications where real-time processing is required. In order to achieve 

optimal performance, researchers aim to find the right balance between accuracy, speed, 

and resource efficiency. The following tables summarize the strengths and weaknesses 

of different popular two-stage algorithms. 

Table 3-4: Strengths and weaknesses of major two-stage object detection algorithms 

Algorithm Strengths Weaknesses Sources 

R-CNN First Neural Network based on 

region proposal     

Significant performance 

improvement over the 

traditional methods                

Complexity training 

High time and space 

expenditures 

Kaur and Singh 

(2023)   

Chen et al. (2024) 

SPP-Net Extracts the features of entire 

image at once 

Faster than RCNN  

High computational costs 

No end-to-end training 

Kaur and Singh 

(2023) 

Chen et al. (2024) 

Fast R-

CNN 

Faster and accurate than 

previous models 

Reduce training time and 

feature storage space 

Not fast enough for real-

time application 

No end-to-end training 

Kaur and Singh 

(2023) 

Chen et al. (2024) 

Faster R-

CNN 

Reduce training time and 

improved detection efficiency 

Provides end-to-end training 

Inefficient for real-time 

applications 

Kaur and Singh 

(2023) 

Chen et al. (2024) 
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Poor detection of small 

and multi-scale objects 

R-FCN Faster than other two-stage 

detectors 

Accurate positioning 

Poor detection of multi-

scale objects 

Zaidi et al. (2022) 

Chen et al. (2024) 

 

Table 3-5: Strengths and weaknesses of major one-stage object detection algorithms 

Algorithm Advantages Disadvantages Sources 

YOLO Simple network structure 

Removes the concept of region 

proposal 

Fast detection speed 

Low detection accuracy for 

dense and small objects 

Limited number of objects 

per cell 

Kaur and Singh 

(2023) 

Chen et al. (2024) 

SSD Accuracy on par with Faster R-

CNN  

Faster than YOLO 

Poor detection of small 

objects 

Slow model convergence 

Kaur and Singh 

(2023) 

Chen et al. (2024) 

YOLOv2 Faster than YOLO  

High classification accuracy 

Complex training 

Poor detection of small 

objects 

Kaur and Singh 

(2023) 

Chen et al. (2024) 

YOLOv3 Better multi-scale detection 

accuracy 

Improved small object 

detection accuracy 

Large dataset 

recommended for training 

High false negative rate 

(missed detections) 

Kaur and Singh 

(2023) 

Chen et al. (2024) 

YOLOv4 Single GPU training 

Enhanced accuracy  

Automatic hyper-parameter 

optimization 

High model complexity Zaidi et al. (2022) 

Kaur and Singh 

(2023) 

YOLOv5 Real-time detection 

Better accuracy 

Performance can be 

improved 

Kaur and Singh 

(2023) 

Chen et al. (2024) 
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YOLOv6 Trade-off between speed and 

accuracy for different industrial 

scenario applications 

Needs further 

improvement to adapt to 

more demanding 

scenarios 

Chen et al. (2024) 

YOLOv7 Improved accuracy 

Real-time detection  

Higher calculation volume 

Increased training costs 

Chen et al. (2024) 

Terven, Córdova-

Esparza and 

Romero-González 

(2023) 

YOLOv8 

 

Improved small-object 

detection 

Ease of use (pip install, 

command line interface) 

Real-time detection 

Higher training time for 

larger models 

Chen et al. (2024) 

Terven, Córdova-

Esparza and 

Romero-González 

(2023) 

 

3.4.5.2 Performance comparison of major algorithms on benchmark datasets 

A comparison of the performance of major two-stage and one-stage object detection 

algorithms is presented in this section. The evaluation focuses on the accuracy and 

speed of the algorithms. The performance on pre-trained models of each algorithm is 

evaluated on the PASCAL VOC and MS COCO datasets, two widely used benchmarks. 

These datasets serve as benchmarks due to their comprehensive nature and the diversity 

of objects they contain. However, some algorithms were primarily developed and 

benchmarked on specific datasets, and therefore, their benchmarks are not available 

across both datasets. For example, older algorithms tend to lack benchmarks on the MS 

COCO dataset, which was released later and presents a higher level of complexity due 

to a larger number of object classes and complex environments. Similarly, recent 

algorithms were primarily benchmarked on COCO and lack results on PASCAL VOC, as 

it is no longer considered a leading benchmark for modern models.179  

Table 3-6 provides a comparison of different algorithms based on available benchmark 

results, providing insights into their performance in terms of detection accuracy and 

inference speed. The metric used for measuring accuracy is mean Average Precision 

(mAP) at an IoU threshold of 0.5 for PASCAL VOC and mAP averaged across IoU 

 

179 Chen, W. et al. (2024). 
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thresholds from 0.5 to 0.95 for COCO. Speed is measured in terms of frames per second 

(fps). 

Table 3-6: Performance comparison of algorithms on benchmark datasets180 

Algorithm PASCAL - mAP (0.5) COCO - mAP (0.5-0.95) FPS 

R-CNN 58.5 - 0.03 

SPP-Net 59.2 - 2 

Fast R-CNN 70.0 19.7 3 

Faster R-CNN 73.2 21.9 5 

R-FCN 83.6 27.6 5.9 

YOLO 63.4 - 45 

SSD 79.8 28.8 19.3 

YOLOv2 76.8 21.6 67 

YOLOv3 - 33.0 19.6 

YOLOv4 - 43.5 23 

YOLOv5 - 50.7 82.6 

YOLOv6 - 52.5 98 

YOLOv7 - 51.2 161 

YOLOv8 - 53.9 283 

 

From the above table, it is clear that there is a clear progression in terms of performance 

for the newer models in both accuracy and speed. Among the two-stage detectors, Faster 

R-CNN and R-FCN showcased much better performance compared to earlier models, 

both in terms of speed and accuracy. However, they are not ideal for real-time 

applications. 

 

180 Kaur, R., & Singh, S; Chen, W. et al. (2023); (2024). 



Related Theory 

 

 
63 

Among the one-stage detectors, the YOLO models show a clear progression in both 

accuracy and speed. From the initial version, YOLO has tried to achieve a balance 

between speed and accuracy. The latest versions, YOLOv5 to YOLOv8, show significant 

improvements over earlier models, with YOLOv8 achieving the highest accuracy of 

53.9% on the COCO dataset. Additionally, with a maximum of 283 fps, YOLOv8 achieved 

significantly higher inference speed than all the previous models, making it a great choice 

for applications requiring real-time detections. 

3.4.5.3 Experimental comparisons of major algorithms on custom datasets 

The evaluation of the object detection algorithms on benchmark datasets like PASCAL 

VOC and MS COCO provide a good overview of the potential of the algorithms in 

detecting a variety of objects in different backgrounds and conditions. However, since the 

pre-trained models of these algorithms are trained to detect a limited category of objects, 

it maybe often required to train custom object detection models to achieve specific use 

cases. In order to evaluate the potential of algorithms in learning to detect domain-specific 

objects, it will be helpful to evaluate the performance of the algorithms on custom 

datasets. During the literature review, 7 studies were identified, that have experimentally 

compared the latest object detection algorithms on custom datasets. The key findings 

from the studies are provided in the Table 3-7 below. 

Table 3-7: Comparison of major algorithms on custom dataset 

Test 

objective and 

Environment 

Algorithms 

compared 

Results Key 

takeaways 

Study 

semiconductor 

defect 

detection181 

Faster R-CNN, 

DINO, RetinaNet, 

YOLOv7 

DINO had the highest 

accuracy, whereas 

YOLOv7 came close 

second. However, 

inference time of DINO 

(108.7ms per image) is 

very high compared to 

that of YOLOv7 (20.2ms 

per image) 

With the 2nd 

best mAP and 

lowest 

inference time, 

YOLOv7 offers 

a balanced 

solution 

Dehaerne, 

E. et al. 

(2022). 

 

181 Dehaerne, E. et al. (2022). 
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Hand gesture 

recognition182 

YOLOv5,YOLOv6, 

YOLOv8 

All the tested algorithms 

showcased very high 

accuracy with YOLov8 

being the most accurate 

Custom 

YOLOv8 model 

returned the 

most accurate 

results 

Herbaz, 

N. et al. 

(2023). 

Threat 

detection 

(firearms, 

knives, fire)183 

Faster R-CNN, 

SSD, YOLOv4, 

YOLOv5, 

YOLOv7,YOLOv8 

All models showcased 

good performance. 

YOLO v8 achieved the 

highest accuracy and 

speed, followed by 

YOLOv7. 

YOLOv8 is the 

most accurate 

and fastest 

among the 

compared 

models. 

Hasan, M. 

et al. 

(2023) 

People 

detection 

using fish-eye 

cameras184 

YOLOv8, Mask R-

CNN  

Model pre-trained on 

COCO dataset did not 

provide sufficient 

accuracy for the use-

case. The custom-

trained models gave 

good accuracy 

YOLOv8 is 

more accurate 

and more 

resource 

efficient than 

Mask R-CNN 

Telicko, J 

& 

Jakovics, 

A. (2023) 

object 

detection from 

remote 

sensing 

satellite 

images185 

Faster R-CNN, 

YOLOv6, 

YOLOv7, YOLOv8 

YOLOv8 exhibited 

superior performance in 

Precision, Recall, and 

mAP, while also 

achieving the shortest 

inference time. 

YOLOv8 

outperformed 

other models 

trained with the 

same dataset 

Adegun, 

A. et al. 

(2023). 

Pothole 

detection 

under diverse 

weather 

condition186 

Mask R-CNN, 

CASCADE R-

CNN, SPARSE R-

CNN, YOLOv5, 

YOLOv6, YOLOv7  

YOLOv7 offered best 

performance, the 

smallest size and the 

fastest inference time. 

At night, Cascade R-

CNN showcased better 

mAP.   

YOLOv7 

performed 

better in all 

conditions 

except at night  

Jakubec, 

M. et al. 

(2023). 

 

182 Herbaz, N. et al. (2023). 
183 Hasan, M. et al. (2023). 
184 Telicko, J & Jakovics, A. (2023). 
185 Adegun, A. et al. (2023). 
186 Jakubec, M. et al. (2023). 
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Automatic 

reading in 

smart 

metering 

system187 

YOLOv5, 

YOLOv6, 

YOLOv7, YOLOv8 

YOLOv8 outperformed 

the other models in 

accuracy. 

YOLOv5 – shortest 

training time, YOLOv7 – 

longest training time 

YOLOv8 

delivered 

highest 

accuracy with a 

reasonable 

training time 

Hattak, A. 

et al. 

(2023). 

 

3.5 Key Takeaways from Literature Review 

The first section of the literature review reveals a variety of tools for digitizing value stream 

mapping. Although majority of the articles focused on the use of advanced technologies 

for analysis, there are a lot of approaches proposed for digital data acquisition.  

While many of these are machine centric, two sensors, RFID and RTLS, has been mainly 

proposed for data acquisition in human-centric assembly processes. They enable 

tracking material flow in real time, but they come with limitations, particularly the need for 

manual tagging and interference with the workflow. This makes it difficult to use these 

sensors for continuous tracking over long durations. 

Second section of the literature review reveal that there are already many applications of 

object detection in manufacturing. Object detection can also be used to collect time and 

location data from the shop floor, without interfering with the workflow. It has the potential 

to collect a variety of data and therefore its application in VSM is promising. However, 

studies linking object detection with value stream mapping was not found in the literature. 

This research aims to fill this gap by exploring the potential of object detection for non-

intrusive digital data collection for value stream mapping. 

Selection of Algorithm  

In the benchmark evaluations, two-stage detectors like Faster R-CNN and R-FCN 

demonstrated significant improvements over their predecessors in terms of accuracy and 

speed but continued to struggle with offering real-time detection capabilities. On the other 

hand, the one-stage YOLO family consistently evolved to balance speed and accuracy, 

with YOLOv8 achieving the highest mAP on the COCO dataset and showcasing 

exceptional inference speed, making it ideal for real-time applications.  

The evaluation of algorithms on custom datasets provides results similar to those on 

benchmark datasets. The newer versions of the YOLO detector outperform other 

 

187 Hattak, A. et al. (2023) 
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detectors in both accuracy and speed. In certain applications, such as low light 

conditions, algorithms like Faster R-CNN and Cascade R-CNN offer competitive 

performance, but they often fall short in terms of speed and resource efficiency when 

compared to the YOLO family of models.  

The state-of-the-art one-stage detection models, YOLOv5, YOLOv6, YOLOv7, and 

YOLOv8 exhibit accuracy levels that are fairly close, though YOLOv7 and YOLOv8 show 

slightly better results. In terms of inference speed, YOLOv8 offers a substantial 

improvement over the others. YOLOv5 has the shortest training time, making it a good 

option for resource-constrained environments, while YOLOv7 requires the longest 

training time among the three. YOLOv8, with a training time that falls between the two, 

strikes a good balance.188 Additionally, YOLOv8 offers flexible installation and usage 

options, such as pip installation and a command-line interface, thereby making it easier 

to use. 

In conclusion, results indicate that most of the state-of-the-art algorithms are capable of 

delivering good accuracy and real-time performance. However, YOLOv8 proves to be the 

best choice, offering a balance between accuracy, inference speed, resource efficiency 

and ease of use. Particularly in an industrial environment, where lighting conditions and 

backgrounds doesn’t undergo significant changes, YOLOv8 should offer excellent 

performance. Therefore, YOLov8 is chosen for the object detection task in the practical 

part of this thesis.    

 

 

 

 

 

 

 

 

 

 

 

 

188 A. Hattak et al. (2023). 
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4 Practical Implementation 

This chapter outlines the proposed solution for digital data acquisition from shop floors, 

utilising object detection in the context of digitization of value stream mapping (VSM). The 

conventional VSM approach uses a representative unit, visualizing the value stream 

based on production data from a single unit within a product class. This may not reflect 

the full dynamics of the process, especially in complex production systems. In contrast, 

the proposed method captures production data over a defined period of time, and thereby 

visualize the actual situation in the shop floor. The approach uses object detection to 

collect the location and corresponding timestamp of detection of products, and operators 

in the shop floor during the assembly process.  

Unlike other sensor-based approaches discussed in the literature that require attaching 

sensors or labels to products and operators to gather location data, object detection 

enables data collection without physical attachments or additional workload for operators. 

Therefore, this method enables non-intrusive data collection from the assembly area 

without affecting the productivity of the operators.  

4.1 Conceptualization 

The proposed approach aims to enable digital data collection from the shop floor through 

the use of object detection. The core idea is to use object detection algorithms to track 

products as they move across various stages of the assembly process. Object detection 

models can identify different objects and return their class names, along with their 

positions in the form of bounding boxes. By systematically saving this data, the 

information required to determine Key Performance Indicators (KPIs) relevant for value 

stream mapping is obtained. The methodology involves collecting video data of the  

assembly process, detecting objects of interest, tracking their movement, and processing 

the results to extract meaningful insights.  

This is achieved by recording the assembly process using a camera and feeding the 

video input into an object detection model. State-of-the-art object detection algorithms 

are capable of real-time detection, allowing the model to infer live video from the camera. 

Alternatively, the assembly process can be recorded and fed to the object detection 

model after the completion of the assembly process. To achieve optimal results, the 

camera must be positioned to provide  a comprehensive view of the assembly process, 

ensuring maximum coverage of workers and products thereby minimizing any possible 

occlusions.  



Practical Implementation 

 

 
68 

The output of object detection algorithms indicates the presence of objects in the frame 

by displaying the predicted object’s class and marking its location with a bounding box. 

However, this data directly does not provide information about the progress of the product 

through the assembly process. To address this, the concept of region of interest (ROI) is 

introduced. ROIs represent distinct zones on the shop floor, such as workstations and 

waiting areas. By defining these zones, the presence of products in these areas are easily 

identified, and this information is used for further processing. Each time a product is 

detected inside an ROI, the detection information such as the product class, track ID and 

the corresponding timestamp are saved to a csv file. This data is then processed to 

determine the KPIs relevant to VSM.  

 

Figure 4-1: Conceptualization 

 

A significant challenge in using this approach is ensuring that products are continuously 

detected within and across workstations. During the assembly process, products undergo 

continuous modifications, causing changes in their shape and appearance as they 

progress along the assembly line. To ensure continuous detection, a base component is 

identified for each product type. This base part remains unchanged across different 

stages of the assembly, allowing for consistent detection. If the assembly process 

includes certain workplaces that does not share any common parts with others, a different 

base part is to be identified for that workplace and is classified as a sub-class of the 

product class. The object detection model is trained to detect these base component(s), 

ensuring that the model recognizes and tracks the product even as its overall shape 

changes during the assembly process.  
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Figure 4-2: Approach for tracking products 

 

Another important requirement is the ability to differentiate between individual units of the 

same product class. When multiple units of the same product type are being assembled 

simultaneously across different workplaces, it is essential to distinguish between them. 

This is achieved through the track functionality offered by object detection algorithms. 

When a unit of a product is first detected, it is automatically assigned a unique track ID 

by the tracker, which serves as an identifier for that unit. The tracker ensures that the 

same unit is consistently recognized and assigned the same ID across multiple frames. 

This is achieved by comparing each detection to the previous detections, and assigning 

new or existing IDs based on a matching threshold.  

4.2 Technical procedure 

Therefore, the proposed method consists of the following key steps – training an object 

detection model to detect the required objects, developing a python script to run inference 

on the assembly video and to save the detection results, and KPI determination and VSM 

creation using excel based on the collected data. The process is visualised in Figure 4-3 

 

 

Figure 4-3: Technical Procedure 

 

The following section provides a detailed explanation of each step in the proposed 

approach. 

4.2.1 Model Development 

Object detection algorithms are pre-trained on large, publicly available datasets and can 

detect many of the common objects such as humans, cats, dogs, cars and others. These 

models can be used out-of-the-box to detect objects that belong to classes that are 

included in these public datasets. However, despite the rapid growth of high-quality public 

datasets, the number of classes detectable by pre-trained models are still limited. Object 
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detection is currently used in a variety of applications, and it is very often necessary to 

detect objects that are not included in these classes. Therefore, object detection 

algorithms offer users the ability to train custom object detection models.  

The results from the literature review underscore the necessity of training custom models 

for real-world applications. Even for object classes that are included in pre-trained 

models, performance may not meet expectations due to differences in camera types, 

angles, and object-to-camera distances, all of which can affect detection accuracy. 

Therefore, to achieve reliable performance, it is often beneficial to train models using 

samples captured with similar cameras and angles as those in the intended application.  

For this project, object detection models were developed to detect the workers and the 

two products assembled in the learning factory of TU Graz. Yolov8 was chosen as the 

object detection algorithm for the study based on the result of the literature review 

described in section (describe section). Yolov8 offers different model sizes namely 

Yolov8n (nano), Yolov8s (small), Yolov8m (medium), Yolov8l (large), and Yolov8x (extra-

large) offering various trade-offs between speed, accuracy and computational 

requirements. For this work, the dataset was trained on Yolov8n, Yolov8s, and Yolov8m 

to compare performance and select the best model. The two largest models were 

excluded due to computational limitations. 

The following section explains the stages involved in developing a custom object 

detection model. 

4.2.1.1 Data collection process 

The first step in training an object detection model is to prepare a high-quality dataset. 

This dataset can be composed of images captured specifically for the project, images 

available in public datasets, or open-source images available online. The images for the 

dataset are to be carefully chosen as the quality and diversity of the dataset directly 

influence the model’s ability to learn and generalize across various real-world scenarios. 

The best practice is to gather a representative set of images that include the objects of 

interest in different environments, backgrounds, angles, lighting conditions, and sizes. 

However, the extent of variety also depends on the use case of the model. For very 

complex tasks, a large and diverse dataset is essential, covering a broad range of 

conditions such as indoor and outdoor settings, varying lighting and weather conditions, 

and different environmental complexities.189  

 

189 Kaur, J., & Singh, W. (2022). 
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On the contrary, in more controlled environments, such as industrial use cases, the need 

for variety may be limited to the specific situations in which the model will be applied. For 

example, in an industrial setting where objects are consistently viewed from fixed angles 

under controlled lighting conditions, the dataset can be more focused, reducing the need 

for diverse images. This approach ensures that the model is optimised for the particular 

conditions of the intended application. 

4.2.1.2 Dataset Description 

The dataset used in this work is a custom dataset collected specifically for this project. 

The images were extracted from multiple videos recorded in the learning factory at TU 

Graz. The video data was collected using a GoPro Hero7 camera, recorded at 30 frames 

per second. The first set of data was collected using the GoPro mounted on the ceiling 

of the learning factory, providing a comprehensive view of the entire assembly area. This 

placement ensures clear visibility of both products and workers, with minimal chances of 

occlusions. A video of the assembly of scooters and hand trucks, the two products 

assembled in the learning factory, were recorded in a similar setup that is used for testing. 

Frames captured from this video were included in the dataset used for training the models 

for detecting both workers and products. A total of 1067 images for training, and 238 

images for validation were included in the dataset used for training the worker detection 

model.  

In manual assembly processes, even with standardized procedures in place, the way 

workers handle products can vary slightly from one assembly to another. This variations 

in product handling result in the products appearing in different orientations within the 

camera’s field of view, necessitating the model’s ability to detect products under these 

varying conditions.  

To improve the model’s generalization capability, additional images were generated by 

combining various angles of the products with a frame captured from the ceiling-mounted 

camera. For this purpose, additional videos were captured in which scooters and hand 

trucks were handled at various angles within the workplace. Close-up images of scooters 

and hand trucks captured from these videos were then layered onto an image of the 

entire assembly area. This method simulated the actual appearance of the products in 

the workplaces, as seen from the overhead camera. This approach allowed the model to 

learn how the products would look on the camera while accounting for potential variations 

in product orientations as handled by workers. 
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Figure 4-4: Creation of combined images to address scale differences in the training dataset. 

a) Close-up view of a hand truck, b) Close-up view of a scooter, c) Overhead view of the assembly area, 

d) Combined image mimicking the actual appearance of the products from the overhead camera 

To enhance training variability, 1670 images generated using this method and 3321 

images captured from the assembly video mentioned earlier were included in the dataset 

used for training the product detection model. The total dataset was divided into training, 

validation, and testing sets with a ratio of 70:20:10, respectively. 

4.2.1.3 Annotation of images 

For training an object detection model, the image dataset must be accompanied by 

annotation files that provide information about the location of objects in each of the 

images. Yolov8 uses the Yolo annotation format, where each image has a corresponding 

text file containing details about the objects within it. Each line in these text files represent 

each instance of the objects in the image. This information includes the class ID, which 

denotes the object class of the instance and the bounding box coordinates for that 

instance. The bounding box coordinates are specified by the centre point (x,y) of the 

bounding box, and its dimensions (width, height), all relative to the image size. An 

example of the .txt file is shown in Listing 4-1 below. 

 

 

 

 

 

 

 

 

1  0.897556  0.559486  0.129333  0.069898 

0  0.714065  0.603662  0.030000  0.098676 

0  0.285361  0.418005  0.032556  0.116639 

Listing 4-1: Example of the contents of a YOLO annotation file 
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Rules for Annotation 

The dataset annotation process involves drawing bounding boxes around the objects of 

interest in each image and assigning the correct class label. Annotation accuracy directly 

impacts the performance of the model. Proper care must be taken to ensure that the 

bounding boxes accurately enclose the objects, and the annotation patterns are 

consistent throughout the dataset. For the annotation of products and workers in this 

work, a set of annotation rules was defined to ensure that the annotations remained 

consistent throughout the dataset. The rules followed are outlined in Table 4-1 below. 

 

Table 4-1: Defined rules for annotation 

Rules for Annotation 

Objects must be fully enclosed by the bounding box. 

Bounding boxes must be as tight as possible, leaving no unnecessary empty spaces. 

Ensure that the label IDs are consistent throughout the dataset. 

If objects overlap, each object should have its own bounding box. Do not group multiple 

objects into a single bounding box. 

Partially occluded objects (up to 50%) must be annotated, while anything more than 

that should be left unannotated. 

If objects are blurred, they must be annotated only if they are still recognizable 

If parts of an object are overlapped by other objects (e.g. A worker’s hands overlapping 

a product), the entire object, including the overlapping part, should be annotated. 
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Tools for Annotation 

Several tools are available to annotate images and to create the annotation files. Multiple 

tools were used and compared during the study and the result of comparison is described 

in the Table 4-2 below. 

Table 4-2: Comparison of common annotation tools 

Annotation tools Advantages Disadvantages 

CVAT Dashboard for project and 

task management, open 

source, feature rich, semi-

automated annotation, 

image & video annotation 

May not be as intuitive to 

use in the beginning 

compared to others 

Roboflow Easy to use, labelling 

assistance, version 

control, built-in 

augmentation features 

In the free version, all 

datasets are made 

publicly available to all 

users 

Makesense.ai Easy to use, no sign in 

required, very convenient 

for quick and short tasks 

No dataset organization 

capabilities, no assistance 

for labelling, no video 

annotation 

 

Considering the ease of managing different datasets for the project, video annotation 

capability, and other advanced functionalities for assisting in annotation process, the 

open-source annotation tool, CVAT was used for the annotation task. 

Process Description of Annotation 

The open-source annotation tool, CVAT was used for annotating images for this work. 

The general process for annotation is very similar across annotation tools expect for slight 

variations in the way the tool is designed. The following steps outline the detailed process 

followed to create good quality annotations for training the object detection models. 

Dataset Upload: The selected images and videos were uploaded to CVAT for 

annotation. The tool provides efficient project management features which allows to store 

the dataset in a structured format. The tool automatically separates each frame in a video 

into subsequent images to facilitate annotation. 
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Bounding Box Placement: Each object of interest, including both products and workers, 

was annotated by placing bounding boxes around each of them in every selected image. 

It was ensured that the bounding boxes tightly enclosed the objects, ensuring minimum 

background was included in the bounding box while ensuring the comprehensive 

coverage of the object. 

Class Label Assignment: For each bounding box, the relevant class label was assigned 

(Scooter, Hand Truck, or Worker).  

Review: To maintain annotation quality, the annotated frames were reviewed periodically 

to confirm that the bounding boxes were placed based on the predefined rules. 

Export: After completing annotations and reviewing the accuracy of the bounding boxes, 

the annotations were exported. CVAT offers multiple formats for exporting the labels. 

Since YOLOv8 was chosen as the object detection algorithm for the experiment, labels 

were exported in YOLO format.  

CVAT webapp interface and examples of annotations using the tool is shown in Figure 

4-5 and Figure 4-6. 

 

 

Figure 4-5: Example annotation of products using CVAT 
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Figure 4-6: Example annotation of workers using CVAT 

 

The choice of the annotation tool does not directly influence the accuracy of the models, 

as all these models offer the annotation results in Yolo format which is used for training. 

However, the choice of annotation tool can greatly influence the time taken for the 

annotation task, which is one of the main labour-intensive parts of training an object 

detection model. 

CVAT offers different tools for semi-automatic annotation in video data. Two of these 

tools proved to be handy and helped in making the annotation process easier. The first 

is a basic track functionality which allows users to create tracks by manually annotating 

an object in one frame, with the rectangle being automatically interpolated on the next 

frames. This functionality is useful only if the object stays at almost same position in the 

subsequent frames. When the object changes its position or orientation, the rectangle is 

to be modified manually to ensure the box accurately covers the object. CVAT offers a 

concept called keyframes, to reduce the effort required in these manual corrections. They 

claim that it is only necessary to manually annotate frames in specific intervals 

(keyframes), and the tool will automatically interpolate the frames in between.190  

This gives best results, if the movement of the object is in a single direction, and therefore, 

predictable. For annotating assembly data in a shop floor, this didn’t prove to be very 

helpful. However, this feature was still useful as the object moves only slightly between 

consecutive frames in a video and adjusting the existing bounding boxes were much 

easier that drawing new bounding boxes each time. The second tool was an OpenCV 

 

190 Sekachev, B. et al. (2020). 
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assisted tracker offered by CVAT, which attempts to predict and adjust the object’s 

movement across frames, thus automatically moving the bounding box to follow the 

object. While this prediction is also not accurate and still requires manual corrections, it 

was more efficient than the basic track feature in predicting the object position when it 

moves significantly between consecutive frames.   

4.2.1.4 Data augmentation techniques  

Data augmentation techniques are employed to make training samples more diverse 

thereby improving the model performance and generalization. A problem often 

encountered in object detection tasks is the overfitting of the model to the training data, 

meaning it learns the details of the training data too well which causes the model to 

perform poorly on unseen data. Augmentation introduces variations that prevent the 

model from memorizing specific patterns in the training images.191  

This is achieved by applying various transformations to the initial dataset to artificially 

increase its diversity. Data transformation and data synthesis techniques are two key 

approaches used to accomplish this. Data transformation techniques modify the existing 

training data by applying transformations, whereas data synthesis is applied when there 

is a lack of training data, creating new training samples from scratch using synthetic 

methods. The most common data transformation techniques include geometric 

transformations such as flipping, rotation, translation, scaling, as well as photometric 

transformations that vary the brightness, contrast, and saturation of images. These 

transformations help ensure that the model is more robust to variations in orientation, 

scale and lighting.192  

Additionally, multi-image combined augmentation techniques are often employed to 

further enhance the dataset by blending or combining multiple images in the original 

dataset to generate new, varied samples. Some of the popular methods that combine 

content from different images are CutMix, Mosaic, and Mixup. These methods 

significantly improve model performance by preventing the model from memorizing 

specific positions, backgrounds or scale of the objects in the images. Instead, they 

encourage the model to generalize better by learning to recognize objects in diverse 

contexts and conditions.193 

Many of these augmentation techniques are integrated into the Yolov8 algorithm and are 

applied during training. Some techniques are enabled by default, while others can be 

 

191 Zeng, W. (2024). 
192 Mumuni, A., & Mumuni, F. (2022). 
193 Zeng, W. (2024). 
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customized by users based on their requirements. The extent of augmentation can be 

controlled by adjusting the relevant hyperparameters.194  

In this work, since object detection was intended to be used in a controlled environment, 

additional augmentation techniques were not considered necessary. Therefore, no 

further augmentation was performed before training and, the default settings were used 

during training. 

4.2.1.5 Training Yolov8 models 

After collecting the required data, and annotating the objects of interest in the images, 

the final step involves training an object detection model, allowing it to learn to detect the 

workers and products assembled in the learning factory. Using yolov8 for training a 

custom model is relatively straightforward. However, certain prerequisites need to be met 

for using yolov8 in a local environment. This is outlined in Table 4-3. 

Table 4-3: Prerequisites for using YOLOv8195 

Prerequisites for YOLOv8 installation Version/Requirement 

Python 3.8 or higher 

PyTorch 1.7 or higher 

CUDA Toolkit Recommended for GPU acceleration 

Python package manager, PIP Installed 

Ultralytics package and dependencies Installed 

 

Although Yolov8 supports training using CPUs, it is highly recommended to use a GPU 

for better model performance and reduced training times. The hardware and software 

specification used for this work are outlined in Table 4-4 and Table 4-5 , respectively. 

 

 

 

 

194 Jocher, G. et al. (2023). 
195 Ibidem 
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Table 4-4: Hardware Specifications Used 

Hardware Component Specification 

Processor (CPU) Intel Core i5-12450H 

Graphics Processing Unit (GPU) NVIDIA GeForce RTX 4050 

RAM 16 GB 

Storage 512 GB SSD 

 

Table 4-5: Software Specifications Used 

Software / Library Version 

Python 3.11.5 

PIP 23.2.1 

PyTorch  2.2.0 

CUDA  12.1 

cuDNN  8.8.1 

Ultralytics (YOLOv8) 8.2.48 

 

The model is trained using a set of annotated images that contain the objects of interest, 

along with their corresponding labels. During the training process, the model learns to 

identify patterns and features from the labelled data, allowing it to generalize and detect 

objects in new, unseen images. The model goes through multiple epochs, during which 

it processes the entire dataset in each epoch. After each epoch, its performance is 

evaluated on a validation dataset. The training continues until either the predefined 

number of epochs is completed, or an early stopping criterion is triggered.196 

A YAML file is used to configure the dataset for training and define the object classes to 

be identified. It specifies the paths to the training and validation datasets, as well as labels 

 

196 Terven, J. et al. (2023). 
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for the annotated object classes. An example command to train a model and the YAML 

file configuration are shown in Figure 4-7 and Figure 4-8, respectively. 

 

Figure 4-7: Example of command used for training YOLOv8 model 

 

Figure 4-8: Example of YAML file configuration 

Two different models were trained for detecting workers and products. To compare the 

performance across YOLOv8 model sizes, three separate models were trained for 

product detection using YOLOv8n, YOLOv8s, and YOLOv8m. These models were 

trained using pretrained weights, as recommended in the official YOLOv8 documentation. 

This approach leverages transfer learning, where the model benefits from prior training 

on large, diverse datasets. Although the specific target objects were not part of the 

pretrained dataset, the pretrained models had already learned general features that 

enables efficient fine-tuning and faster learning on the new dataset. The time taken for 

training model sizes of YOLOv8n, YOLOv8s, and YOLOv8m for 100 epochs are 

compared in Table 4-6. 

Table 4-6: Comparison of training time and model sizes for YOLOv8 variants 

Metric YOLOv8n YOLOv8s YOLOv8m 

Training time 

(hours) 100 epochs 

1.331 2.119 23.383 

Model size (mb) 6.3 22.5 52 

 

YOLOv8n, the smallest model, completed training in 1.33 hours and has a model size of 

6.3 MB, making it suitable for using with edge devices having limited hardware 

capabilities. YOLOv8s took 2.12 hours to train and has a size of 22.5 MB. YOLOv8m is 
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much larger than other two models and took 23.38 hours to train, making it very resource 

intense. It would require good hardware performance to train and use YOLOv8m models.  

4.2.1.6 YOLOv8 model performance 

The models were evaluated on a test dataset containing 307 images extracted from 

another assembly video with the same layout and background as the images used for 

training. The results show that all three models performed were able to detect both the 

products most of the time.  

YOLOv8n is clearly the fastest, capable of processing 200 frames per second (FPS), 

making it ideal for real-time applications. However, it has slightly lower accuracy, 

especially in mAP@50:95, which measures performance across various IoU thresholds. 

The performance comparison of the models across various metrics is presented in Table 

4-7. 

YOLOv8s offers a balanced trade-off between accuracy and speed, achieving a higher 

mAP@50:95 (72%) while maintaining a reasonable inference speed of 94.3 FPS.  

YOLOv8m delivers a slightly better accuracy (73.3% mAP@50:95), but it is much slower, 

processing images at 46.5 FPS. This makes it more suitable for applications where 

accuracy is prioritized over real-time performance.  

Table 4-7: Comparison of YOLOv8n, YOLOv8s, and YOLOv8m model performance 

 

 

 

 

Metric YOLOv8n YOLOv8s YOLOv8m 

Precision (P) 0.95 0.986 0.951 

Recall (R) 0.942 0.924 0.939 

mAP@50 0.978 0.976 0.984 

mAP@50:95 0.683 0.72 0.733 

Inference time (MS) 5.0 10.6 21.5 

Frames per second (fps) 200 94.3 46.5 
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4.2.2 Data acquisition and processing  

In this section, object detection is used to analyse the video footage of the assembly 

process to collect key information from the shop floor. The custom trained yolov8 model, 

discussed in the previous section, is trained to detect both the workers and the two 

products assembled in the learning factory at TU Graz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4-9:Workflow for data collection and processing using object detection 
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These models analyse each frame of the input video, and it returns a bounding box for 

each detected instance, along with the predicted class name. A python script is 

developed, utilizing OpenCV tools, to capture and transform this detection data into 

structured information, suitable for determining KPIs of the assembly process. The 

workflow for achieving this is defined in Figure 4-9. 

4.2.2.1 Tracking Object Movement 

Object detection algorithms detect and locates objects of interest from the input source 

and returns the output with bounding boxes, class names and confidence scores for each 

of the detected instances. The bounding box denotes the location of the detected objects 

in each frame, the class name denotes the predicted object class, and the confidence 

score denotes how confident the model is that the object belongs to the predicted 

class.197 

But this does not differentiate between different units of product that belong to the same 

product class. Tracking functionality addresses this limitation by allowing the system to 

identify and differentiate between multiple instances of the same object class across 

consecutive frames. While object detection provides information about the presence and 

location of objects in each individual frame, the tracking functionality assigns a unique ID 

to each detected object, enabling the system to track them across multiple frames. This  

ensures that each object is consistently tracked as it moves through the assembly 

area.198 

 

Figure 4-10: A general example of object tracking199 

In this work, object tracking is implemented using the tracking functionality of YOLOv8, 

which supports BoT-SORT and ByteTrack tracking algorithms. These trackers can be 

 

197 Kaur, R., & Singh, S. (2023). 
198 Chen, W. et al. (2024). 
199 Jocher, G. et al. (2023). 
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enabled by passing the relevant YAML configuration file during inference.200 In this work, 

the Bot-SORT tracker is used, which is the default tracker in YOLOv8. To apply the 

tracking functionality, the track() method is called, allowing various arguments to be 

passed based on the preferences, such as the object classes to detect, confidence 

threshold, and the tracker to be used. Listing 4-2 shows how the track () method is applied 

to detect and track objects.  

 

Listing 4-2: An example use of the track functionality 

When the detection model processes the first frame, it detects objects, and the tracker 

assigns each detected object a unique track ID. As the video progresses to the next 

frame, the tracker attempts to match the objects detected in the new frame with those 

from the previous frames. The tracker does this by comparing the position of objects in 

the current frame with the position of the objects in the previous frame. If the tracker finds 

that an object in the current frame closely matches an object detected in the previous 

frame (based on its IoU, size, confidence threshold), it assigns the same track ID to that 

object, ensuring consistency across frames.201  

 

Figure 4-11: Basic representation of how the tracker maintains the track ID for a detected object 

 

200 Jocher, G. et al. (2023). 
201 Ibidem 



Practical Implementation 

 

 
85 

 

The tracker continues to maintain the same ID until the object either leaves the frame or 

is no longer detected. If a new object appears in the frame, or the tracker can’t match the 

current object to any of the objects in the previous frames, it assigns it a new track ID. 

4.2.2.2 Region of Interest (ROI) and Data Logging 

These outputs form the basis for collecting the required data from the shop floor. 

However, just knowing the coordinates at which the product is detected in the frame does 

not provide information about the assembly progress. The concept of region of interest 

(ROI) is used in this approach to understand the progress of the product through the 

assembly line. This is used to define the layout of different workplaces in the assembly 

area and to structure the output data accordingly. To identify the coordinates of the 

vertices of the required ROIs, a function was included in the script that leverages 

OpenCV’s mouse event handling functionality (Bradski, 2000). By moving the mouse over 

the video frame, the coordinates of the vertices of the desired ROI can be captured and 

printed to the console. These coordinates are subsequently used to define the boundaries 

of each ROI. This method ensures that the ROIs can be altered easily whenever a change 

occurs in the layout of the assembly process. The function used is shown in the Listing 

4-3 below. 

 

Listing 4-3: Function used to find the coordinates of the ROIs 

 

Different ROIs are defined as polygons within the video frame by passing the coordinates 

corresponding to their vertices as tuples. An example snippet is shown in Listing 4-4. 

 

Listing 4-4: Defining polygon coordinates for workplaces 
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A detection logic is implemented to determine whether a detected object’s centre falls 

within any of the predefined polygons. When an object is detected by the Yolov8 model, 

an if-statement checks whether the detection is inside any of the defined ROIs. This is 

achieved using cv2.pointPolygonTest function (Listing 4-5), which checks if the detected 

object’s centre falls inside, on or outside the boundary of any of the predefined ROIs.  

 

 

Listing 4-5: Logic to check if an object's center is within an ROI 

 

If the detection is found to be within any of the defined ROIs, the detection details are 

logged to a CSV file in real-time along with the detected object’s class (e.g. ‘Scooter, 

‘Hand Truck’), its unique track ID assigned by the Yolov8 tracker, and the timestamp of 

detection. The object class and track ID are recorded in the column corresponding to the 

ROI where the detection occurred, while the timestamp is saved in a separate column for 

each detected instance. For real-time applications, the system timestamp can be used to 

log the exact time of detection. When detection occurs in a recorded video of the 

assembly process, the video timestamp is derived by dividing the frame number at which 

the detection occurs by the frame rate of the video. A sample snippet of the applied logic 

is shown in Listing 4-6 and Listing 4-7 below. Figure 4-12 shows the structure in which 

the data is saved to the csv file. 

 

 

Listing 4-6: Logic applied for logging detections within the ROIs to a CSV file 
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Listing 4-7: Logic for determining the video timestamp based on the frame number 

 

 

Figure 4-12: Structure of saving detection results 

 

In addition to the time data, the coordinates at which each object is detected in each 

frame is also saved to a csv file. This data is used for drawing spaghetti diagrams to 

visualize the movement of products and workers through the assembly area.  

By tracking worker movement, inefficiencies such as excessive walking and unnecessary 

waiting can be identified. Unnecessary movement is a waste according to lean principle 

and optimizing it helps to increase efficiency. Ensuring worker safety is another key area 

in which this data is crucial. Presence of workers in hazardous or prohibited areas can 

be identified and corrective actions can be initialized. 

Similarly, visualizing product movement helps to map the path taken for the transfer of 

products. While the time data is sufficient to determine KPIs, monitoring the path helps 

to uncover inefficiencies that goes unnoticed otherwise.  

In addition to saving detection information, visual indicators are added to the output video 

by drawing bounding box around each detected object, and a circle at the centre of the 

object. These visual indicators improve the clarity and ease of understanding of the 

detection results during the review of the output video. 

4.2.3 KPI determination and Value Stream Map Visualization 

The objective of this work is to evaluate the potential of using object detection methods 

to enable digital data collection from shop floors for value stream mapping. The previous 

sections explained the procedure for training object detection models and for extracting 

data from the shop floor using the detection results. The final step in the proposed 

approach is to determine various KPIs of the assembly process and visualize them in a 

VSM. This section outlines the process of calculating KPIs and describes how they are 

visualized to provide actionable insights into the assembly process. 
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The output from the python script contains location and time data for all products 

assembled on the shop floor. This data can be further processed using any of the data 

processing tools and visualized according to the requirement. For this work, Microsoft 

excel was chosen due to its simplicity and ease of use. The location and time data from 

both worker and product detections are exported into an excel file for further calculation 

and visualization in a value stream map to gain actionable insights.  

4.2.3.1 KPI Determination 

Since all the ROIs in the assembly area are defined, and the presence of products in 

these areas are already known, this data can be used to calculate various KPIs of the 

assembly process. To calculate the KPIs, the entry and exit times of each individual 

product at different workplaces or waiting areas are determined. This is done by fetching 

the first and last detection times for each individual product, identified by its track ID, in 

each of the ROIs. 

A combination of conditional and array functions in excel are used to achieve this. First, 

all the unique track IDs detected across the workplaces are identified using the UNIQUE 

and TOCOL functions in excel (Listing 4-8). This formula collects all the track IDs found 

within the detection data, ensuring that each ID appears only once.  

 

 

 

 

To find the first occurrence of each product in a specific ROI, the MATCH function is used 

in combination with the INDEX function. The formula searches for the first appearance of 

the product ID in a specific workplace (ROI) and retrieves the corresponding timestamp. 

An example of the use of the formula is shown in Listing 4-9. The value returned by this 

formula denotes the time of entry of that specific product into the specified ROI. 

 

 

 

 

To find the last occurrence of each product in a specific ROI, a combination of MAX and 

IF functions is used to locate the last row where the product ID appears. The 

=UNIQUE(TOCOL(B3:D1000; 1)) 

Listing 4-8: Formula to collect all unique track IDs across 
workplaces 

=IFERROR(INDEX(A:A; MATCH(H3; B:B; 0)); "") 

Listing 4-9: Formula to retrieve the timestamp (from column A) of the first 
appearance of a product (mentioned in cell H3) in a specific workplace (column B) 
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corresponding timestamp is then retrieved using the INDEX function. The value returned 

by this formula denotes the time of exit of that specific product from the specified ROI. 

   

 

 

 

 

By comparing the entry and exit times of each product through the workplaces, the time 

spend by the product within workplaces and in transit can be easily identified. This is the 

foundation for calculating the KPIs relevant for VSM process.  

Identifying unexpected deviations during assembly process 

To ensure that the calculated KPIs are valid, it is essential to identify any unexpected 

behaviour and to validate that the material flow for each product follows the defined 

workflow. If a product deviates from the planned workflow due to mistakes from the 

workers or any other unplanned event, it  can lead to inaccurate KPI measurement and 

misinterpretation of the actual scenario. Therefore, a checking criterion is implemented 

during processing, to detect any unexpected behaviour.  

This is done by analysing the sequence in which products enter different workplaces. For 

this, the time of entry of each product at each workplace is listed. The entry times are 

then arranged in ascending order using the SMALL function in excel. Once the entry 

times are arranged, the sorted times are matched with the corresponding workstations 

using INDEX and MATCH functions. The MATCH function locates the position of the 

sorted timestamp within the original detection data, and INDEX retrieves the 

corresponding workplace name from the header row. This visualizes the actual flow of 

the product through the assembly area.  

 

 

 

 

=IFERROR(IF(MAX(IF(B:B=H3; ROW(B:B)))>0; INDEX(A:A; 

MAX(IF(B:B=H3; ROW(B:B)))); ""); "") 

Listing 4-10: Formula to retrieve the timestamp (from column A) of the last appearance of 
a product (mentioned in cell H3) in a specific workplace (column B) 

=INDEX($F$8:$H$8;MATCH(F14;$F$9:$H$9;0)) 

Listing 4-11: Example formula to match the workplace name to product's 
sorted timestamp using the original detection data 
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Figure 4-13: Example visualization comparing observed workflow with the defined workflow 

 

After obtaining the sequence of workflow based on entry times, the observed workflow is 

compared with the predefined workflow. If any discrepancies are found, it is flagged as a 

deviation from the standard process. This ensures that any unexpected events on the 

shop floor, which could impact the accuracy of the calculated KPIs are identified, 

preventing any misinterpretation of the data. 

KPI Calculation 

Once the entry and exit times are determined, the KPIs are calculated as defined in Table 

4-8 

Table 4-8: Calculation of Key Performance Indicators 

KPI Formula 

Cycle time for process (i) Exit time from WP (i) - Entry time in WP (i) 

Throughput time Exit time from WP (n) - Entry time in WP (1) 

Waiting time for process (i) Exit time from WA (i)  – Entry time in WA (i) 

Transport time from WP (i) 

to WP (i+1) 

[Entry time in WP (i+1) - Exit time from WP (i)] – 

Waiting time 

Number of workers Count of Worker IDs in WP (i) 
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Worker idle time Worker detection time in WP(i) – Total processing time 

in WP (i) 

Worker utilization Total processing time in WP (i) / Worker detection time 

in WP(i) 

Workplace utilization Total processing time in WP (i) / Total available time 

Value adding time for 

product (i) 

SUM of cycle times for product (i) 

Non-value adding time for 

product (i) 

SUM of waiting times for product (i) + SUM of transport 

times for product (i) 

 

Explanation of terms used in the calculation formulas: 

WP : Workplace 

WA : Waiting Area 

Entry time in WP (i) : The time when the product or worker enters the workplace (i). 

Exit time from WP (i) : The time when the product or worker leaves the workplace (i). 

Entry time in WP (1) : The time when the product or worker first enters the initial 

workplace.  

Exit time from WP (n) : The time when the product or worker leaves the final workplace 

(n). 

Entry time in WA (i) : The time when the product or worker enters the waiting area (i). 

Exit time from WA (i) : The time when the product or worker leaves waiting area (i). 

Worker detection time in WP (i) : It is the total time a worker is detected in workplace (i). 

It is calculated by summing the total number of times the worker’s ID is recorded in that 

workplace. Since exactly one entry is made per second, this directly corresponds to the 

total time the worker spends in the workplace. 

Total processing time in WP (i): This represents the total time during which value adding 

activities are performed in workplace (i). It is the sum of the cycle times of all products 

assembled in that specific workplace over a defined period. 
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Total available time: This represents the total time during which the workplace is available 

for production activities. In the context of testing, the time period considered for evaluation 

is regarded as the total available time. 

4.2.3.2 Visualization 

This section presents the visualization techniques used to analyse and interpret data 

collected from the shop floor using object detection. The thesis aims to evaluate the 

potential of object detection for collecting data relevant for digital value stream mapping. 

To achieve this, the collected data is first visualized in a digital VSM. This gives a holistic 

view of the production process. Subsequently, the collected data is used for further 

visualizations to provide a more detailed view on individual KPIs. Different tools such as 

Gantt charts and pie charts are used to get in-depth insights into specific processes. 

Digital Value Stream Map 

Once the KPIs are calculated, the final step is to visualize the production process through 

a digital value stream map (VSM). The approach developed in this thesis focuses on 

creating a current state map, which is critical for capturing fact-based data directly from 

the shop floor.  

The VSM is created and visualized in excel, mirroring the structure of a traditional VSM. 

However, unlike static paper-based VSMs, the digital VSM, created using data collected 

over a period of time, reflects the actual situation on the shop floor. This dynamic 

representation allows for more insightful analysis of the production flow and process 

inefficiencies. 

Since both data processing and visualization are performed digitally, the map can be 

easily updated with the most recent data. Furthermore, object detection’s real-time 

detection capability means that if real-time processing is realized, it would be possible to 

collect and visualize real-time data directly from shop floors. This offers the potential for 

continuous monitoring and instant decision-making, further enhancing process 

optimization.  

Further Process Visualization 

Beyond the creation of a digital VSM, additional visualizations can provide deeper 

insights into the assembly process, highlighting key areas for improvement. The dynamic 

data collected from the shop floor can be transformed into detailed charts and graphs, 

making information more accessible and visible. Visualizing factors such as total 

processing time, worker and workstation utilization, and the movement of both workers 

and products, allows for easier identification of inefficiencies, and bottlenecks. These 

enhanced visualizations make it possible to extract more value from the VSM, as they 
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provide a clearer and more comprehensive understanding of the assembly process. 

Therefore, digital data availability also enables the creation of a more  digital data makes 

it possible to create more visualizations that enhance the use of value stream maps. 

4.2.4 Challenges and Solutions 

This study explored the potential of object detection and tracking for collecting data from 

shop floors. Object tracking was employed to ensure that individual unit of an object is 

recognized consistently, even when multiple instances of the same object are present. 

This is achieved by assigning a unique track id to each detected object by the tracker. 

During each frame, the tracker tries to match the detected objects to detections in the 

previous frame. This is done by comparing the object’s position and movement between 

frames using metrics like Intersection over Union (IoU), which measure the overall 

between bounding boxes in consecutive frames.  

However, challenges arise when the object is missed by the detection algorithm for 

multiple consecutive frames. In such cases, the object may move significantly between 

detections causing its new bounding box to have a lower IoU score with the last detected 

bounding box. As a result, the tracker may not be able to confidently match the object to 

its previous detection and may assign a new track ID considering it as a newly introduced 

object. This reassignment of track IDs due to continuous false negatives pose a challenge 

for collecting accurate data.  

When being processed within a workplace, products remain generally visible, so missing 

detections are less frequent, assuming the object detection model has sufficient 

accuracy. However, during transit between workplaces, occlusions or missed detections 

can occur due to sudden handling of the product by workers or because the product may 

be briefly covered by a worker. These situations can cause the tracker to assign a new 

track ID when the product reappears, which complicated the accurate tracking of products 

throughout the assembly process.   

To address this issue, a VBA script was implemented in excel to match and correct track 

IDs across different workplaces. The script leverages the predefined workflow of the 

assembly process, where the expected sequence of transitions between workplaces is 

already known. The script uses a simple logic for matching IDs. When a track ID 

disappears from a workplace (represented in a specific excel column), the code checks 

for a new detection in the next expected workplace. If a new detection occurs within a 

defined time period, it is assumed to be the same unit moving between workplaces 

according to the defined workflow. This approach ensures that, even if a track ID is 

reassigned during transit, it can be corrected during post processing, maintaining 

consistent identification of each product. 
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4.3 Testing 

A method was developed in the previous section to collect data from shop floors using 

object detection and to generate digital value stream maps (VSMs) by systematically 

processing the data using Python and Excel. This chapter presents the testing of this 

method, emphasizing the potential of object detection to collect dynamic data form the 

shop floor to support digital value stream mapping. The method was tested at the learning 

factory at TU Graz. 

4.3.1 Learning Factory at TU Graz  

The learning factory of TU Graz, referred to as the LEAD Factory, is being operated by 

the Institute of Innovation and Industrial Management (IIM) since 2014. The name of the 

factory, LEAD, reflects its focus on Lean, Energy efficiency, Agility, and Digitization, and 

provides academic education, company training, and hands-on research opportunities.202  

As a miniature industrial manufacturing site, it is equipped with industry standard tools 

and continuously integrates new technologies to stay aligned with the latest 

advancements. Its digital infrastructure includes RFID-based process control, digital work 

instructions, smart meters for energy monitoring, augmented reality glasses, human and 

process simulation, and RTLS based workflow tracking. A digital shop floor management 

board (SFMB) is also used to visualize the process data.203 

a)   b)  

Figure 4-14: LEAD Factory - (a) Optimized digital state204, (b) Sub-optimal state 

The factory operates in three different configurations, representing a sub-optimal initial 

state, an advanced lean state, and an optimized digital state. This setup enables 

 

202 Rantschl, M. et al. (2023). 
203 Ibidem 
204 Ibidem 
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participants to gain hands-on experience in transforming inefficient production processes 

into lean, digitized systems, with efficiency improving as more lean and digital tools are 

implemented. The LEAD factory originally produced a self-branded TU Graz scooter and 

recently introduced a hand truck to its product line. This addition increased operational 

complexity, mimicking the real-world challenge of managing multi-product lines. Such 

complexity enhances the learning experience by providing trainees with hands-on 

practice in managing the varied demands of modern manufacturing environments.205 

In addition to offering practice-oriented training, the facility functions as a research 

platform for modern manufacturing technologies and processes. It simulates the key 

complexities of real-world manufacturing environments, making it an ideal testing 

environment for state-of-the-art innovations. This makes the LEAD Factory particularly 

suited for testing the object detection-based method for digital value stream mapping 

developed in this study. 

4.3.2 Testing approach 

For testing the method,  assembly of products in the LEAD Factory was monitored using 

object detection to collect the location and time data of the products assembled in the 

shop floor. A new assembly configuration was introduced for testing, in which products 

were fully assembled across three workplaces, supported by three workers.  

                a)    b)  

Figure 4-15: Products Assembled - a) Scooter, b) Hand Truck 

This setup involved the simultaneous assembly of both scooters and hand trucks, aiming 

to assess the capability of the object detection model to accurately detect and classify 

multiple products simultaneously throughout the assembly process.  

 

205 Rantschl, M. et al. (2023) 
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Both products moved through the same workplaces and were assembled by the same 

three workers. Each worker was assigned a specific role during the assembly process, 

with Worker 1 responsible for workplace 1 (WP1), worker 2 for workplace 2 (WP2), and 

worker 3 for workplace 3 (WP3). After completing each task, the workers moved either to 

the next workplace or to the storage area to transfer or store the product. To introduce 

additional complexity, two different workflows were defined for the products. The hand 

truck followed a sequential workflow from WP1 to WP2 and then to WP3, whereas the 

scooter followed a different path, moving from WP1 to WP3, and then to WP2. This 

arrangement aimed to test the method’s ability to manage varying product flows. 

4.3.3 Experimental Procedure 

The assembly process was recorded using a ceiling-mounted camera, which provided a 

comprehensive view of the entire assembly area. This placement was chosen to ensure 

a clear view of the movement of both products and workers, with minimal chances for 

occlusions. This also helps to minimize the privacy concerns associated with recording 

the assembly processes as the face of the operators are not directly visible. A GoPro 

Hero7 was used for recording, capturing the footage at a resolution of 1080p and a frame 

rate of 30 frames per second. The recording aimed to capture the entire assembly 

process of both the products, ensuring that the complete movements of products and 

workers through the assembly area are documented. The recording duration of 

approximately 9 minutes provided enough data for the analysis. The camera installation 

and the field of view of the camera is shown in Figure 4-16. 

a)   b)  

Figure 4-16: Camera setup - a) installation, b) field of view of the camera 

Camera 
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4.3.3.1 Data Extraction from Video 

The recorded video was then inferred using the custom trained Yolov8 model to detect 

and track both products and workers. Since the appearance of workers remain identical 

throughout the assembly process, the normal approach for tracking objects was followed.  

However, the appearance of the products gets altered throughout the assembly as parts 

gets assembled together. To ensure continuous detection of products within and across 

workplaces, the base plate of the scooter and the handle of the hand truck were chosen 

as the base parts to be tracked, as described in the methodology. The yolov8 model 

detected these parts continuously to track the assembly progress. 

a)    b)  

Figure 4-17: Base part to be tracked for a) Scooter and b) Hand Truck 

 

The model performed well in detecting and classifying the products across the assembly 

area. The tracker accurately tracked the products by maintaining a unique id for each of 

the detected products. This worked particularly well inside each of the workplaces, where 

movement or chances of occlusions were limited. However, during transit between 

workstations, the product was not detected in some frames due to occlusion or fast 

handling by the workers, resulting in the product getting reassigned with new ids. This 

issue was resolved during post-processing by matching the IDs based on the planned 

workflow using VBA code, as outlined in the methodology section. 

The python script, described in the methodology section was used to systematically save 

the time and location information of the assembled products and workers. The csv output 

generated by the script included the timestamp at which each unit of product was 

detected in each workplace. A sample of this output is show in the Figure 4-18. Further 

data processing was done in excel. 
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Figure 4-18: Output displaying detection times of products and workers across the three workplaces 

 

The entry and exit times of the products at different workplaces were determined by 

fetching the first and last occurrence of each product ID in the respective workplaces.  

 

Figure 4-19: Entry and exit times of products in different workplaces 

 

The time spent by each product in each workplace, as well as the time spent in transit 

between workplaces, were then calculated by comparing the entry and exit times. This 

information enabled the straightforward calculation of various KPIs, such as cycle times, 

waiting times, transport times, throughput times, total value adding time, and non-value 

adding time. Additionally, by analysing the worker detection data alongside the product 

detection data, metrics such as number of workers in each workplace, worker idle time, 

and worker utilization were calculated.  
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4.3.4 Test Results 

This section presents the test results from using object detection to collect value stream 

relevant data from the shop floor. The KPIs calculated using this data are visualised in a 

value stream map created in excel. Additional visualizations such as, Gantt charts and 

pie charts, provide a comprehensive overview of the assembly process, showing the 

capability of object detection to effectively capture dynamic data from the shop floor. 

4.3.4.1 Object Detection Enabled Digital Value Stream Map 

This data was then visualized in a digital value stream map using Excel, providing a clear 

representation of the assembly process. Since both products shared the same 

workplaces and workers, their data was combined into a single current stream map. This 

approach provides a holistic view of the entire production process, enabling a clear 

understanding of how workstations and workers are utilized across the production of both 

products. It also facilitates the comparison of the performance of the products and helps 

identify bottlenecks, allowing for the optimization of the value stream.  

The map visualizes the flow of the products from the start to the end of the assembly. 

The average processing time, number of assembled units, and worker idle time at each 

workplace were displayed separately for each product type over the analysed period. 

Additionally, the map shows the total number of assembled units and the utilization rate 

for each individual workplace, accounting for both products. It also highlights the average 

value adding and non-value adding times for each product type, as well as the percentage 

of time spent on value-adding activities. The created digital value stream map is 

presented in Figure 4-20. 
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Figure 4-20:Digital value stream map based on the data collected using object detection 
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4.3.4.2       Detailed Process Visualization Based on Collected Data 

In addition to the digital VSM, several Gantt charts and pie charts were created using the 

data collected using object detection. These visualizations provide more insights into the 

assembly process.  

The entire process flow for both products was visualized using two Gantt charts. These 

charts, based on the data collected through object detection, displays the flow of each 

product from the start to the end of the assembly process. Each block in the Gantt charts 

represents the time a detected product spent in a particular region. Periods during which 

a product was not detected in any of the workplaces were also visualized, representing 

the transit time of the product between workplaces.  

To ease the comparison of the time spent by each product at each stage of the assembly, 

the average cycle times of both the products were also visualized using a Gantt chart. 

Such visualizations make inefficiencies in the current state more visible, encouraging 

efforts to optimize the assembly process and improve line balancing. The Gantt charts 

are presented in Figure 4-21 and Figure 4-22. 

 

 

Figure 4-21: Process flow of the products 

 

 

 

Figure 4-22: Cycle times comparison 
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Similarly, the average throughput times for the products were visualized (Figure 4-23), 

enabling a comparison of the overall production durations. The pie charts in Figure 4-24 

illustrate the distribution of throughput times across different assembly stages for both 

the scooters and hand trucks. 

 

Figure 4-23: Throughput time for each product 

 

 

 

Figure 4-24: Distribution of throughput time across assembly stages 

 

Two sets of pie charts were generated to visualize the utilization of both the workplaces 

and the workers involved in the assembly process. The first set, displayed in Figure 4-25, 

illustrates the workplace utilization by showing the proportion of value-adding time versus 

idle time for each workplace. The second set, shown in Figure 4-26, visualizes worker 

utilization by breaking down the worker’s total time into working time, transport time, and 

idle time. These visualizations are particularly useful for assessing how effectively labour 

resources are deployed, helping to identify periods of underutilization or overburdening 

of workers. 
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Figure 4-25: Workplace Utilization 

 

 

Figure 4-26: Worker Utilization 

 

4.3.5 Summary 

The testing outcomes confirmed the effectiveness of the object detection-based method 

in supporting digital value stream mapping. By tracking the assembly of scooters and 

hand trucks in a multi-product environment over a defined period, the method effectively 

captured dynamic data and managed varying workflows. The entire data was collected 

without the need for attaching any physical sensors to products or workers. This non-

intrusive approach ensured that worker’s tasks were not disrupted, and no additional 

workload was imposed on them.   
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5 Result 

This chapter presents the results of the object detection and tracking experiments 

conducted to evaluate the feasibility of using object detection for digital data collection in 

value stream mapping. The results outline both the performance of the custom-trained 

object detection models in detecting and tracking objects in a dynamic assembly 

environment as well as the results from the testing, depicting the potential of object 

detection as a tool to enable digital data collection for value stream mapping.  

5.1 Object Detection Model Performance 

The object detection models were trained using a custom dataset consisting of images 

from the shop floor, with annotations for workers, scooters, and hand trucks. The training 

process was aimed at achieving maximum performance in the standardized environment 

where the method was tested.  

5.1.1 Training duration and Resource Consumption 

The training of the YOLOv8 models were conducted using an intel i5 processor with an 

NVIDEA GeForce RTX 4050 6GB GPU. The training data of YOLOv8s models, both for 

worker detection and product detection, are shown in Table 5-1.  

Table 5-1: Training results 

Metric Worker Products 

Training time 

(hours)  

0.895 2.119 

Dataset size 

(number of images) 

1305 4494 

Epochs  100 100 

Model size (mb) 21.98 22.5 

5.1.2 Model Performance 

The performance of the trained YOLOv8 models were evaluated using key metric, 

including precision, recall, mAP, and speed (fps). The models demonstrated strong 

performance on the test dataset, with maximum precision values of  0.975 for scooters 

and 0.996 for hand trucks. The results are shown in Table 5-2. The model was able to 
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accurately identify and classify these objects during a new assembly process, under the 

same environment. The choice of YOLOv8 allowed for a balance between detection 

speed and accuracy, making it suitable for real-time data collection on the shop floor. 

Table 5-2: Performance results of YOLOv8s models in detecting specific classes 

 

5.2 Results from testing at the learning factory 

The object detection method was tested at the learning factory of TU Graz, which is 

designed to reflect the real-world complexities of manufacturing environments. During the 

experiment, the YOLOv8 model was able to consistently detect and track objects 

throughout the assembly area.  

The detection accuracy remained high even when different product classes were 

assembled simultaneously. However, occasional issues with object tracking were 

observed during periods of brief occlusions or false negatives, resulting in object IDs 

being incorrectly reassigned. However, such reassignment happened during transmit 

between workplaces and were corrected during post processing using a VBA code, 

leveraging the  knowledge of the predefined workflow. 

Object detection enabled the collection of a comprehensive set of data relevant for value 

stream mapping. This data was processed and visualized in a VSM using excel. The 

diverse range of data collected allowed to plot multiple Gantt charts and pie charts, 

providing greater visibility into the current state of the assembly process.  

Metric Worker Scooter Hand truck 

Precision (P) 0.989 0.975 0.996 

Recall (R) 0.995 0.998 0.85 

mAP@50 0.994 0.995 0.957 

mAP@50:95 0.847 0.656 0.783 

Inference time per 

image (MS) 

10.2 10.6 10.6 

Frames per second 

(FPS) 

98.04 94.3 94.3 
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5.2.1 Accuracy Evaluation of the Collected Data 

To evaluate the accuracy of the data collected using object detection, the determined 

KPIs were compared with the values derived from manual video analysis. The tables 

Table 5-3 and Table 5-4 below provide a comparison between the object detection data 

and manually analysed data for scooter and hand truck assembly. 

Table 5-3: Comparison of automatically collected and manually collected data for scooter assembly 

KPI Automatic collection 

(seconds) 

Manual collection 

(seconds) 

% difference 

Processing time (P1) 84 88 4,54 

Transit + Waiting time 

(P1 – P2) 

4 5 

20,00 

Processing time (P2) 73 73 0,00 

Transit + Waiting time 

(P2 – P3) 

4 7 

42,85 

Processing time (P3) 68 64 6,25 

Throughput time 233 237 1,69 

 

Table 5-4: Comparison of automatically collected and manually collected data for hand truck assembly 

KPI Automatic collection 

(seconds) 

Manual collection 

(seconds) 

% difference 

Processing time (P1) 131 129 1,55 

Transit + Waiting time 

(P1 – P2) 

5 9 

44,44 

Processing time(P2) 174 170 2,35 

Transit + Waiting time 

(P2 – P3) 

3 7 

57,14 

Processing time(P3) 82 78 5,12 

Throughput time 395 393 0,50 
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For most KPIs, the difference between automatic and manual data collection is minimal, 

demonstrating a high level of accuracy for the automated data collected using object 

detection.  

For processes with discrepancies, these differences were primarily not due to 

inaccuracies in object detection itself. The automated method calculates processing 

times as the total time the product spends in the workplace. However, this may not always 

reflect the actual processing time, as it may take a few seconds before workers begin 

their tasks. In the automated process, this time is also included in the processing time, 

causing slight discrepancies. This is a common problem with all location-based tracking 

methods. To achieve more precise results, more advance technologies such as pose 

estimation or action recognition would have to be used. 

Nevertheless, such differences did not significantly impact the throughput times, as  any 

discrepancies in the calculated production times were typically balanced out by 

corresponding differences in the transit and waiting times. 

5.3 Summary of Results 

The results presented in this chapter demonstrate the feasibility and effectiveness of 

using object detection for dynamic data collection for value stream mapping. The 

performance of an object detection algorithm, YOLOv8 was evaluated in an industrial 

environment. The algorithm showed good detection accuracy and proved to be adaptable 

to the specific needs of industrial applications, making it relatively easy to train models 

for detecting custom objects. From the comparison of  the first three size variants of 

YOLOv8, the small variant YOLOv8s) was found to strike a good balance between speed, 

accuracy, and resource requirements.      

The testing results showed that the automatic data collection method closely matched 

the data collected through manual analysis, confirming the applicability of the method.  

By collecting data continuously over a period of time, rather than relying on static 

snapshots used in traditional VSM, more comprehensive data was captured, enabling 

enhanced visualization of the current state. This improved visibility of processes helps in 

identifying inefficiencies more effectively. Overall, the results validate the potential of 

object detection as a valuable tool for enabling digital collection of dynamic data for value 

stream mapping. 
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6 Discussion 

This chapter presents the key findings from the object detection-based data collection 

experiment for value stream mapping, discussing the potential and limitations of the 

applied methodology. The discussion focusses primarily on the capability of the object 

detection method to collect data from shop floors and realize digital value stream maps. 

In addressing this, the requirement for implementing object detection, the type of data 

that can be captured, the benefits of using this method, and the accuracy of the collected 

data are evaluated. Finally, the challenges of implementing the method in industrial 

environments are discussed, along with recommendations for further improvement. 

The research successfully achieved its aim of evaluating the potential of object detection 

for non-intrusive data collection for digital value stream mapping. Time and location data 

required for determining KPIs were collected using object detection without inferring with 

the workflow. Through the systematic approach adopted for conducting the practical part 

of the thesis, each objective was met as outline below: 

• Selection of suitable algorithm for industrial applications – An extensive 

comparison of object detection algorithms was conducted. Based on the 

comparison YOLOv8 was chosen as the algorithm for object detection in the 

experiment. 

• Model training – Object detect models were trained for detecting workers and the 

two products, scooters and hand trucks assembled in the LEAD factory. 

• Development of a Logical Framework – A logic for collecting time and location data 

to track the assembly process using object detection was developed. 

• Testing and evaluation of the method – The method was tested by using object 

detection to track an assembly process. The model successfully detected and 

tracked workers and products assembled in the factory with acceptable accuracy. 

The data required for the determination of the most important KPIs for value 

stream mapping were successfully collected and were used to visualize a digital 

VSM.  

➢ Requirements for Object Detection Implementation 

The main requirements for using object detection for digital data collection are the video 

footage of the assembly process and an object detection model. While public datasets 

for industrial components are still limited, they are expanding, which will eventually 

reduce the effort needed for future implementations. Currently, most industrial 

applications require training custom models from scratch or fine tune existing ones to 

meet specific needs. 
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In this experiment, detecting workers and products required custom-trained models, 

using large, annotated datasets, which is a time-consuming process. The data collection 

and annotation are the most labour-intensive aspects, while model training takes only a 

few hours depending on the dataset size and  GPU capability. For training larger models 

of YOLOv8 or any other computationally demanding algorithms, GPU acceleration is 

essential. 

The time needed for annotating images depends heavily on the type of data being 

annotated, number of classes in each image, total instances on each image, as well as 

the size and shape of the objects on the image. The annotation of worker dataset took 

on average 1 hour to annotate 150 images, with three workers per image, whereas 

product dataset, was more time consuming due to the presence of multiple classes and 

the smaller size of the objects.  Using video data for annotation reduced this time by half 

as it was able to semi-automate the process since the objects appear in similar position 

across consecutive frames.  

The smaller variants of YOLOv8 require minimal computational resources, reducing 

hardware demands while offering fast inference rates. Therefore, the effort required with 

using object detection is mainly associated with the collection and annotation of datasets 

and training models. Once the model is trained, no additional costs are required and 

scalability becomes free, unlike physical sensors where costs increase with the number 

of items being tracked.    

➢ Type of Data Collected Using Object Detection 

Object detection was used to collect the location and time data of workers and products 

in the assembly area, enabling the calculation of KPIs relevant to VSM. The most 

important metrics, such as cycle time, throughput times, transport times, waiting times, 

total value adding and non-value adding times were captured using the approach. In 

addition, indicators such as worker and workplace utilization were also determined. 

However, some KPIs commonly included in VSMs, such as changeover time, and setup 

time could not be calculated. Since the method relies on the location of the product on 

the assembly area, the progress of the product through the assembly area is primarily 

mapped. It cannot distinguish whether a product is actively being processed or simply 

resting in a workplace while the worker is working on other tasks, such as tool setup or 

reading instructions. 

➢ Benefits of using Object Detection for Data Collection 

The benefits of digital data collection over traditional methods are well documented in the 

literature. This study emphasized the advantages of object detection over other location-

based methods, such as RFID tags and RTLS systems. 
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Similar to the other location-based sensors, object detection allows for continuous data 

collection over a period of time, providing insights about actual situation in the shop floor. 

In the experiment, YOLOv8n achieved a speed of 200 FPS, demonstrating that real-time 

detection is not an issue. With real-time processing, object detection can realize real-time 

visualization of value streams.  

A key benefit of this method is its ability to collect data without interfering with the 

workflow. An overhead camera records video, which is then processed using object 

detection. This eliminates the need for installing and handling of sensors which increases 

the workload for operators and reduces the available time for value adding activities. In 

addition, continuously attaching physical sensors to products and workers to track their 

movement is labour intensive and can be prone to errors over extended periods. Even 

though the cost of individual sensors is not high, the total cost increases with the number 

of items being tracked, making it expensive for high volume productions. Whereas object 

detection models can continuously track any number of products, without additional 

costs. Therefore, object detection enables interaction-free, low cost, continuous data 

collection from shop floors. 

➢ Accuracy of the Automatically Collected Data  

The KPIs determined using the object detection data was carefully analysed by 

evaluating the video manually. The comparison results showed that the automatic data 

collection closely matched the actual scenario, with differences for processing times 

typically under 6%. This indicates that object detection can serve as an alternative to 

manual methods, offering reliable representation of the actual situation on shop floor. 

➢ Challenges in Industrial Environments 

While object detection proved to be effective in this experiment, its performance on a 

larger industrial environment still needs to be studied. Some of the possible challenges 

in implementing this method in an industrial environment is discussed below. 

• Occlusions and Tracking Errors   

A major challenge encountered during the experiment was the issue of object occlusion, 

where products were temporarily blocked from the camera’s view, leading to incorrect 

reassignments of object IDs. Although this problem can be resolved during post-

processing using predefined workflows, they may still impact real-time monitoring. Since 

the chances of such occlusions are higher on a more complex industrial environment, 

very efficient detection models, capable of detecting objects even during partial 

occlusions may be necessary to achieve the best results.  
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• Varying Environments   

During the testing, models where trained using images captured from a specific assembly 

area. For industrial applications, the model may be used in different assembly locations, 

and therefore, the background, lighting, and other environmental parameters may 

change. In order to ensure consistent performance, the models should be trained using 

data from a variety of situations, that reflect the diverse environments in which they will 

be used.    

• Performance During Continued Operation  

The testing in this experiment was conducted over a nine-minute assembly process, 

which provided enough data for the analysis. However, the performance of the method 

in continuous industrial operations remains to be studied. Particularly for real-time data 

collection, object detection systems need to run for extended periods and the effect of 

this sustained computational load on its performance is not known. Further research is 

needed to assess how the method performs during prolonged use and to identify any 

optimisations necessary for continuous monitoring in industrial environments.   

➢ Recommendations for Improvement 

The following recommendations are proposed for improving the application of object 

detection in value stream mapping 

• Integration of Advanced Object Tracking Algorithms 

In the experiment, the ne of the state-of-the-art tracking algorithms, Bot-SORT was used 

with YOLOv8 to achieve tracking functionality. Even though it performed well, the 

potential of using more advanced trackers to address the occlusion issue needs to be 

studied. Improving the tracking capability can significantly improve the results from the 

proposed method. 

• Integrating Pose Estimation  

A limitation of the proposed approach was its inability to distinguish whether products 

were being actively processed or simply resting on the workplaces. This prevented the 

determination of KPIs such as set-up time and changeover time. Relying solely on 

location data cannot solve this issue. Pose estimation is an important computer vision 

task, which in addition to detecting an object, also tracks the key points on the object to 

infer its orientation or movement. Pose estimation of humans is an actively researched 

topic and integrating it with object detection can help in identifying KPIs that current 

location-based systems fail to do. 
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7 Conclusion 

This thesis evaluated the potential of using object detection technology to facilitate non-

intrusive data collection for digital value stream mapping (VSM). The study demonstrated 

that object detection could serve as an effective tool for tracking objects such as workers 

and products on a shop floor without interfering with the workflow.  

A key advantage of this approach compared to other location-based tracking systems is 

its non-intrusive nature. Unlike systems that require physical sensors to be attached to 

the entities to be tracked, this method enables the collection of a variety of data using 

just a camera and an algorithm. This interaction-free approach ensures that the 

employees are not burdened with additional work and can focus on their primary tasks. 

It also eliminates the risk of errors caused by mishandling or misplaced sensors.   

To test the method, an object detection algorithm, YOLOv8, was selected based on the 

results of the literature review. The approach was tested at the learning factory at TU 

Graz, where a custom-trained YOLOv8 model successfully detected and tracked the 

workers and products throughout the assembly process. The location and time data 

collected using object detection was processed in excel to dynamically visualize the VSM, 

reflecting the situation on the shop floor. This comprehensive data enabled more detailed 

visualizations, using Gantt charts and pie charts, providing a clearer depiction of the 

situation. Visualizing key KPIs individually made the data more accessible, offering 

deeper insights into the process. The holistic perspective provided by value stream map 

was enhanced by the focused view provided by these charts. 

An analysis of the accuracy of the collected data through video review showed that the 

digitally collected data closely matched the actual scenario during the assembly process, 

reinforcing the viability of object detection for industrial applications. By offering dynamic 

insights into production processes, this approach has the potential to offer manufacturers 

with the ability to optimize their operations more efficiently. With further validation in larger 

and more complex environments, object detection has the potential to largely improve 

how material data is collected and utilized in manual assembly processes. 
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8 Outlook  

This study explored the potential of object detection and tracking for non-intrusive data 

collection in the context of digital value stream mapping (VSM). While the developed 

method has shown promising results in controlled environments, further validation in 

complex industrial settings is crucial. It would assess the capability of object detection to 

adapt to more complex assembly processes and diverse environmental conditions 

providing insights into the robustness of the approach. 

In addition, since object detection algorithms are capable of real-time detections, it is 

possible to achieve real-time visualizations, if data transfer and processing can also occur 

in real-time. Therefore, implementing real-time data transfer and analysis for live 

visualization of value stream maps is proposed as a future step. 

Occasional tracking errors and occlusions were the challenges observed during the 

experiment. To mitigate these issues, more sophisticated solutions for achieving better 

tracking results could be explored.  

Finally, integrating pose estimation with object detection is proposed for improving the 

accuracy of the collected data. Relying solely on the location of the product may cause 

misinterpretations, as the presence of a product in a workplace cannot guarantee that the 

worker is actively working on the product. Pose estimation could address this limitation 

by providing additional information, such as worker orientation and movement, to predict 

whether active processing is occurring.  
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