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Abstract

The background of this work emphasizes the significance of data privacy in
safeguarding individual rights amid the growing misuse of personal data, under-
scoring its role in preserving democratic principles and personal freedoms. This
problem has been present for centuries, but with the evolution of technology,
its effect increased significantly and has become frequent in many industries,
including health care.

Even though the Health Insurance Portability and Accountability Act (HIPAA) and
the General Data Protection Regulation (GDPR) regulate sensitive data protection,
the healthcare industry deals with thousands of data breach incidents reported
daily. Therefore, we decided to explore the repercussions of confidentiality
breaches in healthcare and answer a pivotal question: Is automatic detection of
cases where HIPAA anonymization is not sufficient for GDPR compliance in EHRs
achievable? This research question is crucial for protecting sensitive information
in medical tourism programs and the clinical services provision across inter-
national borders, and to address it, we divided the practical work into three phases.

First, our objective was the clinical dataset acquisition, data preprocessing,
annotation, and Named Entity Recognition (NER) to identify specific Protected
Health Information (PHI) elements of interest belonging to the scope of the
work (PATIENT, PHONE, LOCATION, HOSPITAL, ID, DATE, DOCTOR, AGE,
NORP, DISEASE, and CHEMICAL). Second, we developed a customized approach
combining different anonymization techniques to anonymize the data according
to HIPAA and GDPR and reduce the risk of re-identification. Ultimately, we
investigated if it is possible to construct a pipeline capable of detecting HIPAA
but not GDPR-compliant records under the assumption we previously identified
and anonymized all sensitive data.

As a result of the first phase, we fine-tuned one unified BERT model, namely
emilyalsentzer/Bio ClinicalBERT, capable of identifying 11 PHI entity types of
interest (DISEASE, CHEMICAL, PATIENT, DOCTOR, LOCATION, HOSPITAL,
PHONE, AGE, ID, DATE, and NORP). After comparing the total number of
annotations generated by the model (6,387) and the total number of annotations
we manually validated (6,618), the model resulted in an overall accuracy of 96.5%.
Moreover, we checked how many entities the model misclassified per PHI type
and cautiously estimated our model’s general accuracy to be around 95%. With
this assessment in mind and assuming the correctness and reliability of the
extracted data of interest, we developed a customized approach to anonymizing
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PHI of interest, combining tokenization, encryption, and pseudonymization to
meet HIPAA and GDPR requirements. Our evaluation of the categorical entity
anonymization process has shown that our approach preserves data patterns
effectively and meets strict privacy requirements while providing a robust solution
for anonymizing 6,518 PHI and ensuring regulatory compliance and data integrity.

Conclusively, we recognized the intricate nature of achieving simultaneous
HIPAA and GDPR compliance in EHR anonymization since, while identifying
records that fall short of compliance in terms of extracted entities or anonymiza-
tion techniques is possible, a comprehensive analysis of GDPR compliance
remains a multifaceted endeavor and requires expertise knowledge and efforts.
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1 Introduction

According to Carissa Veliz: "Privacy is power. Digital technology is stealing our
personal data and with it our power to make free choices. To reclaim that power
and democracy, we must protect our privacy” (Veliz, [2021).

Collecting personal data means gaining knowledge about the target person
or a group of people. Access to a sufficient amount of private information allows
individuals or corporations to represent affected people in a self-beneficial way
without any concern for their well-being. Furthermore, stolen information can
cause the misinterpretation of the victim’s identity where human rights may
be limited in such a way that the victim can be declared unable to work or
unqualified to vote in state elections. Therefore, protecting personal data is crucial
in establishing the control of freedom and enabling individuals to decide how
they will be integrated into society.

The problem of data privacy has been present for centuries, but with the
evolution of technology, its effect increases significantly and becomes frequent in
many industries, including health care. On average, several thousands of people
in medical industry are affected by privacy attacks every day, mostly by hackers
or IT incidents, and consequently, a need to talk about the consequences of a
confidentiality breach in health care exists (OCR, 2015). A leakage of personal
health data may lead to its misuse in various ways where the victim is being
targeted with fraud by taking an advantage of documented medical conditions.
Additionally, there is an increasing trend where dark web vendors offer collections
of stolen health data for sale to make a huge profit and thereby contribute to
increasing the scope of the problem (Krebs, 2014).

To formally address the question of data privacy, the Health Insurance Portability
and Accountability Act (HIPAA) in United States, and General Data Protection
Regulation (GDPR) in European Union have been ordered to be carried out
following the law in every industry where personal data is present. However,
regardless of their existence, anonymization techniques used to achieve automatic
compliance are usually either sufficiently insecure which leads to the possi-
bility of re-identifying people whose data is supposedly anonymous or do not
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cover cases of medical tourism programs, or providing clinical services interna-
tionally which is a requirement for HIPAA being GDPR compliant (Mooney, 2018).

International cooperation is well-known practice for improvements in health
care. It requires disseminating private patients’ data between different countries
for research or international treatment purposes. As in other industries, the EU
and the US are each other’s main association partners accounting for almost
half of the total global GDP and trade. Since these two allies legally implement
different data privacy regulations, HIPAA must be GDPR compliant to achieve the
lawful exchange of patients’ health records between the US and EU to avoid data
breaches. Therefore, this work aims to answer the following research question:
is automatic detection of cases where HIPAA anonymization is not sufficient for
GDPR compliance in EHRs achievable?

1.1 Glossary of key terms

Data privacy individual right to control collected personal information that is
documented

Data protection procedure for securing the privacy, availability, and integrity of
private data

Data anonymization process of modifying patients’ data for the purpose of pri-
vacy protection

Automatic detection strategy to find anonymized data from electronic health
records without manual efforts

Private or personal data information contained in electronic health records
that identifies one patient

Confidentiality breach result of disclosing collected private data to a third party
without the patient’s consent

Privacy attack process of collecting patients’ information from health records
without their consent

HIPAA legal regulation implemented in the United States that indicates national
standards of protecting patients’ health data from being disseminated

GDPR legal regulation implemented in the European Union for keeping every-
one’s personal data safe from sharing without consent



1.1 Glossary of key terms

PHI refers to any information that relates to an individual’s health status, medical
treatment, payment for healthcare, or any other health data that might be
contained in a document as medical record

Medical tourism the practice of traveling to another country for medical treat-
ment where patient receives care from a foreign healthcare provider which
potentially treats PHI as subject to different privacy laws and regulations



2 Background

To address the research question this thesis is based on, knowledge from various
topics should be assembled and the research is not based only on the previous data
anonymization techniques used in the healthcare industry, but is connected to a
broader concept that includes NLP approaches, as well as legal regulations for data
protection in the EU and the US. The academic knowledge and preface to the core
concepts one should be acquainted with to gain an understanding of this work is
based on various resources found mostly on Google Scholar and IEEE Xplore and
the summary is delivered in this section.

2.1 Data Privacy and Security Laws

Data privacy and security laws’ history can be traced back years. However, with
the advent of the digitization era, their scope and focus could no longer cope with
data protection rights when it comes to digital storage, collection, or transmission
of private data. Due to the increasing development of technology and the power
of the Internet, new regulations have been passed where GDPR has replaced the
outdated Data Protection Directive in the EU and the US has implemented the
HIPAA regulation (Rossow, 2018). As it can be presumed, these two regulations
differ in focus and approach when it comes to the legal handling of private data and
cause more splendid measures in collecting and processing data without violating
individual privacy or security (Hintze, 2018)).

2.1.1 Europe: General Data Protection Regulation (GDPR)

The EU General Data Protection Regulation is a privacy law introduced in all Eu-
ropean countries in 2018 and ever since has been influencing European Union res-
idents, regardless of their place of habitation. Unlike its predecessor, namely Data
Protection Directive, GDPR has six main points regulating privacy and data secu-
rity in digital and analog forms and, in addition, implies the importance of consent
(Goddard, 2017). The essence of GDPR is the meaning of personal data which is
described as: “any information relating to an identified or identifiable natural per-
son (‘data subject’); an identifiable natural person is one who can be identified,
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directly or indirectly, in particular by reference to an identifier such as a name, an
identification number, location data, an online identifier or to one or more factors
specific to the physical, physiological, genetic, mental, economic, cultural or social
identity of that natural person” (Finck and Pallas, [2020). That way, GDPR defines
electronic health records as a collection of private data and therefore there is a
need for security and privacy management in healthcare.

2.1.2 United States: Health Insurance Portability and
Accountability Act (HIPAA)

Since 2003, Health Insurance Portability and Accountability Act becomes effec-
tive in the US and affects all healthcare providers who are coping with patients’
private data in any form. It addresses four main requirements with the goal of
achieving compliance and keeping all patients’ health information confidential
(Annas, 2003). Unlike GDPR, HIPAA is only protecting patients’ health informa-
tion while authorizing the transmission of data required for enhancing healthcare
quality and arranging conditions for performing medical research (Gostin et al.,
2009). Consequently, the main disadvantage is that HIPAA is not dealing with
medical tourism programs or international research cooperation like GDPR does.
Namely, the GDPR covers a more extensive scope and ensures a higher degree of
patient identity protection, while data anonymized according to the HIPAA stan-
dard is easier to re-identify. In relation, that causes the need to identify cases when
HIPAA is not GDPR compliant.

2.2 Natural Language Processing

Natural Language Processing (NLP) is an aspect of artificial intelligence (AI)
that strives to develop computer systems with a rational and human way of
thinking and acting. In association, the NLP research area is closely related to
AT’s improvement in accuracy and efficiency by understanding and manipulating
written and spoken human language, namely natural language (Chowdhury and
Lynch,|1991).

The preface of the NLP to the world was in the late 1940s when machine
translation (MT) was introduced. This computer-based application evolved from
the theory that vocabulary and word order are the only things that distinguish
different languages. In other words, it ignored the lexical ambiguity inherent
in natural language in the translation process and resulted in poor translations.
In light of the poor outcome, researchers realized that the task was much more
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challenging than anticipated. Therefore, the redefinition of the language theory
was essential for future progress in the field (Liddy, [2001).

Even though it became apparent that the research in the NLP field had ex-
panded beyond MT, persisting improvements in MT stayed the objective for some
more years (Liddy, [2001). The turning point was at the end of the 1960s when
Weizenbaum introduced ELIZA - the first chatbot program simulating a written
conversation between a human and machine to a certain degree by analyzing
input sentences based on decomposition rules (Weizenbaum), 1966).

From simple vocabulary analysis and batch processing, NLP research has
evolved over the years. Nowadays, as [Kadlaskar (2021) described, a five-phase
process is established and described as a group of lexical, syntactic, semantic,
and pragmatic analyses combined with disclosure integration. Consequently, it
is possible to represent one language through its word structure, arrangement of
words, and the relation between the words while respecting semantic correctness
and considering pragmatic meaning. As such, NLP can cope with the enormous
portions of unstructured data stored in online databases as natural human
language and help in challenges such as text classification, entity extraction and
recognition, or machine translation. There are numerous approaches to how NLP
is conducted, and some of the most recent ones are transformer-based models like
BERT or GTP-3. Thus, NLP is essential for daily businesses in various industries
today, including healthcare.

2.2.1 Natural Language Processing in Healthcare

The healthcare industry’s goal is to enhance life quality by improving health.
Attaining this goal necessitates advancements realized via substantial research
and information exchange in various medical domains. Therefore, Iroju and
Olaleke| (2015) stated that collection of narrative data sources is necessary.
However, the difficulty of gathering sufficient data extends back more than 50
years, yet its bounds have increased as the digital era has developed. Nowadays,
data sources are massive and include mostly unstructured and non-standardized
forms of discharge summaries, physicians’ case notes, and pathologists’ and
radiologists’ reports. In essence, electronic healthcare systems have a tough time
comprehending information in such a form (Liu et al, 2012; Iroju and Olaleke,
2015).

Processing unstructured and non-standardized data is solvable in various
manners. Massive data sources might prohibit manually storing data in an
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structured and standardized format and thus yield inefficiency and high time
consumption. Since the goal is to find the most efficient and explicit way of
approaching this matter, NLP is considered the most promising approach for
processing medical documentation written in plain natural language (Spyns,|1996).

This work aims to anonymize important underlying information from elec-
tronic health records to check if HIPAA records are GDPR compliant, and that
implies that NLP techniques are a core component. The motivation reflects a
problem with automatically accessing information from disseminated data sources
due to their content form, which is solvable by using NLP techniques to structure
information by extracting relevant information from narrative documents. NLP
techniques have, overall, various applications, including information extraction
and retrieval, document classification, machine translation, and others (Iroju and
Olalekel [2015). However, this work’s crucial process is entity extraction or also
known as named entity recognition which is a base for various tasks related to
information extraction.

2.3 Named Entity Recognition

Nowadays, named entity recognition (NER), also comprehended as entity ex-
traction, is a relevant and widespread data preprocessing subtask of NLP. This
concept entails detecting essential information, namely named entities, in text
and categorizing them into predetermined categories (Sun et al.,[2018).

NER introduction origins back to the end of the 20th century, when re-
searchers presented their work on the "named entity” task at the Sixth Message
Understanding Conference (MUC-6), where the motivation was to recognize
people names, organizations, and geographic locations in plain text. In this work
three entity identification and labeling subtasks appear: ENAMEX, TIMEX and
NUMEX (Grishman and Sundheim, [1996).

Since 1996, there have been many interpretations of NER systems, and en-
gagement in enhancing them has been advancing with the first result of creating
similar named entity recognition tasks such as CoNLL (Sang and De Meulder,
2003) and ACE (Doddington et al, 2004). Likewise to the Gudivada theory
from 2018, three major approaches to NER are still typical: lexicon-, rule-based,
and machine learning systems (Rao and Gudivada, 2018). Regardless, some
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NER systems are not solely concentrating on a single but are utilizing multiple
approaches (Keretna et al) 2014). Furthermore, a reference to the Kannan et al.
thesis from 2016 indicates that a standard NER system pipeline possesses several
data preprocessing steps, including tokenization, sentence splitting, and feature
extraction. Afterward, the pipeline introduces machine learning instances that tag
the data, while the postprocessing stage eliminates certain tagging inconsistencies
(Derczynski et al.,|2015).

Its ability to scan entire documents and identify individual entities makes
the concept of NER crucial in every industry that has to cope with information
extraction from massive data sets. Due to the fact healthcare is expanding
its boundaries since the technology evolves and allows us to gather any kind
of information, there is a need for handling inconsistencies and structuring
healthcare documents.

2.3.1 Named Entity Recognition in Healthcare

Named entity recognition tackles several challenges in healthcare, especially
information extraction tasks (Gorinski et al. 2019; Gligic et al., 2020; [Jain et al.|
2021;/Chen et al.|[2019). Thus, the first objective of NER in healthcare is to classify
text contained in medical data sources such as discharge summaries, physicians’
case notes, and pathologists’ and radiologists’ reports. Afterward, processed
categories serve different purposes depending on the background goal, and in this
work, they are in service of data anonymization.

Multiple factors come into play when extracting information, and emphasizing
domain expertise and ambiguities of medical terms can oblige in discovering
medical NER drawbacks and inadequacies (Gong et al., 2015). The standard
NER approach focus on part-of-speech data. Yet, NER methodologies and fun-
damentals have changed throughout time. One significant work from Lample
et al. revealed a conceptual model that bases NER on long short-term memory
scoring state-of-the-art performance in entity extraction from English Lample
et al. (2016). In reference, a Seventh Message Understanding Conference review
discovered that the best NER models achieve only 3% less performance than actual
humans presenting an excessive result (Marsh and Perzanowski, (1998). On the
other hand, documentation in health care seldom uses simple and standardized
natural language. Multiple interpretations and ambiguities make it harder for
NER systems to achieve state-of-the-art performance as presented in Marsh and
Perzanowski work. Thus, the medical NER task is more challenging (Gong et al.,
2015} [Leaman and Gonzalez, 2008).
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Numerous methodologies strive to accomplish medical NER tasks, but the
objective is to identify the most effective ones. Wu et al. evaluated the per-
formance of extracting information from medical reports leveraging two deep
learning architectures. The experiment compared the performance of three base-
line conditional random fields (CRFs) models and two state-of-the-art clinical NER
systems with two deep learning approaches, the convolutional neural network
(CNN) and the recurrent neural network (RNN). Using the 12B2 2010 data set,
deep learning techniques, particularly RNN, by scoring the new state-of-the-art
F1 score of 85.94, transcended other models’ performance (Wu et al., 2017).

Transfer learning with neural networks (NN) is one of the typical deep learning
ways of tackling named entity recognition tasks. Related work by (Lee et al.
2017) investigated how far this approach may alleviate the challenge of extracting
medical entities. The model had six key components (token embedding layer,
character embedding layer, character LSTM layer, token LSTM layer, fully
connected layer, and sequence optimization layer) and used the MIMIC dataset
for transfer learning training and 12B2 2014 or 2016 datasets for fine-tuning. As a
result, the most extensive advancement was on 12B2 2014 when using 5% of the
dataset as the train set, and using the whole train set led to the highest 97.97 F1
scores.

A study by Gligic et al, (2020) opposed the medical NER challenge complex-
ity by investigating the performance of transfer learning bootstrapped neural
networks. The goal of this research was to automatically identify and forecast
annotations consisting of all references of pharmaceuticals used by a patient and
several related fields per term that were core labels in the I12B2 2009 Medical In-
formation Extraction challenge. The model implemented in the work pre-trained
word embeddings on a secondary task done on an immense pool of unannotated
EHRs and utilized the output embeddings as the foundation of a range of NN
architectures. The outcome was a model attaining a 94.6 F1 score which was
4.3 higher than the 12B2 2009 Medical Extraction Challenge winner’s model. In
addition, identifying connections between medical terms using attention-based
seq2seq models bootstrapped in the same way reported an F1 score of 82.4.

In contrast to the model presented in (Gligic et al| (2020), Yu et al| (2019)
used a different approach for training a model on the 12B2 2010 challenge
dataset to perform named entity recognition in electronic medical records. The
initial phase in Yu et al. (2019) work employed a model based on Google BERT,
specifically the BioBERT model, which comprised pre-training on a corpus of

10
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medical-related subjects. Afterward, the text was transformed into a numerical
vector and utilized to train BILSTM-CRF to complete entity tagging. Even though
the results showed that this method enhances NER performance in healthcare, the
obtained F1 score of 87.1 was inferior to the overall score accomplished by transfer
learning bootstrapped neural networks (NN) presented in Gligic et al[(2020) work.

Besides, countless significant pieces of research connected to medical NER,
such as a study on the comparison of rule-based and machine learning approaches
by |Gorinski et al|(2019) or work describing multi head selection methods for
medical NER by Fang et al. (2021), exist. However, this work foundation is mostly
connected to the study of extracting clinical entities and relations from radiology
reports, namely RadGraph study (Jain et al.,[2021).

Jain et al. (2021) used a novel information extraction schema for structuring
the Findings and Impression sections of radiology reports from MIMIC-CXR and
CheXpert data sets. The goal of simplifying the annotation task for radiologists
and improving labeling consistency and speed obeyed three phases. After
finishing entity extraction and annotation of test data sets by broad-certified
radiologists, the development of the RadGraph Benchmark model that achieved
the highest F1 score followed.

2.4 Data Anonymisation Techniques

Data anonymization is the process of eliminating or manipulating sensitive
data that has the potential to identify an individual of interest while retaining
the data’s format and type. Since every individual has a valid right to keep
private information confidential, this process is essential in many industries to
preserve data privacy and protection. Thus, data confidentiality laws pressure
e.g. social networks, banks, or hospitals to prevent data breaches. Consequently,
disclosing any personal information with a third party implies a need for data
de-identification, which leads us to the data anonymization technique choice
being dependent on stakeholders and the defined risk (Raghunathan, 2013).

To address the data anonymization challenge, Mogre et al| (2012) classified
personal information into three categories: sensitive attributes and unique- and
quasi-identifiers that identify a person only when combined in a context. In con-
nection, they argue that the main privacy-protecting paradigms are: k-anonymity
(Sweeney, 2002) and l-diversity (Machanavajjhala et al.,[2007) models. Neverthe-
less, various studies, sych as Friedman et al. (2008); Fung et al|(2007); Kisilevich

11



2 Background

et al[(2009), also identify the k-anonymity model and its implications as typically
employed techniques for privacy protection. Again referring to Mogre et al.
(2012) work, bucketization and generalization are typical data anonymization
techniques. A practice of generalization reflects in abstracting an identifier into
a generic, non-unique value. On the other hand, bucketization divides records
into tiny buckets, preventing attackers from associating sensitive attributes and
unique identifiers. In addition, it distinguishes from generalization due to its
inability to generalize the quasi-identifiers.

One more practical evaluation of the generalization anonymization tech-
nique is in work by Murthy et al.[(2019). This study includes an experiment that
analyzes performance and reviews the benefits and drawbacks of, in total, five
alternative data anonymization techniques on the same data set. The following
anonymization techniques are particularly in focus: suppression, generalization,
swapping, masking, and distortion. Murthy et al. (2019) explained generalization
using tabular data, where the objective is to replace the value on the cell level with
a less specific but semantically compatible value. The evaluation revealed that
suppression is the most efficient technique since it eliminates the whole column
or tuple from the data set and replaces it with some meaningless value, such as ***.
In contrast, the lowest efficiency stems from swapping, which entails randomly
rearranging variables within each column. Moreover, results illustrate "swapping”
as the most resource-intensive technique, whereas suppression consumes at least
resources.

Motivated by the rising interest of the academic community in privacy-preserving
data publication (PPDP), Majeed and Lee|(2020) also reviewed numerous represen-
tative data anonymization techniques that exist to confound privacy challenges
in application-specific scenarios of social networks. These approaches commonly
anonymize data from graphs or tables depending on the data owners. Graph
anonymization camouflages sensitive graph attributes without reducing the
utility of the graph’s anonymized form. On the other hand, data in tabular form
sanitizes quasi-identifiers original values to make information negligibly unique.
Thus, Majeed and Lee| (2020) have incorporated four complementary phases for
table or graph anonymization. These steps involve: deleting directly identifiable
information from the original data, choosing an anonymization technique,
selecting an anonymization operation, and enforcing necessary constraints. Still,
the conclusion indicated the complexity of data anonymization and the need for
further improvements still exists and depends on the context and the related
research field.
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2.4.1 Data Anonymisation Techniques in Healthcare

Technological advancements accelerated the expansion of the healthcare domain.
Foremost, the internet influenced the invention and development of numerous
unified and interconnected sensors and medical equipment that produce and
transmit sensitive information, resulting in the rapid dissemination of data
collected. As a result, easy access to massive collections of information is possible
(Onesimu et al., |2021} Jayabalan and Ranal 2018). Even though sharing private
data has significant risks of data breaches, researches such as (Olatunji et al.
2022; |Abouelmehdi et all [2018; Mohammed et al.l |2009; |Onesimu et al.l 2021}
Jayabalan and Ranal 2018) pointed out that the interchange of information
recorded in health records has an immense impact on the healthcare domain in
faster decision-making, improving treatment quality, preventing diseases, and
reducing costs. Therefore, disseminating information is a crucial demand in
healthcare system management, and the need to ensure patients’ privacy resulted
in privacy-preserving data collection (PPDC) being in high demand.

The first significant progress in the related work arose after an incident in
the late 20th century when the Massachusetts Group Insurance Commission (GIC)
released health data for research purposes. Massachusetts Governor Bill Weld
firmly claimed that all published data is confidential, given that key identifiers
are anonymized. However, a student named Latanya Sweeney escorted the
event when Weld ended up in the hospital after fainting in public. That resulted
in her showing how his GIC identity would be re-identified with low effort.
Additionally, Latanaya created the formal k-anonymity model augmented by
l-diversity and t-closeness to overcome the inadequacies of prior anonymization
techniques. Consequently, data anonymization came closer to attaining the aim of
fully maintaining privacy. Yet, balancing the volume of data anonymization with
appropriate utility remained a complicated and error-prone manual procedure
(Ohm, [2009).

After Dwork| (2008) released their study, it became a temporary solution to
the privacy vs. utility conundrum. Using the epsilon parameter to define the
degree of privacy, this mathematical model explicitly answered the issue of how
anonymous a person was in a data record. The objective was to maintain epsilon
as low as feasible, limiting the number of queries done on a single data set. Even
though the public soon broadly accepted this notion, it took just several years
until Google and Apple began collecting differential private user statistics and the
well-known utility vs. privacy conundrum returned.
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Until now, research has made significant progress leading to the discovery
of several models and strategies for data anonymization (Kushida et al., 2012).
Countless conducted studies, such as (Olatunji et all 2022; |Abouelmehdi et al.,
2018; Mohammed et al. [2009; |Onesimu et al. 2021; Jayabalan and Rana, 2018;
Cai et al, 2016), explain their implementation and performance. However, a
scientific publication by Vovk et al| (2021) features analysis and assessment of
the most often-used approaches from 2017 until 2020. It reveals at least seven
innovative anonymization approaches for health data discovered over these
three years. Most of them rely on k-anonymity, l-diversity, and t-closeness
models. However, the study prefaces recently discovered anonymization utilizing
cryptographic algorithms as well. All these models have in common an already
famous obstacle in finding the right balance between privacy preservation and
data utility. Additionally, Vovk et al. (2021) suggested that data anonymization is
not only a technological problem but requires legal requirements for preserving
privacy. Consequently, more suitable algorithms should come in the following
years.

A study by Ben Cheikh Larbi et al| (2022) investigates the adequacy of
anonymization techniques in clinical text processing. They use annotated
discharge summaries from 2010 12B2/VA, 2018 N2C2, 2006 Smoking Challenge,
and 2008 Obesity Challenge data sets and pairs of sentences extracted from
MIMIC-III contained in MedNLI and ClinSTS data sets. All experiments use BERT
base and Bio-Clinical BERT while training is done for different anonymization
approaches: suppression (Mamede et al., [2016), perturbation (Zuo et al., 2021),
substitution (Mamede et al.,|2016) and aggregation (Samarati and Sweeney, 1998).
In connection to the chosen approach, techniques of interest are: de-identification,
mask numbers, shuffle sentences, random swap, synonym replacement, clinical
concept synonym replacement, and text aggregation. The experiment further
presented in Ben Cheikh Larbi et al. (2022) shows that there is no one-size-fits-all
anonymization technique. The best approach is chosen based on the security
requirements, the data sensitivity, and the actual NLP task. Furthermore, text
aggregation produces the best results compared to other evaluated approaches
and provides sufficient protection against re-identification. Unfortunately, it has
some drawbacks, including the highest performance loss.

According to the most recent study, privacy protection is still an error-prone
procedure owing to membership disclosure, identity revelation, and attribute
disclosure. A necessity for improvement of the well-known data anonymization
techniques, namely generalization, suppression, pseudonymization, bucketiza-
tion, and slicing, still exists. A complete solution for privacy concerns is still
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missing, and an appropriate getaway from data breaches is waiting for advance-
ment (Jayapradha and Prakash, 2022). One of the attempts at advancement is
Crossfield et al. (2022) study. It mirrors an ethical, legal, and intellectual review to
demonstrate how to develop a new framework that emerges beyond the current
minimum criteria for efficient pseudonymization and anonymization. The Com-
prehensive Patient Records (CPR) devised and executed this framework leveraging
individual-level irreversible connection via a non-computer-intensive method.
Lastly, this approach was effectively applied to hospital, general practice, and
community electronic health record data from two providers and patient-reported
outcomes. However, further research and improvements in this field are expected
and necessary.
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Data anonymization is the process of de-identifying personal information in
electronic health records (EHRs) to protect the privacy of patients and ensure
compliance with privacy laws such as the Health Insurance Portability and
Accountability Act (HIPAA) and the General Data Protection Regulation (GDPR)
(Martinez et al., 2013 [Shuaib et al. [2021} Tovino, 2016} Shah and Khan, {2020;
Price et al. [2019). Even though HIPAA includes personal health information
de-identification, this may not be sufficient for GDPR compliance (McCall,
2018; Annas, [2003). Healthcare organizations need to implement effective data
anonymization strategies to ensure the confidentiality of personal information
in EHRs for, among others, medical tourism and international research cases
(Mooney, 2018). Previous research, including Tovino| (2016)); Shuaib et al. (2021);
Koeninger et al.|(2020); Alamri et al. (2021); Meystre et al.[(2010), has investigated
differences between HIPAA and GDPR, and approaches to solving this problem
(Szarvas et al., [2007; Jeong et al. 2020; Yoon et al., 2020; Lindberg et al. 2020).
Yet, there are still gaps in the understanding of the automatic detection of cases
where HIPAA compliance is not equivalent to GDPR compliance which indicates
that anonymized medical data which meets HIPAA standards does not always
meet GDPR standards. Therefore, this work builds upon the existing body
of research by proposing a novel approach for automatically detecting cases
where HIPAA anonymization is insufficient for GDPR compliance in EHRs while
offering assistance to healthcare organizations in protecting patients’ privacy. In
addition, this section summarizes pertinent literature and uses it as the basis for
the machine-learning model design and later methods section.

3.1 Data Anonymisation and Named Entity
Recognition on EHRs

Among the methods for data anonymization in EHRs, one approach, brought

up in researches such as Rajendran et al. (2017); Khan et al. (2020); |Shin et al.
(2012), suggests applying methods for de-identifying structured data, such as
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demographics and laboratory test results. These methods involve techniques such
as k-anonymity that replaces sensitive values in a dataset with a range of values
that preserve the privacy of individuals. Another approach to data anonymization
in EHRs suggests natural language processing (NLP) techniques, such as named
entity recognition (NER) (Szarvas et al.,|2007; Saluja et al.| 2019; Gkoulalas-Divanis
et al.,[2014) which are the basis of this work.

Named entity recognition is a NLP task that involves identifying and classi-
fying named entities in text, such as proper nouns and named entities. Nowadays,
people use it for various purposes, such as extracting information, summarizing,
and answering questions. A work by Nadeau and Sekine (2007) provide a general
overview of named entity recognition and classification approaches. This survey
addresses a wide range of NER methods, including rule-based, statistical, and
machine-learning techniques applied in various industries. In addition, Nadeau
and Sekine| (2007) discusses the challenges and limitations of NER, such as the
variability and ambiguity of natural language and the need for large amounts of
annotated training data. This paper is a valuable resource for researchers and
practitioners interested in NER and data anonymisation techniques. However,
performing named entity recognition on EHRs poses more significant matters
than general tasks and needs a customized approach to ensure proper handling of
abbreviations, Latin words, and multi-word phrases. Additionally, it is challenging
to compare the results of different NLP research publications accurately. The
reason is the significant variance in experimental requirements, such as varying
data sets, cross-validation techniques, and numerous evaluation measures. An
aspect for efficiently overcoming this issue reflects the shared platform for
researchers where they can compete with their models, such as I2B2 (Patrick and
Li, 2010; [Stubbs et al., 2015; Wu et al., 2015) and the CLEF eHEALTH challenges
(Goeuriot et al.l 2020; Neveol et al., 2016, |2015).

A growing body of research on NER for EHRs focuses on developing effec-
tive and efficient methods for identifying named entities in clinical narratives. A
summary of some relevant papers including Gligic et al. (2020); Gorinski et al.
(2019); Fang et al. (2021); Jain et al.|(2021); [Yu et al. (2019); Lee et al.|(2017); (Wu
et al. (2017) is provided in the Background section. As a short recap, Gligic et al.
(2020) proposed a transfer learning approach for NER in EHRs using pre-trained
neural network models on large general-domain corpora and fine-tuning them on
a smaller EHR-specific corpus. The proposed technique combines the advantages
of transfer learning, such as improved performance and reduced training time,
while using bootstrapping techniques to generate additional training data for the
fine-tuning stage. In contrast, Gorinski et al. (2019) compared the performance of
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three NER approaches for EHRs: rule-based, deep learning and transfer learning
systems on brain imaging reports with a focus on records from patients with
stroke. The rule-based approach used a set of predefined rules to identify named
entities in clinical narratives, while other two approaches used a neural network
model trained on the same annotated corpus of Scottish radiology reports from
two sources. Furthermore, Yu et al| (2019) proposed the use of BioBERT, a
pre-trained language representation model that was specifically designed to
encode biomedical text using a linear support vector machine (SVM) classifier to
identify named entities.

3.1.1 Named Entity Recognition on Radiology Datasets

Scientists use radiology data sets containing medical images and related in-
formation for research and education. Radiology data sets often comprise a
wide range of imaging techniques, such as X-ray, CT, MRI, and ultrasound, as
well as an explanation of various medical conditions (King, 2018; McBee et al.
2018; Kansagra et al.,, 2016). In connection with radiology data sets, NER can
automatically extract critical medical information, such as the type of exam
performed, the body part imaged, and the details about the patient’s diagnosis.
Because of the presence of specialist medical language in presentations of health
conditions, NER complexity on radiology data sets increases compared to general
domain tasks. Therefore, machine learning methods such as recurrent neural
networks Perez-Diez et al. (2021); Gridach|(2017);|Yoon et al. (2019); Gorinski et al.
(2019) are widely employed.

In connection, Perez-Diez et al| (2021) studied de-identification of Spanish
medical records on a collection of radiology reports, most of which were for-
matted as free-text portions preceded by headers. The strategy described in
this study coupled named entity recognition tasks with entity randomization
and evaluated four neural networks. The best model, LSTM-LSTM-CRF with
EMA, showed a higher F1 score in conducted tests. Additionally, the results
demonstrated that this strategy does not require a large training corpus and
is expandable to other languages and medical texts. On the other hand, it
requires knowledge about de-identified reports, which is a drawback compared
to regular expression-based strategies. Another intriguing study using neural
networks for named entity recognition, namely Catelli et al. (2020), evaluated
the efficiency of cross-lingual transfer learning for de-identifying medical data
written in a low-resource language employing a high-resource language. Using
two pre-trained NER architectures, Bi-LSTM+CRF and BERT, the experiment
on two data sets given by the Italian Society of Radiology presented a double
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training using Bi-LSTM+CRF architecture in combination with MultiBPEmb and
Flair Multilingual Fast embeddings as the best strategy. However, this strategy
indicates limitations in terms of the size of the data sets.

3.1.2 Named Entity Recognition on I12B2 Challenge and
MIMIC Dataset

The MIMIC dataset is a massive collection of de-identified health data from over
40,000 patients treated in the ICU at the Beth Israel Deaconess Medical Center
in Boston, Massachusetts. It contains various types of patient information, such
as demographics, vital signs, medications, laboratory test results, and diagnoses.
On the other hand, the 12B2 Challenge dataset is a collection of EHRs consisting
of de-identified clinical notes and other documents from the Partners Healthcare
System in Boston, Massachusetts. This set includes progress notes, discharge
summaries, and radiology reports annotated with numerous clinical concepts
using standardized codes from the Unified Medical Language System. It is impor-
tant to note that both datasets contain a wide range of medical terminology and
abbreviations, which can make NER challenging, and tasks such as lowercasing,
stemming, and removing punctuation and stopwords are necessary.

Convolutional and recurrent neural networks (RNN) are the most common
deep learning architectures used on MIMIC and 12B2 Challenge data sets. RNN
models deliver state-of-the-art performance with a high F1 score, outperforming
the best-reported system based on manually generated and unsupervised learning
features. The outcome implies a strong association between clinical concept
extraction baselines and the idea of neural networks (Wu et al., 2017). However,
achieving state-of-the-art results requires either training neural networks on
a conveniently labeled dataset (Lee et al., |2017) or improving NER tasks by
hyperparameter tuning, combining pre-training data, custom word embeddings,
or optimizing out-of-vocabulary words (Hofer et al. [2018). Although we are
discussing the I2B2 Challenge and MIMIC datasets, it is worth noting that
there is a high shortage of labels for patient note de-identification, and labels
may be difficult to obtain in some cases (Lee et all 2017), thus mentioned NER
task improvements may increase results by almost 10% (Hofer et al., 2018). A
significant contribution to the application of neural networks to automatically
learn features from random assignments and automated word embeddings is work
by Unanue et al., (2017), which enfolds two deep learning methods, namely the
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Bidirectional LSTM and the Bidirectional LSTM-CREF. This study holds evidence
of how initializing the feature with pre-trained embeddings using a MIMIC-III
data set can avoid costly feature engineering and achieve higher accuracy under
the constraint of retraining the embeddings over adequate domain datasets.
Furthermore, an agile, production-grade clinical and biomedical NER algorithm
based on a modified BILSTM-CNN-Char deep learning architecture confirmed
hyperparameter tuning benefits. In addition, this model outperforms the accuracy
of commercial entity extraction solutions such as AWS Medical Comprehend and
Google Cloud Healthcare API by a large margin, without using memory-intensive
language models Kocaman and Talby|(2022). Another approach proposed in Jiang
et al| (2019) aimed to improve NER task using Elmo and Flair as contextualized
embeddings and prior knowledge resulted in an F1 score of 87.30%. This training
used the I2B2 Challenge dataset, and adding a medical lexicon to the word
embedding increased the F1 score by about 1%.

Besides already mentioned approaches, there are other significant state-of-
the-art transformer-based NER models such as BERT, ALBERT, RoBERTa, and
ELECTRA (Tian et all 2021). BERT can be fine-tuned on a labeled dataset to
predict the named entities in a given text. To do this, the input to the model is
a sequence of tokens and the output is a sequence of tags indicating the named
entities present in the input (Devlin et al., 2018). ALBERT is designed to be faster
and more memory efficient than BERT, while still maintaining strong performance
(Lan et al.,2019). RoBERTa is designed to improve upon BERT by using more data
and a more efficient training process (Liu et al.,|2019). ELECTRA is designed to
use a different masking, but is not necessarily the most efficient even if it showed
satisfiable performance (Clark et al.,|2020).

3.1.3 NLP Tools for Named Entity Recognition in EHRs

Aside from noteworthy relevant studies relating to the use of neural networks
for the NER challenge, there are countless commercial and open-source tools for
named entity recognition in EHRs, such as multiple text mining methodologies,
strategies, and tools on discharge summaries (Nair et al., 2021). While commercial
tools provide a user-friendly interface and an assortment of pre-trained models
for common medical concepts, open-source software, on the other hand, is freely
available, customizable, and trainable on specific data sets.

History reflects different tools for NER in EHRs, many of which find their

application even today and use the UMLS for extracting clinical information
(Lindberg; [1990), including cTAKES (Savova et al., 2008) and MetaMap (Aronson,
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2001), with cTAKES being open-source. Furthermore, tools such as SPRUS (Haug
et al., [1990) and MedLEE (Friedman et al., |1995) utilize machine learning algo-
rithms in combination with the UMLS to perform NER challenges in the medical
domain. In addition, MetaMap also uses the UMLS and is highly configurable,
allowing users to specify the types of entities and the level of detail they want to
extract (Aronson, 2001). In each case, it is necessary to evaluate the output of the
applied tool since every NLP technology is susceptible to mistakes.

Training a commercial fine-tuned version of the NLP engine termed Lin-
guamatics I2E version 5.3.1 on free text clinical letters produced a satisfactory
F1 score on the test set. Consequently, the result confirmed successful detection
performed by commercially available NLP engines (Trivedi et al,, 2020). In
addition, an example of a commercial tool for the NER challenge named the
Natural Language Toolkit (NLTK) contributed evidence. NLTK contains tools
and modules for tasks like tokenization, part-of-speech tagging, stemming,
and sentiment analysis. While NLTK preprocesses and recognizes radiological
report data in the commercial domain (Bird et al., [2009; Loper and Bird, [2002),
the Medical Text Indexer (MTI) is publicly available and may be modified and
trained on specific data sets (Luo et al.; 2020; Miranda-Escalada et al., 2022). Once
trained, both models may automatically recognize and categorize named entities
in radiological reports (Bird et al., [2009; Loper and Bird, [2002; Luo et al., [2020;
Miranda-Escalada et al., [2022).

However, none of presented tools in e.g. Bird et al| (2009); Loper and Bird
(2002); Luo et al.| (2020); [Miranda-Escalada et al| (2022) is without drawbacks.
To address the challenge of limited performance of existing NER tools due to
dependency between the number of entities and the dictionary, the development
of RadLex in work by [Tsuji et al., (2021) is an influential discovery. RadLex
Tsuji et al) (2021) is a standardized terminology for radiology developed by the
Radiological Society of North America (RSNA) and sets a common language
for radiology experts. A RadLex-based NER tool uses RadLex to determine and
classify named entities, such as anatomical structures and medical procedures, in
radiology reports helping to improve the accuracy and consistency of radiology
reports, as well as facilitate the extraction of structured data for use in research
and clinical decision-making. One experiment connected to the development
of customized pipelines utilizing RadLex and SentiWordNeton on 400 manually
annotated radiology reports for compound words in noun phrases revealed that
utilizing RadLex increased outcomes by 22%. Thus, to conclude is that leveraging
stem term properties may construct synonymous phrases using ontologies,
leading to vocabulary growth.
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3.1.4 Named Entity Recognition Methods for automatic
de-identification of EHRs

Automatic de-identification of EHRs involves the application of various methods
to remove or mask identifiable information from the records while preserving the
clinical content and utility of the data. These methods usually establish two differ-
ent groups: pattern matching and machine learning. Many systems combine both
approaches for different types of protected health information (PHI) (Meystre et al.,
2010), including NER tasks in the automatic de-identification as follows:

+ Rule-based NER: defining rules or patterns to efficiently identify named en-
tities in the structured text, such as lists or tables, but may find an applica-
tion for unstructured text as well (Trienes et al., [2020; |Gralinski et al., 2009
Meystre et al.,{2010)

« Machine learning-based NER: training a machine learning model on a la-
beled dataset of named entities to identify named entities in new text
(Szarvas et al., 2007; Meystre et al.,2010)

« Hybrid NER: combining rule-based and machine learning-based approaches
to NER with the outcome of being efficient for identifying named entities in
both structured and unstructured text (Meystre et al.,2010)

3.1.4.1 Data Anonymization Techniques to achieve HIPAA compliance in
EHRs

Several rule-, machine learning-based, and hybrid NER tools are available for
anonymizing EHRs data to meet HIPAA compliance. One is the Health Infor-
mation DE-identification (HIDE) developed by |Gardner and Xiong| (2008), which
automatically de-identifies patients’ data while applying a machine-learning NER
method based on Conditional Random Fields (CRF). A repeated classification
and retagging of the training corpus during the implementation reflect the most
extensive characteristics of this model. In addition, HIDE meets all HIPAA
requirements, and scientists consider it to be effective, with an overall accuracy
for all attributes of 98.2% based on the training on 100 pathology reports from the
Winship Cancer Institute at Emory.

In contrast, another solution to the anonymization of EHRs problem lies in
support vector machines. Guo et al., (2006) tackled this issue as a classification
matter of the NER task using SVMlight to develop a system that does not use
regular expressions. The system used the information extraction system called

23



3 Related Work

ANNIE with the modified definition of an entity to match PHI, disseminated
with open-source GATE, to preprocess and annotate a training set. Additionally,
adding features identified through empirical testing contributed to the satisfactory
prevailing performance. However, meeting HIPAA requirements and reaching
high F-score was not enough to outperform other teams participating in the 12B2
de-identification challenge. On the other hand, the SVM-based model developed
by Hara et al|(2006) during the same I2B2 de-identification challenge showed
better results than work presented in Guo et al|(2006). The system presented
in |Hara et al. (2006) included pattern matching for headings, regular expression
for numerical attributes, a sentence classifier, and an SVM-based text chunker
for information extraction and anonymization. After three runs, the run without
sentence classification scored the highest performance while being HIPAA
compliant. Furthermore, Szarvas et al|(2006) proposed one of the best-performing
models during the same de-identification challenge. This model’s base was not
connected to previously described SVM approaches but to a fine-tuned version
of an existing multilingual system that uses boosting and an iterative learning
method based on decision trees. By employing categorized lexical triggers and
training set frequency while supporting regular expressions for identifying
prevalent patterns of PHI, it achieved an F-score higher than 96% in the best out
of three runs|Szarvas et al.| (2007).

In recent years, studies have shown significant progress in the automated
de-identification of EHRs. One approach that has garnered attention is an
ensemble architecture, which combines deep learning and rule-based models
with heuristics to detect PHI. This model can accurately recognize and transform
identifiers into fictional surrogates, facilitating the generation of anonymized
patient data at a large scale. The model evaluation confirmed the efficiency of
two test data sets, including the i2b2 2014 dataset, and thus presented the model’s
potential to facilitate medical data anonymization according to HIPAA by utilizing
ensemble learning techniques (Murugadoss et al., [2021).

3.1.4.2 Data Anonymization Techniques to achieve GDPR compliance in
EHRs

While automatic de-identification for HIPAA regulation aims to prevent data
breaches only of identifiable data from EHRs collected by covered entities and
medical business associates, the GDPR, on the other hand, requires more effort
and has more strict guidelines. It includes acquiring explicit consent, accessing
data only for an explicitly defined purpose, and implementing technical and
organizational measures, including encryption and secure information storage. In
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addition, individuals need the possibility to withdraw their consent and access,
rectify, erase, or restrict the processing of their private information. Therefore, it
is hard to implement an automatic de-identification model that complies with all
GDPR points (Forcier et al., 2019;|Amin et al. 2022).

However, to de-identify critical data according to the definition of private
and identifying information contained in the GDPR, one can utilize the same
models as for de-identifying critical data according to the definition of private and
identifying information contained in the HIPAA. Therefore, one can apply models
such as HIDE (Gardner and Xiong, 2008), SVM-based models using an extraction
system called ANNIE (Guo et al.,[2006), or ensemble learning models (Murugadoss
et al.,|2021). In addition, rule-based system named DEDUCE, a feature-based CRF
or BiLSTM-CRF can be successfully applied and efficiently evaluated (Trienes
et al., 2020). Still, important to mention is that only de-identifying data using
these models as such will not be sufficient for complete GDPR compliance (Forcier
et al.,|2019; |/Amin et al.,|2022).

A study performing an automatic de-identification model evaluation named
MEDDOCAN on medical texts in Spanish confirms thought stated in the work
by [Forcier et al|(2019) and shows how deep learning methods combined with
rule-based systems and gazetteer resources achieve high performance while
maintaining privacy. Still, as |Marimon et al| (2019) suggested, de-identification
can not be the only measure to protect personal data and ensure compliance with
GDPR.

3.2 Research Gap

Automatic detection of cases where HIPAA anonymization is insufficient for GDPR
compliance in EHRs is not a comprehensively explored area of research. The prob-
lem arises in some research, yet, they concentrate on evolving machine learn-
ing and NER processes for personal data extraction and de-identification, includ-
ing strategies based on deep learning, rule-based systems, and ensemble models
(Forcier et al.,|2019;|Amin et al., 2022} Shuaib et al.,|2021) . Nonetheless, the knowl-
edge of the automatic pipelines detecting cases where HIPAA and GDPR differ is
still missing. Therefore, this work strives to answer this question and make medical
tourism and international research more flexible and accessible.
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Extensive study of the related work resulted in the conclusion that there is an
increasing demand and attention on data anonymization techniques, especially
nowadays, when automatic approaches for medical named entity recognition
advance and international research in the health industry is growing. Yet, there
is still a research gap when evaluating the compatibility of HIPAA and GDPR
with models performing textual medical information anonymization. Therefore,
this thesis focuses on automatically detecting HIPAA but not GDPR-compliant
electronic health records.

As part of the effort to answer the research question, the practical work is
divided into three parts. After obtaining the clinical dataset, data preprocessing,
annotation, and NER are the first steps that help to achieve the intermediate
goal of having a structure ready for anonymization according to HIPAA and
GDPR without additional preprocessing or adjustments. Furthermore, the second
step involves the data anonymization techniques evaluation and anonymization
according to HIPAA and GDPR. In the end, we want to construct a pipeline that
will detect HIPAA but not GDPR compliant records.

To ensure reliability of the research results, the scope of the work is re-
duced to specific PHIs of interest. Conclusively, this chapter will briefly explain
the de-identification dataset characteristics and later work will reflect on each of
the three phases in detail. In addition, we will describe which HIPAA and GDPR
criteria will be considered, while listing all relevant PHIs and their corresponding
annotations.

4.1 Dataset

The dataset of interest in this work is the 2006 N2C2 de-identification challenge
dataset. This de-identification dataset originates from a former NIH-funded Na-
tional Center for Biomedical Computing (NCBC) known as 12B2: Informatics for
Integrating Biology and the Bedside and consists of medical discharge summaries.
The dataset is drawn from Partners Healthcare System, a Boston-based hospital
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4 Initial Set-up

network, and is available for download in two formats at DBMI Data Portall
Firstly, it can be downloaded as raw, unannotated data, providing the original
information without additional PHI annotations. On the other hand, [Uzuner
et al.[ (2007) created training and test data set where the raw, unannotated data is
prepared for the de-identification challenge by annotating and replacing all au-
thentic PHIs with realistic surrogates, including eight PHI annotations: PATIENT,
DOCTOR, HOSPITAL, ID, DATE, LOCATION, PHONE, and AGE. Uzuner et al.
(2007) performed the annotation process in two phases, primarily using an auto-
matic technique and then manually validating the output. The annotation process
was accompanied by the discussion on PHI tags and in the end, tags were com-
pleted based on the researchers’ agreements resulting in total 19,498 PHI instances.

The raw, unannotated 2006 N2C2 de-identification challenge dataset consists
of 889 records, while training and test data sets contain 669 and 220 annotated
records, respectively, with one record per patient. Considering the extensive
information in these records, data analysis of complete data sets is challenging, so
we decided to select smaller, observant subsets to train, evaluate and deploy the
model.

2006 N2C2 de-identification challenge dataset

partially annotated training

subset for model training and

/ data set with 669 records fine-tuning with 170 records

unannotated data . manual selection of first
set with 889 records x records
partially annotated test | subset for model evaluation
data set with 220 records with 70 records
manual selection of random

X records

!

subset for model deployment
with 100 records

Figure 4.1: 2006 N2C2 de-identification challenge dataset split and selected subsets
for the model development and deployment
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4.1 Dataset

Although our initial plan was to annotate the data from scratch using only
the unannotated data set, we encountered several limitations in pre-trained mod-
els like SpaCy. Consequently, we used partially annotated data sets as a baseline
for the model’s training and testing. Therefore, we chose a subset from the
partially annotated training data set for model training and fine-tuning. Secondly,
we selected a subset from the partially annotated test data set to evaluate the
model developed, and lastly, we identified a subset from the unannotated data set
to serve the purpose of model deployment.

To choose representative samples for each subset, we set several constraints
and observed consistency in structures, types, amount of information per
record, and its’ quality. This evaluation revealed that data sets do not contain
incomplete information, and the subsets’ selection can follow randomly without
bias. Therefore, we manually selected the first 170 out of 669 records from the
partially annotated training data set, the first 70 out of 220 records from the
partially annotated test data set, and 100 out of 889 random records from the raw,
unannotated data set. The visual representation of the data set split and subset
selection is shown in Figure 4.1.

Conclusively, the subset selection helped to reduce computational complexity,
and even though selected subsets may appear small, they enable a comprehensive
analysis and model development without compromising the validity of the
findings and ensure confidence that the generalization of results to the entire
dataset is possible.

Partially annotated training and test data \ Raw, unannotated data

<PHI TYPE="ID">123547445< /PHI> 123547445

<PHI TYPE="HOSPITAL”>FIH< /PHI> FIH

<PHI TYPE="DATE”>11/19< /PHI> 11/19

HISTORY OF PRESENT ILLNESS : HISTORY OF PRESENT ILLNESS :

Mr. <PHI TYPE="PATIENT”>Blind< /PHI>
is a 79-year-old white white male with a
history of diabetes mellitus , who underwent
open repair of his increased diverticulum at
<PHI TYPE="HOSPITAL”>Sephsandpot
Center< /PHI> .

Mr. Blind is a 79-year-old white white male
with a history of diabetes mellitus , who
underwent open repair of his increased
diverticulum at Sephsandpot Center .

Table 4.1: The first x entries from the partially annotated and unannotated data
sets to showcase the dataset structure
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The structure of partially annotated and unannotated data sets Table 4.1
demonstrates the structure of the unannotated and partially annotated data sets,
where partially annotated training and test data sets do not differ in format and
contain PHI annotations provided by [Uzuner et al, (2007). To provide a better
overview and preliminary understanding of the content, the table includes the
first few entries from each data set as examples. While the unannotated data con-
tains only raw medical records’ text, partially annotated training and test data
map relevant PHI information to the respective annotation: PATIENT, DOCTOR,
HOSPITAL, ID, DATE, LOCATION, PHONE, and AGE.
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5 PHASE I: Data preprocessing,
annotation, and NER

This part of the work provides an overview of the data preprocessing techniques
and extends existing annotations necessary for respective PHI anonymization. Ad-
ditionally, it specifies the HIPAA and GDPR PHI of interest belonging to the re-
duced scope of the work and highlights that the partially annotated training and
test data provided by [Uzuner et al.|(2007) does not cover all involved PHI entities.
Therefore, we will extend training and test data set annotations by incorporat-
ing pre-trained models that ensure coverage of all PHI of interest, such as SpaCy
and SciSpaCy. Consequently, we will explain the reasoning behind fine-tuning the
BERT model on the extended annotations and reflect on the results and the chal-
lenges encountered during the first part of the practical efforts: data preprocessing,
annotation, and fine-tuning the BERT model.

HIPAA and GDPR PHI of Interest

HIPAA and GDPR impose strict guidelines on personal health information collec-
tion and use. While HIPAA covers a smaller scope by defining PHI as information
about an individual’s physical or mental health condition, the treatment of that
condition, or the payment for the treatment, GDPR must protect any data that
relates to or can lead to the identification of a living person.

To provide a better understanding of general data protection regulations,
we created Table 5.1 containing more information about the type of data to be
protected and the scope when the respective regulation must be in place. In
addition we listed several examples that include personal and health data of
interest for both data protection regulations.

Following the guidelines from Table 5.1, we identified that even if the an-
notations provided by Uzuner et al. (2007) are valuable, they do not contain any
health-related information or provide full coverage of affected HIPAA and GDPR
entities. Therefore, we decided to use Pronto ontology and pre-trained SpaCy and
SciSpaCy models to extract the missing sensitive information while reducing the
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5 PHASE I: Data preprocessing, annotation, and NER

scope of the work.

|

HIPAA

GDPR

Protected information

any information about
health status, care, or
payment that is created or
collected by a HIPAA
Covered Entity, that can be
linked to a specific
individual

any data that relates to, or
can lead to the
identification of a living
person

names, email addresses,
locations, phone numbers;
health data such as
treatments, diseases,
eligibility approvals,
claims, remittances, device

Scope covered entities and their | all entities that fall within
business associates its scope
Example personal data such as personal data such as

names, email addresses,
locations, phone numbers,
racial or ethnic origin,
political opinion; health
data such as treatments,
diseases, etc.

serial numbers, etc.

Table 5.1: HIPAA and GDPR Coverage in general

Consequently, this work will cover PATIENT, PHONE, LOCATION, HOSPITAL,
ID, DATE, DOCTOR, and AGE entity types extracted from the data annotated by
Uzuner et al|(2007) and NORP, DISEASE, and CHEMICAL information extracted
by SpaCy, SciSpaCy, and Pronto ontology. For better understanding, we present
the distribution of identified PHI of interest in Table 5.2.

5.1 Data preprocessing

Data preprocessing is essential for optimizing the quality and suitability of the
data before we feed it into NER and anonymization models since it directly
influences the accuracy and efficacy of the subsequent tasks. Therefore, we must
transform original data into a form suitable for research by diminishing noise,
rectifying errors, and normalizing the data. These steps ensure that the models
developed use representative and unbiased data for training, leading to more
accurate and reliable results. Moreover, it is crucial to adapt data preprocessing
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Annotation Entity H Annotation Origin
PATIENT name of individuals who Uzuner et al/(2007)
are receiving or have annotation
received healthcare
services
PHONE phone numbers associated || [Uzuner et al[(2007)
with patients or doctors annotation
LOCATION geographic location such Uzuner et al(2007)
as city or country annotation
HOSPITAL name of healthcare Uzuner et al.(2007)
institutions providing annotation
medical treatment and
services to patients
ID unique identifiers such as Uzuner et al/(2007)
patients’ identification annotation
numbers, or any other
identification codes used
for managing
healthcare-related
information
DATE dates, such as appointment || [Uzuner et al/(2007)
dates, test result dates, or annotation
any other time-related
information
DOCTOR name of doctors or Uzuner et al/(2007)
physicians annotation
AGE age of patients Uzuner et al/(2007)
annotation
NORP nationalities, religious or SpaCy
political groups
DISEASE specific diseases or SciSpaCy and Pronto
medical conditions
CHEMICAL chemical compounds or SciSpacy
substances, such as
medication names

Table 5.2: Entities with respective annotations of interest in the scope of the work
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methods to the specific data characteristics, i.e., the characteristics of the 2006
N2C2 de-identification challenge data set.

To identify the suitable preprocessing approach, we analyzed three created
subsets on a line-by-line basis. This review enabled a more precise understanding
of the data’s structure and underlying significance, enabling relevant information
extraction. Even if the primary challenge was the presence of IDs in different
structures, dates comprising diverse forms, and medical abbreviations, we man-
aged to remove redundant entities and increase data consistency. As a result,
we prevented the inadvertent elimination of significant entities and removed
information contained in Table 5.3. from unannotated and partially annotated
training and test data subsets.

’ Information removed from three subsets ‘ Additional explanation

one label per record, existing only for
structural purposes

report_end label

’s characters
for grammatical purposes

possessive (’s) characters, existing only

definite and indefinite articles

commonly used in the English language,
removed to streamline the dataset and
move focus to the key entities

enumerated numbers

used for listing or enumeration purposes,
removed to reduce possible noise

specific special characters not contained
in date, ID, time formats or abbreviations

irrelevant special characters, removed to
reduce possible noise and confusion

. only if it is the end of the sentence

sentence split based on different delimiter

extra spaces

optimize data cleanliness

Table 5.3: Information removed from unannotated and partially annotated training
and test data subsets as part of data preprocessing

In addition, we decided to leave stop words in the data since NER learns
the best from its surroundings, while sentence delimiter for partially annotated
training and test data subsets is the 35th word and for unannotated data subset
the new line character.
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5.2 Data annotation and NER Methodology

In general, annotations enable the respective model to understand the patterns and
relationships between the variables in the chosen dataset and to produce accurate
predictions. Identifying PHI of interest implies we should map entities from the
records to their respective annotations. This mapping process is called the NER
task and lays the groundwork for subsequent analyses and data anonymization.

While the annotation process can be manual and include human efforts, it
can also involve machine learning algorithms to achieve automation. Since the
medical data is extensive and contains vast information, an automatic annotation
process is a common choice. On the other hand, manual validation of the
annotated output is necessary due to the unusual characteristics of medical
records. Even though it is time-consuming, combining both approaches ensures
high performance and decreases the possibilities for mislabeling. Therefore,
after careful planning and research, we decided to combine both approaches to
maintain patient privacy.

5.2.1 NER tagging

Since [Uzuner et al| (2007) did not extract medical data from the 2006 N2C2 de-
identification challenge data set, we must identify missing sensitive health infor-
mation. Therefore, we set up the NER tagging process for annotating missing PHI
of interest (NORP, DISEASE, and CHEMICAL) from selected partially annotated
training and test subsets. This process involves four steps, and even though various
pre-trained and open-source models are available, we chose SpaCy and SciSpaCy
as the most suitable ones for our specific requirements. In addition, we extend the
SciSpaCy model with the methodology described in|Kohl (2020) to ensure accurate
ontology term detection.

SpaCy automatically identifies and labels entities within provided data, or in
this case, medical health records. The model assigns pre-defined labels to entities
such as healthcare provider and patient names, hospital locations, or admission
dates and additionally supports custom entity recognition, allowing the extension
of original pipeline labels. However, despite many strengths, it showed some lim-
itations when extracting information from the 2006 N2C2 de-identification chal-
lenge data set. Consequently, we relied on |Uzuner et al|(2007) annotations and
excluded additional extraction of PATIENT, PHONE, LOCATION, HOSPITAL, ID,
DATE, DOCTOR, and AGE entity types, indicating we used SpaCy only to extract
NORP information.

35



5 PHASE I: Data preprocessing, annotation, and NER

SciSpaCy is a library built on SpaCy to detect information from the medical
domain. Since PHI entities under HIPAA and GDPR include patient information
such as diagnosed diseases, prescribed medications, or treatments, we decided to
utilize one of SciSpaCy’s pre-trained models trained on biomedical text. Even if the
en_core_sci_scibert model has higher coverage of medical entities, we implemented
en_ner_bc5cdr_md containing DISEASE and CHEMICAL labels as it has higher
precision and matches the reduced scope of the work. Conclusively, we identified
a possible improvement and extended the SciSpaCy model with Pronto ontology
to ensure more robust support.

Pronto is a Python library that enables the viewing, modification, creation, and
export of ontologies. It implements the specifications of the Open Biomedical On-
tologies 1.4 in the form of a safe high-level interface, allowing users to work with
ontologies without worrying about the details of ontology structure and syntax.
It contains various features, including support for different ontology formats,
reasoning, and editing. Incorporating Pronto into the pre-trained SciSpaCy model
presents a notable improvement since SciSpaCy did not always detect all diseases
reliably. Therefore, we used Pronto’s rich ontology features and tried leveraging
limited domain-specific knowledge to improve annotation process accuracy and
performance in detecting health entities.

annotated selected
subsets: PATIENT,
PHONE, LOCATION,
HOSPITAL, ID, DATE,
DOCTOR, AGE, NORP,
DISEASE, CHEMICAL

selected partially annotated training and test subset |——

SpaCy SciSpaCy Pronto

Figure 5.1: NER pipeline on selected partially annotated training and test subsets
using SpaCy, SciSpaCy and Pronto
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As a summary of the NER process applied to prepare the selected partially
annotated data subsets for the model fine-tuning, we performed four steps. The
first step included parsing the data and extracting the annotations Uzuner et al.
(2007) provided. In the second step, we applied the SpaCy pipeline to the subsets
to target the extraction of NORP entities. Next, we employed SciSpaCy to identify
mentions of DISEASEs and CHEMICALS, and, lastly, we expanded the DISEASE
annotations by applying the Pronto ontology, which added additional information
and enriched the subsets. To gain a better understanding of the current state, we
provide a visual representation in Figure 5.1.

5.2.2 Model selection

Despite successfully annotating the data by utilizing other pre-trained models, it
became evident that fine-tuning one model was necessary to achieve a unified
approach capable of predicting 11 unique PHI labels essential for subsequent
anonymization processes. Therefore, we conducted extensive research and chose
to fine-tune the BERT model.

In light of our choice to construct the BERT model capable of accurately
predicting all 11 entity types: PATIENT, PHONE, LOCATION, HOSPITAL, ID,
DATE, DOCTOR, AGE, NORP, DISEASE, and CHEMICAL, it was compulsory to
make certain modifications to the previously produced annotation format. While
there are various possibilities for these adjustments, such as BIOS, BIEOS (Savkov
et al, 2016), or synthetic chunks (Xia and Wang, 2017), this work utilizes the
BIO tagging procedure as it aligns with the input requirements of the BERT model.

BIO tagging proposes several advantages over other techniques, including
its plainness and capability to manage multiple entities within a single sentence.
Additionally, it is commonly used in the NLP community and is supported by
many popular NLP tools and libraries, making it a convenient choice for research
and development. Finally, it uses tags to mark the beginning (B), inside (I), and
outside (O) of entities within a text, and, as such, it provides a structured way to
mark the boundaries of named entities.

For better understanding, we show the first few entries of the created and
structured CSV file after performing the NER process and adapting the annota-
tions to comply with the BERT input format in Table 5.4. The table demonstrates
two columns from the file and respective annotations in a one-on-one format.
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Text

Annotations

0,123547445 fih 7111426 47933/f911
557344 11/19 /1994 12:00:00 am discharge
summary unsigned dis report status
unsigned admission date 11/19 /94
discharge date 11/28 /94 admission
diagnosis aspiration pneumonia
esophageal laceration history of present
illness mr@

"['B-ID’, B-HOSPITAL’, 'B-ID’, 'B-ID,
'B-ID’, "B-DATE’,"0’,’0’,’0’,’0’,’0’, 0’
'0,°07,°07,’0’,’0’,’0’, 'B-DATE’, 0,
'0’,”’0’,'B-DATE’, '0’, '0’, "0,
"B-DISEASE’, 'I-DISEASE’, *B-DISEASE’,
'I-DISEASE’, 'O’, 'O’, '0’, 'O’, "O’]”

blind is a 79 year old white white male
with history of diabetes mellitus inferior
myocardial infarction who underwent
open repair of his increased diverticulum
november 13th at sephsandpot center
patient developed hematemesis november
15th and was intubated for respiratory

"['B-PATIENT’,'O’, 'O’, 'B-AGE’, T-AGE’,
T-AGE’,’0’, ’0’, 0", ’0’, ’0’, 0,
"B-DISEASE’, 'I-DISEASE’, *B-DISEASE,
'I-DISEASE’, 'I-DISEASE’, °0’, ’0’,’0’, °0,
'0’,°0’,’0’, ’0’, *B-DATE’, 'I-DATE’, °0’,
"B-HOSPITAL’, I-HOSPITAL’, ’O’, ’O,
"B-DISEASE’, "B-DATE’, 'I-DATE’, ’0’, °O’,
0’,°0’, 0]

distress he was transferred to the
valtawnprinceel community memorial
hospital for endoscopy and
esophagoscopy on the 16th of november
which showed 2 c¢m linear tear of
esophagus at 30 to 32 cm patient
hematocrit was stable and he was given

’[0’,°0%,°0’,°0’, °0’,’0’, ' B-HOSPITAL’,
‘I-HOSPITAL’, 'I-HOSPITAL’,
‘I-HOSPITAL’, °’0’,°0’,°0’,°0’,°0’, °O’,
‘B-DATE’, 'I-DATE’, 'I-DATE’, ’O’, ’O’, ’O’,
’0,°0,°0,°0,°0,°0’,°0’,°’0’, °’0’, ’O’,
’0’,°0%,°’0°,°0,°0’,°0°,’0’,’0’)”

Table 5.4: Example of structured CSV file after performing NER process on selected
partially annotated training and test data

After we completed the automatic annotation of entities, we conducted a
thorough manual validation, focusing on correcting inconsistencies within the
DISEASE and CHEMICAL annotations. In addition, we also removed irrelevant
annotations SpaCy, SciSpaCy, and Pronto detected. The primary motivation
for combining automatic and manual approaches was to ensure the accuracy
of the annotations and provide the best possible quality of training data before

fine-tuning the BERT model.
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5.2.3 Model training

As the training and test data sets are fully annotated and complying with the
input format necessary for the BERT model, our next objective is to fine-tune the
model to accurately identify 11 unique PHI annotations. Fine-tuning BERT for
our purposes means training the model on the manually validated annotations
Uzuner et al. (2007) provided combined with the annotations SpaCy, SciSpaCly,
and Pronto delivered, i.e. on the fully annotated selected training data subset.

However, we must acknowledge that medical data is inherently structurally
imbalanced, making it nearly impossible to manually annotate every record.
Additionally, due to the lack of domain-specific knowledge, the manual validation
processes does not guarantee full accuracy and consistency. Therefore, model
performance may be affected as well, and before fine-tuning the BERT model,
we make an assumption that we train the model on accurate and representative
data annotations. Consequently, we identify a space for model performance
improvement in case the annotations are 100% consistent and accurate.

a sequence of text tokens first converting text into a list of tokens,
tokenized using the tokenizer which are then converted to input
from the transformers library IDs and attention masks

the token IDs are converted learn the relationships
to vector representations between the input tokens

tokens X .
INPUT ——— |  Tokenization Word Embedding Attention

BERT encoder consists of multiple transformer
encoder layers and the output of the final encoder
Y ! BERT Encoder 1

layer is the contextualized representation of the
input sequence

BERT Encoder 2

BERT Encoder N 4——‘
—— OUTPUT

a tensor of logits, which are used to predict
the label of each token in the input sequence

Figure 5.2: Structure of BERT model used in the work
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BERT Architecture BERT is a pre-trained language model with transformer ar-
chitecture, a kind of neural network that handles sequential input. Thus, this model
requires a sequence of tokens, initially transformed into fixed-size vectors via an
embedding layer, as input. The next stop for fixed-size vector processing is trans-
former layers, which consist of self-attention and feedforward neural networks.
This self-attention mechanism allows the model to observe distinct parts of the in-
put sequence and capture dependencies between tokens. Finally, the classification
layer predicts the labels for the output of the final transformer layer. In this work,
the BertModel class defines the model architecture and uses the pre-trained BERT
model reflected in PyTorch for token classification. The separate function aligns
the labels to the tokenized input data by calculating the label IDs for each token.
The DataSequence class creates a PyTorch dataset object from the input data and
aligned labels. Finally, the BertModel class defines a neural network model that
utilizes the BERT architecture for token classification reflected in PyTorch, with
the number of output labels determined by the unique labels in the input data. To
visually represent the BERT structure and explain the functionality of used model,
we provided a flowchart diagram in Figure 5.2.

Training Details The data used for model training reflects the selected manually
validated annotated training data subset. This data set contains 170 records and 11
unique, manually validated annotations converted in BIO tagging and the example
structure of the data is to be seen in Table 4.5. A training loop for described BERT-
based model also reflects PyTorch implementation and trains bert-base-uncased
model in 70 epochs utilizing early stoping criteria to prevent overfitting and iden-
tify the top-performing model. First, the data is preprocessed and transformed
into PyTorch DatalLoader objects after setting appropriate initialization settings
for monitoring the data. The selected subset is then split into training and vali-
dation part where the proportion is 8:2. The training loop then iterates over the
training part for a set number of epochs, performs a forward pass through the
model, computes the loss, and executes a backward pass to update the model pa-
rameters. After the training’s successful completion, the model evaluation follows
on the validation data, and the validation accuracy and loss are calculated.

Validation Process Since we monitor the behavior of the loss function on the
validation dataset, we can assess the performance of our model. Consequently, we
noticed room for improvement and explored alternative bio/clinical variations of
the BERT model suggested in work by (Grancharova and Dalianis (2021). We dis-
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covered that selecting bio/clinical BERT models has potential benefits due to the
specialized features these models offer for biomedical and clinical text analysis.
Therefore, we chose two BioBERT models, namely dmis-lab/biobert-base-cased-
v1.1.pt and emilyalsentzer/Bio_ClinicalBERT.pt, and incorporated them into our
experimentation. The outcome suggested emilyalsentzer/Bio_Clinical BERT.pt de-
livers the best results.

5.2.4 Model evaluation

Evaluation helps to determine how well the model performs on unseen data and
whether the model can generalize well. To this end, we evaluated the model on
the selected, manually validated annotated test data subset. The test data subset
underwent the same preprocessing steps as the training data, which ensures the
reliability and representativeness of the evaluation metrics computed, which
reflects the model’s performance on unseen data with the best accuracy and
reliability.

To generalize the model performance, we conducted three experiments to
test whether the model’s accuracy and F1 score would change after changing the
number of records. The base idea was to use the same selected, manually validated
annotated test data subset but manually choose a different number of records per
experiment. In the end, we concluded the model we fine-tuned generalizes well.

Evaluation Details This work performs model evaluation by using several met-
rics, such as the test accuracy and F1 score metrics, which measure the percentage
of correctly classified samples and the balance between precision and recall. The
evaluate function takes the trained model and test data as arguments and processes
the data in batches. Afterward, it calculates the loss, logits, and accuracy per token,
storing the predictions and labels for later use to estimate model performance.

5.2.5 Model Deployment on the Unannotated Data

Completing the fine-tuning process and subsequent evaluation on the validation
and test datasets, we determined that the Bio_ClinicalBERT model exhibited a
satisfactory performance, assuming its generalizability. With this understanding,
the next step involved deploying the model to the third subset, namely the
selected unannotated data subset consisting of 100 unannotated records. The
selected unannotated data underwent the preprocessing steps as the training and
test data subsets with the motivation of creating an optimized environment that
closely resembles the Bio_ClinicalBERT model’s training context.
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During model deployment, which considers PHI extraction from the se-
lected unannotated data subset consisting of 100 unannotated records, we stored
the model output in a specific JSON format suitable for data anonymization
algorithms we aim to apply in the later work. The JSON file contains three key
features: record id, text, and entities. While record id represents the records’
unique identifier, the text shows the respective record text, and entities serve as
a dictionary providing information about entity types, values, and start and end
positions within the record. For a better understanding, Figure 5.3 shows the
JSON file structure example.

v array [1]
v 0 {3}
record_id : 741
text : 959086752 PUOMC 6824024 094907 812890 2/1/2000 12:00:00 AM
v entities [3]

v 0 {4}
entity_type : ID
entity_value : 959086752
start_pos : @
end_pos : 9

v 1 {4}
entity_type : HOSPITAL
entity_value : PUOMC
start_pos : 10
end_pos 15

v 2 {4}
entity_type : ID
entity_value : 6824024 094907 812890
start_pos : 16
end_pos : 37

Figure 5.3: Example of JSON data structure built during model deployment to save
the output in a format convenient for anonymization algorithms

5.2.6 Architecture and Summary

Here, we present a summary of the practical part involving data preprocessing,
annotation, and NER contributing to the research question we seek to answer.
To visually represent the complete preparation for the anonymization process, we
provided Figure 5.4, which includes described stages. The first step includes select-
ing two partially annotated and one unannotated subset and preprocessing them
accordingly. Then, we consider the partially annotated training and test subsets
provided by [Uzuner et al. (2007) and extract existing annotations. Afterward, we
combine SpaCy, SciSpaCy, and Pronto to extend the annotations from these two
subsets with NORP, DISEASE, and CHEMICAL. Once we have extracted all enti-
ties of interest, we choose the best BERT model and train it on 11 unique annota-
tions subjected to HIPAA and GDPR: PATIENT, PHONE, LOCATION, HOSPITAL,
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ID, DATE, DOCTOR, AGE, NORP, DISEASE, and CHEMICAL. Conclusively, we
deploy the best-evaluated model to an unannotated data subset and store the out-
come in the respective JSON file structure shown in Figure 5.3.

combined annotations train and test partlally combined annotations train and test fu][y
I ———
annotated data annotated data

/ J \ preprocessing steps

pipeline for annotation

4l

SpaCy: NORP, S ¢ i S p a Cy : Prontoontology: .
LANGUAGE D IS E A S E , DISEASE manval validation | aining,
testing,
CHEMICAL parser: PATIENT, PHONE, cvalnation,
LOCATION, HOSPITAL, ID, fine-tuning

DATE, DOCTOR, AGE

fully annotated
restructured JSON
data

structure adjustment deployment

unannotated data

r' N

BERT model

r' N

manual validation

Figure 5.4: Structure of the first practical part: data preprocessing, annotation and
NER

5.3 Data preprocessing, annotation, and NER
Results

This subsection reflects the results and the challenges encountered during the first
part of the practical efforts: data preprocessing, annotation, and fine-tuning BERT
model with the goal to achieve a unified approach capable of recognizing 11 unique
entities: PATIENT, PHONE, LOCATION, HOSPITAL, ID, DATE, DOCTOR, AGE,
NORP, DISEASE, and CHEMICAL.
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5.3.1 Data Preprocessing and Annotation using SpaCy,
SciSpaCy and Pronto

The first significant challenge was to find suitable data preprocessing techniques
and fully annotate selected partially annotated training and test data subsets. Even
if we decided to work with a representative subset, the vast volume of medical
data still posed a challenge for analysis due to the records structure. Therefore,
pre-trained models such as SpaCy, SciSpaCy, and Pronto had low performance
and could not handle annotations on the raw data correctly. Furthermore, SpaCy
inconsistently identified entities of DATE, LOCATION, ID, DOCTOR, or PATIENT
type because of mismatches in DATE formats, similar structures of DATE and ID,
and PATIENT, DOCTOR, HOSPITAL or LOCATION abbreviations. Consequently,
we parsed annotations provided by Uzuner et al|(2007) and removed or replaced
all irrelevant information from the training and test subset to increase the
pre-trained models’ performance.

Distribution of Annotations parsed and produced Distribution of non-annotated and annotated entities

Annotations Origin
. Pipeline Annotations
W Uzuner et. al Annotations

Entities from Training Data
= Non-annotated Entities
= Annotated Entities

Figure 5.5: Distribution of annotations Figure 5.6: Distribution  of  recog-

\Uzuner et al. (2007) provided nized and  annotated,
and SpaCy, SciSpaCy and and non-recognized and
Pronto extracted unannotated entities

After preprocessing and extracting 6430 annotations provided by
(2007), we applied SpaCy, SciSpaCy and Pronto models to both subsets,
which resulted in total of 17030 PHI annotations and 100989 entities not be-
longing to any category of interest just in the selected training data subset of
170 records. In the end, SpaCy, SciSpaCy, and Pronto extracted 10600 DISEASE
and CHEMICAL, and 0 NORP annotations. We visually represented these
statistics in Figure 5.5 and Figure 5.6, where Figure 5.5 shows the distribution
of annotations parsed from the selected training data subset [Uzuner et al|(2007)
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annotated and the annotations from the same subset SpaCy, SciSpaCy, and Pronto
extended. On the other hand, Figure 5.6 describes the distribution of a total
number of annotations belonging to the selected training data subset and the
total number of entities that do not belong to any annotation type. In addition to
charts presented in Figure 5.5 and 5.6, we added Table 5.5 to list the numeric val-
ues of respective entities and their distribution belonging to 170 records of interest.

Total Number of Entities in 170 records 118,019

Total Number of Entities not belonging to any PHI category 100,989

Total Number of Extracted PHI 17,030

Total Number of Extracted PHI using Spacy, SciSpacy and Pronto 10,600
Total Number of Extracted PHI of type DISEASE using Spacy, SciSpacy and Pronto 7,766
Total Number of Extracted PHI of type CHEMICAL using Spacy, SciSpacy and Pronto | 2,834

Total Number of Extracted PHI of type NORP using Spacy, SciSpacy and Pronto 0

Total Number of Extracted PHI belonging to Uzuner et. al Annotations 6,430

Table 5.5: Distribution of extracted entities using SpaCy, SciSpaCy, Pronto, and
Uzuner et al. (2007)

Furthermore, understanding the distribution of all annotations is necessary
as it facilitates the identification of potential biases in the data set and the
adjustments to the data. In this context, an additional aspect we have observed
is the number of respective annotations and their distribution over the data set.
Respectively, Figure 5.7 represents the statistics of the selected training data
subset annotations, where it is evident that the annotations majority pertain
to DISEASE and CHEMICAL labels. On the other hand, annotations such as
PATIENT, PHONE, LOCATION, and AGE are not as dominant, resulting in an
imbalanced distribution of annotations. This imbalance can lead to issues, as
underrepresented labels can cause poor model performance implying low F1
score and accuracy. To mitigate this issue, we decided to balance the data by
replicating the underrepresented annotations. In connection, we present Figure
5.8 that visually represents the training data set containing replicated data. From
the calculated values we can notice, the total number of annotations is 71030,
which is approximately seven times more than before the replication and the
annotations are in better balance. In addition to charts presented in Figure 5.7 and
5.8, we added Table 5.6 to list the numeric values of respective entities and their
distribution before and after the replication.
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Training Data Annotation Distribution

DISEASE- 7766 (45 6%)
CHEMICAL 2834 {16.6%)
PATIENT. 256 [1.5%)
DOCTOR: 1356 (3.1%)

HOSPITAL 1261 {7.4%)

Figure 5.7: Labels before Replication
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Figure 5.8: Labels after Replication

PHI Type | Number of PHI Before Replication | Number of PHI After Replication
DISEASE 7,776 19,191
CHEMICAL 2,834 4,439
PATIENT 256 4,856
DOCTOR 1,556 8,806
AGE 451 4,461
ID 958 7,968
DATE 1,759 8,554
PHONE 32 1,722
LOCATION 157 2,672
HOSPITAL 1,261 8,361

Table 5.6: Number of Extracted PHI of Interest before and after the Replication

Moreover, to confirm balancing the data indeed increases model performance,
we conducted an experiment where we observed the model behavior when
oversampling is in place. In addition, we decided to describe how increasing and
decreasing the sample size, in general, reflects the model performance so we can
conclude if the model is able to generalize well. The experiment involved model
training on different subsets chosen from already selected and fully annotated
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training data subsets that comprised a total of 170 records. Initially, we randomly
selected various numbers of records, ranging from 50 to 170, and trained the
model. In connection, we present the results obtained from a model trained on 100
randomly chosen records, the model trained on 170 records, and the model trained
on the balanced data containing seven times more sentences than the selected
training data subset. In the end, results discovered how the model becomes more
robust and its performance increases as the training data size increases while the
oversampling is involved. To support this conclusion, we created Table 5.7 and
visually represent the outcome.

I E 3
The selected fully The selected fully The selected fully
annotated training data annotated training data annotated training data
subset is further decreased | subset containing 170 subset containing 170
to contain only 100 instead | records. records and is additionaly
of 170 records. balanced by replicating

underrepresented samples.

Training and Validation Loss over Epochs

.....

ngngngngngngngngng

Table 5.7: Experiment: how does training data size and oversampling influence the
model performance?

Conclusively, we decided to train the model on the manually validated, oversam-
pled, selected training data subset of 170 records. In addition, we structured the
data in the CSV file containing two columns where each row of the first column
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represents a sentence tokenized after 35 characters, and the second column
contains the respective annotations. Table 5.4 reflects an example of the described
data structure.

5.3.2 BERT Model Training

After preparing the training data, we employed the BERT-base-uncased model to
develop a unified approach for detecting all 11 unique annotations. However, we
observed that the model’s performance in terms of loss and accuracy left room for
improvement. Therefore, we explored alternative models and experimented with
the pre-trained variants designed for biomedical text found in work by Gran-
charova and Dalianis| (2021). After comprehensive research, we decreased the
choice to emilyalsentzer/Bio_Clinical BERT and dmis-lab/biobert-base-cased-v1.1.
Comparing the results, we discovered that the emilyalsentzer/Bio_Clinical BERT
model exhibited superior performance with approximately 0.98 accuracy over
dmis-lab/biobert-base-cased-v1.1 (< 0.96) when applied to the selected balanced
training data set. Thus, we decided to proceed with this model as it aligns well with
our objective of accurately extracting named entities from medical health records.
Table 5.8 visually represents why we consider emilyalsentzer/Bio_Clinical BERT
the most suitable pre-trained model for our work.

’ BERT-base-uncased ‘ biobert-base-cased-v1.1 ‘ Bio_ClinicalBERT

Table 5.8: Experiment: how BERT model variations perform on the same data?
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The next challenge we encountered was selecting optimal hyperparameters
and fine-tuning the training process. For this purpose, we used the PyTorch
library and a data loader to read the previously separated training (80%) and
validation (20%) data sets and pass them through the Bio_ClinicalBERT model.
The training phase concerned the stochastic gradient descent optimizer and a
learning rate scheduler to update the model parameters in 70 epochs. We chose
the 5e-3 value as the most suitable starting value for the learning rate and adjusted
it based on the validation loss during the training using ReduceLROnPlateau.
Moreover, since the computation time of the model is complex, early stopping
helped prevent overfitting and spared some training time. To this extent, we
also decided to specify a BERT max length of 40, which does not require high
computational resources and can process the entire input sequence without any
truncation or splitting since the longest sentence in the data set has 35 tokens.
Furthermore, a batch size of 16 slowed down the training process and delivered
inferior performance when subjected to validation data. On the other hand, a
batch size of 8 showed better performance and balance between training speed
and memory usage. Hence, we chose a batch size of 8 which is small enough
to be accommodated by most GPUs while delivering enriched generalization
performance through frequent weight updates in smaller increments.

Consequently, we significantly improved the model’s performance during
the training process, and the best model scored an accuracy on the validation data
of approximately 0.97 while the validation loss was approximately 0.13 implying
a high degree of precision and minimal discrepancy between predicted and actual
values.

5.3.3 BERT Model Evaluation

To gain confidence in the model’s effectiveness and detect possible overfitting,
we evaluated the model on the previously selected and validated test data
subset containing 70 records. To be more precise, the test data subset contains
pre-processed records which translate to approximately 1.3k sentences with a
length of 35 tokens. After applying the trained Bio_ClinicalBERT model, results
showed the model accuracy of approximately 0.9.

In the end, our expectation is that model accuracy and F1 score can reach
approximately 0.95 if we train the model on the large, balanced, and consistently
annotated training data. Our assumption is supported by the results of the experi-
ment from Table 4.6 where we trained the model on the unbalanced and balanced
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data where the F1 score increased by approximately 0.11 after oversampling.

5.3.4 BERT Model Deployment

After we completed the model deployment process on the unannotated subset,
we marked down satisfactory results. The model extracted 6,467 entities from
the dataset, with 3,932 entities belonging to the DISEASE and CHEMICAL, and 0
NORP annotation types. Furthermore, we conducted a manual validation process
in which we roughly reviewed and corrected errors identified. However, it is
important to note that our lack of medical expertise limited our ability to make
extensive corrections. Therefore, we focused primarily on handling obvious
mistakes, such as removing entities where only special characters were extracted,
and adjusting already detected phrases. As a result of the manual validation, the
annotated file now contains 6,518 annotations, of which 3,977 entities are in the
DISEASE and CHEMICAL category. To visually represent the obtained results
and the distribution of the extracted entities from the unannotated data, we have
included Table 5.9, Figure 5.9 and Figure 5.10. While Figure 5.9 described the
distribution of 10 unique annotations model extracted from the unannotated data
subset, Figure 5.10 represents the annotation distribution after the original output
was manually validated, and Table 5.9 shows the list of numerical values.

Annotation Distribution after Model Deployment on Unannotated Data Manually Validated Annotation Distribution after Model Deployment on Unannotated Data

Unique Annotations Unigue Annotations
mDISEASE N DISEASE
CHEMICAL CHEMICAL

= PATIENT - PATIENT

== DOCTOR == DOCTOR
—AGE - AGE
- D =D
DATE DATE
= PHONE = PHONE
LOCATION LOCATION
= HOSPITAL m— HOSPITAL

Figure 5.9: Annotation Distribution Figure 5.10: Manually Validated Annotation
after Model Deployment Distribution

While manually validating the output after model deployment, we explored
the most common mistakes and tried to identify error patterns. In connection,
one interesting finding is that the model occasionally misclassifies annotations,
particularly between PATIENT and DOCTOR entities, likely due to the similarity
in human names. However, contextual cues, such as the presence of "Dr” for
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DOCTOR entities or "Mr.” and "Ms.” for PATIENT entities, helped the model
extract the correct annotation type. Similar confusion occurred between ID and
PHONE entity types, which share structural similarities. In contrast, the model
demonstrated reliable detection of DATE entities, achieving an accuracy rate
of approximately 94%. On the other hand, the most challenging task for the
model was accurately detecting CHEMICAL entities, primarily due to the lack
of domain-specific knowledge and, thus, potential inconsistencies in the training
annotations used during model training. Furthermore, DISEASE entities also

presented difficulties, but the model performed well in most cases.

PHI Type | Number of PHI Before Validation | Number of PHI After Validation
DISEASE 2,611 (40,4%) 2,477 (38,0%)
CHEMICAL 1,321 (20,4%) 1500 (23,0%)
PATIENT 146 (2,3%) 80 (1,2%)
DOCTOR 428 (6,6%) 454 (7,0%)
AGE 100 (1,5%) 103 (1,6%)
D 406 (7,5%) 510 (7,8%)
DATE 1,057 (16,3%) 1028 (15,8%)
PHONE 26 (0,4%) 34 (0,5%)
LOCATION 49 (0,8%) 40 (0,6%)
HOSPITAL 243 (3,8%) 292 (4,5%)
TOTAL 6,387 (100%) 6,518 (100%)

Table 5.9: Number of Extracted PHI of Interest before and after the Validation

Following the manual validation process, we initially compared the total
number of annotations generated by the model (6,387) with the total number of
annotations validated (6,618). This comparison revealed that our model achieved
an overall accuracy of 96.5% in detecting PHI entities of interest, assuming that
the validated data represents a 100% accurate extraction. However, it is crucial to
acknowledge that despite manual validation, certain entities may belong to one
of the 11 unique categories but still be missing due to our limited knowledge in
the medical domain.

On the other hand, evaluating the model’s performance solely based on the

comparison of produced and validated annotations is limited in providing
comprehensive insights. Therefore, we decided to check how many entities
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the model misclassified per PHI type. In connection, we present the model’s
deviation from the validated numerical values in Table 5.10. The first notable
observation is an extreme deviation in the PATIENT PHI entity type (+80%).
This suggests that the model initially identified 80% more patients than actually
existing after the validation. However, we must acknowledge that this inter-
pretation may be misleading since there are valid underlying reasons for this
deviation. First, the model sometimes identified names like “John Doe” as separate
“John” and "Doe” PATIENT entries, effectively doubling the count for a single
person. Moreover, the model occasionally misclassified some DOCTOR and
PATIENT entity types, increasing the entity count for the PATIENT entity type.
Therefore, the 80% deviation in this case is a misinterpretation rather than an error.

Another noteworthy deviation is in the PHONE and ID PHI entity types.
The model initially identified 20% more ID entities than existed, while it identified
23% fewer PHONE entities than there were after manual validation. Again,
we have to underline the valid reasons for these deviations, as PHONE and ID
structures can overlap in some cases, making it challenging for the model to
distinguish between the two entity types. Nevertheless, after observing how many
PHONE and ID type entities the model mixed up, we are left with approximately
3% of sensitive information that the model could not identify.

Eventually, it becomes clear that evaluating the model solely through nu-
merical values has various limitations. However, considering all the factors,
including the mentioned shortcomings and influences, we cautiously estimate our
model’s accuracy to be around 95%. With this assessment in mind and assuming
the correctness and reliability of the extracted data of interest, we are prepared to
advance to the next phase: extracted entities anonymization.
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PHI Type | Approximate Model Deviation (rounded without decimals)

DISEASE +5%
CHEMICAL -12%

PATIENT +80%
DOCTOR -5%
AGE -2%

ID +20%
DATE -3%
PHONE -23%

LOCATION +22%
HOSPITAL -16%

Table 5.10: Number of Extracted PHI of Interest before and after the Validation

5.4 Data preprocessing, annotation, and NER
Conclusion

In the first part of the practical efforts, we selected training, test, and deployment
subsets from the 2006 N2C2 de-identification challenge dataset. [Uzuner et al.
(2007) prepared the training and test subsets by identifying eight unique entity
types (PATIENT, DOCTOR, HOSPITAL, ID, DATE, LOCATION, PHONE, and
AGE), and we had to address the annotation of missing health data. Consequently,
we used SpaCy, SciSpaCy, and Pronto to perform NER and extract NORP, DIS-
EASE, and CHEMICAL entity types. We then added BIO tags to the annotated
data and manually validated it to ensure its quality before training the model.
Although we didn’t have medical expertise, we addressed apparent inconsisten-
cies, implying we don’t guarantee the data is 100% accurate. Therefore, before
the model training, we assumed the data annotations were valid and consistent.
While fine-tuning the model, we demonstrated the significant positive impact
of data balancing through oversampling on the model’s robustness and general-
ization capabilities, as shown in Table 5.5. Moreover, our decision to choose the
emilyalsentzer/Bio_ClinicalBERT model was suitable since it outperformed other
pre-trained models and showed satisfactory performance on the training and test
data subset. Lastly, we saved the data containing only ten unique PHI entity types
(the model did not detect any NORP entities in the records) in the respective JSON
structure for anonymization.

Conclusively, it is crucial to acknowledge that having reliable annotations
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during model training and a representative baseline for evaluating the model’s
performance, along with a larger dataset, would significantly enhance the perfor-
mance and robustness. Furthermore, we will proceed with the anonymization of
the data stored in the respective JSON structure containing ten unique PHI entity
types (PATIENT, DOCTOR, HOSPITAL, ID, DATE, LOCATION, PHONE, AGE,
DISEASE, and CHEMICAL) under the assumption that all data is 100% accurately
extracted.
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according to HIPAA and GDPR

Data anonymization is the crucial part that suppresses detected PHI of interest,
reducing the risk of re-identification while preserving data utility. This section
reflects methodology, results and challenges encountered during the second and
the most crucial part of the practical efforts: the data anonymization process and
techniques evaluation. After we prepared the data in the first phase, we used the
structured data presented in Figure 5.3 under the assumption that ten unique PHI
entity types of interest are extracted reliably and accurately. Consequently, we
anonymized the data by developing a customized approach tailored to specific
characteristics of categorical and numerical PHI entities from the work.

6.1 Data anonymization according to HIPAA and
GDPR Methodology

In programming, data anonymization under HIPAA and GDPR modifies data to
prevent it from being traced back to an individual. Typically, the first step in the
process is removing direct identifiers, such as names, addresses, or social secu-
rity numbers, which unassumingly point to a specific person. Subsequently, data
anonymization strategies take various forms, often incorporating techniques such
as aggregation and generalization, where data is grouped or generalized to a level
that prevents individual identification while retaining its utility. Additionally, the
anonymization can encompass other sophisticated methods, including perturba-
tion, synthetic data generation, and data masking, each designed to add an extra
layer of protection against potential re-identification. However, it is crucial to rec-
ognize that attaining perfect anonymization remains a formidable challenge, given
the ever-evolving landscape of data analysis techniques and the potential for re-
identification through external data sources.
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6.1.1 Data Anonymization Re-ldentification Risk

Since the data anonymization objective is to protect sensitive data from the
exploitation, it involves a significant degree of responsibility due to the potential
re-identification risks. The re-identification of data describes the goal of un-
covering the individuals’ identity by linking anonymized or de-identified data
back to the individuals it represents, thereby compromising their privacy. For
this purpose, attackers use various techniques, including data linkage, attribute
inference, and background knowledge exploitation.

Data linkage refers to the different datasets’ combinations or information
sources where an attacker can identify shared or overlapping attributes to
establish connections between anonymized records and external data. On the
other hand, attribute inference is another technique used in re-identification that
involves analyzing the available information in the dataset and inferring sensitive
or personal attributes based on patterns or correlations. In the end, exploiting
background knowledge enables an attacker to gather external information from
various sources, such as social media, public records, or data breaches, and
utilize that knowledge to match against the anonymized data. Therefore, every
time we strive to achieve reliable data anonymization, we should consider a
range of techniques and safeguards for re-identification prevention and a robust
anonymization model establishment.

6.1.2 Data Anonymization Techniques

Extensive research discovered there exists a range of different anonymization
techniques, each having advantages and disadvantages. However, in the specific
context of the anonymizing medical information we previously extracted, our
objective is to identify the most appropriate approach for protecting the data
while minimizing the risk of re-identification.

Next to the frequently used techniques, such as generalization and suppres-
sion, pseudonymization, or data masking, we decided to tailor k-anonymity,
l-diversity, and t-closeness to the data set proposed in Figure 5.3. However, we en-
countered challenges that lead to unsatisfactory results with high re-identification
risks. Therefore, we decided to focus on symmetric authenticated cryptography,
and in the following work, we will present our approach.
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K-anonymity, L-diversity and T-closeness

K-anonymity is an elegant approach to safeguarding privacy by grouping spe-
cific attributes where the basic idea is to ensure that each group contains at least
k individuals. This technique is suitable when dealing with datasets that consist
of multiple entries where each entry comprises a set of numerous attributes that
provide non-sensitive information about a person. (Sweeney, 2002; |Majeed and
Lee, 2020) Its main goal is to identify and handle sensitive and quasi-identifiers
since their combinations can potentially identify a person uniquely. However,
some severe challenges in k-anonymization involve attribute disclosure and re-
identification attacks also indicating one can’t achieve GDPR compliance by only
utilizing k-anonymity. Attribute disclosure arises when anonymized data, despite
being generalized, still exposes sensitive details due to patterns in the data. This
occurs when quasi-identifiers strongly correlate with sensitive attributes, facilitat-
ing the inference of private information. Typically, this issue arises from uniform
groups where all members share the same sensitive attribute value within a k-
anonymous group. In such cases, k-anonymity’s effectiveness becomes uncertain.
To address this, an enhancement to k-anonymity known as I-diversity was intro-
duced.

L-diversity is a k-anonymity extension designed to prevent a problem of safe-
guarding sensitive attributes by ensuring each k-anonymous group contains at
least 1 different sensitive attribute values. In other words, it maintains privacy
by diversifying the sensitive attribute values within groups through techniques
like generalization, suppression, and synthetic data addition (Majeed and Lee,
2020). Therefore, integrating l-diversity blocks attackers from definitively uncov-
ering sensitive attributes, even if they identify the group an individual belongs to.
However, combining k-anonymity and l-diversity still faces limitations of potential
privacy compromise through probabilistic reasoning. The probabilistic reasoning
describes the scenario where in an anonymous group of six medical records rep-
resenting six patients, five patients share the same sensitive attribute value (DIS-
EASE = "diabetes mellitus”), and an attacker with prior knowledge of a patient’s
condition and group membership can use probabilities to deduce information. To
address this concern, an extension called “t-closeness” is introduced within the
framework of k-anonymity.

T-closeness is a k-anonymity extension that prevents probabilistic reasoning
attacks by demanding that the statistical distribution of the sensitive attribute
values in each k-anonymous group is close to the overall distribution of the same
attribute in the entire dataset. In other words, we can measure the t-closeness
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value using the Kullback-Leibler divergence with the goal that this divergence
between two distributions will be below a specified threshold. (Majeed and Lee,
2020) Consequently, by enforcing t-closeness, we limit the amount of information
from comparing the distribution of the values in the group to the distribution
in the entire dataset. Therefore, the attacker can learn only a limited amount of
information which increases the data protection level.

In terms of our work, implementing k-anonymity, l-diversity, and t-closeness
involved several actions. Initially, we loaded the prepared JSON data from the
model deployment phase and assumed the entities extracted were accurate
and reliable PHI information (PATIENT, PHONE, LOCATION, HOSPITAL, ID,
DATE, DOCTOR, AGE, DISEASE, and CHEMICAL). Afterward, we identified the
quasi-identifiers and sensitive attributes and tried to apply k-anonymity first,
aiming to extend it with l-diversity and t-closeness.

Quasi-identifiers and sensitive attributes in the k-anonymization process
ensure privacy protection by preventing the linkage of personal and sensitive
information. Their identification requires analyzing the context and the potential
risks of re-identification. However, there are no strict guidelines applicable to
the identification process. Therefore, we intended to start the implementation by
designating the two most prevalent entity types as sensitive attributes: DISEASE
and CHEMICAL. However, we encountered problematic challenges due to the
complex nature of our dataset.

To achieve k-anonymity, we should form a group of records wherein records
share identical quasi-identifier combinations, with the group’s size adhering to or
exceeding the designated "k” value. With the DISEASE and CHEMICAL building
the set of sensitive attributes, the problem was extracting the respective group
of quasi-identifiers for each sensitive value. When considering a single record,
we had 31 to 48 unique DISEASE and CHEMICAL sensitive values. In addition,
we had multiple unique quasi-identifiers of the same entity type (e.g., PATIENT,
DOCTOR, or HOSPITAL), which made it impossible to build the standard
k-anonymity tables with 1:1 relationship mappings. Furthermore, having 1166
different DISEASE values across all records but only 830 single occurrences made
applying k-anonymity unattainable. Hence, we tried to define a different set of
sensitive attributes.

After observing all unique entity type values per single record, we noticed

the only single markers are record id, AGE, and PHONE. However, record id
is not in the scope of the work, AGE entity types do not always have single
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occurrences per record, and in the end, the challenge failed to confront the
mathematical reality: a k value of 2 (the lowest feasible k) compounded by the
three quasi-identifiers (record id, AGE, and PHONE) defied a realistic solution.

In conclusion, we found it imperative to shift our approach, presenting us
with a trifold decision. Our options were to reduce the number of sensitive
attributes by anonymizing only selected DISEASEs and CHEMICALS, to create
clusters based on sensitive values’ similarities (e.g., grouping cardiac issues into
a solitary group), or to give up on the k-anonymity. Since we recognized that
the initial two alternatives could violate the HIPAA and GDPR principles, as they
might allow identifiable information to stay unprotected within the records, we
developed a customized approach that relies on symmetric encryption and data
masking.

Symmetric Encryption

Symmetric encryption offers a dual role in data management: securing data against
unauthorized access and enabling anonymization for privacy protection. It uses a
single secret key to encrypt and decrypt data, ensuring its confidentiality. Further-
more, it transforms original data into ciphertext and makes decoding impossible
without the corresponding key, which allows only authorized parties to access the
original data when needed. Symmetric encryption techniques may diverge in their
encryption approach, and the two most popular ones are block and stream ciphers.
Their choice depends on the data’s characteristics and the desired encryption level.

Block Cipher involvessegmenting data into unchanging size blocks where each
block is encrypted independently. A prominent example of this method is the Ad-
vanced Encryption Standard (AES), renowned for its operation on 128-bit blocks.

Stream Cipher encrypts data incrementally, bit by bit or byte by byte. These
ciphers create a pseudorandom stream of bits that is blended with the original
data to produce encrypted output. Stream ciphers excel in encrypting data on the
fly, with real-time applications being a notable use case.

Fernet’s design synthesizes the advantages of both block and stream cipher
approaches. Its utilization of fixed-size blocks and pseudorandom streams ensures
arobust encryption process that aligns with data security needs. Whether applied
to block-oriented data or real-time communication, Fernet’s reflection of these
symmetric encryption methods makes it a universal and reliable choice for
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safeguarding sensitive information. Therefore, we decided to integrate it into our
approach.

Data Masking

Data masking, often referred to as data obfuscation or pseudonymization, ad-
justs raw data to shield the privacy of individuals by concealing intricate and
sensitive information. It includes numerous strategies that offer significant ad-
vantages in preserving utility, regulatory compliance, and minimizing insider
threats (Mansfield-Devine, 2014) . Consequently, we decided to integrate data
perturbation, substitution, generalization, and randomization into our customized
anonymization approach.

Data Perturbation involves controlled noise or random variations to the origi-
nal data. The goal is to mask the fine-grained details of individual data points while
maintaining the overall trends and characteristics of the dataset. It adds an element
of uncertainty, making it difficult to pinpoint specific individuals. The biggest chal-
lenge lies in finding the right balance between data privacy and preserving data
quality for analysis.

Substitution is a technique that exchanges original values with pre-defined
safe substitute alternatives. These substitutes retain the main data characteristics,
maintaining the overall integrity of the dataset while effectively disguising sensi-
tive information. Substitution is another form of data perturbation that replaces
sensitive details with alternative data.

Randomization replaces sensitive values with randomly generated ones from
the same domain. It adds an element of unpredictability to the data, making it hard
to link original values to individuals. Randomization is a form of data perturbation
that introduces randomness to the data.

Data Generalization entails grouping or categorizing data into broader, less
specific categories. This process reduces the granularity of the data, making it
harder to identify individuals. It is particularly effective when applied to attributes
like location, age, and income.
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6.1.3 Implemented Customized Anonymization Approach

Considering the unique attributes of our dataset and our commitment to main-
taining the principles of HIPAA and GDPR, we have chosen to create a custom
anonymization method tailored to our data. This decision reflects our dedi-
cation to safeguarding data privacy, and our efforts resulted in the successful
anonymization of 6,518 entities belonging to 10 unique PHI categories of interest
within the given JSON file. Since we preprocessed the data before we created the
JSON structure, we performed no additional preprocessing before applying the
anonymization techniques. In the end, we seamlessly substituted original values
with their anonymized counterparts across all 100 medical records.

Unlike the initial approach centered around k-anonymity, our current strategy
adopts a more granular perspective where we develop a specific anonymization
method based on the characteristics of extracted PHI entities. The distinction
between categorical and numerical entity types holds essential significance,
as it informs the utilization of techniques best suited for their anonymization.
While categorical data encompasses PATIENT, DOCTOR, DISEASE, CHEMICAL,
LOCATION, and HOSPITAL information, numerical data includes less sensitive
information and implies complete anonymization is not always essential. In the
end, since we aim for harmonized anonymization processes, we initially decided
to form clusters based on the AGE entity type where we previously substituted
each AGE value with a predefined age range (e.g., 0-10, 11-20). Moreover, we
committed to tailoring separate anonymization methods to each unique PHI
entity type where the ones belonging to the same age range group will have an
individual replacement (e.g., multiple DISEASE=ulcer occurrences for AGE=21-30
will have only one replacement=D#{G).

Numerical PHI entities

Anonymizing numerical entities in accordance with HIPAA and GDPR involves
a detailed and strict procedure to protect sensitive personal information. Both
regulations suggest numeric data pseudonymization to achieve irreversible
anonymization, restricting the ability to re-identify individuals from the
anonymized data. By adhering to these regulatory guidelines, organizations can
navigate the delicate balance between data utility and individual privacy while
effectively anonymizing numerical entities.

In a programming sense, numerical data anonymization can be achieved
through pseudonymization, using Python libraries like Pandas and Hashlib to
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replace sensitive values with randomized codes or hashed versions, preserving
data integrity. Another approach involves employing differential privacy algo-
rithms, such as PyDP, to add noise to the data, safeguarding individual privacy
while enabling meaningful analysis. In this work, we implemented a customized
approach that combines different data masking techniques depending on the
numerical PHI entity type.

AGE We have defined 10-year interval age ranges from 0 to 120 based on the
age occurrences in the records to ensure efficient anonymization while preventing
potential re-identification. Our main idea was to check all records and group the
ones with the same age range information. Afterward, we identified the remaining
entities from the respective records and anonymized numerical entity type values
using different data masking techniques. In order to better generalize the data, we
specified unique prefixes belonging to each age range that we will use for masking
specific sensitive numerical information (PHONE entity type) within a respective
age range. For better understanding, Table 6.1 demonstrates the connection be-
tween age ranges and data masking prefixes. In addition, we discovered six records
have no AGE, so we marked them as NO AGE when designing the anonymization
procedure and built the group correspondingly.

| AGE RANGE | AGE PREFIX |
| (110,120] - |
| (80,90] D) |
| (70,80] [ ++ |
| (60,70] | == |
| (50,60] IE |
| (40,50] L ( |
| (30.40] | @@ |
| (20,30] [ $% |
| (0,10] | ## |
| NO AGE | - |

Table 6.1: Customized approach to anonymize AGE entity type: the connection
between age ranges and prefixes

DATE In the context of the DATE entity type, our approach adopts distinctive
patterns to enhance anonymization since the DATE occurrences in records have
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various formats. The goal is to preserve the structure and date format while
only masking the day and month but leaving the year information and existing
slashes or dashes unaltered. Respectively, the DATE anonymization approach
distinguishes four main patterns presented in Table 6.2. However, we still noticed
cases when none of the covered formats from Table 6.2 is in place but reflects
weekdays or holidays with their names. Therefore, we extended the approach
by adding MONTH, WEEKDAY, and HOLIDAY labels. For better understanding,
we have created Table 6.3, which shows examples of possible date formats and

respective data masking approaches.

| DATE FORMAT | DATA MASKING METHOD |
’ day and month have one digit each ‘ D for day and M for month ‘
’ day and month have two digits each ‘ DD for day and MM for month ‘
day has one and month has two digits D for day and MM for month
day has two and month has one digit DD for day and M for month

Table 6.2: Customized approach to anonymize DATE entity types: anonymization

method for prevalent DATE formats

| DATE FORMAT | MASKED DATE |
| 2/1/2000 | D/M/2000 |
| 02/01/2000 | DD/MM/2000 |
| 2/01/2000 | D/MM/2000 |
| 02/1/2000 | DD/M/2000 |
; June } MONTH }
June 3 MONTH D
| Thanksgiving | HOLIDAY |
| Tuesday August 31st | WEEKDAYS MONTH DD |

Table 6.3: Customized approach to anonymize DATE entity types: anonymized

DATE formats
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ID To avoid unnecessary complexities and keep the authentic data structure, we
decided to maintain the original length of the ID while masking the contained
numbers. Initially, we generated the first two digits of the ID based on the age
range upper boundary, and then, we replaced the remaining digits with a randomly
generated string. To illustrate the methodology for ID anonymization, we propose
a simple example. Considering the age range is (30,40] and the ID=959086752, we
will transform 959086752 into 407321590, where 7321590 represents a randomly
generated string, while 40 corresponds to the upper age range boundary.

PHONE Within the scope of the PHONE entity type, we identified one format
with different lengths, meaning phone numbers may consist of two to four parts.
For PHONE numbers with two components, such as 444-768, the initial part (444)
undergoes the masking process using the defined age range prefix. For PHONE
numbers with three or four segments, such as 444-768-90 or 444-768-90-80, we
introduce additional anonymization measures and replace the first part (444) with
the age range prefix, randomize the second part (768) and leave the third (90) and
the fourth part (80) unaltered. The length of the AGE RANGE PREFIX employed to
the first part of the phone number depends on the number of original digits in this
part, meaning if the age range is (80, 90] and the first part is e.g. 444, we will have
))) as a substitution, if the first part is e.g. 44, we will have )) as a substitution and
if the first part is e.g. 4444, we will have )))) and so on. For an illustrative example,
we demonstrate several cases in Table 6.4. The connection between age ranges and
age range prefixes used in the PHONE anonymization is listed in Table 6.1.

| AGE RANGE | PHONE NUMBER | MASKED PHONE |
| (80,90] | 452-05-72-1 | )))-40-72-1 |
| (70,80] | 282-52-89 | +++-16-89 |
| (50,60] | 690-02-35 | 11-63-35 |
| (70,80] | 270-447 [ +++-447 |

Table 6.4: Customized approach to anonymize PHONE entity types: anonymized
PHONE formats

Categorical PHI entities

To maintain patient privacy in compliance with regulations like HIPAA and GDPR,
categorical data, like numerical data, must be de-identified. Programming profes-
sionals can accomplish this through techniques such as tokenization, which re-
places categorical values with unique tokens or random strings, making it difficult
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to trace back to specific individuals. Python libraries like scikit-learn and NLTK
are helpful for tokenization tasks. Other methods, such as data generalization and
symmetric encryptions, can also be employed to aggregate categorical information
into broader categories while maintaining data utility. Our approach utilized sym-
metric encryption and was documented thoroughly to ensure transparency and
data protection compliance. In further work, we present the customized approach
we used for categorical data anonymization.

DOCTOR and PATIENT Given the exceptional sensitivity of these two entity
types, which can directly lead to identification when exposed to re-identification
attacks, we’'ve opted for a straightforward approach. The main objective is to uni-
versally replace all DOCTOR and PATIENT values with the respective DOCTOR
and PATIENT labels. By employing this method, we eliminate the possibility of re-
vealing personal identifiers while maintaining the functional integrity of the data.

| AGE RANGE | DISEASE ENCRYPTION KEY |
’ (110,120] ‘ xvodlvvAodcjXu-hmHMsyVjY]5A3-1sHpHXPel1Uv40= ‘
| (80,90] | -mMfK4r72114fQunn7GmVitwZISGzp60e7Q1JobXYnhM= |
| (70,80] | u367QjW1yevBwrieOMZ59tiqUts-S1hViRKBglxwHtk= |
| (60,70] | U8970SiqvJUKCGOuxli2sLWQQFG7uEg5fD5C-czBBgk= |
| (50,60] | 92SFqjnHCjnYm9bdnDmCTbu59%etXlvxXBjtLsygb5Il= |
’ (40,50] ‘ YdvvTC1pp582Vuo-GPLrlqml4dOLT7XjWbDQgklnz8M= ‘
| (30,40] | 0IZqP-0Gw3ZzQIt8b43TISdGZbQaSBfUXyQ-LATIZ2Q= |
| (20,30] | X7C-ZNPCDf7gRG-0ZUZwMNNPJrKy6tT4u00HnL2rY5M=
| (0,10] | DEJWelPGWu-xIbhmeD006MOHS5CHVEx8rzmISONRHb04
| NO AGE | pPCWOxDKkkxsSg4S9DT-QypOrLULzU9VqzX-1Sd8iQ-k= |

Table 6.5: Customized approach to anonymize categorical entity types: encryption
keys for each combination of age range and DISEASE entity type

DISEASE, CHEMICAL, LOCATION, and HOSPITAL After thorough re-
search, we implemented symmetric encryption using the Fernet method for cat-
egorical values within 10 unique PHI annotations since it demonstrated the best
efficiency as a secure solution. This approach offers the advantages of uniting
block and stream cipher encryption techniques and generates 128-bit encryption
keys. In our case, we have individual encryption keys for each combination of age
range and entity type, and their corresponding decryption keys are essential for
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retrieving the original information. Table 6.5 demonstrates how encryption keys
for age range and DISEASE entity type may appear. Moreover, during our exper-
imentation, we observed that employing 128-bit keys led to substantial sausage
text within the records restricting easy observation. To address this, we adapted
the length of respective value encryption keys within age ranges to align with the
entity value length based on the start and end position information, ensuring con-
sistency and minimizing disruptive text artifacts. Tables 6.6 and 6.7 demonstrate
how different length encryption keys occur for the same DISEASE values when
combined with distinct age ranges. In the end, we removed position entries from
the JSON.

| DISEASE | ENCRYPTION KEY |
| congestive heart failure | MFp2X27CFOXhPmqjgrH8d-4= |
’ transient ischemic attacks ‘ Cc-RHdAEuyp]JU1SMYVAi0OqP9U= ‘

’ paroxysmal atrial fibrillation UdJ4-HelxDZyKqEC3pf5a7a51pomM=

Table 6.6: Customized approach to anonymize DISEASE entity types: encryption
keys for AGE RANGE = (110,120]

| DISEASE | ENCRYPTION KEY |
] congestive heart failure \ AWSMQMDJSSbVZKAQn0456TU= ‘
’ transient ischemic attacks ‘ HO05KfcxeY5AzOOE9-pHKIgCqo= ‘

’ paroxysmal atrial fibrillation Nvu-aTmTwRwtO9DMwwEo-6db4nBqo=

Table 6.7: Customized approach to anonymize DISEASE entity types: encryption
keys for AGE RANGE = (60,70]

6.1.4 Architecture and Summary

In conclusion, our anonymization process follows a complete strategy to ensure
data privacy and mitigate the risk of re-identification. We start by transform-
ing AGE entity values into specific ranges with intervals of 10. Afterward, we
generate encryption keys for categorical entity types (DISEASE, CHEMICAL, LO-
CATION, and HOSPITAL) and create pairs of AGE ranges and unique entity val-
ues belonging to DISEASE, CHEMICAL, LOCATION, and HOSPITAL, producing
unique anonymized values. Subsequently, we replace DOCTOR and PATIENT en-
tity values with straightforward DOCTOR and PATIENT labels while anonymizing
DATE values independently of the age range. Finally, we consider age ranges for
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ID and PHONE entity values, where we use the upper age range boundary for
ID anonymization and age range prefixes for PHONE values. The last step is to
replace categorical and numeric values with anonymizations and create a secure
repository with encryption and decryption keys, only accessible by authorized
personnel.

6.2 Data anonymization according to HIPAA and
GDPR Results

This subsection presents the results and challenges encountered during the second
part of the practical efforts: data anonymization according to HIPAA and GDPR.
The focus is on evaluation of the customized approach implemented to protect
the privacy of previously extracted 10 PHI entity types under the assumption all
entities are reliably and consistently identified from all 100 records.

Numerical PHI entities

AGE Mapping extracted AGE values to specific ranges is a simple and effective
way to conceal exact ages while maintaining demographic information for anal-
ysis. We concluded that the 10-year age ranges in the data set are broad enough
to prevent re-identification while still providing meaningful insights. To ensure
the reliability of anonymization results, we also inspected the number of patients
in each age range group to make sure our approach delivers the best possible re-
sults even when the data lacks of variation. Consequently, even though there is
one single patient belonging to e.g. age range 100+ years old, applying complete
customized approach makes re-identification risk extremely low considering all
employed techniques where e.g. PATIENT and DOCTOR information is replaced
with a single label respectively and all other categorical entities use encryption
keys. However, this approach might still lead to information loss in cases where
fine-grained age details are essential, such as in geriatric or pediatric studies, or
imply higher re-identification risk in too small datasets. Nevertheless, in light of
this work, possible disadvantages are not in place.

ID The ID anonymization technique combines common data masking methods
and reduces possibilities for direct identification by introducing the element of
randomness. Since it maintains the original data structure and is straightforward
to implement, code execution and data analysis are easily possible. However, the
technique may introduce vulnerabilities in scenarios with limited age-range op-
tions where an attacker can guess the original format (e.g., the first two digits
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based on age range). Nevertheless, it would first require the hacker to make the
connection between the upper age range boundary and initial ID digits. In addi-
tion, considering extracted values of the remaining 9 PHI entity types are properly
anonymized, this technique offers a high level of protection and minimizes the risk
of data breach.

DATE The DATE anonymization approach reflects pseudonymization, as it aims
to maintain date structure by masking day and month while retaining year and
format. As we replaced the vital information with general labels, potential link-
age to the original data only based on the available year and date format is min-
imal. Even if it’s essential to consider external factors and auxiliary data sources
that might still enable re-identification (e.g., combining anonymized dates with
other available information), the general possibility for re-identification is almost
non existing considering extracted values of the remaining 9 PHI entity types are
anonymized.

PHONE The PHONE anonymization technique handles different phone lengths
individually, allowing for easy adaptations and enhancing practicality. The mask-
ing process involving the age range prefix applied to the initial part maintains pri-
vacy without excessively altering the data. In addition, randomization contributes
to the complexity of the anonymization, and even if one part remains unaltered,
it is hard for the attacker to re-identify all original digits and discover the exact
phone number since the number of possible variations is high.

Categorical PHI entities

DISEASE, CHEMICAL, LOCATION and HOSPITAL Implementing encryp-
tion keys for categorical entity types (DISEASE, CHEMICAL, LOCATION, and
HOSPITAL) is a notable achievement of our customized approach. This technique
ensures that these entities remain pseudonymous, preventing the linkage of spe-
cific values to individuals. Additionally, pairing unique entity values with respec-
tive age range groups increased the difficulty of re-identification attempts, and en-
cryption keys maintained privacy. However, safeguarding these keys and ensuring
their availability only to authorized personnel introduces management complex-
ities. Regardless, we won’t develop further protection strategies as they concern
authorized personnel access and are not in the scope of this work.

DOCTOR and PATIENT Replacing DOCTOR and PATIENT is a pragmatic so-
lution as it maintains the integrity of medical records while eliminating personal
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identifiers. Using pseudonyms like DOCTOR and PATIENT minimizes harm in
case of unauthorized access to sensitive values. However, it is worth considering
that removing specific contextual details may limit analysis granularity, which is
not the case in this work.

6.2.1 Anonymization Impact on Data Utility and
Visualization of Frequency Counters

This subsection reflects the dataset quality after anonymization and respective
visual representations of frequency counters connected with age range groups.
Since anonymization is a binary process implying the data is either anonymized
or not, comparing different approaches for replacing the original values may not
lead to meaningful insights. In this context, evaluating individual techniques in
isolation can be limiting, as it often fails to capture the interplay between different
anonymization strategies.

However, considering the suitability of different techniques is imperative
for compliance with regulations such as HIPAA and GDPR. Therefore, our
evaluation assesses the proposed customized method’s impact on data utility and
privacy, highlighting the inherent trade-offs. In connection, we aim to present a
holistic view of the anonymization results through visualizing frequency counters.

Visualizations are crucial in evaluating the impact of anonymization on term
frequency distribution in specific age ranges and entity types, particularly for
encrypted categorial PHIs including DISEASE, CHEMICAL, LOCATION, and
HOSPITAL. Thus, we gained insights into the data patterns preservation by
comparing term frequencies before and after anonymization. In connection, the
visualizations of the frequency count generated demonstrate the anonymization
of particular terms in different age groups, and this metric enables a quantitative
assessment of the impact of anonymization on data integrity and the extent to
which the anonymized data maintains its original structure.

Consequently, we provided insight into the anonymization process by pre-
senting the five most frequent anonymizations and their corresponding original
data pairs for records within each group. Tables 6.8, 6.9, 6.10, and 6.11 show
randomly chosen frequency count examples for encrypted categorical PHI
attributes: DISEASE, CHEMICAL, LOCATION, and HOSPITAL. These tables
illustrate how we transformed sensitive health-related data and confirm that
each term successfully preserved data utility while meeting the stringent privacy
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requirements of both HIPAA and GDPR.

Considering Table 6.8 and examining the DISEASE anonymization value
"mjIYDg==" associated with the medical condition ”stenosis” among individuals
aged 0 to 10 shows the consistent frequency count. Observing the consistent
frequency count suggests that while we replaced the specific term with an
anonymization key to safeguard patient confidentiality, we maintained the
general distribution of medical conditions within this age range. This consistency
suggests that the anonymization process effectively maintains data utility by
retaining key data patterns necessary for analysis. Similarly, Tables 6.9, 6.10,
and 6.11 show consistent frequency counts for CHEMICAL, LOCATION, and
HOSPITAL, respectively, and thus, contribute to the conclusion on maintained
data utility.

On the other hand, visualizing frequency counts for categories with a sin-
gle value (DOCTOR and PATIENT) provides no meaningful insights due to a lack
of variation. By replacing individual entity values with a single category label, we
group all the original values and lose diversity. Therefore, we haven’t visualized
the frequency count of these two categorical PHI entity types. However, we
replaced all identified entities with DOCTOR and PATIENT entity types from
the original records and, consequently, prevented the direct identification of
individuals in the case of a data breach. Figure 4.12 confirms there are 534 entities
with DOCTOR and PATIENT entity types after we replaced respective entities
with corresponding labels, as was the case before the anonymization.
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Table 6.8: DISEASE: the five most frequent anonymizations and their correspond-
ing original data pairs for AGE RANGE = (x, y]
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Table 6.9: CHEMICAL: the five most frequent anonymizations and their corre-
sponding original data pairs for AGE RANGE = (x, y]
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Table 6.10: LOCATION: the five most frequent anonymizations and their corre-
sponding original data pairs for AGE RANGE = (x, y]
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6.3 Data anonymization according to HIPAA and
GDPR Conclusion

In summary, our approach to anonymizing PHI of interest combined tokenization,
encryption, and pseudonymization to meet HIPAA and GDPR requirements. We
combined different data masking techniques to protect the privacy of numerical
entities grouped according to the age range they belong to. To anonymize AGE,
we mapped values to 10-year age ranges. For ID, we combined upper boundary
age-related elements with randomization to add an extra layer of security. DATE
anonymization focused on obscuring day and month details while preserving
the date structure, reducing the risk of external data linkage primarily based on
the year. Lastly, we anonymized PHONE numbers by accommodating varying
phone lengths and introducing age range prefixes together with randomization to
enhance protection against re-identification attempts. Even though we recognized
that these techniques have some general limitations and may result in slight
information loss, this was not the case in our work.

Furthermore, we protected the privacy of sensitive categorical data by imple-
menting encryption keys for specific entity types such as DISEASE, CHEMICAL,
LOCATION, and HOSPITAL. This approach ensured pseudonymity and addition-
ally safeguarded the data through age range pairing. Although encryption key
management may introduce complexities, this approach proved efficient. On the
other hand, we replaced all DOCTOR and PATIENT entity types with respective
single-term labels. Our evaluation of the categorical entity anonymization
process has shown that our approach preserves data patterns effectively and
meets strict privacy requirements. Visualizations of term frequencies before and
after anonymization for categorical PHI confirmed data utility preservation.

In conclusion, our approach provides a robust solution for anonymizing 6,518
PHI while ensuring regulatory compliance and data integrity. Figure 6.1 shows
the successful anonymization of all PHI, with no entities excluded, compared
to Figure 6.2 (also presented as Figure 5.10), which shows the total number of
PHI extracted before the anonymization (after manually validating the model
deployment output). In addition, to confirm resuls from Figure 6.1 and 6.2, we list
respective counts of entities belonging to each PHI entity type before and after
anonymization in Table 6.12.
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Annotation Distribution after Data Anonymization

Unigue Annotations
DISEASE
CHEMICAL
PATIENT
DOCTOR
AGE

ID

DATE
PHONE
LOCATION
HOSPITAL

DISEASE: 2477 (38.0%)
CHEMICAL: 1500 (23.0%)
PATIENT: 80 (1.2%)
DOCTOR: 454 (7.0%)
AGE: 103 (1.6%)

1D: 510 (7.8%)

DATE: 1028 (15.8%)
PHONE: 34 (0.5%)
LOCATION: 40 (0.6%)
HOSPITAL: 292 (4.5%)

Figure 6.1: PHI Annotation Distribution after Data Anonymization in Final Dataset

Manually Validated Annotation Distribution after Model Deployment on Unannotated Data

Unique Annotations
DISEASE
CHEMICAL
PATIENT
DOCTOR
AGE

D

DATE
PHONE
LOCATION
HOSPITAL

DISEASE: 2477 [38.0%)
CHEMICAL: 1500 (23.0%)
PATIENT. 80 (1.2%}
DOCTOR: 454 [7.0%)
AGE: 103 [1.6%)

10 510 {7.B%)

DATE: 1028 {15.8%)
PHOME: 34 (0.5%])
LOCATION: 40 [0.6%)
HOSPITAL: 202 (4.5%)

Figure 6.2: PHI Annotation Distribution before Data Anonymization in Final
Dataset
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PHI Type | Number of PHI Before Anonymization | Number of PHI After Anonymization
DISEASE 2,477 (38,0%) 2,477 (38,0%)
CHEMICAL 1500 (23,0%) 1500 (23,0%)
PATIENT 80 (1,2%) 80 (1,2%)
DOCTOR 454 (7,0%) 454 (7,0%)
AGE 103 (1,6%) 103 (1,6%)
ID 510 (7,8%) 510 (7,8%)
DATE 1028 (15,8%) 1028 (15,8%)
PHONE 34 (0,5%) 34 (0,5%)
LOCATION 40 (0,6%) 40 (0,6%)
HOSPITAL 292 (4,5%) 292 (4,5%)
TOTAL 6,518 (100%) 6,518 (100%)

Table 6.12: Number of PHI of Interest before and after the Anonymization

77
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Upon the successful completion of the first two phases considering data prepro-
cessing, annotation, NER, and anonymization according to HIPAA and GDPR, this
section endeavors to tackle the research question we seek to answer: Is automatic
detection of EHRs that are HIPAA but not GDPR compliant possible? As a prac-
tical part of the efforts belonging to this phase, we investigated if it is possible to
construct such a pipeline and successfully address the problem this work presents.
Consequently, we propose a general overview of the outcomes achieved during
this phase and narrow our focus to a discussion based on the scope of this work.

7.1 Is automatic detection of EHRs that are HIPAA
but not GDPR compliant possible?

Detecting whether EHRs are HIPAA but not GDPR compliant is a complex task
that involves legal and technical considerations. After thorough research, we must
highlight our research question has a broad scope and several possible answers.
While we can implement some automated checks, it’s important to note that au-
tomated processes alone cannot 100% guarantee compliance, as it depends on the
context and specific use cases of each dataset, but reducing the scope can signifi-
cantly change the results.

7.1.1 Possible Automated Checks

In general, automated checks are tailored to the specific requirements of protection
regulations, aligning with their distinct objectives. As we previously investigated
HIPAA and GDPR core principles and goals, we have identified several checks
that one can effectively implement to evaluate EHR compliance. These checks
encompass a range of criteria, as datasets can exhibit various combinations of data
elements and utilize different anonymization techniques.

Sensitive Data Identification After we process the data, we can use different
NER approaches to find and extract sensitive information. Based on the model we
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choose and the way we extend its annotations, it can happen that extracted en-
tities do not cover HIPAA and GDPR scope since they have different rules about
what information needs to be protected. Therefore, to identify cases when the
HIPAA-compliant records do not comply with GDPR, we can implement a func-
tion to compare the entity types extracted and required by regulations. To explain
this, we generate the flowchart in Figure 7.1. Figure 7.1 describes the example
from this work where we focused on extracting 11 unique PHI entity types, de-
liberately narrowing our scope. However, to ensure complete GDPR compliance,
we could extend our PHI set to encompass additional categories, such as email ad-
dresses and financial information. If any of these extended categories were present
in the records, but our model did not extract them during initial data processing,
we would need to establish a check that raises a red flag, indicating potential non-
compliance. To perform this check in a programming sense, we would first extract
and compile the defined set of PHI data from the original records as we did in
Phase 1. Next, we would compare this compiled PHI dataset against all informa-
tion GDPR requires to be protected. If email addresses or financial information is
present in the final dataset without corresponding extraction and labeling, a pro-
gram would signal a non-compliance issue by raising a red flag. The same com-
pliance check would be in place when detecting HIPAA but not GDPR-compliant
records where we compare extracted data according to HIPAA with the defined
entity type set that reflects GDPR requirements (e.g., religious beliefs).

De-ldentification Checks Another crucial step for the compliance assessment
is the de-identification check. In contrast to sensitive information identification
assessment after Phase 1, this check follows up on the work done in Phase 2. Its
primary objective is to validate the proper de-identification or pseudonymization
of sensitive data, assuming the model previously accurately extracted sensitive
data from the records. Therefore, we must consider sensitive entity type valida-
tion and entity count checks to ensure that all extracted identifiers are removed
or appropriately anonymized. In a programming sense, we start by comparing the
number of extracted entities with the number of anonymized entities, as we did in
Phase 2. If these two counts don’t match, we must raise a red flag since there is no
GDPR compliance. As an example, we refer to Figure 6.1, 6.2 and Table 6.12, which
confirm the extracted data from our work is fully and appropriately anonymized.
Secondly, we should examine whether values indicative of sensitive entities, such
as “x-years-old” or “diabetes-mellitus,” are present in the dataset after anonymiza-
tion. If these sensitive entity types persist, it suggests that de-identification might
not have been successful, and once again, we should raise a red flag.
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data processing
v
NER task
A
define set of extracted entity define set of entity types GDPR
types covers

PATIENT, DOCTOR, HOSPITAL, ID, DATE, PATIENT, DOCTOR, HOSPITAL, ID, DATE, LOCATION,
LOCATION, PHONE, AGE, DISEASE, CHEMICAL PHONE, AGE, DISEASE, CHEMICAL, EMAIL. PAYMENT, RELIGION

compare entity type sets

GDPR compliant raise a GDPR non-compliance FLAG

Figure 7.1: Flowchart example on how to implement check for sensitive data iden-
tification

Consent and Data Subject Rights Compliance with GDPR requires thorough
verifications of explicit consent for data processing from every individual.
However, automating this consent check can be a complex problem, influenced
by various factors, since consent forms may but don’t have to reflect common
words or phrases. There are cases where phrases like explicit consent, authorized
access, or agreed to share data unequivocally indicate the presence of consent and
can serve as reliable markers for automated detection. In such cases, automated
systems can scan the text and flag any occurrence of these keywords, making
it relatively straightforward to determine whether consent is provided. As an
example we have a common phrase used in most consent forms: I hereby grant
explicit consent for the use of my personal information which is easily detectable
by automated systems. Conversely, there are situations where detecting consent
is not as straightforward since either consent forms may lack explicit consent-
related language or consent may be implied rather than explicitly stated, relying
on contextual cues as Your data will be processed for research purposes.

We have outlined several automated checks as a proactive approach to de-
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tect records that comply with HIPAA but not GDPR regulations. It’s important
to note that while these checks represent a significant step forward, they do not
comprehensively cover all aspects of GDPR compliance. There are still differences
between HIPAA and GDPR requirements, such as breach notification reports,
that should be integrated into a broader compliance monitoring system, with
the consultation of legal experts to ensure effective implementation. Therefore,
ongoing efforts should refine and expand these checks to adapt to evolving
regulations, emphasizing a holistic approach to data governance. Conclusively,
it’s worth mentioning that achieving complete automation in the process of
detecting HIPAA but not GDPR-compliant EHRs is complex since ensuring full
GDPR compliance itself often necessitates manual intervention by legal experts.

7.1.2 Automated Checks in the Scope of the Work

While we tried to present several automated checks to address the challenge of
detecting HIPAA but not GDPR-compliant records in general cases, it became
evident that these checks, while valuable, cannot comprehensively cover all
aspects of GDPR compliance due to their complex nature. Therefore, we decided
to narrow the scope of our work and try to recognize the complexity only of
specific scenarios.

In the first phase of our study, after we annotated the data, we trained the
BERT model to extract 11 unique PHI entity types, focusing on a specific subset of
the compliance scope. Given our limited expertise in this domain, the annotations
upon which we trained the model exhibited some inconsistencies, so we pro-
ceeded under the assumption that the extraction of all entity types was accurate.
Since the sensitive information validation check usually follows after Phase 1, we
decided implementing this check would be useless due to the limited scope of our
work. If we were to compare the entities we extracted to what GDPR mandates,
most records would fail the check since we do not currently cover entities like
ethnicity or religious beliefs. However, to incorporate this check, we would need
to create a new set of entity types covering all GDPR requirements, prepare data
annotations accordingly, fine-tune the model, and then compare results obtained
from the model we used in our work with a hypothetical model predicting all
necessary entity types.

In the second part of our study, we implemented anonymization techniques
with the aim of achieving the lowest possible re-identification risk while safe-
guarding every extracted entity value. Due to the assumption the model identified
all entities reliably, we proceeded with the de-identification check. As demon-
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strated in Figure 6.1, 6.2 and Table 6.12, we compared the count of anonymized
values with the count of originally extracted values, which resulted in no red flags.
Even if we did not implement the automated check, it would be straightforward
to total counts of entities before and after the anonymization.

The only automated check that would make sense to implement would be
the freely given consent check. However, records in the dataset we used in the
work lack information regarding consent, instantly raising a red flag. In addition,
implementing this check for general purposes and applying it to our work would
not be straightforward since consent forms can vary significantly, and depending
on the dataset, we can sometimes identify them using specific consent-related
keywords and patterns. However, there are still cases where we have implied and
not explicit consent, which makes it harder to check. Therefore, creating a consent
validation check requires knowledge about specific dataset characteristics, and
given the variability of consent forms, a universally applicable approach is hardly
possible.

In conclusion, based on the scope of our work, it appears feasible to imple-
ment sensitive information and de-identification validation checks, as our
fine-tuned model demonstrates generalizability and anonymization techniques
are adaptable. However, the consent check seems to be applicable only to
specific datasets with certain characteristics, implying we can’t generalize it.
Consequently, considering the scope of our work and only three described checks,
we could confirm HIPAA and not GDPR-compliant records detection is possible.
However, fully automated detection of EHR cases complying with HIPAA but not
GDPR remains unattainable in general cases since these three points alone are
insufficient to ensure GDPR compliance. Nonetheless, this presents an avenue for
future research to explore the generalization of consent checks and potentially
incorporate breach notification checks into a more comprehensive system.
Yet, this would necessitate the involvement of data protection experts, diverse
data sources, 100% accurate data annotations, and a structured implementation
aligning with HIPAA and GDPR requirements.
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Throughout each phase of our research, we identified possible improvements to en-
hance the overall efficacy of our approach, and in this chapter, we want to present
some of them.

8.1 Phase I: Data Source Diversity and PHI Scope

One notable improvement is the availability of diverse data sources, which can
be beneficial in all phases, for example, fine-tuning the BERT model in Phase 1
and incorporating GDPR checks, such as consent validation checks, in Phase 3.
Fine-tuning the BERT model for recognizing specified PHI would undoubtedly
benefit since a more varied dataset would enable the model to generalize better
across different types of PHI and adapt to a broader range of real-world scenarios.
Additionally, diverse data sources could help mitigate biases and increase the
model’s robustness, making it less prone to overfitting or underperforming when
faced with inadequate PHI variations.

Another potential improvement for the future reflects expanding the scope
of extracted entity types to cover all GDPR-mandated categories, such as eth-
nicity, religious beliefs, and other sensitive information. In this way, we can
achieve more comprehensive GDPR compliance assessments and ensure better
accuracy since fine-tuning models on high-quality, consistent, and extensive data
annotations is crucial. Additionally, involving experts in the validation process
would make the data more reliable and produce higher results.

8.2 Phase II: Adapted Anonymization Methods

While analyzing our customized anonymization approach, we identified several
potential enhancements. Firstly, we could explore more dynamic techniques for
AGE anonymization, considering variables like shifting demographics and the
demand for increased granularity. Similarly, delving into DATE anonymization
methods that account for temporal associations between dates and age ranges
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could yield even more robust outcomes. Furthermore, it may be possible to en-
hance anonymization effectiveness for ID and PHONE entities by employing age-
dependent strategies without compromising data utility. However, it is crucial to
emphasize the importance of ongoing vigilance and adaptability in our anonymiza-
tion practices, especially in response to evolving privacy regulations and emerging
threats. Therefore, a particularly significant improvement would be the integra-
tion of machine learning algorithms that will enable the system to dynamically
adapt to shifting data structures and emerging privacy risks.

8.3 Phase llI: Consent Validation Check

In Phase 3, just one of the possible improvements is the development of adap-
tive consent validation methods that can effectively accommodate diverse datasets.
This advancement entails delving into context-aware consent checks that leverage
the capabilities of machine learning algorithms to recognize consent-related key-
words and distinctive patterns unique to each dataset. Such an approach would
substantially enhance the adaptability of consent validation procedures, address-
ing real-world situations where consent forms exhibit considerable variations.
However, it is crucial to underscore that the successful implementation of this im-
provement would necessitate a collaborative effort involving legal experts. Their
expertise would be invaluable in establishing a comprehensive framework for eval-
uating the validity of consent within the context of GDPR compliance, ensuring
that data handling practices align with legal requirements and ethical standards.
However, we must point out that there is a high probability that this process may
never be reliable and successfully automatized.

8.4 Summary

In summary, our research has revealed the intricate nature of safeguarding sensi-
tive healthcare data and illustrated a promising path for future advancements in
preserving patient privacy within our rapidly evolving data-driven landscape. The
potential improvements we have outlined represent just a peek into the broader
spectrum of enhancements possible in the future. Therefore, by fostering interdis-
ciplinary collaboration among data scientists, legal experts, and healthcare profes-
sionals and structuring the implementation containing these advancements, there
is a potential to automate the detection process of HIPAA but not GDPR-compliant
records. However, structuring such a system is currently impractical since ensur-
ing full GDPR compliance often necessitates manual intervention by legal experts
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and more knowledge than present due to complex restrictions.
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9 Conclusion

In this research, we delved into the critical issue of data privacy in healthcare,
focusing on the intersection of two major data protection regulations, HIPAA
and GDPR. Our main objective was to address the challenge of automatically
detecting cases where HIPAA-compliant EHRs fall short of GDPR compliance and
potentially prevent data breaches. To achieve this, we structured our work into
three distinct phases. After handling data acquisition, preprocessing, annotation,
and NER to identify specific PHI elements, we composed a tailored approach for
anonymizing the data per HIPAA and GDPR standards. Finally, the last phase
of our research investigated the feasibility of constructing a pipeline capable of
discerning EHR records that align with HIPAA but deviate from GDPR standards.

In Phase I, we selected and prepared the 2006 N2C2 de-identification chal-
lenge dataset, identified 10 PHI entity types of interest (DISEASE, CHEMICAL,
PATIENT, DOCTOR, LOCATION, HOSPITAL, PHONE, AGE, ID, and DATE), and
used NER tools like SpaCy, SciSpaCy, and Pronto to extract information. We added
BIO tags to the annotated data and fine-tuned a model, emphasizing the positive
impact of data balancing through oversampling. Consequently, we chose the
emilyalsentzer/Bio ClinicalBERT model for its performance since the comparison
of the total number of annotations generated by the model (6,387) and the total
number of annotations validated (6,618) resulted in an overall accuracy of 96.5%.
However, it is crucial to acknowledge that evaluating the model’s performance
solely based on the comparison of produced and validated annotations is limited
in providing comprehensive insights. Therefore, we checked how many entities
the model misclassified per PHI type and cautiously estimated our model’s overall
accuracy to be around 95%. With this assessment in mind and assuming the
correctness and reliability of the extracted data of interest, we started Phase II.

In Phase II, we developed a customized approach to anonymizing PHI of in-
terest, combining tokenization, encryption, and pseudonymization to meet
HIPAA and GDPR requirements. We combined different data masking techniques
to protect the privacy of numerical entities grouped according to the age range
they belong to. Furthermore, we anonymized the sensitive categorical data by
implementing encryption keys for specific entity types such as DISEASE, CHEM-
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ICAL, LOCATION, and HOSPITAL. This approach ensured pseudonymity and
additionally safeguarded the data through age range pairing. On the other hand,
we replaced all DOCTOR and PATIENT entity types with respective single-term
labels. Our evaluation of the categorical entity anonymization process has shown
that our approach preserves data patterns effectively and meets strict privacy
requirements. In conclusion, our customized method provided a robust solution
for anonymizing 6,518 PHI while ensuring regulatory compliance and data
integrity, as shown in Figures 6.1, 6.2, and Table 6.12.

Consequently, Phase III revealed the complex and multifaceted nature of si-
multaneously achieving HIPAA and GDPR compliance in EHR anonymization.
While we’ve made progress in identifying records that exhibit inconsistencies in
extracted entities or anonymization techniques, the comprehensive assessment
of GDPR compliance emerged as a formidable challenge. However, despite these
challenges, our research laid a foundation for further exploration and refinement
of solutions in data protection, and based on the limitations and insights gained,
we defined some possible technical improvements and directions for future work.
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