TU

Grazm

David Andrawes, BSc

Design and Implementation of
Controlling Bluetooth Low Energy
Devices in Mobile Android Development

MASTER’S THESIS

to achieve the university degree of

Master of Science

Master's degree programme:
Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Institute of Software Technology

Graz, May 2023

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
master’s thesis.

Date Signature

Acknowledgements

First and foremost, I would like to thank God for he has covered me, helped
me, guarded me, accepted me to Himself, spared me, supported me and has
brought me to this hour. This accomplishment would have been impossible
without His blessings.

I would like to express my deepest gratitude to my supervisor Univ.-Prof.
Dipl.-Ing. Dr.techn. Wolfgang Slany, who always offered me advice and active
support and assisted me with his knowledge in this area.

Words cannot express my gratitude to my dear parents and my dear brother for
their constant encouragement and unfailing support over all the years. None of
this would have been possible without them, for they have made me the person
I am today.

I would like to extend my sincere thanks to all my relatives and friends for
their tremendous support.

Moreover, I am grateful to my close fellow students for the ups and downs we
have shared during our studies, especially during group work, over the past
five years.

Finally, I would like to thank the entire Catrobat team for their excellent coop-
eration and team spirit, especially the Catroid IDE team.

Graz, May 2023 David Andrawes

Abstract

Internet of Things (IoT) devices have increased dramatically in recent years.
They can now be found in various applications in everyday life, and it is hard
to imagine life without them. Bluetooth Low Energy (BLE) is increasingly
being used for networking such devices for transmission due to its extremely
low power consumption and compatibility with many smartphones, tablets
and computers. However, there is a lack of applications for the quick and
uncomplicated implementation of own ideas or projects without profound
knowledge in these areas.

In the present work, the existing mobile Android application Pocket Code, with
the visual programming language Catrobat, is extended to control external
BLE devices wirelessly. The bidirectional communication between IoT devices
and the smartphone or tablet is achieved by arranging graphical blocks in
the visual programming environment. The practical implementation includes,
as an example, the complete control of Arduino boards through the Firmata
protocol.

The visual programming language makes it not only easier for non-experts to
implement their own IoT projects directly via a smartphone or tablet but also
for experts to quickly realise innovative ideas according to the principle of rapid
prototyping. This includes creating applications to control external BLE devices
with a user-defined graphical user interface (GUI) for interaction. In addition,
the implementation design allows for easy expandability to other devices and
communication protocols in the future.

Keywords: Pocket Code - Arduino - Bluetooth Low Energy - Firmata - Internet
of Things - Rapid Prototyping - Visual Programming

Vil

Kurzfassung

Der Einsatz von Internet der Dinge (IoT) Geréten ist in den vergangenen Jahren
drastisch gestiegen und ist heutzutage in verschiedenen Anwendungen des All-
tags wiederzufinden und kaum wegzudenken. Zur Vernetzung solcher Gerite
kommt fiir die Ubertragung vermehrt Bluetooth Low Energy (BLE) zum Einsatz,
aufgrund des duflerst geringen Stromverbrauchs und dessen Kompatibilitit
mit einer grofien Anzahl von Smartphones, Tablets und Computern. Jedoch
fehlt es an Applikationen fiir die schnelle und unkomplizierte Umsetzung von
eigenen Ideen oder Projekten, ohne dabei tiber ein fundiertes Fachwissen in
diesen Bereichen zu verfiigen.

In der vorliegenden Arbeit wird die bestehende Mobile Android Applikation
Pocket Code, mit der visuellen Programmiersprache Catrobat, um die draht-
lose Steuerung von externen BLE-Gerdten erweitert. Dabei wird durch die
Anordnung von grafischen Blocken in der visuellen Programmierumgebung
die bidirektionale Kommunikation zwischen IoT-Gerdten und dem Smartphone
oder Tablet erzielt. Die praktische Implementierung beinhaltet im Zuge des-
sen exemplarisch die vollstandige Steuerung von Arduino-Boards durch das
Firmata Protokoll.

Die visuelle Programmiersprache erleichtert nicht nur Laien die Umsetzung
ihrer eigenen lIoT-Projekte direkt iiber ein Smartphone oder Tablet, sondern
auch Experten bei der schnellen Realisierung innovativer Ideen nach dem Prin-
zip des Rapid Prototyping. Dies umfasst die Erstellung eigener Applikationen
in Verbindung mit der Steuerung von externen BLE-Geréten mit einer benut-
zerdefinierten grafischen Benutzeroberfliche (GUI) fiir die Interaktion. Zudem
erlaubt das Design der Implementierung kiinftig die leichte Erweiterbarkeit um
weitere Gerdte und Kommunikationsprotokolle.

Schlagworter: Pocket Code - Arduino - Bluetooth Low Energy - Firmata -
Internet der Dinge - Rapid Prototyping - Visuelle Programmierung

Contents

[Cist of Figures| xiii
[List of Tables XV
[Cist of Listings| xvii
Xix
(1__Introduction| 1
1.1 wvationf 1
1.2 Contribution|o oo o 2

1.3 Outlinel 3

2 Background| 5
.1 Catrobat] 5
2.1.1 Catrobat Project|{. 5

2.1.2 PocketCodel. oo 6

[2.1.3 Catrobat Programming Language| 9

[2.2 Bluetooth Low Energy (BLE) 11
2.2.1 Fundamentals|. 11

2.2.2 BLE Protocol Stackl 12

[2.2.3 BLE and Internet of Things (IoT)[. 18

[2.3 Arduinol 19
2.3.1 Arduino Hardware|. 20

2.3.2 Arduino Software] L. 21

233 ArduinoandIoT| 22

2.4 Firmatal o 23
2.4.1 Protocol| oo 24

2.4.2 Musical Instrument Digital Interface (MIDI) Message For- |

mat] 24

2.4.3 Message Iypes| 25

2.4.4 Usagel. 26

3 Design| 27
3.1 System Architecture] 27
3.2 Requirements|, 28

Xi

Contents

3.3 Hardware|
B-3.1 Blend Microf
3.2 Experimental Setup|

[3-4 Softwarel
[3-4.1 Software Architecture]
B.a2z Workflow|

4 Implementation|

4.1 BLE Framework| o 0000000000
411 BLEManager| o oo oo
4.1.2 BLE Operations|.
4.1.3 BLE Queue Manager|.

g2 Firmatalo
4.2.1 Messages|. oo oo

22 Writer]

423 Readel] . -« oo

l4.3 Integration into Pocket Code|
4.3.1 BLE Connectionf.

432 ArduinoControl]

l44 Testing]
441 UnitTesting]

4.4.2 Instrumentation lesting|,

[5__Evaluation|

[5.1 Programming|

l5.1.1 Experimental Setup|

.x2 Codel
[5.1.3 Resul

[5.2 Discussion|

6 Conclusion|

0.1 SUMMATIY|. . . . o v v oo ittt e e e

6.2.2 Support BLEdevices| o000

Xil

List of Figures

2.1 Pocket Code Main Screen| 7
[2.2 Pocket Code Categories| 8
a Categories Part1| 8
Categories Part2f 8

2.3 Pocket Code Formula Editor] 9
2.4 Pocket Code Example Scripf. 10
2.5 BLE Protocol Stack [7] 13

2.6 GATT Hierarchy [6]f. 16
2.7 Comparison of loT Wireless Communication Protocols [11]| . .. 19
2.8 Main Components of an Arduino Board [15] 21
2.9 Microcontroller Operating Cycle| 23

3.1 Schematic Structure|. Lo 28

3.2 BlendMicro Pinout [24] 30
33 DOGIrCUif] ¢ v v oo e e e e 33

B4 DICircutf o 34
B5 AlCGrcuff 35
[3.6 BLE Connection DeviceRoles| 37
............................... 38
B8 WOIKIOW] - -+« « o e oo e e 39
4.1 ueue ... 44
[4.2 Bluetooth Device Search Screen|. 47
1.3 Settings remove BLE device| 00 0oL 48
4.4 Arduino in PocketCode|00 49
a ArduinoBricks|o oo 49
Arduino Functions| 0000000000 49

l4.5 Android Testing Methods Overview [26] 51
|5.1 Evaluation Test Setup|., 56
[5.2 Pocket Code Evaluation Project] 57
a Evaluation Project Part1f 57
Evaluation Project Part2[. 57

xiii

List of Tables

2.1 Overview of different Firmata Message Types [21][.

2.2 Sysex Message Structure [21]|

3.1 Blend Micro Specification [23]]|

XV

List of Listings

XVii

Acronyms

ADC
Al
AO
API
ATT

BLE

CC BY-SA
CCCD

CI

DAC
DI
DIY
DO

FHSS
FIFO
FOSS

GAP
GATT
GFSK
GPIO
GSM
GSoC
GUI

HCI
12C

I/0
IC

analog-to-digital converter

Analog Input

Analog Output

Application Programming Interface
Attribute Protocol

Bluetooth Low Energy

Creative Commons Attribution-ShareAlike

Client Characteristic Configuration Descrip-

tor
Continuous Integration

digital-to-analog converter
Digital Input
do-it-yourself

Digital Output

Frequency-Hopping Spread Spectrum
First In - First Out
Free and Open Source Software

Generic Access Profile

Generic Attribute Profile

Gaussian Frequency Shift Keying
General Purpose Input/Output

Global System for Mobile communication
Google Summer of Code

Graphical User Interface

Host Controller Interface
Inter-Integrated Circuit

Input/Output
integrated circuit

XIX

Acronyms

XX

IDE
IDII
IoT
IPSP
ISM
ISP

L2CAP
LED
LoRa

MAC
MIDI
MIT
MMA
MSB

NB-IoT
OTG

PC
PWM

RX

SIG
SRAM
Sysex

TDD
TX

Ul
USB
USI
UUID
UX

VPL

Wi-Fi

Integrated Development Environment
Interaction Design Institute Ivrea
Internet of Things

Internet Protocol Support Profile
Industrial, Scientific, and Medical
in-system programming

Logical Link Control and Adaption Protocol
Light-Emitting Diode
Long Range

media access control

Musical Instrument Digital Interface
Massachusetts Institute of Technology
MIDI Manufacturers Association
most significant bit

Narrowband Internet of things
On-The-Go

Personal Computer
Pulse Width Modulation

Receiver

Special Interest Group
Static Random-Access Memory
System exclusive

Test-Driven Development
Transmitter

user interface

Universal Serial Bus

Universal Synthesizer Interface
Universally Unique Identifier
User Experience

visual programming language

Wireless Fidelity

Acronyms

XML Extensible Markup Language
XP Extreme Programming

XXI

1 Introduction

In contemporary times, an increasing number of devices are interconnected
and communicate with each other, thereby creating the |Internet of Things|
This exponential growth is evidently noticeable and profoundly impacts
various aspects of human life, making ordinary activities more convenient.
These devices are essentially small embedded systems equipped with sensors
and actuators to gather data and execute specific actions based on the acquired
information. Due to their reliance on batteries or even button cells for extended
periods, the energy consumption of these devices is very constrained.

Since wired connections are unavailable in certain contexts, many devices resort
to wireless connections for data exchange. While wireless communication is a
simpler and more cost-effective alternative to wired connections, it has its draw-
backs. These include heightened security concerns and diminished reliability
due to the potential for radio interference. The required range and transmis-
sion speed determine the selection of the appropriate communication protocol.
However, it is crucial to consider energy efficiency when selecting a protocol
since a device’s maximum power consumption occurs during transmissions.

In recent years, the wireless communication protocol [Bluetooth Low Energy|
has emerged as a clear leader in this field. This is due to its optimised low
power consumption and extensive device support. Additionally, it is inherently
integrated into all modern smartphones, tablets, and computers, allowing for
direct interaction with other devices through these common devices. The
technology’s advantages include its low cost and flexibility to be configured
by certain parameters to support a wide range of applications. It is particu-
larly suitable for applications with short distances and minimal data transfer
requirements.

1.1 Motivation

The motivation for this thesis stems from the possibility of employing
devices in many ways to realise personal projects and ideas. Nevertheless, this
endeavour requires fundamental knowledge of electronics and programming,
which can present a formidable obstacle, particularly for non-experts. Even

1 Introduction

for hobbyists or specialists in this domain, the fast development of prototypes
necessitates extensive labour.

Catrobat is a visual programming language that allows programming without
prior knowledge by playfully arranging functional blocks. This takes place
on a mobile device, such as a smartphone or tablet, using the mobile app
Pocket Code, an [Integrated Development Environment (IDE), In addition to
accessing sensors and actuators of the mobile end device, the app also offers
the possibility of connecting external hardware. However, to remain up to date,
continuous development is necessary to support the latest technologies.

For this reason, this thesis expands the existing app Pocket Code to include wire-
less control of external devices, with the first representative symbolically
being an Arduino. Arduino, an open-source platform with a large commu-
nity, is suitable for rapid prototyping, particularly in the hardware context.
Its use ranges from small experimental projects for beginners to market-ready
professional applications.

The combination of Arduino and Pocket Code unites simplicity in both hard-
ware and software, thus promising immense potential for implementing
projects. The visual programming language not only provides non-experts
with a simple way to execute their projects but also enables experts to realise
innovative ideas quickly in terms of rapid prototyping. Moreover, unlike other
solutions, everything runs on the mobile device, from the application’s pro-
gramming to its control via a self-designed |Graphical User Interface (GUI)!
These aspects significantly lower the entry threshold into these domains and
enable promising applications that make daily life easier.

1.2 Contribution

This thesis extends the existing Android app Pocket Code to control devices
in order to comply with state-of-the-art and thus enable own projects in
this respect. Specifically, the thesis integrates the widely used Arduino as the
tirst device. In summary, the thesis includes the following points:

e Implementation of a framework to manage connections;

* Implementation of the Firmata protocol with support for

¢ Integration of controlling the Arduino via into the existing Android
app Pocket Code.

The implementation of the framework and Firmata protocol are designed
in a general way, making their use also outside this context possible. This is
particularly significant since there is no open-source implementation of the
Firmata protocol with support for Android applications. Moreover, this

1.3 Qutline

thesis places substantial emphasis on the design for easy extensibility, allowing
the addition of more devices and communication protocols in the future.

Additionally, given the sparse description of the Android [Application Program}
ming Interface (API) regarding this thesis details the handling of BLE|in
Android development and highlights potential issues in this regard. Further-
more, the thesis provides a comprehensive evaluation and presents promising
future ideas based on its findings.

1.3 Outline

The remaining part of this thesis is divided into several chapters as follows.
Chapter [2 presents the relevant background for the thesis. This includes a
brief introduction to Catrobat, the organisation whose Android app Pocket
Code was extended during this thesis. Furthermore, the theory behind the BLE]
technology used is discussed. Subsequently, there is also an introduction to the
employed Arduino hardware and the Firmata protocol used for communication.
Following this, Chapter [3| goes into more detail about the design used in
the implementation. For this purpose, the general structure is described, and
the individual design decisions are explicitly clarified. Thereafter, a detailed
explanation of the practical implementation follows in Chapter |4} This includes
a presentation of the implementation of the framework and the Firmata
protocol in Android, as well as its integration into Pocket Code and its testing.
The results and limitations are discussed and evaluated in detail in Chapter
Finally, Chapter [f] concludes the thesis with a final summary and an outlook on
future work.

2 Background

This chapter provides some background information on aspects of this thesis
and is divided into four parts. Section [2.1|starts by giving some information
about the Catrobat organisation behind the Pocket Code app, which is extended
in the context of this thesis. This is followed by a description of their mobile
Android app Pocket Code and the visual programming language (VPL) used.
Section [2.2] then introduces the wireless communication protocol used
in this thesis. The differences and advantages compared to the previous ver-
sion Bluetooth Classic are highlighted, and the individual components of the
protocol are explained in detail. Section |2.3| gives an overview of the general
functionality of the widely used Arduino hardware, which will be controlled
by Pocket Code via in the practical implementation of this thesis. Finally,
Section [2.4| explains the theoretical background of the Firmata protocol used for
communication.

2.1 Catrobat

The following sections describe Catrobat, the organisation for which the practi-
cal part of this thesis is carried out. First, in Section the organisation itself
is presented. Then the Pocket Code application and its features are presented in

Section and finally, the used, also called Catrobat, is described with
its components and functionality in Section

2.1.1 Catrobat Project

The Catrobaf]'| Organisation is a non-profit [Free and Open Source Software|
project initiated by Slany [1] at Graz University of Technology in 2010.
Its aim is to simplify the introduction to programming, especially for children
from the age of eight, to create their own applications. The project was inspired
by Scratch, a for children which was developed by the Lifelong Kinder-
garten Group at the Massachusetts Institute of Technology (MIT) Media Lab [2].

"https://catrobat.org, accessed: Jan 2, 2023

https://catrobat.org

2 Background

In contrast to similar visual languages like ScratchP] or App Inventor]
Catrobat requires only a smartphone for both development and execution and
no additional |Personal Computer (PC)| is needed. The is based on LEGO®
blocks which are stacked together to form a program. This gives the impres-
sion of playing for children while coding and avoids text-based programming
language problems like syntax errors.

The organisation is divided into different teams, each pursuing another project
or task area. These teams mainly consist of students from the Graz University
of Technology but also of external developers, especially in the context of
programming campaigns for open-source projects such as |Google Summer]
lof Code (GSoC)| For this reason, as usual in projects, the fluctuating
number of members results in various challenges. These range from a poor flow
of information between members to a lack of expertise due to a deficiency of
prior knowledge and a short contribution period. To counteract this, various
concepts are used, such as the promotion of pair programming units to pass
on information or the need for code reviews before merging to avoid bugs
and increase the code quality. Furthermore, agile development is pursued
using Kanban with [Extreme Programming (XP)| and [lest-Driven Development]
(TDD)

2.1.2 Pocket Code

The main project of Catrobat is the mobile app Pocket Code [3]], initially Catroid
[4], consisting of an and interpreter for the Catrobat. Combining
visual blocks makes it possible to easily and playfully create individual apps,
ranging from games to animations and much more, without any previous
knowledge. Figure |2.1/shows the main screen of Pocket Code. What sets it apart
from comparable applications is that it only requires a smartphone or tablet,
which are widely available, making programming accessible anywhere and at
any time. The application is freely available for Androi as well as for iOSﬁ
and Huawef} whereby reference will be made to the Android version in the
following, as this will be expanded in the practical part of this thesis.

The aim is to provide an easy introduction to programming and teach program-
ming concepts, especially to children. For this purpose, is used instead of

https://scratch.mit.edu/, accessed: Jan 2, 2023

3https://appinventor.mit.edu/, accessed: Jan 2, 2023

4https://summerofcode.withgoogle.com/, accessed: Jan 2, 2023

S5https://play.google.com/store/apps/details?id=org.catrobat.
catroid, accessed: Jan 2, 2023

%https://apps.apple.com/at/app/pocket-code/1d1117935892, accessed: Jan 2,
2023

’https://appgallery.huaweli.com/#/app/C100085769, accessed: Jan 2, 2023

https://scratch.mit.edu/
https://appinventor.mit.edu/
https://summerofcode.withgoogle.com/
https://play.google.com/store/apps/details?id=org.catrobat.catroid
https://play.google.com/store/apps/details?id=org.catrobat.catroid
https://apps.apple.com/at/app/pocket-code/id1117935892
https://appgallery.huawei.com/#/app/C100085769

2.1 Catrobat

[@} Pocket Code

-

Projects on device

Catrobat community

Figure 2.1: Pocket Code Main Screen

text-based programming language to avoid hurdles such as learning a program-
ming language or following a strict syntax. Functional blocks, so-called bricks,
are arranged into scripts executed parallel to form a program. Further facilita-
tion, according to the principle of internationalisation (i18n) and localisation
(L1on), is the possibility of using the app and the blocks for programming in the
respective native language. This includes support for more than 6o languages,
making it even easier for children to get started.

The blocks are divided into different categories according to their functionality
and affiliation, as shown in Figure The integration of actuators and sensors
built into the mobile phone, such as the acceleration sensor, gyro sensor or the
touchscreen itself, makes it possible to create even more complex programmes.
Access to the data is provided by the specially developed formula editor, shown
in Figure which also includes more complex functions such as object
recognition using machine vision. In addition, the app contains numerous built-
in extensions for wireless control of external hardware, which can be activated

2 Background

via the app’s settings. Furthermore, the app Pocket Paintﬂ specially developed
by Catrobat, is directly integrated into Pocket Code so that its functions are
fully accessible within the app. This powerful graphics editor allows the graphic
creation and editing of objects that can be used straight in Pocket Code.

& Categories & Categories

Looks

Recently used

Control

Motion 25

Your bricks

a) Categories Part 1 b) Categories Part 2
Figure 2.2: Pocket Code Categories

Furthermore, the giant online community offers the possibility to exchange
experiences and share projects via the community websitef] It is possible to
upload personal projects, browse projects or download others directly within
the app. An important concept is to download other projects, modify or extend
them yourself and upload them again, which is called “remixing”. In addition,
projects can be used to generate APK files that can be installed on any device
and run as a standalone application.

qhttps://play.gooqle.com/store/apps/details?id=orq.catrobat.

paintroi d|, accessed:Jan 2, 2023

9nttps://share.catrob.at/, accessed: Jan 2, 2023

https://play.google.com/store/apps/details?id=org.catrobat.paintroid
https://play.google.com/store/apps/details?id=org.catrobat.paintroid
https://share.catrob.at/

2.1 Catrobat

& Formula editor

Place at

Functions Properties
Sensors Logic Data
v 7 8 9 a
Abc 4 5 6 - x
¢ 1 2 3 - +
() 0 : Compute

Figure 2.3: Pocket Code Formula Editor

2.1.3 Catrobat Programming Language

The programming language used in Pocket Code has the same name as the
organisation, namely Catrobat. This is a pure to facilitate the introduction
to programming. For this purpose, individual blocks, so-called bricks, are
stacked together and visually arranged to form more complex programmes.
An essential difference to other block-based languages is that the blocks are
arranged directly below each other, and there are no indentations when nesting.
These bricks are divided into categories according to their functional affiliation
and are therefore distinguishable by colour. Each of these bricks performs a
specific predefined function, but it is also possible to create individual bricks.

A program consists of scenes that can combine several related objects (sprites).
Each of these objects, in turn, contains scripts that are executed in parallel. A
script consists of a series of bricks that define the logical sequence. Figure
shows an example of the script view of an object composed of different bricks.

2 Background

Animal

When scene starts

Glide 1 second

tox: randomval.. y: random val...

When scene starts

Next look
] O O

Figure 2.4: Pocket Code Example Script

In the background, the entire Catrobat project is saved in
Markup Language (XML)| When the program is executed, the blocks are trans-

formed into XML} which the built-in interpreter can execute in Pocket Code.
Conversely, the [IDE]in Pocket Code displays the graphic blocks by converting
them back into the Catrobat from the XMLl

The has several advantages, starting with a more accessible introduction
to programming without any previous knowledge and ending with a playful
method of learning programming concepts. This allows total concentration
on creativity during implementation instead of dealing with syntax errors in
text-based programming languages.

10

2.2 Bluetooth Low Energy (BLE)

2.2 Bluetooth Low Energy (BLE)

Intending to develop a communication protocol that can transmit data wire-
lessly without cables, the Bluetooth [Special Interest Group (SIG)| [5] created
the Bluetooth communication protocol in 1999. This short-range wireless tech-
nology for data exchange has since become widespread and developed into
a standard. Today, the Bluetooth responsible for this, comprises more
than 30,000 companies in various fields. It is also responsible for continuously
developing and releasing new specifications that integrate new features. The
latest published specification is version 5.4.

formerly also called Bluetooth Smart, is a wireless communication protocol
published in 2009 by the Bluetooth as the successor to Bluetooth Classic
in the Bluetooth 4.0 Core Specification. The main focus was on optimising
low energy consumption and cost-effectiveness during its development [6]. It
is particularly suitable for applications with short distances and small data
volumes. Its widespread use today is mainly due to the fact that most modern
user devices, i.e. smartphones, tablets and computers, support the protocol. Its
broad application areas range from home automation to its use in wearables.

The following sections explain the properties and the protocol’s internal
design in detail. In particular, the essential parts for understanding the use
of the in Android and its background concerning the practical im-
plementation in this thesis are discussed in more detail. Section goes
into the basics of and describes the general operating mode as well as
its limitations. Section illustrates the protocol stack and describes
its individual components. Finally, Section discusses the usage of as
a wireless communication protocol in applications and compares it with
other wireless communication protocols.

2.2.1 Fundamentals

differs from its predecessor, Bluetooth Classic, in many aspects. The most
significant difference is in power consumption and data throughput, as Blue-
tooth Classic is designed for high data throughput and in contrast, is
optimised for low power consumption. On the one hand, Bluetooth Classic is
suitable for large transmissions and is, therefore, more power-intensive than
which is designed for small and short transmissions. This also makes
both protocols incompatible. However, dual-mode devices are compatible with
both Bluetooth Classic devices and devices by combining both protocol
stacks.

11

2 Background

The protocol has been optimised for use in devices with limited resources
due to their size. Regarding communication protocols, the energy resource is
particularly affected, as the transmission times are the main factor in terms of
power consumption. In order to achieve low power consumption with two
main measures are taken. On the one hand, the general power consumption
must be reduced, and on the other hand, the power consumption peaks during
transmission times must be flattened. The first is achieved by including many
long so-called sleep phases in which the radio, mainly responsible for the
power consumption, is switched off. For the second, small amounts of data are
transmitted at a slow speed, which results in a flattening of the current peaks.

This section is based on [6]]. The BLE|radio uses the 2.4 GHz[[ndustrial, Scientific]
land Medical (ISM) band for communication and divides it into 40 channels.
The three channels, 37, 38 and 39, are used as advertising channels, and the rest
as data channels. Since other technologies, such as|Wireless Fidelity (Wi-Fi)|and
Bluetooth, also use this frequency band, [Frequency-Hopping Spread Spectrum|
is used to minimise interference. This means the channel is changed
for each new connection according to a certain formula. Like Bluetooth Classic,
also uses [Gaussian Frequency Shift Keying (GFSK)| for modulation with
a 1 Mbit/s modulation rate. The theoretical throughput is 1 Mbps, which in
practice is significantly lower. A trade-off must be made for the maximum range,
as the range increases with a higher transmission power but also increases power
consumption. For this reason, concentrates mainly on short ranges in the
range of 2-5m, although ranges of 30-100 m are also possible.

2.2.2 BLE Protocol Stack

The stack is formed from several already existing protocol layers. It can
basically be divided into two parts: the controller, the lower part, and the host,
the upper part. On top of this is the application for the execution itself. These
three together form the main components of a device and can either be
installed in a common [integrated circuit (IC)|or in separate communicating
via a serial interface. In this case, the controller and the host are connected to
each other via the optional [Host Controller Interface (HCI) interface to enable
standardised communication between them. This is especially important to
ensure interoperability between controllers and hosts from different manufac-
turers. This described stack is shown in Figure When sending, the
layers are passed through from top to bottom, and the packets are frag-
mented accordingly. When receiving, however, the sequence is reversed from
bottom to top, and the raw data is recombined so that the original packet
is re-created.

12

2.2 Bluetooth Low Energy (BLE)

BLE PACKET BLE PACKET

APP

RECOMBINATION FRAGMENTATION
{or ENCAPSULATION)
LL
PHY
CONTROLLER
RAW DATA RAW DATA

Figure 2.5: BLE Protocol Stack [E]]

Application

The application is located at the top of the protocol stack. It serves to provide
the user with an interface to the protocol stack, consisting of the host and
controller.

Host

The upper layers are referred to as the host. These build on the lower layers and
thus allow more complex functions based on them. These are typically executed
on a host such as a smartphone. It consists of the following layers:

e Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Logical Link Control and Adaption Protocol (L2CAP)
Attribute Protocol (ATT)

Security Manager Protocol (SMP)

Host Controller Interface (HCI), Host side

13

2 Background

Controller

The controller comprises the lower layers. It takes care of the low-level functions
on which the upper layers are based. This is usually implemented in a Bluetooth
chip. The controller consists of the following layers:

¢ Host Controller Interface (HCI), Controller side
e Link Layer (LL)
¢ Physical Layer (PHY)

The most important parts of the protocol stack in terms of practical im-
plementation in this thesis are the upper layers [Generic Access Profile (GAP)|
|Generic Attribute Profile (GATT)|and [Attribute Protocol (ATT), as their back-
grounds need to be understood for using the in Android.

Generic Access Profile (GAP)

is the highest layer in the protocol stack and must be implemented
by the devices. It enables devices from different manufacturers to work to-
gether, as it defines a standard for this. This includes everything from searching
for connections to establishing connections and exchanging data. Communica-
tion can take place either connectionless via broadcasting or connection-oriented
via connections. In the former case, data is transmitted in one direction only,
with the sender broadcasting data and several receivers listening to it being
able to receive it in return. Whereas with the second, a direct connection is
established with the partner after a defined connection setup, and the data
can be exchanged bidirectionally with only this partner. For this purpose, the
following four roles are assigned to devices:

® Broadcaster:

A device that sends out data and can be read by interested devices.
For this purpose, advertising packets containing the data are broad-
cast periodically, which can be received by all interested devices
listening to them.

e Observer:

A device for receiving broadcasted data. For this purpose, advertising
packets are listened to and read out if there is interest in the data.

e Central:

A device that listens to advertising packets from possible connection
participants and then actively initiates a connection setup through a
request.

14

2.2 Bluetooth Low Energy (BLE)

* Peripheral:

A device that sends out advertising packets in order to be found by a
central for a connection setup and to be able to exchange data after a
successful connection setup.

A device can establish several connections and assume different roles in each
connection. Specification version 4.0 did not allow this for the role peripheral
because, after a successful connection to a central, the device no longer sends
out advertising packets and can consequently no longer be found by another
central. However, this has been extended since specification version 4.1, so
multiple connections are also possible for peripherals.

Generic Attribute Profile (GATT)

GATT is located in the BLE protocol stack above ATT and thus builds on it.
It regulates the exchange of data between two connected BLE participants
[8]. For this purpose, a hierarchical system is defined that organises the data.
This consists of profiles, services, characteristics and descriptors. Two roles are
defined: GATT Server and GATT Client, which coincide with ATT. The GATT
client can explore the services offered by the GATT server and subsequently read
and write its characteristics. Figure [2.6| shows the structure of the GATT server
consisting of several services, and these, in turn, of different characteristics and
descriptors. SIG predefines profiles, but user-defined profiles with their services,
characteristics and descriptors can also be created for their applications.

* Service:
Represents a specific function and bundles associated characteristics.

e Characteristic:

An attribute with all its properties. It is included in a service and
described in more detail by descriptors.

* Descriptor:

Describes the characteristics in more detail.

Attribute Protocol (ATT)

[ATT]is located in the stack in the host part above [Logical Link Control and]

daption Protocol (L2CAP) and uses this to transmit data. It also offers its
services to the [GATT] layer above it. It regulates the data exchange, which
includes finding out as well as writing and reading attributes. It operates
according to a client-server model. The participant acting as the server offers

15

2 Background

GATT Server Service
Characteristic
Service
Characteristic Property
P
roperty Descriptor
D ipt
escriptor i
Value
Service
Characteristic Characteristic
Property Property
Descriptor Descriptor
Value Value

Figure 2.6: GATT Hierarchy [6]

various attributes to the client. On the one hand, the participant acting as a
client can find out these attributes and, on the other hand, read or write to
them. For this purpose, the device can lead one or the other role, but also
both simultaneously. However, only one server may run per device at the same
time.

So-called attributes are used to map the data. An attribute comprises the
following components [8]:

o Attribute Handle:

A unique indexing of the attribute by a number (oxooo1-oxFFFF,
as 0x0000 is reserved) on the server side so that the attributes are
uniquely identifiable for the client. Thus, this unique handle for each
attribute can be used for all operations between server and client.

o Attribute Type:

Describes what this attribute is about using a [Universally Unique|
[dentifier (UUID)|

e Attribute Value:

The attribute’s current value can be written or read depending on
the permissions.

16

2.2 Bluetooth Low Energy (BLE)

e Attribute Permissions:

Determine the permissions for access to the respective attribute by
the client. On the one hand, write and read access, but on the other
hand also whether encryption, authentication or authorisation on the
client’s part are necessary for access.

In addition, the server can also send data to the client by itself. This happens
when the client sends a command in which the attribute is subscribed. This
has two significant advantages: on the one hand, the client does not have to
constantly query the value, so-called polling, but is notified directly by the
server when it changes. On the other hand, this method is much more energy-
efficient, as unnecessary polling with a constant value is spared, and thus the
sleep phases are not constantly interrupted. A distinction is made between
two types of notification from the server, namely Notification and Indication.
The essential difference is that with Indication, after the notification of the
changes in the value from the server to the client, the client still has to send a
confirmation message back to the server.

Universally Unique Identifier (UUID)

uses so-called for the identification of attributes. These consist of
128 bits (16 bytes). This length allows random [UUIDp to be generated that are
globally unique with an extremely high probability [6].

The specification also defines two other shortened formats consisting of
only 16 or 32 bits, as the total length (16 bytes) would take up a lot of space in
the 27-byte data payload of the link layer. However, these shortened formats
are only used for standardised by the Bluetooth [SIG|for, e.g. services
and characteristics. For non-standardised [JUUIDs or [UUIDE not based on the
Bluetooth base for own applications, however, the original format with 16 bytes
must be used. Formula 2.1] can be used to calculate the 128-bit from the
shortened format, which is always used in the background.

UUID; 2813t = UUIDy4,32.pit - 2°° + UUIDg)etooth-Base (2.1)

The Bluetooth base required for this is the following;:

00000000 — 0000 — 1000 — 8000 — 00805F9B34FB

The formula used for conversion shifts the shortened [UUID| by 96 bits and adds
the Bluetooth base to it. The shortened format is therefore added to the
remaining 32 bits (front 4 bytes), consisting only of zeros. This shortened format

17

2 Background

can consequently be inserted directly. This means that the positions marked
with x are replaced directly with the shortened starting from the right
and filled with leading zeros in the following

xxxxxxxx — 0000 — 1000 — 8000 — O0805F9B34FB

2.2.3 BLE and Internet of Things (loT)

The number of devices is exploding and can be found in various areas of
everyday life. Connectivity is an essential component of networking in these
applications. Limited power consumption is an important factor to consider
with these increasingly smaller embedded systems [9]. This is due to the fact
that such devices have to operate on a battery or even a coin cell for a long
period. Since the power consumption peaks occur during the transmissions, the
selection of the respective communication protocol significantly influences the
possible operating time. Therefore, the most suitable communication protocol
is selected based on the application area and its requirements.

Figure [2.7/shows a diagram of various wireless communication protocols used
in[loT]|applications. They are compared and classified according to the following
characteristics: range, data rate & energy consumption and cost. It can be seen
that, in contrast to other technologies, is characterised by its low power
consumption and low cost. It is suitable for applications with small distances,
which are, however, sufficient in most applications. Thus, falls into the
same category as the Zigbee and Z-Wave communication protocols. However,
due to its broad support, especially in consumer devices such as smartphones,
BLE| is well-suited and preferred over the other two comparable protocols
[10].

BLE|is particularly suitable for applications with power consumption limitations
where little data is to be exchanged over short distances, such as for so-called
beacons. It is increasingly used in devices as a wireless communication
protocol for such applications. On the one hand, it was developed exclusively
for the sector and on the other hand, it is also constantly being optimised
in this direction to adapt to the latest state of the art. One such example is
the introduction of |Internet Protocol Support Profile (IPSP)|in Specification 4.1,
which allows devices to exchange IPv6 packets directly over the internet
via gateway devices such as a router or smartphone.

18

2.3 Arduino

Data rate & . i
Power Consumption Cost: Low @ @ @ @ High

1MBps | Bluetooth
Licensed LPWAN
LTE-M
100 KBps EC-GSM

NB-loT

1KBps |
Range
b

Tm 10m 100m 1km 10 km

Figure 2.7: Comparison of IoT Wireless Communication Protocols

2.3 Arduino

Arduino was launched in 2005 at the [Interaction Design Institute Ivrea (IDII)|
and was initially intended for students with no prior knowledge of electronics
and programming for rapid prototyping [12]. Through its widespread use, it
has evolved into an open-source platform that significantly facilitates entry into
hardware prototyping in the field of electronics. Its applications range from
small [do-it-yourselt (DIY)| projects to professional industrial use. Their vision is
to break down barriers to entry and make Arduino accessible to everyone, mak-
ing people’s lives easier. Due to the open-source aspect, a gigantic worldwide
community is also behind it, which shares its knowledge extensively. Conse-
quently, many resources are available, from numerous detailed instructions on
completed projects to exchanging experiences and help in forums. The founders
of Arduino see the following advantages over comparable microcontrollers

[13]:

¢ Inexpensive

¢ Cross-platform

¢ Simple, clear programming environment
* Open source and extensible software

* Open source and extensible hardware

19

2 Background

The following sections describe the Arduino hardware (Section and the

software (Section [2.3.2). Finally, Section describes its relation to as it is
used as such in the practical part of this thesis.

2.3.1 Arduino Hardware

The hardware, the Arduino board, is a microcontroller board and can be ex-
tended with sensors and actuators depending on the application, thus forming a
so-called physical computing system [14]. These boards are available in different
versions, which differ in their equipment. Arduino owes its large community to
the open-source concept it uses, both in hardware and software. The original
tiles, from the circuit diagrams of the boards to the source code, are shared
under the |[Creative Commons Attribution-ShareAlike (CC BY-SA)| 4.0 license.
This allows their use, extension at will and dissemination, which explains the
reason for the many available imitations. The only condition is to reuse the
same license, thus forming a never-ending cycle and leading to numerous
contributions by the community. The Arduino hardware, by its design, is not
only suitable for entry into the world of electronics but is also designed for fast
hardware prototyping, which is a tremendous added value even for experienced
users. This allows users to build different circuits easily and quickly with the
help of a breadboard.

Over the years, many variations of the Arduino board have been developed,
each representing an improvement over its predecessor or being adapted to a
specific application area. However, their essential equipment is almost the same
for all of them. Figure shows an Arduino Uno and its main components, as
it is one of the most common boards due to its beginner-friendliness.

Most boards consist of a Microchip (formerly Atmel) AVR microcontroller
from the megaAVR series and are operated with a supply voltage of 5 V or
3.3 V. These differ among themselves in the size of the Flash memory,
IRandom-Access Memory (SRAM), the clock frequency and the provision of
other additional features. The power is supplied directly via [Universal Seriall
or an external power source. Additionally, the [USB| port is also
used to program the board with a preloaded bootloader using a separate
to Serial chip. They are also equipped with [Input/Output (I/O)| pins, both
digital and analog, to connect external components. Some of these pins are
also equipped with an alternative function, such as necessary connections for
different communication protocols or provide an additional function like
Width Modulation (PWM), Furthermore, it also incorporates other pins, like
pins for powering external components or pins for an external reference voltage.
Moreover, the hardware can be extended externally via modules or via so-called
shields, which can be plugged on directly.

20

2.3 Arduino

2. USB PORT 3. USB TO SERIAL CHIP

4. DIGITAL PINS

5. ANALOG PINS

1. MICROCONTROLLER

6. 8V/3.3V 7. GHND 8. VIN

Figure 2.8: Main Components of an Arduino Board

2.3.2 Arduino Software

After the electronic circuit has been built, the software behind it and thus its
behaviour can be programmed. The great advantage of such programmable mi-
crocontroller boards, such as Arduino, is the possibility of achieving a different
behaviour with an unchanged circuit solely through software. The Arduino is
programmed in the Arduino which is based on Processing™} It uses its
own Arduino programming language, which is based on WiringEl This is a
simplified language based on C/C++ to make programming easier. This results
in the following procedure for each desired function change:

1. Connecting the board to the computer

2. Writing the sketch (program)

3. Uploading the sketch to the board

4. Executing the sketch in a continuous loop on the board

When uploading, the code is converted into the C language, the programming
language usually used for system-level programming. This C source code is
then translated by the avr-gcc compiler into machine code executable by the mi-
crocontroller. Unlike many other microcontrollers, the Arduino is programmed
directly through the port rather than through an in-system programming]
For this purpose, the board is reset during the upload, and the so-called

Yhttps://processing.org/, accessed: Jan 10, 2023
http://wiring.org.co/, accessed: Jan 10, 2023

21

https://processing.org/
http://wiring.org.co/

NN U1t R~ W N R

2 Background

bootloader (runs at each reset) checks whether a sketch is to be transferred. If
this is the case, the translated machine code is written to the non-volatile flash
memory, which is retained even after a restart, so the program can be executed
again as soon as the board is re-powered. On the other hand, stored values are
written to the volatile SRAM| at runtime, which is erased when the board is
powered off or restarted.

Listing [2.1{ shows the basic structure of each Arduino program, called sketch.
Each sketch consists of at least these two functions, void setup() and void loop().
The former is executed once the microcontroller is started or reset, mainly
containing initialisations. The second is executed after setup() function in a
continuous loop as long as the board is powered and contains all the logic

related to [[/Ok.

Listing 2.1: Arduino Code Structure

void setup () {

void loop () {

The Arduino acts as an interactive device and follows a constantly repeating
cycle consisting of input, process and output when carrying out certain tasks.
This concept of a closed loop system or a so-called feedback control system
can be seen in Figure This involves the microcontroller reading in the
sensors, evaluating them according to the logic predefined in the software, and
ultimately setting the corresponding actuators to interact with the environment.
For this, libraries can be used for programming, simplifying communication to
these external devices.

2.3.3 Arduino and loT

Especially the newer versions of the Arduino boards have integrated radio
modules and can therefore communicate via wireless communication protocols.

Wi-Fi, Bluetooth, [Long Range (LoRa)| (Global System for Mobile communication|

(GSM)| INarrowband Internet of things (NB-IoT)|and many other protocols are

supported [15]. Depending on the application area and its requirements, the
most suitable protocol can be identified, and the appropriate compatible board
selected. This makes Arduino boards also well-suited as devices and can be
used as such.

22

2.4 Firmata

Microcontroller Actuators
| t Qutput
npu ! dﬂ_gh utpu
E] ==
Sensors

() -

Figure 2.9: Microcontroller Operating Cycle

In order to cover the rapidly growing sector of applications, specially de-
signed boards have been developed. For regular projects, the MKR family
is suitable on the one hand, which is aimed at computationally intensive appli-
cations, and the Nano family, on the other, stands out due to its small size and
directly integrated sensors. In contrast, the Portenta family addresses advanced
and industrial applications in combination with artificial intelligence appli-
cations. These boards offer high processing power and allow secure and reliable
operation even in critical infrastructures through the integrated secure element.
Furthermore, the functionality can be extended correspondingly with external
modules or shields so that almost any board can be used for such purposes.

Another helpful feature is the Arduino Cloud, which can be used to control

boards and monitor their data via a user-friendly interface. However, this option

is limited to 2 devices in the free version and has further limitations compared

to the paid subscription. In summary, the Arduino fulfils the requirements of an

[oT| device and, thanks to its numerous simplifications, makes it easy to realise
ol projects.

2.4 Firmata

In order to be able to communicate with other participants, an orderly and
clearly defined process is required, which is achieved by means of a standard-
ised protocol. Therefore, this chapter deals with the so-called Firmata protocol.
For this purpose, the protocol is first described, and the used Musical Instru{

23

2 Background

ment Digital Interface (MIDI) message format is introduced. Afterwards, the
different message types of the protocol are described.

2.4.1 Protocol

The Firmata protocol was introduced by Steiner [16] with the goal to commu-
nicate with a microcontroller, such as Arduino, through software on a host
computer. This makes it possible to read and control pins without having
to reprogram the microcontroller itself for each modification. It is universally
applicable because it is neither bound to specific hardware nor requires a spe-
cific communication protocol. Only the messages to be exchanged are clearly
defined, and thus every microcontroller can implement the protocol in its
firmware and every host computer in its software.

2.4.2 Musical Instrument Digital Interface (MIDI) Message
Format

The protocol is a communication protocol that allows the communication
and synchronisation of electronic musical instruments, computers and other
devices [17]. The first prototype was initially introduced by Smith and Wood
[18] in 1981 under the name [Universal Synthesizer Interface (USI), which
subsequently got renamed to [MIDI| after several changes and improvements
in 1982. It was standardised by MIDI Manufacturers Association (MMA)'?| the
year after [19].

Message Data Format

Each message in consists of several consecutive bytes. It generally includes
a status byte characterised with the [most significant bit (MSB)|set to one and
one or two data bytes with the set to zero. The exception to this are
the Real-Time messages which consist only of a status byte and the Exclusive
messages which can consist of any number of data bytes.

The Firmata protocol does not use the MIDI| protocol as a whole but reuses the
MIDI message format because of its efficiency and the easiness in implementa-
tion [[16].

Phttps://www.midi.org/, accessed: Jan 17, 2023

24

https://www.midi.org/

2.4 Firmata

2.4.3 Message Types

The Firmata protocol [20] defines different message types, which are listed in
As mentioned before, the protocol uses the message format. All
messages consist of 1-3 bytes depending on the message type, except
lexclusive (Sysex)| messages, which can consist of any number of bytes. Since
the [MSB| distinguishes between a command message and a data message, only
7 bits remain for the command area and the data area respectively, whereby the
channel information is still included in the command area. Consequently, the
protocol supports 16 analog pins with a 14-bit resolution and 128 digital pins
(16 * 8-bit ports). Due to its modularity, the protocol can be extended very easily,
as only a new command identifier and its parameters need to be defined.

[type | command | MIDI channel | first byte | second byte |
analog I/O message | oxEo pin # LSB (bits 0-6) MSB (bits 7-13)
digital I/O message | ox9o port LSB (bits 0-6) MSB (bits 7-13)
report analog pin oxCo pin # disable/enable (0/1) | -n/a -
report digital port | oxDo port disable/enable (0/1) | -n/a -
sysex start oxFo
set pin mode (I/O) | oxF4 pin # (0-127) pin mode (o=in)
set digital pin value | oxF5 pin # (0-127) pin value (0/1)
sysex end oxFy
protocol version oxFg major version minor version
system reset oxFF

Table 2.1: Overview of different Firmata Message Types [21]

System exclusive (Sysex) Messages

Sysex| messages are a special message type in the Firmata protocol to extend the
command set [21]]. The main difference is that unlike standard messages,
which are limited to a maximum of 2 data bytes, an unlimited number of data
bytes can be exchanged. They are mainly used for configuration messages and
allow the easy extension of the protocol with new features.

The structure of such messages comprises a Start_Sysex message at the
beginning, followed by the data bytes and ending with an End_Sysex message.
These intermediate data bytes must not have a one as Otherwise, they will
be interpreted as a command. As shown in the structure of a message
in Table the Feature ID following the Start_Sysex command can be used to
distinguish between the different message types. This ID is 1 byte in size
and differs from the extended ID, which consists of 3 bytes, whereas the first is
always zero.

25

2 Background

| byteo | byter | byte 2 to (N-1) | byteN |
Start Sysex ID load End Sysex
(oxFo) (oxo1 - 0x7D) paytoa (oxF7)
Start Sysex ID Extended ID + payload | End Sysex
(oxFo) (ox00) (ox00 oxo0 - ox7F ox7F) (oxF7)

Table 2.2: Sysex Message Structure [21]

These types of messages allow functionalities beyond the standard possibility.
These include extended digital and analog possibilities and information
queries about the status and capabilities of the microcontroller and its firmware.
They also allow the extension to hardware support, such as a servo or stepper
motor, or protocols, such as [Inter-Integrated Circuit (I°C)|

2.4.4 Usage

For communication using the Firmata protocol, both partners must support
the protocol [22]. The Firmata firmware must be uploaded once to the micro-
controller to be controlled. This Firmata firmware can be found in the sample
programs of the Arduino in the Firmata category. The sketch StandardFir-
mata can be used for serial communication or StandardFirmataBLE in the case of
communication via In the case of the latter, the broadcast name to be dis-
played can be changed in the configuration file bleConfig.h beforehand. For some
microcontrollers, the program must be adapted due to the use of a different
chip or lack of flash memory. For this purpose, the respective manufacturer
either provides a suitable sketch or describes the necessary changes. The other
participant, the client, must also implement the Firmata protocol on its side for
communication with the Firmata firmware on the microcontroller. To implement
this, there are numerous client libraries for the most diverse languages, which,
however, do not all correspond to the latest state of the Firmata protocol. There
is also a Firmata library[3| for the Arduino that can be used to implement
custom firmware.

As for implementations of the Firmata protocol for Android applications, there
are a few Java implementations and an outdated Kotlin version that can be
used as libraries. However, these do not support transmission via and
thus cannot be used in this form for the practical part of this thesis. Therefore,
this thesis builds on this and extends the implementation to support
transmission. This is important because there is no open-source implementation
for Android applications.

Bhttps://github.com/firmata/protocol#firmata—client—libraries, ac-
cessed: Jan 17, 2023

26

https://github.com/firmata/protocol#firmata-client-libraries

3 Design

In this chapter, the design of the practical part of this thesis is explained in
more detail. The idea is to be able to control an Arduino via using the
existing Pocket Code app. The planning regarding the integration of this new
feature into Pocket Code is essential because the app is already very extensive.
In addition, this should also ensure easy future expansion to include further
communication protocols and devices.

Section [3.1]illustrates the structure of the system and describes its intended
functionality. Section 3.2|lists the necessary requirements for integrating these
new possibilities into the Pocket Code app. Section then describes the
hardware used in this thesis, including the Arduino board and exemplary
circuits built to verify the functionality. Finally, in Section the design for the
concrete implementation is discussed, and its structure is shown.

3.1 System Architecture

The system setup for the practical part of this thesis is shown in Figure3.1]
This basically consists of two components, an Android smartphone or tablet
and an Arduino. The Pocket Code app runs on a smartphone or tablet. The
Arduino, on the other hand, must be equipped with the Firmata firmware, as
the Firmata protocol is used for message exchange. They communicate via the
BLE|wireless communication protocol, which requires both to be equipped with
BLE| capability. Due to this, the maximum range also limits the maximum
distance between the two devices.

The goal is to be able to control an Arduino wirelessly via the Pocket Code
App. This results in the following simplified procedure:

1. Programming in Pocket Code
2. Connecting to the Arduino via [BLE|
3. Running the project

27

3 Design

Smartphone

Arduino

RedBearLab
Blend Micro
V1.0

Figure 3.1: Schematic Structure

3.2 Requirements

The central requirement for the implementation is to control an Arduino via
from the existing app Pocket Code. Primarily, controlling the digital and
analog should be possible. These actions should be carried out without a
significant noticeable time delay. The handling for establishing the connection
with the Arduino should be as simple as possible. Furthermore, the newly
integrated functions should be bundled in a separate Arduino category in order
to remain consistent.

Since the app is also intended for beginners in both software and hardware,
this should be considered in the design process. This requires the integration
of certain error detection mechanisms to avoid, at best, a crash of the app
during the execution of the program on the software side and to protect the
used hardware against possible irreversible damage to the components on the
hardware side. In addition, its use should be user-friendly.

As the app is constantly being extended, the design should focus primarily
on easy extensibility. This should make it possible to add further devices or
communication protocols in a simple way in the future. Since the app already
has numerous features, the newly added functions must be well covered with
automatic tests to detect changes that lead to a malfunction quickly.

28

3.3 Hardware

3.3 Hardware

This section describes the hardware components used for the implementation
in this thesis. Section describes the Arduino-based Blend Micro Board to
be controlled. The circuits built with it to test the new functions integrated into
the Pocket Code app are illustrated in Section

3.3.1 Blend Micro

In this thesis, devices are to be controlled via the app Pocket Code. For this
purpose, support for the widely used Arduino was chosen as the first device.
However, the Arduino family includes various boards, each with properties and
features adapted to its application area.

The only requirement for the Arduino board in this thesis is support. There
are boards with already integrated, as well as boards that become
compatible by connecting an external module, such as the HM10 moduld} The
two options are basically the same in terms of communication itself. The only
difference is the additional configuration of the module in the program on the
Arduino side.

Thus, it does not matter which board is used for this thesis, as they only differ
in the number of pins and the pin functions. Other boards can easily be
added by integrating their configuration and subsequently selecting them in
the app. This information is used for error detection to intercept actions on
non-existent pins and eventually avoid malfunctions.

In the context of this thesis, the Arduino-based Blend Micro Board, shown in
Figure is used. This board was developed by the company RedBearLab and
is part of the Arduino@Heart program. The aim was to make projects more
feasible for Makers by combining the Arduino with on a single board [23],
which coincides with the intention of this thesis.

"http://www. jnhuamao.cn/bluetooth.asp, accessed: Jan 25, 2023

29

http://www.jnhuamao.cn/bluetooth.asp

3 Design

RedBearlLab
Blend Micro

ps/as B] D9/PWH/A9
ps/pim S) D10/PWH/A10
p3/scL/Pun B) D11/PWM
p2/s0A B) D12/A11
D1/TX . D13/PWM/LED
DO/RX . A0
mst RO) Al
miso BC | A2
most B I8 A3
ax §C) A4
ss B) AS
vin B AREF
GND B] V33
GND §f GND

Figure 3.2: Blend Micro Pinout

30

3.3 Hardware

As stated in the specification [23] the Blend Micro Board runs on an Atmel
ATmega32U4 with 8 MHz and supports 4.0 through the Nordic nRF8o01
chip. It can be powered by its Micro connector or an external input voltage
between 3.3 V-12 V. However, the operating voltage is limited to 3.3V as the
nRF8001 chip only supports this. Table 3.1|lists all the specifications of the Blend
Micro Board. Its programming is done as usual via the Arduino [DE|by adding
the board through the Board Manager} In order to use its functions, the
relevant BLE libraries must be installed via the Library Managerf}|

Microcontroller Atmel ATmega32U4
Wireless Chip Nordic nRF8oo1
Operating Voltage 3.3V
Input Voltage g Z\(/}Eli; (VIN)
Clock Speed 8 MHz
Bluetooth 4.0 Low Energy
micro-USB
Connectivity Serial (TX/RX)
I2C
SPI
Flash Memory 32KB
SRAM 2.5 KB
EEPROM 1KB
Dimensions 43.6 x 18.4 X 4.3 mm
Weight 48
Power Consumption | 2mA
I/0 Pins 17

Table 3.1: Blend Micro Specification [23]

3.3.2 Experimental Setup

This section describes the circuits built to test the various functions integrated
into this thesis in practice. These are only basic circuits to illustrate the func-
tionality. However, these can be changed or extended as desired, as there are no
restrictions regarding the circuit. The Firmata firmware must first be loaded
onto the Arduino in order to be able to communicate with the Pocket Code

2https://github.com/RedBearLab/Blend/blob/master/Docs/
BoardsManager . pdf, accessed: Jan 25, 2023

3https://github.com/RedBearLab/Blend/blob/master/Docs/
LibraryManager .pdf, accessed: Jan 25, 2023

31

https://github.com/RedBearLab/Blend/blob/master/Docs/BoardsManager.pdf
https://github.com/RedBearLab/Blend/blob/master/Docs/BoardsManager.pdf
https://github.com/RedBearLab/Blend/blob/master/Docs/LibraryManager.pdf
https://github.com/RedBearLab/Blend/blob/master/Docs/LibraryManager.pdf

3 Design

app. The following circuits were created with the software Fritzingﬂ which is a
software to design electronic circuits on the computer.

The pins can be configured as digital or analog input or output. The differ-
ence between analog and digital is that analog pins can have many different
values, depending on the resolution, between the low and the high level. Some
pins are also equipped with additional functions and can be used as alternative.
To use a pin, its mode must be defined beforehand. The pins are set as inputs by
default but should still be designated as such. In the following, these different
modes are described in more detail and illustrated by an exemplary circuit.

Digital Output (DO)

For a pin to be used as a [Digital Output (DO), it must first be configured as an
output. In addition to the digital pins, all other pins can be used, which can also
function as such. A can be set to LOW or HIGH, and depending on this,
oV or the operating voltage (in this case 3.3 V) is applied to the pin. The current
that flows is sufficient for an [Light-Emitting Diode (LED)| or most sensors but
not for more current-intensive components such as a motor, which would have
to be supplied externally.

The simplest circuit to test the function of the [DO]is to drive an and switch
it on and off. Figure [3.3| shows the experimental setup consisting of the Blend
Micro Board, an and a resistor. In this case, pin Dg is used, but any other
digital pin can be selected instead. The series resistor has a value of 220 (2 and
is needed to limit the current through the This value depends on the
operating voltage and the used [LED[s forward voltage. In addition, the polarity
must be observed when connecting the If the output is switched to HIGH,
the current flows, and the lights up. This can be switched off again by
writing LOW to the output.

Digital Input (DI)

The pins are defined as input by default, but it is better to define them explicitly
for Digital Input (DI)|as well. As with the DO, all pins can be used. The [DI also
distinguishes between the two states, LOW and HIGH, depending on whether
the voltage at the input is below or above the threshold voltage (in this case
1.5 V). If there is no voltage at the input, a floating state is created at the pin, and
the input reads random states mistakenly. Because of this, either a pull-down or
pull-up resistor is needed to have a clearly defined voltage level at the input in

dhttps://fritzing.org/, accessed: Jan 25, 2023

32

https://fritzing.org/

3.3 Hardware

* & ¢ ¢ " e e D

® & & & 5 o " S " e 0D

® o & 0 o O O " " O O 0

® & & 0 & & O " " " 0 0D

® & & 0 o O O & O O B

L * e o o 0 . L] L L L] L L]
. L] L : L

fritzing

Figure 3.3: DO Circuit

such cases. These are connected externally, or in some boards already built in
internally, so their use only has to be set when defining the pin as an input.

The corresponding circuit can be seen in Figure which shows an exemplary
use of a Here, the state of a push button is read, which supplies LOW at
the input in the unpressed case and HIGH in the pressed case. A pull-down
resistor with 10 k() ensures that the LOW state is definitely present at the input
to avoid a floating state in the unpressed case.

Analog Output (AO)

To output an analog signal, there are basically two different possibilities, on the
one hand, via an[Analog Output (AO) and, on the other hand, via a[PWM]|signal.
The difference is that an integrated (digital-to-analog converter (DAC)|is used
with [AOk, whereas with an analog signal is obtained through a digital
pin. A square wave signal with a specific frequency is generated by quickly
switching between the two states, LOW and HIGH. The duty cycle determines
the ratio between the on and off time and thus simulates the signal, which
is a continuous voltage between oV and the supply voltage (in this case 3.3 V).
The duty cycle can be any value between 0-255 with 8-bit resolution, where 255
corresponds to 100 % duty cycle, which means that the output is continuously
in the HIGH state. Furthermore, not any digital pin can be used for but

33

3 Design

fritzing

Figure 3.4: DI Circuit

only those specifically designated for it in the pinout. The can be used, for
example, to adjust an s brightness or a motor’s speed.

Since the Blend Micro Board does not have an integrated the
method must be used. For this purpose, the circuit in Figure [3.3|can be reused,
as the digital pin Dg used is also a pin. In this case, the can not
only be switched on and off, but the brightness can be adjusted by the duty
cycle, and thus the can be dimmed as desired. Any value between
0-255 can be set, whereby the value o corresponds to a switched-off and
the value 255 to the maximum brightness.

Analog Input (Al)

An |Analog Input (Al)|reads and converts analog signals into a proportional
value using an integrated [analog-to-digital converter (ADC)| This value depends
on the resolution of the[ADC|and is between 0-1023 for a 10-bit resolution, which
corresponds to 3.22mV per unit at a supply voltage of 3.3 V. The|Als are specially
marked in the pinout but can also be used as [General Purpose Input/Output|
pins. In this case, too, reading an input that is not connected will lead
to incorrect random results. The |All can be used for analog sensors, such as a
temperature sensor, to read the measured temperature constantly.

34

3.3 Hardware

The circuit in Figure consisting of the Blend Micro Board and a 10k()
potentiometer, shows a symbolic use of an The two outer pins of the
potentiometer are connected to the supply voltage and ground, respectively.
The middle pin, the so-called wiper, is connected to an in this case Ao.
Depending on the wiper’s position, the resistance changes and, subsequently;,
the voltage applied to the input. The integrated [ADC]| converts this voltage into a
proportional value between 0-1023. In this case, 0V at the input corresponds to
the value o, and the supply voltage at the input, in this case 3.3V, corresponds
to the value 1023. With this resolution, the smallest detectable voltage at the
input corresponds to 3.22mV.

o
o
|
.
o
a
m
o
a
[

Blend Micro

® & 0 9 O 0 " " O S e
® o & 0 0 0 0 0 " 0 s e
o ¢ 0 e " e ¢ ¢ ¢ ® O OO
® & & & & & & ¢ ¢ ¢ ¢ 0o ®
® & & & & & & & & ¢ ¢ 0o 0
* o 9 ° 0 * o o o 0 * o @ @ @ * ® 0 * o o 0
* o o 9 0 * o o0 * o @ 0 @ * ® 0 * o o @ °

fritzing

Figure 3.5: Al Circuit

35

3 Design

3.4 Software

This section describes the software design to fulfil the desired function of
this thesis. Section explains the software architecture in more detail and
describes the individual components. It also describes the design decisions that
have been made. Section describes the software flow of the whole system
by combining the individual components.

3.4.1 Software Architecture

The components to be designed on the software side are, on the one hand,
the modelling of the communication and, on the other hand, the Firmata
protocol. Since these should run independently of each other to ensure their
reusability, clearly defined interfaces are required. For this purpose, their design
is explained in detail in this section.

BLE Communication

For communication via the roles of the participants must be clearly defined.
Figure [3.6/shows the devices used in the practical part of this thesis and defines
their roles concerning the connection. The Android smartphone or tablet
with the Pocket Code app acts as the central device and the Arduino as the
peripheral device. They communicate via a connection-oriented point-to-point
BLE| connection. To do this, the peripheral advertises and waits for a connection
request from a central, which searches for surrounding devices. In principle,
the central can connect to several peripherals, but a peripheral usually cannot
because after a connection, its advertising is deactivated and thus can no longer
be found by other centrals. In Android, the maximum number of simultaneous
connections lies at seven devices.

With regard to the [GATT|in BLE] the two roles of the server and
client can also be used and assigned concerning the data flow. The peripheral
typically acts as the server and the central as the client and is
also used as such in this thesis. The server manages data in the form of
I[GATT] databases and makes them available with certain authorisations. These
attributes can be read and written by the client. In addition, the
client can subscribe to attributes in order to be automatically notified of their
changes.

The |GATT] server, in this case, the Arduino, defines a [GATT] that regulates
the data exchange via defined attributes. Standardised profiles can be used,
or a new profile adapted to the application can be defined. In this thesis, the

36

3.4 Software

Smartphone

Arduino

RedBearLab
Blend Micro
V.0

Central Peripheral
(GATT Client) (GATT Server)

Figure 3.6: BLE Connection Device Roles

latter was used, and the profile was set up in the firmware of the Arduino
board. This consists of several services, characteristics and descriptors. The two
most important characteristics for the functionality in this application are the
[Transmitter (TX)|and [Receiver (RX)|characteristics in order to be able to send
commands to the Arduino for control and also to read out data.

To check the the app nRF Connect for Mobile} which is available
for Android as well as iOS, can be used. This allows to connect to a
device, communicate and explore its features. Figure [3.7]shows the of
the Arduino used in this thesis, acting as a server.

Firmata

The messages exchanged through must be able to be interpreted by both
parties to carry out the respective actions. For this purpose, either a new

Shttps://www.nordicsemi.com/Products/Development-tools/
nrf-connect-for-mobile| accessed: Jan 25, 2023

37

https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile

3 Design

Generic Access
0x1800

Device Name
0x2A00

Unknown Service
713d0000-503e-4c75-ba94-3148f18d941e

Unknown Characteristic (TX)
713d0003-503e-4c75-ba94-3148f18d941e

READ, WRITE, WRITE NO RESPONSE WRITE NO RESPONSE

Appearance Unknown Characteristic (RX)
0x2A01 713d0002-503e-4c75-ba94-3148f18d941e
READ NOTIFY
Client Characteristic Configuration
Peripheral Preferred Connection Parameters 0x2902
0x2A04
READ
Device Information
Generic Attribute 0x180A
0x1801 . -
Hardware Revision String
Service Changed O0x2A27
0x2A05 READ

INDICATE, READ

Client Characteristic Configuration
0x2902 LEGEND

Profile Service

Characteristic| Descriptor

Figure 3.7: GATT Profile

protocol can be designed, or an existing one can be used. The latter possibility
was chosen in this case, and the widely used Firmata protocol was used. This is
often used in combination with the Arduino.

In order to change the behaviour of the of the Arduino, it is necessary
to change the program and re-upload it to the Arduino via the Firmata,
however, allows the behaviour of the Arduino to be changed dynamically
without the need for a re-upload. To do this, the Firmata firmware is uploaded
once to the Arduino via the This step can also be done directly from the
smartphone via various apps using an [USB|[On-The-Go (OTG)| cable. This would
allow the user to do without a at all. This firmware can be found in the
sample programs under the Firmata category of the Arduino Since this
implementation is too large for the flash memory of the Blend Micro Board, the
BLEFirmataSketch of the RBL_nRF80oo1 library/’, which is compatible with the
Blend Micro Board, was used. This firmware implements the Firmata protocol
and provides a service with [RX|and [TX| characteristics for communication via
with a Central.

From the software’s point of view, the process initially starts with creating

6https ://reference.arduino.cc/reference/en/libraries/rbl_nrf8001/,
accessed: Jan 25, 2023

38

https://reference.arduino.cc/reference/en/libraries/rbl_nrf8001/

3.4 Software

the Firmata message according to the desired function. These messages are
converted into the correct format, i.e. encoded, before they are sent. The other
participant can then decode these messages and read out the data, and initiate
further steps based on this.

3.4.2 Workflow

To achieve the goal of this thesis, the individual components described above
together result in the following software workflow. The involved components
are Pocket Code, Firmata, and Arduino, as shown in Figure Pocket
Code runs on the smartphone and communicates with the Arduino via The
Firmata protocol is directly integrated into both participants, i.e. implemented
in Pocket Code as well as in the firmware running on the Arduino, and does not
represent any hardware components of its own. These components are passed
through from left to right when Pocket Code issues a command. In the case
of a necessary response from the Arduino or the automatic reporting of value
changes, on the other hand, the sequence is passed through from right to left.

Pocket Code 4 Firmata) BLE 4 Firmata Y - -’/ Arduino

E n = OO
e O] “— ARDUINO |

Figure 3.8: Workflow

Y
Y
A

A

A

A

The workflow is such that the Pocket Code project programmed by the user is
executed on the smartphone after the successful connection with the Arduino
via If an Arduino block or function is carried out during the execution,
then an interaction with the Arduino is necessary. After checking the parameters
of the command to be sent, the necessary Firmata message is created. This
is transmitted to the Arduino via The Firmata firmware running on the
Arduino finally decodes the command and performs the requested action.

If a command is sent out that requires a response from the Arduino, such as a
request for an input pin, then this process is repeated in reverse order, meaning
from right to left. This also happens when automatic notification is set for
changes in the data on the Arduino side. The actual Firmata message is created
on the Arduino side and sent via to Pocket Code. It is decoded again
through the Firmata implementation to process the transmitted data further.

39

4 Implementation

This chapter provides insight into the practical implementation of this thesis.
The aim is to integrate the control of an Arduino via into the existing
Android app Pocket Code. Accordingly, the well-known Firmata protocol was
used for the message exchange.

The implementation mainly consists of two large, independent parts, which
were subsequently integrated into Pocket Code. On the one hand, there is the
entire management of a communication (Section and, on the other
hand, the mobile side support of the Firmata protocol (Section [4.2). These were
designed to communicate through defined interfaces to ensure their universal
applicability and can therefore be used outside of Pocket Code. Furthermore,
Section |4.3| demonstrates their integration into the Pocket Code app and the
changes made in this regard. In particular, a lot of focus was put on usability, so
the new feature is easy to use and offers a good [User Experience (UX), Finally,
Section |4.4| deals with testing in more detail, as is usual in [XP|and other agile
methods in the sense of

4.1 BLE Framework

This section deals with the individual components of the implementation for
communication with external devices via This requires a well-thought-out
and structured implementation to ensure its modularity so that further devices
and other communication protocols can be easily integrated later.

Section describes the Manager, which is responsible for the basic
functionalities of such a connection. Then, in Section the various BLE|
operations are described that are necessary for bidirectional data exchange, i.e.
for reading and writing data. Finally, Section describes the Queue
Manager, which takes care of the synchronisation of successive operations
within the same connection.

41

4 |mplementation

4.1.1 BLE Manager

The first step in implementing the framework was to create a central unit
that takes care of all the management of the connection. After searching for
surrounding devices, this manager primarily takes care of establishing
the connection and subsequently managing it.

For this purpose, after the request to establish a connection to a device, the
corresponding callback is waited for, as this is an asynchronous function, like
all other operations, which are described in Section For this reason,
a [BLE| Queue Manager, described in Section is required to synchronise
these [BLE] operations. After a successful connection, the services are discovered
first. This is necessary even if the is already known and must be done
once at the beginning before any other operation is performed.

Afterwards, it is determined whether the device to be connected has the two
characteristics, and required in this case for data exchange. If this is
not the case, the connection is terminated. The next step is to enable
notification for the characteristic in order to receive data changes when
subscribing to this characteristic automatically. In Android, enabling notifica-
tions for a characteristic must also be signalled to the Android Bluetooth stack
via setCharacteristicNotification(). Each characteristic supporting notification or
indication also has a [Client Characteristic Configuration Descriptor (CCCD)|
that must be set to the desired behaviour. In this case, notification was selected,
which, unlike indication, does not confirm receipt of a message to the sender.
Also, the Arduino’s only supports notification in this particular setting.

The Manager is the central point that sends requests regarding opera-
tions to the Queue Manager for enqueueing. It also manages all callbacks

of operations and reports the completion of a operation to the
Queue Manager for dequeuing.

4.1.2 BLE Operations

Since the operations are asynchronous functions, i.e. a callback signals
their completion, they must be synchronised. All possible operations were
implemented in their own classes based on an abstract operation class to achieve
this. Each operation also receives the necessary information as a parameter.
The following operations were implemented in this regard:

Characteristic Read Operation
Characteristic Set Operation
Characteristic Write Operation
Descriptor Read Operation

42

4.1 BLE Framework

* Descriptor Write Operation
* Disconnect Operation
* Discover Services Operation

When a specific operation needs to be performed, such as reading or
writing a characteristic, the Manager requests the operation to be
executed. The Manager adds the operation to the queue of the Queue
Manager to be scheduled. When it is the turn of the respective operation, its
function gets executed. If it is an asynchronous function, its callback is waited
for before performing the following operation in the queue.

4.1.3 BLE Queue Manager

The operations listed in Section are asynchronous functions. Unlike
synchronous functions, the result is not returned immediately after the call but
is provided afterwards by a callback function, since the Bluetooth stack needs
some time for execution. Additionally, their execution must not overlap, as
parallel execution leads to loss of operations and undefined behaviour. Contrary
to expectations, the Android does not handle synchronisation internally.

Consequently, a central unit is needed to coordinate the flow of operations.
For this purpose, a Queue Manager was implemented, which is respon-
sible for executing the operations sequentially. It is not enough to wait for a
certain amount of time after the execution, but it is necessary to wait for the
corresponding callback. As Android internally ensures the synchronisation of
different connections, it is sufficient to have one queue per connection to
the peripherals.

Each new operation is first queued and processed according to the
[First Out (FIFO)| principle. Once an operation is completed, the corresponding
callback is called and the queue is notified of its completion. Following this, the
next operation in the queue will be fetched and executed. This procedure is
executed as long as the queue is not empty.

Figure[4.1]shows an example queue, where the Discover Services Operation
would be completed by triggering the corresponding callback and thus being
dequeued. The next operation to be executed would be the operation at the
beginning of the queue, which is the Characteristic Set Operation. In addition,
a Disconnect Operation has been enqueued, but it is not executed immediately
but queued at the back of the queue.

43

4 |mplementation

Disconnect

Operation BLE Queue Manager
Back Front
— c g g . . - g Dequeue
Characteristic | Characteristic = Characteristic Characteristic Descriptor | Characteristic
Write Read Read Write Write Set
Operation Operation Operation Operation Operation Operation
Enqueue

Discover
Services
Operation

Figure 4.1: FIFO BLE Queue
4.2 Firmata

For dynamic control of the Arduino via an Android application, the Firmata
protocol was used in this case. To exchange messages via Firmata, both partici-
pants in the conversation must implement this protocol. The Firmata firmware
has to be loaded once on the Arduino, and the protocol has to be implemented
on the client side. In this case, the client is the Android application.

As already mentioned in the Section there is no existing library for the
Firmata protocol for Android applications that supports communication via
Therefore, in this thesis, the existing open-source Java implementation
of Smirnov [25] was used and extended to this end. This extension is an
enrichment because it is the only open-source implementation of the Firmata
protocol that supports the wireless communication standard It can be
used as a library not only in Android applications but also in standard Java or
JavaFX applications. This is possible through its encapsulation as a stand-alone
implementation for reuse.

The concrete implementation is divided into three parts: Implementing the
different message types and transmitting and receiving messages. The messages
are encoded before they are sent in order to comply with the defined format
of the Firmata protocol. When a message is received, however, the message
is decoded. The first byte, the command byte, determines the message type.
Depending on this, the respective parameters are read out. These are passed on
to registered listeners for further use.

This encapsulated implementation can easily be used in individual applications
to use the Firmata protocol for communication. The various message types
can be created, sent and received via defined interfaces. In order to receive
messages, so-called listeners have to be registered, which are triggered when a
message is received to use the read data further.

Section describes the implementation of the message types of the Firmata
protocol. Subsequently, Section describes the sending of messages and

44

4.2 Firmata

Section the receiving of messages and the necessary steps.

4.2.1 Messages

To model the different message types in Firmata, all message types were
implemented as separate classes based on an abstract base class. Depending on
the message type, these classes contain the necessary parameters.

In addition, the profiles of the different Arduino boards were each modelled in
their own class based on a base class. These are used to create the appropriate
Firmata messages depending on the desired control behaviour. In addition,
various error checks are performed during their creation, such as validation of
pins and modes based on the hardware characteristics of the Arduino used. The
generated Firmata messages can be sent directly via the Firmata instance. An
exception is thrown if a command is requested with an incorrect configuration.
The profiles contain the number of digital and analog input pins. They also
define the digital pins that can also be used as outputs.

This implementation allows easy future extension with further Firmata message
types or Arduino boards. All that is required is to implement the appropriate
Firmata message and its parameters or to implement the profile of the Arduino
board.

4.2.2 Writer

The Writer part takes care of encoding the different message types to comply
with the Firmata protocol specification and subsequently sends them. For this
purpose, each message type implemented a common interface. These writer
classes send the respective message consisting of a command byte and one or
two data bytes, as specified in the Firmata protocol. Exceptions to this are the
messages where there can be any number of data bytes between the two
command bytes START_SYSEX and END_SYSEX.

The interface and its implementing classes have been extended to enable trans-
mission via BLE in addition to serial transmission. For this purpose, the bytes
to be sent are created, which can be sent via a characteristic.

4.2.3 Reader

The reader part takes care of decoding the incoming Firmata messages on the
receiver side. For this purpose, the incoming message is read byte by byte, and

45

4 |mplementation

the command byte at the beginning of the message is used to decide what
type of message it is. Then the following data bytes are read to create an object
of the respective message class and to determine its parameters. Finally, the
respective listeners are informed of the incoming message. Again a uniform
interface was defined for its implementation, which was implemented by the
different message types.

4.3 Integration into Pocket Code

The most important part of the implementation was to integrate the BLE|
framework (Section and the Firmata implementation (Section into the
existing Android app Pocket Code and thus enable the control of the Arduino
via During the integration, the main focus was on usability to make it as
easy as possible for the user to use the new functions. Apart from that, attention
was paid to the clean implementation of the already very extensive Pocket Code
app to ensure easy future expandability.

The integration can be divided into two major parts. Section describes
the integration of as a communication protocol. This includes everything
from device search and connection establishment to message exchange and
disconnection within the app. Section explains the changes that were
necessary concerning controlling an Arduino.

4.3.1 BLE Connection

The first part of the integration was to extend the app to connect to |BLE
devices and exchange messages. For this purpose, the self-implemented [BLE
framework was integrated into Pocket Code. The framework takes care of
the entire administration of the connection within the app to achieve
encapsulation.

Basically, as soon as a project is started in Pocket Code, the necessary resources
are checked. This includes checking whether specially used blocks or functions
are contained in the program that requires additional actions beforehand, such
as initialising the hardware used, before the stage can be displayed and the
program can be executed. The blocks and functions for controlling the Arduino
also contain their own resource. This signals a necessary connection with the
Arduino in advance. For this reason, if this resource is present, an activity starts
to be able to connect to such a device.

The connection screen that takes care of the device search in order to subse-
quently establish a connection is shown in Figure In this connection screen,

46

4.3 Integration into Pocket Code

it is first checked whether Bluetooth is supported and activated on the device.
In the deactivated case, the user is prompted to activate Bluetooth. It is also
possible to skip a connection using the button in the upper right corner. This is
useful for inspecting the but without an upright connection, the function-
alities related to Arduino will not lead to any actions. In the lower right corner,
it is possible to start and stop a search for Bluetooth devices in the area. The
screen is divided into two parts: the upper section shows the bounded (paired
in Bluetooth Classic) devices, and the lower section shows the new devices
found during this scan. The devices are listed with their name and
icontrol (MAC)|address, whereby devices are additionally marked with the
prefix “BLE — “. A connection is established by clicking on the respective device
in the list.

& Bluetooth connection

AVAILABLE DEVICES

SONY KD-65AG9 30:C9:AB:D0:8F:0A
BLE OD:F4:AB:7F:12:07
BLE - BlendMicro E6:0B:C4:97:65:07
BLE 4B:2E:DE:47:FF:4D
BLE 6F:C7:2F:E6:0B:C4
BLE 5B:51:AC:E5:DE:FB
BLE 57:78:F9:A3:55:B8
BLE 08:CC:64:25:F3:5F
BLE 69:E7:E6:B2:DB:D7

BLE 23:C5:41:1C:B7:14

Figure 4.2: Bluetooth Device Search Screen

The connection is maintained for as long as possible to avoid a constant repet-
itive reconnection when starting the program. If it is determined that such a
device is already connected when starting the program, the connection step is
skipped, and the program is executed directly. The connection is terminated
when the device goes outside the range or this is explicitly requested in the
app settings. Figure 4.3/ shows the settings screen for explicitly disconnecting.

47

4 |mplementation

In both cases, the user is notified with a message on the screen. In addition,
the user is also notified if the connection is lost for any reason during the
execution of the project.

&« Arduino extension

Arduino extension
Allow the app to control Arduino
boards

Arduino settings

Disconnect Arduino board

Figure 4.3: Settings remove BLE Device

4.3.2 Arduino Control

The second part of the integration included the control of the Arduino itself,
using the Firmata protocol in this case for message exchange. For this purpose,
the implementation of the Firmata protocol from Section |4.2{ was integrated,
and some modifications were made to the app in this regard.

In order to be able to control an Arduino in Pocket Code, this extension must
tirst be enabled in the settings, as it is disabled by default. This will show an
additional Arduino section in the list of brick categories containing Arduino
bricks as well as in the sensors category of the formula editor. These two sections
are shown in Figure The Arduino brick category contains the functions
for setting an output as bricks, and the Arduino section in the formula editor

48

4.3 Integration into Pocket Code

includes the functions for reading an input. The reason for this separation lies
in the app’s concept since the setting is an action to be executed and is therefore
represented as a brick, but the reading is used as input in other bricks. These
bricks and functions contain an Arduino-specific resource. These resources
are checked when a project is started, and in this case, signal the necessity of
establishing a connection to an Arduino in advance when they are used.

& Arduino & Sensors

Set Arduino digital pin 13 Arduino

to 1 , _
= arduino analog pin(0)

Set Arduino PWM~ pin 3 arduino digital pin(0)

to 255
Device sensors

loudness
touches finger

colour at x y(100,200)

colour equals colour with %
tolerance('#ff0000',#fe0000',1)

acceleration x

acceleration y

<

a) Arduino Bricks b) Arduino Functions

Figure 4.4: Arduino in Pocket Code

The internal procedure for using the Arduino functions is as follows: Checking
the entered parameters, creating the necessary Firmata messages and sending
them via to the connected Arduino. The check of the parameters includes,
on the one hand, the check if it is a valid pin and, on the other hand, if its value
is in the valid range. Additionally, for analog [[/Og, it is checked whether the
respective pin supports this function. Then, the necessary Firmata messages
are generated depending on the selected function. For digital [/Os and PWM]
this includes the setting of the pin mode. Finally, these messages are sent to the

49

4 |mplementation

Arduino via This is not done directly, but the messages are inserted into
the Queue, as described in Section All these described actions are
again encapsulated in the Firmata implementation.

In addition, a copy of the current state of the is stored locally. This is
especially necessary for the automatic notification feature of where value
changes are automatically reported. This information can also be used to have a
view in the app where all states of the can be viewed and changed. Apart
from that, the chosen design allows the addition of further control functions for
the Arduino quite easily by creating the respective brick or function with the
linkage of sending the required Firmata messages in the background.

4.4 Testing

In order to guarantee the functionality of the implementation in the future and
to avoid unintentional errors, the new features integrated within this thesis
must be tested extensively. This is especially essential for a project as large as
Pocket Code, as otherwise functionalities can be broken unnoticed. Therefore,
the tests must have extensive code coverage and be meaningful to locate a
malfunction immediately.

Basically, there are two ways to test the functionality, on the one hand, via
real hardware and, on the other hand, simulated via an emulator. Since the
tests are to run in the automated [Continuous Integration (Cl)| pipeline, the
tirst would require a real test setup to be constructed that interacts with the
test server via a defined interface. This test setup would have to consist of an
Android smartphone and an Arduino connected to each other via The
great advantage of this approach is that it represents reality through the real
test environment with all its characteristics, which reflect the real conditions
of the end user. However, due to the usual instability of wireless connections,
there might be random failed test runs, which do not necessarily represent a
failure in the implementation. As such, they are not ideal for automated testing
but could be done manually from time to time or before application releases.

The second method is also a bit trickier in this case, as the Android emulator,
which is also used for the automated |CI| pipeline, does not support Bluetooth at
all. Consequently, the connection has to be simulated, as a real connec-
tion to the Arduino is not feasible. This process of simulating objects is called
mocking. It involves creating an imitation that mimics the behaviour of the
real object. This proves to be a difficult matter, especially with complex objects,
because their real conditions must be reflected very well for a promising result.
On top of that, this has to be taken into account already in the implementation
design to ensure its compatibility. The great advantage of this method is its

50

4.4 Testing

reliability due to the reproducibility of the results. However, the main weakness
lies in the ideal and perfect imitation of the real object, which does not occur in
reality.

Since the app follows the concept and thus requires reliable test results,
the second method from above was used in this thesis. All parts described so
far (Section are tested independently to reuse the tests when the
framework or the Firmata protocol is used individually outside the app.
They are mainly functional tests to ensure their correct functionality.

The tests can basically be divided into two types, which are discussed in the
following sections. An overview of the setup of both methods is shown in
Figure 4.5} Section describes the concept of unit testing, which deals with
verifying individual functionalities. This type of testing was applied to the
framework and Firmata protocol implementation. Section [4.4.2] deals with
instrumentation testing, which mainly checks the [user interface (Ul) of the app
via the emulator and was used for the tests of the third part concerning the
integration into the Pocket Code app.

Workstation

Emulated Device Physical Device

Local Tests

Unit Tests
Integration Tests
Simulators

—
>

Instrumented Tests

End-to-end Tests
Integration Tests

Figure 4.5: Android Testing Methods Overview

51

4 |mplementation

4.4.1 Unit Testing

Unit tests are tests used to test small functionalities where it is not determined
what this small functionality actually is. Mostly, however, it is a matter of
testing individual functions. They are also called local tests because, unlike
instrumentation tests, they do not require a device or emulator to run the tests
and therefore run much faster. The only sticking point with these tests is the
dependencies on other objects or on the Android itself, which occur as
parameters or directly as objects in the section to be tested. In order to be able
to test the respective section individually, it must be isolated. The dependencies
must be mocked to do this, thereby simulating their real behaviour.

Unit tests were written for the implemented framework as well as for
the implementation of the Firmata protocol. The testing of the objects was
already considered during the design process of the implementation, which
is especially important concerning mocking. For this purpose, the Mockitd[']
framework was used in this thesis, which allows the imitation of an object and
the determination of its behaviour.

The different aspects of a connection were tested for the framework.
This includes searching for devices, establishing connections, exchanging mes-
sages and terminating connections. For this purpose, the external device, in
the case of this thesis, an Arduino, was mocked. In this case, the framework
interface communicates with a simulated external device and checks whether
the communication is working correctly. The only drawback in this respect is
that a trouble-free connection is assumed, but in reality, interference and
certain unpredictable errors occur.

The extended Firmata protocol implementation already included unit tests for
serial transmission. These have been extended to test transmission over
as well. These tests involve testing the exchange of the different Firmata mes-
sage types as well as their required utils classes. Instead of mocking, separate
test object implementations were created for testing. Furthermore, the imple-
mentation includes real hardware tests that can be executed with a connected
external device, in this case, an Arduino with Firmata firmware. These tests
communicate directly with the board via Firmata and therefore do not require
an Android smartphone or emulator to be executed.

4.4.2 Instrumentation Testing

Instrumentation tests are tests that run on real hardware or an emulator as
opposed to unit tests. They, therefore, run longer but reflect the real behaviour

'https://site.mockito.org/, accessed: Jan 29, 2023

52

https://site.mockito.org/

4.4 Testing

of the end user. The name comes from the fact that access is granted to the
Instrumentation which allows the app to be controlled from within the
code. This is mainly used for [U]] tests, where the of the app is automatically
checked by simulating user interactions. This includes checking the layout itself,
the user flow and aspects of functionality. However, they can also test other
logic, not just the They are also suitable for testing objects with complex
dependencies, as no mocking is necessary in this case. Since these tests run on
the emulator, they are also well suited for automated test suites and lead to an

increased

This type of testing was mainly used to test the integration of the newly
implemented features in Pocket Code. For this purpose, primarily, [UI tests were
written to check the correct display of the layout and the user flow. This was
done using the frameworks Espressd?] and JUnit}) which make it possible to
simulate user interaction within the app.

The tests include various checks in the settings screen, brick categories and
formula editor regarding the Arduino extension. Furthermore, it is checked
whether the correct event is triggered in the background when the extension is
used. The only shortcoming of these [Ul| tests is their flakiness, which can occur
with the relatively slow emulator. Several measures were taken to reduce this
to a minimum. On the one hand, the delays in displaying the [Ul| elements by
the emulator were solved by explicitly waiting for these elements at sensitive
points. On the other hand, such annoying flaky tests can be annotated so that
if they fail, they are executed again until a self-defined maximum number of
retries is reached.

2https://developer.android.com/training/testing/espresso, accessed: Jan
29, 2023
Shttps://junit.org/junit4/, accessed: Jan 29, 2023

53

https://developer.android.com/training/testing/espresso
https://junit.org/junit4/

5 Evaluation

This chapter evaluates the developed system in this thesis in order to highlight
its added value. Section [5.1/ compares programming in Pocket Code with direct
programming in the Arduino concerning controlling an Arduino and
derives results based on this. Section [5.2| discusses these findings in detail on
the one hand and summarises the advantages of the developed system on the
other hand.

5.1 Programming

In this section, the benefits of the practical part of this thesis, the integration of
the control of an Arduino via in Pocket Code, are evaluated with regard
to the facilitation of programming. To this end, Section describes the
experimental test setup used for evaluation. This is followed in Section
by the implementation of the desired function both in the Arduino and in
Pocket Code in order to compare them and highlight the differences. Finally,
in Section the differences are highlighted, and the main results obtained
from using Pocket Code to realise individual projects are discussed.

5.1.1 Experimental Setup

A minimalistic test setup for evaluating the newly introduced feature is shown
in Figure The circuit built on the breadboard consists of a Blend Micro
Board, an a push button and two resistors. One resistor is 220 () and
serves as a series resistor for the and the other has 10k() and serves as a
pull-down resistor for the push button. The aim is to control the using the
push button. The should light up when the push button is pressed and
switch off again when it is released. The push button is not directly connected
to the but to the pins of the Blend Board, which should read the status
of the push button in order to control the Two digital pins of the Blend
Micro Board are used for this, pin 9 as[DQ| for the and pin 10 as D] for the
push button. The Firmata firmware must be uploaded once to the Blend Micro
Board before it can be programmed using Pocket Code.

55

N QU R WON R

5 Evaluation

a
B £
—
]
LR
a

g E
o 2
o @

fritzing

Figure 5.1: Evaluation Test Setup

5.1.2 Code

The desired function was programmed in the Arduino on the one hand
and in Pocket Code on the other for comparison. The code from the Arduino
DE| can be found in Listing and Figure [5.2] shows the project in Pocket
Code.

The code in the Arduino tirst defines two constants for the respective pins
of the and the push button for reuse. Their mode is first configured in the
setup() function, with the pin as [DO|and the push button pin as DI} Then
the main program follows in the loop() function, in which the state of the push
button is read. Depending on the state, the is switched on (set to HIGH) in
the pressed state, meaning HIGH is applied to the input or otherwise switched
off (set to LOW).

Listing 5.1: Arduino Evaluation Sketch

const int LED_PIN = 9;
const int BUTTON_PIN = 10;

void setup () {

pinMode (LED_PIN, OUTPUT);
pinMode (BUTTON_PIN, INPUT);

56

10
11
12
13
14
15

5.1 Programming

void loop () {
if (digitalRead (BUTTON_PIN) == HIGH) {
digitalWrite (LED_PIN, HIGH);
} else {

digitalWrite (LED_PIN, LOW);

In the Pocket Code project, two variables are also defined at the beginning, one
each for the pin and the push button pin. Then the state of the [DI] of the
push button is constantly queried in a loop, and the [DO|of the is set based
on this.

< Background Background

®© ®©

Forever

When scene starts

If arduino digital pin("... is true then

Set variable
LED_PIN

)

Set Arduino digital pin "LED_PIN"
to 1

Set variable
BUTTON_PIN

to 10

Set Arduino digital pin "LED_PIN"

Forever

If arduino digital pin("... is true then
+
Set Arduino digital pin "LED_PIN
O

End of loop

a) Evaluation Project Part 1 b) Evaluation Project Part 2

Figure 5.2: Pocket Code Evaluation Project

57

5 Evaluation

5.1.3 Result

Both the programming in the Arduino as well as in Pocket Code leads
to the desired functionality. However, they differ in some respects, both in
the programming environment and especially in the programming language
itself.

Programming in the Arduino requires a whereas Pocket Code runs
entirely on a smartphone or tablet, which is much more common. In addition,
uploading a program in the former requires a direct connection via a cable
to the Arduino, which is done wirelessly via in the latter.

However, there are some distinctions in the programming language itself. In
Pocket Code, programming is done visually by dragging and dropping blocks.
In the Arduino by contrast, programming is text-based and thus requires
explicit code writing. This requires learning the programming language’s syntax
and thus introduces the possibility of syntax errors, which cannot occur in visual
programming languages. In addition, in Pocket Code, it is possible to program
in one’s native language, which is only possible in English in the Arduino
This feature makes programming much more accessible, especially for children,
who usually only know their mother tongue.

In terms of code size, both types are pretty comparable and differ in the
program’s structure only in two essential points. The first difference is that the
pin modes are not explicitly set in Pocket Code as in the setup() function of the
Arduino This is because they are set implicitly in the background of the
respective Arduino blocks. This makes it easier for beginners in software and
hardware prototyping to get started, as no explicit prior knowledge is required.
The second difference is that the continuous loop, through the loop() function
in the Arduino must be explicitly added to the program in Pocket Code.
Otherwise, the program would only be executed once. Apart from these two
distinctions, both types can easily be converted into each other. In principle,
programming in Pocket Code is a visualisation of the code in the Arduino [[DE|
and is, therefore, easier to get started with.

5.2 Discussion

The new feature integrated in this thesis, the control of the Arduino board via
Pocket Code, opens up many new possibilities with regard to the implementa-
tion of [loT| projects. Typical hurdles for such projects are reduced to a minimum,
and no profound knowledge in the area of software, as well as hardware, is
required.

58

5.2 Discussion

The built-in feature basically consists of two components, Pocket Code and
Arduino, which communicate with each other via On the one hand, Pocket
Code itself already offers a more accessible introduction to programming and
on the other hand, Arduino provides a simplified introduction to hardware
prototyping. Thus, combining both unites the respective advantages and enables
promising projects in this respect, especially for beginners in these fields.

However, it also has an enormous added value for experienced users in imple-
menting ideas according to the principle of rapid prototyping. Through this
new feature, ideas can be realised quickly directly via the smartphone or tablet.
The typically necessary constant changes in the prototyping process can easily
be carried out wirelessly via without constantly reconnecting the Arduino
to the which can be annoying when installed. In addition, the ability to
easily and quickly create a custom for user interaction via Pocket Code is
especially advantageous. This is also very important for the Maker community
when creating their individual projects.

The only drawback in this respect is that the control options are limited to the
functions represented in the app by blocks, which somewhat restricts flexibility.
Experienced users might also criticise the lack of clarity in large, complex
programmes due to the blocks used in Pocket Code compared to the text-based
code in the Arduino However, this can be remedied by dividing it into
possible scenes and sprites and creating custom blocks in Pocket Code.

59

6 Conclusion

In conclusion, this chapter provides a summary of the present thesis in Sec-
tion[6.1]and then presents future work based on it in Section

6.1 Summary

The massive upswing of devices in everyday life can no longer be over-
looked. More and more devices support as a wireless communication
protocol due to its numerous advantages over other protocols, especially its
predecessor Bluetooth Classic. However, there is a lack of applications to imple-
ment personal ideas and projects in this area, especially without sound prior
knowledge in this field. For this reason, this thesis offers a simple way to realise
such projects by extending the existing Android app Pocket Code.

The thesis focuses on designing and implementing the control of devices
in mobile Android development. For this purpose, Pocket Code is extended by
the control via of the widely used Arduino as an exemplary first device to
be up-to-date with the latest technology. The implementation can be divided
into three main parts, the implementation of a framework to manage the BLE
connection, the implementation of the Firmata protocol with support for BLE
for communication and finally, the integration of both in Pocket Code to control

devices.

This newly integrated feature in Pocket Code makes it much easier for non-
professionals to develop their projects. Moreover, no prior knowledge is needed,
both in terms of software through the visual language Catrobat and hardware
through the Arduino board’s flexibility. This combination allows the promising
realisation of projects in a simple and straightforward way. But it is also suitable
for experts and hobbyists, especially in the Maker movement, to quickly imple-
ment prototypes according to the principle of rapid prototyping. A significant
advantage over other applications in this field is that everything is done entirely
on the smartphone or tablet, from the programming to the execution.

Finally, the chosen design also allows the app to be easily expanded in the
future to include other devices or communication protocols so that constant
adaptation to the latest technologies is easily possible.

61

6 Conclusion

6.2 Future Work

In the design of the implementation in this thesis, much emphasis has been
placed on easy extensibility in the future. Based on this, several future works
are presented in this section.

6.2.1 Arduino Flavor

The first option for future work is to extend the functionalities in connection
with the Arduino board to create a separate Arduino Flavor. This has the
advantage that, as with the other flavors already existing on Pocket Code, the
app can focus specifically on this target group and be adapted to their interests.
This also allows the creation of its own community to stimulate user exchange.
At the same time, users can share their projects to make them accessible to
others and pass on their experiences.

The Firmata protocol allows many other message types to control the Arduino,
such as controlling a servo motor or controlling via another interface, such
as For this purpose, the Arduino category can be extended with further
functions and blocks. Furthermore, the support of other Arduino boards can
be added, which is easily possible by incorporating the Firmata feature of
automatically reading the pin assignment at the beginning. This even allows
the control of any board equipped with the Firmata firmware.

It would also be a good idea to create a remote control, so to speak, for the
connected board. For this purpose, a screen is created that displays all
of the respective board. The function of each individual pin can be set using
simple control elements such as buttons, switches and sliders, and depending
on this, its value can be read or written.

6.2.2 Support BLE devices

Another possible idea would be to control devices via Pocket Code in gen-
eral. Especially concerning [[oT| devices that communicate via this would
allow promising projects. The range here extends from small everyday devices
such as smartwatches to distributed sensor nodes such as temperature sensors.
This involves communicating directly via the [GATT|in [BLE| to read and write
data. If the respective device uses a standardised profile for communication,
whose services and characteristics can be stored in the app in advance, it allows
even easier usage for the user.

62

6.2 Future Work

This requires creating new blocks and functions in Pocket Code that enable
communication to devices in general. These range from service discovery,
reading and writing characteristics to registering for automatic notifications

of changes. In this way, applications can again be realised quickly and easily
according to the principle of rapid prototyping.

63

Bibliography

[1]

[4]

[6]

[7]

[8]

[9]

[10]

W. Slany, “A mobile visual programming system for android smartphones
and tablets”, in 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), IEEE, 2012, pp. 265-266 (cit. on p. [5).

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment”, ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, pp. 1-15, 2010 (cit. on p. .

W. Slany, “Pocket code: A scratch-like integrated development environ-
ment for your phone”, in Proceedings of the companion publication of the
2014 ACM SIGPLAN conference on Systems, Programming, and Applications:
Software for Humanity, 2014, pp. 35-36 (cit. on p.[6).

W. Slany, “Catroid: A mobile visual programming system for children”,
in Proceedings of the 11th International Conference on Interaction Design and
Children, 2012, pp. 300-303. DOL: 10.1145/2307096.2307151 (cit. on
p-©)

I. Bluetooth SIG. “Bluetooth homepage”, [Online]. Available: https :
//www.bluetooth.com/|(accessed: Feb. 2, 2023) (cit. on p.[11)).

K. Townsend, C. Cufi, R. Davidson, et al., Getting started with Bluetooth
low energy: tools and techniques for low-power networking. ” O’Reilly Media,

Inc.”, 2014 (cit. on pp. [17).

J. Tosi, E. Taffoni, M. Santacatterina, R. Sannino, and D. Formica, “Perfor-
mance evaluation of bluetooth low energy: A systematic review”, Sensors,

vol. 17, no. 12, p. 2898, 2017 (cit. on p.[13).
N. K. Gupta, Inside Bluetooth low energy. Artech House, 2016 (cit. on pp.
16).

W. Kassab and K. A. Darabkh, “A-z survey of internet of things: Archi-
tectures, protocols, applications, recent advances, future directions and
recommendations”, Journal of Network and Computer Applications, vol. 163,

p. 102663, 2020 (cit. on p.[18).

A. Dementyev, S. Hodges, S. Taylor, and J. Smith, “Power consumption
analysis of bluetooth low energy, zigbee and ant sensor nodes in a cyclic
sleep scenario”, in 2013 IEEE International Wireless Symposium (IWS), IEEE,

2013, pp. 1—4 (cit. on p. [18).

65

https://doi.org/10.1145/2307096.2307151
https://www.bluetooth.com/
https://www.bluetooth.com/

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

06

B. T. Inc. “6 leading types of iot wireless tech and their best use cases”,
[Online]. Available: https: //behrtech.com/blog/6-leading—
types—of-iot—-wireless—tech—-and-their-best-use—-cases/

(accessed: Feb. 2, 2023) (cit. on p. [19).

Arduino. “About arduino”, [Online]. Available: https://www.arduino.
cc/en/about] (accessed: Jan. 10, 2023) (cit. on p. [19).

Arduino. “What is arduino?”, [Online]. Available: https://www.arduino.
cc/en/Guide/Introduction|(accessed: Jan. 10, 2023) (cit. on p.[19).

M. Banzi and M. Shiloh, Getting started with Arduino. Maker Media, Inc.,
2022 (cit. on p. [20).

Arduino. “Getting started with arduino”, [Online]. Available: https://
docs.arduino.cc/learn/starting—-guide/getting—started—

arduinol (accessed: Jan. 10, 2023) (cit. on pp. 21} [22).

H.-C. Steiner, “Firmata: Towards making microcontrollers act like exten-
sions of the computer.”, in NIME, 2009, pp. 125-130 (cit. on p. [24).

B. Moog, “Midi”,]. Audio Eng. Soc, vol. 34, no. 5, 1986 (cit. on p.[24).

D. Smith and C. Wood, “The “usi’, or universal synthesizer interface”, in
Audio Engineering Society Convention 70, Audio Engineering Society, 1981
(cit. on p. [24).

M. M. Association. “Midi 1.0 detailed specification”, [Online]. Available:
https://www.midi.org/|(accessed: Jan. 17, 2023) (cit. on p.[24).

“Firmata protocol”, [Online]. Available: http://firmata.org/wiki/
Main_Page|(accessed: Jan. 17, 2023) (cit. on p. [25).

“Firmata protocol documentation”, [Online]. Available: https://github.
com/firmata/protocol|(accessed: Jan. 17, 2023) (cit. on pp. [25} [26).

P. Desai, Python programming for Arduino. Packt Publishing Ltd, 2015, 1sBN:
978-1783285938 (cit. on p. [26).

“Redbearlab”, [Online]. Available: https://web.archive.org/web/
20160314200149 /http://redbearlab.com/blendmicro/ (ac-

cessed: Jan. 25, 2023) (cit. on pp. [29} [31).

“Blend micro”, [Online]. Available: https://github.com/RedBearLao/
Blend| (accessed: Jan. 25, 2023) (cit. on p.[30).

A. Smirnov. “Firmata pure java implementation”, [Online]. Available:
https://github.com/4ntoine/Firmata (accessed: Jan. 29, 2023)

(cit. on p. [44).

Android. “Fundamentals of testing android apps”, [Online]. Available:
https://developer.android.com/training/testing/fundamentals

(accessed: Jan. 29, 2023) (cit. on p. [51).

https://behrtech.com/blog/6-leading-types-of-iot-wireless-tech-and-their-best-use-cases/
https://behrtech.com/blog/6-leading-types-of-iot-wireless-tech-and-their-best-use-cases/
https://www.arduino.cc/en/about
https://www.arduino.cc/en/about
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://docs.arduino.cc/learn/starting-guide/getting-started-arduino
https://docs.arduino.cc/learn/starting-guide/getting-started-arduino
https://docs.arduino.cc/learn/starting-guide/getting-started-arduino
https://www.midi.org/
http://firmata.org/wiki/Main_Page
http://firmata.org/wiki/Main_Page
https://github.com/firmata/protocol
https://github.com/firmata/protocol
https://web.archive.org/web/20160314200149/http://redbearlab.com/blendmicro/
https://web.archive.org/web/20160314200149/http://redbearlab.com/blendmicro/
https://github.com/RedBearLab/Blend
https://github.com/RedBearLab/Blend
https://github.com/4ntoine/Firmata
https://developer.android.com/training/testing/fundamentals

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Motivation
	Contribution
	Outline

	Background
	Catrobat
	Catrobat Project
	Pocket Code
	Catrobat Programming Language

	Bluetooth Low Energy (BLE)
	Fundamentals
	BLE Protocol Stack
	BLE and Internet of Things (IoT)

	Arduino
	Arduino Hardware
	Arduino Software
	Arduino and IoT

	Firmata
	Protocol
	Musical Instrument Digital Interface (MIDI) Message Format
	Message Types
	Usage

	Design
	System Architecture
	Requirements
	Hardware
	Blend Micro
	Experimental Setup

	Software
	Software Architecture
	Workflow

	Implementation
	BLE Framework
	BLE Manager
	BLE Operations
	BLE Queue Manager

	Firmata
	Messages
	Writer
	Reader

	Integration into Pocket Code
	BLE Connection
	Arduino Control

	Testing
	Unit Testing
	Instrumentation Testing

	Evaluation
	Programming
	Experimental Setup
	Code
	Result

	Discussion

	Conclusion
	Summary
	Future Work
	Arduino Flavor
	Support BLE devices

	Bibliography

