
Dominik Scheiber, Bsc

IoT Middleware Platform for Populating
Semantic Data of Buildings

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Wotawa, Franz, Univ.-Prof. Dipl.-Ing. Dr.techn.

Institute of Software Technology
Head: Wotawa, Franz, Univ.-Prof. Dipl.-Ing. Dr.techn.

Graz, July 2023

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in tugrazonline hochgeladene
Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

v

Abstract

Middleware platforms are an essential technology in Internet of Things
(IoT) systems. They provide a unified and standardized way of managing
interactions between devices, networks and applications. Modern buildings
use middleware platforms as a key component of their IoT architecture.
This allows for proactive energy management strategies that can result
in significant benefits such as improved energy efficiency and comfort
which results in reduced maintenance and operating costs. Due to the
large number of components, this type of architecture may have varying
communication protocols, data formats or contextual meanings, leading to
semantic heterogeneity of data. This thesis aims to address the challenges
of IoT heterogeneity and introduces a middleware application capable of
capturing data from a building’s IoT architecture. This work’s research
focuses on the use of common data models and population of ontology-
based semantic metadata schemas based on the captured data. The use of
an ontology-based metadata schema can provide a range of benefits, such
as reusability, extensibility and consistency. Furthermore, the middleware
application was tested on Raspberry PI hardware to access the building
automation and control network (BACnet) of a non-residential building. The
captured data of the buildings BACnet was used to populate an ontology-
based metadata schema called Brick. The application was expanded to
create a virtual environment, enabling the visualization and analysis of the
extracted data. This virtual environment effectively simulates the behaviour
and interactions of the sensor network. The middleware application in
combination with the use of a simulated virtual environment provides a
platform for testing and validating different scenarios. It can also be used
to facilitate the training and evaluation of machine learning algorithms to
optimize the performance of machine learning based services that analyze
and optimize the energy efficiency of buildings.

vii

Kurzfassung

Middleware-Plattformen sind ein wesentlicher Bestandteil in Systemen
basierend auf dem Internet der Dinge (IoT). Sie bieten eine einheitliche und
standardisierte Möglichkeit zur Verwaltung von Interaktionen zwischen
Geräten, Netzwerken und Anwendungen. Moderne Gebäude verwenden
Middleware-Plattformen als Schlüsselkomponente ihrer IoT-Architektur.
Durch die Anwendung solcher Plattformen können proaktive Energiem-
anagementstrategien in die Realität umgesetzt werden. Die dadurch re-
sultierenden Vorteile umfassen verbesserte Energieeffizienz und erhöhten
Komfort, was wiederum zu einer Senkung der Wartungs- und Betriebskosten
führt. Die hohe Anzahl an unterschiedlichen Komponenten, Datenformaten,
kontextuellen Bedeutungen und der Einsatz von verschiedensten Kom-
munikationsprotokollen führt zur semantischen Heterogenität der Daten.
Diese Arbeit befasst sich mit der Problemstellung von heterogenen IoT-
Architekturen und stellt dabei eine Middleware-Applikation vor, welche auf
Ebene von Gebäude-IoT-Netzwerken Daten sammelt und verarbeitet. Diese
Arbeit konzentriert sich auf die Verwendung vereinheitlichter Datenmod-
elle und die Erstellung von ontologiebasierten, semantischen Metadaten-
schemen aus den gesammelten Daten. Durch die Verwendung von ontolo-
giebasierten Datenmodellen sollen Wiederverwendbarkeit, Erweiterbarkeit
und Beständigkeit der Daten sicher gestellt werden. Im praktischen Teil
dieser Arbeit wird beschrieben, wie die Applikation auf Raspberry PI Hard-
ware getestet wurde und der Zugriff auf das Gebäudeautomatisierungs- und
Steuernetzwerk (BACnet) eines Testgebäudes realisiert wurde. Die erfassten
Daten dienen als Basis um eine Brick Ontologie zu erstellen. Anschließend
wurde die Anwendung erweitert, um auf BACnet basierende Geräte in
einer virtuellen Umgebung zu simulieren. Ziel dabei ist es das Verhalten
und die Interaktionen von BACnet Sensornetzwerken zu simulieren, um
so die Visualisierung und Analyse eines IoT-Netzwerks zu ermöglichen.
Die Kombination der Middleware-Applikation und der virtuellen Simu-
lationsumgebung schafft eine Platfform zum Testen und Validieren ver-
schiedener Szenarien. In weiterer Folge soll das Training und die Bewertung
von Machine-Learning-Algorithmen, zur Analyse und Optimierung der
Energieeffizienz in Gebäuden, unterstützt und erleichtert werden.

ix

Contents

1 Introduction 1
1.1 Problem Statement . 1

1.2 Research Objectives . 2

1.3 Scope and Limitations . 3

2 Background and Related Work 4
2.1 Industry 4.0 . 4

2.2 Smart Buildings . 5

2.3 Internet of Things . 5

2.3.1 Wired Solutions . 6

2.3.2 Wireless Solutions . 7

2.4 Ontologies . 8

2.4.1 Ontology Example . 9

2.4.2 Ontologies for the Building Sector 11

2.5 Technologies . 13

2.5.1 Python . 13

2.5.2 Raspberry PI . 13

2.5.3 Docker . 15

2.5.4 Wireshark . 16

2.5.5 Agile Software Development Methods 17

2.6 Related Work . 18

3 BACnet 21
3.1 Certification of Devices . 22

3.2 Types of Devices . 23

3.3 Objects, Services, Networking 25

3.3.1 Objects and Properties 26

3.3.2 Services . 29

3.3.3 Transport and Networking Systems 32

3.4 BACnet in Software Development 34

3.4.1 BACnet Stack: Comprehensive Open-Source Tool Set . 34

3.4.2 BACpypes and BAC0: Libraries for Python 38

4 Brick 41
4.1 Core Concepts . 42

4.1.1 Tags . 42

xi

Contents

4.1.2 Classes . 42

4.1.3 Entities . 43

4.1.4 Graphs . 44

4.1.5 Relationships . 44

4.2 Data Source Models . 46

4.2.1 External References . 46

5 Study Design 48
5.1 Implementation Design . 48

5.2 Non-Residential Building as Testbed 49

5.3 Experiment Design . 49

6 Implementation 52
6.1 BACnet Simulation . 52

6.2 Development and Deployment Setup 55

6.2.1 Network Monitoring over SSH 56

6.3 BACnet Communication . 57

6.4 Serialization of Devices . 60

6.4.1 Accessing Objects and Properties 60

6.4.2 Serialization Results . 62

6.5 Brick Ontology Generation . 63

6.5.1 BACnet-to-Brick Mapping 64

6.5.2 Brick Schema (Python) 66

6.5.3 Brick Generation Results 70

7 Results and Discussion 72
7.1 Floor and Room Association . 73

7.2 Performance Measures . 74

7.3 Coverage . 75

7.3.1 Real-World Environment 76

7.3.2 Simulated Environment 77

8 Threats to Validity 79

9 Future Work 80
9.1 Timeseries Classification . 80

9.2 Evaluation of Different Ontologies 80

9.3 Protocol Adaptions . 81

9.4 Expanding the Experiment . 81

9.5 Evaluation of Machine Learning Algorithms 81

10 Conclusion 83

Bibliography 85

xii

List of Figures

1.1 Gathering buildings information from IoT 2

2.1 LoRaWAN network architecture 7

2.2 Visualized ontology example 10

2.3 Raspberry PI 4 Model B . 14

2.4 Comparison of Docker and Virtual Machines 16

2.5 Simple representation of a layered IoT architecture 18

3.1 BACnet certification process . 22

3.2 Example of a BACnet analog input object 26

3.3 Example of BACnet services . 30

3.4 Example of a BACnet router . 32

3.5 BACnet compared to OSI model 33

3.6 BACnet Python libraries abstraction levels 39

4.1 Brick entity example . 43

4.2 Directed labelled graph . 44

4.3 Brick relationship examples . 45

6.1 Simulation of a locally hosted BACnet 53

6.2 Development and deployment setup 55

6.3 Monitoring network traffic with Wireshark 58

6.4 BACnet to Brick mapping . 65

7.1 Floor and room information . 73

xiii

List of Tables

3.1 Standard BACnet Objects with example use cases 27

3.2 Overview of properties of an Analog Input Object 29

3.3 Comprehensive overview of BACnet services 31

4.1 Comparative overview of ontologies related to building aspects 41

4.2 Examples of relationships and their respective inverse 45

5.1 Virtual test devices and their associated BACnet objects . . . 50

5.2 Devices of building and their associated BACnet objects . . . 50

7.1 Comparison of real and virtual ontology model nodes 72

7.2 Time measures for snapshot creation of specific devices in
MM:SS.sss . 74

7.3 Time measures for ontology creation based on system snap-
shots in MM:SS.sss . 75

7.4 Coverage of setpoints in ontology model compared to techni-
cal datasheet . 76

7.5 Coverage of setpoints in ontology model compared to virtu-
ally generated devices . 77

xv

1 Introduction

Buildings are at the core of our daily lives, including our residences, work-
places, and recreational spaces. They play a vital role in our routines, de-
manding a significant portion of our time. Unfortunately, buildings consist-
ing of residential, commercial, educational, and public structures, make a
substantial contribution to the EU’s energy consumption and carbon dioxide
emissions (European Environment Agency, 2022). In fact, they are the largest
energy consumers and a primary source of greenhouse gas emissions. The
built environment alone accounts for 40% of energy consumption and 36%
of greenhouse gas emissions in the EU, resulting from construction, usage,
renovation, and demolition activities (Carlin, 2022). Therefore, prioritizing
energy efficiency in buildings is essential to align with the objectives of the
European Green Deal (Fetting, 2020) and achieve the goal of carbon neu-
trality by 2050. Currently, the energy efficiency of around 75% of buildings
in the EU is inefficient in terms of energy, leading to substantial energy
wastage (European Commission, 2020). To address this issue, it is crucial to
focus on improving existing buildings and incorporating smart solutions
and energy-efficient materials during the construction of new houses (Ar-
chitecture 2030, 2022). The use of energy-efficient technologies and systems,
such as efficient heating, ventilation, and air conditioning (HVAC) systems,
lighting, and smart appliances, can further improve energy efficiency. By
prioritizing these aspects, the goal of achieving Zero Energy Buildings can
be effectively pursued (Cao et al., 2016).

1.1 Problem Statement

The observations about the energy consumption of buildings display a signif-
icant challenge in achieving sustainability objectives. The advancements in
the Internet of Things (IoT) (Dorsemaine et al., 2015) and industry standards
for device connectivity like BACnet (ASHRAE, 1995), result in vast amounts
of data generated by these systems in buildings. Additionally, the generated
data is typically characterized by heterogeneity (Da Cruz et al., 2018). Con-
sequently, the data collections remain largely untapped for driving energy
efficiency improvements. The lack of a standardized and coherent approach

1

1 Introduction

for gathering and describing buildings’ information limits the integration of
diverse data sources and restricts the development of smart solutions.

Information

BACnet

Buildings

OntologiesInternet of Things

ZigBee LoraWAN Brick Project
Haystack

SAREF

Figure 1.1: Gathering buildings information from IoT communication standards to populate
ontology-driven metadata schemas

There is a pressing need for a solution that can automatically gather building
information, specifically from the widely adopted and trending communica-
tion standard BACnet (Cimetrics Inc., 2019), in response to the industry’s
current demands for IoT development. The major challenge is to transform
the gathered information into a semantic metadata schema like an ontology,
which is illustrated in Figure 1.1. Ontologies can enable the standardiza-
tion and harmonization of building data, facilitating interoperability and
intelligent data-driven decision-making processes for energy efficiency im-
provements in buildings (Fensel, 2001; Manyika et al., 2015). The lack of
a comprehensive semantic metadata schema constrains the ability to fully
utilize the data resources available. Without a structured framework to or-
ganize and describe building information, the effective development and
implementation of smart solutions becomes challenging.

1.2 Research Objectives

This thesis aims to address the problem at hand by proposing a solution
that leverages an ontology-driven approach to automatically gather and
describe building information, specifically focusing on utilizing the BACnet
communication standard. By automatically creating standardized semantic
metadata schemas, the proposed solution seeks to enable the integration and
interoperability of data from various sources. This approach will support the
development and implementation of smart solutions aimed at improving
energy efficiency in buildings. In order to practically demonstrate the feasi-
bility and effectiveness of the proposed solution, two distinct components
will be developed and implemented. Firstly, an IoT middleware software
script will be created to run on a Raspberry Pi within a real non-residential

2

1 Introduction

building setting. This software script will serve as a practical example and
proof of concept, showcasing the application of the proposed solution in
a realistic manner. Secondly, the software script will enhance simulation
capabilities, enabling the emulation of IoT devices and the creation of a
simulated environment for software and network testing. This feature will
provide a controlled setting for interacting with IoT devices and evaluating
the functionality of a local IoT network.

The primary objective of this research is to bridge the gap between the
availability of building data and its practical application in energy efficiency
measures. By adopting an ontology-based approach and utilizing simula-
tion capabilities of IoT devices and networks, the study aims to facilitate
the efficient application of BACnet-generated IoT data for driving energy
efficiency improvements in buildings. This research strives to contribute to
the advancement of smart solutions in buildings.

1.3 Scope and Limitations

The primary focus of this research revolves around the selection of the
BACnet communication standard and the Brick semantic metadata schema.
The main goal of this research is to exploit the capabilities of BACnet for IoT
device communication while leveraging the Brick ontology to improve inter-
operability and enable intelligent data-driven decision-making within the
realm of building energy efficiency. These choices were made after careful
consideration of a literature review, where BACnet has emerged as the most
suitable and trending communication standard for seamless integration and
interoperability of IoT devices. Similarly, after evaluating various metadata
schemas, the Brick ontology metadata schema was deemed the most ap-
propriate for representing building data in a standardized and coherent
manner. It is important to highlight that the scope of this study is focused
on the utilization of BACnet communication and the application of the Brick
ontology, specifically within the context of building energy efficiency. This
research does not encompass the evaluation or implementation of alterna-
tive communication protocols or ontologies. The comprehensive literature
research and comparative studies conducted, are presented in Section 2.6
Related Work, providing valuable insights for the advancement of smart
solutions in the building sector.

3

2 Background and Related Work

In this section, we will delve into the background and related literature, as
well as explore the technologies employed in the study. Understanding the
existing body of knowledge and the technological landscape is crucial for
contextualizing the study and identifying the gaps that this research aims to
address. By examining the relevant literature and exploring the technologies
involved in the research process, a comprehensive understanding of the sub-
ject matter and the foundation for the study’s objectives and contributions
should be gained.

2.1 Industry 4.0

In 2011 the German federal government first mentioned the term Industry
4.0 as one of their key concepts about new high-tech strategies, which is also
known as the fourth industrial revolution (Kagermann et al., 2013). Since
then a great number of research articles and conferences have focused on this
topic (Hermann et al., 2015; Wichmann et al., 2019). Despite the existence of
a universal definition, Mohamed (2018) has collected and presented a collec-
tion of definitions of Industry 4.0. The most common term according to these
definitions is Industry 4.0 being built upon a Cyber Physical System (CPS).
CPS refers to a new way of engineered systems, that expand the physical
world by enabling real-time monitoring and control of physical processes
through the integration of computational and communication technologies
(Baheti & Gill, 2011). Therefore IoT and CPS are often mentioned as the
state-of-the-art technologies to form an Industry 4.0 standard (Devesh et al.,
2020). According to Zhou et al. (2015) there are four key technologies to
build this next stage of industrial development:

• Cyber Physical Systems (CPS)
• Mobile Internet and Internet of Things (IoT)
• Cloud Computing Technologies
• Big Data and Advanced Analysis Techniques

4

2 Background and Related Work

2.2 Smart Buildings

Since the 1980s definitions for Intelligent Buildings started to emerge. In
a review of Intelligent Building research, Wong et al. (2005) shows that
most early definitions describe an Intelligent Building as a self-controlling
environment supported by numerous systems. Furthermore, the techni-
cal control of the building should be done by a computer system, with
minimised human interaction (Powell, 1990). The term Intelligent Building
evolved over the years and became the more frequent term Smart Building.
Buckman et al. (2014) describes a Smart Building as a building system con-
sisting of intelligence, enterprise and control, implemented in an adaptable
manner. The system as a whole should be aware of context or time changes
and should fulfil the requirements for building progression: energy and effi-
ciency, longevity, comfort and satisfaction(Buckman et al., 2014). According
to Lê et al. (2012) smart homes are characterized by five basic features:

• Automation: the ability to handle or perform automated tasks
• Multi-functionality: the ability to handle or produce multiple tasks or

results
• Adaptability: the ability to meet a user’s need through adjustments
• Interactivity: the ability to allow for interaction
• Efficiency: the ability to perform tasks time and cost saving

Achieving these features needs to digitize environmental conditions. Ad-
vanced sensor technology makes it possible to collect various physical
information such as temperature, humidity, motion, light and sound in a
smart building environment. Data capturing is an essential part to build a
sensing and signal understanding infrastructure that is capable of detecting
and monitoring contextual factors like environmental conditions or human
behaviour. This infrastructure proposes a utilization for a wide range of pur-
poses including energy saving and improved efficiency, enhanced comfort
and improved security (Essa, 2000). To achieve all this, the idea of a Smart
Building is directly related to the term Internet of Things (IoT) (Dorsemaine
et al., 2015). The concept of IoT refers to a network in which the physical
world is interconnected with the digital, creating a global ecosystem of
sensors, actuators and data communication technologies (Brad & Murar,
2014).

2.3 Internet of Things

The emerging trend of internet-connected devices based on their physical
environment is often referred to as the Internet of Things (IoT) (Dorsemaine

5

2 Background and Related Work

et al., 2015). IoT is associated with a wide range of technologies, systems
and design principles. The main idea is to connect sensors and other devices
to information and communication technologies through wireless or wired
networks. It aims for real-world objects to connect, communicate and interact
with their physical and digital environment, the same way humans interact
with the web (Holler et al., 2014). Such IoT networks are core principles of a
Smart Building (Brad & Murar, 2014). Currently, there exists a broad width
of different network types and protocols on how an IoT network for Smart
Buildings can be realized.

2.3.1 Wired Solutions

One of the key network types used in smart buildings is the so-called
Building Automation and Control Network (BACnet) (ASHRAE, 1995)
which is developed by the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE1). It is a communication standard
for building automation and control networks which provides a vendor-
independent network protocol. The objective is to facilitate interoperability
across different types of equipment, sensors and control devices by defining
a networking solution based on communication messages, commands and
rules for exchanging data and status information (ASHRAE, 1995).

At the same time, the widespread adoption of the internet revolutionized the
way people communicate. Ethernet and the Internet Protocol (IP) became
standards in communication, as we all know today. BACnet was considered
to be a lightweight data protocol and most of the devices were not capable
of computing the much larger Internet Protocol (IP) packets (Bushby &
Newman, 2002). Increased computational power and decreasing costs for
hardware also enhanced the development of lightweight communication.
The ability to talk BACnet over the internet was one of the first expansions
of the BACnet protocol stack. BACnet/IP is one of the new standards for
BACnet and made it possible for BACnet devices to exchange messages via
IP-based networks which also closes the gap to wireless solutions (Bushby
& Newman, 2002).

Another communication protocol widely used in the industry is the Modbus
protocol (Modbus Organization, 1979). It’s based on a client-server architec-
ture which indicates the whole network is built upon one centralized unit.
Mostly it is used for connecting measurement and control systems and its
more popular to be used in industry.

1https://www.ashrae.org/ (accessed 13 April 2023)

6

https://www.ashrae.org/

2 Background and Related Work

2.3.2 Wireless Solutions

Pretty similar to BACnet exists another networking specification, specialized
in wireless networks. The ZigBee specification (Connectivity Standards
Alliance, 2004) comes with benefits such as small data volumes and low
energy consumption. It is ideal for low-bandwidth devices like lighting or
temperature sensors. ZigBee is also considered to be one of the standards
to build wireless IoT solutions (Kocakulak & Butun, 2017). As soon as it
comes to more data-intensive devices like security cameras or access control
systems, environments have to switch to e.g. WI-FI protocol (WI-FI Alliance,
1999).

Figure 2.1: LoRaWAN network architecture (taken from LoRa Alliance, 2015; accessed 14

April 2023)

In 2015, the LoRa Alliance published a new network specification, based
on the LoRa chipset from Semtech2. The network specification is called Lo-
RaWAN (LoRa Alliance, 2015) which is the short form for Long Range Wide
Area Network. A central networking server is connected to one or many
gateways by a standardized IP connection. The complete network architec-
ture can be seen as a star-of-stars topology where all the gateways connect
end devices to the central network server. By using a specialised physical
network layer, wireless communication benefits from single-hop connections
between devices and gateways. Long range, low power consumption and
bi-directional communication can be seen as the main advantages of this
specification. Additionally the AES algorithm (National Institute of Stan-
dards and Technology, 2001) supplies all network packets with authenticity
and integrity and also end-to-end encryption. Figure 2.1 gives a rough
overview of the architecture of LoRaWAN environments (LoRa Alliance,

2https://www.semtech.com/lora (accessed 14 April 2023)

7

https://www.semtech.com/lora

2 Background and Related Work

2015). Previously, LoRaWAN has been investigated as a potential solution
for various types of smart city applications (Basford et al., 2020; Loriot et al.,
2017; Rizzi et al., 2017).

2.4 Ontologies

Effective communication among people, organizations and software systems
is crucial (Uschold & Gruninger, 1996). However, since they come from
different backgrounds, and have different viewpoints or needs, there may
be significant differences in perspectives and assumptions about the same
subject matter. Each of them may use different terminology, and have di-
vergent or overlapping concepts, structures and methodologies, leading to
confusion or misunderstanding. When building an IT system, the differences
in interpretation can result in challenges in identifying requirements and
defining system specifications (Guarino, 1997). In addition, this heterogene-
ity significantly limits interoperability, reduces the potential for reusability
and often results in redundant development. To address such problems, one
of the most common approaches is to minimize or eliminate conceptual and
terminological confusion by aiming to achieve a shared understanding in
the form of a unifying framework (Uschold & Gruninger, 1996).

The term Ontology is used to describe such a shared understanding, which
can function as a unified framework of a particular domain of interest
(Uschold & Gruninger, 1996). In essence, an ontology incorporates or repre-
sents a specific worldview about a knowledge domain. This point of view is
typically presented as a collection of concepts, including entities, attributes,
definition and their interrelationships. This form of knowledge represen-
tation is also called conceptualisation, which forms a major constituent of
ontologies (Guarino, 1997).

Within the scope of information and computer science, ontology refers to a
set of building blocks used to represent a specific domain of knowledge. The
fundamental elements are typically made of sets or classes, properties or
attributes and relationships or connections among members of the classes.
The definitions of these fundamental elements serve to clarify their intended
meanings and specify limitations on how they can be logically used to ensure
coherence and consistency (Gruber, 2008). Despite variations that may exist
among ontologies, there is a broad agreement on numerous aspects. Some
of the points of agreement within ontologies are that each object is part of
the world and has properties or attributes which can be assigned values.
These objects may be connected by relations. Properties and relations of
objects can change over time and participate in processes that occur over

8

2 Background and Related Work

time. At distinct time points, events can happen and can also cause new
events to be triggered. The objects and the world itself can be in varying
states. Summarizing these points, a domain-dependent vocabulary can be
established, providing a clear structure and conceptualisation of knowledge
about that domain and forming its Ontology (Chandrasekaran et al., 1999).

Furthermore, Chandrasekaran et al. (1999) defined two dimensions of ontol-
ogy specifications in knowledge systems:

• Domain factual knowledge: describes objective realities in a domain
(objects, relations, . . .)

• Problem-solving knowledge: describes how to achieve goals (problem-
solving methods)

Information systems and AI commonly utilize these dimensions to acquire
factual knowledge about their domains and to select from various reason-
ing or decision-making approaches. Information retrieval systems, digital
libraries and internet search engines have to deal with heterogeneous in-
formation sources, where ontologies are used to organize information and
search processes. Each object-oriented design of software represents and
depends on an appropriate domain ontology. Additionally, AI can benefit
from ontologies, as they assist in modelling extensive knowledge domains
(Chandrasekaran et al., 1999). By using ontologies, AI systems can organize
and structure information in a way that allows them to make more accurate
predictions and decisions. As AI becomes more advanced and is applied in
various industry scenarios, the importance of ontologies in this field will
continue to grow (Chandrasekaran, 1994; Chandrasekaran et al., 1999).

2.4.1 Ontology Example

As an ontology example Figure 2.2 shows a visualized ontology about a
small IoT network. Each object of the represented world is identified by a
unique four-digit number. Each object has a specific role in the network and
is in specific relationships with other objects or attributes. The corresponding
extensional relational structure could then look as follows:

W = {1001, 1077, 1121}
R = {Controller, Sensor, Setpoint, manages, reads, monitors, hasUnit}

(2.1)

A relational extension structure is a mathematical concept used to define
and analyze sets based on a binary relation. Equation 2.1 shows each object
of the network as part of the whole world W. Controller, Sensor and Setpoint

9

2 Background and Related Work

Controller(1001)

Sensor(1121)

Setpoint(1077)

Sensor(1121)

degreesCelsius

reads

manages

monitors

hasUnit

Figure 2.2: Visualized ontology example of a small IoT network including controllers,
sensors, setpoints and their relations

are strict subsets of W whereas binary relations like manages, reads, monitors
and hasUnit are sets of tuples which describe hierarchical relationships and
collaborations. R represents the set of conceptual relations on the domain
space. 2.2 shows each object with its corresponding role in the network.
Additionally, it visualizes relationships, like the Controller 1001 reading the
Sensor 1121 information and managing the Setpoint 1077.

Furthermore, Sensor 1121 also monitors the Setpoint 1077. In the final part,
the relations to attributes are also shown as an example. Sensor 1121 is
linked to the corresponding hasUnit attribute, which relates to the type of
engineering unit the sensor is measuring (Staab & Studer, 2009).

Controller = {1001}
Sensor = {1121}
Setpoint = {1077}
manages = {(1001, 1077)}
reads = {(1001, 1121)}
monitors = {(1121, 1077)}
hasUnit = {(1121, ’degreesCelsius’)}

(2.2)

10

2 Background and Related Work

2.4.2 Ontologies for the Building Sector

The knowledge representation and reasoning by ontologies, as described in
the previous section, have become crucial tools in various domains. Because
the world in all its detail richness can not simply be covered by one ontolog-
ical representation, there exist ontology formats for specific domains such
as buildings. The building domain has some special systems and equipment
that need to be treated by the ontology. The official documentation of the
Brick Ontology (2023) has listed a spectrum of equipment and sensors that
most commonly exist in buildings:

• Heating, Ventilating and Air Conditioning (HVAC) Systems: responsible
for thermal comfort and indoor air quality

• Lighting Systems: providing adequate lighting levels
• Electrical Systems: power and energy management
• Spatial Information: information about the physical layout of a building

(locations, room sizes, . . .)
• Sensor Systems: monitoring of various aspects of a building’s perfor-

mance (temperature, humidity, occupancy, . . .)
• Control Relationships: relationships between different systems, such as

the HVAC system and the lighting system
• Operational Relationships: relationships between different operations,

such as energy consumption and maintenance
• Formal Definitions: precise and unambiguous definitions of the concepts

and relationships in a building ontology

Providing a common vocabulary and a shared understanding of the building
domain can facilitate communication and interoperability. Most of the use
cases deal with energy audits, fault diagnosis and detection, and optimal
control. To achieve these goals, semantic metadata schemes are widely used
and evaluated. Three of the most common state-of-the-art ontologies are
described in the following sections (Mahdavi & Taheri, 2017; Qiang et al.,
2023).

Brick Schema Ontology

Brick (Brick Ontology, 2023) is an open-source project that aims to standard-
ize the description of physical, logical, and virtual assets in buildings and
their relationships. It consists of a flexible data model, an extensible dictio-
nary of terms and concepts related to buildings, and a set of relationships
that link and compose these concepts. By using semantic web technology,
Brick can describe characteristic features and subsystems found in buildings
in a consistent manner. Adopting Brick as the standard description of a

11

2 Background and Related Work

building can help lower costs for deploying analytics, energy efficiency mea-
sures, and intelligent controls across buildings. It can present an integrated,
cross-vendor representation of building subsystems, which simplifies the
development of smart analytics and control applications, whereas it also
reduces the reliance on non-standard labels used in building management
systems. Brick is free and open-source under the BSD 3-Clause licences
and its source, website and related tools are available on GitHub3. Over-
all, Brick offers a comprehensive, extensible, and consistent approach for
standardizing semantic descriptions (Brick Ontology, 2023).

Project Haystack

Project Haystack (Project Haystack, 2023) is a suite of open-source technolo-
gies designed for modelling IoT data in a consistent and interoperable way.
The source code for the ontology’s definition can be found on GitHub4. The
stack consists of several components, including a fixed set of general-purpose
data types known as kinds, text formats for encoding and exchanging data
and a protocol for exchanging data over HTTP. It consists of a standard on-
tology for modelling common building concepts such as equipment, sensors,
and a way to define and extend the ontology. The primary collection type
in Haystack is the dict (short for dictionary), which models entities using
name-value pairs called tags. These tags inform about what type of entity
is being modelled and facts about that entity. Altogether, Project Haystack
aims to foster the interoperable exchange of data by providing an extensible
and consistent set of technologies for modelling IoT data (Project Haystack,
2023).

Smart Applications REFerence (SAREF)

SAREF (SAREF, 2023), or the Smart Applications REFerence ontology, is a
shared model of consensus that aims to facilitate the matching of existing
assets in the smart applications domain. It provides building blocks that
allow the separation and recombination of different parts of the ontology
depending on specific needs. The ontology explicitly specifies recurring core
concepts in the smart applications domain, the main relationships between
these concepts, and axioms to constrain their usage. The principles of SAREF
are centred on reusing and aligning existing concepts and relationships,
allowing for modularity to separate and recombine different parts of the
ontology. It promotes extensibility to support future growth, while also

3https://github.com/BrickSchema (accessed 03 May 2023)
4https://github.com/Project-Haystack/ (accessed 04 May 2023)

12

https://github.com/BrickSchema
https://github.com/Project-Haystack/

2 Background and Related Work

prioritizing maintainability to assist in identifying and correcting defects,
accommodating new requirements, and adapting to changes in the ontology
(SAREF, 2023).

2.5 Technologies

The following section provides a comprehensive overview of the technolo-
gies that were utilized in the context of this study. Hardware, software
and various tools and techniques have been used throughout the research
process. The major task was to develop software that is capable of collecting,
analyzing and processing data, whereas each of the described technologies
comes with its own benefits and impacts on the outcome of the study.

2.5.1 Python

Python (Python, 2023) is a high-level, interpreted programming language
that is widely used in various fields. It has gained popularity due to its sim-
plicity, readability and ease of use, making it accessible for both beginner and
experienced programmers. Python’s syntax is straightforward and intuitive,
allowing for faster and more efficient coding. In the annual Stackoverflow
developers survey (Stackoverflow, 2022a), Python is mentioned as one of
the most loved and wanted programming languages, which highlights its
enduring appeal and strong demand among developers. The availability of
various Python libraries such as BACpypes, BAC0, brickschema, pyModis
or pySHACL, offers extensive functionalities that are particularly useful for
data analysis, visualization and machine learning for the building automa-
tion sector. Additionally, its open-source nature and a great community of
developers ensure that it is constantly updated and improved. The practical
experiment of this thesis also requires the software to run on lightweight
hardware like the Raspberry PI. Python itself is known as a lightweight
scripting language which makes it an ideal choice for hardware with limited
processing power, memory and storage.

2.5.2 Raspberry PI

The Raspberry Pi (Raspberry Pi Ltd, 2023) is a powerful, lightweight single-
board computer that is widely used for IoT applications, due to its versatility
and affordability. For the purpose of this thesis, lightweight hardware had to
be chosen, to deploy and test the final software script. Finally, the Raspberry

13

2 Background and Related Work

PI 4 Model B5 has been selected for the practical experiment and can be
seen in Figure 2.3. The Raspberry PI 4 Model B is one of the latest models
in the Raspberry PI series and comes with significant improvements in
processing power, memory, and connectivity compared to its predecessors.
It is equipped with a Broadcom BCM2711 quad core cortex-A72 (ARM
v8), 64-bit processing unit, which runs at 1.8GHz. This offers a significant
increase in performance compared to previous models. It also features up
to 8GB of RAM, allowing it to handle multiple applications simultaneously.
The networking modules of the PI 4 consist of a dual-band 802.11ac wireless
networking unit, Bluetooth 5.0 and Gigabit Ethernet connectivity, making it
a perfect choice for connecting with networks or other devices (Raspberry
Pi Ltd, 2023).

One of the main reasons why the Raspberry PI 4 Model B is a popular
choice for IoT deployment, is because of its General Purpose Input Output
(GPIO) pins, which allow it to interact with a wide range of sensors and
other hardware components. This makes it ideal for projects that involve
collecting and analyzing data from sensors such as temperature, humidity,
motion and light. Another benefit of using Raspberry PI for IoT deployment
is the availability and capability of a wide range of software and program-
ming languages. This includes the most popular languages such as Python,
Java, and C++, which makes it easy for developers to build and deploy ap-
plications. In conclusion, the Raspberry PI 4 Model B is an excellent choice
for deploying IoT software, due to its affordable price, processing power,
memory, network connectivity and support of programming languages
(Raspberry Pi Ltd, 2023).

Figure 2.3: Raspberry PI 4 Model B from a top-down view (taken from Raspberry Pi Ltd,
2023; accessed 12 May 2023)

5https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed 12 May
2023)

14

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

2 Background and Related Work

2.5.3 Docker

Docker (Docker Inc., 2022) is a popular containerization platform that allows
developers to package and deploy applications in a lightweight, portable,
and isolated environment. According to the annual Stackoverflow survey
(Stackoverflow, 2022b), Docker has seen a significant rise in popularity and
has come close to becoming one of the most widely used tools among
developers. It provides a way to package an application with all its de-
pendencies, libraries, and configuration files in a single container. Each
container then can be run on any machine with Docker installed. As Figure
2.4 shows, Docker is built upon a traditional operating system, such as
Linux or Windows. It leverages the host’s kernel to run containers. Unlike a
virtual machine, which emulates an entire operating system and requires
significant system resources, Docker containers share the same kernel as the
host operating system. This makes them lightweight and portable, while still
providing a level of isolation and security. To achieve this, Docker utilizes a
layered filesystem and copies only the necessary dependencies and libraries
into each container, reducing the overall footprint of applications (Docker
Inc., 2022).

To configure a Docker container, a so-called Dockerfile serves as a blueprint
for defining the environment of a container. The Dockerfile is a text docu-
ment that specifies the base image and defines dependencies and runtime
commands. Typically a simple syntax is used, which makes the files portable
and helps define runtime environments for applications. On the other hand,
a Compose file collaborates with Docker Compose (Docker Inc., 2023), a
tool designed for defining and executing multi-container Docker appli-
cations based on their appropriate Dockerfiles. Written in YAML format
(YAML, 2021), the Compose file describes the services, networks and vol-
umes required by an application. It defines relationships between different
containers, specifies environment variables, manages shared resources and
sets up network configurations. This helps in managing and deploying
application stacks, with multiple connected containers.

One of the key features of Docker is its virtual network, which allows
containers to communicate with each other and with external networks.
Docker provides a default bridge network that allows containers to commu-
nicate with each other on the same host. It’s also possible to create custom
networks to isolate and control the flow of traffic between containers. By
default, each container is assigned its own IP address, and Docker provides
tools for managing and monitoring the network traffic between containers.
This virtual network allows developers to create complex multi-container
applications that can communicate and exchange data, without the need for
complex network configurations or infrastructure (Docker Inc., 2022).

15

2 Background and Related Work

Infrastructure

Host Operating System

Docker

Ap
p

A
Containerized Applications

Infrastructure

Host Operating System

Hypervisor

Guest Operating
System

Virtual Machine
Ap

p
B

Ap
p

C

Ap
p

D

Ap
p

E

Ap
p

F

Guest Operating
System

App A

Guest Operating
System

Virtual Machine

Guest Operating
System

App B

Guest Operating
System

Virtual Machine

Guest Operating
System

App C

Figure 2.4: Comparison of resource allocation and isolation between Docker and Virtual
Machines (Docker Inc., 2022)

The primary focus of this research is to collect and analyze IoT data, with an
additional goal of exploring the potential of simulating IoT devices. Aiming
to accurately replicate the behaviour and characteristics of real-world IoT
devices, which use the BACnet/IP communication protocol, Docker was
used as the main environment for this simulation task. Each simulated device
is defined by a configuration file, which passes to the dockerized simulation
environment. Finally, each device is represented by a container running on
the same host, making it possible to simulate multiple devices on one single
host machine. This results in perfect isolation for each of the simulated
devices, which use the virtualized Docker network to communicate with
each other. The summarized result is a virtual network of IoT devices, where
each device is represented by a container. Each of them is assigned a unique
IP address, to ensure the ability to communicate properly over the virtual
Docker network by using the BACnet/IP network protocol.

2.5.4 Wireshark

The Wireshark tool (Wireshark Foundation, 2023) is a popular open-source
network protocol analyzer, developed by the Wireshark Foundation. The
source code for the protocol analyzer can be found on GitHub6. Nowadays
it has become a standard for network administrators, security professionals,
and developers. It is capable of capturing and analyzing network traffic in
real time, providing detailed information about the network packets and
their contents. This is useful to gain a deep understanding of how network

6https://github.com/wireshark (accessed 12 May 2023)

16

https://github.com/wireshark

2 Background and Related Work

traffic flows in a system and how devices interact with each other. The tool
comes with a user-friendly graphical interface and a broad variety of filter
options, which makes it an easy and versatile tool to analyze network traffic.
Wireshark supports a wide range of network protocols, including TCP/IP,
UDP, SSH and many more. Furthermore, Wireshark is an effective tool for
network performance analysis. It offers comprehensive statistics on network
metrics such as throughput, packet loss, and latency, which can assist in
detecting performance issues and identifying bottlenecks (Wireshark Foun-
dation, 2023). As this research aims to gain a deeper understanding of how
BACnet/IP is used in various building automation systems, Wireshark has
emerged as a valuable tool. The tool has built-in support for the BACnet/IP
network protocol and therefore can assist in monitoring and troubleshooting
BACnet-based systems. The final practical example used Wireshark to moni-
tor the communication between the Raspberry PI and the BACnet devices.
The existence of a Wireshark Docker image additionally makes it possible
to capture network traffic of a virtualized Docker network, which was used
to monitor the simulated devices and their communication.

2.5.5 Agile Software Development Methods

Agile software development methods (Schwaber & Beedle, 2002) have gained
widespread popularity in the technology industry, due to their flexible and
iterative approach to project management. Agile methodologies prioritize
collaboration, adaptability and customer satisfaction, emphasizing the de-
livery of working software in short, incremental cycles. Some popular agile
methods include Scrum, Extreme Programming (XP) and Lean Development
(Abrahamsson et al., 2017). As an agile software development enthusiast, I
believe in its effectiveness for team collaboration. However, in the case of
this project, some agile principles couldn’t be fully implemented because
it was a solo work. Despite these limitations, I still strived to maintain an
agile mindset by being able to adapt to changes and iterate on the project as
needed. Having previously worked as a mobile app developer, I brought
my knowledge of some of the core principles of agile methodologies to this
project. Two key principles used throughout this research project were the
implementation of a Kanban board and regular code reviews. The Kanban
board provided a visual representation of the project’s workflow, allowing
for better task management, transparency and tracking of progress (Ahmad
et al., 2013). Code reviews, on the other hand, ensured that the quality of
the code remained high by catching any potential issues or requirement
changes early in the development process (Baker Jr, 1997; Fagan, 2002). The
decision to employ agile methods in this project was driven by the fact
that the requirements and especially the environment were not initially

17

2 Background and Related Work

clear in detail. Agile methodologies are well suited for situations where
requirements may evolve or change over time.

2.6 Related Work

The Internet of Things (IoT) (Dorsemaine et al., 2015) can be described as
a pervasive and intricate network consisting of diverse and interconnected
entities or things, that are capable of being networked (Bertin et al., 2013).
The IoT market is flooded with numerous vendors offering a wide range of
IoT devices, many of which have their own unique firmware incorporating
exclusive semantic models and communication protocols. Consequently,
the very nature of IoT systems, which involves connecting millions of
individual devices, inherently leads to a high degree of heterogeneity (Da
Cruz et al., 2018). The role of middleware in this context is to serve as an
intermediary layer between devices and applications, as illustrated in Figure
2.5. Middleware applications should propose the seamless integration of
data from the physical environment into IoT-connected devices, networks
and services. The integration of middleware platforms encompasses essential
operations like data storage, analysis, and processing to enhance connectivity
among diverse devices and programs that were not initially designed to
support such functionality (Agarwal & Alam, 2020; Razzaque et al., 2016).

Devices and infrastructure

(Middleware-) Platforms

Users and applications

Figure 2.5: Simple representation of a layered IoT architecture

Ngu et al. (2016) identified and examined middleware platforms of differ-
ent architectural types and categories such as ambient data collection and
real-time reactive applications. The first type is an application that typically
gathers sensor data which gets processed with no need for real-time interac-
tions. The data is then processed offline to extract meaningful insights such
as developing predictive models. Furthermore Ngu et al. (2016) addresses
four major challenges when it comes to IoT middleware development:

• Developing a lightweight platform that can operate efficiently on
power-constrained devices

18

2 Background and Related Work

• Creating an application-independent composition engine
• Establishing a security mechanism that is compatible with environ-

ments with limited resources
• Implementing a semantic-based approach for integrating IoT devices

and services

Not only the development of middleware platforms comes with challenges,
but Chaqfeh and Mohamed (2012) also mentioned challenges for provided
solutions such as interoperability, scalability, security and privacy. The chal-
lenge of semantic interoperability is the main part being tackled by this
thesis. Semantic interoperability issues often emerge due to ambiguities
from the absence of standardized metadata schemas within a heteroge-
neous system. Resolving this issue is a crucial task to embrace data-driven
decision-making and AI in the context of IoT (Manyika et al., 2015). This
involves harmonizing existing metadata schema efforts and considering
established standards such as BACnet, while also leveraging ontologies. The
standardization of semantic information is essential for the cost-effective and
functional delivery of data-driven smart building technologies (Bergmann
et al., 2020). Despite these findings, a recent expert survey conducted by
Alfalouji et al. (2022) on IoT middleware platforms revealed that over 80% of
participants do not employ a unified data model. However, it is noteworthy
that they still recognize the significance of developing semantic models.

Since the early 1990s, ontologies have gained significant attention as a
prominent research subject in various Artificial Intelligence research commu-
nities (Fensel, 2001). These communities encompass fields such as Knowledge
Engineering, Natural Language Processing and Knowledge Representation. By
enabling the organization and classification of knowledge, ontologies can
lead to efficient information retrieval and sharing (Fensel, 2001). In order
for these standards to be impactful, they need to possess clear and easily
expandable definitions, promote consistent usage, and seamlessly integrate
with established and trending industrial standards like BACnet (Cimetrics
Inc., 2019). However, a natural conflict arises between informal tag-based
systems, which rely on idioms and conventions for meaning, and formal
ontologies that are adaptable to automated tools (Fierro et al., 2019). An
existing study (Pritoni et al., 2021) focused on five ontologies (BOT, SSN,
SAREF, RealEstateCore, Brick) related to building operations, evaluating
their concepts and identifying gaps and overlaps. This study emphasizes the
need for semantic interoperability in building systems by three use cases:
Energy Audits, Automated Fault Detection and Diagnostics (AFDD), and
optimal control of HVAC systems. The findings contribute to improving se-
mantic interoperability and energy-efficient building systems by examining
a semantic metadata schema and their relevance to the specific use cases
(Pritoni et al., 2021).

19

2 Background and Related Work

Brick (Balaji et al., 2016; Brick Ontology, 2023) and Project Haystack (Project
Haystack, 2023) are widely recognized as two of the most popular ontologies
for building systems, known for their extensive adoption and industry-wide
recognition in the field (Quinn & McArthur, 2021). Project Haystack is an
object-centred ontology that employs a tagging model, while Brick is a
description logic ontology with a hierarchical design. In a review, both
ontologies have been compared to each other in terms of completeness,
expressiveness and qualitative assessments like flexibility, portability, read-
ability and queryability, with Brick achieving higher scores in nearly all
categories (Quinn & McArthur, 2021). Literature also discusses customized
extended frameworks based on Brick or Haystack like Brick+ (Fierro et al.,
2019) or Energy Flexibility Ontology (EFOnt) (Li & Hong, 2022). Ploennigs
and Schumann (2017) conducted an experiment on a campus equipped with
3,330 sensors, serving as an illustration of semantic modelling. They utilized
a pre-modelled Brick ontology to facilitate tasks such as anomaly detection
and diagnosis through the combination of machine learning and semantic
reasoning. This approach involved mapping the tasks to semantic concepts
and deducing physical relationships based on them.

20

3 BACnet

BACnet (ASHRAE, 1995) was initially created in 1987 with the support of the
American Society of Heating Refrigerating and Air-conditioning Engineers
(ASHRAE). Since 1995, it has been recognized as an ANSI standard and
became an ISO standard in 2003. BACnet is a registered trademark owned by
ASHRAE. Opting for BACnet as the main communication protocol retains
its significance for various compelling factors. First and foremost, BACnet
retains its global recognition as the widely adopted standard for building
automation and control networks. Its established reputation and strong
backing from the industry make it a dependable choice when it comes
to ensuring seamless interoperability and safeguarding the longevity of a
building automation system (ASHRAE, 1995). Furthermore, BACnet has
consistently evolved to keep pace with technological advancements and in-
dustry demands. The protocol offers a rich ecosystem of tools, libraries, and
resources that simplify the development, deployment, and maintenance of
BACnet-based solutions. There are numerous commercial and open-source
implementations available, along with a vibrant community of developers
and experts. Additionally, the protocol has embraced contemporary com-
munication technologies, such as BACnet/IP, which facilitates effortless
integration with Ethernet and IP networks. This capability allows for flexible
and scalable implementations, providing specific requirements of diverse
projects (Bushby & Newman, 2002).

Choosing BACnet as the communication protocol for building automation
and control offers a solid foundation for smart solutions and continuous
improvements. According to reports, BACnet is currently the leading global
protocol, experiencing growing demand in every country worldwide, while
other protocols are declining (Cimetrics Inc., 2019). The provided report
is titled ”Market Penetration of Communication Protocols” (BSRIA, 2018)
and was conducted by BSRIA1 (Building Services Research and Information
Association). It offers comprehensive insights into communication protocols,
covering data from 2012 to 2018, derived from primary and secondary re-
search. The study highlights the significance of communication protocols in
enabling interoperability among building systems and devices, particularly

1https://www.bsria.com/ (accessed 04 May 2023)

21

https://www.bsria.com/

3 BACnet

for building automation and control applications. It confirms the promi-
nence of BACnet as a preferred protocol for smart building solutions and
emphasizes the preference for vendor-independent, open protocols with
certification schemes (BSRIA, 2018).

3.1 Certification of Devices

IUT ready for
BTL Testing

IUT for testing

Manufacturer

Validates BTL Checklist
against IUT
Prepares test environment

RBTO

Applies selected
tests to IUT

RBTO

NO

YES

Test passes

RBTO

BTL Checklist
EPICS
IUT Special Test
Instructions

Testing
Documentation:

Firmware update to
correct failed tests(s)

Manufacturer

Final Test Report
Link for BTL Certification
Application

RBTO

When BTL Testing is complete,
RBTO prepares final test report
and provides Manufacturer with

the following:

IUT Implementation under Test
RBTO Recognized BACnet Testing
 Organization
BTL BACnet Testing Laboratories
EPICS External Protocl Integration
 Confromance Statements

Figure 3.1: Workflow of a certification process to test an implementation against BACnet
conformance (BTL Working Group, 2023)

The BACnet Testing Laboratories (BTL) Certification program (BTL, 2022)
plays a crucial role in guaranteeing that these products are correctly imple-
mented. Through independent testing for compliance and interoperability,
the BTL certifies products according to the BACnet industry standard. Cer-
tified products can be identified by the BTL Mark, either displayed on the
physical product or found in the online database from BTL (2022). The use
of BTL Certified products offers several benefits. It reduces integration time
and costs, as these products have already been tested and proven to work
well together. This saves building owner or operators, controls specifiers,
and system implementers valuable time and resources. Secondly, BTL Certi-
fication provides a solid foundation for future system enhancements and
extensions. It ensures that new components can be seamlessly integrated
into the existing BACnet system without compatibility issues (BACnet In-
ternational, 2023). The certification process involves independent testing

22

3 BACnet

by a recognized test organization, adhering to the testing requirements
established by the BTL. The BTL Certification program is administered by
BACnet International, a global collaboration platform for BACnet profes-
sionals and organizations. The BTL is responsible for a range of critical
tasks and activities, including the development and maintenance of BACnet
product test requirements and testing policies.

The BACnet Testing Laboratories are supported by the BTL Working Group
(BTL-WG) (BTL Working Group, 2023), composed of voluntary members
and the BTL Manager, established by BACnet International to uphold and
enhance the BACnet conformance certification and listing program. The
working group consists of members from BACnet International and BACnet
Interest Group Europe2 (BIG-EU), selected because of their expertise in the
BACnet community. With a focus on improving BACnet interoperability, the
BTL-WG provides oversight and guidance to the BTL and its certification
program. As a technical resource, the BTL-WG maintains and expands the
BACnet product test requirements and testing policies. Additionally, they
developed a test package that manufacturers can utilize to pre-test their
products for BACnet compliance before submitting them to a Recognized
BACnet Testing Organization (RBTO). After successful evaluation of such a
pre-test package, a manufacturer is able to submit their implementation to
gain the BTL mark from an RBTO, as illustrated in Figure 3.1. The BTL Man-
ager leads the organization, with support from the BTL Technical Advisor.
Moreover, the BTL plays an important role in recognizing testing laborato-
ries that are suitable for conducting certification testing. This ensures that
the testing process is carried out by reliable and competent entities. The
responsibilities of the BTL-WG encompass publishing the BTL Test Package,
offering support to the BACnet community, evaluating test organization
applicants, ensuring result equivalency, and organizing the annual BACnet
International PlugFest3, an in-person BACnet interoperability workshop.
Through these efforts, the BTL-WG aims to enhance real-world interoper-
ability and foster continuous improvement in BACnet product testing and
certification (BACnet International, 2023).

3.2 Types of Devices

BACnet is a versatile data communication protocol designed for building
automation and control systems. It defines standard methods that manufac-
turers can implement to create components and systems that can interoper-
ate with other BACnet devices. The protocol provides a set of standardized

2https://www.big-eu.org/de/ (accessed 06 May 2023)
3https://bacnetplugfest.org/ (accessed 06 May 2023)

23

https://www.big-eu.org/de/
https://bacnetplugfest.org/

3 BACnet

tools for building owners and system specifiers to specify and design in-
teroperable systems, encompassing a wide range of automated building
systems beyond HVAC applications. Devices that can communicate using
BACnet include HVAC systems, such as thermostats, temperature sensors,
dampers, valves, chillers, boilers, air handlers and VAV controllers. Addi-
tionally, lighting control systems, access control systems, fire and life safety
systems, energy management systems and environmental sensors can also
utilize BACnet for integration, centralized control, monitoring and energy
optimization within buildings (Bushby & Newman, 2002).

A BACnet device typically consists of a microprocessor-based controller and
software combination that understands and uses the BACnet protocol. It can
serve as a controller, gateway, or user interface. Each BACnet device contains
a device object that defines device information, including a unique device
instance number, which must be field-configurable to ensure uniqueness
across the BACnet network. The device instance, along with other informa-
tion, control programs, logic, and data values, form the collection of device
information and metadata within a BACnet device. BACnet addresses device
interoperability by dividing it into three distinct areas: Objects (information),
services (action requests) and transport systems (networking, messaging
systems). The protocol defines methods and requirements for implementing
each of these areas, facilitating the exchange of information over various
networking systems by defined messages and performing actions to en-
able effective communication between devices (BACnet International, 2014).
Some of the most popular device types namely are:

• Supervisors
• Routers
• Gateways
• Controllers
• Communicating Thermostats
• I/O Modules

Supervisors serve as powerful management tools, providing a centralized
interface for monitoring and controlling various aspects of the building au-
tomation system. Routers enable seamless communication between different
BACnet networks, ensuring efficient message routing and data exchange.
Gateways play a crucial role in integrating non-BACnet devices into BACnet
systems, allowing different protocols to coexist and interact harmoniously.
Controllers provide flexible and programmable solutions for automation
and control, enabling customized functionality tailored to specific building
requirements. Communicating thermostats offer advanced HVAC control
capabilities, allowing for precise temperature regulation and energy op-
timization. Lastly, I/O modules expand the number of input and output

24

3 BACnet

points in the field, providing a scalable solution for extending the capabili-
ties of the building automation system. These devices collectively contribute
to the seamless integration, efficient operation and enhanced functionality
of buildings that utilize BACnet protocols. BACnets generalized model of
device operation, information description and protocol specification con-
tribute to enhanced interoperability and centralized management, promoting
improved efficiency, comfort and operational control within buildings.

3.3 Objects, Services, Networking

The interoperable approach, which BACnet is aiming for, is being realized
through information objects. These objects encompass crucial device compo-
nents and data collections, enabling sharing and accessibility among BACnet
devices. They can represent both physical and virtual information, cover-
ing inputs, outputs, control algorithms, applications and calculations. The
BACnet standard (ASHRAE, 1995) defines 54 object types, ensuring uniform
implementation and clear interpretation across devices. Non-standard or
proprietary objects can also be created, although their interoperability may
vary. Objects possess properties that define their attributes, including a name
and value. Properties convey information about objects and can be read or
written by other BACnet devices. The properties divide into required and
optional ones, based on the object type.

To facilitate communication, BACnet employs services that enable formal
requests between devices. These services are categorized into object ac-
cess, device management, alarms, events, file transfer and virtual terminal
functionalities. Object access services allow reading, writing, creating and
deleting of object data, while device management services handle tasks like
device discovery, time synchronization and database operations. Alarm and
event services manage alarms and state changes, while file transfer services
encourage the transfer of trend data and programs. Virtual terminal services
enable interaction between humans and machines through prompts and
menus. Each service has a defined request and corresponding reply, with the
necessary parameters for effective execution. Messages exchanged between
devices are encoded using a consistent numeric code language, ensuring
seamless communication. BACnet supports various transport and network-
ing systems for conveying these encoded messages, providing flexibility in
choosing cost-effective methods for specific applications. Despite different
transport methods, the content of the coded messages remains uniform,
guaranteeing interoperability.

25

3 BACnet

3.3.1 Objects and Properties

BACnet revolutionizes conventional industry practices by introducing object-
oriented terminology (Bushby & Newman, 2002). Instead of the vague and
manufacturer-specific term Points to denote various inputs and outputs,
BACnet defines standardized Objects with corresponding Properties that
describe the object’s characteristics and status. This enables seamless com-
munication and control between BACnet devices on the network.

Objects

BACnet objects serve as the foundation for organizing and exchanging
data related to inputs, outputs, software and calculations. They can take
different forms such as single points, logical groups, program logic, sched-
ules and historical data in the form of trends. These objects encompass
both physical concepts, like thermostats and HVAC systems, as well as
non-physical concepts, like software-based HVAC maintenance schedules.
Every object includes properties that facilitate information exchange and
command execution. These properties can be visualized in a tabular format,
with the property names listed in one column and their corresponding val-
ues in another. The values can be either read-only or write-enabled, allowing
for effective data manipulation and control within the BACnet framework
(BACnet International, 2014).

BACnet device

Analog Input Object

Present_Value 19.0

Description Outside temperature

Out_Of_Service FALSE

Units degreesCelsius

network

Present_Value ?

Present_Value is 19.0
19,0 °C

Physical Value

Figure 3.2: Example of a BACnet device that measures a physical value, which is further
represented as a BACnet object

The Analog Input Object is a standard component in the BACnet framework,
serving as a representation of an analog sensor input like a thermistor.
Figure 3.2 shows a diagram displaying the Analog Input Object and its four
properties when accessed through the network. Certain properties such as
Description and Units are configured during installation, while others like
Present Value and Out Of Service provide information on the status of the
sensor input associated with the Analog Input Object. Additional properties

26

3 BACnet

may be defined by the equipment manufacturer. All properties can be read,
and if a query about the Present Value is executed, it would get the response
19.0.

Table 3.1: Standard BACnet Objects with example use cases
Object Example use case
Analog Input Represents a sensor input, such as a temperature sen-

sor
Analog Output Controls an output, like adjusting the speed of a motor
Analog Value Setpoint or analog control parameter, like target tem-

perature for HVAC
Binary Input Switch input, like a door open/closed
Binary Output Relay output, like turning on/off a light
Binary Value Binary control parameter e.g. auto/manual
Calendar Defines a schedule with dates like holidays or events
Command Executes a specific action across multiple devices, like

switching from day mode to night mode
Device Provides information about a device, like vendor,

firmware and supported objects and services
Event Enrollment Describes an event or alarm condition
File Allows read and write access to data files supported
Group Access multiple properties of multiple objects in a

read single operation
Loop Provides standardized access to a control loop
Multi-state Input Represents the status of a multi-state process, e.g. sta-

tus of a meeting room being empty, occupied, reserved
Multi-state Output Set the desired state of a multiple-state process
Notification List of devices to be informed if an Event Enrollment

determines an event or alarm
Program Controls the execution and status of a program
Schedule Define a weekly schedule of operations with excep-

tions defined in the Calendar object

BACnet encompasses a comprehensive set of 18 standard objects, shown
in Table 3.1, that represent various elements of a building control system
(BACnet International, 2014). These objects range from analog inputs for
sensors to schedules for scheduling and notification classes for alarms. The
inclusion of specific objects in a BACnet device depends on its function
and capabilities, with no requirement for all objects to be present in every
scenario. For instance, a device controlling a Variable Air Volume (VAV)
box will likely feature analog inputs and outputs, while a workstation
providing a user interface without sensor inputs or control outputs will

27

3 BACnet

not. Manufacturers can also introduce proprietary objects that are specific
to their equipment, which coexist with standard BACnet objects without
causing interference (Swan & Alerton Technologies Inc., 2022).

Properties

The BACnet standard (ASHRAE, 1995) defines 123 different properties for
objects, with each type of object having a specific subset of these properties.
Certain properties are required for each object, while others are optional.
The specification outlines the behaviours of these implemented properties,
particularly those related to alarm or event notifications and those affecting
control values or states. Some properties are writeable according to the
specification, while others may be at the manufacturer’s discretion. All
properties can be read over the network. Although BACnet allows vendors
to include proprietary properties, these may not be understood or accessible
by equipment from other manufacturers. While providing an exhaustive list
of all properties and their requirement status would be beyond the scope
of this section, it is worth noting that Table 3.2 shows the properties of an
Analog Input Object, which was previously discussed in the example related
to Figure 3.2.

28

3 BACnet

Table 3.2: Overview of properties of an Analog Input Object
Property Required Example
Object Identifier Yes analogInput 160

Object Name Yes AI 160

Object Type Yes anlogInput
Present Value Yes 19.0
Description Optional Outside temperature
Device Type Optional Thermistor
Status Flags Yes In Alarm, Fault, Overriden,

Out Of Service flags
Event State Yes Normal
Reliability Optional No Fault Detected
Out Of Service Yes FALSE
Update Interval Optional 1.00 (seconds)
Units Yes degreesCelsius
Min Pres Value Optional -30.00, minimum reliably read value
Max Pres Value Optional +100.00, maximum reliably read value
Resolution Optional 0.1
COV Increment Optional Notify if Present Value changes by in-

crement: 0.5
Time Delay Optional Seconds to wait before detecting out

of range: 5

Notification Class Optional Send Change-Of-Value (COV) notifi-
cation to Notification Class Object: 2

High Limit Optional +60.0, Upper normal range
Low Limit Optional -20.0, Lower normal range
Deadband Optional 0.1
Limit Enable Optional High-limit-reporting, Low-limit-

reporting
Event Enable Optional To Offnormal, To Fault, To Normal
Acked Transitions Optional Flags indicating received achnowl-

edgements for above changes
Notify Type Optional Events or Alarms

3.3.2 Services

BACnet services are formal requests sent between BACnet devices to per-
form specific actions or exchange information. Each service request is en-
coded into numeric codes and transmitted as electronic messages across the
network. BACnet allows flexibility by supporting multiple types of transport
systems for message transmissions. These services are categorized into five

29

3 BACnet

groups:

• Object access
• Device management
• Alarm and event
• File transfer
• Virtual terminal

Each service category includes confirmed and unconfirmed services, indi-
cating whether a reply is expected or not. While BACnet devices are not
required to implement all services, the ReadProperty service is mandatory
for all devices, to access objects on a basic level. Additional services may be
supported depending on the device’s function and complexity. The alarm
and event services handle changes in conditions and notifications of possible
errors or alarms. Change-Of-Value (COV) reporting allows devices to notify
subscribers about changes in properties without constant polling, reducing
network workload. File access services enable the reading and manipulation
of files within BACnet devices. Object access services facilitate reading, mod-
ifying and writing properties, as well as adding and deleting objects. Remote
device management services provide various functions including operator
control, specialized message transfer, and addressing capabilities. As an
example, services such as DeviceCommunicationControl and ReinitializeDevice
allow diagnostic tools to be invoked remotely, while ConfirmedPrivateTrans-
fer and UnconfirmedPrivateTransfer enable the transmission of non-standard
messages. TimeSynchronization ensures device clock synchronization, while
Who-Is and I-Am services help obtain network addresses of BACnet devices.
Similarly, Who-Has and I-Have services assist in discovering devices using
object identifiers or object names.

BACnet device

network

Service Request
ReadProperty

Service Reply
Data is ...

Object

Object

Object

Object

Application
program

Request

Ack

Figure 3.3: Example of a BACnet device requesting and acknowledging services over
network

Services play a vital role in acquiring information, commanding actions
or announcing events between BACnet devices. When a service request is
issued, it becomes a message packet transferred from the sending to the

30

3 BACnet

receiving device. An application program running on a BACnet device initi-
ates service requests and processes them upon receipt, which is illustrated
in Figure 3.3. For instance, an operator workstation may periodically request
sensor data from target devices, while the target device processes the re-
quest and sends back the requested data. The provided Table 3.3 presents a
comprehensive overview of some of the most frequently used services in
BACnet. It categorizes the services into the two already mentioned types:
Object Access and Device Management.

Table 3.3: Comprehensive overview of BACnet services
SERVICE C/U DESCRIPTION

Object Access Services
AddListElement C Adds one or more items to a property

that is a list.
RemoveListElement C Removes one or more items from a

property that is a list.
ReadProperty C Returns a value of one property of one

object.
ReadPropertyConditional C Returns the values of multiple proper-

ties in multiple objects.
ReadPropertyMultiple C Returns the values of multiple proper-

ties of multiple objects.
WriteProperty C Writes a value to one property of one

object.
WritePropertyMultiple C Writes values to multiple properties

of multiple objects.
Remote Device Management Services

ConfirmedPrivateTransfer C Sends a vendor-proprietary message
to a device.

UnconfirmedPrivateTransfer U Sends a vendor-proprietary message
to one or more devices.

ReinitializeDevice C Order the receiving device to cold- or
warm-boot itself.

ConfirmedTextMessage C Conveys a text message to another de-
vice.

UnconfirmedTextMessage U Sends a text message to one or more
devices.

TimeSynchronization U Sends the current time to one or more
devices.

Who-Has U Asks which BACnet devices contain a
particular Object.

I-Have U Affirmative response to Who-Has,
broadcast.

Who-Is U Asks about the presence of specified
BACnet devices.

I-Am U Affirmative response to Who-Is,
broadcast.

Note: The second column displays if it is a Confirmed or Unconfirmed service
request, which indicates whether a reply is expected or not.

31

3 BACnet

3.3.3 Transport and Networking Systems

Transport or networking systems use various electronic messaging stan-
dards and methods to transmit encoded messages. Despite using different
transport methods, the content of the coded messages remains the same.
This approach allows to select the most cost-effective transport method for
particular applications. The 2012 BACnet standard defines seven network
types that serve as the means of transporting BACnet messages:

• BACnet/IP
• BACnet MS/TP (Master-Slave/Toke Passing)
• BACnet ISO 8802-3 (Ethernet)
• BACnet over ARCNET
• BACnet Point-to-Point (EIA-232 and Telephone)
• BACnet over LonTalk
• BACnet over ZigBee

These network types encompass the physical and datalink layers of the
protocol, collectively known as the Medium Access Control (MAC) layer.
Regardless of the MAC layer used for transport, a BACnet message itself
remains independent of it. Therefore, the commands and monitoring in-
formation conveyed through BACnet messages are the same. BACnet also
offers a solution to connect multiple network types. A BACnet router, as
shown in Figure 3.4 acts as a bridge between different network types. These
routers can either be standalone devices or built into automation controllers,
to allow BACnet messages to pass through different network types without
altering their content.

Router

BACnet/IP MS/TP

Figure 3.4: Example of a BACnet router to connect various network types

BACnet implements a collapsed architecture that corresponds to four layers
of the Open Systems Interconnection (OSI) model: Application, Network,
Data Link, and Physical. A detailed comparison is visualized in Figure
3.5. Unlike connection-based protocols, BACnet, being a non-connection
protocol, requires less message segmentation and end-to-end error checking.

32

3 BACnet

Consequently, the need for a distinct transport layer is eliminated, as its
functionalities are integrated into the application layer. Additionally, the
session layer is not utilized, and BACnet adopts a fixed encoding scheme
while delegating security responsibilities to the application layer, which
eliminates the necessity for a separate presentation layer.

BACnet Application Program

BACnet Layers

BACnet Network Layer

BACnet/IP

ISO 8802-3
"Ethernet" ARCNET

MS/TP

RS-485

PTP

RS-232

LonTalk

Application Layer

Network Layer

Data Link Layer

Physical Layer

Equivalent
OSI Layers

ISO 8802-2
Type 1

Figure 3.5: BACnet network layers compared to equivalent layers of the OSI model

BACnet over IP (Bushby & Newman, 2002) is the recommended choice for
building automation and control networks due to its numerous advantages.
It offers better performance and higher bandwidth compared to other proto-
cols. With BACnet over IP, devices utilize Ethernet-based communication,
which allows for fast and efficient data transfer. Most BACnet/IP devices
support 100-megabit Ethernet, enabling data transmission at high speeds.
Scalability is another key benefit of BACnet/IP. It can accommodate a large
number of devices on the network without the need for tokens or waiting
periods to initiate messages (Mills, 2019). Additionally, it allows for the
seamless integration of numerous devices, even across multiple networks
via the Internet. This enables the expansion and growth of building automa-
tion systems without the limitations imposed by other protocols. Security is
a critical concern in any networked system, and BACnet/IP offers robust
protection against potential breaches of sensitive data. This is particularly
important for businesses and organizations that handle confidential informa-
tion or operate in regulated industries. It ensures the integrity and privacy of
data, providing peace of mind for users. Furthermore, issues and faults can
be identified and resolved more efficiently through the use of IP addresses
as unique identifiers. This facilitates quick and targeted troubleshooting,
minimizing downtime and optimizing system performance (Erturk, 2021;
Mills, 2019).

33

3 BACnet

3.4 BACnet in Software Development

In the realm of BACnet communication, this section explores three sig-
nificant topics that provide software developers with various options and
tools. These topics include a comprehensive pre-compiled BACnet toolset,
as well as BACpypes and BAC0 for Python development. Each of these
offerings serves as a valuable resource for integrating BACnet functionality
into projects efficiently through a ready-to-use toolset, a comprehensive
Python library, or a lightweight and user-friendly API approach. These
topics collectively contribute to the advancement and ease of implementing
BACnet communication in software development projects.

3.4.1 BACnet Stack: Comprehensive Open-Source Tool Set

The described library is a comprehensive implementation of the BACnet
protocol stack, which provides communication services for building automa-
tion and control networks. It is developed and maintained by Steve Karg, an
experienced BACnet product developer, who also offers consulting services
in BACnet product development. The BACnet protocol is an open standard
for data communication in building automation and control networks. It
allows devices to send and receive messages containing data that can be
understood by other BACnet-compliant devices. The BACnet library pro-
vided by Steve Karg includes the application layer, network layer, and media
access (MAC) layer communications services. It is specifically designed for
embedded BACnet appliances and is written in C for portability. The code
can be compiled with GCC as well as other compilers like Clang or IAR. The
library is released under a GPL with an exception license, which means that
any changes to the core code that are distributed must be shared, but the
BACnet library can be linked to proprietary code without the proprietary
code becoming GPL. Some of the source files are provided as skeleton,
example, or template files and are not copyrighted as GPL. The BACnet
protocol is an ASHRAE/ANSI/ISO standard, and this library adheres to
that standard. It allows software developers to develop BACnet-compliant
devices and integrate them into building automation and control networks.
The library is freely available, and is hosted on Sourceforge4 and Github5.

4https://sourceforge.net/projects/bacnet/ (accessed 10 January 2023)
5https://github.com/bacnet-stack/bacnet-stack (accessed 09 January 2023)

34

https://sourceforge.net/projects/bacnet/
https://github.com/bacnet-stack/bacnet-stack

3 BACnet

Docker Multi-Stage Build for BACnet Stack

Setting up a Docker container is a valuable approach when dealing with
cross-compatibility and library dependency issues in software development.
Docker provides a containerization platform that allows applications to be
bundled with their dependencies and run consistently across different envi-
ronments. This solves the challenge of ensuring that an application functions
correctly regardless of variations in underlying libraries or dependencies. In
the Dockerfile provided in Listing 3.1, a Docker container is being created
using a multi-stage build approach, which further enhances the portability
and efficiency of the containerization process.

The Dockerfile starts by utilizing a Debian Bullseye base image to create an
image named compile-image. It installs necessary build tools, downloads
the BACnet stack source code from a specific Github URL, and extracts it
into a directory called bacnet-stack. Then, it moves into the bacnet-stack

directory and compiles the BACnet stack using the make command. After
successful compilation, unnecessary files in the bin directory are removed.
This stage serves as an intermediate image solely for building purposes. In
the subsequent phase, a new image named build-image is created based on
Python 3.11. The previously compiled BACnet stack binaries are copied from
the compile-image stage into the /usr/local/bin directory. Additionally,
the Dockerfile copies the application’s source code from the local ./src
directory into /src within the image. As one intermediary step, the compiled
binaries are also copied into the /compiled tools directory. In combination
with the docker-compose file of Listing 3.2, the tools will be available also
outside of the container, making it an efficient and dependency-independent
compilation image.

1 FROM debian:bullseye AS compile -image

2

3 RUN apt -get update && apt -get -y install build -essential

4

5 ADD https :// github.com/bacnet -stack/bacnet -stack/archive/

refs/tags/bacnet -stack -1.0.0. tar.gz .

6

7 RUN tar zxf bacnet -stack -1.0.0. tar.gz \

8 && mv bacnet -stack -bacnet -stack -1.0.0 bacnet -stack

9

10 RUN cd bacnet -stack \

11 && make \

12 && rm -f bin /*. txt bin /*. bat

13

14

15 FROM python :3.11 AS build -image

16

35

3 BACnet

17 COPY --from=compile -image /bacnet -stack/bin/* /usr/local/bin

/

18 COPY --from=compile -image /bacnet -stack/bin/* /

compiled_tools

19 COPY ./src /src

20

21 WORKDIR /app

22

23 COPY bacnet -wrapper .

24

25 CMD ["/bacnet -wrapper"]

Listing 3.1: Multi stage Docker build to compile the BACnet stack tools of S. Karg

The Dockerfile example utilizes a multi-stage build technique. This approach
allows the construction of a container image in multiple stages, each with a
distinct purpose. In this case, the first stage, compile-image, is responsible
for building the BACnet stack and generating the necessary binaries. These
binaries are then extracted and transferred to the second stage, build-image,
which creates the final image for running the application. By separating
the build and runtime environments, unnecessary dependencies and arte-
facts from the build stage are excluded, resulting in a smaller and more
efficient final image. This approach enhances the portability, security, and
performance of the Docker container.

Docker and Docker Compose work together to simplify the deployment
and management of containerized applications. Docker provides a platform
for creating and running containers, which are isolated environments that
encapsulate an application and its dependencies. Docker Compose, on
the other hand, is a tool that allows you to define and manage multi-
container applications using a YAML file. It provides a way to orchestrate the
deployment of multiple services and configure their interactions, networks,
volumes, and other aspects (Docker Inc., 2023).

1 version: ’3’

2 services:

3

4 server:

5 build:

6 context: .

7 volumes:

8 - ./ compiled_tools :/ compiled_tools

9 command: ["bacserv", "200001"]

10 network_mode: bridge

Listing 3.2: Docker Compose file for orchestrating the compilation service and map a
container directory to a local one

36

3 BACnet

The purpose of the provided Docker Compose file is to create an environ-
ment for generating the compiled binaries of the library. The file defines
a service named server based on the corresponding Dockerfile of Listing
3.1. The service is responsible for building the necessary image and execut-
ing the required commands. Within the Docker Compose file, the server

service is configured to build the image of the compilation process using
the specified Dockerfile located in the current directory and start one of the
tools called bacserv, which starts a BACnet server. To facilitate access to
the compiled files, the volumes section is included in the Docker Compose
file. It maps the ./compiled tools directory from the host machine to the
/compiled tools directory within the container. This enables the compiled
binaries to be available both within the container and in the file directory of
the host machine. This volume mapping ensures that the compiled files can
be easily accessed and shared between the container and the local machine’s
file system.

Summarized, the Docker Compose file in combination with the Dockerfile
creates an environment in which the library’s binaries can be compiled. The
resulting compiled files are made accessible within the container and also
conveniently available in the host machine’s file directory through volume
mapping.

Drawbacks of BACnet Stack

Pre-compiled tools in software development often lack transparency and
control, as developers have limited visibility into their internal workings
and less control over their behaviour. This can impede troubleshooting
efforts and necessitate reliance on third-party support or updates from
the tool provider. Compatibility limitations are another concern with pre-
compiled tools. When aiming for cross-platform compatibility, these tools
may not seamlessly work across different operating systems or architectures.
Ensuring compatibility might require additional efforts, such as platform-
specific configurations or workarounds. However, when contained within
a Dockerized environment as shown in the previous section, pre-compiled
tools can provide cross-compatibility within the containerized ecosystem.
This means that the tools can function consistently and predictably within
the container environment, offering a stable and reproducible development
environment.

To mitigate these limitations, developers should consider alternative ap-
proaches6, such as building tools from source code or utilizing software
development libraries that provide access to parameters and return values.

6https://bacnet.org/developer-aids/ (accessed 03 June 2023)

37

https://bacnet.org/developer-aids/

3 BACnet

This opens up opportunities to delve deeper into the inner workings of
the tool or library, enabling us to understand its functionality and make
modifications as necessary. This level of transparency provides insights into
the tool’s behaviour, facilitating easier troubleshooting and bug fixing. As
a developer, having access to software development libraries that provide
comprehensive parameter and return value access allows one to fine-tune
the behaviour of the tool and seamlessly integrate it into projects. This level
of control fosters greater efficiency and adaptability in the development
process.

3.4.2 BACpypes and BAC0: Libraries for Python

Python libraries for BACnet communication are widely used by developers
to facilitate seamless integration and interaction with BACnet-based systems.
Among these libraries, BACpypes and BAC0 stand out as popular choices
for implementing BACnet functionality in Python applications. They pro-
vide powerful tools and frameworks to implement BACnet functionality in
Python applications, enabling efficient control and monitoring of building
automation and control networks. With a wide range of features and func-
tionalities, these libraries can facilitate the streamlining of the development
process and can help build robust BACnet applications with ease. Whether
it’s for commercial or industrial purposes, Python libraries for BACnet com-
munication offer a reliable foundation for achieving interoperability and
maximizing the potential of BACnet technology.

BACpypes by Joel Bender

BACpypes is a widely-used open-source library designed to enable BACnet
functionality within Python applications developed by Joel Bender. It offers
developers a comprehensive toolkit with various utilities and tools, sim-
plifying communication with BACnet-based systems. BACpypes is highly
regarded for its versatility, user-friendly nature, and extensive support for
BACnet protocols and services, whereas its source code can be found on
Github7. One of the standout features of BACpypes is its object-oriented
approach to BACnet communication. It provides a rich collection of classes
representing BACnet objects, including devices, objects, properties, and
services. This allows developers to leverage these classes to create BACnet
devices, simulate BACnet networks, and interact with BACnet objects using
familiar Python programming concepts. BACpypes supports multiple trans-
port options for BACnet communication, such as Ethernet, IP, and serial

7https://github.com/JoelBender/bacpypes (accessed 12 December 2022)

38

https://github.com/JoelBender/bacpypes

3 BACnet

BACnet Protocol (Services)

BACnet Application Program

BACnet Device

BACpypes (Lower-level library)

BAC0 (Higher-level API)

Python Environment

Network

User applications

Level 0

Level 1

Level 2

Objects and Properties

Figure 3.6: From BACnet Objects and Properties to Python-based user applications. Ab-
straction levels of common Python-based BACnet libraries

connections. This versatility enables developers to establish communication
with BACnet devices across diverse networks. Additionally, BACpypes sim-
plifies the handling of BACnet messages by offering convenient features for
encoding, decoding, and exchanging BACnet packets. However, due to its
rich feature set and object-oriented approach, BACpypes can be more com-
plex to use and may require a deeper understanding of BACnet protocols
and concepts.

BAC0 by Christian Tremblay

In response to this complexity, BAC0 was built upon the foundation of
BACpypes. BAC0 is developed by Christian Tremblay and its source code
is also available on Github8. The project gets good reputations and also
the main developer of the project is very responsive in answering issues.
With its lightweight and flexible approach, BAC0 offers simplicity and ease
of use, making it an ideal choice for developers seeking a more stream-
lined BACnet solution. Its minimalistic design provides a straightforward
API that abstracts away the complexities of the BACpypes communication,
allowing developers to efficiently interact with BACnet objects and ser-
vices. Supporting various BACnet transports, such as Ethernet and IP, BAC0

8https://github.com/ChristianTremblay/BAC0/ (accessed 04 December 2022)

39

https://github.com/ChristianTremblay/BAC0/

3 BACnet

enables communication with BACnet devices over different networks. It
simplifies tasks like device discovery, property reading and writing, and
executing BACnet services. BAC0 also includes subscription-based monitor-
ing, providing real-time updates and notifications from BACnet devices by
automatically subscribing to BACnet’s Change-Of-Value (COV) services.

BACpypes vs. BAC0

BAC0 and BACpypes differ in their design philosophy and complexity,
with BACpypes offering a comprehensive feature set that can be more
complex to use, while BAC0 focuses on simplicity and ease of use with a
minimalistic API. With BAC0 being built upon the BACpypes library, it also
provides a higher level of abstraction. Figure 3.6 illustrates these abstraction
levels, where BACpypes form the foundation providing low-level BACnet
functionality to interact with devices, objects, properties and services. BAC0,
as the higher-level API, abstracts away much of the complexity and exposes
simplified interfaces for interacting with BACnet devices, making it easier for
developers to integrate BACnet functionality into their Python applications.
In the subsequent chapter, we will delve into the selection of BAC0 as the
preferred library for implementing BACnet communication, exploring its key
features, advantages and practical examples to demonstrate its effectiveness
in real-world scenarios.

40

4 Brick

Brick is an open-source project that aims to establish a unified framework
for describing the physical, logical and virtual components of buildings,
as well as their interconnections in the form of relationships. It consists of
a flexible data model, an expandable dictionary of terms and a system of
relationships to connect and combine concepts. Leveraging Semantic Web
technology, Brick enables the consistent representation of diverse features,
assets and subsystems across the building sector (Brick Ontology, 2023).
Brick is a popular ontology choice in the building sector, surpassing other
ontologies by outscoring them in comparative studies as described in the
Sections 2.4.2 Ontologies for the Building Sector and 2.6 Related Work. In
addition, Brick has released a comparative study on their website1, where
they discussed the modelling support of building specific aspects of Brick
and four other ontology models namely: Project Haystack (Project Haystack,
2023), SAREF (SAREF, 2023), IFC (buildingSMART International, 2023) and
BOT (Linked Building Data Community Group, 2021). Table 4.1 shows this
comparison.

Table 4.1: Comparative overview of ontologies related to building aspects
Modeling Support Brick Haystack IFC BOT SAREF
HVAC Systems yes yes yes no no
Lighting Systems yes partial yes no no
Electrical Systems yes yes yes no no
Spatial Information yes no yes yes no
Sensor Systems yes yes generic no yes
Control Relationships yes no generic no no
Operational Relationships yes no generic no no
Formal Definitions yes no yes yes yes

1https://docs.brickschema.org/intro.html (accessed 28 May 2023)

41

https://docs.brickschema.org/intro.html

4 Brick

4.1 Core Concepts

Entities, tags, classes, and graphs are fundamental components of Brick,
forming the core concepts that enable standardized semantic descriptions.
The interconnections between components are visualized as relationships
within the framework. Alongside the core concepts, Brick follows a set of
design principles which include completeness, expressiveness, usability,
consistency and extensibility. These principles ensure that the schema can
handle all the necessary information for building applications, captures
diverse entities and their relationships, remains user-friendly and com-
prehensible, promotes consistency in modelling processes and allows for
seamless expansion to cover new concepts in a consistent manner (Brick
Ontology, 2023).

4.1.1 Tags

In Brick, tags serve as atomic facts or attributes associated with entities,
providing additional descriptive information. They can include labels like
sensor, setpoint, air, water and more. Brick adopts the concept of tags from
Project Haystack to maintain annotation flexibility and usability. However,
the entity classification of Brick goes beyond tags alone. It incorporates a
comprehensive ontology, defining a wide range of classes and relationships
to accurately represent building systems. The combination of tags and
ontological definitions builds a robust framework for modelling building
systems. Tags that are associated with Brick classes will be inherited by any
Brick entity which is an instance of that class.

4.1.2 Classes

In the context of Brick, a class refers to a named category that carries a
specific definition, which serves the purpose of grouping entities based
on their shared characteristics or features. These classes are hierarchically
structured, forming a taxonomy2. Entities are considered instances of one
or more classes. An entity’s type is determined by the class(es) it belongs
to. Additionally, classes are associated with a set of tags, which serve as
informative annotations. The root classes defined by Brick Ontology (2023)
are:

• Equipment

2https://brickschema.org/ontology/1.1/#Classes (accessed 19 May 2023)

42

https://brickschema.org/ontology/1.1/#Classes

4 Brick

• Location
• Point
• Tag
• Measurable (containing the Substance and Quantity classes)

4.1.3 Entities

An entity in Brick serves as an abstract representation of any physical,
logical or virtual item present in a building. Physical entities are tangible
elements like mechanical equipment, lighting systems, networked devices
and spatial elements such as rooms and floors. Virtual entities are software-
based representations, including sensing and status points that provide
real-time information, as well as actuation points that enable software-
controlled adjustments. Logical entities refer to entities or groups defined
by specific rules, such as HVA and Lighting zones and also include class
names and tags within their scope.

Brick Class
brick:Sensor

Brick Entity
brick:Temperature_Sensor

Entity Property
brick:Room_Air_0102

Location
room:Room_0102

Unit
unit:degreesCelsius

type

prop:name prop
:loc

atio
n

prop:unit

Figure 4.1: Example of a Brick temperature sensor entity, described by properties (Brick
Ontology, 2023)

Entity properties within Brick represent the attributes or characteristics of
entities. These properties have infrequent or static changes, while regularly
changing values are better suited for modelling as Brick Points. Entity
properties are useful for capturing static features like floor area, room
volume, electric meter phases and more. An Entity Property consists of two
components: the named relationship between an entity and the property
value and the property value itself, which can e represented as a separate
entity with its own set of properties. Figure 4.1 shows an example of a
Brick Temperature Sensor. The type of entity is derived from a Brick class
called Sensor. The name property identifies the entity whereas location and
unit describe static features. The definition and specification of Entities and
related Properties along with their classes and relationships are defined
within the brick namespace (Brick Ontology, 2023).

43

4 Brick

4.1.4 Graphs

The representation of Brick itself is based on a directed, labelled graph
shown in Figure 4.2. This is a conceptual structure that organizes data by
representing entities as nodes and their relationships as edges. In Brick, the
graph is specifically represented using the Resource Description Framework
(W3C, 2023) data model. RDF provides a standardized way to express and
link information in the form of subject-predicate-object triples. Subjects
and objects refer to entities and properties represented by nodes whereas
the connecting predicate describes the type of relationship between them
visualized as edges, which is illustrated in Figure 4.3. Brick benefits from the
RDF framework through its serialization syntaxes for storing and exchanging
RDF-defined data models as known file formats such as Turtle and JSON.

Edge
 Node Node

Edg
e

 Node

Edge

Figure 4.2: Directed labelled graph

4.1.5 Relationships

The description of a building can be approached from various perspec-
tives and Brick defines relationships that cover several of these aspects.
Firstly, there is composition, which outlines how different elements can
be assembled to form others, such as equipment being composed of other
equipment (e.g. a sensor being part of an air conditioning unit) or locations
being composed of other locations (e.g. rooms building a floor). There exist
also logical compositions, like an HVAC zone consisting of a specific set
of rooms. Secondly, there is topology, which describes the connections and
arrangements of elements, including how equipment is interconnected and
the order in which they affect media flowing through a building, like air
or water. Topological descriptions also describe relations between spaces or
zones. Lastly, there is telemetry, which focuses on the data sources associated
with various elements, whether logical, physical or virtual. These sources
are referred to as Points in building management, which include sensors,

44

4 Brick

setpoints, commands, alarms and parameters that generate data for the
building that is not considered static (Brick Ontology, 2023).

hasPart
Floor Room

isPointOf
Sensor Room

hasPoint
AC Unit Temperature

sensor

Subject Predicate Object

Location

Point

Equipment

Figure 4.3: Brick relationship examples for location, point and equipment drawn as subject-
predicate-object triples

When dealing with different subjects such as locations, points and equip-
ment, there are specific relationships that can be used to describe their
attributes. Locations use relationships such as hasPart to define components
of that locations. The isPointOf relationship indicates relevant data of a spe-
cific point, for example, a sensor being the point of data collection for a room.
In terms of equipment, relations like hasLocation denote physical locations of
equipment or feeds are used to describe the downstream equipment and lo-
cations, for instance, an air handling unit feeding an HVAC zone. Figure 4.3
illustrates some of these relations as directed graphs. To increase flexibility
for the modeller, Brick describes most of its relationships in a bidirectional
way, by defining inverse relationships as shown in Table 4.2. This results in
subject-relation-object being equivalent to object-inverse-subject.

Table 4.2: Examples of relationships and their respective inverse
Relationship Inverse
hasPoint isPointOf

hasPart isPartOf

hasLocation isLocationOf

hasTag isTagOf

feeds isFedBy

45

4 Brick

4.2 Data Source Models

Brick models provide a comprehensive representation of data sources and
their associated characteristics. However, since Brick models are solely
focused on describing the semantics of data sources, it is also necessary
to have a method for representing the actual data they generate. Usually,
data in the context of buildings refer to a collection of data points captured
over time at regular intervals - time series. Time series data is used to
represent the behaviour and performance of various building systems, such
as temperature, humidity, energy consumption and other relevant metrics.
This form of data is primarily used for analyzing trends, detecting anomalies,
optimizing operations or making informed decisions (InfluxData Inc., 2023).
Brick uses an external reference model for connecting data sources with
their associated entities.

4.2.1 External References

Instances belonging to the Brick Point class serve as the origin or destination
of telemetry data. Within Brick, there are several primary classes of telemetry
including:

• Sensor: measured value from a device or instrument
• Setpoint: target values
• Alarm: notification about conditions or situations requiring corrective

action
• Command: settings or actions influencing the behaviour of equipment
• Parameter: configuration settings (e.g. constraints on valid setpoint

values)
• Status: observational data typically read-only

Each of these classes forms the root of a hierarchy consisting of more spe-
cific point types. As an example, a hierarchy of a sensor point could look like:
Point - Sensor - Temperature Sensor - Water Temperature Sensor. Like
all entities in Brick models, Points can be associated with metadata that
specifies the storage location and identification of time series data. This
metadata is linked to entity instances, representing data sources through
the ref:hasExternalReference property. This property allows for a connection
between a Brick entity and an external data source. More precisely for time
series data exists the ref:TimeseriesReference object, which contains all nec-
essary information to connect the metadata schema to an actual database.
This includes information about unique identifiers or primary keys, as well
as information about the database itself. Listing 4.1 shows an example of an
air temperature sensor, which is linked to a time series database entry.

46

4 Brick

1 :sensor_1 a brick:Air_Temperature_Sensor ;

2 brick:hasUnit unit:DEG_C ;

3 ref:hasExternalReference [

4 ref:TimeseriesReference

5 ref:hasTimeseriesId "8F437C"

6 ref:storedAt :database_3 ;

7]

8

9 :database_3 a ref:Database ;

10 brick:hasDescription "Timeseries storage"

11 :connstring "http ://1.2.3.4/ data_3"

Listing 4.1: Example of a Brick entity linked with time series storage information as external
reference

BACnet

One of Brick’s features is the ability to model connections between Points
and their counterparts in external systems. The ref:hasExternalReference prop-
erty, is a generic property to define external references and also offers
support for BACnet networks. The object-oriented approach of the BACnet
communication protocol works well with the Brick metadata schema. A
BACnet object is represented through the ref:BACnetReference object, which
is defined as an external reference. By extending the example of Listing
4.1, the Brick model can link a temperature sensor to its time series storage
and also model the reference to the existing BACnet network. Building
such a complete semantic description makes it easier to access and analyze
historical time series data, while also enabling real-time monitoring and
control of building components through the BACnet object. Listing 4.2 illus-
trates the connection of a Brick Point and a BACnet Object through external
references.

1 :sensor_1 a brick:Air_Temperature_Sensor ;

2 brick:hasUnit unit:DEG_C ;

3 ref:hasExternalReference [

4 a ref:BACnetReference ;

5 bacnet:objectIdentifier "analogInput_231" ;

6 bacnet:objectName "BLDG -AI -231"

7 bacnet:objectOf :device_7

8]

9

10 :device_7 a bacnet:BACnetDevice ;

11 bacnet:device -instance 7 ;

12 bacnet:hasPort [a bacnet:Port 47808]

Listing 4.2: Example of a Brick entity linked to a BACnetReference object

47

5 Study Design

After collecting knowledge about the domains of BACnet and Brick, this
section will describe the design of the implementation as well as the practical
experiment conducted within this study. Besides showcasing the practical
part of the study, another major goal is to generate measurable results. To
fulfil these requirements, the implementation followed a specific timeline
to test and deploy the software script in both, a virtual and real-world
environment.

5.1 Implementation Design

The implementation process was initiated with the collection of valuable
insights in a simulation setup, where BACnet devices were virtually sim-
ulated. This stage involved simulating various interactions to understand
the behaviour and responses of a BACnet system. Following the simulation
phase, a develop and deploy setup was established in a real-world building
to test the software script in practical conditions. The initial step of the script
involved capturing a snapshot of the entire building’s systems. This com-
prehensive snapshot included information about sensors, actuators, control
points and other relevant data present in the infrastructure of the building.
Additionally, this snapshot served as the foundation for the subsequent
stages of the implementation, enabling the generation of a Brick ontology
model.

By utilizing the system snapshot, the Brick ontology model was generated.
The model aims to represent the building’s infrastructure and their interrela-
tionships in a standardized and structured format. By mapping the captured
information to the Brick ontology, a unified and interoperable representation
of the components of the building was established. The ontology model pro-
vides a powerful tool for further analysis, data integration and development
of applications within the building ecosystem.

48

5 Study Design

5.2 Non-Residential Building as Testbed

As a testbed for practical experiments, hardware and software is being
deployed in a non-residential building, which is an elementary school in
Graz. The building houses twelve classrooms and embodies a modern and
innovative architectural approach, designed by an award-winning architect.
The building incorporates a green roof with a photovoltaic system for power
generation, storing rainwater and promoting thermal balance. Heating and
cooling are provided by a ground-source heat pump connected to geother-
mal probes in the school garden. The system utilizes underfloor heating,
ceiling radiant panels, and a central ventilation system for fresh air with heat
and humidity recovery. In summer, a free cooling operation regenerates the
geothermal probes, while windows can be opened for natural ventilation.
The future plans are to extend the school by another building, housing
another twelve classrooms. The building is controlled and automated by a
BACnet-based building automation and control network. Some facts about
the building in general:

• Building floor area: 4,256 m²
• Heating and cooling requirements according to the energy certificate:

12.12 kWh/m²a and 30.63 kWh/m²a, respectively
• Photovoltaic system: 25 kWp with 88 modules
• Ground heat exchange field: 9 double-pipe U-tube probes, approximately

100m in lengths
• Heating: 55 kW ground-source heat pump system, covering approx-

imately 36% of the heating energy demand and about 43% of the
heating and ventilation energy demand

• Cooling: 17.4 MWh/a of free cooling (direct cooling) with a maximum
capacity of 60 kW and a continuous output of 30 kW

5.3 Experiment Design

The main goal of the experiment is to compare the simulation setup with
the real-world setup. The software script was adapted to measure the time
consumption associated with taking the system snapshot and generating
the corresponding Brick ontology model. By tracking the duration of these
processes, efficiency and performance measures of the implemented method-
ology have been done. To achieve this, a total of nine virtual devices were
generated, each with a random number of BACnet objects. Each of the
created virtual test devices got assigned a random number of different
BACnet objects. For the sake of completeness, each device represents analog,

49

5 Study Design

binary and multistate objects of input, output and value types. Four of the
nine devices are defined as smaller devices, which could be represented
as workstations. The other five devices are defined with a high number of
BACnet objects, representing controllers. In comparison to the real devices,
the simulated devices have an increased number of objects. A complete
overview of all virtual generated devices is listed in Table 5.1. This approach
ensures a representative sample of devices commonly found in building
environments.

Table 5.1: Virtual test devices and their associated BACnet objects

Device BACnet objects SumAnalog Binary Multistate
device 100 24 24 20 68

device 200 25 26 18 69

device 300 24 20 25 69

device 400 26 23 22 71

device 500 885 1352 1052 3289

device 600 1065 779 686 2530

device 700 1124 998 1271 3393

device 800 1068 1370 1011 3449

device 900 980 1026 976 2982

15920

Based on the snapshot of the real-world setup, Table 5.2 shows an overview
of all scanned devices from the non-residential building. This overview
was taken from the system snapshot. The simulated setup consists of more
BACnet objects than the real devices to exploit a more exhaustive approach
when simulating.

Table 5.2: Devices of building and their associated BACnet objects

Device BACnet objects SumAnalog Binary Multistate
WDXXZ BC01 342 304 97 743

Smart W100BC01 210 92 15 317

Smart W100BC02 218 130 43 391

Workstation 1 0 0 0 0

Workstation 2 0 0 0 0

W100BC001 337 97 165 599

W100BC100 762 229 278 1269

W100BC200 1006 297 373 1676

W100BC300 497 147 179 823

5818

50

5 Study Design

Furthermore, to evaluate the coverage and accuracy of the Brick ontology
model, a comparison was made between the number of setpoints abstracted
within the ontology and the corresponding technical data sheets. This analy-
sis provided valuable insights into the extent to which the model effectively
captured and represented the real-world attributes and functionalities of
the BACnet device. By undertaking this comparative analysis between the
simulation setup and the real-world implementation, the experiment aims
to express the strengths and limitations of the software script. Additionally
simultaneously evaluating the same experiment in a virtual environment
contributes to a better understanding of the simulation’s reliability in cap-
turing the complexity and intricacies of the physical building system. The
evaluation of the virtual environment should show its potential as a cost-
effective tool for testing and developing advanced building management
solutions.

51

6 Implementation

In this chapter, we will discuss the development and deployment setup, the
connection to an existing BACnet by using the BAC0 Python library, the
serialization of scanned devices to a JSON file format and the generation of
a Brick ontology model. The development and deployment setup is a crucial
aspect, involving the configuration and integration of hardware and software
components. BAC0, a powerful library for BACnet communication, plays
a key role in establishing connectivity with the existing BACnet network.
It simplifies the interaction with BACnet devices by providing a high-level
interface for reading and writing data points and controlling devices. To
gain insights from the system while not being constantly connected to the
BACnet network, the scanned devices are serialized to a JSON file format.
This serialization process involves the connection to scanned devices and
converting the device objects and property data into a structured format that
can be easily stored, transferred and analyzed. By serializing the scanned
devices, a snapshot of the BACnets system state at a specific point in time
is captured. Examining the serialized data provides valuable insights for
offline analysis and informed decision-making. This initial exploration of
the serialized data serves as a foundational step towards the subsequent
conversion to a Brick Ontology schema.

6.1 BACnet Simulation

This section investigates the capabilities that arise by combining the BAC0

library with a dockerized environment. The focus lies on simulating a locally
hosted BACnet system, where the BAC0 library serves as a tool for emulating
virtual BACnet devices, while the Docker containerization provides an
isolated environment for each of the emulated devices. Additionally, Docker
creates a segregated network environment that is independent of the host’s
original network. The provided network environment enables the handling
of each device as if it were a physical hardware device, complete with its own
unique IP address and network connection. The emulated devices within
the simulation environment are configured using a JSON file (see Section
6.4.2) that serves as a dedicated configuration file for each device. This JSON

52

6 Implementation

file comprehensively describes the objects and properties of the emulated
device. Figure 6.1 gives an overview of the corresponding components for
the simulation environment.

Infrastructure

Host Operating System

Docker

Guest Operating
System

BACnet
Device #3

BAC0

JSON ConfigGuest Operating
System

BACnet
Device #2

BAC0

JSON ConfigGuest Operating
System

BACnet
Device #1

BAC0

JSON Config

Docker network

Containerized
Applications

Figure 6.1: Overview of the dockerized simulation environment, to host a local BACnet
emulating devices

Starting by providing a dockerized environment, Listing 6.1 shows the
according Docker and Compose file. The base image is defined as Python
3.8-slim, which is a lightweight image providing basic Python functionalities.
In order to make the BAC0 library available inside the Docker container,
the requirements consisting of BAC0 and BACpypes need to be installed.
Additionally the netifaces library needs to be installed too, which is used
by BAC0 for handling IP addresses. The Compose file defines different
services based on the provided Dockerfile. In this example, one device is
defined as an exampl device which starts the developed BAC0 script and
passes the path to the config file, as well as the desired port number to the
simulation service of the script. Each device can be defined as a service
within the Compose file.

1 # Dockerfile

2 FROM python :3.8- slim

3

4 WORKDIR /app

5

6 COPY requirements.txt /tmp/requirements.txt

7 # Requirements are:

8 # bac0 , bacpypes and netifaces

53

6 Implementation

9 RUN pip install -r /tmp/requirements.txt

10

11 COPY /src/ /app/

12

13 ENV PYTHONPATH /app/src

14

15 # docker -compose.yml

16 version: ’3’

17 services:

18

19 example_device:

20 build:

21 context: .

22 command: ["python", "-u", "bac0_tools.py", "simulate",

23 "--device",

24 "/path_to_config_file/example_device.json",

25 "--port", "47808"]

26 network_mode: bridge

Listing 6.1: Docker and Compose file for the dockerized simulation environment of a device

The script provided in Listing 6.2 starts by loading the device config file, and
parsing it to a Python dictionary. It creates a BAC0 application for the device,
to be able to use the BACnet protocol. The application object is additionally
defined by the device properties, which get read from the config file. The
function add properties to device loads the analog, binary and multistate
data points from the config file, and adds them as objects with appropriate
properties to the simulated device. Finally a BAC0.device object is created,
to connect to the simulated device. This final step is used to test the device
creation and interact with the simulated device.

1 def simulate_bacnet_device(path_to_device_config ,

2 device_port):

3

4 device_dict = json.load(device_config_json)

5

6 device_app = BAC0.lite(

7 deviceId=device_dict[OBJECT_ID],

8 localObjName=device_dict[OBJECT_NAME],

9 description=device_dict[DESCRIPTION],

10 vendorId=device_dict[VENDOR_ID],

11 vendorName=device_dict[VENDOR_NAME],

12 modelName=device_dict[MODEL_NAME])

13

14 add_properties_to_device(device_dict , device_app)

15

16 ip_address = device_app.localIPAddr.addrTuple [0]

17 device_boid = device_app.Boid

18

19

54

6 Implementation

20 created_device = BAC0.device("{}:{}"

21 .format(ip_address , BACNET_DEFAULT_PORT),

device_boid)

Listing 6.2: Docker and Compose file for the dockerized simulation environment of a device

6.2 Development and Deployment Setup

In a setup aimed at enhancing communication and control within a com-
mercial building, a Raspberry PI device running the Debian-based Linux
OS, Raspbian GNU/Linux 10 Buster (Long, 2019), is utilized to establish a
connection to the buildings Ethernet network, as shown in Figure 6.2. The
commercial building uses BACnet/IP over the Ethernet network for commu-
nication and control of its automation systems and devices. By connecting
the Raspberry PI to the Ethernet network, it becomes a central hub for bridg-
ing the gap between the BACnet devices and the network infrastructure.
Raspbians’s Linux foundation provides a reliable and secure platform for
networking and is basically acting as a gateway to provide the necessary
hardware for BACnet/IP communication.

Raspberry PI

BAC0

BACnet
Controller

Sensors

BACnet/IP

SSH
Internet

SSH

Wireshark

Remote Workstation

Figure 6.2: Development and deployment setup: Connecting a remote workstation over
SSH to a Raspberry PI. The Raspberry is connected to the commercial buildings
Ethernet where BACnet/IP is used as the protocol for the buildings automation
system’s communication

55

6 Implementation

Due to the limitations of developing software directly at the commercial
building’s location, a Secure Shell (SSH) setup was established on the Rasp-
berry Pi to enable remote access from a different location. SSH allows for
secure and encrypted remote communication between two devices, enabling
developers to connect to the Raspberry Pi over the network and execute
commands, transfer files, and manage the device remotely. It provides a
secure and convenient means of remotely accessing and controlling the Rasp-
berry Pi’s operations without physically being present at the commercial
building (SSH, 2023). This involves setting up SSH key-based authentication,
where a public-private key pair is generated. The public key is copied to
the Raspberry Pi’s authorized keys file, while the private key is securely
stored on the remote workstation. The SSH setup, illustrated in Figure 6.2,
is used for two purposes: Firstly, to deploy software scripts onto the locally
installed hardware of the Raspberry PI, allowing for remote development
and updates. Secondly, to monitor on-site network traffic from a remote
workstation, to gain insights about the BACnet traffic that is exchanged by
devices.

6.2.1 Network Monitoring over SSH

To enable network traffic analysis in a commercial building, a setup is
established involving the Raspberry PI (acting as an intermediate device) and
a local PC, which is the remote workstation. The Raspberry PI, acting as the
source device, requires the installation of tcpdump (Tcpdump Group, 2023),
a powerful command line packet analyzer. It captures and displays network
traffic, offering filtering options to selectively capture specific packets based
on criteria such as sour or destination IP addresses, ports, protocols or
packet types, allowing for precise analysis and monitoring of network data.
This enables the Raspberry PI to capture and export network traffic data.
On the other hand, the destination device, the remote workstation, requires
the installation of graphical Wireshark (Wireshark Foundation, 2023), a user-
friendly network protocol analyzer along with mkfifo (MKFIFO, 2001). The
mkfifo command line utility, creates named pipes, providing a way to transmit
data between processes, which in this example is used as an intermediate
stage for storing the captured network data. This configuration enables
the workstation to receive and analyze the network traffic captured by the
Raspberry PI in real-time and has been already in use by Lee (2016). The
goal is to execute tcpdump with filters over SSH on the Raspberry PI, redirect
the output to a pipe file and subsequently visualize the captured network
traffic using Wireshark. The following command creates a FIFO pipe file at
the given location.

56

6 Implementation

1 [Workstation] mkfifo /tmp/raspi_packet_capture

An intermediate step to allow a registered SSH user to execute a specific
program without the need for a sudo password is to configure the sudoers

file using visudo, adding an entry granting the user permission to run
the program as root without requiring a password prompt over the SSH
connection.

1 [Raspi] sudo visudo

2

3 # Grant sudo access to the tcpdump utility without password

prompt by adding this line to the sudoers file

4 $USER ALL = NOPASSWD: NOPASSWD: /usr/sbin/tcpdump

To perform the necessary steps in Wireshark for network traffic analysis,
Wireshark needs to be opened with sudo rights. In the Capturing options
menu, a pipe file can be selected as part of the managed interfaces by
Wireshark. In this section the local generated pipe file is added by selecting
the file /tmp/raspi packet capture. This sets the local pipe file as data
source of network traffic and Wireshark can start capturing. One important
note here is to start capturing in Wireshark before executing tcpdump over
SSH. The next step involves the execution of tcpdump over SSH on the
Raspberry PI and setting appropriate filters to reduce network load. The
following command is being executed at the destination device.

1 [Workstation] ssh raspi "sudo /usr/sbin/tcpdump -i eth0

portrange 40000 -50000" > /tmp/raspi_packet_capture

By specifying filters, the captured network traffic can be narrowed down
to the desired scope. In the case of BACnet, a port range is added to cover
common BACnet ports which were defined in a range from 40000 to 50000

based on Ethernet traffic. This filtering technique ensures that only relevant
packets are captured, reducing the overall network load and providing a
more efficient analysis of the BACnet communication within the commercial
building. The output of the executed command is getting redirected to
the local pipe file, which is already monitored by the Wireshark instance.
Figure 6.3 shows a screenshot of the graphical interface of Wireshark, which
visualized the data of the local pipe file.

6.3 BACnet Communication

This section explores the process of connecting to an existing BACnet system
and discovering BACnet devices by utilizing the BAC0 API. By harnessing

57

6 Implementation

Figure 6.3: Visualizing the network traffic over SSH by using the graphical Wireshark
interface

the capabilities of the BAC0 API, the process of connecting to an existing
BACnet is simplified significantly. The necessary network calls for BACnet
communication are wrapped up by the internally used BACpypes library.
Therefore the API provides much simpler function calls, that trigger the
desired network messages in the background. To gain a basic understanding
of the core concepts, a shortened version of the script is provided in Listing
6.3. The script demonstrates the fundamental steps involved in connecting
to a BACnet system and discovering BACnet devices using the BAC0 API.

1 import BAC0

2

3 def scan_for_devices ():

4

5 port_number = 46000

6 bacnet_connection = BAC0.lite(port=port_number)

7

8 bacnet.whois ()

9 discovered_devices = bacnet.devices

10

11 for device_local_name , device_ip , device_boid in

discovered_devices:

12 temp_device = None

13

14 try:

15 temp_device = BAC0.device(device_ip ,

16 device_boid ,

17 bacnet ,

18 poll =0)

58

6 Implementation

19

20 # Do serialization and save JSON file to

directory ...

21 except:

22 print("Device connection could not be

established")

23

24 temp_device.disconnect ()

Listing 6.3: Python script demonstrating the basic concepts of connecting and discovering
to BACnet devices

At first, the script imports the BAC0 library to be accessible. The given
code sets the log levels for the BAC0 API, specifying different levels of
logging for different outputs. Afterwards, the specification of the BACnet
connection takes place. The BAC0 API offers two modes for establishing
BACnet connections: Lite and Complete. Lite mode is suitable for interacting
with devices without utilizing the aspects of a graphical interface. It is
designed for resource-constrained environments, such as small devices like
a Raspberry PI. On the other hand, the Complete mode provides a graphical
interface by launching a web server. The web interface shows and interacts
with connected devices and features live trending features (Tremblay, 2020).
In the context of this example, the utilization of the Lite version is sufficient,
because of the unnecessity of a web interface and also the minimalistic
hardware approach based on the SSH connection. After monitoring the
network traffic, discussed in Section 6.2.1, it was evident that the devices of
the building under investigation use port number 46000 to send BACnet/IP
packets over the Ethernet connection. Therefore defining the port number
and starting a lite connection to the building’s BACnet worked out as a
successful connection.

A Who-Is call serves the purpose of obtaining the network addresses of
devices present on a network. This information is essential to enable devices
to communicate with each other. When a device requires the address of an-
other device, it sends a message that specifies either a specific Device Object
Instance Number or a range of Instance Numbers. For instance, it may send
a Who-is device 3001 or Who-is device 3000 to 3099 call. In the context
of the script, it initiates a broadcast call to discover and retrieve the network
addresses of BACnet devices within the network. The broadcasting character
of this call makes it pretty heavy in terms of network load, especially if there
are lots of devices. The acknowledgements of the present devices are stored
in the bacnet objects and are accessed by bacnet.devices. This returns a list
of the responding devices and their device information such as the device’s
address, which is mandatory to establish a connection.

As a final step, the retrieved device information is used to arrange a device

59

6 Implementation

connection. Invoking the BAC0.device(...) call provides access to a spe-
cific BACnet device within a network. Because no live data is needed, the
polling is set to 0, which disables constant polling of a device’s properties.
The returned BAC0.device object enables access to its BACnet application
program which handles object types, properties and supported services.
Additionally, it provides methods to manipulate the device data, such as
reading or writing to property values and invoking BACnet services. This
call serves as a tool for interacting with the individual BACnet devices,
which is further needed to extract semantic data.

6.4 Serialization of Devices

In order to extract meaningful information from the system without the
need for a constant connection to the BACnet network, the scanned devices
undergo a serialization process that results in a JSON file format. Python’s
native support for JSON’s key-value pair format simplifies data manipu-
lation and analysis, as the JSON structure aligns with Python’s dictionary
object type. This compatibility is beneficial when it comes to reusing the
data for further development. The familiarity with Python and the JSON
file format eliminates the need for parsing or data handling routines. The
serialization step involves establishing connections with the scanned devices
and transforming the device objects and property data into a structured
format that is easily storable, transferable and analyzable. Through this
process, a snapshot of the BACnet system’s state at a specific moment in
time is effectively captured. Additionally, it serves as an initial exploration,
laying the foundation for the subsequent conversion to a Brick Ontology
schema.

6.4.1 Accessing Objects and Properties

The following code snippet, provided in Listing 6.4, is based upon the
creation of the BAC0.device object, shown in Listing 6.3. The BAC0.device

object is getting passed to the serialize to json() function.

1 def serialize_to_json(bacnet_device):

2 bacnet_properties = bacnet_device.bacnet_properties

3 property_dictionary = {

4 # Fetching device properties

5 OBJECT_TYPE: bacnet_properties[OBJECT_TYPE],

6 OBJECT_NAME: bacnet_properties[OBJECT_NAME],

7 DESCRIPTION: bacnet_properties[DESCRIPTION],

8 ...

60

6 Implementation

9

10 # Looping over objects and appropriate properties

11 ANALOG_UNITS: get_analog_properties(bacnet_device),

12 BINARY_UNITS: get_binary_properties(bacnet_device),

13 MULTI_STATES:

14 get_multi_state_properties(bacnet_device)

15 }

16

17 object_name = str(bacnet_properties[OBJECT_NAME])

18 + ’_’ + str(bacnet_properties[OBJECT_ID][1])

19

20 return object_name , json.dumps(property_dictionary)

Listing 6.4: Reading device properties by invoking BAC0 object function calls

The purpose of this function is at first to store the properties of the bacnet device

into a dictionary object. The code begins by extracting the device object prop-
erties which have been discussed in Section 3.3.1. The different keys used
from the dictionary, represent the required object properties. These proper-
ties need to be present on every BACnet device, ensuring that there are no
access problems when trying to access the property values. The simplicity
of the BAC0 calls abstract away the hidden complexity of composing the
BACnet messages. Calls like bacnet device.bacnet properies or accesses
like bacnet properties[DESCRIPTION] are invoking the composition of the
desired BACnet messages by sending according requests and handling the
return messages. For instance, the access of the description property would
form a ReadProperty service request to be sent to the connected device.

Since every BACnet object differs in terms of required properties, the de-
cision was made to handle the physical descriptions for analog, binary,
and multi-state data in different functions to treat them accordingly. These
are the major fields describing the physical measures of a building. As an
example, Listing 6.5 shows how the analog units of a BACnet device are
being serialized.

1 def get_analog_object_properties(analog_bacnet_object):

2 bacnet_properties = analog_bacnet_object.bacnet_properties

3 object_id = bacnet_properties[OBJECT_ID][0]

4

5 return object_id , bacnet_properties , {

6 OBJECT_NAME: bacnet_properties[OBJECT_NAME],

7 ...

8 PRESENT_VALUE:

9 bacnet_properties[PRESENT_VALUE],

10 ENGINEERING_UNITS =

11 bacnet_properties[ENGINEERING_UNITS]

12 }

13

14 def get_analog_properties(bacnet_device):

61

6 Implementation

15 analog_units = bacnet_device.analog_units

16 analog_properties = {}

17

18 for analog_unit in analog_units:

19 current_analog_object = bacnet_device[analog_unit]

20 obj_identifier , unit_properties =

21 get_analog_object_properties(current_analog_object)

22

23 analog_properties[obj_identifier] = unit_properties

24

25 return analog_properties

Listing 6.5: Reading analog object properties by invoking BAC0 object function calls

It is a pretty similar syntax to accessing device properties, but still, there
are some specific actions about it. The get analog object properties()

function reads the presentValue and engineeringUnits properties from
the device’s object, by invoking the BAC0 API in the same manner as in
Listing 6.4. Those properties are represented only by analog objects. The
second part forms an overall dictionary about all analog units known to
the device, which is then getting passed back to add to the device property
dictionary. The same procedure is done also for binary and multi-state data,
by considering their specific properties.

6.4.2 Serialization Results

As an illustration of a final result, Listing 6.6 shows the serialized data of the
commercial building, captured by running the connection and serialization
process on the Raspberry PI hardware.

1 {

2 ’objectIdentifier ’: "device",

3 ’objectType ’: "device",

4 ’objectName ’: "W100XG001",

5 ’description ’: "TRA Controller EG",

6 ’location ’: "W100XGV01/EG",

7 ’vendorIdentifier ’: 7,

8 ’vendorName ’: "Vendor Building Technologies",

9 ’modelName ’: "PXC3.E75 -1",

10 ’analogUnits ’: {

11 ...

12 },

13 ’binaryStates ’: {

14 ...

15 },

16 ’multiStates ’: {

17 ...

18 }

62

6 Implementation

19 }

Listing 6.6: Serialized data of a BACnet device

The provided JSON object of Listing 6.6 represents serialized data of a
BACnet controller device. It includes essential information such as the de-
vice’s object identifier, type, description and vendor details. The blocks for
analogUnits, binaryStates and multiStates are nested dictionary objects.
These blocks contain information about the objects and their related prop-
erties. Listing 6.7 shows an excerpt of the serialized analog and multistate
data points.

1 ’analogInput_4 ’: {

2 ’objectName ’: "W002GVS01/EG/R0_11S/SenDev/TR",

3 ’objectType ’: "analogInput",

4 ’description ’: "Room temperature",

5 ’statusFlags ’: [0, 0, 0, 0],

6 ’presentValue ’: 22.65999984741211 ,

7 ’lastTimestamp ’: "2023 -04 -18 T12 :28:56.655717+02:00" ,

8 ’units ’: "degreesCelsius"

9 }, ...

10

11 ’multiStateValue_22 ’: {

12 ’objectName ’: "W002GVS01/EG/R0_09_1/RHvacCoo/RAInd",

13 ’objectType ’: "multiStateValue",

14 ’description ’: "Room air quality indication",

15 ’statusFlags ’: [0, 1, 0, 0],

16 ’presentValue ’: 1,

17 ’lastTimestamp ’: "2023 -04 -18 T12 :28:58.849615+02:00" ,

18 ’stateText ’: [

19 "Undefined",

20 "Poor",

21 "Okay",

22 "Good"]

23 },

Listing 6.7: Serialized data of an analog and multistate object

6.5 Brick Ontology Generation

This section addresses the utilization of Brick in developing data-driven
applications. Brick provides a collection of references that describe the
interface between Brick and other APIs, databases, software libraries or
digital representations. The fundamental purpose of a Brick model is to
describe the data sources present in a building along with their contextual
information. Data sources are represented by instances of the Brick Point

63

6 Implementation

class, while the context is provided by instances of locations, equipment,
systems and other entities within the building. Brick relationships establish
associations between these instances and the corresponding data sources.
The bidirectional approach in connecting instances grants flexibility in how
software can interact and model a building and its data.

To enable data-driven applications and generate value, the creation of a Brick
model is necessary. Depending on factors like the availability of metadata or
digital representations of the building, Brick models can differ in the level of
detail. There is no predefined methodology for building a Brick model, but
common practice involves exploring data structures to represent collections
of similar information, such as all rooms in a building. The main idea is to
traverse these data structures and the creation of triples in a graph along
the way (Fierro & Nagare, 2022).

6.5.1 BACnet-to-Brick Mapping

Understanding the relationships between BACnet objects and their rep-
resentations in the Brick ontology model is important for modelling the
Brick ontology graph. Therefore, an intermediate mapping process has been
developed. This mapping process involves establishing a direct one-to-one
correspondence, linking BACnet properties to their respective Brick entities
within the ontology model. Figure 6.4 presents an illustrative flow diagram
providing an overview of the mapping process. The blue marked fields
are the BACnet objects of their respective device, which serve as a starting
point for the mapping process. The final Brick entities are marked as yellow
blocks. Some parts of the mapping process need to distinguish between the
types of objects, especially if they are analog, binary or multi-state measures,
which are represented in green. Each BACnet object will be defined as a
unique entity within the Brick ontology. The labelling of the edges shows
the corresponding relationship between the object id and the corresponding
Brick attribute or entity.

Although not explicitly illustrated in Figure 6.4, distinguishing between ana-
log sensors and setpoints is a particular case to consider. Analog measures
have associated engineering units, which allow for more precise handling.
Taking the engineering units into account, it is possible to achieve a higher
degree of detail, by utilizing subclasses of the sensor and setpoint entities
within the Brick model.

64

6 Implementation

brickTypeInput =


Temperature Sensor if unit = ”degreesCelsius”
Pressure Sensor if unit = ”pascals”
. . .

(6.1)

An approach to handling the mapping of engineering units from BACnet to
their corresponding Brick entities involves the utilization of a lookup table.
This lookup table acts as a reference that combines the various engineering
units used in BACnet with their representations in the Brick ontology
model. Equation 6.1 shows an excerpt from the lookup table and how
internal decision-making is done. An analog input object in the context
of BACnet is defined as a sensor responsible for measuring analog values.
Additionally, when the specific engineering unit, such as degreesCelsius
is known, a more detailed distinction can be achieved by classifying the
analog input object as a ”Temperature Sensor”. A similar approach has been
applied to analog values, which are representing setpoints. To augment
the mapping process, further information is integrated using a one-to-one
relationship, achieved by introducing a BACnet reference as an external
resource. This reference establishes a direct link between BACnet object
properties and their corresponding Brick entities.

Properties

BACnet device

Type

Object Name

BACnet Objects

Input

Output

Value

Brick.Command

Brick.Setpoint**

Brick.Sensor**

Brick.Status

isPartOfBrick.Room Brick.Floor

hasTypeDevice Brick.Device

hasType

hasType

Brick Literals / Numbers
hasDescription
lastKnownValue

hasUnit

hasPossibleValue

Unit.engineeringUnit

Array of Literals

deviceInformation

Compound
Information*

Analog

Binary / MultiState

Analog

Binary / MultiState hasType

hasType

Figure 6.4: Mapping of BACnet properties to their corresponding Brick entities
* The splitting of the compound information is discussed in Section 7.1 Floor and Room Association
** Sensors and setpoints of type analog have a more detailed distinction shown in Equation 6.1

65

6 Implementation

6.5.2 Brick Schema (Python)

The brickschema python package is a software library that provides func-
tionality for creating or loading Brick models, validating data instances
and performing querying and transformation operations. The package is
open-source and its code as well as documentation can be found on Github1.
Brick is built around traditional Graph-based data structures and offers a
wrapper around the RDFlib (RDFLib Team, 2023).

Graph Creation

The main Graph object is just a subclass of the RDFlib Graph library and
serves as the starting point for creating a new model. Listing 6.8 shows how
to import the library and bind namespaces to a newly created graph. The
namespaces are used to access all necessary references and tags. Besides the
predefined namespaces, a new namespace called BLDG is created, which will
be used to reference the characteristics of the building.

1 import brickschema

2 from namespaces import A, BRICK , UNIT , BACNET , REF

3 from rdflib import Literal , Namespace

4

5 BLDG = Namespace("urn:commercial_building#")

6 g = brickschema.Graph ()

7

8 g.bind("brick", BRICK)

9 g.bind("bacnet", BACNET)

10 g.bind("bldg", BLDG)

11 g.bind("ref", REF)

Listing 6.8: Using the brickschema python package to create a RDF based graph and binding
namespaces

Floors and Rooms

As suggested by Fierro and Nagare (2022), the next step starts by traversing
the data structures created by the serialization task (see Section 6.4). Each
object contains possible information about its location like floor and room.
The function displayed in Listing 6.9 get the URI of the current object as
well as the floor and room passed as parameters. By accessing the BLDG

namespace, each floor and room gets an associated reference identifier to
the building namespace defined previously. Afterwards, triples are added to

1https://github.com/BrickSchema/py-brickschema (accessed 26 June 2023)

66

https://github.com/BrickSchema/py-brickschema

6 Implementation

the graph by the use of the add() function. Floors and rooms are considered
to be unique entities. In order to prevent duplicates, each URI gets stored in
an array of already-known floors and rooms. After checking for duplicates,
each room gets linked to its corresponding floor by the BRICK.isPartOf

relationship. The last triple being added to the graph is the link between the
current object and its room location by the BRICK.isLocatedIn relation.

1 unique_floor_uris = {}

2 unique_room_uris = {}

3

4 def add_object_location(obj_uri , floor , room):

5 floor_uri = BLDG[floor]

6 room_uri = BLDG[room]

7

8 if floor_uri not in unique_floor_uris:

9 g.add((floor_uri , A, BRICK.Floor))

10 unique_floor_uris[floor_uri] = floor_uri

11

12 if room_uri not in unique_room_uris:

13 g.add((room_uri , A, BRICK.Room))

14 g.add((room_uri , BRICK.isPartOf , floor_uri))

15 unique_room_uris[room_uri] = room_uri

16

17 g.add((obj_uri , BRICK.isLocatedIn , room_uri))

Listing 6.9: Adding floors and rooms to the Brick graph and linking location information

BACnet Devices

The modelling of device data starts by creating a URI based on the BLDG

namespace. A BACnet device refers to a physical or virtual entity that
supports the BACnet protocol. The available information about each device
gets added to the graph in the form of triples. Each BACnet device is also
linked to the BACNET namespace, by using the BACNET.BACnetDevice tag,
shown in Listing 6.9. Most of the information about a device is stored as
plain text containing possible whitespaces or special characters. In order
to not invalidate the graph, these data need to be declared as RDFLib
Literals. After modelling the device entity, the created URI for the device
gets returned, to traverse the device objects and link them to the device.

1 def add_device_data(device_data):

2 device_name = device_data[OBJECT_ID]

3 device_uri = BLDG[device_name]

4

5 g.add((device_uri , A, BRICK.Device))

6 g.add((device_uri , A, BACNET.BACnetDevice))

7 g.add((device_uri , BRICK.Description ,

67

6 Implementation

8 Literal(device_data[DESCRIPTION])))

9 g.add((device_uri , BRICK.Vendor_Name ,

10 Literal(device_data[VENDOR_NAME])))

11 ...

12

13 return device_uri

Listing 6.10: Adding device information to the Brick model

BACnet Objects

Each BACnet object represents a specific data point or functional component
within a device. This can be sensors, setpoints, status, commands and more.
The available information of each BACnet object is being added to the Brick
graph, capturing details such as type, description or last known value. 4.2.1
External References discusses the external references to BACnet objects, that
Brick is able to model. According to this, each object gets linked with its
associated BACnet information by an external reference.

1 object_uri = BLDG[object_name]

2

3 add_object_location(object_uri , floor , room)

4

5 BRICK_TYPE = get_brick_type (...)

6

7 g.add((object_uri , A, BRICK_TYPE))

8 g.add((object_uri , A, BACNET.BACnetObject))

9 g.add((object_uri , BRICK.Description ,

10 Literal(analog_unit[DESCRIPTION])))

11 ...

12 g.add((object_uri , REF.hasExternalReference ,

13 [

14 (A, REF.BACnetReference),

15 (BACNET.objectIdentifier , Literal(obj_id)),

16 (BACNET.objectName , Literal(object_name)),

17 (BACNET.objectOf , device_uri)

18]))

Listing 6.11: Adding BACnet object information to the Brick model

Because of the broad variety of BACnet objects, a helper class was imple-
mented to map specific information about an object to its desired Brick
Point, to gain as many details as possible. For instance, an analog input
object that measures values with the unit of degrees Celsius can be declared
as a BRICK.TemperatureSensor which is a subclass of the BRICK.Sensor

Point. Listing 6.12 shows some of the extra treatments, each type of object
needs. For instance, analog objects do have additional information about the

68

6 Implementation

engineering units. Multi-state objects have multiple possible values or states,
which can be abstracted by the BRICK.hasPossibleValue relationship.

1 # Analog Objects

2 g.add((object_uri , BRICK.hasUnit , UNIT.DEG_C))

3

4 # Binary Objects

5 g.add((object_uri , BRICK.Polarity ,

6 Literal(binary_state[POLARITY])))

7

8 # Multistate Objects

9 for state_text in multistate[STATE_TEXTS]:

10 g.add((object_uri , BRICK.hasPossibleValue ,

11 Literal(state_text)))

Listing 6.12: Differences of BACnet objects when modeling in Brick

Serialization and Validation

Listing 6.13 shows the last two steps in generating the Brick model. Firstly
the graph is expanded based on the Shapes Constraint Language (W3C,
2017). Secondly, the graph is serialized and saved as a Brick model in the
Turtle (TTL) file format, which is defined in the RDF framework of the
RDFLib Team (2023). To validate the created graph, a reloading of the
currently serialized file takes place. Brick has a built-in validation check
when loading existing graphs. After loading the valid parameter is read to
visualize the result of the validation process.

1 # Serialization

2 output_file = "brick_model_" + current_date_time

3 g.expand(profile="shacl")

4 g.serialize(destination=output_file , format="ttl")

5

6 # Validation

7 check = brickschema.Graph()

8 check.load_file(output_file)

9 valid , _, _ = check.validate ()

Listing 6.13: Serializing the Brick model and validating the created graph

69

6 Implementation

6.5.3 Brick Generation Results

Based on the results of the serialization process a Brick model was generated
as described in Section 6.5 Brick Ontology Generation. To illustrate the
results, the following section will have a look at some excerpts of the
generated Brick model. Listing 6.14 shows an example of how floors and
rooms are connected. Each floor is associated with the BLDG namespace and
is tagged as a BRICK.Floor. Each room follows a similar procedure with an
additional BRICK.isPartOf relationship to the floor it is located.

1 bldg:EG a brick:Floor .

2

3 bldg:1OG a brick:Floor .

4

5 bldg:R0_027 a brick:Room ;

6 brick:isPartOf bldg:EG .

7

8 bldg:R1_112 a brick:Room ;

9 brick:isPartOf bldg:1OG .

Listing 6.14: Floors and rooms example of the Brick model

To describe the BACnet devices within a building, each device was tagged
as BRICK.Device as shown in Listing 6.15. Additionally Brick offers BACnet
support and therefore the device is also marked as a BACNET.BACnetDevice.
The RDF snippet also contains information about the device description,
model name and vendor information. Apparently, there was no location
information stored in the BACnet properties of devices. This results in
devices being the sole entities in the namespace of the building.

1 bldg:device_100 a bacnet:BACnetDevice ,

2 brick:Device ;

3 brick:Description "Controller on first floor" ;

4 brick:Model_Name "CRN -7H9Z2" ;

5 brick:Vendor_Id 4 ;

6 brick:Vendor_Name "Vendor Technologies" .

Listing 6.15: BACnet device example of the Brick model

The final example shown in Listing 6.16, shows the modelling of a BACnet
object from the previously described device. The selected object is a multi-
StateInput. The object was tagged as a BRICK.Status Point, which reports
a current state, mode or condition of an item. In addition, the entity was
tagged as BACNET.BACnetObject. The particularity of a multiStateInput is that
it can have two or more predefined possible values. This can be modelled
by using a BRICK.hasPossibleValue relation between the object and the
possible values as literals. On top of that, Brick offers support for BACnet

70

6 Implementation

objects as external references. In this example, the entity is provided with
an REF.hasExternalReference block, which holds information about the
device, identifier and name of the BACnet object.

1 <urn:commercial_building:X_CRN_7856_Switch > a

2 bacnet:BACnetObject ,

3 brick:Status ;

4 brick:Description "Operating mode switch" ;

5 brick:hasPossibleValue "Off", "Auto", "On" ;

6 brick:lastKnownValue 3 ;

7 ref:hasExternalReference [a ref:BACnetReference ;

8 bacnet:objectOf bldg:device_100 ;

9 bacnet:object_identifier "multiStateInput_1" ;

10 bacnet:object_name "D100_X_CRN_7856_OpModSwi_1"] .

Listing 6.16: BACnet object example of the Brick model

71

7 Results and Discussion

The following section presents a comprehensive analysis of the ontology
graph, focusing on the comparison between the real experiment and the
virtual experiment. The analysis begins by examining the overall model
in terms of the rdf:type property. This property provides insights into
the broader categorization of nodes within the ontology. Table 7.1 shows
a detailed comparison of all nodes found in both the real and virtual
experiments. This table presents a side-by-side comparison of the node
types, allowing for a comprehensive assessment of their similarities and
differences.

Table 7.1: Comparison of real and virtual ontology model nodes
Type Real-world model Virtual model
bacnet:BACnetDevice 9 9

brick:Floor 6 6

brick:Room 103 180

brick:Sensor 35 391

brick:Temperature Sensor 216 298

brick:Pressure Sensor 11 264

brick:Flow Sensor 12 91

brick:Current Sensor 4 83

brick:Energy Usage Sensor 20 212

brick:Humidity Sensor 33 95

brick:Air Quality Sensor 34 90

brick:Electric Power Sensor 15 195

brick:Duration Sensor 0 95

brick:Voltage Sensor 3 71

brick:Speed Sensor 0 91

brick:Setpoint 3041 4094

brick:Flow Setpoint 407 125

brick:Speed Setpoint 20 127

brick:Temperature Setpoint 1225 390

brick:Pressure Setpoint 3 236

brick:Time Setpoint 2 148

brick:Humidity Setpoint 71 118

brick:Loop 356 0

brick:Command 163 4672

brick:Heating Command 1 406

brick:Status 112 3557

72

7 Results and Discussion

7.1 Floor and Room Association

The association of floors and rooms within Brick models plays a crucial
role in accurately modelling location information for various nodes within
the ontology. The incorporation of spatial context through floor and room
associations allows for a more comprehensive representation of the physical
layout and relationships between different objects within a building or
facility. By explicitly linking nodes to specific floors and rooms, the ontology
captures the spatial hierarchy and provides a structured representation of
the physical environment.

However, a common problem arises when dealing with building automation
systems, such as BACnet, where the location object field is only manda-
tory for device objects. This limitation can lead to challenges in accurately
associating floors and rooms with non-device objects within the ontology
model in an automated fashion. To address this issue, technicians of the non-
residential building resort to using primitive datatype fields to manually
associate floors and rooms with various objects. While this approach allows
for some level of location information to be captured, it is less structured
and may introduce inconsistencies or incomplete information. Technicians
encountered the challenge by utilizing the object name field in the BACnet
objects metadata, which is of type string. They addressed this limitation by
concatenating relevant details with character delimiters which are illustrated
in Figure 7.1. This approach requires subsequent splitting of the textual
information to extract floor and room data.

W100BC001 ' 1OG ' R1_05S ' SenDev ' TR

Device Floor Room Additional Info

Figure 7.1: Concatenated object information containing floor and room

By employing this workaround, technicians were able to incorporate floor
and room associations into the BACnet system. Although the approach
required additional processing steps to extract the desired location informa-
tion, it provided a means to represent the spatial context of different objects
within the BACnet system. To overcome this challenge, it is essential to en-
courage the adoption of standardized practices, that promote explicit floor
and room associations for all relevant nodes. BUDO (Stinner et al., 2018), a
comprehensive naming scheme, offers a potential solution to the challenge
faced with associating floor and room information in the BACnet system. It
utilizes a hierarchical structure to encode detailed information in a prede-
fined naming scheme. The solution is pretty similar to what technicians have

73

7 Results and Discussion

done in the practical example of this study, but the naming scheme could
vary when it comes to different vendors or buildings. Therefore BUDO was
invented to define an overall naming scheme. For better appliances of the
naming scheme, the natural language-based machine learning algorithm
AIKIDO (Stinner et al., 2019) was developed to automate the translation of
building and control systems into the BUDO naming scheme. This results
in the reduced manual effort required for data analysis.

7.2 Performance Measures

In this section, performance measurements in terms of time consumption as-
sociated with the experiment are explored to gain insights into the duration
required for capturing a snapshot and creating the ontology model in both
environments, real and virtual. Table 7.2 gives an overview of the snapshot
creation times for the real and virtual examples.

Table 7.2: Time measures for snapshot creation of specific devices in MM:SS.sss
Real environment Virtual environment

Device Time Device Time
WDXXZ BC01 00:21.747 Device 100 00:00.134

Smart W100BC01 00:49.086 Device 200 00:00.143

Smart W100BC02 00:24.774 Device 300 00:00.118

Workstation 1 00:00.191 Device 400 00:00.124

Workstation 2 00:00.121 Device 500 00:00.129

W100BC001 00:25.746 Device 600 00:00.216

W100BC100 00:57.885 Device 700 00:00.125

W100BC200 01:16.160 Device 800 00:00.124

W100BC300 00:36.646 Device 900 00:00.292

Overall* 04:55.640 Overall* 00:04.632
*The overall time includes the time for establishing a connection to the BACnet and

disconnecting afterwards

Comparing the real and virtual environments, it is evident that the snapshot
creation process is significantly faster in the virtual environment. The virtual
devices consistently achieve creation times in the range of milliseconds,
while the real devices exhibit higher variation and generally take several
seconds or even minutes to complete the process. It’s worth noting that
the specific devices listed in the table, as well as the measured times, are
provided for illustrative purposes. The actual results and their implications
may vary depending on the context and the specific devices and technologies
involved.

74

7 Results and Discussion

These results suggest that virtualization provides a more efficient and stream-
lined environment for snapshot creation. The virtual environment offers
significant benefits when it comes to testing smart building applications
based on BACnet systems. One major advantage is that virtual simulation
eliminates the need for real network calls, relieving the burden on the real-
world network infrastructure. This not only helps to relieve the building’s
network but also allows for a more controlled and efficient testing process.
Additionally, virtual devices benefit from reduced time overheads associated
with physical communication and hardware limitations, resulting in faster
and more consistent performance. Ultimately, these benefits of the virtual
environment contribute to the development of more reliable, efficient and
interoperable smart building solutions.

Table 7.3: Time measures for ontology creation based on system snapshots in MM:SS.sss
Number of objects Time

Real-world environment 5818 00:10.079

Virtual environment 15920 00:28.583

The second table provides time measures for ontology creation based on
system snapshots in both a real-world environment and a virtual environ-
ment. Table 7.3 consists of three columns namely the environment type, the
number of objects involved in the ontology creation and the corresponding
time required for the modelling process.

The time consumption for ontology creation in both environments appears
to be closely related to the number of objects involved in the process. In this
case, the ontology models were created based on a snapshot of the system
state, which allows for more accurate and comparable measurements of time.
Looking at the table, it’s observable that as the number of objects increases,
the time required for ontology creation also increases. This relationship
suggests that there is a certain level of computational effort involved in
analyzing and structuring each object within the ontology.

7.3 Coverage

Coverage of the ontology model refers to the measurement of how effectively
the model captures the elements or features of the target domain. In the
context of setpoints coverage is a quantitative assessment of the proportion
of setpoints accurately represented in the ontology model.

Coverage =
Number setpoints ontology model

Number setpoints re f erence dataset
∗ 100% (7.1)

75

7 Results and Discussion

The calculation can be mathematically expressed by Equation 7.1 where the
number of setpoints in the ontology model represents the count of setpoints
captured by the ontology and the number of setpoints in the reference
dataset represents the total count of setpoints available in a given reference
source.

7.3.1 Real-World Environment

The presented Table 7.4 illustrates the comparison between the setpoints
covered in the ontology model and a comprehensive technical datasheet
provided by technicians for two specific devices. To determine the coverage,
the number of setpoints listed in the datasheet is compared with the number
of setpoints modelled in the ontology.

Table 7.4: Coverage of setpoints in ontology model compared to technical datasheet

Type Setpoints CoverageDatasheet Ontology
Smart W100BC01

Analog 169 171 101% *
Binary 172 152 88%
Multistate 53 49 92%
Overall 394 372 94%

Smart W100BC01
Analog 113 109 96%
Binary 76 65 85%
Multistate 27 22 81%
Overall 216 201 93%

*see discussion below

The analysis of the coverage measurements highlights that the extent to
which the ontology model captures setpoints varies depending on the spe-
cific device and the type of setpoints. Overall, the ontology model demon-
strates a commendable ability to capture a substantial portion of the set-
points listed in the provided datasheet. However, there are instances where
certain setpoints were not included in the ontology model.

Missed setpoints in the ontology model can be attributed to several poten-
tial factors. One factor is the incomplete documentation provided in the
datasheet, which may not offer an exhaustive list of all setpoints or lack de-
tailed information for certain setpoints. This limited information can hinder
the modelling process to have access to complete and comprehensive data,
leading to the inadvertent exclusion of certain setpoints during the snapshot

76

7 Results and Discussion

creation process. Another factor is the static nature of the datasheet, which
represents another snapshot captured on 20th January 2023. As a static
representation, the datasheet might not encompass a list of all setpoints or
provide detailed information for specific setpoints consequently resulting in
the unintentional omission of certain setpoints during the snapshot creation
process.

Additionally, the dynamic nature of smart building systems should be
considered. Setpoints are subject to changes over time due to updates,
modifications or system reconfigurations. If the snapshot used for ontology
modelling does not accurately capture the most up-to-date state of the
system, it can contribute to inaccuracies and the absence of certain setpoints
in the ontology model. Factors such as defects in devices or devices that
are currently switched off during the snapshot can also result in missing
setpoints.

7.3.2 Simulated Environment

Table 7.5 showcases the coverage results of setpoints in the ontology model
compared to the setpoints generated in the virtual and simulated environ-
ment. Unlike the previous scenario, there is no datasheet available for the
virtual devices since they were generated based on the existing knowledge
and expertise with a predefined number of total setpoints.

Table 7.5: Coverage of setpoints in ontology model compared to virtually generated devices

Type Setpoints CoverageDatasheet Ontology
Device 500

Analog 203 203 100%
Binary 463 463 100%
Multistate 276 276 100%
Overall 942 942 100%

Device 800
Analog 282 282 100%
Binary 403 403 100%
Multistate 413 413 100%
Overall 1098 1098 100%

Due to the ability to generate virtual devices using the extent of own
knowledge, the ontology model achieves complete coverage of setpoints for
both devices as reflected in Table 7.5. The model achieved a coverage of 100%
for both devices which can be attributed to the enhanced level of control

77

7 Results and Discussion

over the simulated network. This increased control allows for meticulous
modelling and the inclusion of all relevant setpoints.

In the virtual experiment, devices were generated based on the extent of
own domain knowledge, enabling a controlled and precise representation.
However, since the virtual devices were generated solely based on existing
knowledge, they do not account for edge cases or specific scenarios that
real-world building systems might exhibit. The focus of the virtual devices
is limited to the point of knowledge that the experts possess, ensuring that
the simulated devices accurately represent the known characteristics and set-
points. The simulated environment is designed to be expandable, allowing
for the inclusion of not only the current modelled real-world buildings but
also accommodating the potential future capturing of edge cases and intrica-
cies. This expandability ensures that as new building systems are captured
and processed, the simulated environment can be augmented to incorporate
their unique characteristics and edge cases. By continuously refining and
expanding the simulated environment, the virtual representations become
more comprehensive and adaptable.

78

8 Threats to Validity

One potential threat to the validity of this study is the limited scope re-
sulting from the inclusion of only one building as a practical experiment.
While the specific observations and findings obtained from this particular
building are valuable, the generalizability of the results may be restricted.
The characteristics and behaviours observed in this specific building may
not be representative of other buildings or vendors in the same domain. To
enhance the validity of future studies, it is recommended to consider a larger
sample size that includes multiple buildings from different vendors.

Another threat to validity arises from the vendor dependency of the studied
building. The control and data collection for the experiment were solely
provided by one vendor. During interviews with the vendor, it was con-
firmed that each building is treated as a separate project and there is no
standardized naming scheme applied across all projects, even within the
same vendor. This variability in naming schemes and project-specific con-
figurations can introduce potential biases and inconsistencies in the data.
Future research should involve collaboration with multiple vendors to gain a
more comprehensive understanding of industry practices, naming schemes
and configuration across different vendors and projects.

Furthermore, the utilization of optional fields in BACnet objects introduces
another threat to validity. These optional fields may be used to provide
additional information, but their interpretation and usage can vary between
vendors and even within different projects. While optional fields may be used
to provide additional information, it is important to note that mandatory
fields can also be employed to store and concatenate multiple sources of
information within the objects. However, the interpretation and usage of
both optional and mandatory fields can vary significantly and result in
more complications when it comes to modelling. These variations have the
potential to impact the accuracy and generalizability of the study’s results.

Additionally, changes in the network over time pose a threat to the validity
of the study. The network used for data collection and analysis is subject
to modifications, such as updates in network infrastructure, changes in
hardware, firmware updates or alterations in the configuration of devices.
These network changes can introduce variations in data quality, consistency
and the behaviour of building systems.

79

9 Future Work

This chapter explores potential avenues for further development and en-
hancement of the research presented in this thesis. Building upon the suc-
cesses and insights gained from the current study, this chapter outlines
several key areas where future work can expand the capabilities and appli-
cability of the developed tool. By addressing these aspects, the research can
continue to advance the field of semantic data capture in smart buildings and
contribute to the ongoing evolution of building automation technologies.

9.1 Timeseries Classification

In order to address situations where the sensor or object information is
limited or unavailable, an important area for future exploration is the devel-
opment of time series classification techniques (Ismail Fawaz et al., 2019). By
leveraging time series data, such as those stored in databases like InfluxDB
(InfluxData Inc., 2023), advanced machine learning algorithms can be trained
to classify and determine the sensor type based on patterns and character-
istics in the data. This approach would provide a solution for automating
the identification and categorization of sensors, even in cases where explicit
information is not readily available.

9.2 Evaluation of Different Ontologies

While the current research focused on populating a Brick ontology, there is a
need to further investigate and evaluate the effectiveness of other ontologies
specifically designed for the building sector, such as Project Haystack (Project
Haystack, 2023) or SAREF (SAREF, 2023). Conducting a comprehensive eval-
uation of different ontologies would involve mapping and transforming
the captured semantic data into the corresponding ontology structures. By
examining factors such as expressiveness, extensibility and compatibility
with existing industry standards, this evaluation would provide insights
into the suitability of different ontologies for representing building-related

80

9 Future Work

information. Understanding the strengths and limitations of various ontolo-
gies would foster interoperability and enable seamless data exchange and
integration across different systems and platforms.

9.3 Protocol Adaptions

To enhance the versatility and applicability of the developed tool, a cru-
cial aspect of future work involves adapting the tool to support additional
protocols commonly used in building automation. This expansion could
encompass protocols like LoraWAN (LoRa Alliance, 2015), Modbus (Mod-
bus Organization, 1979) or ZigBee (Connectivity Standards Alliance, 2004),
which are widely employed in various building systems. Adapting the tool
to capture and integrate semantic data from these protocols would enable
a wider range of building automation scenarios to be addressed. The tool
would need to incorporate protocol-specific communication modules or
adapters to effectively communicate with and interpret data from these pro-
tocols. By supporting multiple protocols, the tool would empower users to
capture and leverage semantic data from various building systems, ensuring
its compatibility with a wide range of existing and emerging technologies
in the building automation industry.

9.4 Expanding the Experiment

To further validate and generalize the findings, it is crucial to expand the
experiment beyond a single building from a single vendor. This expan-
sion would involve conducting research on a larger sample size, including
buildings from different vendors and architectural and technological char-
acteristics. By capturing semantic data from a more extensive range of
buildings, the robustness and reliability of the developed tool as well as the
simulation environment can be thoroughly assessed. Additionally, it would
enable the identification of any limitations, biases or vendor-specific factors
that could impact the tool’s performance and applicability in real-world
scenarios.

9.5 Evaluation of Machine Learning Algorithms

In addition to the previously mentioned areas of future work, another aspect
to explore is the potential benefit of structured metadata in enhancing knowl-

81

9 Future Work

edge management (Fensel, 2001) to enhance the performance of machine
learning algorithms. By utilizing the comprehensive metadata structures
captured through the developed ontology models, it becomes possible to
investigate the impact of this structured information on the effectiveness
and accuracy of machine learning models.

A promising direction for future work involves designing experiments where
machine learning algorithms are compared directly, with and without the
availability of structured metadata ontologies. By conducting comparative
evaluations, the usefulness of the ontology models can be assessed in im-
proving the performance of AI algorithms. These experiments would involve
training and testing machine learning models on datasets that include both
raw sensor data and the enriched metadata from ontology models. The
evaluation could focus on assessing various performance metrics, such as
prediction accuracy, anomaly detection or energy optimization to determine
the extent to which the structured metadata contributes to the effective-
ness of the AI algorithms. This could enhance our understanding of the
relationship between structured metadata and AI algorithms and create
opportunities for the development of more intelligent and context-aware
smart building applications.

82

10 Conclusion

The practical example in this research project showcased the use of afford-
able hardware and software requirements. Raspberry Pi, a cost-effective and
widely available hardware platform, was employed to establish a connection
with a real-world smart building. The flexibility and versatility of a Rasp-
berry Pi combined with the use of Python and its available libraries and
frameworks provided a practical and accessible solution for integrating with
the smart building system. This approach demonstrated the feasibility and
applicability of smart building technologies using inexpensive hardware
and widely used software tools.

The simulation approach employed in this study has utilized dockerized
applications and leveraged the virtual local network provided by the Docker
framework in conjunction with Python. This combination of technologies
has proven to be highly effective in simulating and understanding the
intricate workings of BACnet-based building systems. By replicating the
behaviour of these systems, the simulation environment has facilitated a
profound understanding of the underlying concept and functionalities of
the BACnet protocol. Moreover, the simulation approach has surpassed the
capabilities of real hardware when it comes to creating system snapshots. It
has provided a streamlined and efficient method for capturing system states.
By utilizing Docker and Python, the virtual environment has bypassed
the complexities and limitations typically encountered when relying on a
physical network. One of the major advantages is the elimination of the
overhead associated with real network calls. This independence from a
physical network allows for more controlled and repeatable experiments,
making the simulation environment well-suited for testing applications and
evaluating their performance in a controlled and isolated setting.

The coverage results obtained through the experiments have demonstrated
promising outcomes, particularly when considering the real-world example.
In the practical experiment, the generated ontology model achieved coverage
rates of over 90% for the most critical objects within the building. This
comprehensive coverage ensures that the majority of important objects
and functionalities are accurately represented within the generated Brick
ontology model. The generated ontology model successfully establishes a
structured and standardized mapping of semantic data within buildings. In

83

10 Conclusion

contrast to the real-world example, it is important to acknowledge that the
virtual experiment has been designed to the extent of current knowledge
and may have limitations in capturing all the edge cases and intricacies
present in a real system. The virtual environment’s coverage should be
understood in this context, recognizing that it may not encompass all the
nuances and intricacies that a real-world system could exhibit. Moreover, by
additional programming effort tailored to this project, the experiment has
been improved with the inclusion of floor and room mapping to display the
spatial hierarchy of the building. This customization played a vital role in
conducting a more thorough analysis and evaluation of the building system.
This additional effort was specifically done for only one project and cannot
be possibly adopted for other buildings, even of the same vendor. It is worth
noting that the development of a standardized naming scheme, such as
BUDO (Stinner et al., 2018), would be beneficial in ensuring consistency
and interoperability across different smart building projects, addressing the
current need for a unified approach in naming conventions. Implementing
such a standardized naming schema would enhance the comparability and
exchangeability of structured information in the field of smart building
research and contribute to the ongoing advancements of the domain.

84

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software
development methods: Review and analysis [Publisher: arXiv Version
Number: 1]. https://doi.org/10.48550/ARXIV.1709.08439 (cit. on
p. 17)

Agarwal, P., & Alam, M. (2020). Investigating IoT middleware platforms
for smart application development [Series Title: Lecture Notes in
Civil Engineering]. In S. Ahmed, S. M. Abbas, & H. Zia (Eds.), Smart
cities—opportunities and challenges (pp. 231–244). Springer Singapore.
https://doi.org/10.1007/978-981-15-2545-2 21. (Cit. on p. 18)

Ahmad, M. O., Markkula, J., & Oivo, M. (2013). Kanban in software devel-
opment: A systematic literature review. 2013 39th Euromicro Confer-
ence on Software Engineering and Advanced Applications, 9–16. https:
//doi.org/10.1109/SEAA.2013.28 (cit. on p. 17)

Alfalouji, Q., Schranz, T., Kümpel, A., Schraven, M., Storek, T., Gross, S.,
Monti, A., Müller, D., & Schweiger, G. (2022). IoT middleware plat-
forms for smart energy systems: An empirical expert survey. Buildings,
12(5), 526. https://doi.org/10.3390/buildings12050526 (cit. on p. 19)

Architecture 2030. (2022). Why the building sector? Retrieved July 20, 2023,
from https://architecture2030.org/why-the-building-sector/. (Cit.
on p. 1)

ASHRAE. (1995). BACnet. Retrieved April 13, 2023, from https://bacnet.
org/. (Cit. on pp. 1, 6, 21, 25, 28)

BACnet International. (2014). Introduction to BACnet: For building owners
and engineers. Retrieved May 13, 2023, from https://www.ccontrols.
com/pdf/BACnetIntroduction.pdf. (Cit. on pp. 24, 26, 27)

BACnet International. (2023). BTL certification [BACnet] [https://btl.org/about-
btl/]. Retrieved May 18, 2023, from https://bacnetglobal.org/btl-
certification/. (Cit. on pp. 22, 23)

Baheti, R., & Gill, H. (2011). Cyber-physical systems. The impact of control
technology, 12(1), 161–166 (cit. on p. 4).

Baker Jr, R. A. (1997). Code reviews enhance software quality. Proceedings of
the 19th international conference on Software engineering, 570–571 (cit. on
p. 17).

85

https://doi.org/10.48550/ARXIV.1709.08439
https://doi.org/10.1007/978-981-15-2545-2_21
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.3390/buildings12050526
https://architecture2030.org/why-the-building-sector/
https://bacnet.org/
https://bacnet.org/
https://www.ccontrols.com/pdf/BACnetIntroduction.pdf
https://www.ccontrols.com/pdf/BACnetIntroduction.pdf
https://bacnetglobal.org/btl-certification/
https://bacnetglobal.org/btl-certification/

Bibliography

Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen,
A., Koh, J., Ploennigs, J., Agarwal, Y., Berges, M., Culler, D., Gupta,
R., Kjærgaard, M. B., Srivastava, M., & Whitehouse, K. (2016). Brick:
Towards a unified metadata schema for buildings. Proceedings of the
3rd ACM International Conference on Systems for Energy-Efficient Built
Environments, 41–50. https ://doi .org/10 .1145/2993422 .2993577

(cit. on p. 20)
Basford, P. J., Bulot, F. M. J., Apetroaie-Cristea, M., Cox, S. J., & Ossont,

S. J. (2020). LoRaWAN for smart city IoT deployments: A long term
evaluation. Sensors, 20(3), 648. https://doi.org/10.3390/s20030648

(cit. on p. 8)
Bergmann, H., Mosiman, C., Saha, A., Haile, S., & Livingood, W. (2020).

Semantic interoperability to enable smart, grid-interactive efficient
buildings (cit. on p. 19).

Bertin, E., Crespi, N., & Magedanz, T. (2013). Evolution of telecommunica-
tion services: The convergence of telecom and internet: Technologies and
ecosystems (Vol. 7768). Springer. (Cit. on p. 18).

Brad, B. S., & Murar, M. M. (2014). Smart buildings using IoT technologies
[ISBN: 2304-6295 Publisher: Production, Research and Design Insti-
tution” Venchur”, Technological Cluster . . .]. Stroitel’stvo Unikal’nyh
Zdanij i Sooruzenij, (5), 15 (cit. on pp. 5, 6).

Brick Ontology. (2023, May 10). Brick ontology [Brick ontology documenta-
tion]. Retrieved May 10, 2023, from https://docs.brickschema.org/
intro.html. (Cit. on pp. 11, 12, 20, 41–43, 45)

BSRIA. (2018, March). Market intelligence study on global market pentration of
communications protocols. Retrieved May 18, 2023, from https://www.
bsria.com/us/product/B647Pn/world penetration of communications
protocols 2018 8a707622/. (Cit. on pp. 21, 22)

BTL. (2022). BTL database [BACnet testing laboratories]. Retrieved May 18,
2023, from https://www.bacnetinternational.net/btl/. (Cit. on p. 22)

BTL Working Group. (2023). Device testing [BACnet testing laboratories].
Retrieved May 18, 2023, from https://btl.org/device-testing/. (Cit.
on pp. 22, 23)

Buckman, A., Mayfield, M., & B.M. Beck, S. (2014). What is a smart building?
Smart and Sustainable Built Environment, 3(2), 92–109. https://doi.org/
10.1108/SASBE-01-2014-0003 (cit. on p. 5)

buildingSMART International. (2023). Industry foundation classes (IFC) [In-
dustry foundation classes (IFC) - an introduction]. Retrieved June
26, 2023, from https://technical.buildingsmart.org/standards/ifc/.
(Cit. on p. 41)

Bushby, S. T., & Newman, H. M. (2002). BACnet today. ASHRAE journal, 10,
10–18 (cit. on pp. 6, 21, 24, 26, 33).

86

https://doi.org/10.1145/2993422.2993577
https://doi.org/10.3390/s20030648
https://docs.brickschema.org/intro.html
https://docs.brickschema.org/intro.html
https://www.bsria.com/us/product/B647Pn/world_penetration_of_communications_protocols_2018_8a707622/
https://www.bsria.com/us/product/B647Pn/world_penetration_of_communications_protocols_2018_8a707622/
https://www.bsria.com/us/product/B647Pn/world_penetration_of_communications_protocols_2018_8a707622/
https://www.bacnetinternational.net/btl/
https://btl.org/device-testing/
https://doi.org/10.1108/SASBE-01-2014-0003
https://doi.org/10.1108/SASBE-01-2014-0003
https://technical.buildingsmart.org/standards/ifc/

Bibliography

Cao, X., Dai, X., & Liu, J. (2016). Building energy-consumption status world-
wide and the state-of-the-art technologies for zero-energy buildings
during the past decade. Energy and Buildings, 128, 198–213. https:
//doi.org/10.1016/j.enbuild.2016.06.089 (cit. on p. 1)

Carlin, D. (2022, April 5). 40% of emissions come from real estate. Retrieved July
20, 2023, from https://www.forbes.com/sites/davidcarlin/2022/04/
05/40-of-emissions-come-from-real-estate-heres-how-the-sector-
can-decarbonize/. (Cit. on p. 1)

Chandrasekaran, B. (1994). AI, knowledge, and the quest for smart systems.
IEEE Expert, 9(6), 2–5. https://doi.org/10.1109/64.363254 (cit. on
p. 9)

Chandrasekaran, B., Josephson, J., & Benjamins, V. (1999). What are ontolo-
gies, and why do we need them? IEEE Intelligent Systems, 14(1), 20–26.
https://doi.org/10.1109/5254.747902 (cit. on p. 9)

Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions
for the internet of things. 2012 International Conference on Collaboration
Technologies and Systems (CTS), 21–26. https://doi.org/10.1109/CTS.
2012.6261022 (cit. on p. 19)

Cimetrics Inc. (2019, October 10). The key components of the new deal for
buildings [IoT for all]. Retrieved May 17, 2023, from https://www.
iotforall.com/bacnet. (Cit. on pp. 2, 19, 21)

Connectivity Standards Alliance. (2004). ZigBee. Retrieved April 11, 2023,
from https://csa-iot.org/. (Cit. on pp. 7, 81)

Da Cruz, M. A. A., Rodrigues, J. J. P. C., Al-Muhtadi, J., Korotaev, V. V.,
& De Albuquerque, V. H. C. (2018). A reference model for internet
of things middleware. IEEE Internet of Things Journal, 5(2), 871–883.
https://doi.org/10.1109/JIOT.2018.2796561 (cit. on pp. 1, 18)

Devesh, M., Kant, A. K., Suchit, Y. R., Tanuja, P., & Kumar, S. N. (2020).
Fruition of CPS and IoT in context of industry 4.0 [Series Title: Ad-
vances in Intelligent Systems and Computing]. In S. Choudhury,
R. Mishra, R. G. Mishra, & A. Kumar (Eds.), Intelligent communi-
cation, control and devices (pp. 367–375). Springer Singapore. https:
//doi.org/10.1007/978-981-13-8618-3 39. (Cit. on p. 4)

Docker Inc. (2022, May 10). Docker: Accelerated, containerized application de-
velopment. Retrieved May 12, 2023, from https://www.docker.com/.
(Cit. on pp. 15, 16)

Docker Inc. (2023, May 20). Docker compose overview [Docker documentation].
Retrieved May 20, 2023, from https://docs.docker.com/compose/.
(Cit. on pp. 15, 36)

Dorsemaine, B., Gaulier, J.-P., Wary, J.-P., Kheir, N., & Urien, P. (2015). In-
ternet of things: A definition & taxonomy. 2015 9th International
Conference on Next Generation Mobile Applications, Services and Technolo-

87

https://doi.org/10.1016/j.enbuild.2016.06.089
https://doi.org/10.1016/j.enbuild.2016.06.089
https://www.forbes.com/sites/davidcarlin/2022/04/05/40-of-emissions-come-from-real-estate-heres-how-the-sector-can-decarbonize/
https://www.forbes.com/sites/davidcarlin/2022/04/05/40-of-emissions-come-from-real-estate-heres-how-the-sector-can-decarbonize/
https://www.forbes.com/sites/davidcarlin/2022/04/05/40-of-emissions-come-from-real-estate-heres-how-the-sector-can-decarbonize/
https://doi.org/10.1109/64.363254
https://doi.org/10.1109/5254.747902
https://doi.org/10.1109/CTS.2012.6261022
https://doi.org/10.1109/CTS.2012.6261022
https://www.iotforall.com/bacnet
https://www.iotforall.com/bacnet
https://csa-iot.org/
https://doi.org/10.1109/JIOT.2018.2796561
https://doi.org/10.1007/978-981-13-8618-3_39
https://doi.org/10.1007/978-981-13-8618-3_39
https://www.docker.com/
https://docs.docker.com/compose/

Bibliography

gies, 72–77. https://doi.org/10.1109/NGMAST.2015.71 (cit. on pp. 1,
5, 18)

Erturk, A. (2021, August 25). What is the difference between BACnet IP vs. BAC-
net MS/TP? [Blackhawk supply]. Retrieved May 19, 2023, from https:
//blackhawksupply.com/blogs/articles/what- is- the-difference-
between-bacnet-ip-vs-bacnet-ms-tp. (Cit. on p. 33)

Essa, I. (2000). Ubiquitous sensing for smart and aware environments. IEEE
Personal Communications, 7(5), 47–49. https://doi.org/10.1109/98.
878538 (cit. on p. 5)

European Commission. (2020, February 17). Energy efficiency in buildings.
https://commission.europa.eu/system/files/2020-03/in focus
energy efficiency in buildings en.pdf. (Cit. on p. 1)

European Environment Agency. (2022, October 26). Greenhouse gas emissions
from energy use in buildings in europe. Retrieved March 20, 2023, from
https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-
energy. (Cit. on p. 1)

Fagan, M. (2002). Design and code inspections to reduce errors in program
development. In M. Broy & E. Denert (Eds.), Software pioneers (pp. 575–
607). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-
59412-0 35. (Cit. on p. 17)

Fensel, D. (2001). Ontologies: Silver bullet for knowledge management. Springer.
(Cit. on pp. 2, 19, 82).

Fetting, C. (2020). The european green deal [Publisher: ESDN Office Vienna,
Austria]. ESDN report, 53 (cit. on p. 1).

Fierro, G., Koh, J., Agarwal, Y., Gupta, R. K., & Culler, D. E. (2019). Beyond
a house of sticks: Formalizing metadata tags with brick. Proceedings
of the 6th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, 125–134. https://doi.org/10.1145/
3360322.3360862 (cit. on pp. 19, 20)

Fierro, G., & Nagare, S. (2022). BrickSchema documentation. Retrieved June 27,
2023, from https://brickschema.readthedocs.io/. (Cit. on pp. 64, 66)

Gruber, T. (2008). Ontology. entry in the encyclopedia of database systems.
Springer-Verlag. (Cit. on p. 8).

Guarino, N. (1997). Understanding, building and using ontologies. Interna-
tional Journal of Human-Computer Studies, 46(2), 293–310. https://doi.
org/10.1006/ijhc.1996.0091 (cit. on p. 8)

Hermann, M., Pentek, T., & Otto, B. (2015). Design principles for industrie
4.0 scenarios: A literature review. Technische Universität Dortmund,
Dortmund, 45 (cit. on p. 4).

Holler, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D.
(2014). Internet of things. Academic Press. (Cit. on p. 6).

88

https://doi.org/10.1109/NGMAST.2015.71
https://blackhawksupply.com/blogs/articles/what-is-the-difference-between-bacnet-ip-vs-bacnet-ms-tp
https://blackhawksupply.com/blogs/articles/what-is-the-difference-between-bacnet-ip-vs-bacnet-ms-tp
https://blackhawksupply.com/blogs/articles/what-is-the-difference-between-bacnet-ip-vs-bacnet-ms-tp
https://doi.org/10.1109/98.878538
https://doi.org/10.1109/98.878538
https://commission.europa.eu/system/files/2020-03/in_focus_energy_efficiency_in_buildings_en.pdf
https://commission.europa.eu/system/files/2020-03/in_focus_energy_efficiency_in_buildings_en.pdf
https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-energy
https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-energy
https://doi.org/10.1007/978-3-642-59412-0_35
https://doi.org/10.1007/978-3-642-59412-0_35
https://doi.org/10.1145/3360322.3360862
https://doi.org/10.1145/3360322.3360862
https://brickschema.readthedocs.io/
https://doi.org/10.1006/ijhc.1996.0091
https://doi.org/10.1006/ijhc.1996.0091

Bibliography

InfluxData Inc. (2023). What is time series data? — definition, examples, types
& uses [InfluxData]. Retrieved June 26, 2023, from https://www.
influxdata.com/what-is-time-series-data/. (Cit. on pp. 46, 80)

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A.
(2019). Deep learning for time series classification: A review. Data
Mining and Knowledge Discovery, 33(4), 917–963. https://doi.org/10.
1007/s10618-019-00619-1 (cit. on p. 80)

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommen-
dations for implementing the strategic initiative INDUSTRIE 4.0: Securing
the future of german manufacturing industry; final report of the industrie
4.0 working group. Forschungsunion. (Cit. on p. 4).

Kocakulak, M., & Butun, I. (2017). An overview of wireless sensor net-
works towards internet of things. 2017 IEEE 7th Annual Comput-
ing and Communication Workshop and Conference (CCWC), 1–6. https:
//doi.org/10.1109/CCWC.2017.7868374 (cit. on p. 7)

Lê, Q., Nguyen, H. B., & Barnett, T. (2012). Smart homes for older people:
Positive aging in a digital world. Future Internet, 4(2), 607–617. https:
//doi.org/10.3390/fi4020607 (cit. on p. 5)

Lee, C.-H. (2016). Wireshark over SSH · site reliability engineer HandBook.
Retrieved May 21, 2023, from https ://s905060 .gitbooks. io/site-
reliability-engineer-handbook/content/howto use wireshark over
ssh.html. (Cit. on p. 56)

Li, H., & Hong, T. (2022). A semantic ontology for representing and quan-
tifying energy flexibility of buildings. Advances in Applied Energy, 8,
100113. https://doi.org/10.1016/j.adapen.2022.100113 (cit. on p. 20)

Linked Building Data Community Group. (2021). Building topology ontology
[Building topology ontology]. Retrieved June 26, 2023, from https:
//w3c-lbd-cg.github.io/bot/. (Cit. on p. 41)

Long, S. (2019, June 25). Buster - the new version of raspbian [Raspberry pi].
Retrieved May 21, 2023, from https://www.raspberrypi.com/news/
buster-the-new-version-of-raspbian/. (Cit. on p. 55)

LoRa Alliance. (2015). LoRa WAN. LoRa Alliance. Retrieved April 14, 2023,
from https://lora-alliance.org/. (Cit. on pp. 7, 81)

Loriot, M., Aljer, A., & Shahrour, I. (2017). Analysis of the use of LoRaWan
technology in a large-scale smart city demonstrator. 2017 Sensors
Networks Smart and Emerging Technologies (SENSET), 1–4. https://doi.
org/10.1109/SENSET.2017.8125011 (cit. on p. 8)

Mahdavi, A., & Taheri, M. (2017). An ontology for building monitoring.
Journal of Building Performance Simulation, 10(5), 499–508. https://doi.
org/10.1080/19401493.2016.1243730 (cit. on p. 11)

Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon,
D. (2015, January 5). Unlocking the potential of the internet of things. Re-
trieved May 16, 2023, from https://www.mckinsey.com/capabilities/

89

https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/what-is-time-series-data/
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1109/CCWC.2017.7868374
https://doi.org/10.1109/CCWC.2017.7868374
https://doi.org/10.3390/fi4020607
https://doi.org/10.3390/fi4020607
https://s905060.gitbooks.io/site-reliability-engineer-handbook/content/howto_use_wireshark_over_ssh.html
https://s905060.gitbooks.io/site-reliability-engineer-handbook/content/howto_use_wireshark_over_ssh.html
https://s905060.gitbooks.io/site-reliability-engineer-handbook/content/howto_use_wireshark_over_ssh.html
https://doi.org/10.1016/j.adapen.2022.100113
https://w3c-lbd-cg.github.io/bot/
https://w3c-lbd-cg.github.io/bot/
https://www.raspberrypi.com/news/buster-the-new-version-of-raspbian/
https://www.raspberrypi.com/news/buster-the-new-version-of-raspbian/
https://lora-alliance.org/
https://doi.org/10.1109/SENSET.2017.8125011
https://doi.org/10.1109/SENSET.2017.8125011
https://doi.org/10.1080/19401493.2016.1243730
https://doi.org/10.1080/19401493.2016.1243730
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world

Bibliography

mckinsey-digital/our-insights/the-internet-of-things-the-value-of-
digitizing-the-physical-world. (Cit. on pp. 2, 19)

Mills, J. (2019, September 24). Why choose BACnet IP over BACnet MS/TP.
Retrieved May 19, 2023, from https://www.kmccontrols.com/blog/
why-choose-bacnet-ip-over-bacnet-ms-tp/. (Cit. on p. 33)

MKFIFO. (2001). Mkfifo(3): Make FIFO special file - linux man page. Retrieved
May 21, 2023, from https://linux.die.net/man/3/mkfifo. (Cit. on
p. 56)

Modbus Organization. (1979). Modbus. Retrieved April 15, 2023, from https:
//modbus.org/. (Cit. on pp. 6, 81)

Mohamed, M. (2018). Challenges and benefits of industry 4.0: An overview.
International Journal of Supply and Operations Management, 5(3). https:
//doi.org/10.22034/2018.3.7 (cit. on p. 4)

National Institute of Standards and Technology. (2001, November). Advanced
encryption standard (AES) (NIST FIPS 197). National Institute of Stan-
dards and Technology. Gaithersburg, MD. https://doi.org/10.6028/
NIST.FIPS.197. (Cit. on p. 7)

Ngu, A. H. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, M. Z. (2016).
IoT middleware: A survey on issues and enabling technologies. IEEE
Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2016.
2615180 (cit. on p. 18)

Ploennigs, J., & Schumann, A. (2017). From semantic models to cognitive
buildings [Issue: 1]. Proceedings of the AAAI Conference on Artificial
Intelligence, 31 (cit. on p. 20).

Powell, J. (1990). Intelligent design teams design intelligent buildings. Habitat
International, 14(2), 83–94. https://doi.org/10.1016/0197-3975(90)
90038-3 (cit. on p. 5)

Pritoni, M., Paine, D., Fierro, G., Mosiman, C., Poplawski, M., Saha, A., Ben-
der, J., & Granderson, J. (2021). Metadata schemas and ontologies for
building energy applications: A critical review and use case analysis.
Energies, 14(7), 2024. https://doi.org/10.3390/en14072024 (cit. on
p. 19)

Project Haystack. (2023, May 10). Project haystack. Retrieved May 10, 2023,
from https://project-haystack.org/. (Cit. on pp. 12, 20, 41, 80)

Python. (2023, May 5). Python.org [Python.org]. Retrieved May 10, 2023, from
https://www.python.org/. (Cit. on p. 13)

Qiang, Z., Hands, S., Taylor, K., Sethuvenkatraman, S., Hugo, D., Omran,
P. G., Perera, M., & Haller, A. (2023). A systematic comparison and
evaluation of building ontologies for deploying data-driven analytics
in smart buildings. Energy and Buildings, 113054. https://doi.org/10.
1016/j.enbuild.2023.113054 (cit. on p. 11)

Quinn, C., & McArthur, J. (2021). A case study comparing the completeness
and expressiveness of two industry recognized ontologies. Advanced

90

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.kmccontrols.com/blog/why-choose-bacnet-ip-over-bacnet-ms-tp/
https://www.kmccontrols.com/blog/why-choose-bacnet-ip-over-bacnet-ms-tp/
https://linux.die.net/man/3/mkfifo
https://modbus.org/
https://modbus.org/
https://doi.org/10.22034/2018.3.7
https://doi.org/10.22034/2018.3.7
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/JIOT.2016.2615180
https://doi.org/10.1109/JIOT.2016.2615180
https://doi.org/10.1016/0197-3975(90)90038-3
https://doi.org/10.1016/0197-3975(90)90038-3
https://doi.org/10.3390/en14072024
https://project-haystack.org/
https://www.python.org/
https://doi.org/10.1016/j.enbuild.2023.113054
https://doi.org/10.1016/j.enbuild.2023.113054

Bibliography

Engineering Informatics, 47, 101233. https://doi.org/10.1016/j.aei.2020.
101233 (cit. on p. 20)

Raspberry Pi Ltd. (2023, May 12). Raspberry pi 4 model b datasheet [Raspberry
pi]. Retrieved May 12, 2023, from https://datasheets.raspberrypi.
com/rpi4/raspberry-pi-4-product-brief.pdf. (Cit. on pp. 13, 14)

Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middle-
ware for internet of things: A survey. IEEE Internet of Things Journal,
3(1), 70–95. https://doi.org/10.1109/JIOT.2015.2498900 (cit. on p. 18)

RDFLib Team. (2023). RDFLib documentation. Retrieved June 12, 2023, from
https://rdflib.readthedocs.io/en/stable/. (Cit. on pp. 66, 69)

Rizzi, M., Ferrari, P., Flammini, A., & Sisinni, E. (2017). Evaluation of the IoT
LoRaWAN solution for distributed measurement applications. IEEE
Transactions on Instrumentation and Measurement, 66(12), 3340–3349.
https://doi.org/10.1109/TIM.2017.2746378 (cit. on p. 8)

SAREF. (2023, May 10). SAREF. Retrieved May 10, 2023, from https://saref.
etsi.org/index.html. (Cit. on pp. 12, 13, 41, 80)

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum.
Prentice Hall. (Cit. on p. 17).

SSH. (2023). PAM solutions, key management systems, secure file transfers —
SSH. Retrieved May 21, 2023, from https://www.ssh.com. (Cit. on
p. 56)

Staab, S., & Studer, R. (2009). Handbook on ontologies (2nd ed). Springer.
(Cit. on p. 10).

Stackoverflow. (2022a). Technology: Most loved, dreaded, and wanted. Retrieved
June 13, 2023, from https://survey.stackoverflow.co/2022#section-
most - loved- dreaded- and- wanted- programming- scripting- and-
markup-languages. (Cit. on p. 13)

Stackoverflow. (2022b). Technology: Most popular technologies. Retrieved June
13, 2023, from https://survey.stackoverflow.co/2022#section-most-
popular-technologies-other-tools. (Cit. on p. 15)

Stinner, F., Kornas, A., Baranski, M., & Müller, D. (2018). Structuring building
monitoring and automation system data. The REHVA European HVAC
Journal-August, 2018, 10–15 (cit. on pp. 73, 84).

Stinner, F., Neißer-Deiters, P., Baranski, M., & Müller, D. (2019). Aikido:
Structuring data point identifiers of technical building equipment by
machine learning. Journal of Physics: Conference Series, 1343(1), 012039.
https://doi.org/10.1088/1742-6596/1343/1/012039 (cit. on p. 74)

Swan, B., & Alerton Technologies Inc. (2022). The language of BACnet-
objects, properties and services. https://bacnet.org/wp-content/
uploads/sites/4/2022/06/The-Language-of-BACnet-1.pdf (cit. on
p. 28)

91

https://doi.org/10.1016/j.aei.2020.101233
https://doi.org/10.1016/j.aei.2020.101233
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
https://doi.org/10.1109/JIOT.2015.2498900
https://rdflib.readthedocs.io/en/stable/
https://doi.org/10.1109/TIM.2017.2746378
https://saref.etsi.org/index.html
https://saref.etsi.org/index.html
https://www.ssh.com
https://survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022#section-most-popular-technologies-other-tools
https://survey.stackoverflow.co/2022#section-most-popular-technologies-other-tools
https://doi.org/10.1088/1742-6596/1343/1/012039
https://bacnet.org/wp-content/uploads/sites/4/2022/06/The-Language-of-BACnet-1.pdf
https://bacnet.org/wp-content/uploads/sites/4/2022/06/The-Language-of-BACnet-1.pdf

Bibliography

Tcpdump Group. (2023). TCPDUMP man page. Retrieved May 21, 2023, from
https://www.tcpdump.org/manpages/tcpdump.1.html. (Cit. on
p. 56)

Tremblay, C. (2020). BAC0 documentation. Retrieved May 21, 2023, from
https://bac0.readthedocs.io/en/latest/. (Cit. on p. 59)

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and
applications. The Knowledge Engineering Review, 11(2), 93–136. https:
//doi.org/10.1017/S0269888900007797 (cit. on p. 8)

W3C. (2017, July 20). Shapes constraint language (SHACL). Retrieved June 27,
2023, from https://www.w3.org/TR/shacl/. (Cit. on p. 69)

W3C. (2023, May 10). RDF primer [RDF 1.1 concepts and abstract syntax].
Retrieved May 10, 2023, from https://www.w3.org/TR/rdf-primer/.
(Cit. on p. 44)

Wichmann, R. L., Eisenbart, B., & Gericke, K. (2019). The direction of in-
dustry: A literature review on industry 4.0. Proceedings of the Design
Society: International Conference on Engineering Design, 1(1), 2129–2138.
https://doi.org/10.1017/dsi.2019.219 (cit. on p. 4)

WI-FI Alliance. (1999). WI-FI. WI-FI Alliance. Retrieved April 10, 2023, from
https://www.wi-fi.org/. (Cit. on p. 7)

Wireshark Foundation. (2023, May 12). Wireshark network protocol analyzer.
Retrieved May 12, 2023, from https://www.wireshark.org/. (Cit. on
pp. 16, 17, 56)

Wong, J., Li, H., & Wang, S. (2005). Intelligent building research: A review.
Automation in Construction, 14(1), 143–159. https://doi.org/10.1016/j.
autcon.2004.06.001 (cit. on p. 5)

YAML. (2021). YAML markup language [The official YAML web site]. Retrieved
July 4, 2023, from https://yaml.org/. (Cit. on p. 15)

Zhou, K., Taigang Liu, & Lifeng Zhou. (2015). Industry 4.0: Towards future
industrial opportunities and challenges. 2015 12th International Con-
ference on Fuzzy Systems and Knowledge Discovery (FSKD), 2147–2152.
https://doi.org/10.1109/FSKD.2015.7382284 (cit. on p. 4)

92

https://www.tcpdump.org/manpages/tcpdump.1.html
https://bac0.readthedocs.io/en/latest/
https://doi.org/10.1017/S0269888900007797
https://doi.org/10.1017/S0269888900007797
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/rdf-primer/
https://doi.org/10.1017/dsi.2019.219
https://www.wi-fi.org/
https://www.wireshark.org/
https://doi.org/10.1016/j.autcon.2004.06.001
https://doi.org/10.1016/j.autcon.2004.06.001
https://yaml.org/
https://doi.org/10.1109/FSKD.2015.7382284

	Introduction
	Problem Statement
	Research Objectives
	Scope and Limitations

	Background and Related Work
	Industry 4.0
	Smart Buildings
	Internet of Things
	Wired Solutions
	Wireless Solutions

	Ontologies
	Ontology Example
	Ontologies for the Building Sector

	Technologies
	Python
	Raspberry PI
	Docker
	Wireshark
	Agile Software Development Methods

	Related Work

	BACnet
	Certification of Devices
	Types of Devices
	Objects, Services, Networking
	Objects and Properties
	Services
	Transport and Networking Systems

	BACnet in Software Development
	BACnet Stack: Comprehensive Open-Source Tool Set
	BACpypes and BAC0: Libraries for Python

	Brick
	Core Concepts
	Tags
	Classes
	Entities
	Graphs
	Relationships

	Data Source Models
	External References

	Study Design
	Implementation Design
	Non-Residential Building as Testbed
	Experiment Design

	Implementation
	BACnet Simulation
	Development and Deployment Setup
	Network Monitoring over SSH

	BACnet Communication
	Serialization of Devices
	Accessing Objects and Properties
	Serialization Results

	Brick Ontology Generation
	BACnet-to-Brick Mapping
	Brick Schema (Python)
	Brick Generation Results

	Results and Discussion
	Floor and Room Association
	Performance Measures
	Coverage
	Real-World Environment
	Simulated Environment

	Threats to Validity
	Future Work
	Timeseries Classification
	Evaluation of Different Ontologies
	Protocol Adaptions
	Expanding the Experiment
	Evaluation of Machine Learning Algorithms

	Conclusion
	Bibliography

