
S C I E N C E P A S S I O N T E C H N O L O G Y

Institute for Applied Information Processing and Communications

Graz University of Technology

Andreas Kogler

Colliding Worlds:
Exploiting Physical Properties from Software

PhD Thesis

Assessors: Daniel Gruss, Thorsten Holz

August 2024

Abstract

Cloud computing is essential to increase resource efficiency. However, when
utilizing cloud resources, the underlying hardware becomes implicitly
shared among tenants, enabling side-channel and transient-execution
attacks. Consequently, research focused on preventing such attacks, and
modern hardware is no longer affected by the infamous Meltdown and MDS
attacks. However, the effects of hardware sharing on physical properties
remain unexplored. Furthermore, CPUs provide interfaces to control
and monitor physical properties such as voltage, frequency, and power
consumption. These interfaces are crucial for dynamically adjusting the
hardware’s operating point based on the workload. The influences of
complex power management and the accessibility of system interfaces
enable the shift of traditional hardware attacks from well-studied attacks
on embedded devices to software-only attacks targeting systems remotely.

In this thesis, we explore the synergy of traditional hardware attacks with
microarchitectural components and software interfaces. We provide an
overview of the state of the art in software-based fault attacks, software-
based power analysis, and transient-execution attacks. Furthermore, we
extend the state of the art by demonstrating that sharing underlying
hardware in the post-transient era can still enable Meltdown-style and
MDS-style attack scenarios by observing physical properties. We exploit
transient execution to enhance software-based fault attacks and present a
novel combination of physical effects to circumvent commodity mitigations.
We analyze how physical faults manifest in hardware and propose an
optimized software-based fault detection mechanism. Finally, we analyze
undocumented signals and configuration options, enabling novel attacks
and defenses. This work highlights that colliding the world of hardware
attacks with system interfaces and microarchitectural elements opens up
a new attack landscape, reachable even purely from software.

This thesis is split into two parts. The first part outlines the contributions,
provides background, and summarizes the state of the art. The second
part presents my first-authored papers in their original form1. All of these
papers were accepted at renowned international tier 1 security conferences.

1The two-column layout and figures of the camera-ready versions were adapted to fit
the single-column format. The original content of the publications is unmodified.

iii

Acknowledgements

First and foremost, I want to thank you, Daniel Gruss, for offering me
the opportunity to join your group and pursue a PhD. Thank you for the
support during my PhD, especially the chance to present my research
internationally, the freedom you gave me with my research topics, and
the opportunity to strengthen my international relations. Your guidance
on improving my writing skills has been essential for getting the papers
accepted at top-tier conferences. I wish you and the next generation of
PhD students the best for the future in both social and work aspects.

Thank you, Michael Schwarz, for supporting me as a mentor, colleague,
and friend over the past ten years. I still remember one of the first times we
met when you explained pointers using magic wands. You supported me
during my PhD and encouraged me to apply for a tenure-track position,
which made me speechless when I received an offer. This thesis would not
have been possible without you inspiring me to follow in your footsteps.

Thank you, Thorsten Holz, for your valuable feedback and taking the time
to assess this thesis. During the conferences and my visits to CISPA, I
have always admired your professionalism and calmness, which made our
discussions with you and your students a social and technical highlight.

Thank you, Stefan Mangard, for the countless discussions on research
ideas for software-based power analysis. Over the past years, you have
provided me with valuable guidance on both social and career aspects.

Thank you, Moritz Lipp, for becoming a close friend and always being
there for technical and social support. During my PhD, you were a social
and humorous anchor, always offering guidance, tips, and honey.

Thank you, Jo Van Bulck, for being such an open person to talk to and
adopting me during my first academic conference with your colleagues
and friends. I enjoyed the technical discussions and ideas we shared.

Thank you, Lukas Giner, for being an incredible office colleague and friend.
Our countless technical, social, and political discussions were a highlight.
We managed to balance humor, professionalism, and the occasional “brrt”.

Thank you, Martin Schwarzl, for being a close friend even before the
PhD. I had tremendous fun participating in coding contests and discussing
topics with you. Your impressions encouraged me to pursue my PhD.

v

vi

Thank you, Claudio Canella, for our incredible time together in the office.
You encouraged me to join the PhD and became a close friend with
countless funny moments, like my frequent coffee-spilling accidents.

Thank you, Pietro Borrello, for your support in technical and career aspects.
Although your visit to Graz was brief, and you never missed a chance to
critique our food (often rightfully), we had tremendous fun during your
stay. The Black Hat talks with you were an incredible experience.

Thank you, Jonas Juffinger, for our fantastic time in the office, at con-
ferences, and during our talks. I want to highlight one of your funny
improvisations during our Black Hat Europe talk “... because someone
forgot to bring them” which is one of my favorite moments during a talk.

I want to thank my colleagues and friends. Fabian Rauscher, Stefan Gast,
Catherine Easdon, Roland Czerny, Hannes Weissteiner, and Sudheendra
Neela, thank you for our discussions and brainstorming sessions. Lukas
Lamster, Moritz Waser, Robert Primas, and Lea Zinkanell, thank you for
the balance between our technical discussions and our bouldering evenings.
Anders Fogh, Antoon Purnal, Barbara Gigerl, Daniel Moghimi, David
Schrammel, Fritz Alder, Lena Heimberger, Lukas Maar, Maria Eichlseder,
Martin Unterguggenberger, Marton Bognar, Mathias Oberhuber, Moritz
Schlögel, Robert Schilling, Rishub Nagpal, Roman Walch, and Vedad
Hadzic, thank you for all the moments and conversations. Daniel Weber,
Lukas Gerlach, Tobias Ebelshäuser, Leon Trampert, Sven Bugiel, Cas
Cremers, Ruiyi Zhang, Lorenz Hetterich, and Fabian Thomas, thank you
for welcoming me during my visits to CISPA and for all the conversations.
Thank you to all the unnamed people and friends I met during this journey.

I want to thank my parents and family. Thank you, Mom, for supporting
me on this path and for the time you spent to provide me with the best
education and environment. Thank you, Dad, for sparking my interest in
technical aspects, which encouraged me to pursue this path. Thank you,
Wolfgang, for the weekends we spent together during my youth, showing
me your computers and how to play games on them. I want to thank my
brother, sister, aunts, uncles, and relatives for their support.

Finally, I want to thank all my close friends, the friends I made, and those
whose paths are no longer shared with mine. Without you, this thesis
would not have been possible. — Thank you!

Andreas Kogler

Contents

Contents viii

I Colliding Worlds:
Exploiting Physical Properties from Software 1

1. Introduction 3

1.1 Main Contributions . 7

1.2 Other Contributions . 9

1.3 Outline . 12

2. Background 13

2.1 Memory Organization . 13

2.2 Microarchitecture . 20

2.3 Side-Channel Analysis . 22

2.4 Fault Attacks and Defenses 27

3. State of the Art 29

3.1 Transient-Execution Attacks 29

3.2 Rowhammer . 35

3.3 Fault Attacks using DVFS Interfaces 39

3.4 Software-based Power Analysis 40

4. Conclusion 43

References 47

vii

viii Contents

II Publications 71

List of Publications 73

5. Minefield 75

6. Half-Double 125

7. MSR Templating 171

8. Collide+Power 221

Part I.

Colliding Worlds:
Exploiting Physical

Properties from Software

1

1
Introduction

“Intelligence is the ability of a
living creature to perform
pointless or unnatural acts.”

- Roadside Picnic

The increasing reliance on cloud computing to improve resource efficiency
leads to privacy-related data being processed on machines owned by com-
panies rather than users. These companies often share the machines across
multiple tenants. Technologies that enforce integrity and confidentiality
are crucial to isolate and protect privacy-related data. However, due to the
sharing of the underlying hardware, the attack surface for side-channel,
transient-execution, and fault attacks has substantially grown.

Side-channel attacks exploit the emission of information over an unintended
side effect of the implementation. Early discussions of covertly transmitting
data over such side effects date back to 1973 [137]. Moskowitz et al. [166]
formally describe a timing channel already in 1990. With the evolution of
our computation devices, side-channel attacks have become more related to
the actual implementation and design of the hardware. Hu [87] describes
a covert channel via CPU caches in 1992. Kocher [125] mounted the
first practical timing side-channel attack on RSA in 1996, effectively
exploiting the timing differences in the modular exponentiation algorithm.
An important step in generalizing timing side channels was to move beyond
application-specific timing leakage by transitioning the observation of
timing differences from the actual implementation toward CPU caches.
Timing side channels on caches are referred to as cache side-channel attacks
and exploit the timing difference between cached and uncached data. Cache
side-channel attacks are demonstrated in numerous attacks targeting
cryptographic primitives [248, 247, 219, 3, 255, 195, 20, 90], inferring user
behavior [145, 76], and targeting trusted execution environments [69, 24,

3

4 Chapter 1. Introduction

161, 46]. Intel provides guidelines to prevent code patterns that result in
timing and cache side-channel attacks [93]. Cache attacks can be automated
to some extent [77, 27], but they are fundamentally application-dependent,
and arbitrary data leakage is not guaranteed.

Side channels were essential in encoding secret information in transient-
execution attacks like Meltdown [147] and Spectre [126]. These transient-
execution attacks abuse the side effects of wrongly executed instructions
due to misspeculation or faults. Overall, the field of transient-execution
attacks was systematized into Meltdown-type attacks [147, 222, 236, 33]
and Spectre-type attacks [126, 33, 153]. The Microarchitectural Data
Sampling (MDS) attacks [198, 201, 30, 187, 33] emerged within the class
of Meltdown-type attacks. Contrary to the original Meltdown attack, MDS
targets data that is in flight, i.e., short-lived data within buffers. Numerous
mitigations were proposed against transient-execution attacks [80, 71],
where most Meltdown-type attacks are now fixed in hardware. However,
Spectre-type attacks are still fundamentally a threat depending on the
interfaces and interaction of security domains within the system. Although
the fixes for Meltdown-type attacks prevent transient forwarding of data
from different domains, the influences of sharing the underlying hardware
in combination with traditional power side channels remains unexplored.

Traditional hardware side-channel attacks observe power consumption or
electromagnetic emissions instead of timing behavior [127, 25, 128, 154].
While timing side channels are extensively studied on desktop or server
systems, these traditional hardware side channels mainly target embedded
devices or small co-processors [154]. Lipp et al. [146] demonstrate that
traditional power-analysis attacks are feasible on modern desktop and
server processors, with the Platypus attack, replacing the usually required
external measurement equipment with a CPU internal measurement inter-
face. Due to the reduced signal quality, the attacks require more traces
resulting in a longer attack runtime. The interface was modified to further
reduce signal quality, and unprivileged access was restricted to prevent
the Platypus attack. However, Wang et al. [234] and Liu et al. [148] show
that there are other indirect ways to observe power-related signals, i.e.,
signals that correlate with the device’s power consumption. Neverthe-
less, these instances of software-based power side-channel attacks target
application-dependent leakage, similar to the first generation timing side
channels, leaving the generalization of software-based power analysis to
an application-independent, arbitrary data leakage primitive unexplored.

5

Fault attacks induce errors in computations (data-in-use) or data stored
in memory (data-at-rest). In line with traditional power side-channel at-
tacks, these attacks went through a similar transition from well-studied
attacks on small form factor devices towards software-only attacks. The
Rowhammer attack [123] demonstrates how to fault data-at-rest in the
main memory by frequently accessing data residing near the targeted data
without any physical access required. Due to the potential security risk
of such an attack, refresh-based mitigations and Error Correcting Codes
(ECC) were developed and integrated into all modern memory modules.
However, the number of faults drastically increased with increasing mem-
ory density [122] overwhelming the correction capabilities of ECC [44].
Furthermore, the early refresh-based mitigations had limited resources to
track potential attacks and were overwhelmed when combining multiple
attacks at once [108, 59]. Contrary to Rowhammer, software-based under-
volting attacks usually require CPU interfaces to either request a reduced
target operating voltage or a higher CPU frequency (resulting in a similar
effect). The CLKSCREW [212], Plundervolt [167], VoltJockey [183, 184],
and V0LTpwn [120] attacks demonstrate that such interfaces enable fault
attacks on data-in-use within trusted execution environments. Further-
more, the VoltPillager attack [39] shows how to inject commands directly
over a bus interface to the voltage regulators given physical access to the
machine. In response, the vendors restricted the interface and isolated
the voltage regulators within the CPU package. However, these changes
restrict potential energy and efficiency gains due to undervolting [111].

In this thesis, we further close the gap between traditional hardware and
software-only attacks and advance state-of-the-art software-based power-
analysis attacks beyond application-dependent leakage. Furthermore, we
find new attack vectors and defenses for software-based fault attacks
and explore undocumented interfaces of modern CPUs. Figure 1.1 shows
the peer-reviewed papers I first- and co-authored during my PhD. The
targeted field is on the x-axis and y-axis indicates if the paper is defensive-
or offensive-oriented. Bold papers are the main contributions of this thesis.

First, we show an alternative probabilistic approach to prevent dynamic
frequency- and voltage-scaling faults inside trusted execution environments.
We analyze the fault susceptibility of x86 instructions across multiple
operating points and CPUs. This analysis is the foundation for under-
standing how this class of attacks manifests. We discover that integer
multiplication is the most susceptible instruction across all tested instruc-
tions and machines. With this insight, we design a probabilistic mitigation

6 Chapter 1. Introduction

SW Power
Analysis

SW Fault
Attacks & Defenses

Trusted Execution
Environments

Side Channels

O
ff
en

si
v
e

D
ef
en

si
v
e

Collide+Power [131]

Half-Double [132]

CSI:Rowhammer [112]

PT-Guard [196]

Minefield [130]

LVI-Nullify [68]

Æpic Leak [21]

CacheWarp [250]

MSRTemplating [133]

WebGPU Attack [67]

SQUIP [65]

Remote SQUIP [64]

Optane [150]

IdleLeak [188]

Dynamic Process

Isolation [204]

Figure 1.1.: The peer-reviewed first- and co-authored papers of this thesis. The
papers are ordered by offensive and defense categories, and the posi-
tioning indicates the field. Papers in bold are the main contributions.

that places so-called trap instructions within the program, which are
constantly validated to ensure correct computation results. We design the
compiler infrastructure to automatically harden SGX enclaves with our
defense and evaluate the effectiveness and performance of our mitigation.
Finally, the insights of our analysis are the foundation of follow-up work
to improve energy efficiency [111]. Second, we present Half-Double, a new
Rowhammer variant that breaks locality assumptions of existing real-world
mitigations. We carefully evaluate the Half-Double effect and show that
Half-Double exploits the combined disturbance errors of neighboring rows
beyond distance-1 neighbors. To analyze the real-world impact of this
new variant, we test a large variety of devices and showcase an end-to-
end exploit to gain root privileges on a Chromebook tablet. Third, CPU
interfaces are an essential building block to mount traditional hardware
attacks purely from software, as seen in the Platypus [146] and Plunder-
volt [167] attacks. Unfortunately, not all CPU interfaces are documented,
and the search space for undocumented features is too large for exhaustive
analysis. We design a framework that scans this configuration space and
can identify the influences of configuration bits on instruction groups.
Furthermore, we correlate registers that expose continuous signals with
existing known signal sources to find potential alternatives if a given signal
is restricted. Our case studies show multiple configuration registers and
bits that enable new attacks and defenses. Finally, newer CPU generations

1.1. Main Contributions 7

deploy hardware mitigations for Meltdown-type attacks. However, we show
that although these mitigations prevent accidental transient forwarding,
sharing the underlying hardware between security domains still exposes
leakage in the power domain. We generalize power side channels beyond
application-dependent leakage by targeting the combined power leakage
of data from different domains within CPU caches instead of application-
specific leakage, mimicking a similar evolution from timing side channels
towards cache attacks. We present Meltdown-Power and MDS-Power as
attack variants with threat models similar to Meltdown and MDS.

1.1. Main Contributions

This section introduces the first-authored papers of my PhD. Overall, I
first-authored 4 tier 1 papers covering a probabilistic mitigation against dy-
namic frequency- and voltage-scaling attacks, a novel Rowhammer variant
circumventing state-of-the-art mitigations, the analysis of undocumented
CPU registers and interfaces to identify their security implications, and
software-based power analysis beyond application-dependent leakage.

CLKSCREW [212], Plundervolt [167], Voltjockey [184, 183], V0LTpwn [120],
and VoltPillager [39] are attacks demonstrating that increasing the oper-
ating frequency or reducing the operating voltage of the CPU results in
faulty computations. Furthermore, these attacks target trusted execution
environments purely from software. Vendors prevent software-based at-
tacks by disallowing CPUs to be undervolted from software, drastically
reducing potential performance increases and power savings [111]. In Mine-
field [130], we propose a probabilistic software defense to protect against
such attacks. We built a framework to analyze instructions to identify
those most affected by undervolting and use these instructions as guards
within a program to periodically check if their results are still valid. If a
faulted computation within Intel’s Software Guard Extension (SGX) is
detected, the secure execution of the enclave can no longer be guaranteed,
and the application halts. We evaluated the detection rate of the defense
and found that 1 trap after 1-2 instructions mitigates 99% of the known
attacks. Furthermore, the performance overhead of 148.4% for the added
instructions outperforms fault redundancy checks in specific configurations.
The paper was published at the USENIX Security Symposium 2022 [130]
in collaboration with Daniel Gruss and Michael Schwarz.

8 Chapter 1. Introduction

The Rowhammer attack [123] exploits disturbance errors within DRAM
cells when neighboring cells are frequently accessed. This fundamental
problem resulted in vendors deploying active mitigations for DRAM
modules that considered the direct neighboring cells [59]. The refresh-
based defenses considered rows beyond the direct neighboring rows as
irrelevant for Rowhammer attacks as the number of accesses and, therefore,
the resulting access duration is outside the internal refresh window of
the cells. With the Half-Double attack [132], we demonstrated that only
considering direct neighbors is insufficient and showed that modern DRAM
modules with mitigations against Rowhammer in place can still be attacked.
Our experiments indicate that the combination of accesses to the direct
and further away neighbors accumulate electrical disturbance sufficient to
flip bits within a victim cell. We evaluated Half-Double on 10 commodity
systems and discovered that overall 5 out of 7 mobile devices are affected
by Half-Double. We demonstrate the applicability of Half-Double on state-
of-the-art hardware with the Targeted Row Refresh (TRR) and Error
Correcting Code (ECC) mitigations. Our end-to-end exploit targets a
Chromebook and obtains root on the devices within 45min on average.
This work was published at USENIX Security Symposium 2022 [132] and
was joint work with Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.

The number of configuration registers of modern CPUs is too large for
exhaustive analysis, and vendors only document 55.4% of the registers
on average [133] in their publicly available documentation. The documen-
tation covers the necessary options to support hardware features used
by open-source projects like the Linux kernel. However, the remaining
registers remain undocumented or are only documented in proprietary doc-
uments available to BIOS and hardware vendors. Even though there is no
public documentation, the registers are still accessible through privileged
software. To explore the security implications, Domas [55, 53, 54] grouped
registers with similar behavior and tested whether registers expose new in-
structions to the instruction set architecture and found one security-critical
instruction. To analyze the influences of these configuration registers on
the microarchitectural level, we designed MSRevelio [133], a framework
that allows scanning of Model Specific Registers (MSRs) to find undocu-
mented interfaces for side channels or even hidden configuration options
that change the behavior of instructions for both offensive and defensive
aspects. We show six case studies related to undocumented or partially
documented configuration registers. For instance, we found a configuration
bit that turns off the side channel-resistant AES hardware instructions.

1.2. Other Contributions 9

Therefore, forcing an existing library to fall back to an alternative AES
implementation, e.g., an insecure T-table implementation. Furthermore,
we found configuration bits that disable the prefetch instructions, mitigat-
ing prefetch-based Kernel Address Space Layout Randomization (KASLR)
attacks [144]. The paper was published at the IEEE Symposium on Se-
curity & Privacy 2022 [133] in collaboration with Daniel Weber, Martin
Haubenwallner, Moritz Lipp, Daniel Gruss, and Michael Schwarz.

Software-based power-analysis attacks [146, 234, 148] usually target crypto-
graphic algorithms like AES or edge cases of these algorithms with distinct
energy signatures to extract secret information. With Collide+Power [131],
we close the gap between these specialized attacks and enable attacks on
general-purpose data similar to the threat models of Meltdown [147] and
Microarchitectural Data Sampling (MDS) [201, 198]. Collide+Power is
a technique agnostic to the power-related signal and deploys a measure-
ment method that significantly improves the signal quality. The paper
introduces the notion of colliding data, i.e., if a CPU component is shared
between security domains, an attacker can force data collisions between
attacker-controlled and victim data. These collisions do not influence the
correctness of the computation, appear only within the actual hardware,
and are neither transiently nor architecturally observable. Instead of target-
ing structured data during computation like cryptographic keys, we target
the CPU’s memory hierarchy where data collisions occur frequently. How-
ever, these primitives do not rely on CPU vulnerabilities that accidentally
forward the data to the attacker domain. We show Collide+Power and leak
4.82 bit/h with an MDS-style attack and 0.84 bit/h with a Meltdown-style
attack when using direct energy readings via a CPU interface. The work
was published at the USENIX Security Symposium 2023 [131] and was
joined work with Jonas Juffinger, Lukas Giner, Lukas Gerlach, Martin
Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard.

1.2. Other Contributions

This section introduces the peer-reviewed co-authored papers of my PhD.
Overall, I co-authored 11 publications, 7 of which are accepted at tier
1 conferences. These papers cover Rowhammer defenses, offensive and
defensive research on trusted execution environments, mitigations against
Spectre, and novel side channels on various hardware components.

10 Chapter 1. Introduction

With the insights from the Half-Double attack [132], we concluded that mit-
igations against Rowhammer and DRAM fault attacks in general should
not rely on characteristics of the induced faults. Therefore, we designed
CSI:Rowhammer [112], a hardware-software co-design that does not rely
on faulting characteristics like the locality of bit flips. CSI:Rowhammer
replaces the memory’s Error Correcting Codes (ECC) with a cryptographic
secure Message Authentication Code (MAC). The MAC allows the detec-
tion of arbitrary bit flips (within cryptographic margins) but requires an
adapted correction algorithm. CSI:Rowhammer features a software compo-
nent for a highly flexible error correction mechanism that, for instance, can
reload read-only data from the disk and potentially correct an unlimited
amount of bit flips. This paper was published at the IEEE Symposium
on Security & Privacy 2023 [112] in collaboration with Jonas Juffinger,
Lukas Lamster, Moritz Lipp, Maria Eichlseder, and Daniel Gruss.

We followed a similar approach with PT-Guard [196] to protect page-table
entries, a common target for Rowhammer attacks. In this design, we
partition a MAC into the free bits of page-table entries and verify the
integrity of the entries when loaded from memory. The paper was pub-
lished at the IEEE/IFIP International Conference on Dependable Systems
and Networks 2023 [196] in collaboration with Anish Saxena, Gururaj
Saileshwar, Jonas Juffinger, Daniel Gruss, and Moinuddin Qureshi.

During our research on trusted execution environments, we discovered
that existing classifications for software vulnerabilities are similar to
the root causes of transient execution attacks. Therefore, we proposed
in Æpic Leak [21] to apply this methodology to existing attacks and
explore unobserved software classes concerning the hardware. Our analysis
found an architectural attack targeting SGX that does not require a side
channel to encode information. Instead, we directly read from undefined
areas of the memory-mapped region of the Advanced Programmable
Interrupt Controller (APIC) to leak stale data from an internal buffer.
We demonstrate attacks with this primitive leaking AES-NI, RSA, and
even the SGX attestation keys. This work was published at the USENIX
Security Symposium 2022 [21] in collaboration with Pietro Borrello, Martin
Schwarzl, Moritz Lipp, Daniel Gruss, and Michael Schwarz.

AMD SEV aims to provide a trusted execution environment on a virtual
machine basis. With CacheWarp [250], we introduced a software-based fault
attack that exploits a misconfiguration in the cache invalidation instruction.
We combine this primitive with cache eviction techniques to selectively
erase the state of a program, circumventing sudo permissions checks,

1.2. Other Contributions 11

breaking cryptographic primitives, and bypassing the SSH login of the
secure virtual machine. CacheWarp was published at the USENIX Security
Symposium 2024 [250] in collaboration with Ruiyi Zhang, Lukas Gerlach,
Daniel Weber, Lorenz Hetterich, Youheng Lü, and Michael Schwarz.

With LVI-Nullify [68], we designed a compiler extension that hardens Intel
Software Guard Extension (SGX) enclaves against LVI-Null [223]. LVI-
Null injects zeros into faulting load instructions arbitrarily. The compiler
extension modifies each load instruction and adds a specific offset within
the enclave, effectively hindering the effects of injected zeros. This work was
published at the USENIX Security Symposium 2022 [68] in collaboration
with Lukas Giner, Claudio Canella, Michael Schwarz, and Daniel Gruss.

In-process isolation is a technique where instead of individual processes a
single process contains the workloads of multiple tenants [41, 42]. Therefore,
this type of isolation is potentially affected by Spectre attacks [126].
With Dynamic Process Isolation [203, 204], we developed a probabilistic
mechanism that detects Spectre attacks and moves the attacker into
an isolated process to prevent further exploitation. Our defense is now
actively deployed by the Cloudflare Workers infrastructure. The paper was
published at the European Symposium on Research in Computer Security
2022 [203] in collaboration with Martin Schwarzl, Pietro Borrello, Kenton
Varda, Thomas Schuster, Daniel Gruss, and Michael Schwarz.

Modern AMD processors have distinct scheduler queues per execution
unit compared to the unified scheduler queue that Intel CPUs deploy.
We reverse-engineered these distinct queues in SQUIP [65] and found
a novel contention-based side channel that enables new covert channels
and we were able to exfiltrate RSA keys. The paper was published at
the IEEE Symposium on Security & Privacy 2023 [65] in collaboration
with Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Simone Franza, Markus Köstl, and Daniel Gruss.

We extended upon the SQUIP attack and analyzed if these types of
attacks are possible in more restricted environments like JavaScript in
our paper [64]. This work was published at the Financial Cryptography
and Data Security 2024 [64] conference in collaboration with Stefan Gast,
Jonas Juffinger, Lukas Maar, Christoph Royer, and Daniel Gruss.

Intel Optane memory is an extension for persistent data storage [97].
Optane memory uses multiple buffers to improve performance and reduce
access latencies. However, we showed that these buffers introduce timing
side channels, which allow us to infer contention and inter-keystroke

12 Chapter 1. Introduction

timings or build persistent covert channels. The paper was published at
the USENIX Security Symposium 2023 [97] in collaboration with Sihang
Liu, Suraaj Kanniwadi, Martin Schwarzl, Daniel Gruss, and Samira Khan.

With IdleLeak [188], we found undocumented functionality in an optimized
waiting instruction that allows us to observe interrupts even across logical
cores and inside virtual machines that allow highly accurate fingerprinting
of inter-keystroke timings, websites, and videos. This work was published
at the Network and Distributed System Security Symposium 2024 [188] in
collaboration with Fabian Rauscher, Jonas Juffinger, and Daniel Gruss.

The WebGPU standard enables websites to utilize the parallel computation
power of GPUs. We present cache attacks via the WebGPU standard to
leak inter-keystroke timings and AES keys [67]. We utilize the GPU to
parallelize eviction set creation. The paper was published at the ACM
ASIA Conference on Computer and Communications Security 2024 [67] in
collaboration with Lukas Giner, Roland Czerny, Christoph Gruber, Fabian
Rauscher, Daniel De Almeida Braga, and Daniel Gruss. Furthermore, we
received a Best Paper award for the publication.

1.3. Outline

Chapter 2 provides background on memory organization, the microarchi-
tecture of a processor, side-channel analysis, and fault attacks. Chapter 3
summarizes the state of the art of transient-execution attacks, Rowham-
mer, dynamic voltage- and frequency-scaling attacks, and software-based
power analysis. Chapter 4 concludes Part I. Part II provides a complete
list of the first- and co-authored papers and the camera-ready versions of
the main contributions of this thesis in Chapters 5 to 8.

2
Background

This chapter provides background for this thesis. Section 2.1 introduces
memory organization, including virtual memory and the memory subsys-
tem. Section 2.2 discusses the microarchitecture of modern superscalar
pipelines with speculative and out-of-order execution. Section 2.3 intro-
duces side-channel and power analysis where software-based interfaces
replace traditional measurement equipment. Section 2.4 discusses tradi-
tional fault attacks that require physical access to the device and introduces
software-based fault attacks that do not require physical access.

2.1. Memory Organization

Programs interact with memory through an abstraction layer that provides
a homogeneous view, hiding the complex memory hierarchy of various
types and sizes designed for maximum performance. We introduce the
concept of virtual memory in Section 2.1.1. Virtual memory allows for
efficient memory management and isolation for modern operating systems.
Furthermore, we discuss the memory subsystem, including the cache
hierarchy in Section 2.1.2 and the main memory in Section 2.1.3.

2.1.1. Virtual Memory

Virtual memory was introduced to run multiple isolated processes on a
single system. Each process is assigned a unique virtual address space
to isolate the processes. The virtual address space cannot be accessed
from another process except if explicitly allowed. The operating system is
responsible for creating the virtual address spaces for each process and
switching between them when scheduling a process. The virtual address
spaces are partitioned into virtual pages. Virtual pages map to physical

13

14 Chapter 2. Background

· · ·

PAGE

12 bit9 bit9 bit9 bit9 bit9 bit

Virtual Address

· · ·

PGD

PGDE

· · ·

P4D

P4DE

· · ·

PUD

PUDE
· · ·

PMD

PMDE

· · ·

PTE

PTE

CR3

OffsetPTEIPMDIPUDIP4DIPGDI

Figure 2.1.: Virtual-to-physical address translation using 5-level paging, assuming
a 4KiB page size on the x86-64 architecture. We use the Linux
terminology for the page-table levels and entries [91, 142].

pages in the main memory. From the operating system’s perspective, a
page is the smallest manageable unit of memory on modern hardware.

Virtual addresses consist of up to 57 bit [91], representing up to 128
petabytes of virtual memory per process. However, commodity devices
currently support only up to 48 bit of physical memory. Since each virtual
address space is process-specific, virtual addresses of distinct processes can
overlap but map to different physical addresses. The CPU uses page tables
to resolve this aliasing problem and make virtual-to-physical mappings
possible. Additionally, page tables support non-present virtual pages. The
page tables translate a given virtual page to a physical page, specifically,
a physical page frame number (PPFN), and allow the operating system to
associate metadata with the virtual address, such as whether the page has
a physical counterpart in the main memory. The page size is hardware-
dependent, and the usual sizes are 4KiB or 16KiB [83]. Although page
tables allow marking pages as not present, the amount of memory to store
the actual page tables in memory depends on the number of page-table
levels. Most recent Intel CPU support five levels of page tables [91].

The physical address of the highest page-table level is stored in the CR3

register on x86 and the TTBR register on ARMv8. We refer to the names
used in the Linux kernel [142] for the page-table levels. The different
levels of a five-level paging structure are from highest to lowest: Page
Global Directory (PGD), Page Level 4 Directory (P4D), Page Upper
Directory (PUD), Page Middle Directory (PMD), Page-Table Entry (PTE).
Figure 2.1 shows a virtual-to-physical address translation. The translation

2.1. Memory Organization 15

Core 1

L1D L1I

L2

LLC Slice

Core 2

L1D L1I

L2

LLC Slice

Core 3

L1D L1I

L2

LLC Slice

Core 4

L1D L1I

L2

LLC Slice

M
em

or
y
C
on

tr
o
ll
er

M
a
in

M
em

o
ry

Figure 2.2.: The memory subsystem of a multicore processor including the private
caches, the shared last-level cache, and the main memory. The last-
level cache is split into cache slices. The ring bus connects the cores,
the last-level cache slices, and the memory controller with each other.

is a process where the virtual address is partitioned into indices that
index the current page-table level to retrieve the PPFN of the next page-
table level. The page offset is added to the PPFN of the last page-table
entry to compute the translated physical address. The page-table walkers
perform the actual page-table translations in hardware. Partial results
of translations are cached in the page-table caches [73], and the final
virtual-to-physical address mapping is cached in the Translation Lookaside
Buffer (TLB) [57]. Furthermore, most architectures support huge pages,
i.e., physically contiguous chunks of pages, to save on the number of TLB
entries required to cache the physical contiguous range.

Besides the metadata indicating whether a page is mapped to physical
memory, the page tables contain information about which privilege level is
allowed to access the page, if the page can be written to, or if code on the
page is prevented from being executed. Although the hardware enforces
these bits, delayed checking enabled the Meltdown attack and its variants
(cf. Section 3.1.1). Finally, these bits and the PPFNs stored in the page
tables are common targets for Rowhammer attacks (cf. Section 3.2).

2.1.2. Caches

Caches temporarily store data to speed up subsequent accesses or modifi-
cations to the data without reloading the data from the slow main memory.
The size of caches is smaller than the main memory and is usually built
using a different memory technology, e.g., SRAM cells [164]. Modern

16 Chapter 2. Background

caches usually store data with a data granularity of 64B or 128B [57].
Memory accesses that are served from the cache are referred to as cache
hits and those that are not cached as cache misses.

Cache Coherency. Mutlicore architectures duplicate CPU cores to
execute multiple processes in parallel instead of concurrently. Each core
has unique private caches that must be coherent with all other caches.
The cache coherence protocol defines how coherency is enforced within
the CPU. The cache lines store additional metadata about the cache
line’s state and its coherence state. For instance, the MESI coherence
protocol [169] uses four states to describe the coherency state of a cache line:
modified, exclusive, shared, and invalid. To synchronize state changes to
the different caches, different approaches can be used [169]: First, snooping-
based approaches communicate directly with all other caches to update
the states of the cache lines. However, this one-to-many communication
scales with the number of cores on modern CPUs. Second, directory-based
approaches forward requests to a shared cache directory, reducing the
number of messages over the internal buses.

Memory Subsystem. Modern CPUs employ a hierarchy of caches to
hide access latencies of the main memory and close the gap between the
slow response times of the memory and the fast execution time of the CPU.
Figure 2.2 shows the memory subsystem, including the main memory and
the cache hierarchy. On Intel CPUs, the cache hierarchy consists of the
first-level (L1), second-level (L2), and last-level (LLC) caches. The L1 and
L2 caches are core private caches and are only shared between sibling cores
where the L1 cache is split into a data cache (L1D) and an instruction
cache (L1I). The LLC is the largest cache inside the CPU package and
is shared between all cores. AMD CPUs use a similar hierarchy, but
the LLC is only shared across a so-called core complex [210], and an
additional component handles coherency between the core complexes.
Smaller form factor CPUs may skip the L2 cache. The CPU registers are
the fastest available memory inside the core as they are required to execute
instructions. Registers are stored in a register file that offers more physical
than architectural registers to implement optimizations like out-of-order
execution (cf. Section 2.2). The L1 cache has an access latency of 4 cycles,
followed by the L2 with 14 cycles, and the LLC with 50 cycles on the
Intel Skylake server microarchitecture [94] outperforming the rather slow
access latency of the main memory with 60 ns [140].

2.1. Memory Organization 17

Set1
Tag Compare &

Valid-bit Check

Way1 Way2 Way3 Way4

6 bit 6 bit36 bit

Physical Address OffsetIndexTag

Set2V|T V|T V|T V|TData Data Data Data

Set3

Set4
...

...
...

...
Set64

Way Select

DataHit?

Figure 2.3.: A set-associative cache using 64 sets with 4 ways and a cache line
size of 64B. We use 48 bit physical addresses in a physically indexed
and physically tagged design resulting in a tag size of 36 bit.

Set-Associative Caches. Figure 2.3 shows a set associate cache design,
currently the design used in Intel, AMD, and Apple CPUs. A set-associative
cache maps a physical address to one of multiple ways in a set of the
cache [94]. The number of ways usually ranges between 4 and 16 [94]. The
physical address of the memory request is partitioned into cache line offset
(e.g., bits 0 to 6), set index (e.g., bits 6 to 12), and tag (e.g., starting
from bit 12) to identify the exact location in the cache. The set index
specifies the set where the data resides in one of the ways. The cache
compares the address tag against the stored tags in each way of the set to
find the cache line containing the data. Furthermore, the valid bit of the
selected way is checked to ensure no stale data is accessed. Finally, the
data is extracted from the cache line based on the cache line offset and
the requested memory access size. A cache miss occurs when the tag is
not found in the set, or the valid bit of a matching cache line is zero.

Programs use virtual addresses when interacting with memory and the
cache must wait until the physical address from the TLB or a page-table
walk is available (cf. Section 2.1.1). To hide this delay, modern CPUs are
designed to use a specific page size. This ensures that the cache line offset
and the set index of the L1 cache are always identical between physical
and virtual addresses. Although this limits the number of sets in the L1
cache, it allows for a Virtually Indexed and Physically Tagged (VIPT)
cache design. VIPT caches directly extract the set index from the virtual
address while the physical address for the tag is resolved in parallel. Hence,
the L1 cache can already perform the set selection without waiting for
the physical address [164]. Higher cache levels use PIPT designs as the
physical address is available after checking the L1 cache.

18 Chapter 2. Background

Cache Inclusion Policies. The cache hierarchy within a CPU adheres
to specific inclusion policies, with the most common being inclusive and
non-inclusive [169, 94, 101, 70, 145]. An inclusive cache design requires
that all the data in other caches is present in the inclusive cache. For
example, an inclusive LLC, with respect to the lower cache levels, must
contain the data from the private caches. Such a design makes it easy to
directly store metadata required for directory-based coherency protocols
within the cache lines, as all cached addresses are located in the LLC.
This metadata is required to locate shared cache lines within all the
private caches and removes the overhead of snooping-based coherency
protocols (cf. Section 2.1.2). Non-inclusive cache designs relax inclusivity,
and the data can but is not required to reside in the LLC.

Cache Replacement Policies. Due to the limited size of caches, when
data is loaded into a cache, a cache line must be evicted to make space for
the new data. The replacement policy defines which algorithm determines
the cache line to evict. Different algorithms are utilized depending on the
cache level and latency requirements [2]. The most common replacement
policies are variants of the Least Recently Used (LRU) algorithm [2, 231].
LRU keeps track of the number of accesses to a cache line and evicts the one
with the least accesses. The hardware usually does not implement the LRU
algorithm but instead uses the Pseudo-LRU (PRLU) or Quad-age LRU
(QLRU) algorithms [26]. The PLRU and QLRU algorithms approximate
the LRU algorithm, where the QLRU implements LRU with a reduced
complexity of four states [26]. L1 caches on Intel CPUs usually use the
PLRU algorithm [2], and the LLC uses an adaptive QLRU algorithm [1].

2.1.3. Main Memory

A computer system’s main memory is usually built using DRAM technol-
ogy [83]. DRAM memory uses cells to store the information of single bits,
where a cell consists of a transistor and a capacitor storing the encoded
bit as a charge. Due to physical effects, the capacitor loses charge over
time and the stored information has to be periodically refreshed, i.e., the
values in the cells need to be refreshed [207]. The refresh interval until the
charge has to be refreshed is usually 32 to 64ms [109]. The DRAM Dual
Inline Memory Modules (DIMMs) are structured to improve concurrent
accesses, e.g., the structure contains channels, ranks, and banks [83, 123].

2.1. Memory Organization 19

R
o
w

D
ec
o
d
er

Row Buffer

Word Line

B
it

L
in
e

Capacitor

Transistor

DRAM Bank DRAM CellDRAM DIMM

C
h
ip

1

C
h
ip

2

C
h
ip

3

C
h
ip

n

Bank 0
Bank 1
Bank 2

Bank k

Figure 2.4.: The topology of a DRAM DIMM consists of multiple chips that work
together to form banks. Each bank contains a grid of cells, where
each cell includes a transistor and a capacitor that stores the encoded
bit. Cells are grouped into rows, which are transferred to the row
buffer via the sense amplifiers when the row’s word line is active.

Figure 2.4 shows the schematic of a DRAM DIMM, bank, and cell. The
gate of the cell’s transistor is connected to the word line, which, when
active, connects the capacitor over the bit line with the sense amplifier.
Multiple cells inside a bank are combined into a row, i.e., the word lines
of the cells are connected, and the data of the cells is forwarded over
the individual bit lines all at once. The row size for Double Data Rate
3 (DDR3) memory is usually 8KiB [109]. The sense amplifiers sense the
charge of the cells and convert it to a stable signal, thereby depleting the
charge. The row buffer stores the sensed data temporarily to allow the
selection of the requested data and to speed up successive data accesses to
the same row. Transferring the row’s data from the cells to the row buffer
is referred to as activating a row. Finally, the inverse process is performed,
and the row is closed by recharging the cells’ capacitors with the data
value stored in the row buffer. To refresh the charge in the capacitors,
the DIMMs perform from a top-level perspective, a similar operation to
activating each row within a 64ms window, and the refresh commands
share the time window with regular data requests and commands [149].

The DRAM addressing function maps a physical address to the exact
location within the topology of the DIMM, i.e., channel, rank, bank, and
row. If a different row is still active, the active row is closed, and the
requested row is opened. Depending on the row policy, the row can stay
open for a short duration (open row policy), be closed immediately (closed
row policy), or an adaptive combination of both policies [143].

20 Chapter 2. Background

2.2. Microarchitecture

In this section, we discuss the implementation of modern processors.
Section 2.2.1 introduce superscalar pipelines and the optimizations that
increase processor execution performance. Section 2.2.2 introduces the
configuration and monitoring facilities of the processor and discusses the
complexity of exhaustively identifying configuration options.

2.2.1. Microarchitectural Optimizations

CPUs deploy optimizations to speed up computations to meet today’s
performance requirements. The Instruction Set Architecture (ISA) defines
the interface between software and hardware for a given architecture, e.g.,
x86-64 or ARM64. The exact hardware implementation is vendor-specific
and is referred to as the microarchitecture [57]. The microarchitecture
implements the CPU’s superscalar pipeline, conceptually split into front-
end and back-end. The front-end is responsible for fetching and decoding
instructions. Compared to a more traditional pipeline, instructions on
modern CPUs are not directly executed but split into smaller micro-
operations (µ-ops). These µ-ops are issued from the front-end to the
back-end, where they execute, have their effects written back, and are
marked as retired. The back-end contains the arithmetic logic unit and
the address generation to execute the µ-ops and interact with the memory
subsystem (cf. Section 2.1). On superscalar CPUs, the back-end of the
CPU can execute multiple instructions in parallel on individual execution
units. Optimizations are built into such an execution pipeline to improve
performance where superscalar out-of-order execution and predictors,
like branch prediction and data prefetching, add the most significant
performance improvements besides the CPU caches (cf. Section 2.1.2).

Out-of-Order Execution. Out-of-order execution uses the observation
that in a program, instructions that do not have dependencies on each
other can be rearranged to execute out of order [83, 218]. This optimization
hides latencies as subsequent µ-ops can be executed in parallel while the
CPU waits for other µ-ops to complete, e.g., a load is waiting to be served
from memory. The CPU ensures that the program cannot observe this
optimization architecturally and, therefore, retires the finished µ-ops in
order, i.e., the architectural effects of the instruction become visible only
after the previous instruction retires. However, if a given instruction cannot

2.2. Microarchitecture 21

retire, e.g., due to a fault or an interrupt during execution, the temporary
results are discarded, and the control flow is diverted to the handler. The
µ-ops that are executed but never retire are named transiently executed
instructions [147, 33, 126]. Architecturally, the CPU is always in a valid
in-order state. However, the executed µ-ops still leave observable traces in
microarchitectural buffers like caches, e.g., if a transiently executed µ-op
loaded a value from the main memory and loaded it in the L1 cache.

Speculative Execution. Predictors, such as branch predictors, allow
the hardware to predict the outcome of µ-ops before the dependencies are
available or issue additional loads depending on previous access patterns.
For instance, the branch predictor predicts the outcome of conditional
control flow instructions like conditional jumps, indirect jumps, and returns
before the branch condition is available [208]. The branch predictors use
hardware structures like the Pattern History Table (PHT) [126, 249],
Branch Target Buffer (BTB) [126, 138, 175], and Return Stack Buffer
(RSB) [153] to store metadata of previous control flow changes and use
this metadata to predict future jump targets. A successful prediction
allows speculatively executing the jump target’s code and hiding latency.
However, if a prediction is wrong, the CPU has to discard all the µ-ops
and revert the control flow to the correct execution path. Finally, the state
of the branch predictor is updated for future predictions.

2.2.2. Microarchitectural Configuration and Monitoring

The processor exposes Model Specific Registers (MSRs) [95, 96, 7] to
privileged software like the operating system and the BIOS. The software
uses MSRs to configure the architecture and microarchitecture, like the
entry point for the kernel (sysenter) or the configuration of the CPU
operating frequency and adaptive power management [95]. Additionally,
MSRs expose monitoring capabilities to track microarchitectural events
like cache misses and power-related signals, such as the overall power
consumption of the processor. Each MSR is a 64 bit registers and addressed
with a 32 bit address, where functionally similar registers are grouped
together [96]. Vendors only partially document MSRs for the public domain,
and the complete documentation is only available for OEMs.

Therefore, although most of the MSR address space is empty and read
or write attempts do not succeed, a large portion of the address space,

22 Chapter 2. Background

whose functionality is unknown, still exists and could potentially expose
security-critical information. Domas [55, 53, 54] explores the search space
of undocumented system configuration registers on a Nehemiah CPU [55].
Due to the amount of registers, exhaustive analysis is not possible. There-
fore, Domas utilizes a timing side channel to group system registers based
on write timings, assuming that registers with similar behavior will exhibit
similar timing signatures. The remaining search revealed a configuration
register enabling instructions to interact with a deeply embedded instruc-
tion set in the CPU. Domas demonstrates that this instruction set can
circumvent ring isolation. In Chapter 7, we analyze how MSR configuration
bits affect the microarchitectural behavior of instructions groups.

2.3. Side-Channel Analysis

This section introduces microarchitectural side channels and power analy-
sis. Section 2.3.1 discusses the fundamentals of side channels and introduces
cache attacks. Section 2.3.2 introduces power analysis with different analy-
sis types and system interfaces replacing external measurement equipment.

2.3.1. Microarchitectural Side Channels

Side channels extract secret information from unintended emissions of
metadata from a concrete implementation [119]. The carrier signal for
the unintended information leakage can be the power consumption [127,
25], electromagnetic emissions [5, 62, 85, 185], temperature [89], optical
emissions [199], and execution time [125] of the implementation. The
extracted metadata allows to reconstruct the secret information processed
in the implementation with a specific success rate although the secret
information is never directly exposed. The emission of information is a
side effect of the implementation. Furthermore, timing side effects can
originate from microarchitectural optimizations and components.

Cache Side-Channel Attacks. Cache side channel attacks exploit the
timing difference between cached and uncached data (cf. Section 2.1.2) by
measuring how long it takes to access data. Various cache side-channel
techniques were proposed over the years, using different prerequisites and
threat models. If an attacker and victim share code pages, e.g., when

2.3. Side-Channel Analysis 23

Set1 · · ·
Way1 Way2 Way3 Way4 Way5 WayN

Set2 · · ·
SetN · · ·

...
...

...
...

...
...

Attacker

Victim

(a) Attacker Prime: The attacker fills a cache set with data.

Set1 · · ·
Way1 Way2 Way3 Way4 Way5 WayN

Set2 · · ·
SetN · · ·

...
...

...
...

...
...

Attacker

Victim

(b) Victim Access: The victim loads data and evicts a cache line.

Set1 · · ·
Way1 Way2 Way3 Way4 Way5 WayN

Set2 · · ·
SetN · · ·

...
...

...
...

...
...

/

Attacker

Victim

(c) Attacker Probe: The attacker infers if the victim accessed data.

Figure 2.5.: The Prime+Probe attack fills a cache set with attacker accessible
cache lines to infer if a victim application accessed the cache set.

using a shared library on the system, the operating system will map
the same physical page into the virtual address spaces of both processes.
Therefore, the attacker and victim will access the same cache line when
accessing data or executing code on the page. Flush+Reload [248, 78] uses
cache maintenance instructions to remove the shared cache line from the
caches and measure the access time of the shared cache line. A fast timing
indicates that the victim has accessed the cache line after the last flush.
Evict+Reload [77, 145] replaces the explicit flush instruction with an
eviction set to remove the data from the cache. Flush+Flush [75] utilizes
that the flush instruction is faster if the cache line is not in the cache.

If no shared memory is available between victim and attacker, set-based
attacks can be mounted to identify whether the victim accessed a cache
line corresponding to a cache set. The Prime+Probe [14, 172, 174] attack
exploits the limited number of ways in a set-associative cache (cf. Sec-

24 Chapter 2. Background

tion 2.1.2). Each time uncached data is loaded into the cache, another
cache line must be evicted from the cache to make space for the new data.
Figure 2.5 shows the steps of a Prime+Probe attack. First, the attacker
determines a targeted cache set and searches for a collection of virtual
addresses that map to the same cache set, i.e., the cache set index is the
same for all addresses. After finding the addresses, the attacker fills the
cache set by accessing them. Second, the victim could access data and
bring it into the cache, evicting one of the attacker’s cache lines. Finally,
the attacker measures the time it takes to access all addresses mapping to
the same set. If the access time is increased, a cache miss has occurred,
and the attacker can infer that the victim potentially accessed data that
maps to this set. Otherwise, the victim did not perform an access to this
cache set. Evict+Time [172, 14, 174] measures the time over the execution
time of the victim instead of the time required to access the attacker cache
set. Prime+Scope [180] and Reload+Refresh [26] extend Prime+Probe to
optimize for the used cache replacement policy. Prime+Abort [50] uses
Transactional Synchronization Extension (TSX) to observe transactional
aborts when the victim interacts with the targeted cache set.

Side-Channel Attacks on KASLR. Kernel Address Space Layout
Randomization (KASLR) randomizes the virtual addresses of the kernel’s
code and data during the boot process. This additional layer of security
makes it harder for an attacker to identify the location of security-relevant
data in the kernel. Microarchitectural side channels have been used to
break KASLR [32, 73, 88, 105, 200]. Lipp et al. [144] present a KASLR
break on AMD CPUs using the prefetch instruction. The execution
time of the prefetch instructions leaks information about the number of
mapped page-table levels of the given virtual address. An attacker can
iterate over kernel address space, identify if the given kernel address is
actually mapped, and break KASLR. In Chapter 7, we present how to
prevent KASLR breaks that exploit prefetch instructions.

2.3.2. Power Analysis

The power consumption of a CPU depends on the executed operations
due to the fundamental data-dependent power leakage of CMOS transis-
tors [154, 35, 9]. Transistors act as switches, and their state, i.e., open
or closed, represents bits. However, they expose a data-dependent power
consumption depending on their switching behavior. Since transistors

2.3. Side-Channel Analysis 25

are fundamental for logic gates and hardware functionality, this data-
dependent leakage is inherited by components in the CPU.

Power-analysis attacks [127, 25, 36, 230, 165, 48, 116, 177, 179] exploit
this data-dependent power consumption and aim to reconstruct the secret
inputs of, for instance, a cryptographic primitive. In such a scenario, an
adversary uses measurement equipment to measure the power consumption
during the cryptographic operations. Traditionally, these types of attacks
required physical access to the device. However, vendors provide integrated
energy measurement interfaces to monitor the processor’s energy consump-
tion. The Running Average Power Limit (RAPL) interface on Intel and
AMD CPUs accumulates the consumed energy of individual processor
components [47, 95, 7]. The RAPL interface has a reduced timing and
value resolution compared to external measurement equipment [146, 61].
Where externally measured power traces have multiple power samples per
instruction executed, the software-based traces record multiple executed
instructions in a single sample. To counteract the low timing resolution,
Hähnel et al. [79] and we [129] propose techniques to improve the quality
and accuracy of the interface. Although these techniques improve the
signal quality, the interface still does not match the resolution of external
measurement equipment. Khan et al. [121] analyze the accuracy of the
RAPL interface for extended measurement durations when compared
with a ground truth. Benign use cases for energy measurements [13, 56]
are justifiable, such as measuring the consumption of communication
primitives [229] or evaluating the overhead of Meltdown and Spectre mit-
igations [84]. However, integrated energy measurement interfaces are a
building block for power side-channel attacks (see Section 3.4).

Lipp et al. [146] demonstrate that the CPU’s internal energy interface can
replace the external measurement equipment and the need for physical
access to the device to perform traditional power-analysis attacks. Due to
the reduced timing resolution, software-based attacks usually require a
replay primitive to amplify the power leakage [146, 131, 102]. Although
traditional power analysis and software-based power analysis differ in
measurement sample acquisition, the traditional attack methodology is
applicable in both fields and is categorized into two analysis categories.

Simple Power Analysis. Simple Power Analysis (SPA) [127] considers
direct influences of secret-dependent computations on the power consump-
tion [127, 154]. In this scenario, the attacker is usually passive and uses

26 Chapter 2. Background

Square

1

Multiply Square

0

Square

0

Square

1

Multiply

Figure 2.6.: Simple power-analysis attack on a non-constant time square-and-
multiply RSA implementation. The difference in the energy consump-
tion of the square and multiply operations leaks the secret exponent.

one or multiple recorded power traces of the same input to infer the
secret information. Figure 2.6 shows an example of a SPA targeting a
non-constant time square-and-multiply algorithm [93] used in RSA. The
algorithm performs depending on the current exponent bit, either a single
square operation or the square and the multiply operation. Assuming that
the multiply operation has a distinct power signature compared to the
square operation, the pattern of multiply invocations directly leaks the
bits of the secret exponent. Therefore, visually inspecting the power trace
is enough in this example to extract the secret exponent.

Differential Power Analysis. Differential Power Analysis (DPA) ex-
ploits differential information between power traces recorded with distinct
inputs and a fixed key [127, 154]. Contrary to SPA, this attack category
requires observing changing inputs and uses statistical measures to recover
the secret information. The statistical methods range from the difference
of means of two classes, e.g., if a bit is set or not set, to correlation-based
analysis, usually referred to as Correlation Power Analysis (CPA) [25].
CPA searches for the maximum correlation coefficient between a modeled
hypothetical power consumption and the actual power traces. The most
common models used to compute the hypothesis are the Hamming weight
of a single intermediate, e.g., the number of set bits, or the Hamming
distance between two intermediates, e.g., describing the number of bit
changes required to transition from one data value to another. The Ham-
ming distance model is often used to model registers where the register
value is overwritten with new data. By enumerating all possible values of
the intermediate and computing each correlation coefficient, the hypothet-

2.4. Fault Attacks and Defenses 27

ical power consumption with the correct guess has the highest coefficient
if the model is correctly representing the power consumption.

Profiled Analysis. Both SPA and DPA can be extended to profiled
attacks by considering prerecorded traces with known secrets [154, 36].
These traces can be obtained if a test device of the targeted hardware
is available, or if the targeted device allows the use of known keys. The
idea of profiled attacks for SPA is to enumerate all possible values of an
intermediate and match a prerecorded template with the attack trace.
The gathered data can also be used to build a more accurate DPA model.

2.4. Fault Attacks and Defenses

Fault attacks change the behavior of well-defined procedures like compu-
tations [212, 167, 183, 184, 120], control-flow transitions [215], or directly
manipulate data values [123]. Fault attacks targeting data values are
categorized into attacks against data-in-use, i.e., data computed on, and
data-at-rest, i.e., data stored in memory. Traditional fault attacks can use
invasive and non-invasive methods. Invasive methods require opening the
component under attack to inject the fault. Various techniques were es-
tablished to induce faults, such as manipulating the operating voltage [28,
167, 183, 184, 120], clock source [212], or by using lasers [226].

To exploit fault attacks in a cryptographic context, techniques like differ-
ential fault analysis [16] and statistically ineffective fault attacks [52, 51]
have been proposed. Fuhr et al. [60] present fault attacks recovering AES
keys. Boneh et al. [19] discuss the importance of validating results of cryp-
tographic algorithms to protect against fault attacks. Such a validation
step can be computing backward from the output and validating that the
computed input matches the actual input of the primitive. Computing a
redundant path and comparing the outputs can also identify fault attacks.
Additional countermeasures are proposed on the hardware level [117, 193]
and for concrete cryptographic implementations like AES [12]. Mitigations
against fault attacks are usually designed following a fault model, i.e., a
model describing how the fault manifests in the implementation [191].

Secure boot ensures that the code responsible for initializing the hardware
and booting the system until the operating system takes control is not
tampered with. However, fault attacks targeting secure boot have been

28 Chapter 2. Background

demonstrated on modern hardware [226, 225]. Timmers et al. [215] demon-
strate how to control the program counter using fault attacks. Furthermore,
Timmers et al. [214] use fault injection to escalate privileges.

Like power analysis, these attacks traditionally require physical access to
the device to inject the faults. Nevertheless, over recent years, software-
based fault attacks emerged. The Rowhammer attack [123] exploits the
DRAM technology used in our main memory (cf. Section 2.1.3) and
targets data-at-rest. Rowhammer exploits that frequently activating a
DRAM row will induce bit flips in neighboring rows of the same bank.
Walker et al. [232] analyze DRAM on a physical level and conclude that the
bit flips are caused by electron injection, capture, and capacitive crosstalk.
Hong et al. [86] have a similar conclusion of the root cause effect of electron
spreading and injection. These effects are amplified due to the constant
shrinking of the DRAM cells to increase storage density [168, 122, 86]. The
density assumption is further supported by Kim et al. [122] as they find
that the number of flips increases with each new DRAM generation when
keeping the activations to a row constant. Lim et al. [141] analyze how bit
flips in the memory are affected by proton radiation. Additionally, Hong
et al. [86] discuss that depending on the activation time of a transistor,
two effects induce bit-flips into neighboring rows: The Rowhammer and
Passing Gate effect. We further detail the security implications and the
state of the art of Rowhammer attacks in Section 3.2.

Dynamic Voltage- and Frequency-Scaling (DVFS) allows dynamic adjust-
ment of a processor’s operating point, i.e., the voltage and frequency of the
underlying hardware. Adjusting frequency and voltage is crucial to control
the power consumption, thermals, and performance of a CPU [111]. Mod-
ern processors provide privileged software interfaces to configure DVFS
from the operating system, allowing for flexibility regarding the workload
and system type, e.g., desktop or server system [95, 7]. Multiple software-
based undervolting and overclocking attacks [212, 167, 183, 184, 120] use
system interface to configure an unstable operating point that experiences
faults during computations targeting data-in-use (see Section 3.3).

3
State of the Art

In this chapter, we introduce the state of the art in the research field
relevant to the main contributions of this thesis. Section 3.1 discusses
Meltdown-type and Spectre-type attacks. Section 3.2 discusses Rowham-
mer attacks and defenses. Section 3.3 discusses software-based Dynamic
Frequency- and Voltage-Scaling (DVFS) attacks, focusing on undervolting
and overclocking of processors. Section 3.4 discusses software-based power
analysis using direct and indirect power interfaces.

3.1. Transient-Execution Attacks

Transient-execution attacks exploit instructions that were executed but did
not retire to encode information in side channels. These cases occur due to
mispredictions, faults, or microcode assists in the out-of-order execution
pipeline (cf. Section 2.2). Section 3.1.1 introduces Meltdown-type attacks
and discusses how the main contributions of this thesis help to reduce
MDS leakage. Section 3.1.2 introduces Spectre-type attacks and explains
how we use Spectre as a data-corruption validation primitive.

3.1.1. Meltdown-type Attacks

The Meltdown [147] attack exploits faults and microcode assists during
transient execution. Faults and microcode assists are handled in the retire-
ment stage of a µ-op. However, due to out-of-order execution subsequent
and non-dependent µ-ops can already compute on the transient interme-
diates for a short duration. Meltdown utilizes the execution of transient
instructions to encode secrets extracted from another security domain
into microarchitectural side effects. Multiple variants of Meltdown were
discovered and categorized depending on the fault or microcode assist

29

30 Chapter 3. State of the Art

1 # rdi = &kernel_address

2 # rsi = &encode_array

3 meltdown:

4 movzbl (%rdi), %eax

5 # never reached architecturally

6 shll $12 , %eax

7 movb (%rsi ,%rax), %al

8 ...

(a) Meltdown-US in assembly code.

Load

Transient

Execution

Fault

Retirement

Shl

Encode

(b) Sequence diagram of Meltdown-US.

Figure 3.1.: The assembly code and sequence diagram of the Meltdown-US variant.
The attacker accesses an inaccessible kernel address in rdi (Line 4)
and forces transient execution of the encoding instructions (Lines 6
and 7). The instructions access a specific page of the encode array

in rsi. The accessed page can be recovered using a side channel after
the transiently executed instructions have been squashed, recovering
the kernel value. During the retirement of the load instruction the
fault is identified and raised to the software handler.

that triggers the transient execution [33]. For instance, the Metldown-US
variant [33, 147] exploits that if an attacker accesses a kernel page, i.e.,
a page where the user-accessible bit is cleared (cf. Section 2.1.1), the
data is transiently forwarded to subsequent µ-ops encoding the secret
into a side channel. Figure 3.1 shows the assembly code of Meltdown-
US where an inaccessible address is accessed, and the data is encoded
in the cache during the transient window. This short duration between
the load and the pipeline flush before handling the fault is enough to
circumvent process isolation. To prevent Meltdown-US on a software level,
the KAISER patch [71, 80] was deployed to unmap the kernel address
space from all userspace address spaces. Therefore, the virtual-to-physical
address translation during transient execution will fail, and no data can
ever be loaded from the L1 cache (cf. Section 2.1.2).

The Foreshadow attack [236, 222], categorized as Meltdown-P [33], is
similar to the original Meltdown-US variant. Metldown-P enables address-
based leakage, i.e., the targeted data is leaked from the L1 cache via
a wrongly translated physical address (cf. Section 2.1.2). Contrary to
attacks targeting the L1 cache, Microarchitectural Data Sampling (MDS)
attacks [200, 33, 201, 198, 163, 30, 209, 187] extend the Meltdown variants
beyond L1 cache leakage [92]. MDS attacks target internal CPU buffers
like the load port, store buffer, line fill buffer, and staging buffer in which

3.1. Transient-Execution Attacks 31

data is relatively short-lived and in-flight. Therefore, the leakage from
these buffers contains noise from other data traveling over the buffers.

Load Value Injection (LVI) [223] turns Meltdown-type attack primitives
around to inject from an attacker to a victim. LVI uses microcode assists
during the execution of a victim load to inject a value into the load
instruction during transient execution. The victim transiently computes
with the injected value, which can alter control flow or perform an out-of-
bounds access to encode secret information into a side channel.

The first hardware mitigation for Metldown-type attacks replaced all tran-
siently forwarded values with zeros [223, 68]. Although this prevents data
leakage of the Meltdown variants, it enabled a new LVI variant [223, 68].
With LVI-Nullify [68], we propose a software-based solution to prevent
exploitation of LVI-Null in Intel Software Guard Extension (SGX) en-
claves. Vendors mitigate Meltdown-type attacks with additional hardware
mitigations that render the KAISER patch [71, 80] obsolete, as data is
no longer incorrectly forwarded during transient execution. Furthermore,
new instructions and buffer flushes were added to prevent stale data leak-
age after context switches [98]. Nevertheless, these buffer flushes do not
prevent attacks from sibling threads performed in parallel with the victim.
Finally, the now mitigated Downfall [162] attack exploits optimizations of
the Single Instruction Multiple Data (SIMD) gather instruction to leak
SIMD registers from an internal optimization buffer.

Reducing MDS Leakage. MDS variants still pose a threat to CPUs
that do not turn off simultaneous multithreading (SMT) and do not include
hardware fixes for MDS attacks. Although microcode updates extended
context switches to flush stale data from affected buffers, sibling cores
share the same buffers and can mount MDS attacks in parallel if the buffers
have not been flushed yet [98]. In Chapter 7 [133], we found mitigations
against CrossTalk [187] and Medusa [163] that reduce the overall leakage
of these MDS attacks without the requirement to disable SMT. To reduce
Crosstalk leakage, we found a CPU configuration register that allows to
intercept accesses to the cpuid instruction. The cpuid instruction is used
in the Crosstalk attack to move the content of the staging buffer to the
line-fill buffer. Intercepting this primitve stops transient execution and
the attacker has to rely on other primitives that have reduced leakage
rates [133, 187]. The Medusa MDS variant III [163] uses implicit write-
combining rep string instructions to leak data from previous rep string

32 Chapter 3. State of the Art

instructions. We found a configuration register that changes the internal
behavior of the string instructions, i.e., the memory type for these string
operations, effectively preventing leakage from rep string operations [133].

Re-enabling Timers. Cache side-channel attacks usually utilize timing
primitives to measure memory access latencies (cf. Section 2.3). Distin-
guishing cache hits from cache misses allows to infer secrets that were
encoded during transient execution. Therefore, a proposed mitigation idea
for the Xen hypervisor was to make guest-accessible timers less granu-
lar [227]. In Chapter 7 [133], we found an MSR exposing an undocumented
timer to the guest whose resolution was not limited in the Xen hypervi-
sor [242]. With the high-resolution timer, we distinguish cache hits from
cache misses and mount a Foreshadow [236] attack on the Xen hypervisor.
Additional methods to amplify cache timings [118, 159, 216] were proposed
to circumvent mitigations that make timers less granular.

3.1.2. Spectre Attacks

Spectre [126] attacks exploit transient execution of incorrectly predicted
control- or data-flow paths. The front-end relies on predictors for control-
flow changes to issue µ-ops to the back-end. However, suppose a predictor
returns the wrong control-flow prediction. In that case, the back-end must
flush the execution pipeline and revert the control flow back to the correct
position in the instruction stream, resulting in transiently executed in-
structions. During this transient window, traces in the microarchitecture
can be recovered using side channels, similar to those in Meltdown-type
attacks (cf. Section 3.1.1). Contrary to Meltdown, Spectre still has sig-
nificant security relevance because Spectre is no CPU bug but rather
an optimization with side effects [159]. One major problem with Spectre
is that the structures responsible for the predictions can be mistrained
from other processes or security domains. Therefore, an attacker process
could mistrain the predictor and open a transient window in the victim
process. Canella et al. [33] categorized the Spectre variants based on the
microarchitectural predictor they use to start a transient window.

Spectre-PHT [126] mistrains the Pattern History Table (PHT) to influ-
ence the predictions for conditional control-flow changes. Spectre-PHT is
especially problematic since it exploits a common programming pattern:
the out-of-bounds check. For instance, if a program requires an array to

3.1. Transient-Execution Attacks 33

1 # rdi = &array_address

2 # rdx = array_index

3 # rcx = &array_size

4 # rsi = &lookup_table

5 spectre_pht:

6 cmpq %rdx , (%rcx)

7 jbe .Lend

8 movzbl (%rdi , %rdx), %eax

9 shll $12 , %eax

10 movb (%rsi ,%rax), %al

11 .Lend

12 ...

(a) Spectre-PHT in assembly code.

Load & CMP & JBE

Recovery

Prediction

‘Not Taken’

Load

Shl

Encode

....Lend

(b) Sequence diagram of Spectre-PHT.

Figure 3.2.: The assembly code and sequence diagram of Spectre-PHT. The
attacker has control over the index variable in rdx and can trigger
the gadget repeatably to mistrain the PHT. The attacker specifies
an out-of-bounds index, leading to transient execution until the
value of the array size (rcx) variable is available (Line 6). During
transient execution the subsequent instructions will use the index,
access the array out-of-bounds (Line 8), and encode the leaked value
into the lookup table (Line 10). After the size variable is available, the
misprediction is resolved, and the correct execution path is executed.

be indexed, the index is usually verified to be within the defined bounds
of the array. However, during the transient window, the PHT can predict
to take the in-bound branch, although the actual index variable is out of
bounds. These mispredictions allow an attacker to access data beyond the
defined array, i.e., any data belonging to the process. Figure 3.2 shows a
Spectre-PHT gadget where the transiently accessed out-of-bounds data is
re-encoded in a look-up table. This additional indirection allows an attacker
to recover the secret value via a cache side channel (cf. Section 2.3.1).

Spectre-RSB [153, 135] exploits the Return Stack Buffer (RSB) to start
transient execution. The RSB is responsible for predicting targets of return
instructions that match a previously executed call instruction. Due to the
implementation of the RSB, the RSB does not track modifications to return
addresses on the stack directly. This insight allows the implementation of
the Retpoline Spectre-BTB mitigation [221]. Instead of an indirect call or
branch, the control flow is transferred by moving the jump address onto
the stack and invoking the return instruction as depicted in Figure 3.3.

Canella et al. [31] and Xiong et al. [244] summarize research towards
Spectre mitigations. We focus on actively deployed mitigations from CPU

34 Chapter 3. State of the Art

1 function:

2 call retpoline (%rip)

3 .Lloop:

4 jmp .Lloop

5 retpoline:

6 lea call_target (%rip), %rax

7 mov %rax , (%rsp)

8 ret

9 call_target:

10 ...

Figure 3.3.: The assembly code of the Retpoline mitigation. Due to the RSB
not tracking direct modifications on the stack, indirect calls can be
replaced by calling a Retpoline helper (Line 5) and modifying the
return address on the stack (Line 7). During transient execution, the
RSB will predict to continue at the return address of the previous
call instruction (Line 3), and the transient execution will be trapped
in an endless loop. After the misspeculation is resolved, the execution
will continue to add the desired function (Line 9).

vendors and broadly applied software solutions. Intel and AMD introduced
various mitigations to prevent predictions from different domains from
influencing each other [100]. First, Indirect Branch Restricted Speculation
(IBRS) prevents code running in a higher privilege level, e.g., the kernel,
from reusing predictions from lower privilege domains like the user space.
Second, the Indirect Branch Predictor Barrier (IBPB) prevents code follow-
ing a barrier from being influenced by predictions made by the code before
the barrier. Third, Single-Thread Indirect Branch Predictors (STIBP)
prevent predictions from one logical CPU from influencing predictions
of the other sibling. Finally, Retpoline [221] prevents Spectre-BTB by
replacing indirect calls with an RSB misspeculation gadget to redirect
transient execution. Most deployed hardware mitigations aim to prevent
mistraining from one security domain to another. Therefore, mistraining
within the process is still possible, leaving a large attack surface against in-
process isolation, i.e., processes containing multiple security domains [40,
42]. Furthermore, some of these mitigations are ineffective against newer
Spectre gadgets and mistraining techniques [10, 240, 220, 239].

Spectre as Data Corruption Validation. In Chapter 6 [132], we use
a Spectre-PHT gadget to verify if the data corruption of our Rowhammer
attack can be further exploited. We target the metadata of page-table
entries (cf. Section 2.1.1). However, corrupting the reserved bits of the page-

3.2. Rowhammer 35

One-Location

Agressor

Victim

n+1

n+2

n+3

n+4

n+5

n+6

n+7

n+8

n+9

Single-Sided

Agressor

Victim

Decoy

Double-Sided

Agressor

Victim
Agressor

Mutli-Sided

Agressor

Victim
Agressor

Victim
Agressor

Victim
Agressor

Half-Double

Agressor

Agressor

Victim
Agressor

Agressor

Figure 3.4.: Common Rowhammer hammering patterns. The patterns vary in
the number of aggressor rows and their placement. Multi-sided ham-
mering patterns surround aggressor rows with multiple victim rows.

table entry will result in an unrecoverable page fault that terminates the
attacker process on our test device. Our Spectre verification gadget exploits
that during transient execution, page faults of subsequent instructions are
suppressed until retirement (cf. Section 2.2.1). Therefore, we access the
memory pointed by the page-table entry in speculation and encode the
loaded value into a cache side channel. The memory access will succeed if
no reserved bits are corrupted. Afterward, the misspeculation is reverted.
Therefore, if we observe the encoded value in the cache side channel,
the access was successful in the transient domain, and the address is
safe to access architecturally, i.e., no unwanted data corruption occurred.
Otherwise, the page-table entry is corrupted, and accessing it will terminate
the process. A similar primitive was used by Ravichandran et al. [189] to
brute force ARM’s pointer authentication codes during transient execution.

3.2. Rowhammer

Rowhammer [123] is a software-based fault attack discoverd in 2014
targeting data-at-rest inside the main memory. Seaborn et al. [205, 206]
demonstrate the security implications of Rowhammer by exploiting bit
flips in memory to gain kernel-level privileges. Additional attacks using
Rowhammer have been used for privilege escalation [228, 132, 4, 22, 44,
72, 74, 190, 243, 253], target data integrity [107, 115, 213, 192, 106, 59,
15, 34, 58, 103, 104, 143, 178, 181, 237, 252], manipulate the accuracy of
machine learning models [246], and as a side channel [136, 43, 217, 171].

36 Chapter 3. State of the Art

Hammering Patterns. The amount of bit flips induced by a Rowham-
mer attack depends on the row access pattern within a DRAM bank. The
rows accessed by an attacker are called aggressor rows and the exact row
layout forms a hammering pattern. The single-sided hammering pattern
uses one neighboring row and any additional row in the same bank to force
frequent row activations [205, 206, 74] (cf. Section 2.1.3). The double-sided
hammering pattern uses two aggressor rows directly adjacent to the victim
row and maximizes the locality of disturbance errors in the victim row [205,
206]. The one-location variation uses only a single aggressor to induce bit
flips [72]. Recent Rowhammer attacks use multi-sided hammering patterns
consisting of multiple double-sided attacks in the same DRAM bank [59,
192]. We propose two novel hammering patterns in Chapter 6 [132], com-
bining disturbance errors of aggressors beyond direct neighboring rows.
Jattke et al. [106] introduce the Blacksmith fuzzer to find the optimal
hammering pattern for a given DIMM that maximizes the number of bit
flips. Figure 3.4 summarizes common Rowhammer hammering patterns.

DRAM addressing functions are crucial to map a physical address to the
exact topology in the main memory (cf. Section 2.1.3). However, vendors
usually do not document the addressing functions, resulting in additional
challenges in placing the aggressor rows according to the hammering
pattern. Pessl et al. [176] reverse-engineer the DRAM addressing functions
of various DIMMs and found that the functions are usually composed of
multiple xor functions. Furthermore, Pessl et al. found a bank-conflict side
channel to identify if two addresses belong to the same bank. Additional
methods were proposed to reverse-engineer the addressing functions using
bank conflicts [11], temperature [114], and performance counters [82].
Helm et al. [82] found CPUs that assign distinct addressing functions to
physical address ranges. Gerlach et al. [66] develop an efficient solver to
recover non-linear addressing functions from side-channel measurements.

With the DRAM addressing function, an attacker can precisely place
the aggressor rows in the main memory if the physical address is known.
However, physical address information is no longer available to an unpriv-
ileged user [205, 206, 124]. Furthermore, huge pages like 2MiB or 1GiB
pages allow to infer physical address bit directly from a virtual address
(cf. Section 2.1.1) [72, 192]. Nevertheless, huge pages were restricted by
operating systems and are no longer handed out to unprivileged processes.
Islam et al. [103] use microarchitectural side channels to partially recover
physical address bits and identify whether pages are contiguous in the
main memory. Contiguous memory allows identifying the relative location

3.2. Rowhammer 37

of DRAM rows required for the hammering pattern despite not knowing
the absolute position in the DRAM bank. Schwarz et al. [202] use the
bank-conflict side channel and known xor-based DRAM addressing func-
tions to recover partial physical address information. Kwong et al. [136]
use contiguous memory to recover DRAM bank information. In Chap-
ter 6 [132], we propose combining the bank-conflict side channel with
insights into the Linux buddy allocator. With this technique, we identify
whether a memory region could be contiguous to identify the relative
positioning for the Half-Double hammering pattern.

Mitigations in Commodity Hardware. The first temporary Rowham-
mer mitigation was doubling the refreshes to the individual rows [8]. How-
ever, Kim et al. [123] and Aweke et al. [8] show that increasing the refresh
rate does not prevent Rowhammer bit flips on some DIMMs. Commer-
cial devices focus on two common Rowhammer mitigations: First, Error
Correcting Codes (ECC) are established to prevent non-malicious data
flips due to cosmic radiation or aging of the hardware. However, ECC
offers limited protection against Rowhammer attacks. Second, to prevent
Rowhammer attacks, the vendors deploy refresh-based mitigations. These
mitigations count the number of activations to a row and issue additional
refreshes to neighboring rows, preventing the accumulation of disturbance
errors. LPDDR4(x) and DDR4 memory utilize a refresh-based mitigation
technique called Target Row Refresh (TRR) [108]. Pseudo-TRR (pTRR)
is a refresh-based Rowhammer mitigation implemented in the CPU’s
memory controller to track DRAM accesses and issue additional refreshes.

Beyond ECC and TRR. Cojocar et al. [44] reverse-engineer the
ECC functions and find a timing side channel that indicates whether
the hardware corrected a correctable bit flip. With this knowledge, they
perform targeted Rowhammer attacks circumventing ECC and inducing
uncorrectable bit flips in the main memory. Kwong et al. [136] present
the Rambleed attack and use the ECC timing side channel to leak data
from the main memory. Frigo et al. [59] demonstrate that early TRR
mitigations can be overwhelmed by multi-sided Rowhammer attacks. Due
to limited hardware inside the DIMMs to track aggressor rows, many of
the aggressors’ neighbors will not be refreshed. In Chapter 6 [132], we
introduce the Half-Double effect, which combines the electrical disturbance
of rows beyond the direct neighboring rows of the victim. We demonstrate

38 Chapter 3. State of the Art

in Chapter 6 [132] that TRR is not only ineffective against the Half-
Double attack but fundamentally assists an attacker on commodity devices.
Hassan et al. [81] propose a methodology to categorize, analyze, and
reverse-engineer TRR implementations using a dedicated FPGA board.
De Ridder et al. [192] synchronize multi-sided hammering patterns with the
refreshes of the DRAM module, increasing the activation count within the
refresh interval. A similar synchronization was used by Jattke et al. [107]
to evade Rowhammer mitigations on Zen 2 and 3 CPUs. Kang et al. [115]
found additional mitigations implemented in the memory controller of
Intel CPUs and circumvented these mitigations by hammering multiple
DRAM banks simultaneously. Luo et al. [151] present RowPress, which
induces bit flips in the main memory using the passing gate effect instead
of the Rowhammer effect [86] (cf. Section 2.4). Juffinger et al. [113] analyze
RowPress with regards to single- and double-sided hammering patterns.

Academic Mitigations. Multiple research papers propose mitigations
to prevent Rowhammer attacks since the original discovery in 2014 [123].
Rowhammer mitigations neutralize, detect, or eliminate bit flips in the
main memory [72]. The following software-based mitigations were proposed.
Anvil [8] is a detection-based mitigation tracking accesses to memory lo-
cations using performance counters (cf. Section 2.2.2). CATT [23] and
Zebram [134] neutralize bit flips by distancing vulnerable data in the main
memory. Copy-on-Flip [49] migrates pages that observe frequent ECC
events to a new location to prevent targeted exploitation of Rowham-
mer bit flips. The subsequent mitigations require additional hardware
changes. Graphene [173] proposes an optimized solution with a reduced
area overhead compared to conventional counter-based Rowhammer miti-
gations. ProTRR [156] and Rega [157] optimize an adapted TRR algorithm,
giving vendors additional configuration parameters to fine tune the mitiga-
tion. With CSI:Rowhammer [112], we propose a novel hardware-software
co-design replacing ECC with a cryptographic MAC to detect bit flips.
CSI:Rowhammer delegates error correction beyond single bit flips to the
operating system, allowing for great flexibility when correcting file-backed
data. Similarly, we propose PT-Guard [196] partitioning a MAC within
the free bits of page-table entries. Additional mitigations dynamically
remap rows within a DRAM bank to prevent contiguous hammering of
neighboring rows [194, 241, 197]. Defenses building on the characteris-
tics of Rowhammer bit flips have been demonstrated to be ineffective
against modern Rowhammer variants [112]. For instance the underlying

3.3. Fault Attacks using DVFS Interfaces 39

assumptions of CATT and Zebram were invalidated with the Half-Double
effect [132] and further distanced Rowhammer flips [123].

3.3. Fault Attacks using DVFS Interfaces

The threat model of Trusted Execution Environments (TEEs) [45] allows
an attacker to use Dynamic Voltage- and Frequency-Scaling (DVFS) in-
terfaces and configure the processor to operate beyond stable voltage and
frequency conditions (cf. Section 2.4). The CLKSCREW attack [212], in-
duces faulty computation into ARM TrustZone by using a software-based
overclocking interface. With these faulty computations, CLKSCREW
demonstrates leaking cryptographic keys and loading self-signed applica-
tions into TrustZone. A similar interface was available on Intel CPUs to
request a reduced operating voltage and potentially reduce the processor’s
power consumption. Plundervolt [167] uses the software-based undervolt-
ing interface to induce faulty computations into Intel Software Guard
Extension (SGX) enclaves. Plundervolt demonstrates attacks to fault mul-
tiplications, leak RSA keys using the Bellcore and Lenstra fault-injection
techniques [18, 139], and recover AES-NI keys, i.e., from a side-channel re-
sistant AES hardware implementation. Similar attacks using undervolting
interfaces have been shown on SGX [120, 184], TrustZone [183], and AMD
Zen CPUs [186]. Due to the impact of these software-based DVFS attacks,
Intel disabled the undervolting interface when using SGX [17, 130].

The removal of the software-based interfaces sparked research on low-cost
hardware attacks within the physical access threat model. The Voltpil-
lager [39] attack targets the exposed voltage regulators outside the CPU
package. An attacker can inject voltage requests directly into the bus be-
tween the regulators and the CPU, re-enabling Plundervolt-style attacks.
Newer Intel CPU generations deploy a fully integrated voltage regulator de-
sign that contains the voltage regulators in the CPU package and prevents
low-cost hardware undervolting attacks [130, 29]. Buhren et al. [28] compro-
mise AMD’s Secure Encrypted Virtualization (SEV) using a voltage glitch
to gain control over AMD’s secure processor. Mahmoud et al. [152] exploit
a CPU with integrated FPGA to construct a circuit on the FPGA that
influences the CPU’s operating voltage and induces faults in operations.

Mitigations against fault attacks like additional redundancy or backward
computations (cf. Section 2.4) are applicable to protect against software-
based attacks. However, these mitigations have a performance overhead,

40 Chapter 3. State of the Art

and backward computations are often only feasible for some computations.
Furthermore, the fault injection capabilities of software-based attacks are
weaker compared to a traditional hardware attacker [130]. Chen et al. [38]
propose CAMFAS, an optimized redundancy fault attack mitigation that
uses Single Instruction Multiple Data (SIMD) registers and instructions to
compute the redundant paths with less performance overhead. However,
the performance gains depend on whether the protected software does
not already utilize SIMD registers and instructions. In Chapter 5 [130],
we propose a probabilistic fault attack detection and mitigation for SGX
enclaves. Our approach has no pre-requirements for the actual software
to be protected. Instead, we place trap instruction inside the code and
constantly verify if these instructions still compute the correct result.
To find a suitable trap instruction, we analyzed the instructions of the
x86 instruction set for their fault susceptibility with varying voltage and
frequency operating points. We found that integer multiplication is the
most susceptible instruction across the tested CPUs and faults most
reliably before other instructions observe faulty computations.

3.4. Software-based Power Analysis

Software-based power analysis replaces the external measurement equip-
ment of traditional power analysis with power-related signals or side
effects obtainable directly via software (cf. Section 2.3.2). The Android
operating system reported the power consumption to applications until
Android 7 [182]. Yan et al. [245] demonstrate power side channels using the
Android interface and distinguish keystrokes, password lengths, and appli-
cations. Michalevsky et al. [160] exploit power-consumption fingerprints
to identify the device’s location in a predefined set of possible locations.
Chen et al. [37] use power profiles to fingerprint applications. Similarly,
Qin et al. [182] fingerprint websites using energy readings.

Like the Android interface, the RAPL interface can be used to mount
power side channels on x86 CPUs (cf. Section 2.3.2). Mantel et al. [155]
use the RAPL interface to record the power consumption during RSA
operations and distinguish RSA keys based on the Hamming weight of the
keys. Fusi [61] demonstrate information leakage of 16KiB large RSA keys
if the keys contain large spaces of zeros between the individual ones. Larger
RSA keys have the property of longer durations between the processing of
each key bit and counteract the reduced timing resolution of the interface.

3.4. Software-based Power Analysis 41

Gao et al. [63] use the available RAPL interface in a guest virtual machine
to fingerprint the host. Zhang et al. [251] showcase a covert channel and
perform website fingerprinting using the RAPL interface.

These power side channels show a similar pattern of fingerprinting distinct
power signatures or partially recovering cryptographic keys. Traditional
power-analysis attacks [127, 25] were considered an unrealistic attack
vector for remote systems, as the timing and value resolution were re-
duced compared to external measurement equipment. With the Platypus
attack [146], we advanced the field of software-based power analysis when
using the RAPL interface. First, we show Correlation Power Analysis
(CPA) on AES-NI, i.e., a side-channel resistant hardware implementa-
tion of AES, when performing block encryption. Second, we improve the
relatively low signal quality of the interface by using microarchitectural
replay techniques in the context of SGX [224]. This primitive allows us
to record and amplify fine granular, per instruction energy readings and
attack RSA, even if concealed within SGX. Fixes for the Platypus attack
remove unpriviledged access to the interface and filter the interface to
no longer report data-dependent energy consumption accurately when
using SGX [99, 238]. Mart́ınez et al. [158] introduce a systematization for
remote power analysis and summarize techniques to measure the power
consumption. Wang et al. [233] use similar techniques as in the Platypus
attack to mount power side channels on AMD SEV. PowSpectre [102]
proposes techniques to use Intel Transactional Synchronization Extension
(TSX) to repeat the victim code and amplify power leakage.

Modern CPUs utilize DVFS to dynamically increase the operating fre-
quency and performance for demanding workloads. However, the hardware
enforces thermal and power limits to prevent physical damage to the CPU.
If a workload reaches these limits, the CPU throttles the frequency to lower
the power consumption, resulting in reduced performance. Wang et al. [234]
and Liu et al. [148] discover that the timing variations due to throttling
can be exploited as an indirect power-related signal, i.e., a signal that
is not directly exposing the power consumption but correlates with it.
Wang et al. [234] present the Hertzbleed attack, exploiting these timing
differences remotely and leaking cryptographic keys from the SIKE post-
quantum key exchange implementation. Liu et al. [148] mount a CPA
attack (cf. Section 2.3.2) on AES-NI on Intel and AMD CPUs with these
types of power-related signals. Wang et al. [235] and Taneja et al. [211]
extend frequency-throttling attacks to integrated and dedicated GPUs.
Cohen et al. [43] found another power-related signal in the number of bit

42 Chapter 3. State of the Art

flips a Rowhammer attack induces, i.e., the number of bit flips correlates
to the power consumption of the DRAM DIMM (cf. Section 2.1.3).

In Chapter 8, we introduce Collide+Power [131] and show that data
collisions in hardware expose the Hamming distance of the values in the
power domain. With Collide+Power, we extend software-based power
analysis to leak general-purpose data using threat models similar to
Meltdown and MDS. Furthermore, we propose a measurement technique
to improve the signal quality of the power-related signal.

Software-based power side channels were also explored by crossing hard-
ware domains to construct energy reading primitives. Zhao et al. [254]
use the FPGA of a heterogeneous computing system to construct a ring
oscillator capable of measuring a power-related signal. They demonstrate
attacks on components of the FPGA and attack on an RSA implemen-
tation running on the CPU of the SoC. O’Flynn et al. [170] show power
side-channel attacks using an integrated analog-to-digital converter.

4
Conclusion

In this thesis and the corresponding publications, we explored the synergy
of traditional hardware attacks with the microarchitectural world of tran-
sient execution, system interfaces, and components. We summarize the
contributions of the thesis and publications with three key insights.

Transient execution can be exploited to enhance software-induced hardware
attacks even in the post-transient era, where Meltdown and MDS variants
have been fixed in hardware. We constructed a corruption validation
primitive which acts as an oracle to validate if fault injection succeeded
and suppress failed attempts (see Chapter 6 [132]). Similar primitives
have been used without physical context to break pointer authentication
codes [189] or exfiltrate physical address information [103]. Furthermore,
we exploited transient execution to enhance software-based power analysis
techniques in Chapter 8 [131]. Transient replay gadgets [131, 102] amplify
subtle power leakage to make it measurable with power-related signals.
We also showed that transient execution can be leveraged to expose
data to power analysis in specific buffers [110, 131]. Previously, transient-
execution attacks leaked targeted data directly. However, it is likely future
work will shift away from transient-execution attacks as primary leakage
primitive towards building blocks to move data or validate conditions
during transient execution. A similar shift occurred with some side-channel
attacks, using side channels as the primary data leakage primitive when
targeting non-constant-time code. In more recent works, side channels are
commonly used as building blocks, e.g., to encode secrets transiently.

Software-based fault attacks like Rowhammer and DVFS-based fault in-
jection are significant threats to system security, and a single faulted data
value or computation can hijack an entire system. Therefore, identifying
the fault characteristics of these software-based fault attacks is crucial to
developing efficient mitigations. In Chapter 6 [132] and Chapter 5 [130],

43

44 Chapter 4. Conclusion

we present methodologies to identify how faults manifest on the hard-
ware. First, we demonstrated faults violating the existing assumptions of
refresh-based Rowhammer mitigations. Second, we identified that some in-
structions are more susceptible to DVFS-based fault injection than others.
Based on our fault-susceptibility analysis, we have presented a previously
unknown Rowhammer variant and designed a novel DVFS fault detection
mechanism. Finally, this analysis has already layed the foundation for
follow-up work on improving energy efficiency by making undervolting
more resilient [111]. In the future, we expect an increase in the number
of faults experienced on systems as manufacturing processes shrink, as is
already the case with DRAM. Furthermore, software-based fault attacks
in other memory technologies like SRAM are likely to emerge as a new
threat. Therefore, future research may shift towards principled mitigations
that do not rely on specific fault characteristics [112, 196].

System interfaces are essential for monitoring and configuring the perfor-
mance of complex processors. However, exposing interfaces to manage and
monitor physical properties to unprivileged domains can have unforeseen
security implications as evidenced by software-based power analysis [146]
and fault attacks [212, 167]. Therefore, the interfaces to manage and mon-
itor physical properties were restricted. In Chapter 7 [133], we presented
a methodology to identify additional interfaces that expose exploitable
signals of physical properties. Removing interface access to physical signals
is a temporary solution, as physical properties are closely entangled with
the system’s power and thermal management. Both, the execution time,
due to DVFS [234, 148], as well as the number of Rowhammer flips [43] is
influenced by physical properties. Consequently, attacks can still observe
physical properties without explicit interfaces. These signals form an addi-
tional layer of indirection to obtain the actual physical property. Therefore,
one could consider these signals as higher-order side channels. The nature
of these side channels varies widely, e.g., from flips in memory to execution
time differences. Hence, significant future research is necessary to identify
higher-order side channels that reintroduce leakage previously deemed
security critical which therefore has been mitigated in its direct form.

Future Work Outlook

In this section, we summarize our outlook for future research. First,
future research could deepen the understanding of the possibilities of

45

microarchitectural primitives as building blocks for exploiting physical
properties. For example, primitives like port contention [6] can likely
force new collisions of data in the hardware, making the combined power
leakage exploitable via software-based power analysis. Due to the increased
throughput of execution ports, we expect the power leakage to be more
substantial than that of the memory subsystem. Similarly, research to find
new ways of speculatively interacting with data in the memory subsystem
might also increase power leakage. For instance, newer CPUs implement
data-dependent prefetchers that fetch additional memory into the caches
by observing data values and deciding if the value points to memory.

Second, in the direction of software-based fault attacks, future research
will likely shift toward new types of buffers in the hardware. For example,
DRAM-based buffers might be used in more processor components, which
might cause them to be inherently affected by Rowhammer. Furthermore,
active workloads influence the highly complex power management and the
integrated control systems. Future research could investigate how these
systems monitor workloads and how the power management reacts to these
workloads internally. The results of such an analysis could be essential to
identify how to bring a processor close to the limits of stable operation
and potentially enable new types of software-based fault attacks.

Third, research towards reverse engineering power management could
also directly benefit power analysis attacks. Finding a sweet spot where
the signal-to-noise ratio is at the maximum could drastically reduce the
required traces and the attack runtime. Furthermore, a new research
direction could harden software on existing hardware with additional
instructions to explicitly prevent data collisions in a specific buffer or
processor component and prevent certain power analysis attacks. Finally,
future research could focus on identifying additional power-related signals
and systematizing them based on their properties and leakage rates.

References

[1] Andreas Abel and Jan Reineke. nanoBench: A Low-Overhead Tool
for Running Microbenchmarks on x86 Systems. In: ISPASS. 2020
(p. 18).

[2] Andreas Abel and Jan Reineke. Reverse engineering of cache re-
placement policies in intel microprocessors and their evaluation. In:
ISPASS. 2014 (p. 18).

[3] Onur Acıiçmez and Çetin Kaya Koç. Trace-Driven Cache Attacks
on AES. In: IACR Cryptology ePrint Archive, Report 2006/138
(2006) (p. 3).

[4] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin.
When good protections go bad: Exploiting anti-DoS measures to
accelerate Rowhammer attacks. In: HOST. 2017 (p. 35).

[5] National Security Agency. TEMPEST: A Signal Problem. 1972.
url: https://www.nsa.gov/Portals/70/documents/news-feat
ures/declassified-documents/cryptologic-spectrum/tempe

st.pdf (p. 22).

[6] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. Port Contention for Fun
and Profit. In: S&P. 2019 (p. 45).

[7] AMD. BIOS and Kernel Developer’s Guide (BKDG) for AMD
Family 16h Models 00h-0Fh Processors. 2015. url: https://ww
w.amd.com/content/dam/amd/en/documents/archived-tech-d

ocs/programmer-references/48751_16h_bkdg.pdf (pp. 21, 25,
28).

[8] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao,
Reetuparna Das, Matthew Hicks, Yossi Oren, and Todd
Austin. ANVIL: Software-based protection against next-generation
Rowhammer attacks. In: ACM SIGPLAN Notices 51 (2016),
pp. 743–755 (pp. 37, 38).

[9] John E Ayers. Digital Integrated Circuits: Analysis and Design.
CRC Press, 2003 (p. 24).

47

https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/48751_16h_bkdg.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/48751_16h_bkdg.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/48751_16h_bkdg.pdf

48 References

[10] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and
Cristiano Giuffrida. Branch History Injection: On the Effective-
ness of Hardware Mitigations Against Cross-Privilege Spectre-v2
Attacks. In: USENIX Security. 2022 (p. 34).

[11] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo, and Gerardo
Pelosi. Software-only reverse engineering of physical DRAM map-
pings for rowhammer attacks. In: International Verification and
Security Workshop (IVSW). 2018 (p. 36).

[12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi,
and Francesco Regazzoni. Countermeasures against fault attacks
on software implemented AES: effectiveness and cost. In: Workshop
on Embedded Systems Security. 2010 (p. 27).

[13] Shajulin Benedict. Energy-Aware Performance Analysis Method-
ologies for HPC Architectures—An Exploratory Study. In: Journal
of Network and Computer Applications 35 (2012), pp. 1709–1719
(p. 25).

[14] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http://cr.yp.to/antiforgery/cachetiming-20050
414.pdf (pp. 23, 24).

[15] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In: CHES. 2016 (p. 35).

[16] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret
Key Cryptosystems. In: CRYPTO. 1997 (p. 27).

[17] Douglas Black. Intel & OEMs are disabling undervolting. Here’s
how to re-enable it. 2020. url: https://www.ultrabookreview.c
om/37095-dells-disabling-undervolting-on-their-laptops

-heres-how-to-re-enable-it/ (p. 39).

[18] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the
Importance of Eliminating Errors in Cryptographic Computations.
In: Journal of cryptology 14 (2001), pp. 101–119 (p. 39).

[19] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
Importance of Checking Cryptographic Protocols for Faults. In:
EUROCRYPT. 1997 (p. 27).

[20] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In: CHES. 2006 (p. 3).

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/

49

[21] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp,
Daniel Gruss, and Michael Schwarz. ÆPIC Leak: Architecturally
Leaking Uninitialized Data from the Microarchitecture. In: USENIX
Security. 2022 (pp. 6, 10).

[22] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector. In: S&P. 2016 (p. 35).

[23] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. CAn’t Touch This: Software-only Miti-
gation against Rowhammer Attacks targeting Kernel Memory. In:
USENIX Security. 2017 (p. 38).

[24] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(p. 3).

[25] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation
Power Analysis with a Leakage Model. In: CHES. 2004 (pp. 4, 22,
25, 26, 41).

[26] Samira Briongos, Pedro Malagón, José M Moya, and Thomas
Eisenbarth. RELOAD+REFRESH: Abusing Cache Replacement
Policies to Perform Stealthy Cache Attacks. In: USENIX Security.
2020 (pp. 18, 24).

[27] Billy Brumley and Risto Hakala. Cache-Timing Template Attacks.
In: AsiaCrypt. 2009 (p. 4).

[28] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-
Pierre Seifert. One Glitch to Rule Them All: Fault Injection Attacks
Against AMD’s Secure Encrypted Virtualization. In: CCS. 2021
(pp. 27, 39).

[29] Edward A Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Dou-
glas, William J Lambert, Kaladhar Radhakrishnan, and Michael J
Hill. FIVR—Fully integrated voltage regulators on 4th generation
Intel Core SoCs. In: APEC. 2014 (p. 39).

[30] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (pp. 4,
30).

50 References

[31] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss,
and Khaled N. Khasawneh. Evolution of Defenses against Transient-
Execution Attacks. In: GLSVLSI. 2020 (p. 33).

[32] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020 (p. 24).

[33] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security. 2019 (pp. 4,
21, 30, 32).

[34] Anirban Chakraborty, Sarani Bhattacharya, Sayandeep Saha, and
Debdeep Mukhopadhyay. Explframe: exploiting page frame cache
for fault analysis of block ciphers. In: DATE. 2020 (p. 35).

[35] Joseph S Chang, Antonio F Facchetti, and Robert Reuss. A Circuits
and Systems Perspective of Organic/Printed Electronics: Review,
Challenges, and Contemporary and Emerging Design Approaches.
In: IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 7 (2017), pp. 7–26 (p. 24).

[36] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template at-
tacks. In: CHES. 2002 (pp. 25, 27).

[37] Yimin Chen, Xiaocong Jin, Jingchao Sun, Rui Zhang, and Yanchao
Zhang. POWERFUL: Mobile app fingerprinting via power analysis.
In: INFOCOM. 2017 (p. 40).

[38] Zhi Chen, Junjie Shen, Alex Nicolau, Alex Veidenbaum, Nahid
Farhady Ghalaty, and Rosario Cammarota. CAMFAS: A com-
piler approach to mitigate fault attacks via enhanced SIMDization.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC). 2017 (p. 40).

[39] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
Oswald, and Flavio D Garcia. VoltPillager: Hardware-based fault
injection attacks against Intel SGX Enclaves using the SVID voltage
scaling interface. In: USENIX Security. 2020 (pp. 5, 7, 39).

[40] Cloudflare. Cloudflare Workers. 2019. url: https://www.cloudfl
are.com/products/cloudflare-workers/ (p. 34).

[41] Cloudflare. Cloudflare Workers. 2021. url: https://www.cloudfl
are.com/products/cloudflare-workers/ (p. 11).

https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/

51

[42] Cloudflare. Mitigating Spectre and Other Security Threats: The
Cloudflare Workers Security Model. 2020. url: https://blog.cl
oudflare.com/mitigating-spectre-and-other-security-thr

eats-the-cloudflare-workers-security-model/ (pp. 11, 34).

[43] Yaakov Cohen, Kevin Sam Tharayil, Arie Haenel, Daniel Genkin,
Angelos D Keromytis, Yossi Oren, and Yuval Yarom. HammerScope:
Observing DRAM Power Consumption Using Rowhammer. In: CCS.
2022 (pp. 35, 41, 44).

[44] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert
Bos. Exploiting Correcting Codes: On the Effectiveness of ECC
Memory Against Rowhammer Attacks. In: S&P. 2019 (pp. 5, 35,
37).

[45] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (p. 39).

[46] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
Cachequote: Efficiently recovering long-term secrets of SGX EPID
via cache attacks. In: CHES. 2018 (p. 4).

[47] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna,
and Christian Le. RAPL: Memory Power Estimation and Capping.
In: ACM/IEEE International Symposium on Low Power Electronics
and Design. 2010 (p. 25).

[48] Santos Merino Del Pozo, François-Xavier Standaert, Dina Kamel,
and Amir Moradi. Side-Channel Attacks from Static Power: When
Should we Care? In: DATE. 2015 (p. 25).

[49] Andrea Di Dio, Koen Koning, Herbert Bos, and Cristiano Giuf-
frida. Copy-on-Flip: Hardening ECC Memory Against Rowhammer
Attacks. In: NDSS. 2023 (p. 38).

[50] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX. In: USENIX Security. 2017 (p. 24).

[51] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Man-
gard, Florian Mendel, and Robert Primas. Statistical ineffective
fault attacks on masked AES with fault countermeasures. In: ASI-
ACRYPT. 2018 (p. 27).

https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/
https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/
https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/

52 References

[52] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan
Mangard, Florian Mendel, and Robert Primas. SIFA: Exploiting
Ineffective Fault Inductions on Symmetric Cryptography. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems
(2018), pp. 547–572 (p. 27).

[53] Christopher Domas. Breaking the x86 ISA. In: Black Hat USA.
2017 (pp. 8, 22).

[54] Christopher Domas. Continuing to Break the x86 Instruction Set.
In: Shakacon (2018) (pp. 8, 22).

[55] Christopher Domas. Hardware Backdoors in x86 CPUs. In: Black
Hat USA. 2018 (pp. 8, 22).

[56] Jack Dongarra, Hatem Ltaief, Piotr Luszczek, and Vincent M
Weaver. Energy Footprint of Advanced Dense Numerical Linear
Algebra using Tile Algorithms on Multicore Architectures. In:
International Conference on Cloud and Green Computing. 2012
(p. 25).

[57] Agner Fog. The microarchitecture of Intel, AMD, and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2021. url: https://www.agner.org/optimize/microar
chitecture.pdf (pp. 15, 16, 20).

[58] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In: S&P. 2018 (p. 35).

[59] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. TRRespass: Exploiting the Many Sides of Target Row
Refresh. In: S&P. 2020 (pp. 5, 8, 35–37).

[60] Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard.
Fault attacks on AES with faulty ciphertexts only. In: Workshop
on Fault Diagnosis and Tolerance in Cryptography. 2013 (p. 27).

[61] Matteo Fusi. Information-Leakage Analysis Based on Hardware
Performance Counters. MA thesis. Politecnico di Milano, 2017
(pp. 25, 40).

[62] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electro-
magnetic Analysis: Concrete Results. In: CHES. 2001 (p. 22).

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

53

[63] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis,
and Haining Wang. ContainerLeaks: Emerging Security Threats of
Information Leakages in Container Clouds. In: DSN. 2017 (p. 41).

[64] Stefan Gast, Jonas Juffinger, Lukas Maar, Christoph Royer, An-
dreas Kogler, and Daniel Gruss. Remote Scheduler Contention
Attacks. In: FC. 2024 (pp. 6, 11).

[65] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Andreas Kogler, Simone Franza, Markus Köstl, and Daniel Gruss.
SQUIP: Exploiting the Scheduler Queue Contention Side Channel.
In: S&P. 2023 (pp. 6, 11).

[66] Lukas Gerlach, Simon Schwarz, Nicolas Faroß, and Michael Schwarz.
Efficient and generic microarchitectural hash-function recovery. In:
S&P. 2024 (p. 36).

[67] Lukas Giner, Roland Czerny, Christoph Gruber, Fabian Rauscher,
Andreas Kogler, Daniel De Almeida Braga, and Daniel Gruss.
Generic and Automated Drive-by GPU Cache Attacks from the
Browser. In: AsiaCCS. 2024 (pp. 6, 12).

[68] Lukas Giner, Andreas Kogler, Claudio Canella, Michael Schwarz,
and Daniel Gruss. Repurposing Segmentation as a Practical LVI-
NULL Mitigation in SGX. In: USENIX Security. 2022 (pp. 6, 11,
31).

[69] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache Attacks on Intel SGX. In: EuroSec. 2017 (p. 3).

[70] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Ira-
zoqui, Johann Heyszl, and Thomas Eisenbarth. AutoLock: Why
Cache Attacks on ARM Are Harder Than You Think. In: USENIX
Security. 2017 (p. 18).

[71] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. KASLR is Dead: Long
Live KASLR. In: ESSoS. 2017 (pp. 4, 30, 31).

[72] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(pp. 35, 36, 38).

[73] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 15, 24).

54 References

[74] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 35, 36).

[75] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 23).

[76] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon Guggi,
Timo Malderle, Stefan More, and Moritz Lipp. Use-after-freemail:
Generalizing the use-after-free problem and applying it to email
services. In: AsiaCCS. 2018 (p. 3).

[77] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security. 2015 (pp. 4, 23).

[78] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
Games – Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P. 2011 (p. 23).

[79] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig.
Measuring Energy Consumption for Short Code Paths Using RAPL.
In: ACM SIGMETRICS Performance Evaluation Review 40 (2012),
pp. 13–17 (p. 25).

[80] Dave Hansen. KAISER: unmap most of the kernel from userspace
page table. 2017. url: https://lkml.org/lkml/2017/10/31/884
(pp. 4, 30, 31).

[81] Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van
der Veen, Kaveh Razavi, and Onur Mutlu. Uncovering In-DRAM
RowHammer Protection Mechanisms:A New Methodology, Custom
RowHammer Patterns, and Implications. In: MICRO. 2021 (p. 38).

[82] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. Reliable
Reverse Engineering of Intel DRAM Addressing Using Performance
Counters. In: Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE. 2020 (p. 36).

[83] John L Hennessy and David A Patterson. Computer Architecture:
A Quantitative Approach. 6th ed. Morgan Kaufmann, 2017 (pp. 14,
18, 20).

https://lkml.org/lkml/2017/10/31/884

55

[84] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang Schröder-
Preikschat, and Timo Hönig. The Price of Meltdown and Spectre:
Energy Overhead of Mitigations at Operating System Level. In:
EuroSys. 2021 (p. 25).

[85] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf,
and Georg Sigl. Localized Electromagnetic Analysis of Crypto-
graphic Implementations. In: CT-RSA. 2012 (p. 22).

[86] Seungki Hong, Dongha Kim, Jaehyung Lee, Reum Oh, Changsik
Yoo, Sangjoon Hwang, and Jooyoung Lee. DSAC: Low-Cost
Rowhammer Mitigation Using In-DRAM Stochastic and Approxi-
mate Counting Algorithm. In: arXiv preprint (2023) (pp. 28, 38).

[87] Wei-Ming Hu. Lattice Scheduling and Covert Channels. In: S&P.
1992 (p. 3).

[88] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(p. 24).

[89] Michael Hutter and Jörn-Marc Schmidt. The temperature side
channel and heating fault attacks. In: International Conference on
Smart Card Research and Advanced Applications. Springer. 2013,
pp. 219–235 (p. 22).

[90] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cache Attacks Enable Bulk Key
Recovery on the Cloud. In: CHES. 2016 (p. 3).

[91] Intel. 5-level paging and 5-level EPT. 2017. url: https://softwa
re.intel.com/content/www/us/en/develop/download/5-leve

l-paging-and-5-level-ept-white-paper.html (p. 14).

[92] Intel. Affected Processors: Transient Execution Attacks. 2020. url:
https://software.intel.com/security-software-guidance

/processors-affected-transient-execution-attack-mitiga

tion-product-cpu-model (p. 30).

[93] Intel. Guidelines for Mitigating Timing Side Channels Against
Cryptographic Implementations. 2019. url: https://software.i
ntel.com/security-software-guidance/secure-coding/guid

elines-mitigating-timing-side-channels-against-cryptog

raphic-implementations (pp. 4, 26).

[94] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2023 (pp. 16–18).

https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations

56 References

[95] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 2024 (pp. 21,
25, 28).

[96] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 4: Model-Specific Registers. May 2019 (p. 21).

[97] Intel. Intel Optane DC Persistent Memory. 2021. url: https://w
ww.intel.com/content/www/us/en/architecture-and-techno

logy/optane-dc-persistent-memory.html (pp. 11, 12).

[98] Intel. Intel-SA-00233 Microarchitectural Data Sampling Advisory.
2019. url: https://www.intel.com/content/www/us/en/secur
ity-center/advisory/intel-sa-00233.html (p. 31).

[99] Intel. Intel-SA-00389. 2020. url: https://www.intel.com/conte
nt/www/us/en/security-center/advisory/intel-sa-00389.h

tml (p. 41).

[100] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (p. 34).

[101] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES. In: S&P. 2015 (p. 18).

[102] Hafizul Islam, Zhenkai Zhang, and Fan Yao. PowSpectre: Powering
Up Speculation Attacks with TSX-based Replay. In: AsiaCCS. 2024
(pp. 25, 41, 43).

[103] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security. 2019 (pp. 35, 36, 43).

[104] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In:
SysTEX. 2017 (p. 35).

[105] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS.
2016 (p. 24).

[106] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. BLACKSMITH: Rowhammering in the Frequency
Domain. In: S&P. Nov. 2021 (pp. 35, 36).

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html

57

[107] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej
Bölcskei, and Kaveh Razavi. ZenHammer: Rowhammer Attacks
on AMD Zen-based Platforms. In: USENIX Security. 2024 (pp. 35,
38).

[108] JEDEC Solid State Technology Association. Low Power Double
Data Rate 4. 2017. url: http://www.jedec.org/standards-doc
uments/docs/jesd209-4b (pp. 5, 37).

[109] Jedec Solid State Technology Association. Low Power Double Data
Rate 3. 2013. url: http://www.jedec.org/standards-documen
ts/docs/jesd209-4a (pp. 18, 19).

[110] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. KASPER: Scanning for Generalized Tran-
sient Execution Gadgets in the Linux Kernel. In: NDSS. 2022
(p. 43).

[111] Jonas Juffinger, Stepan Kalinin, Daniel Gruss, and Frank Mueller.
SUIT: Secure Undervolting with Instruction Traps. In: ASPLOS.
2024 (pp. 5–7, 28, 44).

[112] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder,
Moritz Lipp, and Daniel Gruss. CSI: Rowhammer - Cryptographic
Security and Integrity against Rowhammer. In: S&P. 2023 (pp. 6,
10, 38, 44).

[113] Jonas Juffinger, Sudheendra Raghav Neela, Martin Heckel, Lukas
Schwarz, Florian Adamsky, and Daniel Gruss. Presshammer:
Rowhammer and Rowpress without Physical Address Information.
In: DIMVA. 2024 (p. 38).

[114] Matthias Jung, Carl C Rheinländer, Christian Weis, and Norbert
Wehn. Reverse engineering of DRAMs: Row hammer with crosshair.
In: International Symposium on Memory Systems. 2016 (p. 36).

[115] Ingab Kang, Walter Wang, Jason Kim, Stephan van Schaik, Youssef
Tobah, Daniel Genkin, Andrew Kwong, and Yuval Yarom. Sledge-
Hammer: Amplifying Rowhammer via Bank-level Parallelism. In:
USENIX Security. 2024 (pp. 35, 38).

[116] Matthias J Kannwischer, Peter Pessl, and Robert Primas. Single-
Trace Attacks on Keccak. In: Cryptology ePrint Archive (2020)
(p. 25).

http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4a
http://www.jedec.org/standards-documents/docs/jesd209-4a

58 References

[117] Duško Karaklajić, Jörn-Marc Schmidt, and Ingrid Verbauwhede.
Hardware Designer’s Guide to Fault Attacks. In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 21 (2013),
pp. 2295–2306 (p. 27).

[118] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup,
Eyal Ronen, and Yuval Yarom. The gates of time: Improving cache
attacks with transient execution. In: USENIX Security. 2023 (p. 32).

[119] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
Channel Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141–158 (p. 22).

[120] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In: USENIX Security. 2020 (pp. 5, 7, 27, 28, 39).

[121] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen,
and Zhonghong Ou. RAPL in Action: Experiences in Using RAPL
for Power Measurements. In: ToMPECS 3 (2018), pp. 1–26 (p. 25).

[122] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Hassan,
Roknoddin Azizi, Lois Orosa, and Onur Mutlu. Revisiting RowHam-
mer: An Experimental Analysis of Modern DRAM Devices and
Mitigation Techniques. In: ISCA. 2020 (pp. 5, 28).

[123] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping Bits in Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors. In: ISCA. 2014 (pp. 5, 8,
18, 27, 28, 35, 37–39).

[124] Kirill A. Shutemov. Pagemap: Do Not Leak Physical Addresses to
Non-Privileged Userspace. 2015. url: https://git.kernel.org
/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a

b676b7d6fbf4b294bf198fb27ade5b0e865c7ce (p. 36).

[125] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In: CRYPTO. 1996 (pp. 3, 22).

[126] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 4,
11, 21, 32).

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

59

[127] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In: CRYPTO. 1999 (pp. 4, 22, 25, 26, 41).

[128] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi.
Introduction to Differential Power Analysis. In: Journal of Crypto-
graphic Engineering 1 (2011), pp. 5–27 (p. 4).

[129] Andreas Kogler. Software-based Power Side-Channel Attacks. MA
thesis. Graz University of Technology - Institute for Applied Infor-
mation Processing and Communication, 2020 (p. 25).

[130] Andreas Kogler, Daniel Gruss, and Michael Schwarz. Minefield: A
Software-only Protection for SGX Enclaves against DVFS Attacks.
In: USENIX Security. 2022 (pp. 6, 7, 39, 40, 43).

[131] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Mar-
tin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard.
Collide+Power: Leaking Inaccessible Data with Software-based
Power Side Channels. In: USENIX Security. 2023 (pp. 6, 9, 25, 42,
43).

[132] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
Half-Double: Hammering From the Next Row Over. In: USENIX
Security. 2022 (pp. 6, 8, 10, 34–39, 43).

[133] Andreas Kogler, Daniel Weber, Martin Haubenwallner, Moritz
Lipp, Daniel Gruss, and Michael Schwarz. Finding and Exploiting
CPU Features using MSR Templating. In: S&P. 2022 (pp. 6, 8, 9,
31, 32, 44).

[134] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis
Andriesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi.
ZebRAM: Comprehensive and Compatible Software Protection
Against Rowhammer Attacks. In: USENIX OSDI. 2018 (p. 38).

[135] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (p. 33).

[136] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
RAMBleed: Reading Bits in Memory Without Accessing Them. In:
S&P. 2020 (pp. 35, 37).

[137] Butler W Lampson. A note on the confinement problem. In: Com-
munications of the ACM 16.10 (1973), pp. 613–615 (p. 3).

60 References

[138] Johnny KF Lee and Alan Jay Smith. Branch prediction strategies
and branch target buffer design. In: Computer 17 (1984), pp. 6–22
(p. 21).

[139] Arjen K Lenstra. Memo on RSA signature generation in the pres-
ence of faults. In: (1996) (p. 39).

[140] David Levinthal. Performance Analysis Guide for Intel Core i7
Processor and Intel® Xeon 5500 processors. 2009 (p. 16).

[141] Chulseung Lim, Kyungbae Park, Geunyong Bak, Donghyuk Yun,
Myungsang Park, Sanghyeon Baeg, Shi-Jie Wen, and Richard Wong.
Study of proton radiation effect to row hammer fault in DDR4
SDRAMs. In: Microelectronics Reliability 80 (2018), pp. 85–90
(p. 28).

[142] Linux. Page Tables. 2024. url: https://docs.kernel.org/mm/p
age_tables.html (p. 14).

[143] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing Rowhammer Faults through Network Requests. In: SILM
Workshop. 2020 (pp. 19, 35).

[144] Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD Prefetch
Attacks through Power and Time. In: USENIX Security. 2022
(pp. 9, 24).

[145] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security. 2016 (pp. 3, 18, 23).

[146] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS:
Software-based Power Side-Channel Attacks on x86. In: S&P. 2021
(pp. 4, 6, 9, 25, 41, 44).

[147] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security. 2018 (pp. 4, 9, 21, 29, 30).

[148] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel.
Frequency throttling side-channel attack. In: CCS. 2022 (pp. 4, 9,
41, 44).

https://docs.kernel.org/mm/page_tables.html
https://docs.kernel.org/mm/page_tables.html

61

[149] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. RAIDR:
Retention-aware intelligent DRAM refresh. In: ACM SIGARCH
Computer Architecture News 40.3 (2012), pp. 1–12 (p. 19).

[150] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas Kogler,
Daniel Gruss, and Samira Khan. Side-Channel Attacks on Optane
Persistent Memory. In: USENIX Security. 2023 (p. 6).

[151] Haocong Luo, Ataberk Olgun, Abdullah Giray Yağlıkçı, Yahya
Can Tuğrul, Steve Rhyner, Meryem Banu Cavlak, Joël Lindegger,
Mohammad Sadrosadati, and Onur Mutlu. RowPress: Amplifying
Read Disturbance in Modern DRAM Chips. In: ISCA. 2023 (p. 38).

[152] Dina G Mahmoud, David Dervishi, Samah Hussein, Vincent
Lenders, and Mirjana Stojilović. DFAulted: Analyzing and ex-
ploiting CPU software faults caused by FPGA-driven undervolting
attacks. In: IEEE Access 10 (2022), pp. 134199–134216 (p. 39).

[153] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 4, 21, 33).

[154] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards. Springer
Science & Business Media, 2008 (pp. 4, 24–27).

[155] Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich
Weber. How Secure is Green IT? The Case of Software-Based
Energy Side Channels. In: ESORICS. 2018 (p. 40).

[156] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh Razavi.
Protrr: Principled yet optimal in-dram target row refresh. In: S&P.
2022 (p. 38).

[157] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, and
Kaveh Razavi. Rega: Scalable rowhammer mitigation with refresh-
generating activations. In: S&P. 2023 (p. 38).

[158] Macarena C Mart́ınez-Rodŕıguez, Ignacio M Delgado-Lozano, and
Billy Bob Brumley. SoK: Remote Power Analysis. In: ARES. 2021
(p. 41).

[159] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. Spectre is here to stay: An analysis of side-channels
and speculative execution. In: arXiv:1902.05178 (2019) (p. 32).

[160] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapan-
dian, Dan Boneh, and Gabi Nakibly. PowerSpy: Location Tracking
Using Mobile Device Power Analysis. In: USENIX. 2015 (p. 40).

62 References

[161] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks. In:
CHES. 2017 (p. 4).

[162] Daniel Moghimi. Downfall: Exploiting Speculative Data Gathering.
In: USENIX Security. 2023 (p. 31).

[163] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural Data Leakage via Automated Attack
Synthesis. In: USENIX Security. 2020 (pp. 30, 31).

[164] Baker Mohammad. Embedded Memory Design for Multi-Core and
Systems on Chip. Vol. 116. Springer, 2014 (pp. 15, 17).

[165] Amir Moradi. Side-Channel Leakage through Static Power: Should
We Care about in Practice? In: CHES. 2014 (p. 25).

[166] Ira S Moskowitz. Noise effects upon a simple timing channel. In:
NRL Memorandum Report (1990) (p. 3).

[167] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (pp. 5–7,
27, 28, 39, 44).

[168] Onur Mutlu. The RowHammer problem and other issues we may
face as memory becomes denser. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2017 (p. 28).

[169] Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David A Wood.
A primer on memory consistency and cache coherence. Springer
Nature, 2020 (pp. 16, 18).

[170] Colin O’Flynn and Alex Dewar. On-Device Power Analysis Across
Hardware Security Domains. In: CHES. 2019 (p. 42).

[171] Lois Orosa, Ulrich Rührmair, A Giray Yaglikci, Haocong Luo,
Ataberk Olgun, Patrick Jattke, Minesh Patel, Jeremie Kim, Kaveh
Razavi, and Onur Mutlu. Spyhammer: Using rowhammer to re-
motely spy on temperature. In: arXiv:2210.04084 (2022) (p. 35).

[172] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 23,
24).

[173] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung
Ho Ahn, and Jae W Lee. Graphene: Strong yet Lightweight Row
Hammer Protection. In: MICRO. 2020 (p. 38).

63

[174] Colin Percival. Cache Missing for Fun and Profit. In: BSDCan.
2005 (pp. 23, 24).

[175] Chris H Perleberg and Alan Jay Smith. Branch target buffer design
and optimization. In: IEEE transactions on computers 42 (1993),
pp. 396–412 (p. 21).

[176] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In: USENIX Security. 2016 (p. 36).

[177] Peter Pessl and Robert Primas. More Practical Single-Trace Attacks
on the Number Theoretic Transform. In: LATINCRYPT. 2019
(p. 25).

[178] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Man-
fred Lochter, and Paul Rösler. Attacking deterministic signature
schemes using fault attacks. In: EuroS&P. 2018 (p. 35).

[179] Robert Primas, Peter Pessl, and Stefan Mangard. Single-Trace
Side-Channel Attacks on Masked Lattice-Based Encryption. In:
CHES. 2017 (p. 25).

[180] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In: CCS. 2021 (p. 24).

[181] Rui Qiao and Mark Seaborn. A New Approach for Rowhammer
Attacks. In: HOST. 2016 (p. 35).

[182] Yi Qin and Chuan Yue. Website Fingerprinting by Power Estima-
tion Based Side-Channel Attacks on Android 7. In: TrustCom/Big-
DataSE. 2018 (p. 40).

[183] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies. In: CCS. 2019 (pp. 5, 7,
27, 28, 39).

[184] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults. In: AsianHOST. 2019 (pp. 5, 7, 27, 28, 39).

[185] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-Measures for Smart Cards. In:
E-smart. 2001 (p. 22).

64 References

[186] Anja Rabich, Thomas Eisenbarth, and Luca Wilke. Software-based
Undervolting Faults in AMD Zen Processors. In: its. uni-luebeck.
de, no (2020) (p. 39).

[187] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. CrossTalk: Speculative Data Leaks Across
Cores Are Real. In: S&P. 2021 (pp. 4, 30, 31).

[188] Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel
Gruss. IdleLeak: Exploiting Idle State Side Effects for Information
Leakage. In: NDSS. 2024 (pp. 6, 12).

[189] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan.
PACMAN: attacking ARM pointer authentication with speculative
execution. In: ISCA. 2022 (pp. 35, 43).

[190] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. Flip Feng Shui: Hammering a Needle
in the Software Stack. In: USENIX Security. 2016 (p. 35).

[191] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Re-
visiting Fault Adversary Models–Hardware Faults in Theory and
Practice. In: IEEE Transactions on Computers 72 (2022), pp. 572–
585 (p. 27).

[192] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos,
Cristiano Giuffrida, and Kaveh Razavi. SMASH: Synchronized
Many-sided Rowhammer Attacks From JavaScript. In: USENIX
Security. 2021 (pp. 35, 36, 38).

[193] Teresa Riesgo and Javier Uceda. A Fault Model for VHDL De-
scriptions at the Register Transfer Level. In: European Design
Automation Conference. 1996 (p. 27).

[194] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant
J Nair. Randomized row-swap: mitigating Row Hammer by break-
ing spatial correlation between aggressor and victim rows. In: AS-
PLOS. 2022, pp. 1056–1069 (p. 38).

[195] Vishal Saraswat, Daniel Feldman, Denis Foo Kune, and Satyajit
Das. Remote Cache-timing Attacks Against AES. In: Workshop
on Cryptography and Security in Computing Systems. 2014 (p. 3).

[196] Anish Saxena, Gururaj Saileshwar, Jonas Juffinger, Andreas
Kogler, Daniel Gruss, and Moinuddin Qureshi. PT-Guard: Integrity-
Protected Page Tables to Defend Against Breakthrough Rowham-
mer Attacks. In: DSN. 2023 (pp. 6, 10, 38, 44).

65

[197] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin
Qureshi. AQUA: Scalable Rowhammer Mitigation by Quarantining
Aggressor Rows at Runtime. In: MICRO. 2022 (p. 38).

[198] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 4,
9, 30).

[199] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna
Orlic, and Jean-Pierre Seifert. Simple Photonic Emission Analysis
of AES. In: CHES. 2012 (p. 22).

[200] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (pp. 24, 30).

[201] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 4, 9,
30).

[202] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 37).

[203] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda,
Thomas Schuster, Daniel Gruss, and Michael Schwarz. Dynamic
Process Isolation. In: ESORICS. 2021 (p. 11).

[204] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda,
Thomas Schuster, Daniel Gruss, and Michael Schwarz. Robust and
Scalable Process Isolation against Spectre in the Cloud (Extended
Version). 2022. url: https://martinschwarzl.at/media/files
/robust_extended.pdf (pp. 6, 11).

[205] Mark Seaborn. Exploiting the DRAM rowhammer bug to gain
kernel privileges. Mar. 2015. url: http://googleprojectzero.b
logspot.com/2015/03/exploiting-dram-rowhammer-bug-to-g

ain.html (pp. 35, 36).

[206] Mark Seaborn and Thomas Dullien. Exploiting the DRAM
Rowhammer bug to gain kernel privileges. In: Black Hat USA.
2015 (pp. 35, 36).

[207] John Paul Shen and Mikko H Lipasti. Modern processor design: fun-
damentals of superscalar processors. Waveland Press, 2013 (p. 18).

https://martinschwarzl.at/media/files/robust_extended.pdf
https://martinschwarzl.at/media/files/robust_extended.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

66 References

[208] James E Smith. A study of branch prediction strategies. In: ISCA.
1998 (p. 21).

[209] Julian Stecklina and Thomas Prescher. LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels. In:
arXiv:1806.07480 (2018) (p. 30).

[210] David Suggs, Mahesh Subramony, and Dan Bouvier. The AMD
“Zen 2” Processor. In: IEEE Micro 40.2 (2020), pp. 45–52. doi:
10.1109/MM.2020.2974217 (p. 16).

[211] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel
Genkin, and Yuval Yarom. Hot Pixels: Frequency, Power, and Tem-
perature Attacks on GPUs and ARM SoCs. In: USENIX Security.
2023 (p. 41).

[212] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLK-
SCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement. In: USENIX Security. 2017 (pp. 5, 7, 27, 28, 39, 44).

[213] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer:
Rowhammer Attacks over the Network and Defenses. In: USENIX
ATC. 2018 (p. 35).

[214] Niek Timmers and Cristofaro Mune. Escalating Privileges in Linux
Using Voltage Fault Injection. In: Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). 2017 (p. 28).

[215] Niek Timmers, Albert Spruyt, and Marc Witteman. Controlling
PC on ARM using Fault Injection. In: Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). 2016 (pp. 27, 28).

[216] Ben Titzer. What Spectre means for Language Implementers. 2019.
url: https://pliss2019.github.io/ben_titzer_spectre_sli
des.pdf (p. 32).

[217] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and
Kang G Shin. SpecHammer: Combining Spectre and Rowhammer
for New Speculative Attacks. In: S&P. 2022 (p. 35).

[218] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. In: IBM Journal of research and Development
11.1 (1967), pp. 25–33 (p. 20).

[219] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache
Attacks on AES, and Countermeasures. In: Journal of Cryptology
23.1 (July 2010), pp. 37–71 (p. 3).

https://doi.org/10.1109/MM.2020.2974217
https://pliss2019.github.io/ben_titzer_spectre_slides.pdf
https://pliss2019.github.io/ben_titzer_spectre_slides.pdf

67

[220] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. Inception: Ex-
posing New Attack Surfaces with Training in Transient Execution.
In: USENIX Security. 2023 (p. 34).

[221] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018. url: https://support.google.com/faqs
/answer/7625886 (pp. 33, 34).

[222] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security. 2018 (pp. 4, 30).

[223] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(pp. 11, 31).

[224] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control.
In: Workshop on System Software for Trusted Execution. 2017
(p. 41).

[225] Jan Van den Herrewegen, David Oswald, Flavio D Garcia, and Qais
Temeiza. Fill your Boots: Enhanced Embedded Bootloader Exploits
via Fault Injection and Binary Analysis. In: IACR Transactions on
Cryptographic Hardware and Embedded Systems (2021), pp. 56–81
(p. 28).

[226] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adele
Morisset, and Sébastien Ermeneux. Laser-Induced Fault Injection
on Smartphone Bypassing the Secure Boot. In: Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC). 2017 (pp. 27,
28).

[227] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating
fine grained timers in Xen. In: CCSW. 2011 (p. 32).

[228] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In: CCS. 2016 (p. 35).

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

68 References

[229] Akshay Venkatesh, Krishna Kandalla, and Dhabaleswar K Panda.
Evaluation of Energy Characteristics of MPI Communication Prim-
itives with RAPL. In: IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum. 2013 (p. 25).

[230] Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier
Standaert. Soft Analytical Side-Channel Attacks. In: ASIACRYPT.
2014 (p. 25).

[231] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. Cache-
Query: Learning Replacement Policies from Hardware Caches. In:
PLDI. 2020 (p. 18).

[232] Andrew J Walker, Sungkwon Lee, and Dafna Beery. On DRAM
Rowhammer and the Physics of Insecurity. In: IEEE Transactions
on Electron Devices 68 (2021), pp. 1400–1410 (p. 28).

[233] Wubing Wang, Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin.
PwrLeak: Exploiting Power Reporting Interface for Side-Channel
Attacks on AMD SEV. In: DIMVA. 2023 (p. 41).

[234] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86. In: USENIX Security. 2022 (pp. 4, 9, 41,
44).

[235] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang,
Grant Garrett-Grossman, Christopher W Fletcher, David Kohlbren-
ner, and Hovav Shacham. DVFS frequently leaks secrets: Hertzbleed
attacks beyond SIKE, cryptography, and CPU-only data. In: S&P.
2023 (p. 41).

[236] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(pp. 4, 30, 32).

[237] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Cus-
todio, Thomas Eisenbarth, and Berk Sunar. JackHammer: Effi-
cient Rowhammer on Heterogeneous FPGA-CPU Platforms. In:
arXiv:1912.11523 (2019) (p. 35).

[238] Pu Wen. Add support for Hygon Fam 18h (Dhyana) RAPL. 2019.
url: https://patchwork.kernel.org/patch/11123607/ (p. 41).

https://foreshadowattack.eu/foreshadow-NG.pdf
https://patchwork.kernel.org/patch/11123607/

69

[239] Sander Wiebing, Alvise de Faveri Tron, Herbert Bos, and Cristiano
Giuffrida. In: USENIX Security. 2024 (p. 34).

[240] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbitrary Spec-
ulative Code Execution with Return Instructions. In: USENIX
Security. 2022 (p. 34).

[241] Jeonghyun Woo, Gururaj Saileshwar, and Prashant J Nair. Scalable
and secure row-swap: Efficient and safe row hammer mitigation in
memory systems. In: HPCA. 2023 (p. 38).

[242] XEN. XEN’s MSR handling. 2021. url: https://github.com/x
en-project/xen/blob/RELEASE-4.15.0/xen/arch/x86/msr.c

(p. 32).

[243] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security. 2016 (p. 35).

[244] Wenjie Xiong and Jakub Szefer. Survey of Transient Execution
Attacks. In: arXiv:2005.13435 (2020) (p. 33).

[245] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A Study on
Power Side Channels on Mobile Devices. In: Symposium on Inter-
netware. 2015 (p. 40).

[246] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. DeepHammer: De-
pleting the Intelligence of Deep Neural Networks through Targeted
Chain of Bit Flips. In: USENIX Security. 2020 (p. 35).

[247] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+ RELOAD Cache Side-channel Attack.
In: Cryptology ePrint Archive, Report 2014/140 (2014) (p. 3).

[248] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security. 2014 (pp. 3, 23).

[249] Tse-Yu Yeh and Yale N Patt. Alternative implementations of two-
level adaptive branch prediction. In: ACM SIGARCH Computer
Architecture News 20 (1992), pp. 124–134 (p. 21).

[250] Ruiyi Zhang, CISPA Helmholtz Center, Lukas Gerlach, Daniel
Weber, Lorenz Hetterich, Youheng Lü, Andreas Kogler, and Michael
Schwarz. CacheWarp: Software-based Fault Injection using Selective
State Reset. In: USENIX Security. 2024 (pp. 6, 10, 11).

https://github.com/xen-project/xen/blob/RELEASE-4.15.0/xen/arch/x86/msr.c
https://github.com/xen-project/xen/blob/RELEASE-4.15.0/xen/arch/x86/msr.c

70 References

[251] Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao. Red alert
for power leakage: Exploiting intel rapl-induced side channels. In:
AsiaCCS. 2021 (p. 41).

[252] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, and
Zhi Wang. TeleHammer: Cross-Privilege-Boundary Rowhammer
through Implicit Accesses. In: arXiv:1912.03076 (2019) (p. 35).

[253] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi
Wang, and Yuval Yarom. PThammer: Cross-User-Kernel-Boundary
Rowhammer through Implicit Accesses. In: MICRO. 2020 (p. 35).

[254] Mark Zhao and G Edward Suh. FPGA-based Remote Power Side-
Channel Attacks. In: S&P. 2018 (p. 42).

[255] Xin-jie Zhao, Tao Wang, and Yuanyuan Zheng. Cache Timing
Attacks on Camellia Block Cipher. In: Cryptology ePrint Archive,
Report 2009/354 (2009) (p. 3).

Part II.

Publications

71

List of Publications

During my PhD, I contributed to 15 peer-reviewed publications, of which
11 were accepted at tier 1 conferences. Out of these papers, 4 tier 1 papers
are included as main contributions in this thesis as shown below.

Publications in this Thesis

[1] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach,
Martin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Man-
gard. Collide+Power: Leaking Inaccessible Data with Software-
based Power Side Channels. In: USENIX Security. 2023.

[2] Andreas Kogler, Daniel Gruss, and Michael Schwarz. Minefield: A
Software-only Protection for SGX Enclaves against DVFS Attacks.
In: USENIX Security. 2022.

[3] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim,
Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and
Daniel Gruss. Half-Double: Hammering From the Next Row Over.
In: USENIX Security. 2022.

[4] Andreas Kogler, Daniel Weber, Martin Haubenwallner, Moritz
Lipp, Daniel Gruss, and Michael Schwarz. Finding and Exploiting
CPU Features using MSR Templating. In: S&P. 2022.

Other Contributions

[1] Stefan Gast, Jonas Juffinger, Lukas Maar, Christoph Royer, An-
dreas Kogler, and Daniel Gruss. Remote Scheduler Contention
Attacks. In: FC. 2024.

[2] Lukas Giner, Roland Czerny, Christoph Gruber, Fabian Rauscher,
Andreas Kogler, Daniel De Almeida Braga, and Daniel Gruss.
Generic and Automated Drive-by GPU Cache Attacks from the
Browser. In: AsiaCCS. 2024.

73

74

[3] Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel
Gruss. IdleLeak: Exploiting Idle State Side Effects for Information
Leakage. In: NDSS. 2024.

[4] Ruiyi Zhang, CISPA Helmholtz Center, Lukas Gerlach, Daniel
Weber, Lorenz Hetterich, Youheng Lü, Andreas Kogler, and
Michael Schwarz. CacheWarp: Software-based Fault Injection using
Selective State Reset. In: USENIX Security. 2024.

[5] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Andreas Kogler, Simone Franza, Markus Köstl, and Daniel Gruss.
SQUIP: Exploiting the Scheduler Queue Contention Side Channel.
In: S&P. 2023.

[6] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria
Eichlseder, Moritz Lipp, and Daniel Gruss. CSI: Rowhammer -
Cryptographic Security and Integrity against Rowhammer. In:
S&P. 2023.

[7] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas Kogler,
Daniel Gruss, and Samira Khan. Side-Channel Attacks on Optane
Persistent Memory. In: USENIX Security. 2023.

[8] Anish Saxena, Gururaj Saileshwar, Jonas Juffinger, Andreas
Kogler, Daniel Gruss, and Moinuddin Qureshi. PT-Guard:
Integrity-Protected Page Tables to Defend Against Breakthrough
Rowhammer Attacks. In: DSN. 2023.

[9] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp,
Daniel Gruss, and Michael Schwarz. ÆPIC Leak: Architecturally
Leaking Uninitialized Data from the Microarchitecture. In: USENIX
Security. 2022.

[10] Lukas Giner, Andreas Kogler, Claudio Canella, Michael Schwarz,
and Daniel Gruss. Repurposing Segmentation as a Practical LVI-
NULL Mitigation in SGX. In: USENIX Security. 2022.

[11] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda,
Thomas Schuster, Daniel Gruss, and Michael Schwarz. Dynamic
Process Isolation. In: ESORICS. 2021.

5
Minefield: A Software-only

Protection for SGX Enclaves
against DVFS Attacks

Publication Data

Andreas Kogler, Daniel Gruss, and Michael Schwarz. Minefield: A Software-
only Protection for SGX Enclaves against DVFS Attacks. In: USENIX
Security. 2022

Contributions

Main author.

75

76 Chapter 5. Minefield

Minefield: A Software-only Protection for SGX
Enclaves against DVFS Attacks

Andreas Kogler1 Daniel Gruss1 Michael Schwarz2

1Graz University of Technology
2CISPA Helmholtz Center for Information Security

Abstract

Modern CPUs adapt clock frequencies and voltage levels to workloads
to reduce energy consumption and heat dissipation. This mechanism,
dynamic voltage and frequency scaling (DVFS), is controlled from privi-
leged software but affects all execution modes, including SGX. Prior work
showed that manipulating voltage or frequency can fault instructions and
thereby subvert SGX enclaves. Consequently, Intel disabled the overclock-
ing mailbox (OCM) required for software undervolting, also preventing
benign use for energy saving.

In this paper, we propose Minefield, the first software-level defense against
DVFS attacks. The idea of Minefield is not to prevent DVFS faults but
to deflect faults to trap instructions and handle them before they lead
to harmful behavior. As groundwork for Minefield, we systematically
analyze DVFS attacks and observe a timing gap of at least 57.8 µs between
every OCM transition, leading to random faults over at least 57 000 cycles.
Minefield places highly fault-susceptible trap instructions in the victim
code during compilation. Like redundancy countermeasures, Minefield is
scalable and enables enclave developers to choose a security parameter
between 0% and almost 100%, yielding a fine-grained security-performance
trade-off. Our evaluation shows a density of 0.75, i.e., one trap after every
1-2 instruction, mitigates all known DVFS attacks in 99% on Intel SGX,
incurring an overhead of 148.4% on protected enclaves. However, Minefield
has no performance effect on the remaining system. Thus, Minefield is a
better solution than hardware- or microcode-based patches disabling the
OCM interface.

1. Introduction 77

1. Introduction

With a variety of use cases for modern computers, CPUs have an increasing
number of features, also for security and performance. One feature available
on Intel, AMD and ARMCPUs are trusted execution environments (TEEs).
TEEs enable running code in a secure environment isolated from the rest
of the system with the security goal of protecting code and data even from
a compromised operating system or hypervisor.

To accommodate today’s performance and efficiency goals, modern CPUs
operate at various clock frequencies and voltage levels to adapt to the
current workload. When the workload is low or energy must be saved due
to thermal or battery constraints, the voltage level and the clock frequency
are lowered. This mechanism, DVFS, is available on ARM, Intel, and
AMD CPUs and can be controlled from privileged software. However, the
modified voltage and frequency affect all security domains on the CPU.

Previous work [12, 11, 2, 34, 20, 21] has shown that an attacker can
manipulate voltage and frequency using DVFS to inject faults into victim
computations. The typical target of these attacks are TEEs since DVFS
requires root privileges [12, 11, 34, 20, 21] or physical access [2], both
of which are allowed in TEE threat models. The attacker uses DVFS to
bring one or more CPU cores into a state where faults can occur with a
very low probability. Thus, the CPU mostly still allows regular operation,
i.e., it does not cause a system crash. In this state, certain operations
are more likely to experience a fault. Previous work has identified several
of these operations, e.g., multiplication operations, pointer arithmetics,
and AES-NI instructions. However, most instructions have not yet been
analyzed for their fault probability.

In response to the DVFS attacks on Intel CPUs, Intel issued a CVE (CVE-
2019-11157) and modified the SGX remote attestation process to verify
that overclocking mailbox (OCM) and its model-specific registers (MSRs)
allowing software-undervolting are disabled via a microcode update. The
voltage regulators responsible for the core’s voltage are connected to a bus
receiving commands from CPU components, e.g., the OCM. In contrast,
VoltPillager [2] directly sends these commands over the bus bypassing the
CPU and the OCM. Therefore, disabling the OCM still leaves Intel CPUs
without a fully-integrated voltage regulator (FIVR) design [42] vulnerable
to VoltPillager [2] style attacks. Disabling the OCM led to complaints [16,
9] as the OCM is used to reduce overheating problems, thus increasing

78 Chapter 5. Minefield

system performance and stability by undervolting the CPU. Some online
guides even explicitly recommend reverting BIOS updates to get back the
undervolting feature, breaking the ability to run SGX enclaves securely on
these machines [9]. Disabling undervolting only if SGX is enabled impacts
the entire system performance and stability if enclaves are used and is
thus also not a desirable tradeoff. Selectively disabling undervolting while
an enclave is active requires complex microcode changes, as the CPU has
to ensure stable voltage levels on any reentry of the enclave. While it is
unclear whether this is even possible with a microcode update, we also
expect a high impact on the performance of enclaves.

In this paper, we propose the first software-level defense that probabilis-
tically protects secure enclaves against all known DVFS attacks. As an
empirical foundation for our defense, we systematically analyze DVFS
attacks and categorize them based on the type of fault and its properties
(e.g., spatial granularity, temporal granularity, and reproducibility). As
part of our empirical analysis, we develop a framework to scan the x86
instruction set for DVFS fault susceptibility. Our analysis of the instruc-
tions with the highest fault probability confirms the implicit assumption
from previous works that multiplications are most susceptible to faults.
Hence, we rely on this instruction for our fault-deflection mechanism. We
also analyze the temporal constraints and observe a timing gap of at least
57.8 µs between transitions from one voltage level to another. With the
resulting weak control over the temporal fault location, state-of-the-art
attacks have to repeat the victim operation millions of times [12, 20, 21,
11]. Currently, an attacker cannot precisely predict when and where during
these operations the fault occurs.

Our defense, Minefield is a pure software-level defense implemented as a
compiler extension. The basic idea of Minefield is not to prevent DVFS
faults but to deflect them into trap instructions that are placed in the
victim code during compilation, so that they cannot be weaponized any-
more. The number of trap instructions scales as a security parameter from
0% to almost amount for 100% of the code base, yielding a fine-grained
security-performance trade-off. Note that a security parameter of 100%
would refer to a program that consists only of trap instructions and no
other instructions. Our evaluation shows that a trap density of 0.5, i.e.,
one trap after every second instruction, mitigates the known DVFS attacks
on Intel CPUs, namely Plundervolt [12], V0ltpwn [11], Voltjockey [21], and
VoltPillager [2]. More specifically, in an attack on mbedTLS RSA-4096, a

1. Introduction 79

trap density of 2 mitigates more than 99% of all attack attempts. Thus,
Minefield is a viable defense against DVFS attacks on Intel SGX enclaves.

We carefully evaluate the performance impact on SGX enclaves with
different Minefield security levels. Both runtime and memory overhead for
the enclave scale up with the chosen security level. For a trap density of 0.75,
which mitigates the known DVFS attacks in more than 99% of the cases,
Minefield incurs an overhead of 148.4% on protected SGX enclaves on
average. However, in some configurations Minefield even outperforms RSA
redundancy protections, and the performance of normal-world applications
remains entirely unaffected. Thus, Minefield is a better-suited mitigation
against DVFS attacks on SGX enclaves than hardware- or microcode-based
patches that disable the OCM entirely and also considers hardware-based
undervolting attacks like VoltPillager [2].

While our evaluation focuses on Intel CPUs, we argue that the approach
is applicable to ARM and AMD CPUs. Hence, Minefield can also be
extended to prevent DVFS attacks on ARM TrustZone [34] and AMD
SEV.

Contributions. The contributions of this work are:

1. We present a novel framework to systematically analyze the effects of
DVFS faults on the entire x86 instruction set.

2. We propose a compiler extension Minefield, the first software-level
defense against all known DVFS attacks.

3. We analyze different security levels and show that known DVFS attacks
can be mitigated in 99% of cases.

4. We evaluate the performance overheads of Minefield and show that the
runtime overhead for SGX enclaves is below 150% while mitigating
99% of attacks.

Outline. Section 2 provides background, and Section 3 our threat model.
Section 4 presents the high-level overview and poses research questions
for Section 5. Section 6 details our implementation. Section 7 evaluates
the security and performance. Section 8 discusses limitations. Section 9
concludes.

80 Chapter 5. Minefield

2. Background

In this section, we provide background on Intel SGX and DVFS, the
mechanism behind the attacks we mitigate.

2.1. Intel SGX

Intel Software Guard Extension (SGX) [19, 36] is a trusted execution
environment (TEE). To protect code and data on an untrusted system, an
application is split into an untrusted and a trusted part, which is executed
within a so-called SGX enclave. The enclave’s execution state and memory
cannot be accessed from other processes or the operating system. In the
SGX threat model, only the CPU is trusted. Enclave memory is encrypted
and integrity-protected in DRAM in a dedicated region called Enclave
Page Cache (EPC), mitigating certain software-level and physical attacks.
Thus, SGX even protects enclaves on systems compromised in software or
hardware.

While these protections apply for the enclave’s execution state (e.g., register
values) and memory contents, scheduling, and page-table management
are still performed by the untrusted operating system. Memory-safety
violations [30], race conditions [39], or side channels [26, 32] can still lead
to exploitation. Controlled-channel attacks [41], abuse, e.g., page-table
entries or the APIC timer interrupt to precisely control the execution
flow of a victim application [41, 27, 13]. Transient-execution attacks, e.g.,
Foreshadow [24], ZombieLoad [22], can precisely leak information from
enclaves.

2.2. Power Management (DVFS)

Modern CPUs in smartphones, laptops, and servers, have different energy
requirements. Especially mobile devices require constant energy balancing.
Operating systems try to maximize the battery runtime while still provid-
ing sufficient computing power to handle the user’s tasks. For dynamic
adaption to the user’s needs, modern CPUs implement Dynamic Voltage
and Frequency Scaling (DVFS). DVFS allows changing the voltage and
frequency from privileged software via model-specific registers (MSR) [19].
However, the overclocking mailbox (OCM) interface allows to change

3. Attacker Model 81

the alignment between voltage and frequency, e.g., reduce the operating
voltage at a specific frequency.

Undervolting and overclocking have become important to personal com-
puter owners, especially for gaming computers (overclocking) and laptops
(undervolting). While system stability has always been a concern in these
communities, only recently researchers discovered that these interfaces can
be abused for attacks. The first DVFS-based fault attack [34] overclocked
an ARM CPU, leading to fault injection in the TrustZone trusted execution
environment. More recently, several works have explored undervolting as a
means to inject faults into the Intel SGX trusted execution environment [21,
12, 2, 11]. These works have in common that they modify the operating
voltage during the execution of critical instructions leading to a computa-
tional error propagating into the result of these instructions. These faulty
results lead to incorrect behavior inside a (correct and bug-free) program.
These results then lead to exposure of secret data from enclaves, e.g., by
faulting index calculations of array accesses. Faulty results can also occur
within cryptographic primitives, e.g., enabling differential cryptoanalysis
on AES-NI.

The main difference between previous works is the way the operating
voltage is changed. VoltJockey [21], V0ltpwn [11], and Plundervolt [12]
assume the SGX threat model and use privileged access to the OCM. These
attacks can be mounted purely from software and only require access to the
OCM MSR. VoltPillager [2], on the other hand, uses additional hardware
to send messages directly to the voltage regulator unit on the mainboard.
Hence, currently, there is no software mitigation against it, leaving SGX
enclaves unprotected.

3. Attacker Model

In this section, we provide the attacker model for Minefield. We base our
attacker model on the previously published attacks [34, 20, 21, 12, 2, 11]
and our own experiments.

Attacker Privileges. Our mitigation, Minefield, works under the widely
adopted SGX threat model and assumes a privileged attacker who controls
the operating system and the BIOS. As for the hardware, the attacker
has direct physical access to the CPU and the mainboard, enabling the
attacker to mount DVFS attacks [34, 12, 2, 20, 21, 11]. This includes

82 Chapter 5. Minefield

attacks like VoltPillager [2] intercepting and issuing bus commands to the
onboard voltage regulators circumventing the OCM. We assume that the
faulting behavior of VoltPillager does not differ from the software issued
undervolt as both approaches influence the core voltage (see Section 8).

The enclave does not require the OCM to be disabled by a given local
attestation. Hence, if the enclave is built using Minefield, the attestation
does not have to verify whether the microcode disabling the undervolting
functionality is active. The attacker does not exploit bugs inside the
enclave’s code, nor the software surrounding the enclave initialization, nor
side-channel attacks to extract secret information from the enclave. As
our defense focuses on fault attacks, we consider side-channel attacks [13]
(e.g., cache attacks on SGX) an orthogonal problem. However, we discuss
the implications of the mitigation on side-channel robustness in Section 8.

Fault-Injection Capabilities. The attacker can attack the enclave
execution with DVFS attacks and induce faults inside the results of ma-
chine instructions. We assume that the attacker controls the environment
with the same precision as in known DVFS attacks [34, 12, 2, 20, 21, 11].
Importantly, no previous DVFS attacks was able to:

1. precisely target an arbitrary bit inside an instruction result (but
mounted attacks that work with random bit flips),

2. precisely control how many bits flip (but report various faults from a
single bit to multi-byte flips [12]),

3. precisely control the timing (undervolting windows are multiple mi-
croseconds),

4. precisely control which instruction is faulted (i.e., many instructions
are at risk of fault due to the length of the undervolting window).
Certain instructions are found to be more susceptible to DVFS-based
fault injection.

We assume that the attacker has the capabilities from these previous
works since there is currently no indication that the OCM enables even
stronger and more precise attacks.

No single-stepping. In particular, no known attack can combine single-
stepping, e.g., using controlled-channel attacks to target a specific instruc-
tion, with a DVFS-based fault attack. Given the significant amounts of
code executed during context switches in controlled-channel attacks, there
is reasonable doubt that such an attack can be mounted reliably. Further-
more, controlled-channel attacks can also be mitigated using T-SGX [33],

4. High-Level Overview of Minefield 83

inst

inst

inst

inst

inst

inst

inst

Source LLVM Pass Binary

check

inst
trap

inst
trap

inst
trap

Runtime

if fault:

handle()

continue

push ctx

trap inst

pop ctx

Figure 5.1.: An overview of Minefield. The compiler part of Minefield interleaves
the instruction stream with trap instructions and code to detect
faults in these instructions. A library is linked to the enclave handling
detected faults at runtime.

entirely preventing single-stepping of SGX enclaves, or other interrupt-
monitoring mechanisms [29, 15]. Hence, we assume that the attacker
cannot target a single instruction this way. We discuss possible mitigations
against a stronger attacker with single-stepping in Section 6.2.1.

4. High-Level Overview of Minefield

In this section, we provide a high-level overview of Minefield and the
research questions we have to answer before designing it. The main goal
is allowing the operating system to still control the undervolting of the
CPU while ensuring that enclaves cannot be exploited. Minefield relies on
an LLVM compiler extension to automatically place trap instructions in
the code. Minefield has a security parameter to fine-tune the application-
specific security-performance trade-off based on the required security
guarantees. This makes Minefield an easily adaptable mitigation without
changes in the protected software and with individual security levels per
application.

Figure 5.1 shows an overview of Minefield and its components. Minefield
consists of an LLVM compiler extension (Section 6.1) used to compile SGX
enclaves, as well as a runtime library (Section 6.2) to check for faults and
handle them. The compiler extension compiles unmodified source code
and adds additional trap instructions to the binary. The trap instruction

84 Chapter 5. Minefield

is an instruction highly susceptible to DVFS faults. Hence, the result of
the trap instruction is used to detect faults that the enclave can then
handle. Designing Minefield requires answering three research questions
as follows.

4.1. Research Questions

While our approach may appear intuitive, a thorough analysis of DVFS-
based fault attacks is necessary to ensure that Minefield is not built upon
potentially wrong assumptions. Furthermore, even if the assumptions as
outlined in the threat model hold, there remains a set of unanswered
questions on the precise attacker capabilities. In the following, we ask
three research questions we need to answer.

RQ1: Is there an instruction highly susceptible to faults, and if so, how
can we find this instruction?

Although all the published attacks [11, 12, 34] show that instructions
can be faulted based on concrete instances of instructions, there is no
comprehensive analysis on which instructions can be faulted. V0ltpwn [11],
Plundervolt [12], and VoltJockey [21] indicate that multiplications are
highly susceptible to faults on all evaluated systems. However, without a
comprehensive analysis, this remains an assumption that must be further
analyzed, as we do in Section 5.1.

RQ2: What is the temporal and spatial precision of DVFS-based fault
attacks?

Previous work induced single faults by repeating the target application
until the fault hit the correct instruction [12, 11, 20, 21]. However, the
precision for inducing faults is unknown. In Section 5.2, we analyze the
capabilities of an attacker using DVFS to inject faults. We show that
faults cannot be injected with arbitrary precision. Moreover, we show that
there is a minimum time window between two undervolts.

RQ3: How can an enclave react when detecting a fault?

Detecting a fault is not sufficient. An enclave has to react to the fault as
well. Without replay protection in SGX [31], attacks could be repeated
at a high frequency, even if a fault is detected. Thus, it is insufficient to
simply terminate the enclave, especially when an attacker can arbitrarily
retry inducing a fault. We discuss possible solutions in Section 5.3.

5. Analysis of Research Questions 85

Instruction List

Normal Execution

Undervolted Execution

Report

ISA ?
=

Difference
Detection

Figure 5.2.: The framework to find trap instructions. Based on a machine-readable
list of instructions, the framework executes all unprivileged instruc-
tions with random arguments, once normally and once undervolted.
If the output differs, the instruction is reported as being susceptible
to faults.

Based on our analysis in Section 5, we present the design and implemen-
tation of Minefield in Section 6.

5. Analysis of Research Questions

In this section, we analyze the capabilities of software-based fault-injection
attacks to answer the research questions asked in Section 4.1. We ex-
haustively test the fault susceptibility of x86 instructions (RQ1) using an
automated framework in Section 5.1. Moreover, we analyze the capabilities
of an attacker to inject faults (RQ2), i.e., the type of fault, as well as
the spatial and temporal precision, in Section 5.2. Finally, we discuss the
handling of detected faults (RQ3) in Section 5.3.

5.1. RQ1: Instruction Susceptibility to Faults

To determine the fault characteristics, we analyze instructions of the
x86 instruction set during critical undervolting conditions and monitor
the faults injected into the results. The goal is to find a suitable trap
instruction with the highest fault susceptibility that is used by Minefield to
detect faults. Therefore, we implement an analysis framework to determine
instructions that are usable as trap instructions and to get a more in-depth
insight into how undervolting affects instructions.

86 Chapter 5. Minefield

Design. Our framework is designed to exhaustively test all unprivileged
x86 instructions for multiple levels of undervolting. The design of our
framework is illustrated in Figure 5.2. The basic idea is to test an instruc-
tion multiple times. In each test, the instruction is run once in a stable
environment and once in an undervolted environment. For both runs, the
same randomly-generated inputs are chosen. The framework records the
output values for both runs and compares them. If the output differs,
the undervolting led to a fault, and the instruction, its parameters, and
the undervolting level are reported. As outlined, this test is performed
multiple times for each instruction, namely with different input parameter
values and undervolting levels and CPU frequencies.

Our test framework stores the bit difference of the expected result and the
faulted result, i.e., the bit location where the fault occurred. Furthermore,
the framework analyzes the type of the fault, i.e., whether it is a stuck-at-
zero or stuck-at-one fault, or a bit flip. To measure the precision of the
fault injection, we also record the temporal and spatial distance between
two faulted operations. Consequently, our framework can determine the
lowest observed temporal and spatial distance between two faults. This
can later be used as a basis to determine appropriate security levels.

Implementation. To test the instructions defined in the x86 ISA, we use
the list from Abel et al. [14], which contains all x86 instructions, including
all ISA extensions, as well as the input, output, and side effects of the
instruction. The framework automatically generates assembly code to
parametrize these instructions. The generated assembly code is placed
inside a loop to repeat the instruction multiple times. It is then compiled
into a dynamic library for the test environment to load and evaluate. The
framework allocates buffers for the instructions’ state, e.g., registers and
flags, and runs the instruction loop. The instruction in the loop then fills
the buffers with all the changed state produced by the 1 000 000 iterations.
Instructions that change the program’s control flow are handled by setting
the jump destination to an instruction after the jump that sets a flag to
indicate that the jump was either taken or not.

The framework uses the same undervolting mechanism as Plundervolt [12],
V0ltpwn [11], and VoltJockey [21], namely the OCMMSR 0x150. This MSR
allows reducing the operating voltage for a short duration by modifying the
voltage offset. When the undervolted execution is completed, the nominal
voltage is restored, and the results are analyzed for bit errors. In this step,
the framework compares the results of the undervolted instruction with the
normal execution of the instruction. Each loop iteration is independent of

5. Analysis of Research Questions 87

the previous, so a fault inside one iteration is only visible in the iteration’s
outputs and does not influence other iterations.

To exhaustively test and analyze the instructions, we split the analysis
into three distinct phases. First, we search for faultable instructions across
all the tested CPUs at a fixed frequency and vary the undervolting offset
until we see repeated system freezes or unrecoverable machine check errors.
The framework monitors the response time and restarts over a remote
power switch to recover from a system freeze. We store each reported
faulted instruction into a global set of faultable instructions. Second, we
use the set of faultable instructions to characterize the faulting behavior
further. We execute each faultable instruction on each physical core of
each CPU, with both varying frequency and undervolting offset. This
analysis shows the minimum undervolt needed to observe a fault over the
tested frequencies for each core. To evaluate the effect of other instructions
on the faulting instruction, we tested each faultable instruction with all
the other faultable instructions and evaluate if the faulting behavior is
influenced.

Results. We analyzed 5 Intel CPUs with different microarchitectures,
each running the same image with Ubuntu 21.04 with Kernel version 5.11.
We list the exact CPUs in Table 5.2 (Section 10.2). For each CPU, we
analyze each physical core, resulting in a total of 26 analyzed cores. Our
experiments did not observe different faulting behavior for the sibling
threads, but we observed differences between the physical cores. In the
instruction finding phase, we executed 1258 instructions and instruction
variants, i.e., same instruction but with different mnemonics, from the
base, SSE, SSE2, FMA, AVX, AVX2, and AES instruction set, fixed the
frequency to 3000MHz. This analysis revealed 71 faultable instructions
variants with 12 unique instructions. We analyzed the first faulting point for
each of these unique instructions by varying the frequency from 2000MHz
to 4000MHz (if available) in 500MHz steps. Table 5.2 (Section 10.2) shows
the faulting point results.

From our experiment, we found that imul has the highest fault probability.
Table 5.2 shows the analysis of imul in combination with different instruc-
tions. imul does not only fault well in isolation, but this behavior is also
observable when combined with other instructions. The imul instruction
faults in 92.1% of all cases when other instructions also fault. For 1.5% of
the faulty instructions we need an additional aesenc instruction to detect
the faults. On one CPU, we did not observe any faults with AES and

88 Chapter 5. Minefield

200 220 240 260 280 300 320 340
0

0.1

0.2

Undervolting duration in us

D
en

si
ty

τmin,1GHz
τmin,3GHz

Figure 5.3.: The minimal undervolting time window for two distinct CPU fre-
quencies.

hence used a vorpd instruction to detect the remaining 6.4% faultable
instructions.

Moreover, the imul instruction already suffers from faults at smaller
undervolting offsets. This is in accordance with recent works [12, 11] that
focus on imul as well. Hence, imul is ideal as a trap instruction to monitor
if the CPU is driven near the specification limits. In Section 7.1, we also
show that this property holds when using imul in full programs.

5.2. RQ2: Fault-Injection Capabilities

The security level of Minefield is related to the fault-injection capabilities
of the attacker. Prior work [12, 11, 20, 21] did not comprehensively
analyze properties, e.g., the precision, of the faults but simply measured
the probability of being able to fault the target instruction at any point
when running it in a long loop. However, to provide strong security
guarantees, we analyze DVFS-based fault injection in more detail, i.e.,
the fault model [47]. The fault model includes types of errors, temporal
and spatial precision, and the number of faults that can be injected in one
execution [49]. Our fault model is based on prior work [12, 11, 20, 21] and
our own experiments, and considers spatial and temporal precision and
the type of faults.

Temporal and Spatial Precision. Previous work [12, 11, 20, 21]
did not analyze where faults can be injected. Typically, faults can occur
at a random location [52], or can be induced for instruction sequences
or surgically for single instructions. So far, no paper has shown that
it is possible to induce DVFS faults with such surgical precision. Our
experiments also indicate that targeting a single instruction with DVFS
faults is impractical. Figure 5.3 shows a histogram for the experimentally

5. Analysis of Research Questions 89

measured minimum undervolting time at two different CPU frequencies.
The average undervolting duration at 1GHz is around 220 µs, which are
220 000 cycles. The shortest undervolting duration we observe is 57.8 µs,
i.e., 57 800 cycles. Hence, to target a single instruction, an attacker would
have to target a code sequence where the victim instruction is the only
instruction susceptible to a fault within this window.

The minimal length of the undervolting window also influences the timing
of faults. First, the minimal duration of the undervolting limits the fre-
quency in which an attacker can induce faults. The CPU requires time to
change the voltage. This is true both for reducing as well as increasing
the voltage. As shown in Figure 5.3, the durations are not constant but
subject to variations in the microsecond range, depending on the CPU
frequency and also the CPU itself. We do not have an explanation for
this effect. However, as a consequence, undervolting precisely the same
instruction sequence multiple times is infeasible. When undervolting, there
is always a non-negligible probability that several instructions before or
after the targeted instruction are undervolted as well.

Fault Types. In addition to the precision, it is also important what
types of faults can be injected. Typical fault models consider stuck-at-zero,
stuck-at-one [45], random faults [50], or flips in one or more bits [43, 44].
There are more specialized fault models, e.g., bits with a bias [40].

We based our analysis of the fault types on our experiments and the results
in prior work [12, 21, 11]. Table 5.1 (Section 10.1) shows the detailed fault
characteristics of each observed fault of our previous analysis. We confirm
that a fault can influence one bit to multiple bytes. Further analysis
revealed that we observe stuck-at-zero faults for instructions executing
bitwise logical operations, i.e., VAND, VXOR, and VOR. However, the
faults of imul and further susceptible instructions behave randomly, i.e.,
all observed bit positions can flip in both directions. Moreover, the affected
bits differ between the physical CPU cores [11]. Hence, for the fault model,
we assume that an attacker can flip between one and all bits of imul’s
result to random values.

There is no difference if an ALU instruction is faulted or the address
generation in a load or store instruction. In all cases, an attacker cannot
choose the location of the bits, the number of bits, or the values of the
bits.

90 Chapter 5. Minefield

5.3. RQ3: Handling Faults

While detecting a fault is a vital requirement for Minefield, it is not
sufficient for protecting an enclave if the fault is not handled correctly.
Hence, an important part of Minefield is the fault handler. We identified
two different strategies for handling faults such that they cannot be
exploited.

Cancel. The straightforward approach is to stop further execution as
soon as a fault is detected. Aborting ensures that no further instructions
are executed that potentially consume the faulted data. An abort handler
does not require any change to the enclave code. To abort the enclave,
the handler can either execute an illegal instruction, e.g., ud2, or simply
stop execution by entering an endless loop. Note that Minefield does not
suffer from false positives (cf. Section 7.1), i.e., enclave execution is never
wrongly aborted.

While abort handlers are straightforward, they may open new attack
surface: An attacker could repeat the attack at a high frequency to increase
the chance of bypassing our detection in one of the runs. Potentially, by
knowing where the detection was triggered, the attacker might even
improve the attack further. Without secure persistent storage and replay
protection, the enclave developer must provide additional infrastructure to
prevent the enclave from being started again. The SGX ecosystem already
provides the EPID attestation method [38], allowing to identify a specific
CPU, practically solving the replay protection problem if a remote trusted
third party is available. We discuss different solutions in Section 8.

One possibility to reduce the frequency of restarts is to use monotonic
counters [37]. These counters can only be read and incremented and are
persistent across enclave restarts and also system restarts. Hence, by
incrementing the counter on a fault, the enclave can track the number of
total faults and decide not to start when a certain number of faults was
detected. However, even with the counters, it is not possible to entirely
prevent arbitrary execution of the enclave as the counters can be destroyed
by re-installing the Intel PSW or by removing the BIOS battery [31]. Still,
this at least slows down an attacker and might make an attack infeasible.
We further discuss the availability of monotonic counters in Section 8.

Retry. A different approach is to try to “hide” the fault and prevent its
weaponization by restoring the state before the fault and repeating the
instruction. The retry handling is more complex, as instructions are not

5. Analysis of Research Questions 91

generally idempotent. Thus, the retry handler cannot simply re-execute
the instruction before the fault or the current basic block. To use a retry
handler, a developer has to define checkpoints in the enclave code to which
a fault handler can safely jump back. Inside the retry handler, a developer
can then choose to which checkpoint to return based on where the fault
was detected. The implementation of such checkpoints could make use of
the already existing setjmp and longjmp C functions.

The retry handler has the advantage that the enclave can continue execu-
tion in the presence of faults. Thus, this approach has similar advantages
to multiple executions with a majority vote [47, 28], without the disadvan-
tage of always executing code multiple times. The obvious disadvantage
is that the developer has to take care of checkpoints at which execution
can be retried. Moreover, the retry handler might provide an attacker
with valuable information. As an attacker can monitor the execution time
of the enclave, an attacker might learn that the fault was successfully
injected. However, an attacker only learns that the fault definitely hit a
trap instruction and not if the fault hit the target instruction. While this
cannot be weaponized directly, it introduces a side channel (see Section 8).

5.4. Results

Based on the results from analyzing the research questions, we provide a
solid fault model for software-based DVFS fault attacks. We show that
there are indeed instructions that are more susceptible to faults than
others. We confirm that imul instruction exploited in prior work [12]
is indeed highly susceptible to faults, making it a perfect choice for
Minefield’s trap instruction. Furthermore, our analysis shows that an
attacker cannot surgically induce faults. Both the temporal and spatial
precision are limited by the minimal undervolting window of multiple
microseconds. Hence, next to the instruction targeted by an attacker,
there are always other instructions that are executed in the undervolted
state as well. We can use this non-uniformity to place instructions with
a higher chance to attract faults as trap instructions and enforce that
the results of these trap instructions are not altered or faulted. Thus,
these trap instructions enable us to protect the real instructions with a
relatively simple mechanism against undervolting attacks. Depending on
the number of inserted instructions, any induced fault is likely to also
fault at least one of these inserted instructions.

92 Chapter 5. Minefield

6. Implementation of Minefield

In this section, we discuss the implementation details of Minefield. The
implementation consists of two parts. The first part is a configurable LLVM
compiler extension (Section 6.1) for adding additional trap instruction to
enclave code at compile time. The second part is the runtime environment
integrated into the enclave for detecting and handling induced faults
(Section 6.2). Finally, Section 6.3 describes how the changes are integrated
into the SGX toolchain.

6.1. Compiler Extension

The compiler extension implements a Machine Function Pass inside the
LLVM 11 [51] backend. The Machine Function Pass allows inspecting each
program’s function on an x86 machine instruction level. Implementing
Minefield in the backend ensures that it is language agnostic, as long
as there is an LLVM frontend for the desired language. The compiler
extension is responsible for placing trap instructions and generating the
code that checks whether a fault was induced.

Trap Instructions. Based on our fault susceptibility analysis and the
fault model (cf. Section 5), we select imul as a default trap instruction,
as it has the highest probability to fault when undervolted on our tested
systems. In addition to this default trap instruction, a developer can also
provide a different trap instruction to the compiler extension, e.g., a pair
for AES and multiplication instruction. To keep track of the current state
of our imul instruction, we use two distinct instances of the trap that
only differ in the register operand. By placing both of these instances
in alternating order, we ensure that the values in the two registers are
at most one execution of the trap instruction apart. This placement is
independent of the chosen trap instruction. The compiler also ensures that
the basic block contains an even number of traps by adding an additional
trap if necessary. This ensures that the registers must always have the
same content at the start of a basic block, eliminating the need to store
additional information about the current correct value as Figure 5.4b
shows.

Placing Trap Instructions. Generally, trap instructions are placed
between existing instructions, as illustrated in Figure 5.4. However, several
practical obstacles have to be handled by the compiler. The trap instruction

6. Implementation of Minefield 93

imul $11, input(%rip), %rax

cmp %rax, limit(%rip)

ja .L1

(a) unmodified

cmp %r12, %r13

jne __abort

imul __factor(%rip), %r12

imul $11, input(%rip), %rax

imul __factor(%rip), %r13

cmp %rax, limit(%rip)

pushf

imul __factor(%rip), %r13

imul __factor(%rip), %r12

popf

ja .L1

(b) modified

Figure 5.4.: Figure 5.4a shows the unprotected assembly instructions while Fig-
ure 5.4b shows the trap instruction sequence generated by Minefield
with a placement density of 1.

modifies the content of a register. Hence, the compiler has to know that
the register used in the trap instruction is clobbered. Moreover, both the
trap instruction and the code for detecting fault might modify the CPU
flags, i.e., the rflags register.

In addition to the problems of inserting a trap itself, we also have to
decide when to insert a trap instruction. Inserting more traps leads to
better security guarantees, while it impacts the performance negatively.
We provide tuning parameters to find a trade-off between the performance
and the provided security by the mitigation. We denote this parameter as
the placement density. This parameter defines the ratio of trap instructions
to existing instructions, e.g., a density of 0 means that no trap instruction
is placed, a density of 0.5 places a trap after every second instruction. If
this parameter is chosen higher than one, we place multiple trap instruc-
tions after the original instruction. We also ensure that at least two trap
instructions are placed inside a basic block such that the mitigation also
works if the placement density is low.

As the compiler extension is implemented in the backend, inserting the
trap instructions is straightforward. The compiler simply iterates over
each of the instructions inside the basic blocks and can directly insert new
instructions.

Handling Register Clobbering. If the placement density is greater
or equal to 1, Minefield places a trap instruction basically after every

94 Chapter 5. Minefield

entry:
check
trap

function()
trap

cmp
jnz

function:
check

...
ret

loop:
check
trap

...
cmp
jnz
trap

jmp

end:
check
trap

...

Figure 5.5.: Traps are inserted between normal instructions. To ensure the correct-
ness of comparisons, no trap instruction is inserted directly between
comparison and conditional jump but only at the two jump destina-
tions. Trap instructions are checked at the beginning of each basic
block.

instruction. As loading and storing a value from and to memory after every
executed instruction incurs a high overhead, the trap instead operates
solely on values stored registers. Minefield dedicates two general-purpose
registers to fault checking to minimize the performance impact. For the
general-purpose registers, we use R12 and R13. These registers have no
special use in the System V Application Binary Interface. Both registers are
defined to be callee-saved. Thus, no other function can change the content
of the registers. As a result, Minefield even supports calling functions
that have not been compiled with the compiler extension, making it fully
backward compatible with existing code. Reserving a general-purpose
register inside the LLVM compiler infrastructure already excludes the
register from the complete pipeline. Thus, no additional precautions are
necessary.

In addition to the modification of the register, a trap can also modify
the rflags register [18], thus changing the architectural state and, with
that, potentially the semantics of the original program. To prevent saving
and restoring the flags all the time, we rely on the liveness analysis of
LLVM. The LLVM infrastructure records which registers are currently
alive and in use and which instruction consumes a given register (variable
liveness analysis). Therefore, we can monitor when the flags register is in
use. Typically, the content of the flag register is only relevant between a
comparison and a conditional operation, e.g., a conditional jump. Minefield
can simply omit the placement of trap instructions between an instruction
that modifies and an instruction that acts on the flags register. This

6. Implementation of Minefield 95

approach increases the performance without significantly reducing the
security guarantees, as faults are checked in any case at the beginning of
a basic block. We evaluate the correctness of this approach in Section 7.3.

Without relying on the liveness, the rflags would have to be saved before
and restored after executing the trap. However, saving and restoring the
state is expensive, as it involves pushing the flags to the stack (pushf)
and restoring it from the stack afterward (popf). While this ensures the
correctness of the generated code, it adds a non-negligible performance
overhead to the fault checks. For testing purposes, we provide an additional
compiler option to fall back to this slower approach and not use the liveness
analysis of LLVM.

Fault-detection Code. To detect faults in the trap instruction, the
compiler extension creates code for the fault detection. Minefield supports
two ways of checking whether a fault occurred in a trap instruction. This
check can either be immediate, i.e., the detection code is inserted after
every trap instruction. Alternatively, the check can be lazy, i.e., the check
is only performed at the start of a basic block. Nevertheless, despite the
used method, a check is always performed at the basic block’s beginning
by simply comparing R12 and R13.

Both approaches have their advantages and disadvantages. Immediate
checking results in a larger binary size and also a larger performance
overhead. However, with immediate checking, the time between a fault
and the detection of the fault is minimized. When using lazy checking, the
trap instruction is verified at the beginning of each basic block. Hence, with
lazy checking, the number of checks is reduced, increasing the performance
but potentially increasing the time window in which a fault could be
exploited.

Immediate checking seems intuitive. However, for instructions that only
operate on registers and do not perform a memory access, immediate
checking does not provide additional security since the faulted value is
not visible outside of the registers of the CPU. With this observation,
we can extend the immediate checking method to only check the trap
instructions right before either a load or a store is executed. This extension
ensures that neither the load’s address nor the store’s address or data was
previously faulted.

Basic Blocks and Control Flow Changes. There are two main reasons
we chose to verify the trap instructions at the beginning of basic blocks, as
shown in Figure 5.5. First, as per definition, control flow changes can only

96 Chapter 5. Minefield

target the beginning of a basic block and never target instructions inside
the basic block. We can ensure that checks placed at the beginning of basic
blocks are always executed, regardless of the control flow conditions [48,
46]. Second, a basic block has one entry point but can have multiple exit
points. A basic block can be exited by either calling a different function, by
returning, or by jumping to a different basic block. Therefore, checking all
the possible exit paths requires more checks that impact the performance
without providing any benefits. Nevertheless, we still have to perform
checks before return instructions since in LLVM, call instructions can be
placed inside basic blocks.

6.2. Runtime Fault Handling

The second part of Minefield is the runtime library, statically linked into
the enclave, which handles the detected fault. By default, an abort-handler
callback is called when a fault is detected. The implementation of the
actual fault handler is the responsibility of the enclave developer. This
allows maximum flexibility for the developer, as depending on the threat
model, there are different reactions to a detected fault.

Minefield also provides two default fault handlers that can be used in many
scenarios. These fault handlers can either retry or cancel the execution of
the enclave when a fault is detected, as outlined in Section 5.3.

6.2.1. Monitoring Controlled-Channel Attacks

As already described in the attacker model (cf. Section 3), there is no
combined controlled-channel DVFS fault attack and due to the significant
amount of code, it is unlikely that such an attack could be implemented
reliably. Controlled-channel attack frameworks, such as sgx-step [27] enable
attackers to essentially single-step (and zero-step) an enclave. Thus, the
attacker can step an enclave precisely to a single target instruction inside an
enclave. If this technique could be combined with a DVFS attack, it could
bypass our defense. There is a strong indication that such a combination
cannot be mounted reliably, i.e., the system freezes instead because of the
substantial amount of micro-code executed during enclave entry. We also
empirically validated this in our own experiments. When undervolting
during enclave entry, the system easily freezes while the CPU restores the
enclave state. We also emphasize that appropriate countermeasures against

6. Implementation of Minefield 97

controlled-channel attacks (including single-stepping of SGX enclaves)
already exist, e.g., T-SGX by Shih et al. [33].

Integrated mitigation. As T-SGX would incur additional overhead, we
also propose a more integrated solution to prevent single-stepping-assisted
DVFS fault attacks. Similar to previous work [29, 15], we can utilize the
Save State Area (SSA) of the enclave to monitor any interruptions. When
an enclave gets interrupted and the control flow is passed to the interrupt
handler, the state of the enclave is stored inside the SSA of the enclave,
including all the registers and additional enclave state. We can write a
magic value to the position of the enclave RIP field inside the SSA and
later check if this magic is still present or if it was overwritten by the
CPU when exiting the enclave asynchronously. Frequent interruptions can
be handled as described in previous works [29, 15].

6.3. Toolchain Integration

At the time of writing, Intel does not officially support LLVM to build
SGX enclaves with their SGX SDK. Compiling the SDK with clang instead
of gcc fails due to gcc-specific features used in the SDK. Hence, to use the
SDK for evaluation with Minefield, we had to apply small changes to the
SDK version 2.10 to make it compatible to LLVM.1

We only compile the trusted part of the SGX SDK with Minefield. This
is sufficient, as only the trusted part is an attack target. The untrusted
part is under the control of the attacker. Thus, there is no benefit in
protecting this part. The protected part is responsible for the enclave
initialization, the enclave entry calls, and the enclave exits. As a small
part of the enclave entry and exit code is written in assembly, it needs
to be manually patched, as the current prototype of Minefield does not
support assembly files. In addition to the manual patching, we adopted
the enclave entry function to set up the registers required for Minefield.
There is no need for additional modifications inside the source code.

1Our changes to the SDK, the source of Minefield, and the test enclaves are provided
at: https://github.com/iaik/minefield.

https://github.com/iaik/minefield

98 Chapter 5. Minefield

7. Evaluation

In this section, we evaluate the security (Section 7.1), performance (Sec-
tion 7.2), and correctness (Section 7.3).

7.1. Security

We evaluate the security of Minefield by evaluating the probability to detect
induced faults for two different applications, a victim highly susceptible
to fault attacks as used by Murdock et al. [12], as well as a practical
application based on mbedTLS . In both scenarios, we evaluate different
undervolting levels and placement densities between 0 and 2 and show
that Minefield can successfully protect these applications.

Setup. We use SGX enclaves built with Minefield. All experiments are
conducted on an Intel Core i5-8265U running Ubuntu 20.04.1 LTS. We
focus on two different enclaves, one enclave containing the Plundervolt
multiplication proof-of-concept [12], and another enclave running mbed-
TLS [6]. As an abort handler, we use a function that reports faults without
terminating the applications.

As a detection metric, we use the recall of Minefield. In our setup, the
recall is calculated by dividing the number of experiments where the target
was successfully faulted and the mitigation detected the fault (F&D) by
the number of the experiments where the target was faulted (F). The
recall is bounded between zero and one, where zero means that no fault
was detected and one that all faults were detected. We use the recall
instead of the F-score as a security metric since the precision of Minefield
is consistently one. This is because the detection cannot observe false
negatives. The check is entirely deterministic. Thus, it is not possible
to detect a fault although there was no fault. Moreover, if we observe
a fault inside a trap instruction, the system is already driven near the
specification limits. Hence, even if the fault is only in a trap instruction,
the execution of the enclave is no longer safe and should be terminated. As
a consequence, there is no case where the trap instruction triggers without
the system being compromised. For the two enclaves, we evaluate the
recall for different voltage offsets and vary the placement density between
0 and 2 (cf. Section 6.1).

7. Evaluation 99

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.7

0.8

0.9

1

Placement Density

R
ec
al
l

∆V−171mV ∆V−172mV ∆V−173mV

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.9

0.95

1

Placement Density

M
it
ig
a
ti
o
n
R
a
te

Figure 5.6.: The recall over the placement density for several undervolting offsets
for the imul experiment.

7.1.1. Highly-susceptible Toy Victim

In the first scenario, we use a toy application inspired by the Plundervolt
proof of concept [12]. In this application, we target four imul instructions
executed 30 720 times inside a tight loop. The multiplications use the
result of the previous iteration as input. Thus, any fault induced in a
multiplication propagates to the final iteration’s result. To detect a fault,
it is sufficient to compare the final result to the ground truth. The fault
propagation has the advantage that no additional fault-checking code has
to be inserted. This toy application has a high probability that a fault
can be induced. Moreover, every fault is effective, leading to a change in
the final result. Hence, from a defender’s perspective, this application is
close to the worst case, as nearly every instruction has to be protected.

Figure 5.6 shows the recall when compiling this code with Minefield and
inducing faults. We test different undervolting levels for which the rest of
the system is still stable. We observe that the undervolting level itself does
not significantly impact the probability of inducing a fault. As expected,
the recall increases with the placement density of Minefield.

With a placement density of 0.5, we already recognize 80% of the faults.
If we further increase the placement density to 1, we can detect nearly all
the faults for the different voltage offsets. We also observed that on one

100 Chapter 5. Minefield

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.6

0.8

1

Placement Density

R
ec
a
ll

∆V−195mV ∆V−196mV

Figure 5.7.: The recall over the placement density for several undervolting offsets
for the mbedTLS experiment.

of our cores, the recall started to decline when increasing the placement
density above 1.25. However, this does not directly correlate with the
security. In that case, the overall probability of inducing a fault decreased
drastically. Hence, we were rarely able to induce a fault at all. To better
visualize this effect, we show in Figure 5.6 the mitigation rate, i.e., the
inverse of the probability that an attacker faults the target instruction
without the mitigation detecting it. For all placement densities above 0.75,
the mitigation rate never dropped below 95%.

This toy application shows that even if most instructions are susceptible
to faults, and any fault is exploitable, Minefield can protect an application.
Especially with a high placement density, there is a nearly arbitrarily
adjustable trade-off between performance impact and security guarantees.

7.1.2. Real-world Victim

The second scenario uses a more realistic application. We protect mbed-
TLS [6] version 2.13 with Minefield. Due to its small codebase and simplic-
ity, it can be easily used inside SGX enclaves [23]. As a constant target
for side-channel attacks, mbedTLS also provides side-channel resilient
implementations of the provided cryptographic algorithms [7].

For our evaluation, we focus on the RSA signature algorithm of mbedTLS .
As shown in previous work [12], a fault during the signing can be sufficient
to recover the private key. Hence, for the evaluation, we focus on the
underlying binary modulo exponentiation function mbedtls mpi exp mod,
which is directly used inside the library’s RSA algorithm. We choose the
input parameters for the function to represent a 4096-bit key. After the

7. Evaluation 101

execution of the algorithm, we check whether the result of the function was
faulted and also determine whether Minefield detected the fault. For each
placement density, we perform 2000 encryptions. The voltage is reduced for
each of these 2000 encryptions before entering the function and restored
after the return from the encryption.

Figure 5.7 shows the recall for the mbedTLS experiment. We observe a
relatively high detection rate of 90% with a low placement density of
0.75 across two voltage offsets of −195mV, i.e., the first offset where we
observe faults and −196mV, i.e., the last offset where the system did not
freeze. Compared to the toy application, the undervolting offset of the
mbedTLS example is lower since the executed codebase is more extensive.

7.1.3. Results

For both our victims, Minefield reliably detects induced faults. Espe-
cially for higher placement densities, the probability of faulting a target
instruction without triggering Minefield is very low. While the level of
undervolting does not have a huge impact, we observe a trend that the
mitigation performs slightly better if the CPU is driven more into critical
conditions, i.e., if we undervolt the CPU more.

For the analysis, we do not consider faults detected by Minefield that had
no effect on the victim computations. In a real scenario, it is also desirable
that these faults trigger the enclave’s abort or retry mechanic, as a stable
execution cannot be guaranteed. During our experiments, we observed
on average 10 times more faults inside the trap instructions compared to
the target imul instruction. This result also supports our choice for using
imul as the default trap instruction.

7.2. Performance of Minefield

For the performance evaluation of Minefield, we evaluate three different
metrics: the runtime overhead (Section 7.2.1), the increase in code size (Sec-
tion 7.2.2), as well as the one-time compile-time overhead (Section 7.2.3).

102 Chapter 5. Minefield

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.5

1

·103

2
9
.9

4
9
.5

4
7
.8

5
9
.6

9
6
.1

1
2
7
.1

1
4
1
.9

1
5
4
.5

7
3
.8

9
3
.8 1
6
4
.9

1
9
7
.9

2
2
3
.3

2
2
7
.8

2
3
7
.2

2
4
0
.1

4
4
.4

5
9
.7

7
2
.0

1
0
3
.7

1
5
2
.2

1
9
0
.0

2
3
1
.1

2
5
7
.0

1
5
.0

3
9
.4

9
0
.3

1
2
0
.5

1
7
2
.7

2
2
1
.8

2
7
4
.9

3
0
1
.0

2
4
.2

4
9
.3

8
4
.3

1
3
5
.8

1
9
7
.0

2
5
1
.9

3
0
5
.5

3
6
3
.3

1
6
.5

7
7
.3

1
2
3
.5

1
7
1
.4

2
3
1
.4

3
2
7
.4

3
7
3
.5

4
2
1
.5

5
0
.0 1
5
7
.1

2
1
3
.2

2
7
0
.6

3
8
1
.5 5
0
7
.6

5
6
3
.8

6
0
2
.8

1
0
0
.0 2
2
9
.1 3
9
3
.4

4
7
2
.5 6
0
6
.0

7
1
4
.9

8
2
1
.1

8
6
0
.7

Placement Density

O
v
er
h
ea

d
in

%

Numeric Sort Idea Assignment Neural Net

LU Decomposition Bitfield String Sort Huffman

Figure 5.8.: The performance overhead of Minefield for the sgx-nbench benchmark
over multiple placement densities. We observe a linear overhead with
increasing placement density.

7.2.1. Runtime Evaluation

To evaluate the performance, we use the well-known SGX nbench bench-
mark suite for SGX. Additionally, we also evaluate the performance impact
on mbedTLS , as we used this library for the security benchmark as well
(see Section 7.1). For mbedTLS , we also compare the performance overhead
of Minefield to the integrated fault-mitigation technique.

SGX nbench. SGX nbench [35] is an adoption of the traditional nbench
benchmark suite for SGX enclaves. The benchmarks focus on classical
benchmarks executed inside the enclave environment. We use this bench-
mark to evaluate the performance impact on actual performance code
mitigated with Minefield including the SGX SDK. Each of the benchmarks
is executed 25 times over a total duration of 2 h and 51min. Figure 5.8
shows an average overhead for a placement density 1 of 191.51%. The
overhead linearly increases to 400.12% for a placement density of 2. In all
cases, the standard deviation was below 1%.

mbedTLS. mbedTLS [6] already hardens the software implementation
of its RSA algorithm against fault attacks. The mbedtls rsa private

function used for encrypting data with the RSA key decrypts the complete
ciphertext after encryption and compares if the decrypted message matches
the provided function’s input message. This is only possible since mbedTLS
stores also the public key inside the private context.

7. Evaluation 103

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

−100

−50

0

50

Placement Density

O
v
er
h
ea
d
in

%
Long public key Short public key

Figure 5.9.: The performance comparison between the mbedTLS RSA verification
and Minefield-protected version.

With the built-in fault check, the RSA implementation takes on average
13.9ms (n = 1000, σx̄ = 0.064) for one encryption with a 2048-bit key,
where the public key is large, i.e., it only has 6 leading zeros. When dis-
abling the internal fault check, the same encryption takes on average 6.9ms
(n = 1000, σx̄ = 0.045). Hence, the runtime overhead of the internal check
of mbedTLS is 100.99%. When using the same parameters with a small
public key, i.e., the key has 2031 leading zeros, the overhead decreases to
1.13%. For comparison with Minefield, we compile the version without
the internal check with Minefield. Figure 5.9 shows the performance com-
parison over different placement densities. For large public keys (6 leading
zeros), Minefield always performs better, regardless of the placement den-
sity. With a placement density of 0.75, we increase the performance by
71.42% for full-length public keys compared to the internal verification of
mbedTLS . We show in Section 7.1 that with a placement density of 0.75 we
already achieve a recall of 90%. For small public keys (2031 leading zeros)
and at the same placement density, we only decrease the performance by
17.23% compared to the internal verification of mbedTLS .

7.2.2. Code-Size Evaluation

As Minefield inserts additional code into an application, we compare the
size of binaries created with Minefield and with the same compiler without
any placed trap instructions. For evaluating the code size, we use the
benchmarks used to evaluate the runtime overhead in Section 7.2.1. The
code size is especially relevant for SGX, as the amount of physical memory
usable by SGX is limited for all enclaves running on the system. We further
discuss the memory impact in Section 8.

104 Chapter 5. Minefield

0.5 1 1.5 2

100

200

300

Placement Density

O
v
er
h
ea
d
in

%
SGX-bench SGX-tcxx SGX nbench

mbedTLS SGX-trts SGX-tstdc

Figure 5.10.: The increase of the code size for the various benchmarks over the
placement density parameter of Minefield.

The code size is increased by the constant size of the runtime library linked
to the enclave code (cf. Section 6.2). Additionally, there is a variable
increase based on the number of instructions in the enclave and the
placement density. Figure 5.10 shows the code size increasing over the
placement density parameter for the SGX nbench, mbedTLS and SGX-
bench benchmarks. In addition, we also show the increase in code size for
trusted SGX SDK components such as the runtime system, the C library,
and the C++ library.

As expected, we observe a nearly linear increase of the code size when
using Minefield. However, even for large applications such as SGX nbench,
protected with a placement density of 1, the absolute increase is only
274.5 kB.

7.2.3. Compile-Time Evaluation

We analyze the impact on the compile time that Minefield has on enclaves.
As a baseline, we compile the benchmarks without any mitigations enabled.
We compare the compile time for different placement densities to this
baseline.

Figure 5.11 shows the average increase in compile time for the benchmarks.
The placement density does not have a significant impact on the compile
time. For a placement density of 0.5, the overhead is negligible, with on
average around 0.78%. Even for a placement density of 2, the overhead is
only around 1.6%, which amounts to less than 0.5 s for mbedTLS .

7. Evaluation 105

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.5

1

1.5

Placement Density

O
v
er
h
ea
d
in

%
Compile Time

Figure 5.11.: The compile-time increase for the various benchmarks over the
placement density parameter of Minefield.

We conclude that the overhead on the compilation time is negligible,
especially as this is a one-time overhead for the developer. This small
overhead also makes it feasible to use Minefield in the development process,
and not only for the final compilation of an SGX enclave.

7.3. Correctness of Minefield

In addition to the performance and security evaluation, we also verify that
our Minefield prototype does not introduce any correctness problems.

Compiler Correctness. We explicitly tested the compiler by running a
C compiler test suite [8] to ensure that we did not introduce any bugs. The
test suite confirmed that the compiler changes did not have any adverse
effect on the correctness. We also confirmed that mbedTLS works correctly
with Minefield by running it without undervolting both in SGX and as
a native application. For SGX, the SGX-nbench benchmark verifies the
correctness of the computed results in addition to the performance. We
did not encounter any errors.

Integration Correctness. In addition to the correctness of the compiler
itself, we also evaluated the correctness of our integration with the SGX
SDK. We relied on SGX-bench [25] to test the enclave interactions. SGX-
bench is a small test suite for SGX enclaves to determine the performance
of, e.g., enclave entries, enclave initialization, and enclave ocalls. We did
not run into any bugs or crashes when running the test cases, showing
that Minefield successfully works with the SGX SDK. Moreover, running
our test enclaves with mbedTLS without undervolting also showed that
the integration works.

106 Chapter 5. Minefield

8. Discussion and Limitations

Current Mitigations. The currently active countermeasure against
undervolting attacks on SGX enclaves prohibits the user from applying
voltage offsets to the CPU. This removes a feature to gain additional
performance or increase thermal thresholds against throttling. In addition,
software-based fault mitigations either handwritten in cryptographic soft-
ware or per compiler extension often focus on calculating results multiple
times to check the correctness of the results against each other. While
these mitigations provide a high level of security against fault attacks,
they induce additional software complexity and performance overhead
based on the type of instructions protected.

Hardware Undervolting. Starting from the 11th generation, Intel
CPUs reuse fully integrated voltage regulator (FIVR) designs, previously
abandoned after the 4th generation [42]. CPUs without a FIVR design
expose the voltage regulators, allowing an attacker within our threat model
(cf. Section 3) to mount VoltPillager [2] attacks. The voltage regulators are
connected to a bus that receives commands from the CPU. VoltPillager
directly sends these commands over the bus bypassing the CPU and the
OCM. Although we performed the instruction analysis via the OCM,
we argue that the observed fault behavior is independent of how the
undervolt is issued. Therefore, we assume that Minefield is also applicable
against hardware-based undervolting like VoltPillager, where the current
mitigation to disable the OCM is ineffective.

Persistent Failing. Li et al. [5] show that AMD SEV’s “security-by-crash”
is exploitable, similarly using Minefield without hindering an attacker
from arbitrarily often restarting an enclave might result in an undetected
fault. Intel SGX does not support any local replay-protected persistent
state that is also protected against an attacker with physical access. Hence,
an enclave cannot securely store any data that could be used to detect
how often the enclave has already been started, without using a trusted
remote server. Thus, an attacker can always restart an enclave arbitrarily
often. Even when relying on the monotonic counters [37] for counting
restarts, an attacker can, e.g., remove the BIOS battery to destroy the
counter, effectively resetting it [31]. The support for monotonic counters
was discontinued in the Linux SGX-SDK [3]. However, the latest available
documentation of the Windows SGX-SDK [10] (March 2020) still lists
these functions.

8. Discussion and Limitations 107

If a trusted remote server is available, we can either implement the replay
protection with Intel’s EPID scheme or other rollback preventions. Intel’s
EPID group signature remote attestation scheme [38] can verify that
enclaves are part of a certain CPU group. Moreover, EPID supports the
named-base mode that allows linking two signatures, i.e., the verifier can
determine if two signatures originate from the same signer. Therefore,
when using the named-base mode, the verifier can deny the data exchange
with enclaves that repeatedly restart, observe faults, or do not terminate.
Matetic et al. [31] present a rollback prevention for persistent state based
on a distributed system. Hence, by relying on such a technique, Minefield
could also implement persistent failing without requiring any hardware
change. This would restrict an attacker to only a developer-defined number
of induced faults per physical CPU.

Performance and Memory Overhead. The performance and memory
overhead of Minefield is adjustable by the placement density (cf. Sec-
tion 6.1) and affects only occasionally running SGX workloads, allowing
the remaining system to benefit from undervolting and the resulting perfor-
mance and energy gains. Unfortunately, adjusting the placement density
also affects the security guarantees. We propose the following extensions
for future work to reduce Minefield’s overhead without affecting security.

First, Table 5.2 shows a margin between imul faults and faults of different
instructions. Minefield can utilize this margin by protecting regular imul
instructions with additional redundancy or replacing them with func-
tional equivalents. Due to this margin, the trap imul instructions observes
substantially more faults at these lower voltages than the other suscep-
tible instructions. Thus, increasing the detection capabilities retaining
the same security guarantees with lower placement densities, improving
performance.

Second, we can reduce the impact on branch prediction by replacing the
check’s cmp and jne instructions with instructions generating a GP-fault if
Minefield detects a fault. We propose using xor to calculate the registers’
difference followed by popcount giving the number of bit errors. Adding
this number to the higher 16 bit of a 64 bit address makes the address
non-canonical if a fault was detected. When accessing a non-canonical
address, the CPU raises a GP-fault causing an asynchronous enclave
exit [19]. The enclave can only be resumed at the internal signal handler,
stopping further faulty code execution [37].

108 Chapter 5. Minefield

Finally, the SGX driver ensures that enclaves that exceed the available EPC
memory (usually 128MB) can execute without limitations by swapping
EPC pages [36]. Accessing a non-present EPC page introduces a latency of
13 103 cycles (n = 1000 000, σx̄ = 0.925) to swap it back into the EPC on
our Intel i5-8265U. We analyzed Intel and Synaptics production enclaves
and found that their enclave sizes are below 3MB. Furthermore, Intel’s Ice
Lake CPUs increase the available EPC memory up to 1TB [4]. Therefore,
we find Minefield’s memory overhead for these enclaves tolerable.

Side Channels. Minefield does not protect against classical side-channel
attacks on enclaves. Side channels are orthogonal to fault attacks and are
thus out of scope for Minefield. Intel sees it as the developers responsibility
to ensure that their code is free of side channels [17]. Importantly, Minefield
does not introduce any new or additional side channels, as we decouple the
instructions responsible for fault detection from the actual data processed
by the enclave. However, if the enclave is already susceptible to side-
channel attacks, Minefield might amplify the side-channel leakage. In the
worst case, this can enable the exploitation of side channels that were
previously considered not exploitable. For example, the inserted trap
instructions might change a secret-dependent control flow within a cache
line to a secret-dependent control flow on a cache line or even cache set
granularity. Hence, for complete side-channel protection, developers have
to ensure that all algorithms handling secrets are data oblivious [17].

Other Architectures. The idea of Minefield is not restricted to any
given architecture and has two requirements. First, the architecture needs
an instruction that is more susceptible to undervolting faults than others.
Second, all targets that can be faulted must be compilable with Minefield.
If the architecture meets these requirements, Minefield can probabilistically
protect code running on the system. The performance depends on all the
susceptible instructions of that architecture.

Minefield is also applicable to other TEE alternatives such as ARM Trust-
Zone and AMD SEV. Qiu et al. [20] target ARM TrustZone with software
undervolting faults and exploit faults in AES and RSA computations.
Minefield could protect the target AES and RSA code if we port the
compiler extension and the runtime library. Due to AMD’s x86 instruction
set, Minefield is directly applicable to AMD SEV workloads. As of writing
this paper, there are no known software undervolting attacks against
AMD. However, Buhren et al. [1] exploit AMD SEV by inducing hard-
ware undervolting faults to compromise the secure coprocessor responsible
for transparent encryption. In this case, the attack compromises AMD

9. Conclusion 109

SEV by exploiting code not protected by Minefield, breaking the second
requirement and rendering the defense ineffective.

9. Conclusion

In this paper, we presented Minefield, the first software-level defense
against DVFS attacks. We systematically analyze DVFS attacks and
observe a timing gap of at least 57.8 µs between every OCM transition,
leading to random faults over a sequence of at least 57 thousand cycles. The
trap instructions Minefield places in the victim code during compilation
are highly susceptible to faults. Our evaluation showed that a density of
0.75 traps per instruction, i.e., 1-2 traps after every second instruction
reliably mitigates the currently known DVFS attacks on Intel CPUs,
namely Plundervolt, V0ltpwn, VoltJockey, and VoltPillager. Minefield
allows fine-grained selection of the performance-security tradeoff. For
this strong security level, we observe overheads of 94.4% on average on
protected SGX enclaves. The performance of the remainder of the system
is entirely unaffected. Thus, we conclude that Minefield is an important
alternative to a solution in hardware or microcode that comes with the
prohibitive effect of disabling the OCM entirely.

Acknowledgments

We thank the anonymous reviewers, especially our shepherd, Dave Tian,
for their guidance, comments and suggestions. Additional funding was
provided by a generous gift from Amazon. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding parties.

References

[1] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-
Pierre Seifert. One Glitch to Rule Them All: Fault Injection Attacks
Against AMD’s Secure Encrypted Virtualization. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security. 2021, pp. 2875–2889 (p. 108).

110 Chapter 5. Minefield

[2] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
Oswald, and Flavio D. Garcia. VoltPillager: Hardware-based fault
injection attacks against Intel SGX Enclaves using the SVID voltage
scaling interface. In: 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021. Ed. by Michael Bailey and
Rachel Greenstadt. USENIX Association, 2021, pp. 699–716. url:
https://www.usenix.org/conference/usenixsecurity21/pre

sentation/chen-zitai (pp. 77–79, 81, 82, 106).

[3] Intel. Unable to find Alternatives to Monotonic Counter Application
Programming Interfaces (APIs) in Intel Software Guard Extensions
(Intel SGX) for Linux to Prevent Sealing Rollback Attacks. 2021.
url: https://www.intel.com/content/www/us/en/support/ar
ticles/000057968/software/intel-security-products.html

(p. 106).

[4] Intel. What Technology Change Enables 1 Terabyte (TB) Enclave
Page Cache (EPC) size in 3rd Generation Intel Xeon Scalable
Processor Platforms? 2021. url: https://www.intel.com/conte
nt/www/us/en/support/articles/000059614/software/intel

-security-products.html (p. 108).

[5] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. CROSSLINE:
Breaking” Security-by-Crash” based Memory Isolation in AMD
SEV. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2021, pp. 2937–2950
(p. 106).

[6] ARM. mbed TLS. 2020. url: https:///tls.mbed.org (pp. 98,
100, 102).

[7] ARM. Security Advisories - Tech Updates - Mbed TLS. 2020. url:
https://tls.mbed.org/tech-updates/security-advisories

(p. 100).

[8] Andrew Chambers. c-testsuite. 2020. url: https://github.com
/c-testsuite/c-testsuite (p. 105).

[9] Douglas Black. Intel & OEMs are disabling undervolting. Here’s
how to re-enable it. 2020. url: https://www.ultrabookreview.c
om/37095-dells-disabling-undervolting-on-their-laptops

-heres-how-to-re-enable-it/ (pp. 77, 78).

https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https:///tls.mbed.org
https://tls.mbed.org/tech-updates/security-advisories
https://github.com/c-testsuite/c-testsuite
https://github.com/c-testsuite/c-testsuite
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/

References 111

[10] Intel. Intel SGX SDK Developer Reference for Windows*. 2020.
url: https://software.intel.com/content/www/us/en/deve
lop/download/sgx-sdk-developer-reference-windows.html

(p. 106).

[11] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In: 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020. Ed. by Srdjan Capkun and
Franziska Roesner. USENIX Association, 2020, pp. 1445–1461.
url: https://www.usenix.org/conference/usenixsecurity20
/presentation/kenjar (pp. 77, 78, 81, 82, 84, 86, 88, 89).

[12] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: 2020 IEEE Sympo-
sium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. IEEE, 2020, pp. 1466–1482. doi: 10.1109/SP40
000.2020.00057. url: https://doi.org/10.1109/SP40000.202
0.00057 (pp. 77, 78, 81, 82, 84, 86, 88, 89, 91, 98–100).

[13] Michael Schwarz and Daniel Gruss. How Trusted Execution Envi-
ronments Fuel Research on Microarchitectural Attacks. In: IEEE
Secur. Priv. 18.5 (2020), pp. 18–27. doi: 10.1109/MSEC.2020.2
993896. url: https://doi.org/10.1109/MSEC.2020.2993896
(pp. 80, 82).

[14] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchi-
tectures. In: Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-
17, 2019. Ed. by Iris Bahar, Maurice Herlihy, Emmett Witchel, and
Alvin R. Lebeck. ACM, 2019, pp. 673–686. doi: 10.1145/329785
8.3304062. url: https://doi.org/10.1145/3297858.3304062
(p. 86).

[15] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang.
Defeating Speculative-Execution Attacks on SGX with HyperRace.
In: 2019 IEEE Conference on Dependable and Secure Computing,
DSC 2019, Hangzhou, China, November 18-20, 2019. IEEE, 2019,
pp. 1–8. doi: 10.1109/DSC47296.2019.8937682. url: https://d
oi.org/10.1109/DSC47296.2019.8937682 (pp. 83, 97).

https://software.intel.com/content/www/us/en/develop/download/sgx-sdk-developer-reference-windows.html
https://software.intel.com/content/www/us/en/develop/download/sgx-sdk-developer-reference-windows.html
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1145/3297858.3304062
https://doi.org/10.1145/3297858.3304062
https://doi.org/10.1145/3297858.3304062
https://doi.org/10.1109/DSC47296.2019.8937682
https://doi.org/10.1109/DSC47296.2019.8937682
https://doi.org/10.1109/DSC47296.2019.8937682

112 Chapter 5. Minefield

[16] Hacker News. Plundervolt: Software-Based Fault Injection Attacks
Against Intel SGX. 2019. url: https://news.ycombinator.com
/item?id=21759683 (p. 77).

[17] Intel. Guidelines for Mitigating Timing Side Channels Against
Cryptographic Implementations. 2019. url: https://software.i
ntel.com/security-software-guidance/secure-coding/guid

elines-mitigating-timing-side-channels-against-cryptog

raphic-implementations (p. 108).

[18] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z. 2019
(p. 94).

[19] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 2019 (pp. 80,
107).

[20] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019.
Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz. ACM, 2019, pp. 195–209. doi: 10.1145/331953
5.3354201. url: https://doi.org/10.1145/3319535.3354201
(pp. 77, 78, 81, 82, 84, 88, 108).

[21] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults. In: Asian Hardware Oriented Security and Trust
Symposium, AsianHOST 2019, Xi’an, China, December 16-17, 2019.
IEEE, 2019, pp. 1–6. doi: 10.1109/AsianHOST47458.2019.9006
701. url: https://doi.org/10.1109/AsianHOST47458.2019.90
06701 (pp. 77, 78, 81, 82, 84, 86, 88, 89).

[22] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019.
Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz. ACM, 2019, pp. 753–768. doi: 10.1145/331953
5.3354252. url: https://doi.org/10.1145/3319535.3354252
(p. 80).

https://news.ycombinator.com/item?id=21759683
https://news.ycombinator.com/item?id=21759683
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252

References 113

[23] Fan Zhang. mbedtls-SGX: a TLS stack in SGX. 2019. url: https:
//github.com/bl4ck5un/mbedtls-SGX (p. 100).

[24] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018. Ed. by William Enck
and Adrienne Porter Felt. USENIX Association, 2018, pp. 991–
1008. url: https://www.usenix.org/conference/usenixsecur
ity18/presentation/bulck (p. 80).

[25] Raul Quinonez. SGXBENCH framework for benchmarking SGX
enclaves. 2018. url: https://github.com/sgxbench/sgxbench
(p. 105).

[26] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: 11th USENIX
Workshop on Offensive Technologies, WOOT 2017, Vancouver, BC,
Canada, August 14-15, 2017. Ed. by William Enck and Collin
Mulliner. USENIX Association, 2017. url: https://www.usenix
.org/conference/woot17/workshop-program/presentation/b

rasser (p. 80).

[27] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Con-
trol. In: Proceedings of the 2nd Workshop on System Software for
Trusted Execution, SysTEX@SOSP 2017, Shanghai, China, Octo-
ber 28, 2017. ACM, 2017, 4:1–4:6. doi: 10.1145/3152701.3152706.
url: https://doi.org/10.1145/3152701.3152706 (pp. 80, 96).

[28] Zhi Chen, Junjie Shen, Alex Nicolau, Alexander V. Veidenbaum,
Nahid Farhady Ghalaty, and Rosario Cammarota. CAMFAS:
A Compiler Approach to Mitigate Fault Attacks via Enhanced
SIMDization. In: 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography, FDTC 2017, Taipei, Taiwan, September 25, 2017.
IEEE Computer Society, 2017, pp. 57–64. doi: 10.1109/FDTC.201
7.10. url: https://doi.org/10.1109/FDTC.2017.10 (p. 91).

[29] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko,
István Haller, and Manuel Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In:

https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://github.com/sgxbench/sgxbench
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1109/FDTC.2017.10
https://doi.org/10.1109/FDTC.2017.10
https://doi.org/10.1109/FDTC.2017.10

114 Chapter 5. Minefield

26th USENIX Security Symposium, USENIX Security 2017, Van-
couver, BC, Canada, August 16-18, 2017. Ed. by Engin Kirda and
Thomas Ristenpart. USENIX Association, 2017, pp. 217–233. url:
https://www.usenix.org/conference/usenixsecurity17/tec

hnical-sessions/presentation/gruss (pp. 83, 97).

[30] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
ByungHoon Kang. Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves. In: 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017. Ed. by Engin Kirda and Thomas Ristenpart. USENIX
Association, 2017, pp. 523–539. url: https://www.usenix.org/c
onference/usenixsecurity17/technical-sessions/presenta

tion/lee-jaehyuk (p. 80).

[31] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar,
David M. Sommer, Arthur Gervais, Ari Juels, and Srdjan Cap-
kun. ROTE: Rollback Protection for Trusted Execution. In: 26th
USENIX Security Symposium, USENIX Security 2017, Vancou-
ver, BC, Canada, August 16-18, 2017. Ed. by Engin Kirda and
Thomas Ristenpart. USENIX Association, 2017, pp. 1289–1306.
url: https://www.usenix.org/conference/usenixsecurity17
/technical-sessions/presentation/matetic (pp. 84, 90, 106,
107).

[32] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: Detection of Intrusions and Mal-
ware, and Vulnerability Assessment - 14th International Conference,
DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings. Ed.
by Michalis Polychronakis and Michael Meier. Vol. 10327. Lec-
ture Notes in Computer Science. Springer, 2017, pp. 3–24. doi:
10.1007/978-3-319-60876-1_1. url: https://doi.org/10.1
007/978-3-319-60876-1%5C_1 (p. 80).

[33] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado.
T-SGX: Eradicating Controlled-Channel Attacks Against Enclave
Programs. In: 24th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2017, San Diego, California, USA, February
26 - March 1, 2017. The Internet Society, 2017. url: https://www
.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1%5C_1
https://doi.org/10.1007/978-3-319-60876-1%5C_1
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/

References 115

-eradicating-controlled-channel-attacks-against-enclav

e-programs/ (pp. 82, 97).

[34] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo.
CLKSCREW: Exposing the Perils of Security-Oblivious Energy
Management. In: 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by
Engin Kirda and Thomas Ristenpart. USENIX Association, 2017,
pp. 1057–1074. url: https://www.usenix.org/conference
/usenixsecurity17/technical-sessions/presentation/tang

(pp. 77, 79, 81, 82, 84).

[35] utds3lab. Adaptation of nbench-byte-2.2.3 for Intel SGX. 2017.
url: https://github.com/utds3lab/sgx-nbench (p. 102).

[36] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
IACR Cryptol. ePrint Arch. (2016), p. 86. url: http://eprint.i
acr.org/2016/086 (pp. 80, 108).

[37] Intel. Intel Software Guard Extensions SDK for Linux OS Developer
Reference. Rev 1.5. May 2016 (pp. 90, 106, 107).

[38] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and
Frank Mckeen. Intel software guard extensions: EPID provisioning
and attestation services. 2016 (pp. 90, 107).

[39] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Rüdiger
Kapitza. AsyncShock: Exploiting Synchronisation Bugs in Intel
SGX Enclaves. In: Computer Security - ESORICS 2016 - 21st
European Symposium on Research in Computer Security, Herak-
lion, Greece, September 26-30, 2016, Proceedings, Part I. Ed. by
Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas,
and Catherine A. Meadows. Vol. 9878. Lecture Notes in Computer
Science. Springer, 2016, pp. 440–457. doi: 10.1007/978-3-319-4
5744-4_22. url: https://doi.org/10.1007/978-3-319-4574
4-4%5C_22 (p. 80).

[40] Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen, and
Debdeep Mukhopadhyay. A Biased Fault Attack on the Time Re-
dundancy Countermeasure for AES. In: Constructive Side-Channel
Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers.
Ed. by Stefan Mangard and Axel Y. Poschmann. Vol. 9064. Lec-
ture Notes in Computer Science. Springer, 2015, pp. 189–203. doi:

https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://github.com/utds3lab/sgx-nbench
http://eprint.iacr.org/2016/086
http://eprint.iacr.org/2016/086
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1007/978-3-319-45744-4%5C_22
https://doi.org/10.1007/978-3-319-45744-4%5C_22

116 Chapter 5. Minefield

10.1007/978-3-319-21476-4_13. url: https://doi.org/10
.1007/978-3-319-21476-4%5C_13 (p. 89).

[41] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Oper-
ating Systems. In: 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer
Society, 2015, pp. 640–656. doi: 10.1109/SP.2015.45. url:
https://doi.org/10.1109/SP.2015.45 (p. 80).

[42] Edward A Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Dou-
glas, William J Lambert, Kaladhar Radhakrishnan, and Michael J
Hill. FIVR—Fully integrated voltage regulators on 4th generation
Intel® Core™ SoCs. In: 2014 IEEE Applied Power Electronics
Conference and Exposition-APEC 2014. IEEE. 2014, pp. 432–439
(pp. 77, 106).

[43] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. I. Taha, and
Patrick Schaumont. Differential Fault Intensity Analysis. In: 2014
Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2014, Busan, South Korea, September 23, 2014. Ed. by
Assia Tria and Dooho Choi. IEEE Computer Society, 2014, pp. 49–
58. doi: 10.1109/FDTC.2014.15. url: https://doi.org/10.110
9/FDTC.2014.15 (p. 89).

[44] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimen-
tal study of DRAM disturbance errors. In: ACM/IEEE 41st In-
ternational Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, June 14-18, 2014. IEEE Computer Soci-
ety, 2014, pp. 361–372. doi: 10.1109/ISCA.2014.6853210. url:
https://doi.org/10.1109/ISCA.2014.6853210 (p. 89).

[45] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard.
Fault Attacks on AES with Faulty Ciphertexts Only. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, Los
Alamitos, CA, USA, August 20, 2013. Ed. by Wieland Fischer and
Jörn-Marc Schmidt. IEEE Computer Society, 2013, pp. 108–118.
doi: 10.1109/FDTC.2013.18. url: https://doi.org/10.1109
/FDTC.2013.18 (p. 89).

[46] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:
Eternal War in Memory. In: 2013 IEEE Symposium on Security

https://doi.org/10.1007/978-3-319-21476-4_13
https://doi.org/10.1007/978-3-319-21476-4%5C_13
https://doi.org/10.1007/978-3-319-21476-4%5C_13
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/FDTC.2014.15
https://doi.org/10.1109/FDTC.2014.15
https://doi.org/10.1109/FDTC.2014.15
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/FDTC.2013.18

References 117

and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE
Computer Society, 2013, pp. 48–62. doi: 10.1109/SP.2013.13.
url: https://doi.org/10.1109/SP.2013.13 (p. 96).

[47] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi,
and Francesco Regazzoni. Countermeasures against fault attacks on
software implemented AES: effectiveness and cost. In: Proceedings
of the 5th Workshop on Embedded Systems Security, WESS 2010,
Scottsdale, AZ, USA, October 24, 2010. ACM, 2010, p. 7. doi:
10.1145/1873548.1873555. url: https://doi.org/10.1145/18
73548.1873555 (pp. 88, 91).

[48] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-flow integrity. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, CCS 2005, Alexandria,
VA, USA, November 7-11, 2005. Ed. by Vijay Atluri, Catherine A.
Meadows, and Ari Juels. ACM, 2005, pp. 340–353. doi: 10.1145
/1102120.1102165. url: https://doi.org/10.1145/1102120.1
102165 (p. 96).

[49] Christophe Giraud and Hugues Thiebeauld. A Survey on Fault
Attacks. In: Smart Card Research and Advanced Applica-
tions VI, IFIP 18th World Computer Congress, TC8/WG8.8 &
TC11/WG11.2 Sixth International Conference on Smart Card Re-
search and Advanced Applications (CARDIS), 22-27 August 2004,
Toulouse, France. Ed. by Jean-Jacques Quisquater, Pierre Parad-
inas, Yves Deswarte, and Anas Abou El Kalam. Vol. 153. IFIP.
Kluwer/Springer, 2004, pp. 159–176. doi: 10.1007/1-4020-8147-
2_11. url: https://doi.org/10.1007/1-4020-8147-2%5C_11
(p. 88).

[50] Ludger Hemme. A Differential Fault Attack Against Early Rounds
of (Triple-)DES. In: Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004. Proceedings. Ed. by Marc Joye and
Jean-Jacques Quisquater. Vol. 3156. Lecture Notes in Computer
Science. Springer, 2004, pp. 254–267. doi: 10.1007/978-3-540-2
8632-5_19. url: https://doi.org/10.1007/978-3-540-2863
2-5%5C_19 (p. 89).

[51] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In: 2nd
IEEE / ACM International Symposium on Code Generation and
Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA.

https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1007/1-4020-8147-2_11
https://doi.org/10.1007/1-4020-8147-2_11
https://doi.org/10.1007/1-4020-8147-2%5C_11
https://doi.org/10.1007/978-3-540-28632-5_19
https://doi.org/10.1007/978-3-540-28632-5_19
https://doi.org/10.1007/978-3-540-28632-5%5C_19
https://doi.org/10.1007/978-3-540-28632-5%5C_19

118 Chapter 5. Minefield

IEEE Computer Society, 2004, pp. 75–88. doi: 10.1109/CGO.2004
.1281665. url: https://doi.org/10.1109/CGO.2004.1281665
(p. 92).

[52] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Im-
portance of Checking Cryptographic Protocols for Faults (Extended
Abstract). In: Advances in Cryptology - EUROCRYPT ’97, Interna-
tional Conference on the Theory and Application of Cryptographic
Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding. Ed.
by Walter Fumy. Vol. 1233. Lecture Notes in Computer Science.
Springer, 1997, pp. 37–51. doi: 10.1007/3-540-69053-0_4. url:
https://doi.org/10.1007/3-540-69053-0%5C_4 (p. 88).

10. Appendix

10.1. Faulting Bits

Table 5.1 shows the analysis of which bit flips we observed for the instruc-
tions. We recorded each bitflip, analyzed the direction to which the bit
flipped, and reported the overall flip tendency of the faulty bits. We observe
that logical vector instructions have a high probability for stuck-at-zero
bitflips. Furthermore, we also found that some vector operations introduce
interesting faulting behavior, e.g., the vector comparison instruction shows
bitflip within a given element.

10.2. Instruction Analysis

Table 5.2 shows the detailed first faulting points for all the faulted instruc-
tions we found. We tested the faulted instruction across all our available
CPUs with SGX support. We compiled the faultable instruction with
the trap instruction to verify that the generated faults are indeed de-
tectable with a given trap instruction. We executed it with the reported
undervolting offset.

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0%5C_4

1
0
.

A
p
p
en

d
ix

119

Table 5.1.: The distinct faulted bit positions for each of our tested CPUs in mask form and the corresponding probability
for each bit to fault towards one. Note that all the outputs of the instructions are present in the mask, i.e., imul
also contains the rflags register. We see that parallel vector operations show only stuck-at-zero flips, where other
instructions like multiplications show a more random distribution.

Core i9-9900K Core i7-8700k Xeon E3-1505M Core i7-6700K (1)

Instruction Mask Px→1 Mask Px→1 Mask Px→1 Mask Px→1

IMUL 0x00000000000000000000783fff000000 46.8% 0x00000000000000000000001fff800000 48.3% 0x00000000000000000ff000fffc000000 48.7% 0x000000000000000000000007f8000000 40.8%
AESENC 0x00000010000000000010000004188e04 50.7% 0x00000000000000000000000004198e04 49.4%
VANDN* 0x000000a0022a0080000000a208a80000 0.0% 0x10000050405455400000000000105c00 0.0%
VAND* 0x000000a002020080000000a000000000 0.0% 0x00001010001455400000000500144400 0.0%
VOR* 0x000200a0022200820000002a02ac0020 0.0% 0x00000010001414420000000000140e00 0.0%
VPCLMULQDQ 0x00000000000000000000000200000000 0.0% 0x3fd7ff7ffffffffffffffffffffffbff 51.1%
VPCMP* 0x00a2aa82002000000000000000000000 0.0% 0xffffffff00000000ffffffffffffffff 33.2%
VPSRAD 0x0aa2aaa0000200000000000000000000 0.0%
VSQRTPD 0x0000000001f4ffff0000000000c3ffff 52.6% 0x000c000000001dff0000000000001fff 47.0%
VXOR* 0x000000a0222a0080000000a20a800000 0.0% 0x10000050405455420000001500145e10 0.0%
VPMAX* 0xffffffffffffffffffffffffffffffff 50.2%
VPADDQ 0x00000101010001000000000000000000 73.3%

Table 5.2.: The first faulting points for each of the susceptible instructions. We tested each instruction on each physical core
across multiple CPUs and frequency operating points. The numbers represent the set undervolting offset in units of
−1mV. The symbols indicates with which type of trap can detect the fault (imul, aesenc, vorpd).

CPU Frequency Core Instructions

MHz IMUL AESENC VANDN* VAND* VOR* VXOR* VPCLMULQDQ VPSRAD VPMAX* VPCMP* VSQRTPD VPADDQ

Core
i9-9900K

2000 0 244
2 255 255 255
4 255
5 250
6 250

2500 0 187 202 201 197 197
1 195 197
2 196 197 210

1
2
0

C
h
ap

ter
5.

M
in
efi

eld

Table 5.2.: The first faulting points for each of the susceptible instructions. We tested each instruction on each physical core
across multiple CPUs and frequency operating points. The numbers represent the set undervolting offset in units of
−1mV. The symbols indicates with which type of trap can detect the fault (imul, aesenc, vorpd).

CPU Frequency Core Instructions

MHz IMUL AESENC VANDN* VAND* VOR* VXOR* VPCLMULQDQ VPSRAD VPMAX* VPCMP* VSQRTPD VPADDQ

5 197
6 197 210
7 201

3000 0 154 165 165 170 165 163 172
1 160 159 172 200 165 166 167
2 160 165 180 174 169 172 185
3 170 172 177 172 171 180
4 163 173 177 202 171 175 179
5 164 165 175 199 176
6 158 176 210 177
7 165 172 182 209

3500 0 156 160 167 166 162 159 167 175 166
1 161 152 166 166 156 167 161
2 159 156 200 178 165 174 180 180 172
3 162 169 172 170 173 167 174 175
4 155 165 177 180 172 204 185 167
5 162 165 180 207 172 204 174
6 154 164 177 215 175 180 176
7 161 166 180 176 179

4000 0 161 161 180 170 170 168 175 166
1 167 155 200 169 195 155
2 163 163 175 195 162
3 166 170 190 166

1
0
.

A
p
p
en

d
ix

121

Table 5.2.: The first faulting points for each of the susceptible instructions. We tested each instruction on each physical core
across multiple CPUs and frequency operating points. The numbers represent the set undervolting offset in units of
−1mV. The symbols indicates with which type of trap can detect the fault (imul, aesenc, vorpd).

CPU Frequency Core Instructions

MHz IMUL AESENC VANDN* VAND* VOR* VXOR* VPCLMULQDQ VPSRAD VPMAX* VPCMP* VSQRTPD VPADDQ

4 160 163 161
5 175 166 169
6 162 166 165 168
7 164 194 175

Core
i7-8700k

1500 0 264 264
1 262

2000 0 230 230 245 240 241 242
1 227 242 250
2 242
5 250

2500 0 204 207 235 230 237 214 230 225 223 227
1 200 232 229 234 215
2 214 241 240
5 221

3000 0 194 189 227 230 222 223 195
1 193 222 220 220 215 195
2 214 220 235 224 230
3 223 225 235 224
5 214

3500 0 209 187 230 225 228 208 229
1 190 221 222 223 202 230
2 223 220 240

1
2
2

C
h
ap

ter
5.

M
in
efi

eld

Table 5.2.: The first faulting points for each of the susceptible instructions. We tested each instruction on each physical core
across multiple CPUs and frequency operating points. The numbers represent the set undervolting offset in units of
−1mV. The symbols indicates with which type of trap can detect the fault (imul, aesenc, vorpd).

CPU Frequency Core Instructions

MHz IMUL AESENC VANDN* VAND* VOR* VXOR* VPCLMULQDQ VPSRAD VPMAX* VPCMP* VSQRTPD VPADDQ

3 245 245
5 244

3700 0 202 192 225 229 215 226
1 185 220 218 198 235 220
2 217 230
3 214 240
5 244

Xeon
E3-1505M

800 0 277
1 282

1500 0 202 222 221 219 220
1 212 210 213 210 211
2 215 217 217 209 209
3 208 212 215 209 209

2000 0 190 209 211 208 207
1 200 200 200 195 195
2 205 208 207 203 205
3 197 200 201 195 195

2500 0 160 175 175
1 159 160
2 165 170
3 160 169 150 160

1
0
.

A
p
p
en

d
ix

123

Table 5.2.: The first faulting points for each of the susceptible instructions. We tested each instruction on each physical core
across multiple CPUs and frequency operating points. The numbers represent the set undervolting offset in units of
−1mV. The symbols indicates with which type of trap can detect the fault (imul, aesenc, vorpd).

CPU Frequency Core Instructions

MHz IMUL AESENC VANDN* VAND* VOR* VXOR* VPCLMULQDQ VPSRAD VPMAX* VPCMP* VSQRTPD VPADDQ

3000 0 172
1 154 155
2 165
3 173 160 159

3290 3 158

3300 0 175
1 148 154
2 160
3 170 165 156 160

Core
i7-6700K (1)

2000 2 249
3 241

2500 3 242

Core
i7-6700K (2)

No Faults Found

6
Half-Double: Hammering From

the Next Row Over

Publication Data

Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp,
Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. Half-Double:
Hammering From the Next Row Over. In: USENIX Security. 2022

Contributions

Main author.

125

126 Chapter 6. Half-Double

Half-Double: Hammering From the Next Row
Over

Andreas Kogler1 Jonas Juffinger1,2 Salman Qazi3

Yoongu Kim3 Moritz Lipp41 Nicolas Boichat3

Eric Shiu5 Mattias Nissler3 Daniel Gruss1

1Graz University of Technology
2Lamarr Security Research 3Google

4Amazon Web Services 5Rivos

Abstract

Rowhammer is a vulnerability in modern DRAM where repeated accesses
to one row (the aggressor) give off electrical disturbance whose cumula-
tive effect flips the bits in an adjacent row (the victim). Consequently,
Rowhammer defenses presuppose the adjacency of aggressor-victim pairs,
including those in LPDDR4 and DDR4, most notably TRR.

In this paper, we present Half-Double2, an escalation of Rowhammer to
rows beyond immediate neighbors. Using Half-Double, we induce errors
in a victim by combining many accesses to a distance-2 row with just
a few to a distance-1 row. Our experiments show that the cumulative
effect of these leads to a sufficient electrical disturbance in the victim
row, inducing bit flips. We demonstrate the practical relevance of Half-
Double in a proof-of-concept attack on a fully up-to-date system. We use
side channels, a new technique called Blind-Hammering , a new spraying
technique, and a Spectre attack in our end-to-end Half-Double Attack. On
recent Chromebooks with ECC- and TRR-protected LPDDR4x memory,
the attack takes less than 45 minutes on average.

1. Introduction

Rowhammer is a widespread DRAM issue caused by the unintended
coupling between its constituent rows [30]. By repeatedly accessing one
row (i.e., aggressor), an attacker can corrupt data in adjacent rows (i.e.,

2Named after a crochet stitch taller than a single but shorter than a double.

1. Introduction 127

victims) by accelerating their charge leakage. As a powerful means of
bypassing hardware and software memory protection, Rowhammer has
been used as the basis for many different attacks (Section 2.3).

Previously, Rowhammer was understood to operate at a distance of one
row: an aggressor would only flip bits in its two immediate neighbors, one
on each side. This makes intuitive sense: as a coupling phenomenon[54],
the Rowhammer effect should be the strongest at closest proximity. Indeed,
this assumption underpins many countermeasures (Section 2.3) that have
been proposed against Rowhammer, especially the ones that rely on
detecting aggressors and refreshing the charge in their intended victims
(e.g., [30, 34, 39]). In fact, Target Row Refresh (TRR), a productionized
countermeasure widely deployed as part of LPDDR4/DDR4 chips, falls
into this detect-and-refresh category [14].

In this paper, we present Half-Double, a new escalation of Rowhammer
where we show its effect to extend beyond just the immediate neighbors.
Using Half-Double, we are able to flip bits in the victim by combining
many accesses to a far aggressor (at distance two) with just a few to a near
aggressor (at distance one). Both aggressors are necessary: accessing just
the former does not flip bits in a row that’s two away, whereas accessing just
the latter devolves into a classic attack that’s easily mitigated. Based on
our experiments, the near aggressor appears to act as a bridge, transporting
the Rowhammer effect of the far aggressor onto the victim. Concerningly,
TRR facilitates Half-Double through its mitigative refreshes, turning their
recipient row into the near aggressor that co-conspires with the far one
that necessitated the refresh in the first place. In effect, the cure becomes
the disease.

While the discovery and evaluation of Half-Double is the main contribution
of this work, we also demonstrate its practical relevance in a proof-of-
concept exploit. However, current systems limit the attacker’s control,
introducing 4 challenges: First (C1), the adversary needs to allocate
memory contiguous in a DRAM bank. However, without access to physical
addresses [48] and huge pages [18, 45], we have to introduce a novel
approach combining buddy allocator information with a DRAM timing
side channel to reliably detect contiguous memory. Second (C2), ECC-
protected memory can make bit flips unobservable depending on the victim
data which the attacker does not control, the adversary cannot template
the memory like in previous Rowhammer attacks as hammering requires
knowledge of the cell data. As state-of-the-art [18, 51, 8, 44, 14, 45] does not
solve this problem, we introduce a novel technique called Blind-Hammering

128 Chapter 6. Half-Double

to induce bit flips despite the ECC mechanism of LPDDR4x. Third (C3),
reduced address space sizes on recent ARM-based systems break the page
table spraying mechanism from previous attacks [48, 43, 51, 18]. Therefore,
we develop a new spraying technique that is still unmitigated. Finally
(C4), without templating, we need an oracle telling whether Rowhammer
induced an exploitable bit flip, without crashing the exploit. For this, we
introduce a novel approach using a Spectre-based oracle for exploitable bit
flips. We combine these techniques into an end-to-end proof-of-concept, the
Half-Double Attack3, which escalates an unprivileged attacker to arbitrary
system memory read and write access, i.e., kernel privileges. The Half-
Double Attack runs within 45 minutes on a fully updated Chromebook
with TRR-protected LPDDR4x memory.

To summarize, we make the following contributions:

1. We discover a new Rowhammer effect: Half-Double, and evaluate a set
of devices and modules for susceptibility.

2. We perform a thorough root-cause analysis to empirically prove that
TRR is responsible for the Half-Double effect.

3. We analyze the stop-gap mitigations present in today’s systems and
show that with a new exploit using Half-Double, we can bypass them
and build an end-to-end attack.

4. Our end-to-end Half-Double Attack runs on up-to-date Chromebooks
and combines the Half-Double effect with exploit techniques, side
channels, and a Spectre attack.

Outline. We provide background in Section 2 and introduce a new Row-
hammer pattern notation in Section 3. We overview the the Half-Double
effect in Section 4 and empirically verify that it is a new effect in Section 5.
We develop the end-to-end attack in Section 6. We discuss the related
work and implications in Section 7 and conclude in Section 8.

Responsible Disclosure. Pre-existing contractual obligations between a
subset of the authors and the memory vendors mean we cannot provide
details as to the effectiveness or substance of efforts to remediate the
flaws. We believe the work should nonetheless be published as the impact
of disclosure is unlikely to impact consumer security substantially, as
the presence of Rowhammer-type vulnerabilities is a known limitation in
DRAM design prior to our publication [30, 14]. Therefore, we believe that

3Our open-source proof-of-concept implementations can be found at: https://github
.com/iaik/halfdouble

https://github.com/iaik/halfdouble
https://github.com/iaik/halfdouble

2. Background 129

publicly disclosing our new variant will help rather than hinder the safe
deployment of systems.

We responsibly disclosed Half-Double by notifying the affected memory
vendors, triggering a customary embargo. The vulnerability was made
public via a blog post after the expiration of the embargo [42].

2. Background

In this section, we provide background on DRAM, the Rowhammer effect,
and the broadly deployed TRR mitigation.

2.1. DRAM Organization

The main memory system consists of multiple channels, which are inde-
pendent links between memory controller and DRAM chips. Since DRAM
chips have a narrow data bus, several of them are grouped into a rank
whose aggregated data-bus width matches that of the channel. Multiple
ranks can time-share a channel. Chips in a rank run in lockstep, i.e.,
organizationally, like a single larger chip. Hence, we use the terms “rank”
and “chip” interchangeably. Each rank consists of rows of capacitor-based
DRAM cells. To access a row, the voltage of its wordline must be raised,
which connects its cells to their respective bitlines. Referred to as activa-
tion, this procedure then involves what’s called the row-buffer – situated
at the other end of the bitlines – to sense the voltage perturbations and
to amplify them to either ‘0’ or ‘1’. This brings us full circle as the cells
are restored to their original state: fully discharged or fully charged. As
long as the same row remains activated, subsequent accesses are served
from the row-buffer. Such row hits are faster than row conflicts which
must activate a different row. To increase the probability of a row hit,
rows within a rank are partitioned into banks with dedicated row buffers.
Capacitors and, thus, DRAM cells lose charge over time. Thus, all rows
must be refreshed at a regular interval which is typically 32-64ms [27].
Refreshes are spread out evenly over time, i.e., refreshing a small subset
of rows with each refresh command. We emphasize that refreshing a row
is exactly the same as activating it [37] (see Section 3).

130 Chapter 6. Half-Double

(D)

. . .

. . .
(V)
(N+)

. . .
(D)

(a) Single-sided

(N−)

(V)
(N+)

(b) Double-sided

(V)
(N+)

(c) One-location

Figure 6.1.: Rowhammer access patterns: red rectangles () represent hammered
rows, i.e., the near aggressors N , while blue rectangles () represent
the most likely row for bit flips, i.e., the victim row V. Single-sided
hammering accesses a set of unrelated rows, which we call decoys D
().

2.2. DRAM Address Reverse Engineering

Various attacks require specific placement of data in DRAM, motivating
several works to reverse-engineer DRAM addressing functions. Pessl et al.
[41] and later also Barenghi et al. [6] used the row buffer timing side
channel. Jung et al. [28] reverse-engineered even the physical on-chip
location via heat-based hardware-fault attacks. Helm et al. [20] used
performance counters to measure row hits and misses. All of these methods
group addresses into sets of addresses that see row conflicts or row hits
with each other, i.e., they are in the same bank. They then compute
which combination of bits indicates the set, which is often a linear XOR-
combination of bits. Helm et al. [20] showed that addressing functions
can vary between different address ranges or channels. While older works
found the row index to be just a subset of address bits [48, 56, 18, 41],
more recent works also found XOR combinations to be used for index bits
as well [49]. As a response to Rowhammer, physical addresses today are
hidden from user programs [31], rendering approaches that rely on them
unapplicable for attacks on up-to-date systems.

2.3. Rowhammer

At higher densities, chips are more likely to suffer from disturbance errors
caused by intra-chip crosstalk [38]. In 2014, Kim et al. [30] demonstrated
row-to-row disturbance errors in DRAM chips from memory accesses

2. Background 131

and called it row hammer [22]. Recently, Walker et al. [54] provided a
comprehensive analysis of the underlying physics of Rowhammer.

Existing Rowhammer access patterns (Figure 6.1) vary depending on
relative location of victim and aggressor(s). First, in the single-sided
pattern [48], an attacker alternates accesses to two rows: an aggressor and
what we call a decoy. Accesses to the decoy (an arbitrary row in the same
bank) are needed to thrash the row-buffer to ensure that the aggressor
is indeed activated. There is also an “amplified” variant [18] where two
aggressors are placed next to each other. As the name suggests, they
sometimes work to reinforce each other, yielding more bit flips in their
respective victims than otherwise. Second, in the double-sided pattern [48],
the victim is sandwiched between two aggressors. This is known to be the
worst-case access pattern that induces the most bit flips. There is also a
“many-sided” extension [14] that involves a larger number of aggressors
and victims with varying degrees of sandwiching. Third, the one-location
pattern [17] is similar to the single-sided one except that it eschews the
decoy. Instead, it waits for the memory controller to clear the row-buffer
before accessing the aggressor again to ensure that it is activated.

The Rowhammer vulnerability has been demonstrated in sandboxed envi-
ronments [48], in native environments [48, 7, 17, 49], in virtual machines [56,
44, 25], in JavaScript [18, 8, 45], on mobile devices [51, 13], and over the
network [50, 35]. Rowhammer exploits often borrow traditional exploit
techniques such as memory spraying [48, 18, 56], grooming [51], and page
deduplication [8, 44] to place the target data structure at the correct
memory location. There are many proposals to improve hammering, with
special instructions [43], load hazards [24], page table accesses [59], an
onboard FPGA [55], and memory pressure from quality-of-service tech-
niques [1].

Many defenses have been proposed [17], focused on detecting [23, 21, 40,
19, 10, 58, 53, 34, 39], neutralizing [9, 51, 18, 8, 44, 26], or eliminating [30, 4,
9, 29, 15] Rowhammer in software or hardware. A defense that has already
been integrated into some DDR4 modules and the LPDDR4 standard [26]
is Target Row Refresh (TRR), which we discuss in Section 2.4.

2.4. Mitigative Refreshes (a.k.a. “TRR”)

Starting from the (LP)DDR4 generation, vendors have implemented
opaque and proprietary defenses inside their chips. Frigo et al. [14] found

132 Chapter 6. Half-Double

.

.

.

.

.

.

RB

RA−2

RA−1

RA+0

RA+1

RA+2

RC

Decoy

Far Aggressor

Near Aggressor

Victim

Near Aggressor

Far Aggressor

Decoy

(D+)

(F+)

(N+)

(V)
(N−)

(F−)

(D−)

Figure 6.2.: Row annotations for the rows inside a single bank that surround the
victim row.

that such measures appear to involve two main components: (i) a sampler
identifying potential aggressors, and (ii) an inhibitor performing mitigative
refreshes on their potential victims. Furthermore, the sampler is limited
in its tracking capability and can be fooled when an attacker interleaves
activations to multiple rows.

In contrast, our Half-Double Attack capitalizes on the shortcomings of the
inhibitor, which is hardwired to perform mitigative refreshes on just the
immediate neighbors without accounting for the longer-ranged effects of
Rowhammer. In fact, we show how mitigative refreshes actually facilitate
Half-Double Attack by turning their recipient row into a co-conspirator
– more specifically, it becomes the near aggressor to the far one that
necessitated the mitigative refresh.

In this paper, we use the terms “mitigative refresh” and “TRR” (Target
Row Refresh) interchangeably. Despite its usage in previous works, the
latter is a slight misnomer since it refers to a previously proposed (but
never adopted) DRAM command that allows the CPU’s memory controller
to send a row-address alongside a refresh command [5].4

3. A Systematic Rowhammer Pattern Notation

In this section, we introduce a new systematic notation for Rowhammer
patterns, allowing us to categorize existing attacks and describe the Half-
Double Attack effect in Section 4.

4“Pseudo TRR” is emulating that behavior by sending a pair of activation and precharge
commands to refresh the desired row manually.

3. A Systematic Rowhammer Pattern Notation 133

Our notation describes Rowhammer patterns and their locality concerning
the actual row location inside a bank.We assume the row index represents
the physical row position inside a bank. For the notation, we assume
that rows with contiguous row indices are physically adjacent. Figure 6.2
denotes the rows inside a bank as follows. The victim row (V) is the target
of the Rowhammer attack, and the bit flips inside this row are used to
measure the effectiveness of the pattern in the experiments. The direct
neighbors of the victim row are the so-called near aggressor rows (N+,
N−), which are directly followed by the far aggressor rows (F+, F−). These
three types of rows are located in a contiguous range inside a bank. We
denote rows further away from this range as decoy rows (D). The absolute
row position of the upper far aggressor row (F+) is denoted with RA−2,
this allows us to address these rows with an index. To characterize the
Rowhammer patterns, we use a special notation, e.g., (Ai → (B → C)β)∞,
where i is the current repetition of the selected pattern. Hence, the first
memory access goes to A0. Then, the pattern accesses the rows B and C
and repeats these two accesses β times. After β accesses to B and C, we
continue with the next iteration, i.e., row A1 is accessed next, and so on.

With this notation, we compare known Rowhammer patterns based on
their row locality. Double-sided Rowhammer [48] uses two near aggressors
to hammer the victim row, i.e., we can express the pattern as (N+ →
N−)

∞. Single-sided Rowhammer [48] effectively uses one near aggressor
to hammer the victim row and 7 decoy accesses, i.e., we can express the
pattern as (N+ → (Di)

7)∞. However, the purpose of these decoy rows is
often to trigger a row conflict on DIMMs that use an open row policy, as
otherwise, the accesses are served from the row buffer (cf. Section 2.1).
More recent Rowhammer type attacks like TRRespass [14] and Smash [45],
also use near aggressor and decoy rows. However, in both cases, multiple
victim rows are targeted interleaved to exploit the limited TRR sampler
size and deplete the number of protected rows. This allows the attack to
induce flips in one of the victim rows hammered less often as the TRR
mitigation no longer protects them.

In summary, all existing Rowhammer patterns use near aggressor rows to
hammer, i.e., they are distance-1 patterns, directly surrounding single or
multiple victim rows. The TRR mitigation is designed to mitigate these
distance-1 type attacks. TRR detects these repeated accesses to the near
aggressors with the sampler, and then the inhibitor refreshes the victim row
before a bit flip can occur (cf. Section 2.4). The detailed implementation
of TRR refreshes is vendor specific and not publicly documented. We

134 Chapter 6. Half-Double

assume similar to Liu et al. [37], that TRR refreshes are implemented
by closing the currently open row and then opening the victim row to
load the row into the row buffer and, therefore, refresh the content of the
victim. However, this raises the question of whether there are practically
exploitable distance-2 patterns.

4. The Half-Double Effect and Exploit

This section provides an overview of the Half-Double Attack, its new
hammering patterns, and challenges for the attack.

4.1. The Half-Double Effect

With Half-Double Attack, we present two new Rowhammer patterns, the
Quad pattern and the Weighted pattern (or more verbosely, Weighted
Single Plus Decoys (WS+D)).

The Quad pattern (Pattern (6.1)) shifts the double-sided Rowhammer
pattern outwards by one row:

(F+ → F−)
∞. (6.1)

However, as this only drains a small amount of charge from the actual
victim row, the Quad pattern incorporates the effects of TRR refreshes
to hammer the victim row. The pattern uses the far aggressors (F+,
F−) to hammer. Hammering the far aggressors is detected by the TRR
sampler, and after a sufficient number of row activations, the TRR inhibitor
issues (in an attempt to mitigate bit flips) a refresh command to the
near aggressors (N+, N−). The TRR refresh mechanism closes the open
row and activates the near aggressor rows successively to refresh them.
These additional activations from the TRR refresh mechanism assist our
hammering of the victim row by draining further charge from the victim
row (V).

The Weighted pattern (Pattern (6.2)) distributes half the hammers to the
upper far aggressor (F+), and the others to the rows below the victim
row. Thus, we represent it as

(RA+4+3·i → F+ → RA+6+3·i → F+)
∞. (6.2)

4. The Half-Double Effect and Exploit 135

The intuition of this pattern is to shift a double-sided Rowhammer pattern
over the rows below the victim, while distributing half of the hammers
to the far aggressor (F+). As the maximum number of rows inside a
bank is limited, i is wrapped around to zero if RA+6+3·i is outside the
physical row range, restarting the pattern below the victim. The first two
repetitions of the Weighted pattern produce the following sequence: RA+4,
F+, RA+6, F+, RA+7, F+, RA+9, F+. Similar to the Quad pattern, the
Weighted pattern hammers the far aggressor (F+), but accesses decoys
below the victim. The pattern accesses the far aggressor triggering the
mitigative refresh mechanism (TRR) on the near aggressor (N+) assisting
the hammering by draining further charge from the victim (V).

We describe the effects of the Half-Double patterns with the following
hypothesis H under which the Half-Double patterns induce flips into the
victim row.

Hypothesis H: Hammering far aggressors (F+, F−) triggers mitigative
refreshes (TRR) on near aggressors (N+, N−), implicitly assisting the
hammering of the victim row (V), by draining charge from it. However,
the refreshes of the near aggressors (N+, N−) cannot draw sufficient
charge from the victim row without the activations of the far aggressors
(F+, F−).

Compared with multi-sided Rowhammer [14, 45], Half-Double patterns do
not rely on depletion of TRR resources. Instead, the patterns incorporate
the TRR refresh mechanism such that is assists the Rowhammer attack.
Therefore, this pattern is also applicable in a scenario where the TRR
mechanism works perfectly against distance-1 Rowhammer attacks. We
evaluate and discuss the differences between Half-Double and state-of-the-
art Rowhammer attacks in Sections 5.1.2 and 7.

4.2. The Half-Double Exploit

Rowhammer exploits typically involve solving several challenges beyond
the bit flip. For Half-Double on state-of-the-art systems, we identified 4
challenges: C1 the allocation of contiguous memory (without physical
address information or huge pages), C2 finding bit flips without templat-
ing (to bypass defenses against templating), C3 memory spraying with
constrained spraying resources, and C4 bit flip verification (due to the
uncertainty created by hammering blind). For Challenges 1 and 3 we

136 Chapter 6. Half-Double

can extend existing techniques. However, for Challenge 2, ECC memory
hinders bit flip templating as the ECC code depends on the data in the
corresponding cells unknown to the attacker. A novel approach we call
Blind-Hammering circumvents this problem by not templating for bit
flips. However, this introduces uncertainty, creating Challenge 4, which
we resolve by combining Blind-Hammering with a Spectre attack. Hence,
we put more focus on Challenge 2 and Challenge 4 as they require novel
methods.

Challenge 1: Allocation of Contiguous Memory. The first challenge
is to obtain access to adjacent rows in a bank. Physical address information
is unavailable today due to previous Rowhammer attacks [31]. Huge pages
or page fusion mechanisms are not available on all systems, making
both approaches unapplicable for our attack. Therefore, we first design
a novel contiguous memory detection, incorporating knowledge of the
general structure of xor-based DRAM addressing functions to obtain
information on the underlying physical addresses, even if the DRAM
addressing functions of the device are unknown. Combined with knowledge
of the behavior of the buddy allocator, we obtain information on the
underlying physical addresses. Second, due to the precise row location
requirements of the Half-Double patterns, we need to reverse-engineer the
row indexing function of the bank using a timing side channel. Finally, we
map a virtual address via the contiguous memory to a bank and row.

Challenge 2: An Alternative to Memory Templating. After control-
ling contiguous rows inside a bank, the next challenge is to find flippable
locations inside the memory. Due to variances in the DRAM cells, some
cells are more likely to flip than others [54]. The current state of the art
is templating the memory in advance for locations that are susceptible to
Rowhammer flips. However, some ECC memory hinder this step as bit
flips are only reproducible in an attack if the templating was performed
on the exact data or data that behaves identically for the ECC code. An
attacker usually does not have this information, hindering the memory
templating approach. Thus, we propose a new approach without memory
templating, namely Blind-Hammering .

Challenge 3: Memory Massaging. This challenge focuses on filling
the memory with targets that are exploitable with Blind-Hammering . The
targets of our exploit are page table entries. We target the physical page
number inside these page table entries. We use an approach where we
map shared memory between multiple children of the parent process to fill

5. Empirical Evaluation of Half-Double 137

the memory with additional page tables without filling the main memory
with other non-exploitable data pages.

Challenge 4: Bit-Flip Verification. This challenge focuses on deter-
mining the location of an induced bit flip. Due to Blind-Hammering , we
cannot directly check whether the hammering was successful or not, as
accessing a potential corrupted page-table entry (PTE) is detected by the
OS, terminating the exploit. We solve this problem with a novel Spectre
oracle [32] determining whether the address is safe to access. We also
develop an architectural alternative oracle and evaluate the advantages
and drawbacks of both approaches.

We solve the above challenges in Section 6 and gain complete control over
the system’s main memory, proving that the Half-Double effect can be
exploited on real-world systems.

5. Empirical Evaluation of Half-Double

To show that the hypothesis H holds and explains the Half-Double effect,
we make the following observations:

1. We show that the Half-Double effect exists, i.e., inducing bit flips on
current TRR-protected systems (Section 5.1).

2. We show that Half-Double does not occur without (TRR-induced)
refreshes on near aggressors and that there is a relation between TRR
refreshes and the number of bit flips observed, i.e., (counter-intuitively)
more TRR refreshes lead to more bit flips in the victim row (Section 5.2).

To obtain noise-free observations, we use an FPGA board with full control
over all refreshes and memory accesses, where we have no requirements on
data retainment for stability (Section 5.3). Since the focus of this section
is to show the above points and, thus, that the hypothesis H holds, we do
not restrict ourselves to a specific threat model in this section.

5.1. Half-Double on TRR-protected LPDDR4x

In this subsection, we demonstrate Half-Double using the Quad pattern on
TRR-protected systems.5 We show that this pattern can generate bit flips
and record the number of observed bit flips to measure the performance.

5We analyze the Weighted pattern in Section 5.2 and Section 5.3.

138 Chapter 6. Half-Double

5.1.1. Test System and DRAM Addressing Functions

We use 10 commodity systems (see Table 6.9 for a full list). We reverse-
engineer the DRAM addressing functions using the method by Pessl et al.
[41] (cf. Section 2.2). Since their approach only maps a physical address
to a given bank but does not recover the precise row index we need
for the Quad pattern, we use an additional timing side channel between
row hits and row conflicts within a bank [49] (cf. Section 2.2) to obtain
information on the row indices. We discover that our two identical ARM-
based Lenovo Chromebooks have the same row scrambling functions
described by Tatar et al. [49], where bit 3 is XORed onto bits 2 and 1
in the row index. We illustrate the full DRAM addressing and indexing
functions for the Chromebooks in Figure 6.3. With the device-specific
functions, we map physical addresses to banks and row indices and, thus,
test the Half-Double patterns from Section 4.1.

5.1.2. Evaluation of the Quad pattern

We test the Quad pattern with two strategies to reach DRAM: uncacheable
memory [52] and memory flushing [30]. For uncacheable memory, we mark
the far aggressors, the near aggressors, and the victim as uncacheable,
allowing more hammering attempts within one refresh interval. The mem-
ory flushing approach is much slower, relying on the architecture’s flush
instruction to flush the far aggressors from the cache.

For our evaluation, we allocate a large chunk of memory and use the
Linux pagemap interface [31] to extract physical addresses. We analyze
the physical addresses of the chunk and group the virtual addresses
corresponding to their banks. Afterwards, we search for addresses from
the same bank mapping to a consecutive range of rows representing the
Quad pattern, i.e., we find rows RA−2 to RA+2, cf. Figure 6.2.

Modern memory controllers scramble data by XORing a mask onto the
row’s data. Cojocar et al. [11] showed that the data mask is the same across
all rows. We empirically observed the data scrambling and, correspondingly,
set all bytes of the far aggressor and near aggressor rows to 0x55 and fill
the bytes of the victim row with 0xaa. We found that this maximizes the
number of bit flips we see in the Quad pattern attack across the tested
devices.

5. Empirical Evaluation of Half-Double 139

N 18171615141312 8 0

⊕⊕
⊕

h0

h1
h2

h3

⊕⊕. . .

r

Figure 6.3.: The reverse-engineered DRAM addressing functions from our
Chromebooks.

Table 6.1.: Performance of the Quad pattern with uncacheable memory and flush
instruction on affected LPDDR4x systems.

System NHammers UC0→1 UC1→0 Flush0→1 Flush1→0

Chromebook1 23 274 27 40 2 5
Chromebook2 23 586 235 2379 12 101
OnePlus 5T 25 687 2 30 1 24
Pixel 3 32 921 11 5 0 0
HTC U11 21 840 - - 3 17

The hammering runs in a tight loop accessing the far aggressors. We run
the Quad pattern for 20 000 000 iterations and check the victim row for bit
flips. Table 6.1 shows the results of both approaches. The Chromebook2
shows 36 times more flips than the identical Chromebook1. The OnePlus
5T shows similar flip tendencies as the Chromebook1. With uncacheable
memory, we can induce 10 to 20 times more bit flips on the Chromebooks.
However, the OnePlus 5T does not show a huge increase when using
uncachable memory. We also observe more flips from 1 to 0, similar to
Kim et al. [30]. However, we conclude that an attack is possible in either
case, albeit faster if uncacheable memory is available.

Key Insight: Half-Double is capable of producing bit flips on TRR-
protected memory.

To compare the Half-Double effect with current state-of-the-art multi-
sided Rowhammer patterns, we performed three experiments using TR-
Respass [14] with up to 20 aggressors on our most susceptible commercial
system, i.e., the Chromebook2. First, we ported the publicly available
TRRespass tool to ARM, including row scrambling and uncacheable mem-
ory support to search for bit flips. Second, we implemented the patterns
in our hammering tool for cross-validation. We evaluated hammering

140 Chapter 6. Half-Double

uncachable memory with the Quad pattern with one of a 12 aggressor
multi-sided pattern under the same conditions. We did not observe any
bit flips with multi-sided patterns, whereas the Quad pattern induced 956
flips over the same time frame. This experiment concludes that there are
commodity devices that are affected by Half-Double but not (or less) by
other state-of-the-art patterns. Section 7 provides further discussion of
Half-Double and multi-sided Rowhammer.

5.2. Determining the Role of TRR

With the experiments on the commodity systems, we cannot rule out
that the observed flips are distance-1 flips induced solely by TRR (or
other row refreshes), or that they are actually distance-2 bit flips induced
by far aggressor hammering. In line with prior work [54], we observe
a small number of distance-2 bit flips, too infrequent to explain Half-
Double (cf. Section 5.3). Furthermore, Helm et al. [20] found complex
addressing functions that change depending on the actual physical location.
To exclude this possible source of error, we use a commercial SoC platform
with LPDDR4x memory to measure the influence of refreshes, e.g., those
from TRR.

We obtained precise but confidential information from the vendor on
the relationship between the actual physical row location inside a bank
and the physical address on this SoC platform. For this system, we can
switch memory refreshes off and on. However, this switch disables not
only the TRR refreshes but also refreshes issued by the memory controller
to conform to the refresh interval (e.g., 64ms) or by pTRR. Completely
disabling refreshes renders the system unusable, as DRAM cells lose
charge and corrupt data after a short period. To still be able to run actual
software, we build a duty cycle mechanism alternating between enabled
and disabled refreshes, we denote as dance (i.e., dancing between refresh
on and off). In these dance experiments, we enable refreshes for 25% of
the time, i.e., 64ms enabled and 192ms disabled.

The dance experiments allow limiting the number of refreshes temporarily
and, therefore, observe the correlation between refreshes and the number
of bit flips. While refreshes are disabled, they cannot unintentionally assist
our Half-Double patterns, i.e., no interfering TRR refreshes. While the
window where refreshes are disabled is longer than the standard refresh
period (e.g., 64ms), it is short enough to avoid instabilities. We expect a

5. Empirical Evaluation of Half-Double 141

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

1

2

3

Parameter β

F
li
p
s
in

V

((F+ → D)β → N+)
∞

Figure 6.4.: Number of observed bit flips in the victim over the dilution parameter
for the single-sided case.

reduction of the number of bit flips with a decreasing number of refreshes
if our hypothesis H holds, i.e., the TRR refreshes assist the Half-Double
effect.

To show that TRR refreshes assist the observed bit flips from Section 5.1,
we run the following experiment: We design three pattern categories to
demonstrate the Half-Double effect: the first to show that the effect is not
explained by distance-2 hammering, the second to show that simulated
TRR refreshes trigger the effect as well, and the third to show that only
the simulated TRR refreshes alone do not trigger the effect. The patterns
used to verify the hypothesis are constructed around the victim row. These
observations show that only the combination of the TRR refreshes (or
other accesses) to the near aggressors combined with our accesses to the
far aggressors trigger the Half-Double effect, confirming our hypothesis
H. For our experiment we use a victim row that was reliably susceptible
to Rowhammer attacks, i.e., we usually were able to induce three bit flips
with the Weighted pattern.

The first category verifies that the observed bit flips are not caused solely
by distance-2 hammering. The single-sided Pattern (6.3) accesses far
aggressor (F+) and a decoy (D).

(F+ → D)∞ (6.3)

The double-sided Pattern (6.4) replaces this decoy with an access to the
lower far aggressor (F−).

(F+ → F−)
∞ (6.4)

While with TRR, we observed a significant number of bit flips, in our
experiments, both patterns do not show any considerable number of bit
flips with TRR refreshes disabled. The number of bit flips observed is far

142 Chapter 6. Half-Double

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

0
2
4
6

Parameter β

F
li
p
s
in

V ((F+ → F−)
β → N+ → N−)

∞

Figure 6.5.: Number of observed bit flips in the victim over the dilution parameter
for the double-sided case.

too low to visualize them or to explain the Half-Double effect by distance-2
Rowhammer bit flips (as we detail further in Section 5.3). Hence, this
indicates that TRR refreshes contribute to the Half-Double effect, in
support of our hypothesis H.

The second category of patterns extend the Half-Double patterns with
simulated TRR refreshes to the near aggressors while TRR is disabled.
Patterns (6.3) and (6.4) are repeated β times before simulated TRR ac-
cesses to the near aggressors are performed. The single-sided Pattern (6.5)
simulates TRR by accessing the near aggressor (N+).

((F+ → D)β → N+)
∞ (6.5)

The double-sided Pattern (6.6) simulates TRR by accessing both near
aggressors (N+, N−).

((F+ → F−)
β → N+ → N−)

∞ (6.6)

The parameter β is a dilution parameter allowing us to vary how many
simulated TRR refreshes are performed, i.e., we perform accesses to the
near aggressors after a certain amount of accesses to the far aggressors.

For a low dilution parameter (i.e., very high number of accesses to the
near aggressors), these patterns behave like a traditional single-sided or
double-sided Rowhammer attack without TRR protection, i.e., inducing
many bit flips. We confirmed this empirically, shown in Figure 6.4 for
the singled-sided Pattern (6.5) and in Figure 6.5 for the double-sided
Pattern (6.6). We see a correlation between the dilution parameter β and
the number of bit flips, i.e., fewer simulated refreshes lead to fewer bit flips.
An alternative representation is also provided in Section 9.2. From these
observations, we conclude that accesses to the near aggressor contribute

5. Empirical Evaluation of Half-Double 143

Table 6.2.: Number of bit flips observed in our FPGA setup (rows with bit flips in
parentheses). The hammer duration determines the number of accesses
(hammer count). The hammer duration has a stronger influence on
the number of bit flips and affected rows than the dilution factor.
Even a dilution factor of 3712, within one 64ms refresh interval fits
950 272 accesses, 256 of which to the near aggressors simulating TRR
(cf. Section 3), still induces bit flips in all 32 rows. Thus, only 256
accesses to the near aggressors combined with 950 016 accesses to the
far aggressors are sufficient to attack any row.

Accesses 296 960 356 352 415 744 475 136 534 528 593 920 653 312 712 704 772 096 831 488 890 880 950 272
Duration 20ms 24ms 28ms 32ms 36ms 40ms 44ms 48ms 52ms 56ms 60ms 64ms

D
il
u
ti
o
n

F
a
c
to

r

58 1 (1) 3 (3) 5 (5) 6 (6) 15 (12) 26 (19) 35 (20) 44 (23) 57 (28) 83 (30) 115 (32) 173 (32)
116 1 (1) 3 (3) 4 (4) 6 (6) 14 (11) 24 (19) 32 (20) 40 (22) 51 (27) 73 (30) 117 (32) 152 (32)
232 1 (1) 3 (3) 4 (4) 5 (5) 12 (10) 24 (19) 31 (20) 39 (21) 51 (27) 68 (30) 112 (32) 149 (32)
464 1 (1) 2 (2) 3 (3) 5 (5) 11 (8) 24 (18) 32 (20) 39 (21) 49 (26) 70 (30) 109 (32) 148 (32)
928 1 (1) 2 (2) 3 (3) 5 (5) 11 (8) 25 (18) 32 (20) 39 (21) 49 (25) 70 (29) 108 (32) 146 (32)
1856 0 (0) 2 (2) 3 (3) 5 (5) 11 (8) 22 (17) 32 (20) 37 (21) 49 (25) 66 (29) 110 (32) 140 (32)
3712 0 (0) 2 (2) 3 (3) 5 (5) 10 (7) 22 (16) 30 (20) 37 (21) 49 (25) 64 (27) 99 (31) 139 (32)
7424 0 (0) 2 (2) 3 (3) 5 (5) 8 (6) 18 (15) 29 (19) 36 (20) 48 (25) 66 (27) 92 (31) 128 (31)

14 848 0 (0) 0 (0) 2 (2) 4 (4) 7 (6) 15 (12) 22 (15) 32 (19) 40 (22) 58 (27) 80 (30) 109 (30)
29 696 0 (0) 0 (0) 2 (2) 2 (2) 3 (3) 8 (7) 11 (9) 19 (14) 28 (18) 41 (25) 57 (27) 82 (29)

to the observed bit flips, supporting our hypothesis H. However, we also
need to test the null hypothesis, as we do in the following.

For this purpose, the third pattern category implements placebo patterns
to verify that the bit flips in the second pattern category are not caused
solely by the accesses to the near aggressors (i.e., the null hypothesis). The
patterns access decoys to keep the overall accesses rate to near aggressors
the same as Patterns (6.5) and (6.6) for a given dilution. Thus, the
single-sided Pattern (6.7) accesses one near aggressor (N+).

((D1 → D2)
β → N+)

∞ (6.7)

The double-sided Pattern (6.8) accesses both (N+, N−).

((D1 → D2)
β → N+ → N−)

∞ (6.8)

When varying the dilution parameter, we observe a point at which the
second category of patterns still produce bit flips in the victim, whereas
the third category no longer does. More concretely, Pattern (6.7) shows
a decrease in the bit flips before Pattern (6.5). We observe the same
effect also for the double-sided case where the number of bit flips with
Pattern (6.8) drops at a lower dilution parameter than the number of
bit flips with Pattern (6.6). Since we only access decoys Di, unrelated
to the victim row V, this drop is explained by the missing accesses to
the far aggressors F , supporting our hypothesis H. We conclude that

144 Chapter 6. Half-Double

Table 6.3.: The modules used in the FPGA analysis. M1 is not affected by Half-
Double, M3 is affected within default refresh windows (64ms), M2 is
affected with longer windows.

Module Freq. Size Ranks Banks Pins Half-Double

M1 2666 4GB 1 8 x16 ✗

M2 3200 4GB 1 8 x16 ✓(>64ms)
M3 3200 8GB 1 8 x16 ✓

the additional accesses of the TRR inhibitor assist the hammering of the
victim for the Half-Double effect.

Key Insight: TRR refreshes assist Half-Double but are not the root
cause. They alone induce no bit flips in the victim.

5.3. Noise-free FPGA Experiments

To confirm our results without noise, we use the ZCU104 FPGA platform6

where we have full control over all refreshes and memory accesses and no
requirements on data retainment for stability. In contrast to Section 5.2,
we can disable all refreshes on the FPGA-based platform because the
platform itself does not store any data in the DIMM, i.e., the FPGA does
not use the DIMM as system memory.

We analyzed three off-the-shelf DDR4 DIMMs listed in Table 6.3 and
found that M1 is not susceptible to the Half-Double effect. While the
other two are affected, we could only demonstrate bit flips with the default
refresh interval of 64ms on M3, whereas M2 required a doubled refresh
interval (128ms). Therefore, for our analysis, we focused on M3, the DIMM
susceptible to Half-Double by default. For our experiments, we use the
same patterns as in Section 5.2 and confirm our results in this highly
controlled and noise-free setup.

((F+ → F−)
β → N+ → N−)

∞ (6.9)

With Pattern (6.9), we hammer 32 rows individually and vary both dilution
parameter β and total hammer duration (i.e., hammer count, number of
accesses) in this experiment. Furthermore, we vary the hammer duration
from 20ms to 64ms with a step size of 4ms. In contrast to the dilution

6https://github.com/antmicro/litex-rowhammer-tester

https://github.com/antmicro/litex-rowhammer-tester

5. Empirical Evaluation of Half-Double 145

Table 6.4.: Distance-1 double-sided hammering (N+ → N−)
∞ and the observed

bit flips per cell and row.

Hammers Time (ms) Cells Rows

18 000 1.212 2 1
24 000 1.616 23 18
30 000 2.020 136 31
36 000 2.425 495 32
42 000 2.829 1395 32
48 000 3.233 2870 32
54 000 3.637 5099 32
60 000 4.041 7749 32

parameter, we introduce the dilution factor df . This factor slightly changes
the representation of β. The relation between the dilution factor and the
dilution parameter for Pattern (6.9) is df = β + 1. A dilution factor of 58
refers to 1 distance-1 hammer in every 58 hammers. Therefore, we can
compute the accesses to the near aggressors directly by dividing the total
hammers by the dilution factor. The dilution factor is varied from 58 to
29 696 by doubling it in each step.

Table 6.2 shows the results of this experiment and we can observe two
effects, as expected: First, the number of bit flips increases with the
hammer duration. We can induce bit flips in all 32 rows within one default
refresh interval (64ms) regardless of the tested dilution factor. Second,
the number of bit flips decreases with a higher dilution. However, the
decrease in bit flips is much flatter than for the hammer duration. Even
with the highest tested dilution, we induce flips into 29 out of 32 rows
within one default refresh interval.

To underline that the Half-Double effect is a different phenomenon than
distance-1 and distance-2 Rowhammer effects, we test two more patterns
on the FPGA system and compare them with the results obtained in
the previous experiment. We use distance-1 double-sided Rowhammer
(N+ → N−)

∞ and the distance-2 variant (F+ → F−)
∞. We again hammer

32 rows and measure the observed flips on a cell and row basis.

Table 6.4 shows the results of distance-1 double-sided hammering, where
the number of hammers required to induce flips into all 32 rows is only
36 000. This is 25 times smaller than with Half-Double, indicating that
Half-Double is not just distance-1 Rowhammer. However, 36 000 accesses
are also much higher than what a TRR implementation could perform

146 Chapter 6. Half-Double

Table 6.5.: Distance-2 double-sided hammering (F+ → F−)
∞ and the observed

bit flips per cell and row.

Hammers Time (ms) Cells Rows

4 000 000 270 1 1
5 000 000 336 1 1
6 000 000 404 2 2
7 000 000 472 2 2
8 000 000 538 3 3
9 000 000 606 2 2

10 000 000 674 3 3

within the standard 64ms refresh interval. Even at a low dilution factor
like 58, this would require about 2 088 000 accesses within one refresh
interval, i.e., about twice as many accesses than fit in the standard refresh
interval.

Table 6.5 shows distance-2 double-sided hammering and we observe that
we need 4 000 000 hammer accesses to obtain a single distance-2 bit flip,
i.e., four times more accesses than fit within a 64ms refresh interval. Hence,
Half-Double can also not be explained with distance-2 bit flips.

In line with Section 5.2, this again shows that H holds. With our results
from Table 6.2, we can model when the Half-Double effect occurs. With
a dilution factor of 3712 and 950 272 hammers, the total number of
accesses to the near aggressors is 256. Therefore, only 256 accesses to the
near aggressors, combined with 950 016 accesses to the far aggressors are
sufficient to induce flips in each of the 32 rows. However, if we compare
these numbers with the equivalent accesses in the distance-1 and distance-
2 experiments, we are far below the required accesses to see even a single
bit flip in both cases.

Key Insight: Both distance-1 Rowhammer and distance-2 Rowham-
mer effects would require more accesses than fit inside the standard
64ms refresh interval if they would induce the Half-Double effect. Hence,
we conclude that H is the most plausible explanation of Half-Double.

6. Half-Double Attack Exploit 147

6. Half-Double Attack Exploit

In this section, we demonstrate the real-world attack capabilities of the
Half-Double Attack. The attack is split into multiple phases, each tackling
one of the challenges (see Section 4.2) to finally gain complete control
over the system from within an untrusted executable. Our attack aims
to induce a bit flip in the physical page-frame number of a PTE. If the
corrupted page-frame number points to attacker-controlled data instead
of the original page table, the adversary can forge additional page table
entries. This grants the adversary arbitrary read and write access to the
entire system memory.

Threat Model. We assume that the victim runs an untrusted executable
or Android APP on either an ARM or x86 based system for our attack.
Our attack does not exploit any software vulnerabilities in the OS or
other running programs but only uses side-channel information and the
provided interfaces by the OS. Furthermore, we assume that the LPDDR4x
DRAM used on the system is both ECC- and TRR-protected. However,
our attack does not rely on the exhaustion of TRR resources like previous
Rowhammer attacks targeting TRR [14]. We evaluate the challenges on
the Chromebooks, the OnePlus 5T and a Lenovo T490s to show the
applicability across multiple architectures and operating systems (see
Section 9.1).

From Virtual Memory Accesses to Half-Double Patterns. In the
first step of our exploit, we map virtual addresses to actual physical row
locations inside the DRAM banks, a building block to hammer with the
Half-Double patterns. While we can use the Quad pattern and the Weigh-
ted pattern, we focus on the Quad pattern in our exploit as it induces bit
flips faster. For the Quad pattern, we need to control at least five adjacent
rows where the middle row is unmapped and used by the victim process.
With DRAM addressing functions (cf. Section 5.1.1 and Figure 6.3), we
can determine the physical location inside a bank and row. However, the
required physical address information is not available to the unprivileged
executable. We solve this challenge (C1) in Section 6.1.

Inducing Bit Flips. In the second step, we need to place potential bit
flip targets at the right memory locations. Templated bit flips are very
likely not reproducible during the actual attack, as the data in the victim
rows differs between templating and attack phase, and the integrated
ECC mechanisms of the DRAM depend on the actual data stored in the

148 Chapter 6. Half-Double

victim row. Consequently, bit flips during templating may not occur when
attempting to fault the targeted data during the attack. Therefore, in
Section 6.2, we present two new ways to solve C2. The first technique
uses an alternative templating process that is ECC-aware. The second
technique, called Blind-Hammering , is a versatile alternative to templating.
However, verifying whether exploitable bit flips occurred becomes its own
challenge then as we outline below.

Placing Exploitable Data. In the third step, we fill the system’s
memory with PTEs. However, due to address space limitations modern
ARM-based devices enable for performance reasons, we cannot use the
same spraying techniques as prior Rowhammer attacks. In Section 6.3,
we solve this challenge C3 by spawning child processes to increase the
number of page tables in memory via multiple address spaces.

Bit-Flip Verification. We cannot directly access the hammered victim
rows. Attempting to access a corrupted mapping is also fatal, as the
Linux kernel detects corrupted PTEs upon faults and terminates the
corresponding user-space process. In Section 6.4, we solve C4 and use a
Spectre attack to prevent irrecoverable crashes of our attacking app.

Combining all steps, we obtain a full end-to-end exploit with read and
write access to the entire system’s memory.

6.1. C1: Memory Allocation

To use the Half-Double patterns, the adversary needs access to at least 5
adjacent rows within the same bank. We present three distinct approaches
to solve this challenge. Either via huge pages, using unique bank access
patterns if the DRAM addressing functions are known, or by using the
structure of unknown xor-based DRAM addressing functions

Via Huge Pages. The Chrome OS running on the Chromebooks as well
as the Ubuntu running on the T490s has transparent huge pages activated.
For 2MB huge pages, the lowest 21 bits of virtual and physical address
are the same. This covers all bits we need to find adjacent rows across the
test systems, effectively solving this challenge (cf. Figure 6.3).

Via DRAM Addressing Functions. Disabling huge pages mitigates
the aforementioned approach. Unfortunately, Half-Double requires specific
row index information going beyond contiguency information from prior

6. Half-Double Attack Exploit 149

Table 6.6.: Page distance patterns on the Chromebooks. Each pattern has one
unique page distance highlighted in yellow.

P d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 . . .

P0 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 1 . . .

P1 8 7 8 11 8 7 8 11 8 7 8 11 8 7 8 3 . . .

P2 8 9 8 5 8 9 8 13 8 9 8 5 8 9 8 5 . . .

P3 8 7 8 7 8 7 8 15 8 7 8 7 8 7 8 7 . . .

work [47, 13, 33]. However, we can combine information on DRAM address-
ing functions (cf. Figure 6.3) and the buddy allocator [16] used in Linux
and Chrome OS to detect contiguous memory blocks and reconstruct the
additional physical address bits we require.

When dealing with a contiguous range of physical memory, the pages of
the memory range are distributed over multiple banks due to the DRAM
addressing functions. We now select only pages of a given bank and iterate
over all the allocated pages to analyze the page distances. The page distance
is the distance between two pages in the same bank. If we fix the bank
and analyze the allocated memory, we observe that the page distances
on the Chromebooks follow one of four patterns. Table 6.6 shows these
four page distance patterns. The patterns have a period of 16, and each
pattern has one unique page distance, which is highlighted in yellow. We
only find four patterns since we can skip bit 8 of the DRAM addressing
functions, as we always control it with the virtual address, leaving only
eight remaining banks. However, we only observe four patterns as two
banks share the same pattern.

All four page distance patterns have one unique distance per period (1,3,13,
or 15). This unique value allows us to reconstruct the physical address
bits 12 to 17, since the DRAM addressing functions start at bit 12 (cf.
Figure 6.3). If we advance the unique page distance in pages (4 kB) in
the physical memory, the underlying address bits 12 to 17 of the physical
address change. However, due to the page distance analysis with the timing
side channel [47, 33], we know that the page advanced by the unique page
distance falls into the same bank. Therefore, changing the address bits
did not influence the outcome of the bank from the DRAM addressing
functions. This can only be the case once for each bank. Due to the unique
page distance, we know that we fall into one of two banks, and therefore,
this analysis only leaves bit 18 unknown. Table 6.7 shows the reconstructed
physical address bits for each unique page distance value, depending on

150 Chapter 6. Half-Double

Table 6.7.: Reconstruction of physical address bits via unique page distances.

Page From To

Distance b18 b17 b16 b15 b14 b13 b12 b18 b17 b16 b15 b14 b13 b12

1 B 1 1 1 1 1 1 B̄ 0 0 0 0 0 0

3 B 1 1 1 1 1 0 B̄ 0 0 0 0 0 1

13 B 1 1 1 0 0 1 B̄ 0 0 0 1 1 0

15 B 1 1 1 0 0 0 B̄ 0 0 0 1 1 1

bit 18. This 50% probability acts as a corresponding slow down for the
attack.

Via DRAM Addressing Structure. We generalize the previous ap-
proach by formulating the general structure of xor-based DRAM addressing
functions in the Z3 theorem prover [12]. Schwarz et al. [47] use a similar
solver to recover physical address parts from known DRAM addressing
functions and Kwong et al. [33] use a solver to recover bank information
from contiguous memory. We in contrast retrieve contiguous memory infor-
mation via bank access patterns without knowing the DRAM addressing
functions.

In the exploit, we record the bank access pattern when iterating over each
page of a virtual address range and determine the corresponding bank
affinity via the row-conflict timing side channel [41]. The solver uses the
pattern and the underlying structure of the xor-based DRAM address-
ing functions to implement the following question: Can this bank access
pattern be generated via a xor-based addressing function when walking
over contiguous physical memory? If the constraints are unsatisfiable, the
underlying memory range is not contiguous or, the addressing functions
are not xor-based. However, if the constraints are satisfiable, the solver
found addressing functions and a physical start offset that generate this
access pattern. The constraints are detailed in Section 9.3. We restrict the
bits of the xor masks to only cover physical address bits 12 to 20, as the
page offset controls bits below 12, and bits above 20 are not needed to
find adjacent rows.

Evaluation. The memory scan takes less than 10 seconds with 2MB
pages and less than 3 minutes using the page distance, i.e., 19.05MB/s
(n=10, σx̄=0.002) on Chromebook1, 13.03MB/s (n=10, σx̄=0.003) on
Chromebook2, 18.39MB/s (n=10, σx̄=0.006) on the OnePlus 5T and
46.55MB/s (n=10, σx̄=0.455) on the T490s.

6. Half-Double Attack Exploit 151

Initial

Flipped

Corrected

01101000
↓

00101010
↓

00101010

(a) c1 and c6 flip

00101000
↓

00101010
↓

00101000

(b) c1 flips but is
corrected

01101010
↓

00101010
↓

01101010

(c) c6 flips but is
corrected

Figure 6.6.: Error correction of 8 memory cells with ECC (from c7 to c0). We
effectively never see single bit flips.

Finally, we evaluated the correctness of the solver by generating physical
address ranges of 512 pages consisting of uniformly generated contiguous
memory blocks of up to 128 pages. This memory range is transformed
via a DRAM addressing functions into a bank access pattern, where we
additionally scrambled the bank index. We vary the pattern length that
the solver receives as input and slide the solver over the whole memory
range and compute the F-score metric. The solver achieves an average
F-score of 0.97 with a bank access pattern length of 64 samples and an
average scanning speed of 1.079MB/s. Further details on performance
and correctness of the functions are provided in Section 9.3.

6.2. C2: Alternative to Memory Templating

Due to semiconductor production variances, some cells are more susceptible
to Rowhammer than others [54]. Because of that, most Rowhammer bit
flips are reproducible, and their direction (0 → 1 or 1 → 0) is fixed [30]
as well. The affected systems (cf. Table 6.1) use LPDDR4x DRAM with
ECC with a typical single-error-correction code7. We empirically verified
this with our observation that we see no single, but only double bit flips.
The reason is that the ECC memory requires at least two bit flips to show
an effect within a code word. Otherwise, the bit flip is corrected and not
exploitable. Figure 6.6 visualizes this effect with 8 data bits (parity bits
are not shown). Therefore, we propose two techniques for the Half-Double
Attack to work around this data dependency, an improved templating
technique for ECC memory, and Blind-Hammering , which does not require
any bit flip templating.

7We have not seen any freezes due to error detection, indicating that it is only
single-error correction with no support for double-error detection.

152 Chapter 6. Half-Double

F−N−VN+F+

F−N−VN+F+F−N−VN+F+

1 2 3 4 5 6 7 8 9 10 11

Figure 6.7.: The zebra pattern used for Blind-Hammering . Notice how the near
aggressors and far aggressors change depending on the victim row.

ECC-aware Templating. Classic memory templating fills the aggressor
rows with a specific byte value and fills the victim row with the inverse of
this value. During our experiments, we find many weak cells when filling
the aggressor rows with 0x55 and the victim row with 0xaa. However,
when moving to the next stage of the exploit where the victim row is filled
with PTEs, we initially no longer observed any flips. The reason for this
is the one outlined before and illustrated in Figure 6.6: Bit flips on ECC
memory depend on the data that is stored in the cells [33]. Therefore, we
need to adapt the templating phase to incorporate a presumed structure
of the data we target, i.e., fake PTEs when targeting page-frame numbers.
Hence, during templating, we fill the victim rows with fake PTEs where
the page-frame number is filled as in the regular templating approach,
e.g., we fill the aggressor rows with 0x55555555555555 and victim rows
with 0x68000AAAAAAFD3. We keep track of all addresses that produce
flips at the offset of the page-frame number field during the evaluation.
Afterwards, we use these addresses to induce bit flips in a target page
placed in the victim row.

Blind-Hammering . The disadvantage of ECC-templating is that it
requires precise knowledge of the target data. Blind-Hammering generalizes
our attack further and makes no assumptions about the target data in the
victim row. Instead, it circumvents the ECC data dependency problem by
not depending on the repeatability of the bit flips over changing victim
data. Blind-Hammering skips the templating phase and hammers as many
rows as possible with real page tables in potential victim rows. Blind-Ham-
mering creates a zebra pattern (cf. Figure 6.7) by mapping contiguous
memory (cf. Section 6.1) and then unmapping parts of the allocated
memory to make room for the victim rows shown in blue. In essence,
it performs the templating directly on the inaccessible victim rows and
using the victim’s own data for the attack. Consequently, the trade-off
for Blind-Hammering is similar as for the templating phase. While Blind-
Hammering enables targeting ECC memory, it has a clear drawback: The
attacker cannot simply read the data anymore to check whether a bit

6. Half-Double Attack Exploit 153

has flipped. We elaborate this problem further in Section 6.3, motivating
challenge C4 that we then solve in Section 6.4, i.e., the need to verify
that a bit has flipped in an exploitable way without crashing the attacker
process.

Evaluation. We evaluate Blind-Hammering on Chromebook2 and ob-
served 30 exploitable bit flips (13 flips 0 → 1, 17 flips 1 → 0) within
11.6 h. This gives us an average of 2.59 exploitable flips per hour, or 23.2
minutes on average to produce an exploitable flip. We used the ratio of
overall bit flips to exploitable bit flips of the Chromebook2, to estimate
the exploitation time on our other devices. On the OnePlus 5T it takes
approximately 6.4 h, on the HTC U11 4.0 h and on the Chromebook1 4.2 h,
to flip an exploitable bit in a PTE.

6.3. C3: Memory Preparation (Spraying)

In this section, we fill the memory of the target systems with our attack
targets, the PTEs. Modern ARM-based platforms, i.e., mobile platforms,
can reduce the levels of page tables from the default of 4 page-table levels
to only 3 page-table levels to optimize the performance of page walks (on
TLB misses). However, this also decimates the available virtual address
space for every process by a factor of 512. Since the affected devices
(cf. Table 6.1) use this approach, we only have a virtual address space of
512GB available. While this is still much more than the amount of physical
memory the device has, it severely limits the practicality of page-table
spraying using file mappings. Previous work has used file mappings and
other memory mappings to fill memory with page tables [48, 43, 51, 18].
However, with only 512GB of virtual address space available, we can only
create mappings requiring less than 262 144 page tables, i.e., taking up
1GB of memory. Thus, we can only occupy, e.g., 25% of the available
4GB on the Chromebooks. This increases the attack duration by a factor
of more than 8 (since not all pages can be mapped).

To bypass this aggravating effect, we propose a new technique called Child
Spray. Instead of spraying only our own virtual memory with mappings to
allocate page tables, Child Spray spawns child processes that share memory
with the parent process. The shared memory is only once in the physical
memory, but each process has its own page-table hierarchy, effectively
spraying the physical memory with page tables. The only disadvantage of

154 Chapter 6. Half-Double

Child Spray is that a hammered PTE can point to a page table of a child
process, leading to extra engineering steps for successful exploitation.

With this spraying approach and Blind-Hammering , bit flips can now occur
in any page table any time, as we don’t know which cells are vulnerable
and where page tables are. We can check page tables periodically for
changes by checking whether the shared memory mapping still has its
expected content. However, as Blind-Hammering bit flips in page tables
are, in contrast to templated bit flips, not predictable, PTEs often become
invalid. Consequently, we need a method to test whether a bit flip in a
page table occurred without crashing the attacker process. We solve this
challenge in the following.

Evaluation. The Child Spray runs with two child processes at 79.39MB/s
(n=10, σx̄=0.24) on Chromebook1, 54.09MB/s (n=10, σx̄=1.437) on
Chromebook2, 25.42MB/s (n=10, σx̄=0.346) on the OnePlus 5T, and
99.88MB/s (n=10, σx̄=0.456) on the Lenovo T490s. Thus, the memory is
filled with page tables within less than 1 minute on average. The Child
Spray on the T490s is not required as the system supports 4 page table
levels.

6.4. C4: Robust Bit-Flip Verification

With Blind-Hammering we cannot verify the success of a bit flip. Reading
the corrupted data (as templating does) is not possible as it is not in
our process. Accessing potentially re-mapped memory often crashes the
attacker’s process due to corrupted PTEs (e.g., mapped to an invalid
physical memory region, or setting of a reserved bit), as the OS detects
this corruption upon a faulting access. Consequently, we develop a new
technique, combining the Half-Double Rowhammer attack with a Spec-
tre [32] side-channel mechanism allowing us to safely determine whether an
address can be accessed or whether accessing it would crash the attacker’s
process. With the Speculative Oracle, we can check whether a mapping is
corrupted or not without triggering the OS’s own detection.

6.4.1. Speculative Oracle

If the physical page-frame number points to an illegal memory location,
a read or write to it raises a CPU fault, e.g., a Data Abort [2]. As CPU
faults cannot succeed during speculative execution on systems that are

6. Half-Double Attack Exploit 155

1 if (misprediction)

2 access(probe + (pointer[0] & 1) + ... + (pointer[4] & 1));

3 if (flush_reload(probe) == CACHE_HIT)

4 // Report valid address

Listing 6.1: Example code for our Speculative Oracle. The attacker learns
whether pointer[0] till pointer[4] are accessible memory
locations or would raise a CPU fault. If a fault is detected,
the attacker probes each address individually.

not susceptible to Meltdown [36], we can use speculative execution to
determine whether the bit flip corrupted the entry in a defective way or,
otherwise, in an exploitable way. This allows us to avoid accesses that
would make the OS terminate our attack process.

Our Speculative Oracle uses Spectre similar to Lipp et al. [36] in the
Meltdown attack for exception suppression on an ARM-based mobile
phone. Our Chromebooks use a Mediatek MT8183 SoC with ARM cores
that are not vulnerable to Meltdown [3]. Thus, loads depending on the
faulting load are not user-visible executed on this ARM microarchitecture.

Our Speculative Oracle uses exception suppression by mistraining branch
predictors to execute the probing code transiently [36], cf. Listing 6.1. We
transiently load probe with an offset based on pointer, which is the address
to test. There are two possible cases for the Speculative Oracle: pointer is
valid and, hence, its value forwarded to the probe load. Thus, probe is
loaded into the cache. pointer is invalid and, hence, the probe load is not
executed and, thus, not loaded into the cache. Using Flush+Reload [57],
we determine whether probe is cached or not and, thus, whether pointer
is valid or not.

As our probing gadget runs in the transient domain, the misspeculated
branch may be corrected before the load is issued or the branch may not
be mispredicted at all. Thus, probe may not be cached even when pointer
is valid. Hence, we repeat the Spectre attack several times to more likely
see a cache hit if pointer is valid. However, if pointer is invalid, probe can
never be loaded into the cache and, hence, we infer pointer to be invalid
with a high probability if we can not observe a cache hit after a certain
number of repetitions. Additionally, we can probe multiple addresses at
once by chaining them as additional dependencies to the probe address as
shown in Listing 6.1. This significantly improves the runtime by allowing

156 Chapter 6. Half-Double

C1

10s ... 4m

C3

< 1m

C2

≈23m

C4 C4

≈22m ≈11m

root

Figure 6.8.: The timing durations for the end-to-end exploit executed on the
Chromebook2. For Challenges C1 and C4 faster alternatives might
be available (cf. Sections 6.1 and 6.4). The overall runtime is bound
by Challenge C2, i.e., the time it takes to induce an exploitable bit
flip. Afterwards it takes on average halve C4 to find the bit flip.

to coarsely scan multiple address candidates at once before probing the
candidates separatetely.

Evaluation. We evaluate the success rate and runtime of our Speculative
Oracle. Since a cache hit on probe can only be observed if the address
under test is valid, our method has a false negative rate (classifying an
invalid address as valid) of zero. Therefore, we can only misclassify a valid
address as invalid if we do not observe a cache hit within our repeated
trials of triggering the probe gadget.

We evaluated the success rate of the target address classification and the
runtime for different numbers of Spectre attacks. We probe 5 addresses at
once where either all of them are valid or one random one of them is invalid.
We repeat the experiment 10 000 times, 5000 times for valid and 5000 times
for invalid addresses. With a single probe try, we already achieve a success
rate of 99.01% with an average runtime of 0.008ms (n=10 000, σx̄=0.002)
on the Chromebook1. Chromebook2 achieves 99.68% success rate with
two tries and an average runtime of 0.025ms (n=10 000, σx̄=0.006). On
the OnePlus 5T we achieve a success rate of 99.24% with three tries
and a runtime of 0.034ms (n=10 000, σx̄=0.011). We also evaluated this
technique on x86-based systems where we used the RSB misprediction for
performance reasons. The Lenovo T490s achieves a success rate of 99.94%
with 20 tries and a runtime of 0.018ms (n=10 000, σx̄=0.004).

Hence, since almost all addresses remain valid and without bit flips, the
verification with our Speculative Oracle consumes 19.0 minutes of CPU
time to scan 2GB of PTEs for bit flips. However, this scan can run on a
second core in the background during Blind-Hammering (see Figure 6.8).

6. Half-Double Attack Exploit 157

Table 6.8.: Overview of the challenges, their alternatives and availability across
multiple platforms.

Alternative Requirement Available on Prior Work

C1

Physical Address Access OS-enabled Linux-based Systems [48]
Huge Pages OS-enabled Linux-based Systems [18, 45]
Bank Differences Known Functions DDR-based Memory [47, 33]
Solver XOR-based Functions DDR-based Memory [47, 33]

C2
Templating no ECC Systems without ECC [48, 43, 51, 18, 8, 14, 45]
Blind-Hammering Half-Double affected see Tables 6.1 and 6.3 -
ECC-Aware Templating Half-Double affected see Tables 6.1 and 6.3 [11, 33]

C3
Spray Children fork ARM64, x86 -
Spray Page Tables 4 Page Table Levels ARM64, x86 [48, 43, 51, 18]

C4
vfork OS-enabled Linux-based Systems
Speculative Oracle Hardware ARM64, x86 -

Architectural Alternative. As an alternative to the Speculative Oracle,
we propose an architectural approach, namely using the vfork system
call. vfork creates, similarly to fork, an exact copy of the calling process
with the only difference that the page tables are not copied. Its primary
purpose is to provide a faster version of fork for child processes that
immediately execute another process via exec. Our vfork oracle creates a
child process that scans 2GB of PTEs for bit flips. The child process gets
killed by the kernel if the page translation is corrupted and returns cleanly
otherwise. By checking how the child process died, we know whether the
address range is safe to access. If the child process was killed we use
shared memory to communicate the last address accessed to the parent
process. This minimizes the number of vfork invocations down to one
per corrupted PTE.

Evaluation. The vfork alternative scans 19.45GB/s (n=10, σx̄=0.039)
on the Chromebook2, 256.47GB/s (n=10, σx̄=3.971) on the T490s. The
bandwidth numbers approach nearly the maximum memory bandwidth of
the systems. Hence, with this approach the verification consumes merely
56 s of CPU time on the Chromebook2 and only 4.3 s on the T490s to scan
2GB of PTEs for bit flips. The disadvantage of this approach is that it
is trivial to mitigate by disabling our specific use of vfork in the kernel,
e.g., as on the OnePlus 5T where the vfork instruction is aliased to fork.
Nevertheless, the speculative oracle is still available.

158 Chapter 6. Half-Double

6.5. End-to-End Attack Evaluation

Figure 6.8 shows the combined runtimes of all attack steps, with less
than 5 minutes for contiguency (C1) and spraying (C3). Blind-Hammer-
ing (C2) takes on average 23.2 minutes on our Chromebook2 to find an
exploitable bit flip. Fourth, the Speculative Oracle (C4) runs in parallel
to the Blind-Hammering and consumes 22 minutes. After the bit flip,
the exploit cleans up, scans physical memory, and sets up page tables for
convenient arbitrary read and write, in less than 3 minutes. Thus, the
total runtime usually stays below 45 minutes but varies with the time until
an exploitable bit flip occurs. On our other devices the total exploitation
time is primarily determined by the time it takes to flip an exploitable bit,
as the other exploit steps are negligible fast in comparison (cf. Section 6.2).
Table 6.8 summarizes the challenges and the requirements for the solutions
to be applicable.

7. Discussion

Recently, TRRespass [14] has fuzzed hammering patterns and showed that
various TRR-protected DDR4 DIMMs are still susceptible to Rowhammer.
The generated many-sided (3- to 19-sided) patterns worked on 13 out of
42 modules tested. The underlying effect they exploit is an optimization
in TRR implementations, where DRAM modules count accesses only to
a limited number of rows, which the attacker can exhaust. TRR then
loses track of the number of accesses to near aggressor (distance-1) rows.
Compared with the multi-sided Rowhammer patterns from TRRespass [14]
and Smash [45], our Half-Double patterns do not rely on the depletion of
TRR resources. Instead, the patterns directly incorporate the TRR refresh
mechanism into the attack. Therefore, our patterns even work where the
TRR mechanism works perfectly for detecting and mitigating distance-1
Rowhammer.

Applicability to other Systems (including x86). We evaluated
all building blocks of the end-to-end attack on other systems as well, in
particular x86. Half-Double also exists on TRR-protected DDR4 memory
on x86 systems, Some x86 processors, e.g., Xeon, use pTRR to introduce
similar accesses to near aggressors and, hence, could be used in the Half-
Double Attack attack. The contiguous memory detection is also applicable
both on other Arm- and x86-based system. Blind-Hammering also works

8. Conclusion 159

on both x86 and Arm. Spraying on x86 systems is easier as no child
processes are required and techniques from prior work still apply. We show
that the speculative oracle can either be adapted (e.g., using Spectre-RSB
instead of Spectre-PHT, or adapting thresholds) to the specific system
or be replaced by vfork which does not depend on microarchitectural
behavior.

Mitigations. To mitigate Half-Double we discuss a short-term defense
to protect the next generation of DRAM chips and a more generic Row-
hammer defense. First, we propose (p)TRR±2, extending the existing
victim-oriented refresh-based mitigations also to include distance-2 ag-
gressors. This mitigation would minimize the hardware changes as only
the inhibitor of a TRR-based design needs to be adapted to refresh addi-
tional rows. Furthermore, as the results from Table 6.2 suggest, a more
sophisticated design would refresh distance-2 rows with a lower frequency
than distance-1 rows. Second, as DRAM cell density will further increase,
we assume that the influence of the Half-Double effect will rise, increasing
the need for a more generic Rowhammer protection. Saileshwar et al. [46]
proposed to replace victim-oriented defenses like TRR with an attacker-
oriented defense. They propose to swap attacker rows after a certain
activation count is reached with another row within the same bank using
a permutation layer. This mechanism statistically breaks the locality be-
tween aggressor and victim rows and makes it therefore highly unlikely to
continuously hammer the same victim.

To harden affected systems against our end-to-end exploit, we propose
to tackle the contiguous memory allocation, and the bit flip verification
(cf. Sections 6.1 and 6.4). If the underlying system allocator ensures that
the allocation never returns continuous pages, the attacker has to resort
to a brute force approach to find the correct far aggressors to induce
Half-Double bit flips. Furthermore, the vfork system call can be aliased
to fork removing this gadget from the system.

8. Conclusion

We presented a new and unmitigated Rowhammer effect, Half-Double.
Half-Double induces errors in a victim by combining a large number of
accesses to a “far” aggressor (at distance two) with just a handful (dozens)
to a “near” aggressor (at distance one). This is problematic on DRAM
with mitigative refreshing as a Rowhammer protection (e.g., “TRR”),

160 Chapter 6. Half-Double

as protections implicitly access the near aggressors and, thus, instead
of preventing Rowhammer assist Half-Double in inducing bit flips. We
evaluate Half-Double thoroughly and demonstrate its practical relevance
in an end-to-end Rowhammer attack. To overcome the challenges for an
end-to-end attack on recent off-the-shelf devices, we used side-channel
attacks, a novel technique called Blind-Hammering , a novel page table
spraying technique, and a Spectre-based crash-resistant bit-flip verification.
Our end-to-end proof-of-concept attack, the Half-Double Attack, gives an
attacker arbitrary read and write access to the entire memory on fully
up-to-date systems, as we showcase on Chromebooks with ECC- and
TRR-protected LPDDR4x memory, in only 45 minutes average runtime.

Acknowledgments

We thank the anonymous reviewers, especially our shepherd, Shaanan
Cohney, for their guidance, comments and suggestions. Part of the funding
was provided by a generous gift from Amazon. Any opinions, findings,
conclusions, or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding parties.

References

[1] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin.
When good protections go bad: Exploiting anti-DoS measures to
accelerate Rowhammer attacks. In: HOST. 2017 (p. 131).

[2] ARM. ARM Architecture Reference Manual ARMv8. ARM, 2013
(p. 154).

[3] ARM. Vulnerability of Speculative Processors to Cache Timing
Side-Channel Mechanism. 2018. url: https://developer.arm.c
om/support/arm-security-updates/speculative-processor-

vulnerability (p. 155).

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao,
Reetuparna Das, Matthew Hicks, Yossi Oren, and Todd Austin.
ANVIL: Software-based protection against next-generation Row-
hammer attacks. In: ACM SIGPLAN Notices (2016) (p. 131).

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

References 161

[5] K.S. Bains, J.B. Halbert, C.P. Mozak, T.Z. Schoenborn, and
Z. Greenfield. Row hammer refresh command. US Patent App.
13/539,415. Jan. 2014. url: https://google.com/patents/US20
140006703 (p. 132).

[6] Alessandro Barenghi, Luca Breveglieri, Niccoló Izzo, and Gerardo
Pelosi. Software-only reverse engineering of physical DRAM map-
pings for rowhammer attacks. In: International Verification and
Security Workshop (IVSW). 2018 (p. 130).

[7] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In: CHES. 2016 (p. 131).

[8] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector. In: S&P. 2016 (pp. 127, 131, 157).

[9] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. CAn’t Touch This: Software-only Miti-
gation against Rowhammer Attacks targeting Kernel Memory. In:
USENIX Security Symposium. 2017 (p. 131).

[10] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time
detection of cache-based side-channel attacks using Hardware Per-
formance Counters. ePrint 2015/1034. 2015 (p. 131).

[11] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert
Bos. Exploiting Correcting Codes: On the Effectiveness of ECC
Memory Against Rowhammer Attacks. In: S&P. 2019 (pp. 138,
157).

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In: International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2008, pp. 337–340
(pp. 150, 169).

[13] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In: S&P. 2018 (pp. 131, 149).

[14] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. TRRespass: Exploiting the Many Sides of Target Row
Refresh. In: S&P. 2020 (pp. 127, 128, 131, 133, 135, 139, 147, 157,
158).

https://google.com/patents/US20140006703
https://google.com/patents/US20140006703

162 Chapter 6. Half-Double

[15] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. ARMOR: A
Run-time Memory Hot-Row Detector. 2015. url: http://apt.cs
.manchester.ac.uk/projects/ARMOR/RowHammer (p. 131).

[16] Mel Gorman. Understanding the Linux Virtual Memory Manager.
Prentice Hall Upper Saddle River, 2004 (p. 149).

[17] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(p. 131).

[18] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 127, 128, 130, 131, 153, 157).

[19] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 131).

[20] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. Reliable
Reverse Engineering of Intel DRAM Addressing Using Performance
Counters. In: Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE. 2020 (pp. 130,
140).

[21] Nishad Herath and Anders Fogh. These are Not Your Grand Dad-
dys CPU Performance Counters – CPU Hardware Performance
Counters for Security. In: Black Hat Briefings. 2015 (p. 131).

[22] Rei-Fu Huang, Hao-Yu Yang, Mango C.-T. Chao, and Shih-Chin
Lin. Alternate hammering test for application-specific DRAMs and
an industrial case study. In: Annual Design Automation Conference
(DAC). 2012 (p. 131).

[23] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT:
Stopping Microarchitectural Attacks Before Execution. ePrint
2016/1196. 2017 (p. 131).

[24] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security Symposium. 2019 (p. 131).

[25] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In:
SysTEX. 2017 (p. 131).

http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer

References 163

[26] JEDEC Solid State Technology Association. Low Power Double
Data Rate 4. 2017. url: http://www.jedec.org/standards-doc
uments/docs/jesd209-4b (p. 131).

[27] Jedec Solid State Technology Association. Low Power Double Data
Rate 3. 2013. url: http://www.jedec.org/standards-documen
ts/docs/jesd209-4a (p. 129).

[28] Matthias Jung, Carl C Rheinländer, Christian Weis, and Norbert
Wehn. Reverse engineering of DRAMs: Row hammer with crosshair.
In: International Symposium on Memory Systems. 2016 (p. 130).

[29] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. Archi-
tectural support for mitigating row hammering in DRAM memories.
In: IEEE Computer Architecture Letters 14 (2015) (p. 131).

[30] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping Bits in Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors. In: ISCA. 2014 (pp. 126–
128, 130, 131, 138, 139, 151).

[31] Kirill A. Shutemov. Pagemap: Do Not Leak Physical Addresses
to Non-Privileged Userspace. 2015. url: https://git.kernel.o
rg/cgit/linux/kernel/git/torvalds/linux.git/commit/?i

d=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce (pp. 130, 136,
138).

[32] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 137,
154).

[33] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
RAMBleed: Reading Bits in Memory Without Accessing Them. In:
S&P. 2020 (pp. 149, 150, 152, 157).

[34] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung
Ho Ahn. TWiCe: preventing row-hammering by exploiting time
window counters. In: ISCA. 2019 (pp. 127, 131).

[35] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Netham-
mer: Inducing Rowhammer Faults through Network Requests. In:
arXiv:1711.08002 (2017) (p. 131).

http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4a
http://www.jedec.org/standards-documents/docs/jesd209-4a
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

164 Chapter 6. Half-Double

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (p. 155).

[37] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. RAIDR:
Retention-aware intelligent DRAM refresh. In: ACM SIGARCH
Computer Architecture News 40.3 (2012), pp. 1–12 (pp. 129, 134).

[38] Onur Mutlu. The RowHammer problem and other issues we may
face as memory becomes denser. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2017 (p. 130).

[39] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung
Ho Ahn, and Jae W Lee. Graphene: Strong yet Lightweight Row
Hammer Protection. In: MICRO. 2020 (pp. 127, 131).

[40] Matthias Payer. HexPADS: a platform to detect “stealth” attacks.
In: ESSoS. 2016 (p. 131).

[41] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(pp. 130, 138, 150, 168).

[42] Salman Qazi, Yoongu Kim, Nicolas Boichat, Eric Shiu, and Mattias
Nissler. Introducing Half-Double: New hammering technique for
DRAM Rowhammer bug. 2021. url: https://security.google
blog.com/2021/05/introducing-half-double-new-hammering

.html (p. 129).

[43] Rui Qiao and Mark Seaborn. A New Approach for Rowhammer At-
tacks. In: International Symposium on Hardware Oriented Security
and Trust. 2016 (pp. 128, 131, 153, 157).

[44] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. Flip Feng Shui: Hammering a Needle
in the Software Stack. In: USENIX Security Symposium. 2016
(pp. 127, 131).

[45] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos,
Cristiano Giuffrida, and Kaveh Razavi. SMASH: Synchronized
Many-sided Rowhammer Attacks From JavaScript. In: USENIX
Security Symposium. 2021 (pp. 127, 131, 133, 135, 157, 158).

https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html
https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html
https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html

References 165

[46] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant
J Nair. Randomized row-swap: mitigating Row Hammer by break-
ing spatial correlation between aggressor and victim rows. In: AS-
PLOS. 2022, pp. 1056–1069 (p. 159).

[47] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (pp. 149, 150, 157).

[48] Mark Seaborn and Thomas Dullien. Exploiting the DRAM Row-
hammer bug to gain kernel privileges. In: Black Hat Briefings. 2015
(pp. 127, 128, 130, 131, 133, 153, 157).

[49] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Defeating software mitigations against rowhammer: a surgical pre-
cision hammer. In: RAID. 2018 (pp. 130, 131, 138).

[50] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Row-
hammer Attacks over the Network and Defenses. In: USENIX ATC.
2018 (p. 131).

[51] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In: CCS. 2016 (pp. 127, 128,
131, 153, 157).

[52] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikr-
ishnan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel,
Herbert Bos, and Kaveh Razavi. GuardION: Practical Mitigation
of DMA-Based Rowhammer Attacks on ARM. In: DIMVA. 2018
(p. 138).

[53] Saru Vig, Siew-Kei Lam, Sarani Bhattacharya, and Debdeep
Mukhopadhyay. Rapid detection of rowhammer attacks using dy-
namic skewed hash tree. In: Workshop on Hardware and Architec-
tural Support for Security and Privacy. 2018 (p. 131).

[54] Andrew J Walker, Sungkwon Lee, and Dafna Beery. On DRAM
Rowhammer and the Physics of Insecurity. In: IEEE Transactions
on Electron Devices (2021) (pp. 127, 131, 136, 140, 151).

[55] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Cus-
todio, Thomas Eisenbarth, and Berk Sunar. JackHammer: Effi-
cient Rowhammer on Heterogeneous FPGA-CPU Platforms. In:
arXiv:1912.11523 (2019) (p. 131).

166 Chapter 6. Half-Double

[56] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security Symposium. 2016
(pp. 130, 131).

[57] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (p. 155).

[58] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A
Real-Time Side-Channel Attack Detection System in Clouds. In:
RAID. 2016 (p. 131).

[59] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, and
Zhi Wang. TeleHammer: Cross-Privilege-Boundary Rowhammer
through Implicit Accesses. In: arXiv:1912.03076 (2019) (p. 131).

9. Appendix

9.
A
p
p
en

d
ix

167

Table 6.9.: All evaluated memory parts, including their production date, the underlying memory structure, and information of
the test system or operating system we evaluated them on. We indicate parts evidently affected by Half-Double.

Name Year-Week CPU / SoC RAM Size Manufacturer Test System / Operating System Half-Double

D
IM

M
s M1 2019-48 - DDR4 4GB Confidential ZCU104 FPGA Platform ✗

M2 2020-32 - DDR4 4GB Confidential ZCU104 FPGA Platform ✓

M3 2020-42 - DDR4 8GB Confidential ZCU104 FPGA Platform ✓

M
o
b
il
e
D
e
v
ic
e
s Chromebook1 2020-01 MT8183 LPDDR4x 4GB Unknown Baseboard Kukui with Chrome OS Version 90.0.4430.218 ✓

Chromebook2 2020-01 MT8183 LPDDR4x 4GB Unknown Baseboard Kukui with Chrome OS Version 90.0.4430.218 ✓

Pixel 3 2018-40 SDM845 LPDDR4x 4GB Unknown Android 11 LineageOS 18.1 with Kernel Version 4.9 ✓

HTC U11 2017-18 MSM8998 LPDDR4x 4GB Unknown Android 9 with Kernel Version 4.4 ✓

OnePlus 5T 2017-47 SDM835 LPDDR4x 6GB Unknown Android 11 LineageOS 18.1 with Kernel Version 4.4 ✓

Samsung S9 (SM-G960F/DS) 2018-10 Exynos 9810 LPDDR4x 4GB Unknown Android 10 with Kernel Version 4.9 ✗

Samsung S7 (SM-G935F) 2016-10 Exynos 8890 LPDDR4 4GB Unknown Android 8 with Kernel Version 3.18 ✗

P
C

Lenovo T490s 2019-13 Intel i5-8265U DDR4 16GB Samsung Ubuntu 20.04.3 LTS with Kernel Version 5.11 ✗

Minisforum TL50 MiniPC 2021-43 Intel i5-1135G7 LPDDR4 16GB SK Hynix Ubuntu 20.04.3 LTS with Kernel Version 5.13 ✗

Minisforum X35G MiniPC 2020-43 Intel i3-1005G1 LPDDR4 16GB Micron Ubuntu 20.04.1 LTS with Kernel Version 5.4 ✗

168 Chapter 6. Half-Double

10 11 12 13 14 15

1

2

3

Fraction of Activation to N+ in ppm

F
li
p
s
in

V

((F+ → D)β → N+)
∞

Figure 6.9.: Number of observed bit flips in the victim over the fraction of accesses
to the near aggressor (N+) in 1 million accesses for the single-sided
case.

9.1. Summary of the Evaluated Memory Parts

Table 6.9 provides a comprehensive list of all DDR4, LPDDR4 and
LPDDR4x parts we obtained and evaluated in this paper. First, we
divide the parts into the DIMMs analyzed in Section 5.3 via the ZCU104
FPGA platform. For these DIMMs we have complete control over DRAM
addressing and refresh intervals to evaluate the performance of distance-1,
distance-2, and Half-Double-based hammering (cf. Tables 6.2, 6.4 and 6.5).
Second, we evaluate the mobile devices and the PC parts in Section 5.1,
where we first reverse engineer the DRAM addressing functions [41] and
use the Quad pattern for hammering. Table 6.1 shows the resulting bit
flips of the affected devices. We observed overall 7 parts that are affected
by Half-Double. For the unaffected mobile and PC parts, we can only spec-
ulate whether the underlying memory is Half-Double resistant or whether
unknown row scrambling prevented mounting the Quad pattern. Hence,
we cannot conclude that the underlying memory is indeed unaffected from
Half-Double.

9.2. Alternative Representation for Bit Flips under
Simulated TRR

In this section, we present a different representation for Figure 6.4 and
Figure 6.5. Instead of using the β parameter, we plot the number of bit
flips observed in the victim over the fraction of near aggressor in 1 million
accesses. Figure 6.9 shows this data for the single-sided case (i.e., the
same data as Figure 6.4). Figure 6.10 shows this data for the double-sided
case (i.e., the same data as Figure 6.5),

9. Appendix 169

0 5 10 15 20 25 30 35
0
2
4
6

Fraction of Activation to N+ and N− in ppm

F
li
p
s
in

V

((F+ → F−)
β → N+ → N−)

∞

Figure 6.10.: Number of observed bit flips in the victim over the fraction of
accesses to the near aggressors (N+, N−) in 1 million accesses for
the double-sided case.

9.3. Contiguous Memory Solver

This section details the implementation of the solver and additional per-
formance and correctness analysis based on the reconstructed DRAM
addressing functions of the real devices.

Solver Implementation. The solver is implemented with the Z3 theorem
prover [12]. To detect continuous memory regions, we first implement the
structure of xor-based DRAM addressing functions as constraints. The
solver solves for N xor masks we denote as Mi f or 0 ≤ i < N and the
base address of the contiguous physical range B. The general idea is to
increment the base B for each of the given input samples, i.e., the pages,
as if the range would be contiguous, resulting in unsatisfiable constraints if
not. Each of the input samples xi comes from precisely one set Xi, where
xi is the current sample index. First, we define the function Fi(x) that
computes the i-th set bit for the x-th page in the physical memory range:

Fi(x) =
⊕

(Mi ∧ (B + x · 0x1000)) .

We denote
⊕

(x) as operation xor-ing all bits of x and ∧ as the bitwise
and operation. Second, we define a set index as a binary concatenation of
each of the set’s bits:

S(x) = F0(x) ∥ · · · ∥ FN−1(x).

For each of the pages contained in one set we enforce that the set index is
the same as of the first member of the set, i.e., the first page of the set x0i :

assert(S(xi) = S(x0i))∀xi ∈ Xi.

170 Chapter 6. Half-Double

0 20 40 60 80 100 120 140

0.6

0.8

1

Input Pattern Length

F
-S
co
re

Chromebook Samsung Galaxy S9 Pixel 3

Figure 6.11.: F-Score of our solver-based contiguency detection for different pat-
tern lengths.

Finally, we restrict that all other page offset not contained in one set must
have a different set index:

assert(S(y) ̸= S(x0i))∀y /∈ Xi.

The underlying range can be generated via a xor-based DRAM addressing
function if these constraints are satisfied. If unsatisfied, the memory region
is not contiguous or the addressing functions are not xor-based.

Evaluation. We verify the correctness of the solver by randomly con-
catenating contiguous ranges with up to 128 pages and converting these
physical pages into bank access patterns with real reverse-engineered
DRAM addressing functions. In the evaluation, we slide the solver over
this generated pattern and vary the number of input samples the solver re-
ceives. Figure 6.11 shows the resulting F-score metric for different DRAM
addressing functions and various pattern lengths. We observe that the
F-score increases with increasing pattern length. This is as expected since
the solver internally has more constraints to rely on. We see that with a
pattern length of 128 pages, the solver achieves an F-score of > 0.99 for
each pattern.

7
Finding and Exploiting CPU

Features using MSR Templating

Publication Data

Andreas Kogler, Daniel Weber, Martin Haubenwallner, Moritz Lipp, Daniel
Gruss, and Michael Schwarz. Finding and Exploiting CPU Features using
MSR Templating. In: S&P. 2022

Contributions

Main author.

171

172 Chapter 7. MSR Templating

Finding and Exploiting CPU Features using MSR
Templating

Andreas Kogler1 Daniel Weber2 Martin Haubenwallner1 Moritz
Lipp3 Daniel Gruss1 Michael Schwarz2

1Graz University of Technology 2CISPA Helmholtz Center for
Information Security 3Amazon Web Services

Abstract

To ensure backward compatibility while adding new features to CPUs,
CPU vendors enable a limited CPU configuration via so-called model-
specific registers (MSRs). These MSRs have been introduced for various
features, such as debugging, performance monitoring, or security. While
many MSRs are documented, there is still a plethora of undocumented or
sparsely documented MSRs in modern CPUs. Furthermore, with multiple
hundred MSRs, each providing up to 64 configuration bits, it is tedious to
find specific configuration options.

In this paper, we show that MSRs and their configuration bits can be
detected automatically on Intel and AMD CPUs. We introduce MSRevelio,
a framework to automatically detect bits that influence the behavior of
instructions and semi-automatically find bits controlled by BIOS settings.
We show that previously overlooked bits can harden systems against mi-
croarchitectural attacks such as Medusa, CrossTalk, and software-prefetch
attacks. Additionally, we show that an undocumented lock bit allows
disabling AES-NI at runtime, forcing mbedTLS to fall back to an AES
implementation vulnerable to cache attacks. Exploiting this fallback in-
side an SGX enclave, we fully recover the AES key used by the enclave.
With our detection approach, we show that security features retrofitted
with microcode updates can be easily detected, even before the public
documentation of the underlying vulnerability. In our analysis of the Xen
hypervisor, we show that Xen’s handling of MSRs was flawed for a long
time, allowing guests to access undocumented and unhandled MSRs and
fingerprint specific Xen versions. Using automated correlation analysis
between documented and undocumented MSRs, we discover a previously
undocumented MSR correlating with the CPU’s timestamp counter. This

1. Introduction 173

MSR is also accessible from Xen guests, and we demonstrate a Foreshadow
attack when all other timers are unavailable or artificially deteriorated.
Our results highlight that transparency is crucial for features interacting
closely with CPU internals.

1. Introduction

With nearly every new CPU generation, CPU vendors add new features
to their CPUs. While some of these features are architectural, such as new
instruction-set extensions [19, 30], often features are more related to the
microarchitecture, such as mitigation options for transient-execution at-
tacks [37, 32]. Such microarchitectural features can often even be retrofitted
to existing CPUs using microcode updates [19]. The non-architectural fea-
tures typically require some form of interaction with the CPU. Typically,
these CPU features are exposed via model-specific registers (MSRs). MSRs
are special registers that can be read from and written to by privileged
code, i.e., the operating system (OS). Every MSR has a unique 32-bit
address and a size of 64 bits. Generally, MSRs are used for interaction
with the CPU, such as enabling and disabling CPU features, debugging,
and performance monitoring.

While CPU vendors publicly document many MSRs, there are also undoc-
umented MSRs or bits inside documented MSRs that are not documented.
These MSRs might only be used internally to debug or reveal information
that CPU vendors do not want to disclose [27, 23]. Undocumented MSRs
have been shown to undermine CPU security. The AMD K8 CPU provided
an MSR that enabled a debug mode [20]. Similarly, Domas [23] found an
MSR on the VIA C3 CPU that allows enabling a so-called “god mode”.
When enabling this mode, unprivileged applications can execute special
CISC instructions that circumvent all privilege checks of the CPU. Some
of these undocumented MSRs are mentioned in patents, but there is no
clear description of what they do or how they can be used. Moreover, even
for documented MSRs, not all bits are fully documented, i.e., reserved
bits that have effects.

MSRs can also be used to add security features to CPUs. For example,
mitigations for Spectre [48], Foreshadow [73], ZombieLoad [71], RIDL [67],
or CrossTalk [64] have been implemented using MSRs [32]. These MSRs
control the speculation behavior and provide the possibility to clear sev-
eral caches and buffers. All of them have been introduced with microcode

174 Chapter 7. MSR Templating

updates to retrofit mitigations to older CPUs. In the case of OS sup-
port, it can query this functionality via the cpuid instruction or the
IA32 ARCH CAPABILITIES MSR and then use the features via the
corresponding MSRs [32].

In this paper, we introduce MSRevelio1, a framework that automatically
detects available MSRs, regardless of whether they are documented or not.
Our approach generates a list of readable and writable MSRs for a specific
CPU. We compare the list of detected MSRs with the documented MSRs
on Intel and AMD CPUs and classify the MSRs into documented, partly
documented, and undocumented. This analysis reveals that all tested CPUs
have a large number of undocumented MSRs. On the evaluated AMD
CPUs, the number of undocumented MSRs even exceeds the number of
documented MSRs. In addition to scanning MSRs, we also automatically
analyze the detected undocumented MSRs. We sample the values of
both documented and undocumented MSRs. Based on these samples,
we automatically correlate undocumented with documented MSRs for a
probabilistic classification of undocumented MSRs. Our approach is more
robust than the timing-based approach suggested by Domas [23] that
assumes similar MSRs expose similar access times.

We also use MSRevelio (Section 3) for a semi-automated analysis of
different BIOS versions (Section 4). In this use case, we search for BIOS
settings influencing the value of such (partly) undocumented MSRs, and
indicating the MSR’s purpose. Using MSRevelio, we scan for changes in
undocumented MSR bits when modifying BIOS settings and measure
potential impacts on instructions. By grouping instructions and collecting
performance-counter readings, we identify possible effects of MSR bits on
the group’s instructions. This approach can also be used to search for all
MSR configuration bits that impact a specific instruction. Based on these
results, we present six security-relevant case studies.

We demonstrate that MSR bits influencing instruction behavior can miti-
gate but also introduce new security issues. While these bits could also
be found in a manual analysis, MSRevelio alleviates the analysis substan-
tially. We discover an MSR bit converting software-prefetch instructions
to no-operations, mitigating software-prefetch attacks on AMD [26, 50].
Additionally, our approach finds a bit to trap cpuid, reducing the attack
surface for CrossTalk [64]. Moreover, by templating BIOS features, we
detect that fast-string support can be disabled at runtime, reducing the

1Find MSRevelio’s source code at https://github.com/IAIK/msrevelio

https://github.com/IAIK/msrevelio

1. Introduction 175

impact of Medusa [60]. By unsetting the undocumented AES-NI lock bit,
we can disable AES-NI at an arbitrary time within the SGX threat model,
leading to a time-of-check-to-time-of-use vulnerability forcing mbedTLS [7]
to fall back to a vulnerable AES implementation exploitable by a side-
channel attack. We show the feasibility of this attack by recovering the
full AES key from a single memory-access trace.

We use the found MSRs as a template for tracking the change of MSRs
over different CPU microcode versions. Microcode cannot only modify but
also add entirely new MSRs. We automatically detect which MSRs have
been added in specific microcode versions and whether the MSR was, later
on, removed again with a microcode update. Based on our analysis, we
can clearly detect which microcode version added mitigations for transient-
execution attacks. We even discover CPUs for which such MSRs have
been introduced months before the vulnerability was publicly disclosed
and the MSR was documented. We cross-check all detected MSRs with
official documentations to discover that all added MSRs are related to
security features, showing that this approach can leak information about
potential embargoed security vulnerabilities.

We also show that the Xen hypervisor just recently prevented the guest OS
from accessing undocumented MSRs [16, 62]. Instead of using an allow list
for MSRs that should be accessible to a guest, Xen relied on a block list to
allow access to all MSRs except a few. With our automated approach, we
show how this blocklist evolved over different versions of Xen. This allows
fingerprinting of the Xen version even if the hypervisor prevents access to
that information or if anti-VM detection methods are applied [47]. In the
final case study, we show that the blocklist-based approach allows guests
on older Xen versions to potentially access security-relevant MSRs of the
host system. Our correlation analysis reveals a previously unknown MSR
available to Xen guests that correlates with known timers. Leveraging this
MSR yields a high-resolution timer, even if other timers are unavailable,
e.g., because the hypervisor uses Fuzzy time [29, 76] or restricts parallel
execution, preventing counting threads. To verify that the discovered MSR
can act as a timer, we demonstrate a Foreshadow attack [73] using this
MSR.

Our results show that MSRs directly impact the system’s security. Access
to certain MSRs can have negative consequences in the cloud, as they might
re-enable attacks that were thought mitigated. Other MSRs, however, can
also be used to mitigate attacks for which only costly software workarounds
are available, such as prefetch-based attacks [26, 50]. As we found these

176 Chapter 7. MSR Templating

MSRs on all systems affected by the corresponding vulnerability, they
can be used as a short-term solution until the vulnerability is fixed in
hardware.

To summarize, we make the following contributions:

1. We demonstrate an automated approach to detect undocumented
MSRs and MSR bits on Intel and AMD CPUs and their impact on
instructions and system functionality.

2. We show how our detected MSRs harden systems against microarchi-
tectural attacks but also enable new attacks.

3. We show that the block-list approach used in the Xen hypervisor poses
a risk to the system security by allowing guest access to undocumented
MSRs, demonstrating a new timing primitive for side-channel attacks.

4. We analyze the evolution of MSRs over microcode versions, showing
silent additions of security-related MSRs.

Responsible Disclosure We responsibly disclosed our findings to Intel
on August 3rd, 2021. Intel acknowledged our findings.

Outline Section 2 provides background. Section 3 introduces MSRevelio,
a framework to automatically find and classify MSRs. Section 4 extends
MSRevelio with “BIOS templating” to pinpoint features in MSRs. Section 5
demonstrates security implications of MSRs in six case studies. Section 6
discusses limitations. Section 7 concludes.

2. Background

In this section, we provide background about MSRs, Intel SGX, microcode,
and transient-execution attacks.

2.1. Model Specific Register (MSR)

MSRs are special CPU registers, allowing interaction with low-level CPU
features and advanced configuration of the CPU’s behavior. Modern x86
CPUs have hundreds of MSRs [35, 61]. However, there is usually only sparse
public documentation [23], i.e., many MSRs are not publicly documented,
and for many MSRs, the function of specific bits is not mentioned or not

2. Background 177

precisely defined. MSRs are accessed using the two privileged instructions
rdmsr and wrmsr for reading and writing the 64-bit MSRs. Each register
is addressed using a unique 32-bit address. Hypervisors restrict MSRs
to prevent the guest systems from taking over control of the host. As
MSRs are typically implemented in microcode, they can be removed or
added, and their behavior can be updated via CPU microcode updates.
For instance, recently, MSRs have been used to add security mitigations
against Spectre [48], Foreshadow [73], ZombieLoad [71], and CrossTalk [64]
attacks.

2.2. Intel SGX

Intel SGX (Software Guard Extensions) is an instruction set extension
providing a trusted-execution environment (TEE) for Intel CPUs. The
SGX threat model, similar to other TEEs, assumes that even privileged
software such as the OS, administrative users, and peripheral hardware
may be compromised and behave maliciously. The trusted code is sepa-
rated from the untrusted code into a so-called enclave. Enclaves operate
within an encrypted and isolated memory region so that even the OS
or a physical attacker cannot access the unencrypted memory contents.
However, Intel considers vulnerabilities in enclaves the responsibility of the
enclave developer, including software side channels [12, 70], and software
bugs like race conditions [80, 69]. Enclaves are launched within a regular
application and can be interrupted by the OS at any point.

2.3. Micro-op Performance Profiling

With the rising complexity of out-of-order execution CPUs, profiling the
performance of actual executed code is non-trivial. To get insight into the
resources allocated and events triggered inside a CPU, vendors introduced
Performance Monitoring Counters (PMCs). With these counters, a user can
monitor the execution of instructions more precisely. However, mapping
the observed events to a given instruction is complex, as the CPU splits
instructions into smaller micro-ops.

NanoBench [1] is a framework designed to measure the exact PMCs of
single instructions. The framework compiles measurement code from a
given assembly snippet which allows minimizing the external measurement
noise. In addition to the automatic measurement code generations, the

178 Chapter 7. MSR Templating

framework also handles filling the CPU pipeline with a known state to
allow for the same base conditions for all measurements.

2.4. Transient-execution Attacks

With out-of-order and speculative execution, a CPU can lazily handle
exceptions and predict the outcome of computations, e.g., the target of an
indirect jump, to reduce pipeline stalls. When the CPU has to handle an
exception or mispredict a computation, the pipeline’s state is rolled back
to the instruction causing the exception or misprediction. As rolled back
instructions are never committed to the architecture, they are referred to
as transiently executed [15, 44].

Spectre [48] and Meltdown [53] showed that attackers can abuse transiently-
executed instructions to leak data, i.e., so-called transient-execution at-
tacks [15]. An attacker encodes the results of a transient computation into
a microarchitectural element that is not rolled back, e.g., the CPU cache.
After discovering transient-execution attacks, multiple such attacks have
been published [28, 15, 55, 60, 71, 67, 13, 73, 81, 64, 74]. Microarchitec-
tural data sampling (MDS) attacks [71, 67, 13, 60, 64] are a subclass of
transient-execution attacks leaking values from internal components of
the CPU, e.g., the line fill buffer. In these attacks, an attacker brings the
CPU into a state where transiently executed instructions compute with
stale or incorrect values of internal buffers or caches. Leaking the values
of these components allows leaking data across all security boundaries.

2.5. Microcode

Modern CPUs frequently receive updates to react to security concerns or
bugs. Hence, manufacturers need a mechanism to update the behavior
of CPU instructions or components. The microcode is an additional
layer of abstraction between the actual hardware and the Instruction
Set Architecture (ISA), which allows altering the internal behavior of
CPU instruction to a certain extent [49]. Furthermore, some complex
instructions require so-called microcode assists, which then execute a
sequence of micro-ops read from the microcode [19, 71].

3. MSRevelio 179

BIOS
Templating

MSR
Scanning

&

Difference
Detection

MSR Detection MSR Classification

Documented
MSRs

Undocumented
MSRs

Dynamic
MSRs

Static
MSRs

Analyse
Correlation

Analyse
Bit Effects

3.2

3.3

3.2

3.2

3.1

3.1

3.14

Figure 7.1.: The general structure of MSRevelio’s analysis steps.

3. MSRevelio

This section describes MSRevelio, a framework to automatically find,
classify, and analyze MSRs. MSRevelio aims to find undocumented features
of MSRs that ultimately impact the security of the system. The overview
of the steps of MSRevelio is shown in Figure 7.1. First, MSRevelio scans
the potential MSR address space (cf. Section 3.1). This scan obtains a list
of available MSRs that are automatically classified into read-only, write-
only, and read-writable MSRs. This list is filtered based on the official
documentation of the CPU, resulting in documented, undocumented, or
partly documented, i.e., some bits are undocumented, MSRs. The MSRs
that are not or only partly documented are recorded to classify them
into two groups. Dynamic MSRs that change over time are correlated
with documented MSRs to find similarities (Section 3.2), or even aliased
MSRs. For static, unchanging MSRs, MSRevelio analyzes the bits to
determine whether toggling the bit impacts the behavior of instructions
(Section 3.3). In such a case, we can manually investigate whether such
a change is security-relevant. Finally, we extend MSRevelio to find the
influence of certain BIOS configurations on MSRs (Section 4) to gain
additional information on undocumented MSR bits.

3.1. Detecting Undocumented MSRs

The MSR range of modern CPUs is continuously extended to provide
additional functionality or adapt to new security flaws. Due to the large
32-bit address space, most of the addresses are either not used and do
not provide any functionality or are reserved for future extensions. How-
ever, there are more MSRs available than officially documented. To find

180 Chapter 7. MSR Templating

these undocumented MSRs, MSRevelio uses both the rdmsr and wrmsr

instruction. Both instructions raise a General Protection Fault (GP fault)
if the CPU does not physically back the MSR address. The reason that
we use both instructions is that there are 4 different MSR types: read-
and writable, read-only, write-only, and non-present MSRs. By combining
reads and writes to these MSRs, MSRevelio can detect all types of MSRs
over the entire 32-bit address space of the MSRs.

3.1.1. Design

Detecting the presence of an MSR is not influenced by the MSR scope or the
current privilege level. The rdmsr and wrmsr instructions already require
OS privileges, and each core has the same set of accessible MSRs [34]. Our
approach cannot access certain restricted MSRs that are only readable in
SMM mode, e.g., MSR 0x9e. However, as not even a ring-0 attacker can
use them, we do not consider this a huge limitation. As every CPU core
exposes the same MSRs, MSRevelio can search the MSR address space
in parallel, significantly decreasing the execution time of the profiling.
The framework first tries to read an MSR and catches any generated GP
faults. The second test is a write to the MSR, again catching generated
GP faults. Based on occurred faults, MSRevelio distinguishes between
read-only, read- and writable, write-only, and non-existing MSRs. The
framework stores the addresses of existing MSRs for later analysis.

To compare the discovered list of available MSRs to the official documented
MSRs, MSRevelio additionally implements a PDF parser for the PDF-only
documentation. As the structure of the MSR tables in both the Intel and
AMD documentation is consistent, we can automatically find and extract
the information from these tables. In addition to all documented MSRs,
the parser extracts undocumented and reserved bits of documented MSRs.
MSRevelio compares the discovered MSRs with the parsed documentation
to determine undocumented or only partly documented MSRs.

3.1.2. Implementation

MSRevelio is implemented as a Linux kernel module with an additional
user-space library. It uses the rdmsrl safe and wrmsrl safe kernel func-
tions to catch GP faults when reading and writing MSRs. MSRevelio tries
not to alter the content of the MSRs by writing the value that was read

3. MSRevelio 181

before. Only for write-only MSRs, this is not possible and MSRevelio
conservatively tries to write ‘0’ to such MSRs. For most of the writeable
MSRs, the documentation [36, 61] states that when writing to the MSR,
undocumented bits must be ‘0’ to prevent a GP fault. This behavior
is also necessary, as MSRs can only be overwritten with a 64-bit value
and not bitwise. A complete scan when using multiple cores on our AMD
Ryzen Threadripper 1920x with 5244 accessible MSRs takes 5.74min (σx̄ =
0.0005, n = 10).

3.2. Classifying MSRs

The classification functionality of MSRevelio is divided into two parts,
namely the detection of static and dynamic MSRs and the further analysis
of undocumented dynamic MSRs based on the correlation with other
documented dynamic MSRs. Note that for this analysis, we can only
use MSRs that are readable. We define static MSR as an MSR with
a fixed value that only changes if the MSR is actively written to, e.g.,
MSRs containing configuration bits. A dynamic MSR is an MSR that
is continuously updated by the CPU, e.g., counters or sensor values. To
distinguish static from dynamic MSRs, MSRevelio samples the values of
the respective MSRs for a certain amount of time to detect if the value
changes at some point. While an MSR classified as a dynamic MSR is
always a dynamic MSR, MSRevelio might classify some dynamic MSRs as
static MSRs if the value updates only with a very low frequency. However,
for analyzing the impact on instruction behavior (cf. Section 3.3), we are
only interested in static MSRs as well as all write-only MSRs, as they
are static in its nature, i.e., they do not change their value. Hence, as
static MSRs are always classified as static MSRs, this only results in some
additionally tested MSRs, but no missed MSRs.

We further classify the found undocumented dynamic MSRs by cross-
correlating them with all documented dynamic MSRs. For the correlation,
we continuously sample all, i.e., documented and undocumented, dynamic
MSRs for 10 s while executing a CPU stress test in parallel. The stress test
triggers spikes in electricity and temperature sensor readings and triggers
changes in the power states. As a result, undocumented MSRs exposing
such states are easier to correlate with existing documented MSRs, as they
contain more features for the correlation. Each resulting sample set of every
undocumented dynamic MSR is then correlated with every documented dy-
namic MSR using the Spearman and the Pearson coefficient. For every un-

182 Chapter 7. MSR Templating

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Time in SecondsN
or
m
al
iz
ed

V
al
u
e

0x637 MPERF APERF TSC

Figure 7.2.: Normalized values of the undocumented MSR(0x637) and the highly-
correlating MSRs MSR(0xe7) (MPERF), MSR(0xe8) (APERF), and
MSR(0x10) (TSC) (all monotonic counters) over 10 s.

documented MSR, MSRevelio generates a list of documented MSRs, sorted
by the correlation coefficient, and a plot of all the sampled values. Figure 7.2
illustrates such a result, showing the undocumented MSR(0x637) and
the documented MSR(0xe7) (IA32 MPERF), MSR(0xe8) (IA32 APERF)
and MSR(0x10) (IA32 TIME STAMP COUNTER). While there are more
computationally expensive methods to compare time series [9, 65], we
do not require such complex algorithms, as the recorded data points are
aligned. Hence, a simple correlation analysis is sufficient. The correlation
analysis results in a list of similar MSRs, allowing to judge the likely
information source of the MSR, e.g., whether it contains thermal read-
ings or a counter. In Section 3.4, we show that this approach can find
undocumented MSRs and detect the type of values exposed by the found
MSR.

3.3. Impact on Instruction Behavior

To further analyze static MSRs, MSRevelio analyzes the impact of MSR
bits on instructions. The goal of this scan is to find undocumented or
reserved bits that influence the behavior of instructions. The framework
performs the scan on the static MSRs (cf. Section 3.2), as fluctuating
MSR bits are usually not used as feature-control bits.

3.3.1. Design

To automatically detect changes in instruction behavior, MSRevelio uses
performance counters for templating. To ensure that MSRevelio not only
finds effects triggered by single bit flips but instead also finds effects that

3. MSRevelio 183

Instruction
List

Reference
Execution

Modified
Execution

Report?
=

Difference?

PMCs

PMCs

Figure 7.3.: MSRevelio changes bits in the undocumented MSR and measures
various instruction groups’ performance counters to see if the bit
influenced the instructions.

result from enum MSR fields, i.e., groups of bits inside an MSR that belong
to the same configuration option, we rely on optimized flipping masks.
The masks tests all possible values of all possible enum fields with size
≤ W within an MSR by only performing 2W writes to the MSR. For each
observed effect the MSR is further analysed to find the exact enum field.
Figure 7.3 shows the general concept of MSRevelio’s bit scan. In the first
step, a ground truth is recorded: MSRevelio executes a set of instructions
on the CPU and records instruction-related performance counters. If for a
set of instructions there is a change in the performance-counter values, it
is an indication that one of the altered MSR bits affect the instruction.
An alternative design could iterate over all possible bit values of an MSR
instead of only considering the bounded enum fields. We did not choose
this approach for two reasons.

First, such a design would require significantly more measurements to
be performed. For example, on the tested Intel Core i5-4570, we found
3612 writable bits spread across 177 undocumented MSRs. In this case,
our approach (with W = 4) only needs to test 2832 MSR values and
additionally 496 tests per observed side effect to further find the root
cause of the effect, whereas a full search would require 16 853× 1012 tests
(the calculations are shown in Appendix 8.1). Testing the entire search
space for the writable reserved bits of the documented MSRs on this
processor would require only 16 712 × 106 tests. One could argue that
for the latter amount of tests, it is feasible to parallelize the tests using
a cloud provider’s resources. However, doing so is costly. At the time of
writing, the cheapest on-demand CPU that AWS offers for its data center
in Frankfurt costs $ 0.0047/hour [4]. As our current implementation takes
around 3 seconds per test, we can run 1200 tests for $ 0.0047 and hence
the complete search space enumeration for the reserved bits would cost
16712·106

1200 · $ 0.0047 = $ 65 455. Note that these costs are only for testing

184 Chapter 7. MSR Templating

a single CPU and abstract away the challenge to find a cloud provider
offering the target CPU.

Second, it is reasonable to assume that flipping additional bits does not
hide the effect of other bits in most cases. It is not beneficial to have one
bit for enabling a feature and another for disabling it again. Instead, a
practical implementation would use a single bit to toggle the activation
of a feature, as the structure of most documented MSRs shows [36, 61].
An exception for this are enum MSR fields consisting of multiple bits
to encode more than two values. Thus, we choose flipping masks to find
enum MSR fields of up to W bits. This approach is not a perfect fit for
every possible scenario, e.g., if an enum field is spread over more than W
bits or contains unrelated bits in the middle. However, our approach acts
as a trade-off between the scenarios we cover and the search space.

3.3.2. Implementation

To execute the instruction and record the performance counters, MSRevelio
uses the nanoBench framework [1]. The nanoBench framework allows
recording performance-counter events of a given assembly code snippet.
The framework takes care of compiling the snippet and repeating it
multiple times without introducing additional overhead. We test 124
common instructions divided into 16 groups based on their semantics. We
show the groups and link the used performance-counter config in Appendix
8.2. MSRevelio calls the nanoBench framework for each group separately.
Hence, MSRevelio knows precisely which category of instructions the
bit flip inside the MSR influenced. To cope with the large search space
of undocumented MSR bits combined with the nanoBench framework
invocation, MSRevelio pre-filters the undocumented bits in three phases
based on their behavior.

Phase 1: Detecting Writable Bits. In the first phase, MSRevelio
iterates over all the undocumented MSRs in parallel and records the bits
inside the MSRs that can be toggled. This is done by reading the original
MSR value once and then toggling one bit at a time and detecting if the
wrmsr instruction executes successfully. While reserved or unimplemented
bits typically raise a GP fault, some bits silently ignore the write. Hence,
MSRevelio rereads the MSR value and checks if the bit was toggled. If we
can successfully write to an MSR but reading from the MSR always faults,
we consider the MSR as write-only and the bit as modifiable. Since setting

3. MSRevelio 185

Table 7.1.: MSRevelio’s results for different microarchitectures, including the
number of found and undocumented MSRs and the categorization of
the undocumented MSRs. The number of similar MSRs indicates if
an undocumented dynamic MSR can be correlated with a likeliness
of more than 85% to a documented dynamic MSR.

CPU µ-Arch µ-Code # Found (RW, RO, WO) # Undocumented (RW, RO, WO) # Static (RW, RO) # Dynamic (RW, RO) # Similar

AMD Ryzen Threadripper 1920X Zen 0x8001137 5244 (5223, 17, 4) 4876 (4873, 2, 1) 4873 (4871, 2) 2 (2, 0) 0
Intel i7-6700k Skylake 0x9e 477 (363, 108, 5) 105 (68, 35, 2) 99 (68, 31) 4 (0, 4) 2
Intel i7-8700k Coffee Lake 0xb4 517 (388, 122, 7) 126 (89, 35, 2) 121 (89, 32) 3 (0, 3) 3
Intel i9-9900k Coffee Lake 0xde 537 (413, 117, 7) 136 (99, 35, 2) 132 (99, 33) 2 (0, 2) 2
Intel Xeon Silver 4208 Cascade Lake 0x5003102 1109 (957, 142, 10) 647 (591, 52, 4) 601 (553, 48) 42 (38, 4) 42

arbitrary undocumented bits inside an MSRs can lead to various system
freezes and undefined CPU states, the framework relies on a blocklist of
such MSRs. This phase is also used to filter out bits that cause system
freezes to enhance later execution time. Note that this process can also
be fully automated using a remotely-controllable power switch [23].

Phase 2: Initial Recording of the Changed State. In the second
phase, MSRevelio starts recording possible effects on the instruction groups.
Our implementation tests all possible combinations of enum MSR fields
consisting of up to 4 bits. We assume that multiple undocumented enum
MSR fields are independent with respect to effects on instructions. With
this assumption, this phase does not test each individual enum MSR field,
but instead alters the undocumented MSR by toggling different enum
fields at the same time. In fact, it is possible to test all combinations
of 4 consecutive bits at an arbitrary position inside the MSR using only
24 = 16 different MSR values. We use flipping masks containing a 1 in case
a bit has to be flipped at that respective position in the MSR. We create
the 16 masks by flipping the bits at position n after having generated
2n mod 4 masks, i.e., we flip bit 0 after every generated mask, bit 1 every
second, bit 2 after every fourth, and bit 3 after every eight masks, e.g.,
the second mask has the following representation: 0x1111111111111111.

Due to this construction, given an arbitrary position of 4 consecutive bits,
the 16 bitmasks represent all 16 values of these 4 consecutive bits (see
Appendix 8.3). This optimization reduces the search time by a factor of
16+60·8

16 = 31 compared with an optimized sliding window, i.e., testing
all the enum values at a given position and then shifting the window by
one while reusing previous results. The results of this phase are candidate
MSRs where at least one of the changed bits affects the instructions. These
MSRs are the basis for the third phase.

186 Chapter 7. MSR Templating

Phase 3: Finding the Origin of the Effects. After the second phase,
MSRevelio has a list of MSR candidates that have observable effects on
the instructions groups. In this phase, MSRevelio iterates over each of
these candidates and sequentially tests all enum MSR fields to pin down
the effects observed in the performance counters to a specific enum field
and its value. This phase’s results contain detailed information about the
MSRs and which bits influence a certain instruction group. We further
analyze the automated results of this scan in Section 3.4 and in six case
studies in Section 5.

3.4. Results

We conducted an exhaustive search for undocumented MSRs on a total of
5 CPUs. The overall results of these CPUs are shown in Table 7.1. We
found 5890 undocumented MSRs on AMD and Intel CPUs, with most of
the discovered MSRs (4876) on AMD CPUs. However, 96.8% of the found
static, read-and-writeable, undocumented MSRs on AMD do not raise a
GP-fault when written but ignore the written value, restricting further
bit behavior analysis. We also observe similar behavior for 54.1% of the
Intel MSRs. We analyzed all these undocumented MSRs for correlations
with documented MSRs. We found 53 undocumented MSRs that expose
continuously changing values correlating with existing MSRs. For example,
the dynamic MSR(0x637) exposes a monotonic counter correlating with
documented counters, and we further explore this counter in Section 5.6.
For the static MSRs, we conducted the enum field search to find bits that
influence specific instructions. We found 1 undocumented and 6 partially
documented bits that affect instructions such as cpuid and prefetch.
The effects of these MSR bits are analyzed in Section 5. To determine the
specific functionality of the MSR, manual analysis is necessary.

4. Detecting OS-Configurable BIOS Features

In this section, we extend the MSR scanner of MSRevelio to detect
differences in static MSRs that are caused by changes in BIOS settings. In
line with Intel’s documentation [41], BIOS refers to firmware, regardless
if it is an actual BIOS or UEFI. The BIOS is responsible for configuring
multiple CPU settings on boot, e.g., available features [19] and settings
related to the power management. While some settings can only be changed

4. Detecting OS-Configurable BIOS Features 187

by the BIOS at boot time, other features can also be modified by the
OS. Many BIOS versions, e.g., on consumer systems, expose only a small
subset of settings to the user. With this approach MSRevelio can template
BIOS versions to hint the user on how to reenable unlocked features from
the OS. Additionally, it can be used to analyze whether undocumented or
poorly-described BIOS features impact MSRs.

4.1. BIOS Templating

Our approach produces a list of MSRs and bits inside these MSRs con-
figured by the BIOS, including documented and undocumented bits. For
this purpose, we template BIOS features that modify MSRs by changing
a BIOS setting manually and automatically scanning all MSRs’ values (cf.
Section 3.1). As we target features, we are only interested in static MSRs.
After toggling a BIOS setting, we compare the values of all static MSRs
to the values of the initial scan of all MSRs (cf. Section 3.2). If an MSR
has a different value, we assume that the BIOS setting led to the change
of this MSR. We can increase the certainty that this MSR value depends
on the BIOS setting by repeating the process multiple times.

To further focus on undocumented settings, MSRevelio uses the list of
documented MSRs and their bits to check whether the changed bits are
documented (cf. Section 3.1). If either an undocumented MSR or an
undocumented bit change, MSRevelio reports this as an undocumented
feature. This undocumented feature is analyzed for impacts on the instruc-
tion behavior in the same way as MSRs obtained from a full MSR scan
(cf. Section 3.3). Again, to reduce the likelihood of uncorrelated changes,
repeating the process multiple times increases the probability that the
reported MSR bit is indeed related to the BIOS feature.

4.2. Setup

We evaluate 5 systems with BIOSes exposing a rich set of features. The
tested CPUs are a Celeron J4005, Core i7-6700K, Core i7-8565U, and
Core i7-10510U, with an Intel JYGKLCPX.86A.0053.2019.1015.1510, AMI
2.17.1246, HP R93 01.01.06, and an AMI 2.21.1277 BIOS, respectively.
These BIOSes include options that are not documented in the BIOS
manual and for which we did not even find any unofficial documentation,
e.g., “Strong Weak Leaker” or “K1 off”. We initially set all the BIOS

188 Chapter 7. MSR Templating

values to their defaults and use MSRevelio to get the difference in the
MSR availability and the MSR values after changing specific settings.

4.3. Results

Our scans reveal several BIOS options that directly affect MSRs. While
several MSRs are locked after the BIOS initialization, some of them can
be modified by the OS to emulate these BIOS settings. We also discovered
BIOS settings that affect undocumented MSRs or MSR bits.

4.3.1. Documented Settings

Some of the changed MSRs are documented and simply expose the read-
only status of the BIOS setting. Most settings, including VTx/VTd,
turbo boost, fast-string support, or execute disable, are reflected in the
MSR(0x1a0), documented as IA32 FEATURE CONTROL. While the
BIOS locks the configuration bits for VTx/VTd, the fast-string support
and turbo boost can be changed by the OS. The execute-disable feature
can theoretically also be modified by the OS. However, this only led to OS
crashes on our machines. To point out the impact of the unlocked bits, we
show in Section 5.4 that the OS can harden a system against Medusa [60]
using the feature bit for fast-string support.

Another documented setting is the enabling and disabling of hardware
prefetch features. For this setting, the BIOS simply modifies MSR(0x1a4)
(MSR MISC FEATURE CONTROL), which is also writable by the
OS [77]. However, our tested BIOS versions only disabled the L2 prefetcher
and not the L1 prefetcher when setting “Hardware Prefetcher” to “disable”.
While we consider this at least misleading, if not a bug, we do not see any
security problem in that behavior.

4.3.2. Unofficial or Undocumented Settings

Our approach detected MSRs that are either entirely undocumented, not
officially documented, or not documented for the microarchitecture on
which we found the MSR. Such MSRs include MSR(0x621), MSR(0x35)
(MSR CORE THREAD COUNT), MSR(0x7a), and MSR(0xe2) (MSR -
PKG CST CONFIG CONTROL). MSR(0x35) provides information on
the state of hyperthreading on Intel Xeon CPUs. However, while it is

5. Case Studies 189

not documented for Intel Core CPUs, it also works on our Intel Core
machines. MSR(0x621) is not publicly documented, but mentioned as
MSR UNCORE PERF STATUS in a book by Gough et al. [25] for Xeon
E3/E5 CPUs without further details. Based on the description of the BIOS
setting that modified bit 0 of this MSR, we learn that it is the state of
Intel SpeedStep. We discovered another potential bug in one of our BIOS
versions concerning bit 0 of MSR(0x7a). The BIOS provides an option
“MachineCheck” which toggles exactly this bit. While we did not find
any official documentation, the CoreBoot source [17] and a Linux kernel
patch [66] suggest that this bit enables Intel SGX, which is also supported
on our machine. A “Timed MWAIT” feature in our BIOS enables bit 31
in MSR(0xe2), which is officially reserved. We assume that this enables
an mwait extension to continue execution after a specified number of CPU
cycles have elapsed, similar to AMD’s mwaitx instruction [5]. We leave it
as future work to reverse engineer how this feature can be leveraged and
its impact. When enabling and disabling AES-NI via the BIOS, it changes
bit 1 in MSR(0x13c). For this MSR (MSR FEATURE CONFIG), the
documentation states that 2 bits are used to represent the AES-NI state,
without providing a detailed description. On all analyzed machines, bit
0 was always set to ‘1’. To showcase the security impact of this finding,
Section 5.1 shows that bit 0 is actually a lock bit that can be exploited to
attack SGX enclaves by disabling AES-NI at runtime.

5. Case Studies

This section presents six case studies demonstrating the security impact
of previously overlooked MSR bits. We show that undocumented MSRs
can prevent existing attacks and re-enable mitigated attacks in certain
scenarios. We also detect security-relevant MSRs in microcode distributed
before the vulnerability is disclosed. Finally, we show that specific hyper-
visors version expose distinguishable MSR fingerprints and provide access
to security-relevant undocumented MSRs.

5.1. Exploiting the AES-NI Lock Bit

MSRevelio’s BIOS templating (cf. Section 4) revealed that MSR(0x13c)
(MSR FEATURE CONFIG)’s lowest two bits, which enable AES-NI,
either contain the value ‘1‘ or ‘3‘. The Intel SDM [36] documents that if

190 Chapter 7. MSR Templating

these bits are ‘3‘, the AES instructions are not available until the next
reset, otherwise, they are available. Also, the SDM notes that if the bits
are not equal to ‘1‘, the instructions can be misconfigured. However, the
individual behavior of these bits is not documented.

We observe that the MSR value cannot be changed via the wrmsr in-
struction from within the OS. This indicates that the BIOS locks the
MSR after finishing the initialization. As bit 0 is always set on all tested
machines, we assume that this bit is the lock bit of the MSR, set by the
BIOS to restrict further changes. We verify this assumption by modifying
the BIOS to not set the bit in this MSR, which is in line with the threat
model of SGX [19]. With the unlocked MSR, we show that an attacker
can modify the feature-detection mechanism of a securely-designed SGX
enclave using mbedTLS to fall back to an insecure cryptographic-algorithm
implementation, allowing the full extraction of the AES key via Prime+
Probe.

5.1.1. Threat Model

Where available, the AES-NI instructions are used in cryptographic li-
braries to implement the AES algorithm securely and efficiently [30, 7].
These libraries are often combined with Trusted Execution Environments
(TEEs) to protect the implementation of cryptographic algorithms and es-
tablish secure communication with other parties. Furthermore, the threat
model of SGX protects an enclave from a malicious OS and even malicious
BIOS firmware [19]. In this threat model, an attacker can modify the
BIOS [8].

We consider two distinct attack scenarios. First, we consider a system
under complete attacker control. Here, the attacker tries to extract a secret
key used by a targeted enclave. In this scenario, the attacker modifies the
BIOS only on the attacker’s machine to remove the lock bit. Second, we
envision a scenario where the MSR is not initialized at all, e.g., because the
BIOS developer was not aware of this MSR. While we did not encounter
such a BIOS on any of our tested machines, there is a chance that such a
BIOS exists due to a large number of BIOS vendors and the wide variety
of BIOS versions.

5. Case Studies 191

5.1.2. BIOS Modification

To verify that the first bit of MSR(0x13c) is the actual lock bit of the
AES-NI instructions, we patch the BIOS of our test system. For this case,
we use a MINISFORUM X35G mini-PC with an AMI BIOS and an Intel
Core i3-1005G1 CPU. Dumping and flashing the BIOS is possible via
the official AMI Firmware Update tool [6]. Alternatively, an attacker can
simply use a low-price SPI flasher such as a CH341A if no software tool
is available or if such a tool does not allow flashing a modified image.
We extract all 253 binaries of the BIOS image using UefiTool [68] and
disassemble them using Ghidra with the firmware utilities plugin [45]. In
our BIOS, the MSR(0x13c) is initialized in the silicon init (SiInitFsp)
module. Depending on the BIOS version (cf. Appendix 8.4), the wrmsr is
either inlined or encapsulated in a wrapper function. In both cases, we
simply patch the initialization of the EAX register to not set bit 0. The
patch for multiple BIOS versions is provided in Appendix 8.4. For the
second scenario, we replace the wrmsr (or the call to the wrapper) with
NOP to leave the MSR uninitialized.

5.1.3. Behavior Verification

After booting both images, bit 0 of the MSR reads as ‘0’. For both BIOS
modifications, the cpuid instruction still reports that AES-NI is available.
Writes with the wrmsr instruction to the second bit of MSR(0x13c) are
reflected by the rdmsr instruction, verifying that with a bit 0 cleared,
bit 1 is not locked. Furthermore, setting bit 0 using wrmsr prevents any
subsequent changes to the MSR. Hence, the bit 0 is indeed the lock bit
of this MSR. In addition to acting as a lock bit, bit 0 is also the “apply”
bit. Changes to the second bit only take effect after the lock bit is set.
Therefore, the two BIOS modifications behave the same because the CPU
ignores the second bit until the lock bit is set. If both bits are set, AES-NI
is disabled, and the instructions raises an illegal instruction exception as
expected.

5.1.4. AES-NI inside Intel SGX

We demonstrate the security implications of changing the AES-NI avail-
ability at runtime on the mbedTLS library [7]. Due to its small codebase
and side-channel resistant AES-NI implementation, it is often used inside

192 Chapter 7. MSR Templating

Intel SGX [7]. In mbedTLS, the CPU feature detection is performed
over the cpuid instruction. Due to the restricted SGX environment, the
cpuid instruction is not available inside enclaves. Therefore, the SGX-
SDK uses an OCALL to retrieve the CPUID information from outside the
enclave [39], leading to a potential attack vector manipulating the read
CPUID leaf. To enable a robust CPU feature check, enclave developers can
rely on executing a potentially not supported instruction and configuring
an exception handler to catch the exception [57]. If the instruction exe-
cutes without raising an exception, the hardware supports the given CPU
instruction, otherwise, the exception handler is used to continue execution
safely. With this mechanism, the feature detection is encapsulated inside
the enclave and does not rely on untrusted data.

Second, a developer might know about the limitations of mbedTLS’s
fallback algorithm and check the availability of AES-NI with the secure
feature-detection in the enclave’s initialization phase and abort if AES-NI
is not enabled. Furthermore, we assume developers do not account for
changing feature bits like the AES-NI-enable bit during runtime, as the
possibility of such behavior is not documented.

5.1.5. Proof-of-concept Attack

The attacker enables AES-NI in the BIOS and leaves it enabled during the
initialization of the enclave. Hence, any feature check for the availability of
AES-NI, be it through an OCALL to cpuid or using the trusted CPUID
library [57], detects the availability of AES-NI. Even if the presence of
AES-NI is enforced through some kind of attestation, the default enabled
AES-NI state without the lock bit passes this check. However, an attacker
can disable the AES-NI instruction set at any point by simply interrupting
the enclave and modifying the MSR. With precise execution control of
SGX enclaves, e.g., using SGX-Step [75], an attacker can target a specific
instruction after which the AES-NI instructions are disabled. As a result,
this leads to a time-of-check-to-time-of-use vulnerability for SGX enclaves
that check for AES-NI and later on use it, as is the case for the mbedTLS
library (Version 2.26.0). In case AES-NI is not available, mbedTLS falls
back to a software-based AES implementation, which is not side-channel
resistant [72], as it uses key-dependent memory accesses (cf. Appendix 8.5).

5. Case Studies 193

0 10 20 30 40 50
0

16
32
48
64

Memory Accesses

S
et

In
d
ex

K1 K2

Figure 7.4.: Truncated secret-dependent cache-set accesses of mbedTLS’ AES-128
implementation for two different keys.

5.1.6. Prime+Probe on SGX

This case study shows that an attacker can extract secret information via
a cache attack from an SGX enclave. Since the SGX environment ensures
flushing of the L1 cache during an enclave exit, and the SGX attestation
can verify that hyperthreading is disabled, an attack using the L1-cache
is unlikely. Therefore, an attacker needs to perform Prime+Probe on the
last-level cache (LLC). We assume that an attacker uses precise execution
control, e.g., SGX-Step [75], for Prime+Probe on the LLC [59, 12].

We simulate a Prime+Probe attack on mbedTLS, to show that a single
trace suffices to exploit the AES-NI misconfiguration and leak the secret
key. We accurately simulate cache sets, using the Intel Pin tool [43] to
record the memory accesses and extract the corresponding cache set. As
we only consider virtual addresses, we only extract the lower 6 bits of the
cache set. However, this is already sufficient to recover the key. Figure 7.4
shows the cache-set accesses for two AES keys.

MbedTLS’ AES implementation leaks the key in two different functions.
First, in the mbedtls aes setkey enc function responsible for the key
schedule. Second, in the mbedtls aes encrypt internal function per-
forming the T-table-based encryption. We consider two attacks, both
with a single simulated Prime+Probe trace. If the attacker only records
the encryption function, we require a known plaintext to recover the key.
However, if the key schedule is included, we extend the attack to even
recover parts of the plaintext. Note that we can exchange the encryption
and known-plaintext attack with the decryption counterparts.

We analyze the trace with the Z3 solver [21] over 10 000 simulated Prime+
Probe attacks on mbedTLS’ AES-128 implementation with randomly

194 Chapter 7. MSR Templating

generated keys and plaintexts. The solver recovers all keys using a known-
plaintext attack, where each recovery only takes seconds. With unknown
plaintext, the solver needs at most 74.08min (σx̄ = 0.367, n = 1200) to
recover the key and additionally 10 bytes of the plaintext. The solver
can recover even more plaintext bytes, however, the performance depends
on the used key and plaintext. The performance evaluation used as the
known plaintext’s bytes, the higher bytes 10 to 15. The solver always finds
the correct key without additional candidates. Hence, if an attacker can
disable AES-NI at runtime, they can force mbedTLS to a path vulnerable
to side-channel attacks, and extract the key.

5.2. Mitigating Software Prefetch Attacks on AMD

In this case study, we present the first software mitigation on AMD
systems against prefetch-based side-channel attacks [26, 50]. Prefetch-based
KASLR breaks exploit the runtime difference of the prefetch instruction
for mapped and unmapped addresses, effectively derandomizing the kernel
location. The prefetch KASLR break is an important part in the recent
“Spectre in the Wild” exploit [79] to find the addresses of targeted kernel
structures. As this is the only known full microarchitectural KASLR break
on AMD CPUs, it is desirable to prevent this type of attack. Furthermore,
Lipp et al. [50] exploit prefetch on AMD to break fine-grained KASLR,
monitor kernel activity and to leak kernel memory using Spectre. With
MSRevelio, we search and discover an MSR that disables the prefetch
instructions on AMD systems. The prefetch-disabling bits can be set by
the OS or a privileged user to prevent all prefetch-based side-channel
attacks and, therefore, remove a building block for sophisticated attacks.

5.2.1. Threat Model

We assume a system without software bugs in the kernel and enabled
KASLR. We further assume an unprivileged attacker with code execution
on the system. The system does not expose the kernel offset via system
interfaces, e.g., /proc/kallsysms. Thus, the attacker uses the prefetch-
based KASLR break to mount attacks or extract data from the kernel,
e.g., using a Spectre attack [79, 50].

5. Case Studies 195

Table 7.2.: The bits of MSR 0xc0011029 were found with the instruction analysis
of MSRevelio.

MSR 0xc0011029 Description Effect

Bit 2 disable PREFETCHNTA -1 LdDispatch
Bit 3 disable PREFETCHT0 -1 LdDispatch
Bit 4 disable PREFETCHT1 -1 LdDispatch
Bit 5 disable PREFETCHT2 -1 LdDispatch
Bit 6 disable PREFETCHW -1 LdDispatch
Bit 7 disable PREFETCH -1 LdDispatch

5.2.2. MSR Discovery

With the knowledge that hardware prefetchers can be disabled [3], we
suspect that there might also be a possibility to disable software prefetchers.
Hence, we leverage MSRevelio to automatically find MSR configuration
bits that influence the software-prefetch instructions (cf. Section 3.3).
On an AMD Ryzen Threadripper 1920X CPU, MSRevelio discovered
the MSR(0xC0011029). As Table 7.2 shows, bits 2 to 7 inside the MSR
alter the behavior of the prefetch instructions as detected by MSRevelio.
MSRevelio found these bits due to the reduced LsDispatch.LdDispatch

performance counter by exactly one load compared to the reference (cf.
Section 3.3). This MSR is a “tweak” MSR that is used in errata to
circumvent CPU bugs [78]. Although this MSR is not documented for the
Zen microarchitecture (family 17h), we find the MSR in the extensive list
of documented MSRs for the Bulldozer microarchitecture (family 15h) [3]
(page 590), where these bits are documented as disabling the software
prefetch instructions. Hence, by setting these bits, the OS can disable each
of the six variants of the prefetch instructions individually.

5.2.3. Mitigate Prefetch Attacks

For our experimental setup, we use the file-based Linux MSR interface
to disable all the software prefetch instructions. For evaluation, we build
a PoC implementation of a prefetch-based KASLR break. The kernel
is located in one of 512 possible virtual address offsets [14]. The PoC
measures the execution time of the prefetch2 instruction for all these
possible virtual addresses. For every address, the KASLR break measures

196 Chapter 7. MSR Templating

50 60 70 80 90 100 110 120 130 140 150
65
70
75
80
85

Kernel offset in MB

C
y
cl
es

1

1.5

2

C
y
cl
es

Disabled Enabled

Figure 7.5.: The prefetch-based KASLR break with enabled (left axis) and dis-
abled (right axis) prefetch instructions. The yellow box indicates the
kernel’s location at start offset 88.

the execution time of 10 000 prefetch invocations executed in a loop. The
loop is repeated 100 times, and the minimum of all the tries is recorded.
If the kernel is mapped at the prefetched location, the execution time is
higher (cf. Figure 7.5).

We execute the KASLR break on an AMD Ryzen Threadripper 1920x
@ 3.8GHz with Ubuntu 20.04 LTS and Linux 5.4.0-74, with prefetch
instructions enabled and disabled. Figure 7.5 shows the difference between
the two invocations of the KASLR break. We observe that the KASLR
break can precisely locate the kernel (offset 88) in the enabled case and
fails to locate the kernel otherwise. Furthermore, we compare the execution
time of prefetch when disabled with the execution time of a single byte
nop instruction. The nop instruction takes 0.886 cycles (σx̄ = 0.0092, n =
512 000 000) on average, and the disabled prefetch instruction takes 0.885
cycles (σx̄ = 0.0090, n = 512 000 000) on average. From this experiment,
we conclude that the disabled prefetch instruction is indeed equivalent to
a nop instruction [3]. Thus, the disabled prefetch instruction stops loading
data into the cache and does not translate the provided virtual address.

We compare the disabling of the prefetch instructions with the recent
FLARE [14] KASLR mitigation, which hardens the kernel against mi-
croarchitectural KASLR breaks. However, as all other microarchitectural
KASLR breaks only apply to Intel CPUs, disabling the prefetch instruc-
tions leads to similar security and performance guarantees as FLARE
without modifying the kernel or additional memory overhead. Furthermore,
a privileged user, such as a system administrator, can directly activate this
mitigation over the MSR interface without any additional requirements.
The runtime overhead is also not directly visible as most applications
do not use prefetch instructions. On our Ubuntu 20.04 installation, less
than 1% of the installed binaries (300 out of 30 842) contain any software

5. Case Studies 197

prefetch instructions. We evaluate the performance impact of disabling
these instructions with the SPEC CPU 2017 benchmark. Table 7.2 shows
the benchmark results, where the baseline is with the prefetch instruc-
tions enabled. The average performance overhead is only 0.04%, and thus
negligible.

5.3. Intercepting CPUID to Reduce CrossTalk Leakage

In this case study, we present a software-based mitigation to reduce
CrossTalk [64] leakage. The CrossTalk attack leaks data from the staging
buffer via the line-fill buffer. To get the data from the staging buffer
to the line-fill buffer, CrossTalk uses cpuid, rdrand, rdseed, and rdmsr

as leaking primitives leaking confidential data such as random numbers.
However, the rdmsr instruction is only available in a privileged attacker
model. Ragab et al. [64] assume that the used instructions cannot be
trapped, but that it would hypothetically also hinder exploitation. We
challenge this assumption by using MSRevelio to search for an MSR bit
that can trap the cpuid instruction. Our evaluation shows that cpuid
is the most reliable unprivileged leakage primitives even without TSX.
Indeed, MSRevelio successfully discovered such a bit, leading to the first
pure software mitigation to practically mitigate unprivileged CrossTalk
attacks. By trapping cpuid, the OS can ensure that no confidential data,
such as random numbers, are leaked from the staging buffer.

5.3.1. Threat Model

For the pure software mitigation, we assume that an attacker can run
unprivileged programs on a CPU affected by CrossTalk. The attacking
program controls on which logical core the code is executed and can
invoke the unprivileged cpuid instruction. The system does not deploy
the microcode patch against CrossTalk [64], e.g., for performance reasons
or because none is available.

5.3.2. MSR Discovery

MSRevelio found MSR(0x140) on an Intel i5-4570 using the instruction-
behavior analysis (cf. Section 3.3) that allows trapping the cpuid instruc-
tion. On this microarchitecture, this MSR is undocumented in the Intel

198 Chapter 7. MSR Templating

Table 7.3.: SPEC CPU 2017 benchmark for the performance overhead when
disabling the software prefetch instructions.

Benchmark
SPEC Score Overhead

Baseline No Prefetch [%]

600.perlbench s 4.02 4.02 0.00
602.gcc s 7.32 7.34 −0.27
605.mcf s 6.57 6.56 +0.15
620.omnetpp s 2.89 2.88 +0.35
623.xalancbmk s 4.34 4.33 +0.23
625.x264 s 4.79 4.79 0.00
631.deepsjeng s 3.19 3.20 −0.31
641.leela s 3.29 3.28 +0.30
648.exchange2 s 9.10 9.11 −0.11

Average +0.04

SDM [36]. The only mention of this MSR is on the Xeon Phi, where it
is referred to as MISC FEATURE ENABLES. Still, even on Intel Core, Xeon,
and Celeron CPUs, setting bit 0 results in cpuid raising a GP fault. This
feature was apparently introduced with the Intel Ivy Bridge microarchitec-
ture as it does not exist on our tested Sandy Bridge machine (i5-2520M).
On all our tested machines starting with Ivy Bridge (i5-3230M) to Ice
Lake (i3-1005G1) and Jasper Lake (N4500), the MSR exists, and setting
bit 0 allows trapping cpuid. Therefore, this allows us to harden systems
against unprivileged CrossTalk attacks. While designing mitigations on
top of undocumented features seems unwise, Intel CPUs with the 10th

generation already contain silicon fixes [31].

5.3.3. CrossTalk-Mitigation Implementation

We implemented a proof of concept to show that this attack is indeed
prevented by trapping the cpuid instruction. Our PoC consists of a kernel
module and a user-space shared library. The kernel module provides a
single ioctl that is used by the user-space library to set and clear bit
0 of MSR(0x140), i.e., to trap cpuid or allow it. The user-space library
sets up the kernel module and transparently handles the GP faults. It is
simply preloaded for binaries using the LD PRELOAD environment variable.
Note that this is just for the sake of simplicity for the proof-of-concept

5. Case Studies 199

implementation. When implemented for a production system, the entire
implementation would either be in the kernel, or partly in the kernel
and partly in the dynamic linker and loader, such that it is applied to
every binary on the system. The preloaded library installs a signal handler
for GP faults. This signal handler analyzes the memory location at the
faulting instruction pointer. If the address of the instruction pointer is
accessible (can be verified by abusing the access syscall [58]), the library
checks if the opcode of cpuid (0xA20F) is found. If not, any potential
other signal handler can be called. However, if the cause of the fault
is the cpuid instruction, the library ensures that no sensitive data can
be leaked from the staging buffer. We evaluated two variants: (1) only
executing cpuid once before the application starts, and returning cached
values for all other calls, (2) first overwriting the staging buffer with other
information by calling rdrand and then executing the cpuid instruction.
In both cases, cpuid does not transfer the targeted sensitive values from
the staging buffer to the line-fill buffer. Moreover, caching the output of
cpuid is not a functional problem, as the output typically does not change
during the runtime.

5.3.4. Evaluation

We evaluated both variants’ security and performance overhead on an Intel
Xeon E3-1505M v5 with Ubuntu 20.04 and Linux 5.4.0-90. To verify that
our method indeed hinders CrossTalk, we implemented the two PoCs from
the paper, leaking the CPU brand string and the last generated rdrand

random number. Both PoCs leak the targeted data from the staging buffer.
We verified that preloading our library without enabling the trap does
not negatively impact the PoC. With the cpuid trap enabled, we do
not observe any leakage anymore. For the leakage mitigation, we do not
observe any difference in the methods, i.e., whether we use cached cpuid

values or overwrite the staging buffer.

To measure the performance overhead of the cpuid trap, we used a
microbenchmark that simply executes cpuid in a loop. In the normal case,
i.e., without the cpuid trap, the execution takes 182 cycles (σx̄ = 0.6,
n = 100 000). Trapping the cpuid instruction, overwriting the staging
buffer, and re-executing it takes on average 9932 cycles (σx̄ = 6.1, n =
100 000). Caching the cpuid instruction improves the performance slightly,
with an average execution time of 8204 cycles (σx̄ = 5.7, n = 100 000).
As cpuid is typically only called at program startup, e.g., in the libc for

200 Chapter 7. MSR Templating

feature detection [24], this overhead is negligible for the overall system
performance. In contrast, the microcode patch for CrossTalk introduces
an overhead of factor 12 for the rdrand instruction [64], which is usually
used more often than the cpuid instruction.

5.3.5. Leakage Analysis

We validate that cpuid has the highest leakage rate of the unprivileged
instructions, by extending the Crosstalk PoC to allow evaluation of the
leakage rates when using either signal handling, TSX, or TAA as an
exception-suppression method. First, we evaluate leaking rdrand with the
cpuid instruction. Second, we exchange cpuid with rdseed in the attacker
and evaluate the leakage again. Our evaluation found that exchanging
rdseed with rdrand and vice versa did not influence the leakage rates.
Therefore, we focused on leaking the more commonly used rdrand values.
For the evaluation, we use an Intel i7-6700k with Ubuntu 20.04 and
Linux 5.4.0-40 with disabled mitigations. The victim generates a random
number every 187.5ms and repeats this 100 times, generating overall 800B
of random data. We perform each experiment 10 times and count the
correctly-leaked bytes and how often the entire eight-byte random number
is successfully leaked.

For cpuid, we observe a leakage of 711.3B (σx̄ = 4.185B) with signal
handling, 741.3B (σx̄ = 4.770B) with TSX, and 416.3B (σx̄ = 3.556B)
with TAA. With rdseed as primitive, we observe a leakage of 3.4B (σx̄ =
0.544B) with signal handling, 2.1B (σx̄ = 0.368B) with TSX, and 553.3B
(σx̄ = 18.296B) with TAA. Furthermore, when using signal handling,
cpuid leaks on average 51.8 times the entire random number whereas
rdseed is unable to leak the entire random number. For the overall byte-
wise leakage rate, the leakage rate of cpuid is 211.4 times higher than
rdseed’s when using signal handling. With recent microcode patches
disabling TSX and, therefore, mitigating TAA, the cpuid trap is a viable
option to further harden systems against unprivileged CrossTalk attacks.

5.4. Disabling Fast-String Support to Reduce Medusa
Leakage

In this case study, we show a software-based approach to reduce the leakage
of the Medusa attack [60]. Medusa is a Microarchitectural Data Sampling

5. Case Studies 201

Table 7.4.: SPEC CPU 2017 benchmark performance overhead when disabling
the fast-string optimization.

Benchmark
SPEC Score Overhead

Baseline No Fast-Strings [%]

600.perlbench s 5.17 5.16 +0.19
602.gcc s 8.76 8.06 +8.06
605.mcf s 6.95 6.91 +0.58
620.omnetpp s 3.61 3.62 −0.28
623.xalancbmk s 4.50 4.51 −0.37
625.x264 s 4.47 4.46 +0.15
631.deepsjeng s 3.92 3.67 +6.37
641.leela s 3.56 3.57 −0.19
648.exchange2 s 9.82 9.82 0.00

Average +1.61

(MDS) attack, leaking data from the line-fill buffer on Intel CPUs. Medusa
leaks data from Write Combining (WC) operations or memory operations
backed by WC memory. These write-combining instructions use a part
of the line-fill buffer to combine writes to the same cache line to reduce
requests sent over the memory bus.

The Medusa attack uses implicit WC instructions like non-temporal moves,
rep movs, rep stos instructions, or explicit WC memory to leak data
from the WC buffer. However, as WC memory requires a special memory
type, an attacker needs privileges to acquire it, which is only realistic
when attacking SGX. We focus on implicit WC operations, available to
an unprivileged attacker. By reducing the likelihood that sensitive data
ends up in the WC buffer, the probability of a successful Medusa attack
is also reduced.

5.4.1. Threat Model

We assume an unprivileged attacker is exploiting implicit WC instructions
for the Medusa attack on an affected CPU. The OS does not mitigate the
Medusa attack, e.g., with the adapted verw instruction to clear the fill
buffer or group scheduling [60]. Therefore, an attacker can be co-located
on the same physical core as the victim program, sharing the core’s fill
buffer with the victim.

202 Chapter 7. MSR Templating

5.4.2. MSR Discovery

With the BIOS templating approach (cf. Section 4), MSRevelio auto-
matically detected the documented fast-string enable bit (bit 0) inside
MSR(0x1a0) (IA32 FEATURE CONTROL). Intel [36] documents this
bit as fast-string enable bit, but the internal effects are only sparsely docu-
mented [33, 35]. Based on the instruction-behavior analysis of MSRevelio,
we see that clearing the fast-string-enable bit changes the associated in-
structions to no longer perform WC memory writes. Therefore, this bit is
suitable to reduce leakage of the unprivileged Medusa attacks.

5.4.3. Evaluation

We evaluate the impact of the fast-string enable bit on the Medusa
attack on an Intel Core i7-6700K CPU that is affected by Medusa with
Ubuntu 20.04 LTS and Linux 5.4.0-40. For the evaluation, we rely on
the public Medusa PoCs [60]. Specifically, we focus on the PoC variants
using fast-string operations that an unprivileged attacker can use [60].
We run the victim using fast-string operations with sensible data and
test against these attack variants. We fix the test system’s frequency to
3GHz and pin the attacker and victim applications to sibling hyperthreads.
We first verify that the PoC successfully leaks the targeted data. When
disabling fast-string operations using MSR(0x1a0), the leakage is entirely
gone, successfully preventing these variants of Medusa. We evaluate the
performance overhead when disabling fast-string operations with the SPEC
CPU 2017 benchmark and observe an average performance overhead of
1.61%. Table 7.4 shows the benchmark results, where the baseline is with
the optimized fast strings operations enabled.

5.4.4. Discussion

Similar to the CrossTalk mitigation (cf. Section 5.3), this is only a short-
term solution for affected CPUs. Newer CPUs, e.g., 10th generation, are
not affected by Medusa anymore, hence this mitigation is only necessary
on older CPUs for which this MSR bit successfully reduces the leakage.
Additionally, CPUs received security updates by repurposing the verw

instruction to clear microarchitectural buffers on context switches [60].
While verw does not prevent attacks from a hyperthread, disabling the
write combining instruction mitigates these attacks. Finally, as the leakable

5. Case Studies 203

data for an attacker depends on the instructions executed within a victim
application, the only remaining sources for leakage are non-temporal moves,
as well as the upper 128 bit of AVX stores, which can be disabled via the
XCR0 register.

5.5. Tracing Microcode-introduced MSRs

In this case study, we show that MSRevelio can trace the evolution of
MSRs of a CPU over multiple microcode versions. Tracing the addition of
MSRs allows determining the microcode version where vendors deployed
patches relying on additional MSRs. Moreover, we can analyze the time
between deployment and documentation of MSRs. We show that all MSRs
retrofitted using microcode on our tested machines are security-related.
Thus, detecting MSRs before they are documented hints that there is
a CPU vulnerability currently under embargo, as the fixes should, in
the best case, already be deployed when the embargo ends. If a security
patch introduces undocumented MSRs, we assume that the undocumented
MSR exposes additional configuration bits for the mitigation. With this
information, an adversary can determine the effects corresponding to
the added MSR and potentially infer the reason for the security patch.
This approach is similar to patch diffing where an attacker extracts the
vulnerability by inspecting the patches provided to a system or component.

Since the discovery of Spectre [48] and Meltdown [53], many security
patches have included new MSRs to mitigate vulnerabilities. To help OSs
and hypervisors mitigate the impact of Spectre, a microcode update added
MSR(0x49) (IA32 PRED CMD) and MSR(0x48) (IA32 SPEC CTR).
These MSRs allow configuring the branch predictor and flushing it’s
state [32]. Similarly, due to Foreshadow [73], the MSR(0x10B) (IA32 -
FLUSH CMD) was introduced to flush the L1 cache [37]. Recently, Intel
also introduced MSR(0x123) (IA32 MCU OPT CTRL) with a microcode
update to change the behavior of rdseed and rdrand, mitigating the
CrossTalk attack [64].

5.5.1. Threat Model

We assume a sophisticated attacker is tracking the evolution of MSRs over
multiple released microcode versions for different CPU generations to find
new undocumented MSRs. The attacker uses the classification approaches

204 Chapter 7. MSR Templating

shown in Section 3.2 and Section 3.3 to determine the effects of the MSR
and potentially the vulnerability’s source. This leaves the attacker with
additional time until the public disclosure to mount attacks on unpatched
systems.

5.5.2. Implementation

To trace the evolution of the MSRs over the microcode version, we use the
late-loading mechanism of Linux [83]. The late-loading mechanism updates
the CPU microcode to a newer version without rebooting the system. As
a source for the microcodes, we rely on two GitHub repositories. First, the
official Intel microcode repository [38], containing the microcode versions
back to March 2019. Second, a collection of microcode versions from Plato
Mavropoulos [56] dating back to 1996. A signature from Intel ensures the
integrity of all microcode files. For each microcode version available for
our CPU, MSRevelio extracts the list of MSRs available after applying
the microcode update. As microcode can only be replaced by microcode
with a newer version, we start at the initial microcode version hardcoded
in the BIOS, and gradually update to newer versions. As a test system,
we chose a CPU with the Sandy Bridge microarchitecture, which is the
oldest second-generation Intel Core microarchitecture, released in 2011.
Additionally, we use a CPU with the Broadwell microarchitecture (released
2014) and a CPU with the Coffee Lake microarchitecture (released 2017).
For all published transient-execution attacks [31, 15], at least one of these
microarchitectures is affected. With 28 microcode versions, ranging from
2011 to 2021, we found a large number of different microcodes to test.

5.5.3. Results

As expected, MSRevelio detects the introduction of MSR(0x48),
MSR(0x49), MSR(0x10B) and MSR(0x123). Interestingly, there is a sig-
nificant time difference between the first occurrence of these MSRs and
their documentation. For the Sandy Bridge machine, MSR(0x48) and
MSR(0x49) were introduced with microcode 0x2d on February 7th, 2018,
more than a month after the disclosure of Spectre [48]. In contrast, on
Broadwell, these MSRs were introduced with microcode version 0x28
already on November 17th, 2017, i.e., nearly 7 weeks before the public
disclosure. On the same machine, MSR(0x10B) was introduced with mi-
crocode 0x2b on March 22nd, 2018 nearly 5 months before the public

5. Case Studies 205

30 32 34 36 38 40 42
0

2

4

·104

Access time (MSR 0x637)

M
ea
su
re
m
en
ts Cache Hit Cache Miss

Figure 7.6.: Cache hits and misses measured with MSR(0x637).

disclosure of Foreshadow on August 14th, 2018. The Sandy Bridge machine
received this MSR with microcode 0x2e on May 10th, 2018, 3 months
before the disclosure. MSR(0x123) was introduced on the Broadwell with
microcode 0x2f from November 12th, 2019, while the public disclosure
was on June 9th, 2020. Skylake-S and Coffee Lake received the MSR
with the microcode update from January 9th, 2020. We use MSRevelio to
analyze the CrossTalk mitigation’s MSR(0x123) and observe differences
for rdrand and rdseed, directly revealing the affected instructions. These
results show that microcode updates containing new MSRs are distributed
before the MSR is officially documented. None of our tested microcode
updates introduced any non-security-related MSRs. We assume that new
non-security-related MSRs are only introduced with new microarchitec-
tures. Hence, by using MSRevelio, it is possible to reveal the existence of
CPU vulnerabilities or errata before they are publicly documented.

5.6. Exploiting Xen

In this section, we show that MSRevelio is also applicable in cloud environ-
ments to enumerate MSRs accessible to guest virtual machines. This does
not only expose access to MSRs that can constitute a security threat but
also allows fingerprinting the hypervisor. The Xen hypervisor checks the
availability of an MSR inside the guest rdmsr and guest wrmsr functions
and decides if access should be simulated, allowed, or trigger a GP-fault [82].
Until recently, the Xen hypervisor used a blocklist prohibiting guests from
accessing MSRs. Due to the nature of a blocklist approach, the hypervisor
does not restrict access to undocumented MSRs and, thus, allows guests
to read and write them. With version 4.15 (April 2021), Xen changed the
default behavior from a blocklist to an allowlist [16, 62], preventing access
to undocumented MSRs.

206 Chapter 7. MSR Templating

5.6.1. Threat Model

We assume a privileged attacker running in a Xen VM re-enacting a
scenario of a low-priced cloud provider offering single-core virtual machines.
We assume that the attacker’s virtual machine is pinned to a logical core
of the machine sharing the physical core with other guests. Furthermore,
we assume that the Xen hypervisor disables access to MSRs enabling
power side-channel attacks [52] and traps calls to the timestamp counter
to reduce its resolution [76, 54]. As the victim machine only runs on a
single core, alternative timing approaches like counting threads [51] are
unavailable.

5.6.2. Alternative Timer in Xen

With MSRevelio, we discovered the undocumented MSR(0x637) on Intel
CPUs that continuously increments its value and correlates with the
timestamp counter (cf. Figure 7.2). While not officially documented in
Intel’s SDM [36], we found a reference to MSR(0x637) in the coreboot
project [18] as MSR COUNTER 24 MHZ. We exploit this timer to mount
a Foreshadow attack [42, 81] from a Xen virtual machine. We evaluate the
attack on an Intel Core i7-8650U running Ubuntu 20.04.2 LTS with Linux
5.4.0-52 and Xen 4.14.2. The attacker runs in a PVH virtual machine with
Debian 10 and Linux 4.19.0-16 with a single virtual CPU assigned to a
logical core.

In our experiment, the attacker uses the MSR(0x637) as a timestamp
to distinguish cache hits from misses. In contrast to the cycle-accurate
timestamp accessible via rdtsc, this timestamp has a lower resolution
of only 41.67 ns. Thus, when measuring the access time to cached and
uncached memory using the MSR, there is a slight overlap, as shown
in Figure 7.6.

In our attack, the attacker sets the PFN of one of its EPT pages to a
physical location of a victim page and marks the page as non-present,
triggering an L1 Terminal Fault [42] on access. As the page is not present,
the CPU aborts the page translation and uses the attacker-controlled
PFN to lookup data in the L1 cache. We use Intel TSX to suppress the
fault and encode the leaked values by caching corresponding addresses in
a look-up table. Using Flush+Reload with the MSR as a timestamp, we
successfully recover the leaked values.

5. Case Studies 207

Table 7.5.: Accessible MSRs in different Xen versions.

Xen Version # Accessible # Static # Dynamic

4.7 (IBM cloud) 618 600 18
4.11.4 (Ubuntu) 521 496 25
4.11.4 (Debian) 505 486 19
4.14.1 452 434 18
4.15 203 202 1

In our attack, we leak a 50-byte string from a victim running on the
sibling hyperthread. Our unoptimized proof-of-concept implementation
has an average runtime of 107.4ms (σx̄ = 1000, n = 1.756) and an average
leakage rate of 214 B/s (σx̄ = 1000, n = 4.176). When using rdtsc as the
timestamp, we achieve an average runtime of 0.38ms (σx̄ = 1000, n =
0.003) and an average leakage rate of 49 147 B/s (σx̄ = 1000, n = 498.66).
The difference is mainly caused by the measurement imprecision caused
by the lower resolution and also because querying the MSR value has a
heavy performance impact [2].

5.6.3. Fingerprinting Xen Versions

In our analysis of various Xen versions, we detected that the number of
visible MSRs is different for each Xen version, allowing an attacker to
infer the Xen version if this information is (partly) blocked, as e.g., on
the IBM cloud. We evaluated MSRevelio within different Xen versions on
an Intel i7-8650U CPU running Ubuntu 20.04.2 LTS with Linux 5.40-52
and on the IBM cloud.

For our evaluation, we first fingerprint the hypervisor by using the MSR
detection mechanism of MSRevelio, including the analysis for static and
dynamic MSRs. We show the results of the detected MSRs for 5 different
XEN versions in Table 7.5. It is noticeable that with an increasing version
number, the number of exposed MSRs decreases as the blocklist is extended
with additional entries. The implemented allowlist approach of version
4.15 significantly reduces the number of MSRs from 452 (version 4.14.1)
to 203.

It is worth highlighting that while reporting the same Xen version (4.11.4),
the number of accessible MSRs between the latest available version on
Ubuntu and Debian differs by 16 MSRs. By comparing the detected

208 Chapter 7. MSR Templating

MSRs, we observed that the MSRs exploited by the Platypus attack [52]
are still accessible on the Ubuntu installation as the security patches of
Xen have not been applied to Ubuntu. Thus, despite reporting the same
version number, virtual machines can be exposed to different security risks
depending on the patch level.

6. Discussion and Limitations

6.1. Related Work

One of the first MSR scanners dates back to 2001 [46] using the file-based
Linux MSR interface to search for readable MSRs. In contrast to MSRev-
elio, this scanner can only detect readable MSRs. Furthermore, recent
changes to the Linux kernel restrict accesses to MSRs from userspace [63],
making this approach less reliable.

Domas [23, 22] focused on the execution time of reading MSRs to identify
ones with unique functionality to detect a potential CPU backdoor. With
MSRevelio, we do not focus on unique MSRs changing the ISA, i.e.,
introducing new instructions or changing the architectural functionality
of instructions.

Haruspex [10] scans the x86 instruction set with speculative execution
and performance counters. Bölük also applied this approach to detect
undocumented MSRs [11]. While the performance of this approach is un-
clear, the stated detected MSRs match our findings, e.g., for MSR(0x2e6)
mentioned as LT LOCK MEMORY MSR in an Intel errata [40]. In addition,
MSRevelio found that one can only write 0 to this MSR.

6.2. Indirect Effects

There are also MSR bits that affect the system without directly affecting
instructions. Examples are the configuration of hardware prefetchers or
fixes for CPU errata. These bits only have a measurable effect in corner
cases that cannot be triggered automatically. To detect the effect of such
bits, targeted test cases would be required. If such a targeted test case
exists, e.g., because someone has the intuition that an undocumented MSR
affects a specific feature (e.g., disabling hardware prefetchers), MSRevelio
can also be extended to analyze MSR bits concerning this particular test.

7. Conclusion 209

7. Conclusion

With MSRevelio, we automatically detect undocumented MSRs and their
effects on Intel and AMD CPUs. We demonstrate that undocumented
MSRs can not only hint at the existence of CPU vulnerabilities but that
they can also introduce new attack vectors or re-enable mitigated attacks.
Furthermore, we show that undocumented MSRs can also be used to
mitigate various microarchitectural attacks.

In this paper, we show that undocumented or sparsely documented MSRs
have a non-negligible effect on system security, not only on native systems
but also in the cloud.

Acknowledgments

We thank the anonymous reviewers for their guidance, comments, and sug-
gestions. Additional funding was provided by a generous gift from Amazon.
Any opinions, findings, conclusions, or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views
of the funding parties. Daniel Weber thanks the Saarbrücken Graduate
School of Computer Science. Andreas Kogler thanks Claudio Canella,
Lukas Giner, and Martin Schwarzl for the discussions and feedback.

References

[1] Andreas Abel and Jan Reineke. nanoBench: A Low-Overhead Tool
for Running Microbenchmarks on x86 Systems. In: ISPASS. 2020
(pp. 177, 184, 217).

[2] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchi-
tectures. In: ASPLOS. 2019 (p. 207).

[3] Advanced Micro Devices Inc. BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 15h Models 00h-0Fh Processors. 2013
(pp. 195, 196).

[4] Amazon. Amazon EC2 On-Demand Pricing. 2021. url: https://a
ws.amazon.com/ec2/pricing/on-demand/ (p. 183).

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

210 Chapter 7. MSR Templating

[5] AMD64 Architecture Programmer’s Manual. Advanced Micro De-
vices Inc. 2017 (p. 189).

[6] AMI. BIOS/UEFI Utilities. 2021. url: https://www.ami.com/pr
oducts/firmware-tools-and-utilities/bios-uefi-utilitie

s/ (p. 191).

[7] ARM. mbed TLS. 2020. url: https:///tls.mbed.org (pp. 175,
190–192).

[8] Jean-Philippe Aumasson and Luis Merino. SGX Secure Enclaves
in Practice: Security and Crypto Review. In: Black Hat Briefings.
2016 (p. 190).

[9] Donald J. Berndt and James Clifford. Using Dynamic Time Warp-
ing to Find Patterns in Time Series. In: Proceedings of the 3rd
International Conference on Knowledge Discovery and Data Mining.
1994 (p. 182).

[10] Can Bölük. Haruspex. 2021. url: https://github.com/can1357
/haruspex/ (p. 208).

[11] Can Bölük. Undocumented MSRs with Haruspex. 2021. url: h
ttps://twitter.com/_can1357/status/1427511999550959628

(p. 208).

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(pp. 177, 193).

[13] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (p. 178).

[14] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020 (pp. 195, 196).

[15] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019 (pp. 178, 204).

https://www.ami.com/products/firmware-tools-and-utilities/bios-uefi-utilities/
https://www.ami.com/products/firmware-tools-and-utilities/bios-uefi-utilities/
https://www.ami.com/products/firmware-tools-and-utilities/bios-uefi-utilities/
https:///tls.mbed.org
https://github.com/can1357/haruspex/
https://github.com/can1357/haruspex/
https://twitter.com/_can1357/status/1427511999550959628
https://twitter.com/_can1357/status/1427511999550959628

References 211

[16] Andrew Cooper. x86/hvm: disallow access to unknown MSRs. 2020.
url: https://xenbits.xen.org/gitweb/?p=xen.git;a=commit
diff;h=84e848fd7a162f669cf8248ce502ca864f869447 (pp. 175,
205).

[17] CoreBoot. CoreBoot - Bios Update Trigger. 2021. url: https://g
ithub.com/coreboot/coreboot/blob/master/src/soc/intel

/common/block/include/intelblocks/msr.%5C#L17 (p. 189).

[18] coreboot. coreboot: Fast, secure and flexible OpenSource firmware.
2019. url: https://www.coreboot.org/ (p. 206).

[19] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (pp. 173, 178,
186, 190).

[20] Czernobyl. Super-secret debug capabilities of AMD processors !
2014. url: http://www.woodmann.com/collaborative/knowled
ge/index.php/Super-secret_debug_capabilities_of_AMD_pr

ocessors_! (p. 173).

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In: International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2008, pp. 337–340
(p. 193).

[22] Christopher Domas. Breaking the x86 ISA, v. 2017-07-27. In: Black
Hat US (2017) (p. 208).

[23] Christopher Domas. Hardware Backdoors in x86 CPUs. In: Black
Hat US (2018) (pp. 173, 174, 176, 185, 208).

[24] Free Software Foundation. GLIBC Feature Detection. 2021. url:
https://github.com/bminor/glibc/blob/master/sysdeps/x8

6/cpu-features.c (p. 200).

[25] Corey Gough, Ian Steiner, and Winston Saunders. Energy Efficient
Servers. Apress, 2015 (p. 189).

[26] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 174, 175, 194).

[27] G. Glenn Henry and Terry Parks. Apparatus and method for
limiting access to model specific registers in a microprocessor. US
Patent 8,341,419 B2. Dec. 2012 (p. 173).

[28] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (p. 178).

https://xenbits.xen.org/gitweb/?p=xen.git;a=commitdiff;h=84e848fd7a162f669cf8248ce502ca864f869447
https://xenbits.xen.org/gitweb/?p=xen.git;a=commitdiff;h=84e848fd7a162f669cf8248ce502ca864f869447
https://github.com/coreboot/coreboot/blob/master/src/soc/intel/common/block/include/intelblocks/msr.%5C#L17
https://github.com/coreboot/coreboot/blob/master/src/soc/intel/common/block/include/intelblocks/msr.%5C#L17
https://github.com/coreboot/coreboot/blob/master/src/soc/intel/common/block/include/intelblocks/msr.%5C#L17
https://www.coreboot.org/
http://www.woodmann.com/collaborative/knowledge/index.php/Super-secret_debug_capabilities_of_AMD_processors_!
http://www.woodmann.com/collaborative/knowledge/index.php/Super-secret_debug_capabilities_of_AMD_processors_!
http://www.woodmann.com/collaborative/knowledge/index.php/Super-secret_debug_capabilities_of_AMD_processors_!
https://github.com/bminor/glibc/blob/master/sysdeps/x86/cpu-features.c
https://github.com/bminor/glibc/blob/master/sysdeps/x86/cpu-features.c

212 Chapter 7. MSR Templating

[29] Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time. In:
Journal of Computer Security (1992) (p. 175).

[30] Intel. Advanced Encryption Standard (AES) Instructions Set:
White Paper. 2008 (pp. 173, 190).

[31] Intel. Affected Processors: Transient Execution Attacks. 2020. url:
https://software.intel.com/security-software-guidance

/processors-affected-transient-execution-attack-mitiga

tion-product-cpu-model (pp. 198, 204).

[32] Intel. Deep Dive: CPUID Enumeration and Architectural MSRs.
May 2019. url: https://software.intel.com/security-softw
are-guidance/insights/deep-dive-cpuid-enumeration-and-

architectural-msr%5C#MDS-CPUID (pp. 173, 174, 203).

[33] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (p. 202).

[34] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z. 2019
(p. 180).

[35] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019
(pp. 176, 202).

[36] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 4: Model-Specific Registers. May 2019 (pp. 181, 184, 189,
198, 202, 206).

[37] Intel. Intel Analysis of Speculative Execution Side Channels. 2018.
url: https://newsroom.intel.com/wp-content/uploads/sit
es/11/2018/01/Intel-Analysis-of-Speculative-Execution-

Side-Channels.pdf (pp. 173, 203).

[38] Intel. Intel Linux Processor Microcode Data Files. 2021. url: htt
ps://github.com/intel/Intel-Linux-Processor-Microcode-

Data-Files (p. 204).

[39] Intel. Intel Software Guard Extensions SDK for Linux OS Developer
Reference. Rev 1.5. May 2016 (p. 192).

[40] Intel. Intel Xeon Processor Scalable Family. 2020 (p. 208).

[41] Intel. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture. 2016 (p. 186).

https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/insights/deep-dive-cpuid-enumeration-and-architectural-msr%5C#MDS-CPUID
https://software.intel.com/security-software-guidance/insights/deep-dive-cpuid-enumeration-and-architectural-msr%5C#MDS-CPUID
https://software.intel.com/security-software-guidance/insights/deep-dive-cpuid-enumeration-and-architectural-msr%5C#MDS-CPUID
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files

References 213

[42] Intel. L1 Terminal Fault SA-00161. 2018. url: https://software
.intel.com/security-software-guidance/software-guidanc

e/l1-terminal-fault (p. 206).

[43] Intel. Pin - A Dynamic Binary Instrumentation Tool. 2012. url:
https://software.intel.com/en-us/articles/pin-a-dynami

c-binary-instrumentation-tool (p. 193).

[44] Intel. Refined Speculative Execution Terminology. 2020. url: http
s://software.intel.com/security-software-guidance/insi

ghts/refined-speculative-execution-terminology (p. 178).

[45] Alex James. ghidra-firmware-utils. 2021. url: https://github.c
om/al3xtjames/ghidra-firmware-utils (p. 191).

[46] Dave Jone. Dave Jone’s MSR scanner. 2001. url: https://www.m
ail-archive.com/linuxbios@listman.lanl.gov/msg02813.ht

ml (p. 208).

[47] Phillip Kemkes. Techniques: Current Use of Virtual Machine De-
tection Methods. 2020. url: https://www.gdatasoftware.com/b
log/2020/05/36068-current-use-of-virtual-machine-detec

tion-methods (p. 175).

[48] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 173,
177, 178, 203, 204).

[49] Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison,
Robert Gawlik, Christof Paar, and Thorsten Holz. Reverse engi-
neering x86 processor microcode. In: USENIX Security Symposium.
2017 (p. 178).

[50] Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD Prefetch
Attacks through Power and Time. In: USENIX Security Symposium.
2022 (pp. 174, 175, 194).

[51] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (p. 206).

[52] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS:
Software-based Power Side-Channel Attacks on x86. In: S&P. 2021
(pp. 206, 208).

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://www.mail-archive.com/linuxbios@listman.lanl.gov/msg02813.html
https://www.mail-archive.com/linuxbios@listman.lanl.gov/msg02813.html
https://www.mail-archive.com/linuxbios@listman.lanl.gov/msg02813.html
https://www.gdatasoftware.com/blog/2020/05/36068-current-use-of-virtual-machine-detection-methods
https://www.gdatasoftware.com/blog/2020/05/36068-current-use-of-virtual-machine-detection-methods
https://www.gdatasoftware.com/blog/2020/05/36068-current-use-of-virtual-machine-detection-methods

214 Chapter 7. MSR Templating

[53] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 178, 203).

[54] Weijie Liu, Debin Gao, and Michael K Reiter. On-demand time blur-
ring to support side-channel defense. In: ESORICS. 2017 (p. 206).

[55] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (p. 178).

[56] Plato Mavropoulos. CPUMicrocodes. 2021. url: https://github
.com/platomav/CPUMicrocodes (p. 204).

[57] John Mechalas. Trusted CPU Feature Detection Library. 2019.
url: https://github.com/intel/sgx-cpu-feature-detection
(p. 192).

[58] Matt Miller. Safely Searching Process Virtual Address Space. 2004
(p. 199).

[59] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks. In:
CHES. 2017 (p. 193).

[60] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural Data Leakage via Automated Attack
Synthesis. In: USENIX Security Symposium. 2020 (pp. 175, 178,
188, 200–202).

[61] Open-Source Register Reference For AMD Family 17h Processors
Models 00h-2Fh. 3.03. Advanced Micro Devices Inc. July 2018
(pp. 176, 181, 184).

[62] Roger Pau. x86/pv: disallow access to unknown MSRs. 2020. url:
https://xenbits.xen.org/gitweb/?p=xen.git;a=commitd

iff;h=322ec7c89f6640ee2a99d1040b6f786cf04872cf (pp. 175,
205).

[63] Borislav Petkov. [RFC PATCH] x86/msr: Filter MSR writes. 2020.
url: https://lkml.org/lkml/2020/6/12/273 (p. 208).

[64] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. CrossTalk: Speculative Data Leaks Across
Cores Are Real. In: S&P. 2021 (pp. 173, 174, 177, 178, 197, 200,
203).

https://github.com/platomav/CPUMicrocodes
https://github.com/platomav/CPUMicrocodes
https://github.com/intel/sgx-cpu-feature-detection
https://xenbits.xen.org/gitweb/?p=xen.git;a=commitdiff;h=322ec7c89f6640ee2a99d1040b6f786cf04872cf
https://xenbits.xen.org/gitweb/?p=xen.git;a=commitdiff;h=322ec7c89f6640ee2a99d1040b6f786cf04872cf
https://lkml.org/lkml/2020/6/12/273

References 215

[65] David E. Rumelhart, James L. McClelland, and CORPORATE
PDP Research Group, eds. Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1: Foundations.
MIT Press, 1986. isbn: 0-262-68053-X (p. 182).

[66] Jarkko Sakkinen. Add SGX Launch Control MSR definitions. 2018.
url: https://patchwork.kernel.org/project/intel-sgx/pat
ch/20181106134758.10572-14-jarkko.sakkinen@linux.intel

.com/ (p. 189).

[67] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 173,
178).

[68] Nikolaj Schlej. UEFI firmware image viewer and editor. 2020. url:
https://github.com/LongSoft/UEFITool (p. 191).

[69] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS. 2018 (p. 177).

[70] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 177).

[71] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 173,
177, 178).

[72] Sofiane Takarabt, Alexander Schaub, Adrien Facon, Sylvain Guilley,
Laurent Sauvage, Youssef Souissi, and Yves Mathieu. Cache-timing
attacks still threaten IoT devices. In: Codes, Cryptology and Infor-
mation Security. 2019 (p. 192).

[73] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 173, 175, 177, 178,
203).

https://patchwork.kernel.org/project/intel-sgx/patch/20181106134758.10572-14-jarkko.sakkinen@linux.intel.com/
https://patchwork.kernel.org/project/intel-sgx/patch/20181106134758.10572-14-jarkko.sakkinen@linux.intel.com/
https://patchwork.kernel.org/project/intel-sgx/patch/20181106134758.10572-14-jarkko.sakkinen@linux.intel.com/
https://github.com/LongSoft/UEFITool

216 Chapter 7. MSR Templating

[74] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(p. 178).

[75] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control.
In: Workshop on System Software for Trusted Execution. 2017
(pp. 192, 193).

[76] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating
fine grained timers in Xen. In: CCSW. 2011 (pp. 175, 206).

[77] Vish Viswanathan. Disclosure of Hardware Prefetcher Control on
Some Intel Processors. url: https://software.intel.com/en-u
s/articles/disclosure-of-hw-prefetcher-control-on-some

-intel-processors (p. 188).

[78] Denys Vlasenko. Better document AMD ”tweak MSRs”. 2017. url:
https://lore.kernel.org/patchwork/patch/783107/ (p. 195).

[79] Julien Voisin. Spectre exploits in the ”wild”. 2021. url: https://d
ustri.org/b/spectre-exploits-in-the-wild.html (p. 194).

[80] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger
Kapitza. AsyncShock: Exploiting Synchronisation Bugs in Intel
SGX Enclaves. In: ESORICS. 2016 (p. 177).

[81] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(pp. 178, 206).

[82] XEN. XEN’s MSR handling. 2021. url: https://github.com/x
en-project/xen/blob/RELEASE-4.15.0/xen/arch/x86/msr.c

(p. 205).

[83] Fenghua Yu and Borislav Petkov. The Linux Microcode Loader.
2019. url: https://www.kernel.org/doc/html/latest/x86/mi
crocode.html (p. 204).

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://lore.kernel.org/patchwork/patch/783107/
https://dustri.org/b/spectre-exploits-in-the-wild.html
https://dustri.org/b/spectre-exploits-in-the-wild.html
https://foreshadowattack.eu/foreshadow-NG.pdf
https://github.com/xen-project/xen/blob/RELEASE-4.15.0/xen/arch/x86/msr.c
https://github.com/xen-project/xen/blob/RELEASE-4.15.0/xen/arch/x86/msr.c
https://www.kernel.org/doc/html/latest/x86/microcode.html
https://www.kernel.org/doc/html/latest/x86/microcode.html

8. Appendix 217

8. Appendix

8.1. Number of Tests

Equation (7.1) shows the number of tests NT with MSRevelio. For each
writable MSR, we first perform 16 tests in phase 2 to find an MSR with
side-effects. To determine the exact position of the enum within the MSR,
we perform the optimized sliding window search, where we re-use the
previous results. For the case with W = 4, we require 496 tests per
observed effect for phase 3.

NT =

(∑
writeable

2W

)
︸ ︷︷ ︸

phase 2

+

(∑
observed

(
2W + (64−W)2W−1

))
︸ ︷︷ ︸

phase 3

(7.1)

In comparison, Equation (7.2) shows the number of tests NT required for
an exhaustive search.

NT =
∑

msr ∈ writeable

2writableBits(msr) (7.2)

8.2. Instruction Groups and PMC Events

Table 7.6 shows the instructions groups used during the instruction be-
haviour analysis (cf. Section 3.3). The full configuration groups including
the detailed instructions are available in MSRevelio’s GitHub reposi-
tory2. For the performance counters we use the default configurations of
nanoBench [1] for Intel3 and AMD4 CPUs. These configuration contain all
performance counters for the given microarchitecture. However, most of
the counters are also available on similar Intel or AMD microarchitectures,
and we therefore relied on the Skylake configuration for all tested Intel
CPUs (cf. Table 7.1).

2MSRevelio’s repository: https://github.com/IAIK/msrevelio
3Intel PMC config: https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0de3

428c7521131a548a85e923f7c/configs/cfg_Skylake_all.txt
4AMD PMC config: https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0de3

428c7521131a548a85e923f7c/configs/cfg_Zen_all.txt

https://github.com/IAIK/msrevelio
https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0de3428c7521131a548a85e923f7c/configs/cfg_Skylake_all.txt
https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0de3428c7521131a548a85e923f7c/configs/cfg_Skylake_all.txt
https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0de3428c7521131a548a85e923f7c/configs/cfg_Zen_all.txt
https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0de3428c7521131a548a85e923f7c/configs/cfg_Zen_all.txt

218 Chapter 7. MSR Templating

Table 7.6.: The used instruction groups for the instruction behavior analysis of
the MSR bits (cf. Section 3.3).

Group Name # Instructions Group Description

AES 6 AES-NI instructions
CPUID 1 cpuid instruction
FENCES 3 sfecne, mfence, and lfence instructions
FLUSH 1 clflush instruction
FP ARITH 9 x87 floating-point instructions
FP VARITH 7 AVX2 vector floating-point instructions
INT ARITH 12 x86 integer instructions
INT VARITH 11 AVX2 vector integer instructions
LOAD 1 AVX2 vector load instruction
STORE 1 AVX2 vector store instruction
MOVES 35 various memory mov instructions
MISC 11 xchg, bswap and string instructions
PREFETCH 6 prefetch instructions
RANDOM 1 rdrand instruction
STRIDED 17 strided memory loads
TIME 2 rdtsc, rdtscp instructions

Total 124

1 # AMI Aptio V BIOS/UEFI 2.21.1277 (Core Version 1.010)

2 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 10 P:83C801EB0383C80389442410:83C800EB0383C80289442410

3 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 12 P:83C801EB0383C80389442410:83C800EB0383C80289442410

4
5 # AMI Aptio V BIOS/UEFI 2.18.1263 (Core Version 5.12)

6 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 10 P:83C801EB0383C8035250683C010000:83C800EB0383C8025250683C010000

7 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 12 P:83C801EB0383C8035250683C010000:83C800EB0383C8025250683C010000

Figure 7.7.: The patch for AMI Aptio V BIOS to disable the AES-NI lock bit.
The patch can be applied to a BIOS image using UEFIPatch.

8.3. Flipping Masks

Table 7.7 shows the flipping masks for enum fields with a length of up to
4 bits covering all possible 4 bit combinations, regardless of the position of
the enum field within the 64 bit long MSR. When shifting the enum field
inside the MSR, the flipping mask mimics the rotate operation.

8.4. BIOS Patch

8. Appendix 219

Table 7.7.: Flipping masks for enum fields with length of up to 4 bits. Selecting 4
consecutive bits within these 16 masks always covers all possible enum
bit combinations by mimicking the rotate operation (cf. Section 3.3).

Flipping Mask Enum[3:0] Enum[4:1]

0x0000000000000000 0b...0000 0b..0000.

0x1111111111111111 0b...0001 0b..1000.

0x2222222222222222 0b...0010 0b..0001.

0x3333333333333333 0b...0011 0b..1001.

0x4444444444444444 0b...0100 0b..0010.
...

...
...

0xffffffffffffffff 0b...1111 0b..1111.

Figure 7.7 is the patch in the UEFIPatch5 format. We tested it with two
different BIOS images, an AMI Aptio V 2.21.1277 with build date 2020,
and an AMI Aptio V 2.18.1263 with build date 2021. The motherboard of
the all-in-one PC is the BESSTAR TECH IB9. As we chose the pattern-
based patch format, it should also be applicable to other AMI BIOS
versions. The difference in the two patches is that in 2.18.1263, there
is a call to a function wrapping wrmsr, whereas in 2.21.1277, the wrmsr

instruction is inlined.

8.5. mbedTLS Leak

Listing 8.1 shows an excerpt of the relevant code from the mbedTLS6

library where the implementation falls back to the T-table implementation
if AES-NI is not available.

5UEFIPatch tool: https://github.com/LongSoft/UEFITool/tree/master/UEFIPatch
6MbedTLS’s source code: https://github.com/ARMmbed/mbedtls/blob/dd57b2f240c597e4

cf6cc2492d5c03d067f234f9/library/aes.c#L587

https://github.com/LongSoft/UEFITool/tree/master/UEFIPatch
https://github.com/ARMmbed/mbedtls/blob/dd57b2f240c597e4cf6cc2492d5c03d067f234f9/library/aes.c#L587
https://github.com/ARMmbed/mbedtls/blob/dd57b2f240c597e4cf6cc2492d5c03d067f234f9/library/aes.c#L587

220 Chapter 7. MSR Templating

1 #if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)

2 if(mbedtls_aesni_has_support(MBEDTLS_AESNI_AES))

3 return(mbedtls_aesni_setkey_enc((unsigned char *) ctx->rk,

-> key, keybits));

4 #endif

5

6 for(i = 0; i < (keybits >> 5); i++)

7 {

8 GET_UINT32_LE(RK[i], key, i << 2);

9 }

10

11 switch(ctx->nr)

12 {

13 case 10:

14

15 for(i = 0; i < 10; i++, RK += 4)

16 {

17 RK[4] = RK[0] ^ RCON[i] ^

18 ((uint32_t) FSb[(RK[3] >> 8) & 0xFF]) ^

19 ((uint32_t) FSb[(RK[3] >> 16) & 0xFF] << 8) ^

20 ((uint32_t) FSb[(RK[3] >> 24) & 0xFF] << 16) ^

21 ((uint32_t) FSb[(RK[3]) & 0xFF] << 24);

22

23 RK[5] = RK[1] ^ RK[4];

24 RK[6] = RK[2] ^ RK[5];

25 RK[7] = RK[3] ^ RK[6];

26 }

27 break;

28 /* additional cases for different key lengths */

29 }

Listing 8.1: An excerpt of the relevant code from the mbedTLS library
that is susceptible to cache attacks. If AES-NI is not available
(Line 2), mbedTLS falls back to a T-table implementation
with secret-dependent key lookups in the array FSb.

8
Collide+Power: Leaking
Inaccessible Data with

Software-based Power Side
Channels

Publication Data

Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Martin
Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard. Col-
lide+Power: Leaking Inaccessible Data with Software-based Power Side
Channels. In: USENIX Security. 2023

Contributions

Main author.

221

222 Chapter 8. Collide+Power

Collide+Power: Leaking Inaccessible Data with
Software-based Power Side Channels

Andreas Kogler1 Jonas Juffinger1 Lukas Giner1

Lukas Gerlach2 Martin Schwarzl1 Michael Schwarz2

Daniel Gruss1 Stefan Mangard1

1Graz University of Technology
2CISPA Helmholtz Center for Information Security

Abstract

Differential Power Analysis (DPA) measures single-bit differences between
data values used in computer systems by statistical analysis of power
traces. In this paper, we show that the mere co-location of data values,
e.g., attacker and victim data in the same buffers and caches, leads to
power leakage in modern CPUs that depends on a combination of both
values, resulting in a novel attack, Collide+Power. We systematically ana-
lyze the power leakage of the CPU’s memory hierarchy to derive precise
leakage models enabling practical end-to-end attacks. These attacks can
be conducted in software with any signal related to power consumption,
e.g., power consumption interfaces or throttling-induced timing variations.
Leakage due to throttling requires 133.3 times more samples than di-
rect power measurements. We develop a novel differential measurement
technique amplifying the exploitable leakage by a factor of 8.778 on av-
erage, compared to a straightforward DPA approach. We demonstrate
that Collide+Power leaks single-bit differences from the CPU’s memory
hierarchy with fewer than 23 000 measurements. Collide+Power varies
attacker-controlled data in our end-to-end DPA attacks. We present a
Meltdown-style attack, leaking from attacker-chosen memory locations,
and a faster MDS-style attack, which leaks 4.82 bit/h. Collide+Power is a
generic attack applicable to any modern CPU, arbitrary memory locations,
and victim applications and data. However, the Meltdown-style attack
is not yet practical, as it is limited by the state of the art of prefetching
victim data into the cache, leading to an unrealistic real-world attack
runtime with throttling of more than a year for a single bit. Given the
different variants and potentially more practical prefetching methods, we
consider Collide+Power a relevant threat that is challenging to mitigate.

1. Introduction 223

1. Introduction

Power analysis attacks exploit differences in the power consumption of
hardware circuits for different operations or data operands [26, 17, 2].
Most power analysis attacks use external measurement equipment on
small devices such as smart cards [29, 30] to extract their internal secret
information (e.g., cryptographic keys). Without physical access, an attacker
can still resort to software-based side channels, exploiting, e.g., timing [15],
or the cache state [42, 28]. While the attack techniques are generic, these
physical and software-based side-channel attacks are typically specific to a
victim application, e.g., a cryptographic implementation. Hence, for all of
these side-channel attacks, there is clear guidance on how developers can
mitigate them, e.g., constant-time implementations, blinding, masking, or
adding randomness [24].

Meltdown [20] and MDS [34, 35, 3] can still leak secret information even
when developers followed best practices on mitigations. In this sense,
they are generic attacks that are not tailored to a specific algorithm but
rather a CPU, meaning they can leak arbitrary data from a victim context
regardless of the algorithm executed. However, Meltdown and MDS are
mitigated through hardware and software patches.

Recently, software-based power side channels gained more traction [21,
38, 19, 27, 25, 33, 8, 9, 41], especially after the discovery that software-
level interfaces are precise enough to mount power analysis attacks on
cryptographic implementations [19]. One stop-gap solution against these
attacks is making the corresponding software-level interfaces privileged
(e.g., Intel RAPL). However, adaptive power management leads to constant
frequency adjustments to comply with energy and heat limits. When the
CPU works with data operands that consume more energy, the CPU
reaches these limits more frequently. Consequently, power consumption
variations translate directly into timing differences [38, 21]. Hence, software-
based power side channels are still practical. Still, so far, they targeted
specific applications and have not been able to demonstrate Meltdown-
style or MDS-style generic leakage from arbitrary memory locations and
victim contexts.

In this paper, we present Collide+Power, a novel attack showing that
software-based power side channels constitute a much more fundamental
and generic security threat. Our central observation is that the mere co-
location of data values, e.g., attacker and victim data in buffers and caches,

224 Chapter 8. Collide+Power

in modern CPUs introduces subtle but exploitable power leakage that
depends on the combination of both values. This combination has several
components, including e.g., the Hamming distance between attacker and
victim data. Thus, we can exploit this combined leakage by varying the
attacker-controlled data value and learning the precise victim value from
the combined power leakage. Consequently, Collide+Power overcomes all
isolation boundaries on modern systems, enabling practical attacks leaking
4.82 bit/h from other security domains.

The foundation of our end-to-end attacks is amplifying the subtle leakage
signal, which is far below other components of the power consumption.
For this purpose, we develop a novel differential measurement technique
where each sample is based on two measurements with inverted attacker-
controlled values. Due to the nature of the power leakage in the CPU’s
memory hierarchy, this approach cancels out unwanted noise terms and
amplifies the desired signal by a factor of 8.778 on average compared to a
straightforward DPA approach.

Another building block for our end-to-end attacks is a precise power
leakage model of the CPU’s memory hierarchy. Prior models [19, 38, 21]
have not captured the subtly combined leakage we exploit and cannot
be used in our attack to leak data from arbitrary memory locations. We
develop precise leakage models for various attack scenarios, depending
on the microarchitectural element where the attacker and victim data
are colliding, e.g., leakage models considering L1 cache eviction when
targeting L1 caches. Based on our precise models, we demonstrate that
Collide+Power can even leak single-bit differences with fewer than 23 000
measurements.

In our end-to-end attacks, Collide+Power varies attacker-controlled data
during differential power analysis. In this work, we demonstrate two pow-
erful attack scenarios: The first is MDS-Power, an MDS-style attack [34,
35], leaking arbitrary data accessed by the victim (data in use), without
assumptions on the algorithm run by the victim. Our end-to-end MDS-
Power attack leaks 4.82 bit/h from another security domain co-located
on a sibling hardware thread. The second scenario is Meltdown-Power, a
Meltdown-style attack [20], leaking data at rest, with 0.136 bit/h (with
amplification) from arbitrary memory locations in the kernel, using the
same attack mechanism as Meltdown to interact with the cache hierar-
chy [36, 13]. Nevertheless, our Meltdown-Power proof-of-concept has severe
practical limitations due to the state-of-the-art of prefetching data into the
memory hierarchy in a real-world scenario, leading to an unrealistic attack

1. Introduction 225

Table 8.1.: Collide+Power fills a significant gap, broadening software-based power
analysis from attacks on specific algorithms to generic attacks like
Meltdown and MDS.

Target

Attack Software Implementation Generic (CPU and Hardware)

Traditional Microarchitectural
Side Channel

Prime+Probe [28]
Flush+Reload [42]
BranchScope [7]

Meltdown [20]
Foreshadow [39]
MDS [35, 34]

Software-based Power
Side Channel

Platypus [19]
Hertzbleed [38]
FTS-CA [21]

Collide+Power
(our work)

runtime of more than a year per bit with throttling. However, discovering
faster ways to prefetch data into the memory hierarchy improves the
leakage rates of Collide+Power.

Collide+Power is a generic attack that works on any modern CPU that
co-locates attacker and victim data in the microarchitecture, e.g., caches.
Thus, conceptually, it is the same step as from cache side channels to
Meltdown applied to power side channels (cf. Table 8.1). Our Collide+
Power attack framework is agnostic to the type of leakage traces and works
with traces from the RAPL interface and timing differences without any
modifications alike1. Our evaluation shows that an end-to-end Collide+
Power attack instantiated with timing side-channel traces only requires
133.3 times more samples than direct power measurements. To facilitate
the genericity and reproducibility of our results, we perform most of the
evaluation and analysis with the generic RAPL interface.

We conclude that software-based power analysis attacks are more generic
and extend beyond the leakage of well-known and structured attack tar-
gets from cryptographic contexts. In contrast to attacks relying on the
design of microarchitectural elements such as Spectre or Flush+Reload,
Collide+Power, like Rowhammer, exploits fundamental physical properties
present in CPUs. Therefore, mitigating these attacks poses a much larger
challenge than previous works anticipated, and fully mitigating Collide+
Power, regardless of whether the victim performs side-channel hardened
cryptographic or general-purpose operations, remains a significant chal-
lenge.

1The source code of the framework and the proof-of-concepts can be found at: https:
//github.com/iaik/CollidePower

https://github.com/iaik/CollidePower
https://github.com/iaik/CollidePower

226 Chapter 8. Collide+Power

To summarize, we make the following contributions:

1. We systematically analyze the leakage of different operations on the
memory hierarchy and develop a leakage model including the attacker-
victim combined leakage.

2. We present a novel and generic differential measurement technique com-
bining multiple guess measurements per victim data value, amplifying
the leakage by 8.778x.

3. We demonstrate unprivileged end-to-end Collide+Power attacks with
throttling, leaking arbitrary secret data without targeting the specific
algorithm the victim uses.

4. We evaluate Collide+Power in theoretical and practical end-to-end
attacks and, in the more practical attacks, observe average leakage
rates of 4.82 bit/h, with a success rate of 98.9% (n=1000, σx̄=0.32%).

Outline. Section 2 provides background, and Section 3 the high-level
idea. Section 4 presents the leakage analysis, and Section 5 our novel
differential measurement. We discuss the implementation in Section 6,
the evaluation in Section 7, and mitigations and limitations in Section 8.
Section 9 concludes.

Responsible Disclosure. We disclosed our findings to Intel on November
23, 2022, and ARM and AMD on February 9, 2023. Collide+Power was
assigned CVE-2023-20583 and was held under embargo until August 1,
2023. The vendors responded with advisories and guidelines to mitigate
the risk.

2. Background

In this section, we present background on memory within CPUs, transient-
execution, and power-analysis attacks.

2.1. The CPU’s Memory Hierarchy

Modern CPUs have an internal hierarchy from small memories close to the
execution pipeline to large memories such as an SRAM last-level L3 cache
or even a DRAM-based victim L4 cache. Data is always served from the
fastest hierarchy level that holds the data, dramatically lowering average
memory access latencies. Buffers typically serve a dedicated purpose, e.g.,
load and store buffer (the memory order buffer) track load and store

2. Background 227

operations. Caches are the next larger storages, following a similar design
across different CPUs: They are organized in n-way sets with cache-line
sizes of 64B. The smallest, L1 cache, is split between data (which we
focus on) and instructions. The L2 cache is slightly larger and slower. The
last-level L3 cache is significantly larger, organized in independent cache
slices, and shared across cores.

Caches have been a popular target of side-channel attacks, such as Prime+
Probe [31, 28, 22]. In a Prime+Probe attack, the attacker creates and
uses an eviction set to constantly prime an entire cache set. When the
victim accesses a cache line mapping to the primed cache set, an attacker-
controlled entry is evicted, which the attacker can observe by the access
latency to its own eviction set during the subsequent priming.

When data is used, it travels through the memory hierarchy and is placed
in buffers and caches, involving busses and fill buffers to transmit or
temporarily store the data. Besides caches, the line-fill buffer (LFB), a
temporary storage for, e.g., data loads and evictions, uncacheable, and
non-temporal accesses, has been exploited in different attacks [20, 35, 34].

2.2. Transient-Execution Attacks

Out-of-order and speculative execution contribute to performance substan-
tially. Instructions are retired in order, and the outcomes of predictions
and faults are checked before committing the results. Mispredictions are
rolled back and undone. Instructions executed out-of-order or specula-
tively which are never committed, are called transient [4, 16]. Transient
execution may change the microarchitectural state, e.g., cache accesses.
If these state changes depend on secret data, attackers can extract the
secrets by leveraging a side channel [4, 16]. Canella et al. [4] systematized
transient-execution attacks into Spectre-type attacks and Meltdown-type
attacks. Meltdown-type attacks [20, 4] leverage transient execution in
out-of-order execution since exceptions are raised in the retirement phase
of out-of-order execution. In contrast, Spectre-type attacks [16, 4] ex-
ploit transient execution caused by speculatively executing mispredicted
branches. Various attacks have been demonstrated exploiting different
prediction mechanisms in modern CPUs [16, 4, 14, 10, 23]. Spectre attacks
on the kernel require code snippets (gadgets) in the kernel.

228 Chapter 8. Collide+Power

2.3. Power-Analysis Attacks

Power analysis attacks exploit differences in the energy consumption of a
hardware circuit when computing with secret data. The switching behavior
of CMOS circuits (the building block of CPUs), i.e., the transitions be-
tween ‘0’ and ‘1’ bits, dictates the power consumption in a data-dependent
way. There are mainly two analysis methods: First, Simple Power Analysis
(SPA) [17] uses direct observations in a power trace to identify secret infor-
mation, e.g., different energy signatures of secret-dependent control flow.
Second, Differential Power Analysis (DPA) [17] uses statistical methods
like the difference of means or correlations (then also called Correlation
Power Analysis, CPA [2]) to infer secret information when SPA is insuffi-
cient. Regardless of the power analysis technique, external measurement
equipment is typically used to measure energy consumption.

Lipp et al. [19] transformed traditional power-analysis attacks into software-
based attacks on modern x86 CPUs using the Running Average Power
Limit (RAPL) [11] interface. They demonstrate SPA and CPA on modern
x86 CPUs and extract AES-NI and RSA keys despite the comparably low
sampling rate of the software interface. In response to this attack, the
RAPL interface is no longer accessible to unprivileged users. Furthermore,
to protect Intel’s Trusted Execution Environment (SGX), the interface
no longer reports the exact energy consumption when SGX is enabled.
However, as modern CPUs use adaptive power management to comply
with thermal and power limits, the CPU frequency and performance
depend on energy consumption. Computing on data that consumes more
energy leads to more frequent throttling, observable by an unprivileged
attacker, even in remotely measurable timing differences [38]. Statistical
methods reduce the noise far enough to enable inference of processed
data. Wang et al. [38] demonstrated software-based power side-channel
attacks based on the CPU frequency as a proxy and replacement for energy
consumption interfaces. Liu et al. [21] later also showed that frequency
and timing could replace direct power consumption measurements. Both
works leak cryptographic keys from other security domains, Wang et al.
[38] even remotely across the network.

3. High-Level Overview of Collide+Power 229

Set1 . . .

Way1 Way2 Way3 Way4 Way5 WayN

. . .Set2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .SetN

G
Attacker

V
Victim

(a) Step 1: The attacker primes each cache line of the target cache set with the
attacker-controlled guess G.

Set1 . . .

Way1 Way2 Way3 Way4 Way5 WayN

. . .Set2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .SetN

G
Attacker

V
Victim

(b) Step 2: The victim accesses the secret V and forces a cache line to change
from G to V.

Set1 . . .

Way1 Way2 Way3 Way4 Way5 WayN

. . .Set2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .SetN

G
Attacker

V
Victim

1010hd(0101) = 4

0101hd(0101) = 0

(c) Step 3: The energy consumption during this change is proportional to the
number of bit changes between G and V.

Figure 8.1.: Collide+Power uses the attacker-controlled cache lines filled with G
to recover the victim value V.

3. High-Level Overview of Collide+Power

In this section, we present the high-level idea of Collide+Power. Collide+
Power is a software-based power side-channel attack exploiting the funda-
mental design of how modern CPUs handle data. We exploit that the mere
co-location in the memory hierarchy, e.g., attacker and victim data in a
cache, introduces subtle but exploitable leakage in the power consump-
tion. As illustrated in Figure 8.1 for the example of caches, an attacker
can influence the power consumption with known and attacker-controlled
values. When replacing a value in the cache, the power consumption of

230 Chapter 8. Collide+Power

the CPU depends on the Hamming distance between old and new values
stored in the cache, i.e., the number of different bits between the two
values. The smaller the Hamming distance between the two values, the
less energy is consumed, reaching its minimum for identical values and
the maximum for inverse values. Thus, an attacker varying its own data
value accordingly can infer the precise victim’s data value without being
able to access it.

3.1. A Precise Model for DPA

Exploiting subtle power differences is challenging. Collide+Power uses
DPA, and more specifically CPA, which can exploit arbitrarily small power
differences as long as the number of measurements can be increased. This is
the case in our attack scenario, as attacker-controlled data and victim data
are co-located in the cache for an arbitrarily long time. Previous work by
Lipp et al. [19] showed that repeating byte-wise loads on x86 CPUs follow
the Hamming weight model. This Hamming weight model does not capture
the leakage components that combine attacker-controlled and victim data,
i.e., the Hamming distance. However, for Collide+Power, the Hamming
distance between two distinct cache line values G and V of different security
domains is the relevant signal for the attack. Furthermore, the power
consumption is much more significantly influenced by other constant and
non-constant factors, outweighing the signal by orders of magnitude. These
factors include data-dependent noise, i.e., components depending on the
attacker-controlled value G and the victim value V but not in a combined
and exploitable way. These factors include independent noise, i.e., from
other processes or environmental influences. Our generalized power model
(cf. Section 4) for the CPU’s memory hierarchy,

P(G,V) ≈ a0 · hd(G,V)︸ ︷︷ ︸
signal

+w0 · hw(G) + w1 · hw(V)︸ ︷︷ ︸
data−dependentnoise

+ ω︸︷︷︸
noise

, (8.1)

includes all of these factors as well as the Hamming weights and the
Hamming distance, where the guess G is attacker-controlled, and V is the
targeted constant secret victim value.

From Toy Example to Real-World Attack. As the power observations
directly only reveal a combination of Hamming distance between G and
V and their Hamming weights, an attacker needs to vary the parameter
G to infer the exact value of V. Figure 8.2 shows a simplified instance of
this problem. By choosing guesses G = 2i, i ∈ N with constant Hamming

3. High-Level Overview of Collide+Power 231

0b1000 0b0100 0b0010 0b0001

Guess G

P
(G

,V
)

Figure 8.2.: High-level intuition for Hamming-distance-based leakage. Leaking
the secret V by using guesses with constant hw(G) isolates hd(G,V) in
the leakage model (Equation (8.1)). Here binary guesses (hw(G) = 1)
are used to infer the inverted bits of V (0b0101) due to the changes
in hd(G,V).

weights, i.e., hw(G) = 1, the data-dependent noise of Equation (8.1) is
constant, but the Hamming distance hd(G,V) changes based on G. Thus
by finding guesses that reduce P, we can infer that the corresponding bit
is also set in the secret victim value V . While this toy example provides a
great intuition of the basic idea, Collide+Power uses a more sophisticated
and robust correlation-based approach.

Leaking the value V is a search for the maximum correlation between
the model and observations. Our CPA uses the recorded samples as
observations O and maximizes the correlation for a given model M(G,V).
Crucial for the success rate of the CPA is the accuracy of the model
and its component and the ratio between the signal and the noise (cf.
Equation (8.1)), i.e., the signal-to-noise ratio. Therefore, we design in-
depth experiments to recover the structure in Sections 4.1 and 4.2 and
the coefficients for the different components in Section 4.3.

Differential Measurement. To increase the signal-to-noise ratio further,
we exploit that the power consumption can be influenced by two extremes:
the maximum Hamming distance and the minimum Hamming distance.
Instead of just one measurement, with one attacker-controlled value and
an unknown victim value, we perform two measurements in a differential
measurement technique (cf. Section 5). The first measurement takes a
chosen G, yielding PG , and the second takes the inverted guess G̃, yielding
PG̃ . By using the difference between PG and PG̃ as a single combined
sample, this measurement technique increases the signal-to-noise ratio
by a factor of 8.778 on average. It not only doubles the weight of the
Hamming distance in the power leakage but also reduces other constant
and non-constant factors.

232 Chapter 8. Collide+Power

3.2. End-to-End Attacks

Collide+Power is a generic attack for various scenarios and environments.
The commonality is that the attacker triggers a situation where attacker-
controlled values G and victim-controlled values V compete for storage in
the same shared microarchitectural element. Depending on the target, this
may involve cache eviction or flushing, loading of cache lines, or read and
write accesses without cache interaction. Consequently, Collide+Power
has no more requirements than typical cache attacks, i.e., the ability to
perform memory accesses. We build two end-to-end attack variants on
Collide+Power:

In MDS-Power, we target data in use by a victim program. The victim
constantly uses a secret value, i.e., in a loop, which effectively keeps it
in the memory hierarchy of the core (e.g., buffers like the LFB or the L1
cache). In this scenario, identical to MDS attacks, Collide+Power leaks
precise secret values from a victim co-located on a sibling thread with
4.82 bit/h.

In Meltdown-Power, we target data at rest from arbitrary memory
addresses. The attacker uses the same mechanisms as in Meltdown to
pull victim data into caches, i.e., leakage of data is facilitated by prefetch
gadgets in the kernel [36], which are still present in kernels today [13,
40, 4]. Meltdown-Power leaks amplified data values with 0.136 bit/h in
exactly the same scenario, making it a drop-in replacement for the now
mitigated Meltdown attack. Finally, mounting Meltdown-Power in a real-
world setting, i.e., using frequency throttling attacks [38, 21], we estimate
that an attacker requires 2.86 years to leak an unamplified bit from the
kernel. However, this low security risk might drastically change if new
architectural or microarchitectural ways of prefetching victim data in
co-location with attacker-controlled data are discovered.

3.3. Threat Model

We assume the attacker runs unprivileged native code. If specific inter-
faces, e.g., RAPL, are unavailable [19], Collide+Power has the minimal
requirement that the attacker can measure time (e.g., with rdtscp),
serving as a proxy for the power consumption [38, 21]. Collide+Power
is agnostic to the type of leakage traces and works identically with any
direct or indirect power trace. Furthermore, similar to prior works on

4. Memory-Hierarchy Leakage Analysis 233

software-based power side channels [38], we either stress the other CPU
cores, i.e., a multi-threaded attack, or use the throttling effect through
default or adjusted power limits, translating energy consumption into
timing differences. The only additional assumption MDS-Power makes is
that attacker and victim are co-located on sibling threads of a physical
core, identical to the threat model of RIDL and ZombieLoad [34, 35].

Meltdown-Power has no core co-location requirement. As in Meltdown, we
assume the attacker has a target address to attack [20]. When targeting
the CPU’s caches with Meltdown-Power, interaction with the caches is
required, i.e., regular memory accesses to load and evict data from L1
and L2 cache. Meltdown-Power also requires the presence of a prefetch
gadget in the kernel, which Meltdown also requires for non-L1 cache data
leakage [36]. Recent work confirmed that prefetch gadgets are still present
in kernels today [13, 40, 4]. Like Meltdown, Meltdown-Power uses the
prefetch gadget to load the victim cache line V into the cache. We evaluate
Meltdown-Power with two different gadgets: an artificial Spectre-RSB
prefetch gadget for a comprehensive evaluation and a real-world Spectre-
PHT prefetch gadget to demonstrate the signal. We detail and evaluate
all attacks in Sections 6 and 7.

4. Memory-Hierarchy Leakage Analysis

In this section, we analyze the power leakage of the CPU’s memory
hierarchy and derive a precise power leakage model. We find the general
structure of the model in Section 4.1, analyze the effect of data location
and bus widths in Section 4.2, and compute the precise coefficients in
Section 4.3.

4.1. Determining the Structure of the Leakage

In this section, we design experiments to generate activity in certain cache
levels. We analyze all pairwise combinations of Hamming distance and
Hamming weight between slices of values within attacker-controlled and
victim cache lines, revealing the components of the power leakage. We use
an Intel Core i7-8700K CPU for our analysis. Section 7.1 shows that this
analysis applies to a broad range of CPUs. We find three zones within a
cache line that influence the leakage strength and structure, which can be
represented by Hamming distance and Hamming weight expressions.

234 Chapter 8. Collide+Power

1 func record_sample(G, V) -> Sample {

2 fill(cache_line [0..15] , G, V);

3 Measurement start = measure ();

4 repeat (L) { access(cache_line [0..15]); }

5 return measure () - start;

6 }

Listing 8.1: Pseudo code measuring the power consumption over a loop accessing
16 distinct cache lines.

Accessing and Filling the Cache Lines. For our analysis, we focus
on two different values placed in the cache lines: the attacker controlled
guess G and the victim value V. Listing 8.1 shows the code used to
access the cache lines with movq loads, i.e., 8B loads, and generate one
sample for a randomly chosen V and G. Each sample is generated by
measuring the RAPL energy consumption over a tight loop running L
iterations of 16 accesses interacting with the memory hierarchy. The
number of iterations determines the measurement duration. According
to our analysis, hardware prefetchers also have a minor influence on the
leakage. However, we disable hardware prefetchers to derive a precise
leakage model that the attacker can utilize. We detail the influences of
the hardware prefetchers in Section 7.6 and emphasize that the attacks
also work with hardware prefetchers enabled. MDS-Power does not trigger
any prefetching as all data accesses are already cached and served from
the cache (cf. Section 6). Meltdown-Power is influenced by the prefetcher
loading the adjacent victim cache line, which we analyze in Section 7.6.

Cache Line Eviction. The i7-8700K we use for our analysis has an
8-way L1 cache and a 4-way L2 cache with pseudo-LRU replacement [1],
allowing us to precisely determine the cache line to be evicted from the
cache. For the 8-way L1 cache design, we use a setup with 16 distinct
cache lines. Out of the 16 cache lines, we use one as the victim cache line
filled with V. The remaining 15 cache lines represent attacker-controlled
lines, each filled with the guess G. To determine the influence of accessing
these 16 cache lines on the leakage model, we evaluate three eviction types
with chosen L1 and L2 cache sets as shown in Figure 8.3, one without
eviction, one with L1 eviction only, and one with L1 and L2 eviction: No
Eviction: All cache lines are in different L1 sets; all 16 accesses are served
from the L1 cache without self-eviction. L1 Eviction: All 16 cache lines
are in one L1 but different L2 cache sets, resulting in constant L1 but no
L2 cache eviction. L1+L2 Eviction: 8 cache lines are in one L1 and L2

4. Memory-Hierarchy Leakage Analysis 235

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15L
1

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15L
2

G G G G G G G G G G G G G G G GV

C
L
s

(a) No Eviction: All cache lines are in individual L1 and L2 sets.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15L
1

S0 S64 S128 S192 S256 S320 S384 S448 S512 S576 S640 S704 S768 S832 S896 S960L
2

G G G G G G G G G G G G G G G GV

C
L
s

(b) L1 Eviction: All cache lines are in the same L1 set.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15L
1

S0 S64 S128 S192 S256 S320 S384 S448 S512 S576 S640 S704 S768 S832 S896 S960S0L
2

G G G G G G G G G G G G G G G GV

C
L
s

(c) L1+L2 Eviction: All cache lines are in the same L1 set. The first eight are
in one L2 set. The remaining are in individual L2 sets.

Figure 8.3.: Eviction patterns used to derive the leakage model.

cache set; the other 8 are in one L1 but unique L2 cache sets. Based on
these experiments, we determine precisely how these cases influence the
power leakage of the CPU.

Leakage Structure Analysis. We split the values V and G into consec-
utive slices and determine the impact on the sliced components hd(Vi,Gj),
hd(Vi,Vj), hd(Gi,Gj), hw(Gi), and hw(Vi) on the power consumption. We
perform a linear regression with all the resulting variables and visualize
the coefficients, i.e., a non-zero coefficient indicates if a slice is relevant
for the power leakage function. Overall, we record 24 130 228 samples with
the test code (cf. Listing 8.1) for the three eviction types. Figure 8.4
shows the results for 8B slice sizes. This indicates that the Hamming
distance and weight model the leakage components very well. Visually, we
see three distinct effects: First, regardless of the eviction technique the

236 Chapter 8. Collide+Power

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

V

G

0

0.2

0.4

0.6

0.8

1

(a) No Eviction: hd(Vi,Gj)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

V

G

0

0.2

0.4

0.6

0.8

1

(b) L1 Eviction: hd(Vi,Gj)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

V

G

0

0.2

0.4

0.6

0.8

1

(c) L1+L2 Eviction: hd(Vi,Gj)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

G

G
0

0.2

0.4

0.6

0.8

1

(d) L1+L2 Eviction: hd(Gi,Gj)

Figure 8.4.: Coefficients for the sliced components hd(Vi,Gj) for all eviction tech-
niques and hd(Gi,Gj) for L1+L2 eviction. We see that the structure
of the power model changes based on the eviction technique and
additional unaligned effects.

first 8B component hd(V0,G0) shows a clear signal. Second, hd(Vk,Gk),
k ∈ {1 to 7} expose a leakage signal for the L1 and L1+L2 eviction case,
albeit weaker than hd(V0,G0). Finally, when considering L1+L2 eviction,
an additional shifted signal components appear for hd(Vk,Gh), hd(Vk,Vh),
hd(Gk,Gh) with k ∈ {0 to 7} and h = k+4 mod 8. The period of this shift
is 32B, indicating that this effect could originate from a bus-size change
from 64B to 32B, e.g., the interconnect between L2 and L3, meaning
that the two halves of the cache line are transmitted after each other.
Combining these observations that relate to the widths with which data
is moved through the memory hierarchy, we can distinguish the influence
of three zones within a cache line on the power leakage model: (1) the
bytes accessed by the movq instruction, (2) the lower half of a cache line,
and (3) the upper half of a cache line. Reducing the slice sizes down to

4. Memory-Hierarchy Leakage Analysis 237

vL . . . vL vU . . . vUV =

B63B0 B31 B32

VL VU

gL . . . gL gU . . . gU = G
B63B0 B31 B32

GL GU

Figure 8.5.: We fill the guess value G and victim value V with repeating nibbles.
We use four distinct nibbles for both the upper and lower half of
each 64B value.

single bits, i.e., all possible cases, confirms that the leakage still follows
the same structure, confirming the suitability of the model.

The power leakage is influenced by the bytes accessed, the lower and
upper cache line half, in distinct ways that can be modeled by Hamming
distance and Hamming weight.

4.2. Modelling the Leakage Function

In this section, we derive and quantify a power leakage model that predicts
the power consumption of loads, stores, and evictions from different points
in the cache hierarchy, depending on the data. This model is the basis
of our correlation power analysis attack and our end-to-end attacks (see
Section 6). We extend the initial experiments with stores (movq) and
prefetches (prefetcht0) to distinguish a load that fills a register from
a prefetch that only brings data into the cache. To measure the effects
of dirty cache lines, we clear the lowest 8 bytes of a cache line, marking
it as dirty. Based on our previous insights into influence factors within a
cache line, we optimize the regression analysis by operating with repeating
nibbles (4-bit values), reducing the runtime by several orders of magnitude.
Figure 8.5 shows the structure of two 64B values: the attacker controlled
guess G and the victim value V . Each value is split into the lower (GL,VL)
and upper (GU ,VU) 32B parts, resembling the discovered zones. Finally, we
randomly sample four nibbles, i.e., vL, vU , gL, and gU , to fill V = VL|VU

and G = GL|GU respectively. We consider 4-bit aligned nibbles, resulting
in 128 nibbles per value. Our experiments reveal that the power model
consists of four distinct leakage components depending on the cache
eviction strategy used. Forwarding data to a register adds additional
leakage.

The Full Leakage Model. Due to the different energy consumption
of the instructions and the eviction strategies, we use the average power

238 Chapter 8. Collide+Power

Aligned Leakage

GU

GL

VU

VL

B63

B32
B31

B0

B63

B32
B31

B0

Cross Leakage

GU

GL

VU

VL

B63

B32
B31

B0

B63

B32
B31

B0

Self Leakage

GU

GL

VU

VL

B63

B32
B31

B0

B63

B32
B31

B0

Figure 8.6.: Aligned, cross, and self leakage between G and V.

(P) as our measurement, i.e., the energy over time. This measurement
compares how substantial the leakage is and optimizes for the fastest
leakage method. Furthermore, we determine the influence of the Hamming
distance and the Hamming weights of G and V on the average power
consumption. We perform a linear regression with the model shown in
Equation (8.2) to get the exact scaling factors that model the µW changes
due to single-bit changes. We choose a least-squares linear regression as it
minimizes the error between the noisy measurements and the model. The
model is visualized in Figure 8.6 and features the following components.
First, the model contains the aligned leakage terms (ai), i.e., the leakage
between aligned bits in the cache line. Second, the model contains the
cross leakage terms (ci), i.e., the leakage across the lower and upper parts
of different cache lines. Third, we also include the self leakage terms (si),
i.e., the leakage between the upper and the lower parts of the same cache
line. Finally, we add the Hamming weights (wi) of each upper and lower
cache-line part yielding the model

P = a0 · hd(VL,GL) + a1 · hd(VU ,GU)︸ ︷︷ ︸
aligned leakage

+ c0 · hd(VL,GU) + c1 · hd(VU ,GL)︸ ︷︷ ︸
cross leakage

+ s0 · hd(VL,VU) + s1 · hd(GL,GU)︸ ︷︷ ︸
self leakage

+ w0 · hw(VL) + w1 · hw(VU)︸ ︷︷ ︸
victim weight

+w2 · hw(GL) + w3 · hw(GU)︸ ︷︷ ︸
guess weight

. (8.2)

4. Memory-Hierarchy Leakage Analysis 239

Table 8.2.: The results of the linear regression, the correlation coefficients, and
SNRA for different types of evictions and instructions.

Effectiveness Aligned Leakage Cross Leakage Self Leakage Weights

ρ̂ SNRA hd(vL, gL) hd(vU , gU) hd(vL, gU) hd(vU , gL) hd(vL, vU) hd(gL, gU) hw(vL) hw(vU) hw(gL) hw(gU)In
st
.

Ev
ic
t.

·1 ·10−3 a0 in µW a1 in µW c0 in µW c1 in µW s0 in µW s1 in µW w0 in µW w1 in µW w2 in µW w3 in µW

None 0.118 6.384 159.2 3.0 0.0 2.2 0.0 2.4 0.0 0.0 173.8 0.0
L1 0.737 2.645 219.9 108.7 0.0 0.0 0.0 0.0 186.9 90.1 3198.8 1399.1

L
o
ad

L1+L2 0.633 1.957 119.2 54.9 48.9 34.5 52.8 548.8 118.3 43.7 1679.5 637.4

None 0.003 0.001 0.0 2.5 0.0 2.1 4.3 3.2 1.6 0.1 3.2 0.0
L1 0.191 0.861 27.1 30.1 0.0 0.0 2.8 0.0 8.7 10.1 183.6 184.8

P
re
fe
tc
h

L1+L2 0.218 0.491 17.0 17.8 10.5 10.2 12.2 177.2 7.7 5.9 118.1 114.8

None 0.003 0.001 1.5 0.6 0.5 0.0 0.0 0.0 5.4 0.0 4.8 0.1
L1 0.103 0.376 18.6 21.4 1.5 0.9 3.4 45.3 6.4 11.8 78.9 115.5

S
to
re

L1+L2 0.280 0.644 64.5 83.7 42.0 41.2 89.1 946.0 21.7 66.7 188.1 630.4

4.3. Quantifying the Leakage Function

Table 8.2 shows the results of the regression analysis (cf. Section 4.2). The
results indicate that eviction strategy and access instruction influence the
power leakage model of the cache hierarchy. Furthermore, the correlation
and model coefficients change based on the data placement. The results
account for the repeating nibbles and show the coefficients for single nibbles,
allowing us to quantify and compare the bit leakage in µW . Furthermore,
we introduce the aligned signal-to-noise ratio (SNRA) between the aligned
leakage and all other components, i.e., the noise, for simple comparison
across techniques. This is not the overall signal-to-noise ratio of the model
but rather the part important for our attacks.

Instructions and Data Placement. In line with our regression analysis
(cf. Section 4.1), we observe that the position of the data and the instruc-
tions used to access the data influence the model coefficients. First, using
no eviction never yields a significant signal for the upper cache line parts
VU and GU , as data is never moved between L1 and L2 cache. Furthermore,
for prefetch with no eviction, we never observe any significant signal for
any of the cache line parts, as no part of the cache line is moved into a
register, and prefetch moves no data when it is already present in the L1
cache. For the store instruction, we overwrite the lower 8B with zeros.
We observe no signal with no eviction, as the dirty cache line never leaves
the cache, and no actual victim or guess nibbles are stored. Therefore, we
conclude that explicitly loading data introduces observable leakage, e.g.,
159.2 µW per bit difference for our test CPU.

The model coefficients are influenced by the instruction performing the
access and from where to where data is transmitted in the CPU’s internal
memory hierarchy.

240 Chapter 8. Collide+Power

Cache Eviction. Model coefficients are influenced by different types
of cache eviction, influencing the aligned signal-to-noise ratios of the
techniques. The SNRA for load instructions decreases by a factor of 2.413
when switching from no eviction to L1 eviction. We see a further decrease
of factor 1.351 when switching from L1 to L1+L2 eviction, similar to
the factor of 1.753 when using prefetch instructions. However, for store
instructions, we see an increase of factor 1.712 in the aligned signal-to-noise
ratio when performing L1+L2 eviction. We conclude that the mechanism
to write back dirty cache lines add additional leakage (which we exploit
in Section 7.5). Overall, we observe that for higher cache eviction activity,
the correlation coefficients are increasing, indicating that the overall model
represents the power consumption more accurately, but the desired signal
is not increasing as strongly.

The model is more accurate with more cache eviction. However, the
aligned signal-to-noise ratio decreases for the load and prefetch instruc-
tions, whereas for store instructions, it increases when using additional
evictions.

Memory Bus Effects. The results in Table 8.2 support the leakage
patterns from our regression analysis (cf. Section 4.1). First, we observe
that aligned leakage, i.e., coefficients a0 and a1, is present regardless
of the eviction used. This is fundamental for our two attack variants
MDS-Power and Meltdown-Power (cf. Section 6). When using L1+L2
eviction we observe additional effects: cross-leakage and self-leakage (cf.
Figure 8.6). The self-leakage of the attacker-controlled guess in the case of
the load instructions is a factor of 4.604 times stronger than the aligned
leakage, 9.955 times for prefetches, and 11.302 times for stores, respectively.
However, our novel differential measurement technique removes all the
influences of self-leakage in the signal, as we demonstrate in Section 5.
Finally, we observe cross-leakage between the upper and lower parts of V
and G. In all cases, the cross-leakage terms c0 and c1 are smaller than the
aligned leakage terms. Therefore, the main influence in the CPA is still
the aligned leakage.

L1+L2 eviction adds additional leakage effects. The self-leakage of the
attacker-controlled guess overshadows all other components. However,
we address this with our differential measurement technique. The aligned
leakage terms outweigh the cross-leakage terms.

We conclude that an attacker has several different ways to influence and
model the leakage. By using memory accesses, cache loads and stores,

5. Differential Measurement 241

Table 8.3.: The coefficients and statistics of the differential measurement tech-
nique for different types of evictions and instructions.

Effectiveness Aligned Leakage Cross Leakage Self Leakage Weights

ρ̂ SNRA hd(vL, gL) hd(vU , gU) hd(vL, gU) hd(vU , gL) hd(vL, vU) hd(gL, gU) hw(vL) hw(vU) hw(gL) hw(gU)In
st
.

Ev
ic
t.

·1 ·10−3 a0 in µW a1 in µW c0 in µW c1 in µW s0 in µW s1 in µW w0 in µW w1 in µW w2 in µW w3 in µW

None 0.311 72.004 544.5 4.2 1.1 0.5 0.0 0.0 0.0 0.0 362.6 0.0
L1 0.907 7.873 598.3 278.8 0.0 0.0 0.0 0.0 0.0 0.0 6124.4 2696.9

L
o
ad

L1+L2 0.822 5.632 339.3 141.7 106.6 89.4 0.0 0.0 0.0 0.0 3750.7 1435.0

None 0.003 0.000 0.0 0.8 0.0 5.7 0.0 0.0 0.0 0.0 1.7 2.8
L1 0.370 11.365 136.7 133.9 1.9 0.1 0.0 0.0 0.0 0.0 454.1 455.5

P
re
fe
tc
h

L1+L2 0.300 5.294 80.5 86.9 40.9 43.0 0.0 0.0 0.0 0.0 334.0 332.5

None 0.003 0.000 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 7.0 0.0
L1 0.241 3.876 63.3 74.5 4.9 9.6 0.0 0.0 0.0 0.0 204.6 303.2

S
to
re

L1+L2 0.450 6.457 133.7 169.0 84.7 86.2 0.0 0.0 0.0 0.0 347.1 1130.5

and eviction, the attacker can precisely control and optimize the leakage
rate for victim data in different locations in the CPU’s internal memory
hierarchy.

5. Differential Measurement

As outlined in Section 3.1, increasing the signal-to-noise ratio is crucial to
make Collide+Power practical. We propose a differential measurement
technique to eliminate some noise influences, amplify the leakage, and
reduce the required samples. We exploit that the power consumption can
be influenced by two extremes: the maximum and minimum Hamming
distance between attacker and victim value. However, the measurements
are affected by additive noise ω that, based on our analysis, is near constant
between temporally close samples.

Masking Victim Data. An attacker cannot influence the victim data
value V in a real-world scenario. Therefore, we introduce the mask m, a
64B value, indicating which bits of G should be inverted; all remaining bits
are unchanged. We measure one sample PG for the guess G and directly
afterward the sample PG̃ with the inverse guess G̃ = G ⊕m and subtract

the two samples ∆P(G, G̃) = PG −PG̃ . The mask m selects only a fraction
of the cache line of V for the differential measurement, reducing the
search complexity in a divide-and-conquer-style approach. The differential
measurement changes the simplified leakage model of

P(G,V) = a0 · hd(G,V) + w0 · hw(V) + w2 · hw(G) + ω, (8.3)

by subtracting the model for P(G̃,V) to

∆P = 2a0 · hd(Gm,Vm) + 2w2 · hw(Gm)− (a0 + w2) · hw(m), (8.4)

242 Chapter 8. Collide+Power

where Gm = G ∧ m and Vm = V ∧ m are the masked cache lines with
which we mask non-targeted data. The noise term ω and the unknown but
constant value hw(V) cancel out. Furthermore, subtracting hd(G̃,V) from
hd(G,V) yields a 2x amplification and a constant offset hw(m). Finally,
hw(G)−hw(G̃) also results in a 2x amplification and another offset hw(m).
Thus, the final model amplifies the leakage by a factor of 2 and eliminates
some additive noise. We show the full derivation of Equation (8.4) in
Section 10.1.

Quantifying the Differential Measurements. Table 8.3 shows the
results with our differential measurement technique. We see that the
derived differential model ∆P(G, G̃) in Equation (8.4) holds, and we gain
a twofold amplification in a0, a1, w2, and w3 compared to Table 8.2. We
can also see that w0 and w1, i.e., the influence of hw(V), are reduced to
0. Similarly, using L1+L2 eviction completely removes the self-leakage
effects s0 and s1. The correlation coefficients between our model and the
actual measurements increase up to 0.907 in the case of loads with L1
eviction, i.e., a 23% increase, indicating that this significantly reduces
the overall noise ω of the measurements. Finally, we also see that the
aligned signal-to-noise ratio is increased by up to a factor of 11.27 (8.778
on average). Therefore, the measured results support our derivation of the
differential model and its properties.

Our differential measurement model amplifies the signal by a factor of 2
and eliminates a significant part of the additive noise and self-leakage
effects.

CPA Model Coefficients. In this section, we discuss how to minimize
profiling for the CPA model used for Collide+Power (cf. Section 3). We
derive the leakage structure and coefficients in Equation (8.2) and Table 8.3.
As these exact coefficients require additional time to profile, we discuss
three different approaches. First, we can profile the coefficients for the
target CPU once and use a full model of Equation (8.2). An attacker could
target its own cache lines to obtain these coefficients. Second, we try to
approximate the coefficients without profiling the target. The correlation
coefficient ρ̂ is scaling and location invariant, meaning that linear scaling
·a and offsets +b of the model do not influence the CPA attack. Due to the
scaling invariance, we only need the ratio between some of the coefficients
based on the used setup, e.g., w2/a0. If we consider Table 8.3, we observe
that this ratio can be approximated based on the attack technique used.
The ratio is approximately 0.7 for no eviction, 10.2 for L1 cache eviction,

6. End-to-End Attack Implementation 243

and 11.1 for L1+L2 cache eviction when using load instructions. The
resulting model, then, is

M(Gm,Vm) = hd(Gm,Vm) + w2

a0
· hw(Gm). (8.5)

Finally, we fix the attacker-controlled parameter hw(Gm) to a constant
value simplifying the differential model to

M(Gm,Vm) = hd(Gm,Vm). (8.6)

Due to the mask m, and the differential measurement, we can partition
the brute-force approach of recovering V into smaller problems by only
recovering Vm. The attacker can choose an arbitrary mask m and, accord-
ing to Equation (8.4), only the selected bits will produce a measurable
Hamming distance hd(Gm,Vm) because the unmasked parts cancel out.
We further verify that the unmasked portions do not influence the CPA
success probability in Section 7.2.

6. End-to-End Attack Implementation

In this section, we describe the implementation of our two Collide+Power
end-to-end attacks: MDS-Power and Meltdown-Power. While Meltdown-
type attacks are mitigated in recent CPU generations, Collide+Power
forms a drop-in replacement, achieving leakage rates of 4.82 bit/h in the
MDS-Power case and 0.136 bit/h in the amplified Meltdown-Power case.
The MDS-Power variant targets data-in-use, whereas the Meltdown-Power
variant targets data-at-rest. Generally, Collide+Power is agnostic to the
power side channel used. Depending on the system configuration and
hardware, high-accuracy channels like Intel RAPL may be available to the
attacker. However, for our end-to-end attacks, we rely on timing-based
power side-channel attacks, which are not mitigated on x86 systems and,
thus, can be mounted by an unprivileged attacker, as we confirm in our
evaluation (cf. Section 7.4).

6.1. MDS-Power Implementation

MDS-Power follows the exact scenario and threat model of MDS attacks
like RIDL and ZombieLoad [34, 35] (cf. Section 3.3). Listing 8.2 shows the

244 Chapter 8. Collide+Power

1 while (true) {

2 access (& victim_cache_line);

3 }

Listing 8.2: In the RIDL PoC, a victim program frequently accesses the victim
cache line V. Collide+Power extracts the accessed data without
relying on any MDS vulnerabilities.

Internal CachesAttacker:

Victim:

î prime(G)

î access(V)

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . .

T
h
r
e
a
d

T
h
r
e
a
d

P
h
y
s
ic

a
l
C
o
r
e

Figure 8.7.: MDS-Power: Attacker and victim constantly reload G and V respec-
tively while being co-located on hyperthreads.

RIDL PoC2 where the victim program accesses a cache line in a loop while
being co-located with the attacker on the same physical core. Although a
real-world victim program is unlikely to perform secret accesses in a loop,
it offers a fair comparison of MDS-Power with RIDL and ZombieLoad as
they use similar victim programs. Intel fixed this MDS hardware flaw in
the 9th CPU generation. With MDS-Power, we demonstrate MDS-style
leakage without relying on any hardware MDS vulnerability.

The basic setup of MDS-Power is illustrated in Figure 8.7. MDS-Power
exploits that due to the victim’s own load, the victim’s secret value
constantly moves through the CPU’s memory hierarchy, e.g., in and out of
internal buffers. The attacker simultaneously repeatedly loads guesses G,
which then move through the same parts of the CPU’s memory hierarchy.
MDS-Power then instantiates Collide+Power either with direct (e.g., the
Intel RAPL interface if available) or indirect (e.g., via timing differences
due to throttling) power side-channel leakage. MDS-Power is evaluated
in Section 7.3.

6. End-to-End Attack Implementation 245

Internal CachesAttacker (Userspace):

Victim (Kernel):

prime(G)

access-PHT/RSB(V)

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . .

T
h
r
e
a
d

P
h
y
s
ic

a
l
C
o
r
e

Figure 8.8.: Meltdown-Power: The attacker primes the cache with G and uses an
RSB or PHT gadget in the kernel to load V. The address of V can
be any kernel address.

6.2. Meltdown-Power Implementation

Meltdown-Power follows the scenario and threat model of the original
Meltdown attack [20], leaking arbitrary kernel data from userspace (cf.
Section 3.3). Like Meltdown on non-L1 data, Meltdown-Power depends
on the victim code to load the data, possibly triggered by the attacker.
We use a Spectre prefetch gadget inside the kernel [36]. They are more
widespread [4, 13] than regular Spectre gadgets, as they only load data but
do not leak it. The attacker then alternatingly primes the cache with 15
distinct cache lines filled with the guess G (cf. Section 4) and then reloads
the victim cache line V using a prefetch gadget, as shown in Figure 8.8.
We evaluate Meltdown-Power with two prefetch gadgets, an artificial one
for an in-depth evaluation and a real-world gadget to show the practicality
of Meltdown-Power.

Artifical Spectre-RSB Prefetch Gadget. We start our evaluation
with the Spectre-RSB gadget shown in Listing 8.3, located in the ioctl

entry function of a kernel module. During misspeculation, it dereferences
rdx containing an attacker-controlled pointer to the victim cache line V.
Similar to the retpoline mitigation [37], the gadget first calls a function
(Line 3), which in Lines 8 and 9, modifies the return address on the stack
to point to the ioctl return. Then, the CPU misspeculates the return
address and transiently accesses the victim cache line V (Line 5). This
brings V into the cache, exposing it to Collide+Power. Identical to the
prefetch gadget exploited by Meltdown [36], this gadget can fetch any
kernel-accessible memory location into the cache, including all physical
memory, via the direct-physical map.

2RIDL PoC source code: https://github.com/vusec/ridl/blob/be77e2bd16df8a1
ec78c4bf9b82912c230971dc2/pocs/ridl_basic.c

https://github.com/vusec/ridl/blob/be77e2bd16df8a1ec78c4bf9b82912c230971dc2/pocs/ridl_basic.c
https://github.com/vusec/ridl/blob/be77e2bd16df8a1ec78c4bf9b82912c230971dc2/pocs/ridl_basic.c

246 Chapter 8. Collide+Power

1 # rdx = &victim_cache_line

2 module_ioctl:

3 call retpoline (%rip)

4 misspeculation:

5 mov (%rdx), %rax

6 ud2

7 retpoline:

8 lea retpoline_end (%rip), %rax

9 mov %rax , (%rsp)

10 ret

11 retpoline_end:

12 xor %eax , %eax

13 ret

Listing 8.3: The artificial Spectre-RSB prefetch gadget in a kernel module used
for the first Meltdown-Power evaluation.

Real-World Spectre-PHT Prefetch Gadget. To demonstrate the
practicality of Meltdown-Power, we also evaluate Meltdown-Power with a
real-world Spectre prefetch gadget in Linux kernel 5.14, in the function
find_keyring_by_name of the KEYCTL_JOIN_SESSION_KEYRING

syscall, discovered by Johannesmeyer et al. [13]. Section 10.2 shows the
relevant part of the code and details how misspeculation causes type
confusion to bring victim data into the CPU’s memory hierarchy to expose
it to Collide+Power.

For Collide+Power, we need to minimize the activity in the kernel to
obtain a high signal-to-noise ratio. Instead of using a single process rapidly
creating new keyrings, we use child processes in the same namespace that
hold their keyrings for a longer time frame. This avoids the frequent clean-
up operations for unused keyrings in the kernel, minimizing kernel activity.
With the number of child processes, we control the loop iterations, tuning
the mistraining of the branch prediction. By naming all keyrings differently,
we reduce the operations performed within the loop by continuing it early.
The last keyring in the iterated list satisfies all conditions to join, greatly
reducing the code executed in KEYCTL_JOIN_SESSION_KEYRING after
the misspeculation. Thus, we minimize the noise substantially compared to
prior work, enabling us to use this real-world prefetch gadget in an end-to-
end Meltdown-Power attack. Meltdown-Power is evaluated in Section 7.5.

7. Evaluation 247

Table 8.4.: Evaluation of the leakage model for Collide+Power on different CPUs
and microarchitectures.

CPU Microarchitecture Microcode Stepping Release Year L1 Ways L2 Ways ρ̂ SNRA ·10−3

Core i5-2520M Sandy Bridge 0x1b 7 2011 8 8 0.011 0.107
Core i3-7100T Kaby Lake 0xec 9 2017 8 4 0.024 0.416
Xeon E-2176M Coffee Lake 0xf0 10 2018 8 4 0.820 17.997
Core i7-10510U Comet Lake 0xc6 12 2019 8 4 0.549 7.188
Core i7-10710U Comet Lake 0xe0 0 2019 8 4 0.130 0.008
Core i7-1185G7 Tiger Lake 0x72 1 2020 12 20 0.728 7.643
Core i9-12900K Alder Lake 0xf 2 2021 12 10 0.352 3.513
Core i9-9900 Coffee Lake 0xd6 12 2019 8 4 0.725 10.992
Core i7-8700K Coffee Lake 0xf0 10 2017 8 4 0.907 72.004

In
te
l

Core i9-9980HK Coffee Lake 0xaa 13 2019 8 4 0.799 79.132

Ryzen 5 2500U Zen 0x810100b 0 2017 8 8 0.428 5.429
Ryzen 5 3550H Zen+ 0x8108102 1 2019 8 8 0.585 3.025
EPYC 7252 Rome 0xa50000c 0 2019 8 8 0.160 0.178A

M
D

Ryzen 9 5900HX Zen 3 0x8301055 0 2021 8 8 0.650 7.269

7. Evaluation

In this section, we evaluate Collide+Power on multiple CPUs to demon-
strate that cache-hierarchy leakage is a widespread problem. Furthermore,
in an end-to-end scenario, we demonstrate MDS-Power leaking data from
the sibling thread with both the RAPL interface and throttling side
channels. Finally, we evaluate Meltdown-Power in one artificial setting to
demonstrate that we can extract single bits from the kernel and measure
an amplified real-world prefetch gadget to verify that we observe a signal
useable for Collide+Power.

7.1. Affected CPUs

We systematically analyze on which CPUs the differential model Equa-
tion (8.4) of Collide+Power works. We perform the same experiments
as in Section 5 and report the maximum observed correlation coefficient
and the maximum SNRA, i.e., the significance of the aligned Hamming
distance leakage, which is the foundation of Collide+Power. Table 8.4
shows our result on 14 CPUs from both AMD and Intel, spanning a release
period from 2011 until 2021, for nearly all of which we can demonstrate
to be affected by Collide+Power. We observe that 12 out of 14 CPUs
have a maximum correlation coefficient above 0.1, reaching 0.907 on the
Intel Core i7-8700K (cf. Table 8.3). Furthermore, we found a maximum
signal-to-noise ratio of 79.132·10−3 on the Intel Core i9-9980HK, which
is 9.9% stronger than the Intel Core i7-8700K. For the CPUs with lower

248 Chapter 8. Collide+Power

101102103104105
0%

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

L1128x L11x

Figure 8.9.: The CPA success probability for the raw channel when using loads
to evict the L1. We target both amplified (128x) and single nibble
(1x) victim values. The probability increases with a lower leakage
rate, i.e., with more samples.

101102103

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

None1x,Zeros None1x,Constant None1x,Random

Figure 8.10.: The CPA success probability is not influenced by the non-targeted
data in the victim cache line. We target the unamplified (1x) victim
nibble and fill the remaining parts with zero, constant, and randomly
changing data.

metrics, we cannot exclude that a slightly different cache eviction (cf. Fig-
ure 8.3) could increase leakage. Finally, we conclude that Collide+Power
is widespread due to how we build and design CPU memory hierarchies.

7.2. Evaluation of the Model for the Channel

Our evaluation of the CPA models using our differential measurement
shows the general capabilities of Collide+Power. We focus on load instruc-
tions with L1 cache eviction in two settings. First, we fill the complete
values V and G with the repeating nibbles v and g, respectively (128x).

7. Evaluation 249

101102103104105
0%

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

w2
a0

= 10.2 w2
a0

= 3.9 hw(G) = 2 Exact

Figure 8.11.: Comparison between different CPA models and the influence of the
wrong ratio on the success probability. The wrong ratio requires
reducing the leakage rate by a factor of 20 to achieve the same
success rate as the correct ratio.

Second, we use a single nibble v and g and zero the remaining parts, repre-
senting no-amplification (1x). To compute the CPA success probability (cf.
Figure 8.9), we repeatedly take a specific number of random samples from
our measured samples, perform the CPA, and compute how often v was
recovered without any bit errors. The number of samples used determines
the leakage rate. In the amplified case, we can recover 505.81 bit/h of
v with a success probability of 99.0% (n=1000, σx̄=0.31%). Without
amplification, we still achieve a leakage rate of 10.99 bit/h with 99.8%
(n=1000, σx̄=0.14%), corresponding to 23 000 differential measurements
per nibble.

The differential measurement technique allows the masking of specific
data within a cache line. To verify that the differential measurement is
unaffected by the unmasked data, we perform an experiment that targets
the unamplified (1x) victim nibble v in three distinct scenarios: We fill
the remaining parts of the cache line with either zero, random data that
stays constant, or random data that changes between measurements and
compute the influences on the CPA success probability. We use movq loads
with the no eviction pattern (cf. Figure 8.3) for this analysis and show in
Figure 8.10 that the unmasked victim data does not influence the CPA
success probability. This matches the derivation of Equation (8.4) where
the unmasked terms cancel out. We discuss changing the masked data as
mitigation against Collide+Power in Section 8.

In Figure 8.11, we compare coefficients of the CPA model (cf. Section 5)
based on the amplified (128x) L1 eviction experiment from the first

250 Chapter 8. Collide+Power

101102103104
0%

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

None128x L1128x L1+L2128x None1x

(a) MDS-Power using RAPL. The no-eviction technique works best.

100101102103104
0%

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

MSR128x MSR1x Stress128x

(b) MDS-Power using the timing-based throttling side channel and the no-eviction
technique. MSR uses a reduced power limit. Stress uses stressors on the other
CPU cores to limit the power budget.

Figure 8.12.: MDS-Power probability to leak the nibble v error-free for different
strategies and measurement methods.

paragraph. First, when only using samples with fixed Hamming weight
(hw(G) = 2), we achieve a 2.5 times higher leakage rate than the exact
model to achieve a success rate of 99.8% (n=1000, σx̄=0.14%). Second,
fixing the ratio w2/a0 to 10.2 does not result in an observable difference to
the exact model coefficients. Finally, using the incorrect ratio w2/a0 of 3.9
requires reducing the leakage rate 20 times to reach a success rate of 99.3%
(n=1000, σx̄=0.26%). Therefore, we conclude that small inaccuracies in
the model coefficients can be compensated with more samples.

7. Evaluation 251

7.3. Evaluation of MDS-Power

We evaluate MDS-Power on an Intel Core i9-9900K CPU with Ubuntu
20.04.5 LTS and Linux kernel 5.4. To compare the leakage of the different
approaches, we report the leakage rate in bits per hour with the CPA
success probability of recovering the victim nibble v without errors. We
disabled the hardware prefetchers during this experiment. However, as we
discuss in Section 4.1, the best attack scenario is unaffected by hardware
prefetchers. Figure 8.12a compares the leakage for different eviction strate-
gies when using load instructions to access the guess cache lines, measured
with RAPL. We observe that the no eviction technique achieves a leakage
rate of 188.80 bit/h and recovers the amplified nibble (128x) with 99.2%
(n=1000, σx̄=0.28%) success rate. No eviction achieves 9.33 times the
leakage rate of the L1 cache eviction and 18.07 times the leakage rate of
the L1+L2 cache eviction. When targeting a single unamplified nibble
(1x), no eviction achieves a leakage rate of 4.82 bit/h with a success rate
of 98.9% (n=1000, σx̄=0.32%).

Figure 8.12b evaluates the no-eviction technique with throttling attacks [21,
38]. With adaptive power management [11], the CPU regulates its fre-
quency and voltage to meet its power targets. However, the time-stamp
counter frequency, read by rdtscp, is fixed, and therefore, throttling-
based attacks can be mounted with this simple primitive. We evaluate
the two distinct methods to achieve frequency throttling, as described
in Section 3.3. First, we set the power limit of the CPU to 5.625W over
0.977ms in the MSR_PKG_POWER_LIMIT [12]. We observe that when using
the MSR to set the power limits, the no-eviction technique achieves a
leakage rate of 33.78 bit/h with a success probability of 99.5% (n=1000,
σx̄=0.22%) leaking the amplified nibble compared to the leakage rate of
0.68 bit/h with a success probability of 99.5% (n=1000, σx̄=0.22%) when
targeting the unamplified nibble.

Second, we run the stress program on the remaining logical threads
reducing the available thermal and energy budget. We achieve a leakage
rate of 1.16 bit/h with a success probability of 99.6% (n=1000, σx̄=0.19%)
in the amplified and a leakage rate of 0.065 bit/h with a success probability
of 95.3% (n=1000, σx̄=0.66%) for the unamplified case, respectively. We
summarize the results of MDS-Power in Table 8.5. We conclude that
MDS-Power can extract secret information with throttling side channels,
albeit with a strongly reduced leakage rate compared to RAPL.

252 Chapter 8. Collide+Power

Table 8.5.: Summary of MDS-Power using load instructions for the different
measurement variants and eviction techniques.

Eviction Ampl. Leakage Rate Measurement Duration Samples
·1 bit/h ·1ms

None 128x 188.80 36.3 1050
L1 128x 20.24 71.3 4998
L1+L2 128x 10.45 79.2 8705R

A
P
L

None 1x 4.82 36.3 40 000

None 128x 33.78 76.1 2800

L
im

it

None 1x 0.68 75.6 140 000

None 128x 1.16 44.2 140 000

S
tr
es
s

None 1x 0.065 44.5 2 500 000

Table 8.6.: Comparison between the model coefficients for none-evicting loads for
RAPL and throttling side channels.

ρ̂ SNRA hd(V,G) hw(V) hw(G)
Interface ·1 ·10−3 a0 w0 w2

RAPL 0.378 39.5 275.0 µW 14.7 µW 453.5 µW
MSR 0.189 13.3 1840.5 ns −70.8 ns 2390.3 ns
Stress 0.029 0.3 62.2 ns −0.9 ns 87.4 ns

7.4. Collide+Power through Power and Time

We verify that the leakage models derived in Section 5 holds when exchang-
ing the average power measurements with timing measurements. Table 8.6
shows the correlation coefficients, the aligned signal-to-noise ratio, and the
model coefficients for the RAPL interface, throttling attacks via the energy
limit MSR, and throttling via stress (cf. Section 3.3). We denote that the
unit changes from Watt to Seconds due to the different measurements.
We reuse the recorded data of the MDS-Power experiment on our Core
i9-9900 CPU (cf. Section 7.3). In line with the differential leakage model,
we observe that the hw(V) component is minimal compared to the other
components due to the differential measurements. Furthermore, we see
a decrease in the correlation coefficient of factor 2 when switching from
RAPL to the power limit MSR and a decrease of 13.034 when switch-
ing from RAPL to stress. We conclude that although the signal-to-noise

7. Evaluation 253

100101102103104
0%

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

ALD,128x AST,128x BLD,128x BST,128x

(a) Meltdown-Power using the artificial Spectre-RSB gadget on CPUs A and B
with either loads (LD) or stores (ST).

10−1100

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

AST AST,3rd CST CST,3rd

(b) Meltdown-Power using the real-world kernel Spectre-PHT gadget. The plots
donated with 3rd show the probabilities of finding the correct v in the first
three candidates predicted by the model.

Figure 8.13.: Meltdown-Power probability to leak the nibble v error-free for
different strategies and prefetching methods.

ratio and the correlation coefficients are decreasing, we still observe a
measurable signal usable for MDS-Power as shown in Section 7.3.

7.5. Evaluation of Meltdown-Power

Meltdown-Power has a significantly lower performance than MDS-Power
due to the amount of code executed for the prefetch gadget and the reliabil-
ity of its speculation. Generally, this activity drastically increases the time
to obtain a single measurement sample and reduces the signal-to-noise
ratio. Therefore, to enable a fair and robust comparison to MDS-Power,
we evaluate Meltdown-Power primarily with the RAPL interface. Further-

254 Chapter 8. Collide+Power

more, we disable the hardware prefetchers during this experiment. We
discuss and evaluate the resulting implications in Section 7.6. We estimate
the number of samples required to observe the same leakage with throt-
tling side channels (cf. Section 7.4), based on our RAPL measurements,
taking the evaluation of MDS-Power into account (see Section 7.3). Some
Meltdown mitigations switch the cr3 register during context switches [20],
which implicitly flushes the TLB. When the kernel flushes the TLB upon
entry, the real-world prefetch gadget found by Johannesmeyer et al. [13]
has a low prefetch rate on our test machine. As Meltdown-Power is partic-
ularly relevant on systems not affected by Meltdown, we assume that such
mitigations are not in place, and the TLB is not flushed after entering the
kernel, which is commonly the case on newer microarchitectures.

We evaluate Meltdown-Power with Ubuntu 20.04 LTS on an Intel Core
i7-8700K (CPU A), an Intel Core i9-9980HK (CPU B), and an Intel Core
i7-6700K (CPU C). CPU A and C run Linux kernel version 5.4, and CPU
B version 5.13. We find that L1+L2 eviction with dirty cache line works
best for Meltdown-Power and did not observe a signal with no-eviction, in
line with our assumptions as the guess G will not reach the value V. We
disabled the hardware prefetchers. However, in this scenario, we show in
Section 7.6 that the influences of the hardware prefetchers are minimal.

First, we evaluate the artificial Spectre-RSB gadget from Listing 8.3
located within a custom kernel module in Figure 8.13a. In the amplified
nibble (128x) case, we achieve a leakage rate of 12.47 bit/h with 99.9%
(n=1000, σx̄=0.10%) success probability on CPU B which is 2.843 times
higher than the leakage rate of CPU A with 99.2% (n=1000, σx̄=0.28%)
success probability. Furthermore, in an unamplified scenario (1x), we
achieve a leakage rate of 0.84 bit/h with a success probability of 99.7%
(n=1000, σx̄=0.17%) on CPU B.

Second, we evaluate Meltdown-Power with the real-world Spectre-PHT
gadget. The real-world Spectre-PHT gadget loads the cache line with
a 90.51% (n=10 000, σx̄=0.03%) probability on CPU C when using 20
keyrings (cf. Section 6.2). We fix the victim nibble v, i.e., the target of the
attack, to 7 and use the 128x amplification to fill the complete victim value
V. The attacker configures the prefetch gadget to load the victim’s direct
physical map address and uses 20 keyrings for the loop. Figure 8.13b shows
that on CPU A we achieve a leakage rate of 0.136 bit/h with a success
probability of 98.8% (n=1000, σx̄=0.34%) to recover the victim nibble v.
On CPU C, we achieve 0.147 bit/h with a probability of 96.7% (n=1000,
σx̄=0.56%). Table 8.7 summarizes the results of Meltdown-Power, and

7. Evaluation 255

Table 8.7.: Summary of Meltdown-Power when using L1+L2 eviction for the
different variants across machines.

CPU Inst. Ampl. Leakage Rate Measurement Duration Samples
·1 bit/h ·1ms

A Load 128x 2.94 122.5 20 000
A Store 128x 4.39 109.4 15 000
B Load 128x 12.47 192.4 3000
B Store 128x 8.55 168.5 5000

R
S
B

B Store 1x 0.84 519.3 16 500

A Store 128x 0.136 1968.8 27 000

P
H
T

C Store 128x 0.147 2099.8 23 370

Fullv . . . v

a . . . a

V =

A =

B63B0

B127B64

g . . . g

0 . . . 0

= G
B63B0

B127B64

Figure 8.14.: We fill the guess value G, the victim value V , and the adjacent cache
line of the victim A with repeating nibbles.

we conclude that Meltdown-Power is capable of extracting data across
privilege boundaries.

Finally, we estimate the leakage rates for additional Meltdown-Power
scenarios. First, we compute the leakage rate when targeting an unamplified
nibble in the kernel with RAPL. We use the leakage conversion factor of
46.02 (cf. Section 7.2) resulting in a duration estimate of 14.1 days/bit.
Second, we estimate the leakage rates for throttling attacks when using
both the power limits and the stress program to leak the unamplified
nibble. Based on Section 7.3 and Table 8.5, we compute a leakage rate
conversion factor of 7.09 between RAPL and the power limits and 74.15
between RAPL and stress, respectively. This results in a leakage duration
of 99.95 days/bit with power limits and 2.86 years/bit with stress-induced
throttling, indicating a reduced SNR. We conclude that the real-world
leakage rates with the Spectre-PHT gadget are impractical. Future work
is required to determine whether potential improvements and optimized
prefetch gadgets exist and can bring the attack runtime down to a level
where Meltdown-Power poses a significant security risk.

256 Chapter 8. Collide+Power

Table 8.8.: Coefficients and statistics of the differential measurement technique
modeling the adjacent cache line prefetcher.

HWPF ρ̂ SNRA hd(v, g) hd(a, g) hw(v) hw(a) hw(g)
·1 ·10−3 µW µW µW µW µW

Enabled 0.891 9.263 351.26 25.69 0.00 0.00 3250.24
Disabled 0.902 12.055 307.10 0.00 0.76 0.00 2514.21

103104

25%

50%

75%

100%

Leakage Rate in Bit per Hour

S
u
cc
es
s
P
ro
b
ab

il
it
y

Disabled Enabled

Figure 8.15.: The CPA success probability of the raw channel when using loads
with L1+L2 eviction for (128x) amplified nibbles for enabled and
disabled hardware prefetchers.

7.6. Evaluation of Hardware Prefetchers

We identified that Meltdown-Power is influenced by the prefetcher loading
the adjacent victim cache line. Therefore, we analyze the influences of the
adjacent cache line prefetcher on the leakage when this prefetcher is the
most active with L1+L2 eviction as this pattern triggers the most evictions
and reloads (cf. Figure 8.3). Figure 8.14 introduces a new fill value A, filled
with the repeating nibble a, resembling the data located in the adjacent
cache line to the victim data V. We fill the attacker-controlled adjacent
guess cache lines with zeros and perform the leakage analysis with the load
instructions and L1+L2 eviction on our Core i7-8700K (cf. Sections 4.3
and 5). First, we identify the strength of each leakage component for v,
a, and g in our leakage model. Table 8.8 shows that the desired leakage
component hd(v, g) is 13.67 times stronger than the undesired leakage
component hd(a, g) of the adjacent cache line prefetcher. The coefficient for
hd(a, g) drops to zero if the hardware prefetchers are disabled. Second, we
determine the influences of the hardware prefetchers on the CPA success
probability when not modeling any prefetchers in the model, i.e., ignoring

8. Mitigations and Limitations 257

the prefetching effects. Figure 8.15 shows the CPA success probability
with hardware prefetchers enabled or disabled, respectively. We compute
an average decrease of 1.33% when the hardware prefetchers are enabled.
However, in the success probabilities above 95%, we observe an average
decrease of only 0.297%. We conclude that hardware prefetchers only have
minimal influence on Collide+Power.

8. Mitigations and Limitations

In this section, we discuss potential mitigations and limitations of Collide+
Power. A principled mitigation against Collide+Power should eliminate or
reduce the root cause of the leakage. We discuss mitigation ideas on the
hardware and software level, although entirely preventing power-based
leakage is still an open problem for general-purpose CPUs.

Hardware Mitigations. Power analysis attacks have been studied for
decades on smaller form factor devices, such as smart cards [24, 17, 2].
Hence, hardware-based mitigations were researched and deployed in the
wild for these systems. Such mitigations include blinding, masking, or
adding randomness [24]. However, these mitigations require a fundamental
hardware redesign and are usually tailored to protect cryptographic algo-
rithms. Furthermore, these mitigations often require additional hardware
for partitioning the computation into multiple parts, adding a significant
performance impact [32]. Therefore, while it is theoretically possible with
newer CPUs, such effective but costly mitigations are unlikely to be added
to consumer CPUs.

Software and Operating System Mitigations. Meltdown-Power
shown in Section 6.2 relies on a prefetch gadget in the kernel. Hence,
a potential mitigation is eliminating all prefetch gadgets in the kernel.
However, orthogonal research from Johannesmeyer et al. [13] on gadget
finding suggests that a plethora of such gadgets exist in the kernel. Exac-
erbating the problem further: The prefetch gadgets required for Collide+
Power are simpler than traditional transient-execution gadgets as they
do not require the encoding part, e.g., a secret-dependent cache access.
Orthogonally, MDS-Power currently requires co-location with the victim
on a hyperthread, which could be prohibited if a group scheduling policy
is implemented. However, the effects described in this paper likely apply
to additional shared buffers in the CPU. Following the suggestions of
Wang et al. [38], Turbo Boost and SpeedStep on Intel or Cool’n’Quiet

258 Chapter 8. Collide+Power

on AMD CPUs can be disabled to curb userspace attacks, causing the
CPU to reach the power limit less frequently. However, the question arises
of which other power-related signals an attacker could use instead of the
throttling side channels. Finally, in Section 7.2, we show that changing
data co-located in the victim cache line does not impact the attacker’s
success probability. However, dynamically changing the victim values, e.g.,
cryptographic keys, breaks the assumptions of Collide+Power that the
victim data is constant during the attack, effectively preventing leakage
due to the relatively low leakage rates. Nevertheless, in contrast to tradi-
tional rekeying, the changing interval must depend on wall-clock time, not
usage count, as unused secrets could be reachable with Collide+Power.
Another alternative mitigation for MDS-Power is to sandwich secret data
loads between victim-controlled loads, preventing the collisions of the
attacker-controlled guesses and the victim value. However, this mitigation
is ineffective against Meltdown-Power.

Limitations. While Collide+Power exploits the energy differences in-
duced by cache loads, our primitives are not limited to the cache. In theory,
the contents of any microarchitectural element with data-dependent en-
ergy consumption can be leaked. In practice, we require that the energy
consumption becomes observable via performance counters for a privileged
attacker or with frequency scaling in an unprivileged scenario. Future
work could explore the impacts of Collide+Power on other microarchitec-
tural buffers. The current Meltdown-Power proof-of-concept has severe
practical limitations reflected in the low security risk when using the
Spectre-PHT prefetch gadget. Therefore, Collide+Power benefits from
research identifying optimized prefetch gadgets.

9. Conclusion

Collide+Power shows that mere co-location of data values in microarchi-
tectures introduces combined leakage in the power domain. Our systematic
analysis of the CPU’s memory hierarchy led to precise leakage models that
enable the exploitation of this combined leakage. We demonstrated that
Collide+Power works with power consumption interfaces or throttling-
induced timing variations alike. Our novel differential measurement tech-
nique amplifies the signal-to-noise ratio by a factor of 8.778 on average,
compared to a straightforward DPA approach. We demonstrated that
Collide+Power can even leak single-bit differences from the CPU’s memory

References 259

hierarchy with fewer than 23 000 measurements. In MDS-style end-to-end
attacks, Collide+Power leaks 4.82 bit/h in the same scenario as RIDL and
ZombieLoad but without relying on the MDS hardware flaw. However,
in real-world Meltdown-style attacks, we encounter practical limitations
leading to leakage rates of more than a year per bit with throttling. Future
work is required to find more practical prefetching methods to replace the
current Spectre-PHT gadget and to reevaluate the potential security risk
of Meltdown-Power. Since Collide+Power is a generic attack with different
variants, applying to any modern CPU, it poses a significant challenge for
future work to develop mitigations against this threat. For commodity
systems, mitigating Collide+Power is more challenging, as it exploits the
very basics of microarchitecture design.

Acknowledgments

We thank the anonymous reviewers, especially our shepherd, for their
guidance, comments, and suggestions. We thank Robert Primas, Daniel
Weber, and Moritz Lipp for engaging discussions. Furthermore, we thank
Brian Johannesmeyer and Jakob Koschel for their help and expertise with
the Spectre-PHT prefetch gadget. This research is supported in part by the
European Research Council (ERC project FSSec 101076409), the Austrian
Science Fund (FWF SFB project SPyCoDe F8504), and the Semiconductor
Research Corporation (SRC) Hardware Security Program (HWS). A
generous gift from AWS, Red Hat, and Google provided additional funding.
Any opinions, findings, conclusions, or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of
the funding parties.

References

[1] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchi-
tectures. In: ASPLOS. 2019 (p. 234).

[2] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation
Power Analysis with a Leakage Model. In: CHES. 2004 (pp. 223,
228, 257).

260 Chapter 8. Collide+Power

[3] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (p. 223).

[4] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security. Extended
classification tree and PoCs at https://transient.fail/. 2019 (pp. 227,
232, 233, 245).

[5] Jonathan Corbet. Moving the kernel to modern C. Feb. 2022. url:
https://lwn.net/Articles/885941/ (p. 265).

[6] Jonathan Corbet. Toward a better list iterator for the kernel. Mar.
2022. url: https://lwn.net/Articles/887097/ (p. 265).

[7] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (p. 225).

[8] Matteo Fusi. Information-Leakage Analysis Based on Hardware
Performance Counters. MA thesis. Politecnico di Milano, 2017
(p. 223).

[9] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis,
and Haining Wang. ContainerLeaks: Emerging Security Threats of
Information Leakages in Container Clouds. In: DSN. 2017 (p. 223).

[10] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (p. 227).

[11] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019
(pp. 228, 251).

[12] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 4: Model-Specific Registers. May 2019 (p. 251).

[13] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. KASPER: Scanning for Generalized Tran-
sient Execution Gadgets in the Linux Kernel. In: NDSS. 2022
(pp. 224, 232, 233, 245, 246, 254, 257, 265).

[14] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (p. 227).

https://lwn.net/Articles/885941/
https://lwn.net/Articles/887097/

References 261

[15] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In: CRYPTO. 1996 (p. 223).

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (p. 227).

[17] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In: CRYPTO. 1999 (pp. 223, 228, 257).

[18] Jakob Koschel. [RFC PATCH 00/13] Proposal for speculative safe
list iterator. Feb. 2022. url: https://lwn.net/ml/linux-ke
rnel/20220217184829.1991035-1-jakobkoschel@gmail.com/

(p. 265).

[19] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS:
Software-based Power Side-Channel Attacks on x86. In: S&P. 2021
(pp. 223–225, 228, 230, 232).

[20] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security. 2018 (pp. 223–225, 227, 233, 245, 254).

[21] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel.
Frequency throttling side-channel attack. In: CCS. 2022 (pp. 223–
225, 228, 232, 251).

[22] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (p. 227).

[23] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (p. 227).

[24] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards. Springer
Science & Business Media, 2008 (pp. 223, 257).

[25] Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich
Weber. Vulnerabilities Introduced by Features for Software-based
Energy Measurement. 2017. url: https://tubiblio.ulb.tu-da
rmstadt.de/104085/ (p. 223).

https://lwn.net/ml/linux-kernel/20220217184829.1991035-1-jakobkoschel@gmail.com/
https://lwn.net/ml/linux-kernel/20220217184829.1991035-1-jakobkoschel@gmail.com/
https://tubiblio.ulb.tu-darmstadt.de/104085/
https://tubiblio.ulb.tu-darmstadt.de/104085/

262 Chapter 8. Collide+Power

[26] Rita Mayer-Sommer. Smartly analyzing the simplicity and the
power of simple power analysis on smartcards. In: CHES. 2000
(p. 223).

[27] Colin O’Flynn and Alex Dewar. On-Device Power Analysis Across
Hardware Security Domains. In: CHES. 2019 (p. 223).

[28] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 223,
225, 227).

[29] David Oswald and Christof Paar. Breaking Mifare DESFire
MF3ICD40: Power analysis and templates in the real world. In:
CHES. 2011 (p. 223).

[30] David Oswald, Bastian Richter, and Christof Paar. Side-channel
attacks on the Yubikey 2 one-time password generator. In: RAID.
2013 (p. 223).

[31] Colin Percival. Cache Missing for Fun and Profit. In: BSDCan.
2005 (p. 227).

[32] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge
logic: DPA-resistance without routing constraints. In: CHES. 2005
(p. 257).

[33] Yi Qin and Chuan Yue. Website Fingerprinting by Power Estima-
tion Based Side-Channel Attacks on Android 7. In: TrustCom/Big-
DataSE. 2018 (p. 223).

[34] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 223–
225, 227, 233, 243).

[35] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 223–
225, 227, 233, 243).

[36] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel
Gruss. Speculative Dereferencing of Registers: Reviving Foreshadow.
In: FC. 2021 (pp. 224, 232, 233, 245).

[37] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018. url: https://support.google.com/faqs
/answer/7625886 (p. 245).

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

10. Appendix 263

[38] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86. In: USENIX Security. 2022 (pp. 223–225,
228, 232, 233, 251, 257).

[39] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(p. 225).

[40] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbitrary Spec-
ulative Code Execution with Return Instructions. In: USENIX
Security. 2022 (pp. 232, 233).

[41] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A Study on
Power Side Channels on Mobile Devices. In: Symposium on Inter-
netware. 2015 (p. 223).

[42] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security. 2014 (pp. 223, 225).

10. Appendix

10.1. Differential Leakage Model Derivation

We derive Equation (8.4) by starting with the power leakage model of
Equation (8.3), defined as

P(G,V) = a0 · hd(G,V) + w0 · hw(V) + w2 · hw(G) + ω.

We add an adaptive noise term ω to model a realistic measurement. We
model the power consumption of two distinct attacker-controlled guesses,
the normal guess G and its masked inverse G̃ = G ⊕m. We assume that
the noise between two successive samples is constant due to time locality.
The victim data V stays constant during both of these guesses. This yields
the two equations

https://foreshadowattack.eu/foreshadow-NG.pdf

264 Chapter 8. Collide+Power

PG = a0 · hd(G,V) + w2 · hw(G) + w0 · hw(V) + ω and

PG̃ = a0 · hd(G̃,V) + w2 · hw(G̃) + w0 · hw(V) + ω.

Subtraction of the equations PG and PG̃ yields the power difference between
both of the attacker’s guesses,

PG − PG̃ = a0 ·
(
hd(G,V)− hd(G̃,V)

)
((((((((
+w0 · hw(V) + ω

+ w2 ·
(
hw(G)− hw(G̃)

)
((((((((−w0 · hw(V)− ω.

First, we derive the results of the subtraction of the Hamming difference
hd(G,V) with the Hamming difference where one parameter is the mask
inverse hd(G̃,V). We consider the following equation hd(x, y)− hd(¬x, y).
To change a value from x to y, hd(x, y) bits need to be flipped. Similarly,
to change from x to ¬x, the number of bits in a word (N) need to change.
Therefore, we can flip from ¬x to x and undo the flips we require to get
to y, yielding hd(¬x, y) = N − hd(x, y). Therefore,

hd(x, y)− hd(¬x, y) = 2 · hd(x, y)−N.

If we consider hd(G,V) − hd(G ⊕ m,V), we observe that only the bits
selected by m are active as the other bit differences cancel out due to the
Hamming distance. Therefore, the word size is reduced to N = hw(m),
and we derive

hd(G,V)− hd(G ⊕m,V) = 2 · hd(Gm,Vm)− hw(m).

where Gm = G ∧m and Vm = V ∧m are the masked cache lines with which
we mask away non-targeted data. Second, we derive the results of the
subtraction of the Hamming weight hw(G) with the Hamming weight of the
mask inverse hw(G̃). We use the following property hw(¬x) = N − hw(x)
to derive

hw(x)− hw(¬x) = 2 · hw(x)−N.

With the same reasoning about the active bits, we derive

hw(G)− hw(G ⊕m) = 2 · hw(Gm)− hw(m).

Resulting in the final differential power leakage model of Equation (8.4),

PG − PG̃ = a0 · (2 · hd(Gm,Vm)− hw(m))

+ w2 · (2 · hw(Gm)− hw(m)) .

10. Appendix 265

1 struct key *find_keyring_by_name(const char *name , bool

-> uid_keyring) {

2 // ...

3 list_for_each_entry(keyring , &ns->keyring_name_list ,

-> name_link) {

4

5 if(! kuid_has_mapping(ns, keyring ->user ->uid))

6 continue;

7

8 if(test_bit(KEY_FLAG_REVOKED , &keyring ->flags))

9 continue;

10

11 if (strcmp(keyring ->description , name) != 0)

12 continue;

13 // ...

14 }

15 // ...

16 }

Listing 8.4: The Spectre-PHT prefetch gadget of the Linux kernel key
management used to load arbitrary data.

10.2. Kernel Spectre-PHT Prefetch Gadget

The prefetch gadget in Listing 8.4 was discovered by Johannesmeyer et al.
[13]. First, Line 3 iterates over a list of keyrings ns->keyring_name_list
of the running process’s namespace. During this iteration, the CPU’s
branch predictor is mistrained and speculatively accesses one additional el-
ement at the end of the loop. Due to the given memory layout [13, 18, 5, 6],
during speculative execution, a type confusion occurs, where a struct

-> user_namespace is interpreted as a struct key. Therefore, the
speculative access of keyring ->user ->uid in Line 5 actually accesses
ns->projid_map ->entry [3], which is controllable by an attacker, re-
sulting in the desired prefetch gadget [13]. The array
ns->projid_map ->entry [3] can be filled by the attacker by writing
to /proc/self/projid_map .

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

267

	Contents
	Colliding Worlds:Exploiting Physical Properties from Software
	Introduction
	Background
	State of the Art
	Conclusion
	References

	Publications
	List of Publications
	Minefield
	Half-Double
	MSR Templating
	Collide+Power

