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Abstract

In steel industry different alloys and heat treatments are used to create materi-
als which fulfil certain properties. A combination of high strength and good
ductility is a desired property and can be found in carbide-free bainitic (CFB)
steel. The heat treatment allowing the microstructure of CFB steels to form can
take up to days, which is not suitable for industry use. Therefore the trans-
formation time expressed in the Time-Temperature-Transformation (TTT) is of
great importance to analyse the behaviour of steel alloys during heat treatment.
However, the determination of the TTT is expensive and takes a lot of time. This
process requires precise measurement of the dilatation of specimens at various
temperatures. Past research has used Machine Learning (ML) approaches and
physical models to predict the behaviour of the whole TTT. This is mostly done
by dividing the TTT into smaller subproblems. These subproblems result from
the inherent complexity of the TTT and cover microstructures like martensite,
ferrite and bainite. We specifically target predicting TTT for CFB steels, by
using a dataset of 56 different material compositions. Random Forests (RFs) and
Gaussian Process Regressors (GPRs) are used to predict transformation times.
GPRs provide a measure for uncertainty additional to its predictions, which can
give insights about how confident the ML model predicts the transformation
times. The RF is used because of fast training behaviour and simple hyperpa-
rameter tuning. Furthermore, both models allow insight into the significance
of specific input features. The feature importance from the RF or the trained
length-scales from the GPR are used to determine which input features are
important for the model’s predictions. The findings of the thesis indicate that,
for most predictions, the models are sufficiently accurate. However, the sparsity
of the data prevents the model from being precise in certain areas of the feature
input space, particularly for certain alloys. Both the GPR and the RF approach
have significant potential to allow finding suitable CFB steels with short trans-
formation times. Further research and the creation of a more comprehensive
database of measurements will enhance the prediction performance.
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Kurzfassung

In der Stahlindustrie werden verschiedene Legierungen und Wärmebehand-
lungen verwendet, um Materialien mit bestimmten Eigenschaften herzustellen.
Eine Kombination aus hoher Festigkeit und guter Duktilität ist eine erwünschte
Eigenschaft und kann in karbidfreiem bainitischem (CFB) Stahl gefunden
werden. Die Wärmebehandlung, die es der Mikrostruktur von CFB-Stählen
ermöglicht, sich zu bilden, kann mehrere Tage dauern, was für den indus-
triellen Einsatz nicht geeignet ist. Daher ist die Bestimmung der Transfor-
mationszeit, ausgedrückt in der Zeit-Temperatur-Umwandlungs (TTT)-Kurve,
von großer Bedeutung für die Analyse des Verhaltens von Stahllegierungen
während der Wärmebehandlung. Die Bestimmung der TTT ist jedoch teuer
und zeitaufwendig. Dieser Prozess erfordert präzise Messungen der Dilata-
tion von Proben bei verschiedenen Temperaturen. In der Vergangenheit wur-
den ML-Ansätze und physikalische Modelle verwendet, um das Verhalten
der gesamten TTT vorherzusagen. Dies wird hauptsächlich durch die Un-
terteilung der TTT in kleinere Teilprobleme erreicht. Diese Teilprobleme resul-
tieren aus der inhärenten Komplexität der TTT und umfassen Mikrostrukturen
wie Martensit, Ferrit und Bainit. Wir zielen speziell darauf ab, die TTT für
CFB Stahl vorherzusagen, indem wir einen Datensatz von 56 verschiedenen
Materialzusammensetzungen verwenden. Random Forests (RF) und Gauß-
Prozess-Regressoren (GPR) werden verwendet, um die Transformationszeiten
vorherzusagen. GPRs bieten zusätzlich zu ihren Vorhersagen ein Maß an Un-
sicherheit, das Aufschluss darüber geben kann, wie zuversichtlich das ML-
Modell die Transformationszeiten vorhersagt. Der RF wird aufgrund seines
schnellen Trainingsverhaltens und der einfachen Hyperparameterabstimmung
verwendet. Darüber hinaus geben beide Modelle Information wie wichtig bes-
timmte Input Features sind. Die sogenannte Featureimportance des RF oder die
trainierten lenght-scale Parameter des GPR werden verwendet, um zu bestim-
men, welche Input Features für die Vorhersagen des Modells wichtig sind. Die
Ergebnisse der Arbeit zeigen, dass die Modelle für die meisten Schätzungen
hinreichend genau sind. Der nicht ausreichende Datensatz verhindert jedoch,
dass das Modell in bestimmten Bereichen (z.B. verschiedener Temperaturen)
nicht präzise ist. Sowohl der GPR- als auch der RF-Ansatz haben erhebliches
Potenzial, um geeignete CFB-Stähle mit kurzen Transformationszeiten zu finden.
Weitere Forschung und die Erstellung einer umfassenderen Datenbank von
Messungen werden die Vorhersageleistung verbessern.
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1 Introduction

The development of novel steel alloys with tailored properties plays a vital role
across various industries, including aerospace, automotive, construction and
infrastructure. This thesis focuses on Carbide-free bainitic (CFB) steel which
can have high strength and high ductility. Certain alloys combined with a
different type of heat treatment forms the desired microstructure within the
steel. However, the heat treatment used to transform the microstructure can take
up to days, which makes the use of such alloys not suitable for the industry. The
goal is to help find alloys which form CFB steels with a short transformation
time during heat treatment using only data driven ML models. Traditionally,
engineers have relied on dilatometry experiments to create Time-Temperature-
Transformation (TTT) diagrams. TTT behaviour of certain steels are used to
summarize and analyse the behaviour of steels during heat treatment within
different microstructures. However, these experiments are time-consuming,
expensive and are therefore limited in their ability to capture the full spectrum
of potential steel compositions.

Scope

This thesis examines the potential of non-parametric Machine Learning (ML)
models to learn complex, non-linear relationships within the steels transfor-
mation without using prior assumptions about the underlying physical mech-
anisms. The conventional ML approach and the approach also taken in this
thesis is to split the TTT into subproblems. Each subproblem covers one mi-
crostructure of steel. The focus in this thesis lies on the microstructure of CFB
steels and their transformation behaviour during heating, rapid cooling and
further maintaining a constant temperature. Focusing on CFB steels does not
necessarily exclude the possibility of applying established ML models to other
microstructures, like ferrite, for instance. Due to their advantages especially
for this use case the ML models tested and implemented are Random Forest
(RF) and the Gaussian Process Regressors (GPR). One advantage is, that GPRs
allow uncertainty estimates in addition to the targets predictions, providing
information about how trustworthy prediction are. This is important, because
the insufficient size of the available data set does not always allow confident
predictions. The RF is used due to its fast training behaviour and straightfor-
ward hyperparameter tuning. Both ML models allow an insight into which
input features are particularly of interest, by analysing the feature importance
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1 Introduction

of the RF and the length-scale parameters of the GPR. The quality of the data in
terms of the measurement errors is of importance to ensure a good prediction
performance. The provided data encompasses direct measurements obtained
through dilatometry experiments which were conducted by the Material Center
Leoben (MCL) and measurements gathered from scientific publications. The
application of ML models has the potential to significantly reduce the time and
resources required to generate TTT diagrams compared to conducting multiple
dilatometry experiments. This will further help find CFB steels with a short
transformation time. Training of models on more comprehensive datasets will
improve the accuracy of TTT diagram predictions.

Outlook

The remainder of this thesis is structured as follows:
Chapter 2 delves into the fundamentals of TTT diagrams, the principles of

dilatometry, and critically reviews existing literature on related research efforts
in this field.

Chapter 3 gives a brief overview to ML and the specific models used, such as
RF and GPR.

Chapter 4 introduces the methodology of regression of TTT, including a
detailed description of the challenges and how the data is structured.

Chapter 5 presents the results obtained from applying GPR and RF to the
prepared data followed by a comprehensive evaluation of their performance
and predictive capabilities. Furthermore, limitations are discussed.

Finally, Chapter 6 draws key conclusions from the results and outlines rec-
ommendations for future work.

2



2 Background and Related Work

2.1 Dilatometry

Information of the data generating process is an advantage when it comes to
analysing the data. Therefore, an introduction into the dilatometry experiment
is given in this section.

Heating or cooling various materials causes them to expand or contract. This
thermal expansion is used to gain information about the material transforma-
tions. Every substance reacts differently to temperature changes. This can be
expressed and measured with the Coefficient of Thermal Expansion (CTE).
The higher the coefficient, the more an element expands while being heated.
The CTE can also be negative. A negative coefficient means, that the specimen
contracts while being heated. In a dilatometry experiment this expansion and
contraction of a substance is measured. The point is to show the lengthening
of the material relative to the temperature. These positive and negative CTE
are single-phase characteristics that result from a continuous change in the
temperature (Hunkel et al., 2018).

In a steel alloy of different compounds, this dilation is not straightforward.
It is possible to have continuities in the volume temperature curve due to
the transformation of the microstructure within the steel alloy. Additionally,
the presence of different elements within the alloy can induce stress, as they
expand or contract at varying rates for different temperature changes. Phase
transitions such as the ferro- to paramagnetic transition exhibit a continuous
volume change but a discontinuity in the CTE. This characteristic makes them
detectable through dilatometry due to the abrupt changes in volume or its
derivative. Phase transformations, on the other hand, involve a shift in the
lattice structure, like the transition from body-centered cubic to face-centered
cubic seen in the transformation of iron from ferrite to austenite, for instance.
This lattice alteration results in an additional length change, superimposed on
thermal expansion, which can be either positive or negative depending on the
packing density of the parent and daughter phases (Hunkel et al., 2018).

Dilatometry offers the capability to not only analyse the expansion or con-
traction of alloyed steel but also to gather valuable information about phase
transformations due to its continuous behaviour. There are various approaches
to the dilatometric evaluation of phase transformation, one of which is the trans-
formation during iso-thermal holding, where the temperature is held constant
over a period of time.

3



2 Background and Related Work

Figure 2.1: Measurement of the dilation of a certain alloy using iso-thermal holding, from
Hunkel et al., 2018.

2.2 Time Temperature Transformation

Transformation during iso-thermal holding is the fundamental approach of
interest within this thesis. During this approach, the specimen is heated up
or cooled down to a certain temperature for which it will be held during the
experiment (Hunkel et al., 2018). This can be seen in Figure 2.1.. The red line
shows the temperature which was held constant at 237 ◦C right after cooling
down the specimen from around 600 ◦C. The black line shows the dilation of the
specimen. This graph summarizes the method used to collect the measurements
for this thesis. The experiment reveals various kinematic phases, as denoted by
the green lines. Initially, the expansion occurs rapidly, then slows down slightly
in the middle phase before accelerating again.

Figure 2.2: Transformation of bainitic steel during iso-thermal holding for 39 minutes, from
Hunkel et al., 2018.

In Figure 2.2 the beginning and the end of the transformation can be seen. On
the left side a tight bainite microstructure is shown, hence it is not expanded
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yet. The right side shows how much the alloyed steel expanded throughout the
experiment of iso-thermal holding.

The target property in this thesis is the bainitic phase fraction fB, derived
from the dilatometry experiment by using the ”lever rule”,

fB =
C − B
C − A

. (2.1)

where

• A: length of the specimen at the beginning of transformation.
• B: measured length of the specimen at time t.
• C: elongation of the specimen at complete transformation.

It compares the relative length difference with the volume fraction of the
transformation. One method involves fitting the segments of the dilatometric
curve before and after the phase transformation. The transformed phase frac-
tion, seen in Figure 2.3, is evaluated based on the position of the measured
dilatometric curve between the fitted lines (Yang et al., 2015).

Figure 2.3: The lever rule in dilatometric analysis, from Yang et al., 2015.

Multiple measurements like this lead to the TTT diagram. Figure 2.4 shows
the duration of the transformation over the iso-thermal temperature depending
on the microstructure.

5



2 Background and Related Work

Figure 2.4: The TTT diagrams of high-alloy steels (a) Cr12; (b) 3Cr2W8V (A is Austenite; F is
Ferrite; C is Cementite; B is Bainite; M is Martensite; Ac1 is the critical temperature
of Austenite; Ms is the starting temperature of Martensite; Ps and Pe starting and
end line of Pearlite transformation), from Huang et al., 2020.

As mentioned earlier, the conduction of all the experiments for getting suffi-
cient data for the TTT is very time-consuming as well as very costly. Therefore,
it is important for the industry to have good estimates for a certain alloy to meet
the demand for material development. Numerous calculation methods based
on empirical formulas exist, but they will not be extensively discussed in this
thesis. Thermodynamics and kinetic models offer predictive capabilities for TTT
diagrams. However, these methods have limitations as they often assume linear
relationships among alloy elements within the composition (Huang et al., 2020).
There is also software on the market which is commercially used. The software
JMatPro uses the same linear relations as discussed. Improving predictions of
TTT and surpassing current models will require an approach that incorporates
non-linear models and multivariate analyses.

2.3 Bainite Microstrucutre

The TTT diagram encompasses all transformations and potential microstruc-
tures within the steel alloy, presenting a challenge for estimation. Typically, each
mechanism must be predicted separately, effectively breaking down the problem
into subproblems. In simpler terms, this means addressing each subproblem
independently, which is the common approach in TTT diagram analysis. Cur-
rent models are put together with submodels creating an estimate for every
microstructure which then results in the TTT. This further simplifies the task
in training models for each microstructure. Approaching the estimation by
dividing it into subtasks sets the stage for the use-case of this thesis, which will
focus on the bainite microstructure and its transformation within steel.

This sub-problem can be seen in Figure 2.4, where the part A+ B is of interest.
This c-shape is the transformation of the alloys given with bainite steel. In the

6
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right plot, only the upper half of the c-shape is seen, because on the lower part
already another microstructure, martensite, takes over.

2.4 Data

In ML the data is of high importance. With sufficient and highly accurate
data a highly accurate model can be trained. Faulty and noisy data can lead
to loss in model performance and therefore wrong predictions. Reducing or
avoiding possible measurement variances and outliers further improves the
model. Because the experiment is not conducted as part of this work, there is
no opportunity to influence the precision and accuracy of the given samples.
However, pre-processing techniques can still be applied to improve the quality
of the data. The given data originates from two distinct sources. One portion
is measured by the Material Center Leoben (MCL), preprocessed, and then
provided for this thesis. The other part is obtained from scientific papers, where
it is interpreted and sampled from plots, rather than directly measured. This
introduces additional error on top of the existing measurement error.

As discussed in Section 2.1 the data samples come from measuring the dila-
tion over time. This is further expressed using the phase fraction fB. The graphs
for repeated measurements under the same conditions, material, and tempera-
ture, are shown in Figure 2.5. The plot provides insight into the variability of
results from a single experiment, underscoring the presence of measurement
errors. Three different measurements with the exact same setup reach 80% of
fB at 29.4 seconds, 45.6 seconds and 55.2 seconds resulting in a difference of
27 seconds. Longer-lasting transformations tend to have larger absolute errors,
while shorter measurements typically have smaller errors. The measurement
accuracy further limits the prediction accuracy of the ML models.

Figure 2.5: Multiple measurements of the same material at the same temperature (425°C)
reaching the value fB = 0.8 at different times resulting in a measurement error. The
green line reaches fB = 0.8 at 29.4, the orange at 45.6, and the blue at 55.2 seconds.
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The data set comprises 56 materials. For each material, multiple experiments
with different iso-thermal holding temperatures were conducted. Each mea-
surement contains samples gathered from the dilatometry experiment. The
information about the compound is provided for each material, by the vector
wper which contains the weight percentage for each element.

Even for highly alloyed steels, iron (Fe) constitutes the most of the alloy
composition. Other elements are added to achieve desired properties. The total
percentage of all elements in the alloy composition sums up to 100%.

Figure 2.6 displays the 56 materials, illustrating the elements present in each
alloy. Iron (Fe) is omitted from this plot since its presence in steel is assumed.
Upon inspection of the plot, certain observations can be made. For instance,
Boron (B) is the only element used just once among the alloys.

It is noteworthy that all materials contain Carbon (C), while the majority also
include Silicon (Si), Manganese (Ma), and Chromium (Cr). The influence of
each element for the dilation measurement must be learned by the ML model.

Figure 2.6: Material compositions: Dark blue indicates elements with a weight percentage above
0.

All chemical elements are carefully selected and combined to tailor the alloy’s
properties to specific requirements. Having various materials is a huge challenge
for a ML model. Because small changes in the composition may cause high
variance in the output. Underrepresented materials without similarity to other
materials in the training data are difficult for the ML model to predict.
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2.4 Data

Additionally, to the weight percentage, the temperature at iso-thermal hold-
ing, TH in degrees Celsius, is given. This temperature is important as it acts as
a driving force during the process of the transformation. There are one or more
measurements per material, which lead to one or more iso-thermal holding
temperatures given per material. As described in Section 2.1, this measurement
is unique for one experiment.
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3 Machine Learning Background

Machine learning is a subset of Artificial Intelligence that enables computers
to learn from data and improve their performance on tasks without being
explicitly programmed. It encompasses a variety of techniques and algorithms,
broadly categorized into three main types: supervised learning, unsupervised
learning and reinforcement learning.

Supervised learning involves training a model on a labelled dataset, where each
example is paired with a corresponding target label. The model learns to map
inputs to outputs by generalizing from the labelled data. It includes techniques
such as: (i) Regression with the aim to predict continuous-valued outputs and
(ii) Classification, where categorical labels are predicted.

Unsupervised learning deals with unlabelled data, where the model aims
to discover patterns or structures inherent in the data without explicit guidance.
It includes techniques such as: (i) Clustering with the aim to group similar data
points and (ii), Dimensionality reduction, where reducing the number of fea-
tures while preserving essential information is performed (iii), Reinforcement
learning involves an agent learning to make decisions by interacting with an
environment. The agent receives feedback in the form of rewards or penalties,
allowing it to learn optimal strategies over time.

There are two different types of ML models: parametric and non-parametric
models. Parametric models make assumptions about the functional form of the
relationship between inputs and outputs and have a fixed number of parame-
ters that are learned from the data. Examples include linear regression, logistic
regression, and neural networks with a fixed architecture. Parametric models
assume that there is a finite set of parameters θ describing the regression or the
classification problem. The fixed set of parameters constraints the problem to a
certain degree (Ghahramani, 2013). In parametric models, the future prediction
ŷ are independent of the observed data D, i.e.

P(ŷ|θ,D) = P(ŷ|θ). (3.1)

Non-parametric models do not make strong assumptions about the under-
lying functional form. However, for predictions ŷ data D is required. The
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3 Machine Learning Background

parameters θ of a non-parametric model typically grow in complexity with the
size of the training data. One advantage of non-parametric models is, that, not
as much data is required as for parametric models (Ghahramani, 2013).

Numerous models were implemented in this thesis. It turned out that the
most successful ML approaches are RFs and GPRs. For this reason, the theory
behind RFs and GPRs will be briefly outlined in the following section. Details
about the use of these models is further discussed in Chapter 4.

3.1 Gaussian Process Regression

Multivariate Gaussian

The Gaussian distribution is used to describe random variables. The combina-
tion of two or more random variables can be achieved using the multivariate
Gaussian distribution, which can be further expressed using

p(x|µ, Σ) =
1

(2π)d/2|Σ|1/2 exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
, (3.2)

where

• x ∈ Rd : Vector of random variables.
• µ ∈ Rd: Mean vector.
• Σ ∈ Rd×d: Covariance matrix.
• |Σ|: The determinant of the covariance matrix.

In Figure 3.1, an example of a two-dimensional Gaussian distribution is
depicted. This joint distribution effectively captures correlations between the
input variables, illustrating the relationship between two random variables.

Figure 3.1: A multivariate Gaussian distribution of two input variables X and Y.
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3.1 Gaussian Process Regression

Gaussian Processes

A stochastic process consists of an indexed collection of random variables.
When these random variables are assumed to follow a Gaussian distribution,
we obtain a Gaussian Process. The assumption of Gaussian distributed random
variables simplifies the computational aspects of inference and learning.

The Gaussian process function can be described by the mean m(·) and
covariance function k(·, ·) and is expressed as:

f (·) ∼ GP
(
m(·), k(·, ·)

)
. (3.3)

The mean function represents the expected value of the target, while the co-
variance function describes the relationships between different input locations.

Gaussian Process Regression

Assuming the real target values f =
(

fx1 . . . fxn

)
and the training samples

X = (x1, . . . , xn) are given. In the real world function values are not directly
accessible, because a measurement is always subject to noise. The target values
are therefore given as y = f + ϵ, where the noise ϵ is independent identically
distributed Gaussian noise with variance σ2

n,

ϵ ∼ N (0, σ2
n). (3.4)

The target is to estimate f∗ =
(

fx∗1 . . . fx∗n

)
at the given test samples X∗ =

(x∗1, . . . , x∗n).
From the definition of the GP, it follows that,[

y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
n I K(X, X∗)

K(X∗, X) K(X∗, X∗) + σ2
n I

])
. (3.5)

It is common to assume that the targets are drawn from a zero-mean prior
Gaussian distribution. By using the calculation rules for multivariate normal
distributions this can be used to make predictions on f∗,

f∗|X, y, X∗ ∼ N
(
f̄∗, cov(f∗)

)
, where

f̄∗ = E[f∗|X, y, X∗] = K(X∗, X)[K(X, X) + σ2
n I]−1y,

cov(f∗) = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
n I]−1K(X, X∗).

(3.6)

The prediction of the target value is f̄∗ and the covariance matrix cov(f∗)
gives information about how certain the estimates are. In the case that there is
only one test point x∗ we write k(x∗) = k∗ to denote the vector of covariances
between the test point and the n training points. Additionally the matrices of
the covariances are written in the compact form of K = K(X, X). For one test
point x∗ the equations are further written as,

13



3 Machine Learning Background

f̄∗ = k⊤
∗ (K + σ2

n I)−1y,

V[ f∗] = k(x∗, x∗)− k⊤
∗ (K + σ2

n I)−1k∗,
(3.7)

where V[ f∗] denotes the variance of the prediction and f̄∗ is the actual prediction
value.

Hyper-Parameter Learning

Regression problems often use the Radial Basis Function (RBF) kernel. The
kernel is calculated as follows,

kSE(x, x′) = exp
(
− 1

2τ2 ||x − x′||2
)

. (3.8)

Where the parameter τ represents the length-scale parameter and needs to be
learned from the data. For the general case of any kernel the parameter are
described as θ. We can learn θ by maximizing the marginal likelihood p(y|X, θ)
which is expressed as follows,

log p(y|X, θ) = −1
2

y⊤K−1
y y − 1

2
log |Ky| −

n
2

log 2π, (3.9)

where Ky = K + σ2
n I.

In order to maximize the marginal likelihood, the partial derivative,

∂

∂θj
log p(y|X, θ) =

1
2

y⊤K−1
y

∂K
∂θj

K−1
y y − 1

2
tr

(
K−1

y
∂Ky

∂θj

)

=
1
2

tr

(
(αα⊤ − K−1

y )
∂Ky

∂θj

)
where α = K−1

y y,

(3.10)

has to be solved.
Inverting the positive definite symmetric n × n matrix Ky is computational

expensive and requires the time of O(n3).
The solution for the hyperparameters might result in a local maximum with

each corresponding to a particular interpretation of the data (Rasmussen &
Williams, 2005). This can cause different length-scale parameters for the same
set of training data.
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3.2 Random Forests

3.2 Random Forests

The RF is an instance of unsupervised learning that finds frequent use in the
domain of ML. This thesis also makes use of RF, which are constructed by
combining multiple decision trees.

Decision Trees

A decision tree consists of a root node and connected nodes. The nodes at the
end of the tree are called leaves. The leaves specify the output or the target for
any given input that falls into that part of the input space. At each node i a
decision is made by comparing the feature j to a threshold value ti. Depending
on the decision within the node, the feature input vector is further passed down,
either to the right or to the left, to the next node or leave. (Murphy, 2022). A
simple form of a decision tree and its output can be seen in Figure 3.2.

Figure 3.2: (a) Shows a decision tree with two decision features. (b) Shows the regression of the
tree for a subset of testing variables from the two-dimensional input space, from
Murphy, 2022.

The decision tree outputs a value corresponding to all the decisions made
throughout the nodes. Those correspondences need to be learned during train-
ing to further use a decision tree for machine learning.

Training

The decision tree does not have a typical continuous output function. Changing
an input slightly can lead to a totally different prediction. This can be observed
in Figure 3.2 (b). Furthermore, this implies, that the decision trees optimization
equation is not differentiable. Important approaches to train a tree is therefore
to grow a tree one node at a time. The threshold for the decision within a
node needs to be evaluated. This is done by considering how the data reaching
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3 Machine Learning Background

the node i can be further split with the least possible error in each child sub-
tree. The data is partitioned at each node assuming the data contains just real
valued scalars. Partitioning is done by comparing the data to a threshold t.
The threshold is obtained by sorting the values within the input feature vector
which is passed from upper nodes. If one value occurs multiple times just one
is chosen. Multiple different thresholds are possible, but most of the trees are
binary trees. Hence just one threshold is used in one node. In a binary decision
tree, a left and a right split is created (Murphy, 2022).

A decision tree offers the advantage of allowing the use of both continuous
and discrete values as a threshold, thus enabling the integration of regres-
sion and classification techniques. However, in the context of this thesis, only
regression is of interest. The cost function,

c(Di) =
1
|D| ∑

n∈Di

(yn − ȳ)2, (3.11)

where

• i: is the index of the node,
• Di = {(xn, yn) ∈ Ni}: is the data set before the split at node i,
• yn: is the target value,
• ȳ: the mean of the targets,

is used for a regression problem.
The process of computing a split for left and right, for each feature, for each

threshold and for each node continues while building the tree from top to
bottom. The best feature ji to split on and the best threshold value ti for that
feature can be calculated by

(ji, ti) = arg min
j∈{1,...,D}

min
t∈Tj

|DL
i (j, t)|
|Di|

c(DL
i (j, t)) +

|DR
i (j, t)|
|Di|

c(DR
i (j, t)), (3.12)

where

• DL
i (j, t) = {Di : xn,j ≤ t}: is the left split of the data set at node i.

• DR
i (j, t) = {Di : xn,j > t}: is the right split of the data set at node i.

• ti: the threshold at node i.
• ji: is the feature of the decision at node i.
• i: is the index of the node.

The data is then partitioned and the splitting algorithm is called recursively
on each subset of the data (Murphy, 2022).
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3.2 Random Forests

Random Forests

RFs are an ensemble of multiple decision trees. One significant drawback of
decision trees is that overfitting is a potential issue. Additionally, there is a
possibility that a specific feature may be more influential than others.

It is for these reasons that the method of training multiple trees on subsets of
the data was established. These subsets are randomly chosen. The rationale is
that running the same learning algorithm on different subsets of the data will
result in sufficiently diverse base models (Murphy, 2022).

The ensemble of multiple trees can be expressed as follows,

f (x; θ) =
M

∑
m=1

βmFm(x; θ), (3.13)

where:

• Fm: is the m-th tree
• βm is the weight corresponding to each tree.

Usually, the weight is set to be βm = 1/M, whereas M is the total number of
trees.

Feature Importance

Feature importance is a method used to analyse which dimensions of the input
feature vector are most influential on a model’s decisions. It shows how much
a feature helps to reduce prediction error. It is calculated by adding up the
decrease in Mean Squared Error from splits involving the feature across all trees.
High importance scores indicate features that significantly reduce prediction
error, while low scores suggest features with minimal impact. (Ronaghan, 2019).
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4 Regression of Time Temperature
Transformation

The task is to predict the TTT for bainitic steel. The accuracy of state-of-the-
art systems to estimate the TTT is limited. Traditional physics-based models
assume linear correlations between variables. In this thesis, the focus lies on
machine learning approaches to estimate the TTT for any given steel alloy in a
purely data driven manner. At first the idea was to use Neural Networks (NNs)
and GPRs to solve the regression for mapping the input, which consists of the
weight percentage wper and the iso-thermal holding temperature TH at which
the measurement was taken.

The NNs did not create sufficient predictions because of various reasons.
One of them is that the data gathered from scientific papers had less samples
than the data from experiments. This imbalance causes the NN to perform
better on the overrepresented experimental data while underperforming on the
underrepresented scientific paper data. Additionally, experiments lasting up
to 60,000 seconds widen the range of available samples and further increase
the amount of data within a measurement. This further implies that the NN
and the GPR needs more time to train, because the computational complexity
is increased by O(n3). Unfortunately, the performance of using NN to estimate
the phasefraction curve fB did not create sufficient prediction results, as shown
in Figure 4.1.

Figure 4.1: Predictions of the phase fraction curve using a NN for regression. An example for
insufficient prediction results.
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4 Regression of Time Temperature Transformation

Each sample from one sigmoidal-shaped phase fraction has the same input
features, i.e., the material composition and the iso-thermal holding temperature
stay constant throughout one measurement. This property was used to reduce
the complexity of the problem introduced in the following section.

4.1 The t90% Problem

Reducing the number of samples per measurement was key in terms of simpli-
fying the problem. For this, a new metric was introduced. The idea is, that one
dilatometry experiment is described by one value. The new target value was
chosen to be the time at which the phase fraction reaches 90% of its maximum
value. Interpolation between discrete measurements was used to find the exact
value, as it is unlikely that there is a measured sample for the exact value of
90%. This introduces a small error, which can be neglected.

In Figure 4.2 the concept of using one value to describe one measurement
is shown. It shows one material which was measured with seven different
iso-thermal holding temperatures. The red dots indicate the t90% value and the
red line is the interpolation connecting the dots. The shape of the red line is
similar to the c-shape from the TTT diagram, which is explained in Section 2.1.

Figure 4.2: Multiple measurements from the dilatometry experiments from seven different
iso-thermal holding temperatures. The red dots indicate the t90% value for each
measurement.
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4.1 The t90% Problem

Through this the number of samples used for describing the material is
reduced from 91 measured samples to seven samples (i.e. one for each Th),
without losing information. Figure 4.3 gives a better insight on how the data is
simplified. Figure (a) is the original data which is the phase fraction measure-
ment curve depending on the time fB(t) and Figure (b) shows how the data
looks after determining the t90% value which is depending on the temperature.
This shows clearly how the t90% measurement forms part of a c-shape over
the multiple measurements by simply interpolating between the new gathered
t90% values.

Figure 4.3: Multiple measurements from the dilatometry experiments from seven different
iso-thermal holding temperatures (encoded by color from black to light purple)
within the same steel alloy. (a) The samples are dependent of the time and the red
dots indicate the time at which 90% of the final phase fraction was reached. (b) Part
of the c-shape formed by the t90% values for different temperatures.

The introduction of this simplification reduces the amount of data and enables
faster training. Especially for the GPR this is an advantage, because the kernel
matrix is reduced in its size and there are less parameters to be optimized.

4.1.1 Data Preparation

Filtering the data before training the model was done to avoid learning wrong
relationships. This requires knowledge about the physics and the behaviour
of the dilatometry experiment. The phase fraction, for example, always starts
at the value of fB(0) = 0 and the shape of the function measured is similar to
the sigmoid function. Any phase fraction measurement which did not reach
a maximum of fB(t∞) = 0.15 was neglected. A further problem of the given
data was that for some samples it was not possible to say if the measurement
was stopped before the maximum dilatation. Therefore the last sample within a
measurement was considered to be the one at full expansion.

Each material contains multiple dilatometry experiments, which result in one
t90% value. The t90% which is derived from the phase fraction fB(t) depends
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4 Regression of Time Temperature Transformation

on the weight percentage of each element within the steel alloy wper and the
temperature at iso-thermal holding TH. The number of materials is k and
the number of dilatometry experiments is n. This information is put into the
following shape,

Xinput =



wper0 T0,0
wper0 T0,1

...
...

wper0 T0,n
wper1 T1,0

...
...

wperk Tk,n


, ytarget =



t90%0,0
t90%0,1

...
t90%0,n
t90%1,0

...
t90%k,n


. (4.1)

4.1.2 Results for t90% Values

Even though the problem was easier to solve for the ML models the test
performance never reached satisfactory results and further discussion about
how the models could be improved was conducted. The simplified problem is
still a hard problem to solve by the ML models and the training with a limited
number of training data does not give sufficient results for the predictions. An
alloy of steel with a small change in weight percentage for a specific element
gives a large difference in the output. This is challenging for the model and
did not get resolved by simplifying the problem. Furthermore, the target to
be estimated, hence the duration of the experiment, spans a wide range, from
seconds to several hours.

Figure 4.4 shows the difficulty of the GPR learning the huge value span in
terms of the target. The trained ML model reacts heavily to small changes,
therefore the estimate of the first sample at an iso-thermal holding temperature
of 300 ◦C is far from the real value. Negative duration to reach t90% is not even
possible, but the model estimated it as such.
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4.2 Improving the GPR

Figure 4.4: Using a GPR to estimate the t90% targets for material 13. The estimated negative
t90% value for T = 300°C is a result of high sensitivity of the model due to the high
range of possible target values.

In Figure 4.5 another effect of huge numbers and similar input features can
be observed. The estimated curve of the GPR for material number 0 oscillates
around the real-valued data. This effect originates from the high sensitivity of
the model, causing oscillations. High sensitivity means that a small change in
the input, for example the iso-thermal holding temperature, can cause a big
change at the output. This can be observed in Figure 4.3, where a change of
25°C causes the dilatometry experiment to take 8.3 hours longer.

Figure 4.5: Using a GPR to estimate the t90% targets for material 0. The predictions oscillate
due to the high sensitivity of the model.

4.2 Improving the GPR

The GPR prediction results for t90% predictions were better but still not suffi-
cient. This is fixed by introducing a relative error to improve the model. Adding
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4 Regression of Time Temperature Transformation

additional information with more input features also leads to a better predicting
GPR model.

4.2.1 Log Transform of Target Values

Dealing with a wide range of target values presents a challenge in ML training.
To address this, a logarithmic transformation is used. The logarithmic function
compresses larger values more than smaller ones, reducing the span between
target values. After the logarithmic transform the target values represent a
more uniform distribution. Additionally, the logarithmic transformation helps
to stabilize the variance which makes the target values more homoscedastic.
The measurement error from the dilatometry experiment is heteroscedastic and
therefore increases as the time of bainitic transformation increases, i.e.,

ϵi ∼ N (0, σ2
n ytargeti). (4.2)

After applying the logarithmic transform to the the representation changes
as follows:

log(ytargeti) = log( f (Xinputi)) + ϵ̃i. (4.3)

To further encounter the problem of heteroscedastic noise, a GPR can use the
inverse information of the target value ytarget. In GPR with inverse weights,
we modify the standard approach by incorporating weights that are inversely
related to the uncertainty or importance of each data point, effectively adjusting
the influence of each observation based on the value of the target and the
measurement error.

Figure 4.6 shows the predictions of a GPR without the logarithmic transforma-
tion on material 42. The blue line is the prediction between the real data points,
which are indicated by the red x’s. The advantage of the GPR is, that it shows
how certain it is for a specific estimate. This is expressed as the covariance value
for each prediction point. Further, this is shown in the plot as the light blue
area, which indicates that the value lies within this blue area with a certainty of
95%.
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4.2 Improving the GPR

Figure 4.6: Applying the GPR to the input set of material 42. The light blue area shows the 95%
confidence interval. The GPR’s predictions are subject to high uncertainty.

In Figure 4.7 the GPR with logarithmic transformation of the targets is used
to make predictions on the same materials as in Figure 4.6.

Figure 4.7: Applying the GPR with log-transformed targets and inverse weights to the input
set of material 42. The light blue area shows the 95% confidence interval. Due to
the logarithmic transformation of the target values, the uncertainty of the GPR’s
estimations is larger for larger targets and vice versa.

Introducing the logarithmic transformation as well as adding inverse weights
during training is an improvement to the model’s predictions.

4.2.2 Supercooling

Supercooling is a phenomenon observed when a substance is cooled below
its typical freezing point without immediately solidifying. This occurrence
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4 Regression of Time Temperature Transformation

is common with pure substances such as water or ice. In the case of ice,
supercooling allows it to persist in a liquid state below its standard freezing
point of 0 °C until a trigger prompts crystallization.

Each feature dimension provides valuable information for the model, which
utilises this information for making predictions. By adding a new descriptor
to the input features more knowledge is given to the ML model. The new
descriptor depends on the bainite start temperature Bs and holds information
about the highest possible temperature at which bainite can form.

The elements within the alloy influence the value for the Bs descriptor,
calculated as follows, i.e.,

Bs = 746 − 162 · wC − 16 · wSi − 73 · wMn − 53 · wCr − 44 · wMo − 29 · wNi, (4.4)

where the constant coefficients have been determined by empirical analysis.
The Bs descriptor is influenced by both the compound and the temperature

of each sample. It gauges the distance from the current temperature to bainite
start temperature. The Bs descriptor for each iso-thermal holding temperature
is calculated as,

Bs(T) = Bs − T. (4.5)

Adding the additional Bs descriptor to the input vector from Equation 4.5
results in the following input and output data,

Xinput =



wper0 T0,0 (Bs0 − T0,0)
wper0 T0,1 (Bs0 − T0,1)

...
...

...
wper0 T0,n (Bs0 − T0,n)
wper1 T1,0 (Bs1 − T1,0)

...
...

...
wperk Tk,n (Bsk − Tk,n)


, ytarget =



t90%0,0
t90%0,1

...
t90%0,n
t90%1,0

...
t90%k,n


. (4.6)
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5 Results and Discussion

To determine how the model performs on unseen data, a strategy involves
using most of the samples from the data set for training and the rest for testing.
Our data set is relatively small in comparison with the number of input features
associated with the problem. Consequently, a distinct evaluation methodology
is required. For this use case leave-one-out training is used. This allows a good
analysis on the performance of the ML models even though it requires longer
training.

The materials are indexed from 0 to the number different steel alloys provided,
which in this case is 55. To enhance readability, the alloyed materials are
referenced by their indexed number from the data set, rather than by their
name.

5.1 Results

The ML models used for the results are the RF and the GPR with inverse
weights. The target was transformed using log transformation. For comparative
purposes and discussions, each ML model was trained with either the full
input features available or a reduced set of features. Two different input feature
vectors were used for training and testing: The full feature set includes: Fe, C,
Si, Mn, Cr, V, Co, Al, N, B, P, Ti, S, W, Cu, Mo, Ni, Nb, the iso-thermal holding
temperature TH and the descriptor Bs. The reduced feature set includes: C, Si,
Mn, Cr, Mo, Ni, the iso-thermal holding temperature TH and the descriptor Bs.

The Mean Absolute Percentage Error (MAPE),

MAPE =
1
n

n

∑
i=1

∣∣∣∣ t90i − t̂90i

t90i

∣∣∣∣ · 100, (5.1)

where:

• n is the number of samples,
• t90i is the true t90% value of the i-th sample,
• t̂90i is the predicted t90% value of the i-th sample,

is used to determine the prediction accuracy of the ML models.
It is preferred to use a MAPE over an absolute error for determining pre-

diction accuracy of the ML models. For example, the prediction error of 100
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5 Results and Discussion

seconds is tolerable for an experiment lasting 60000 seconds, but not if it takes
only 200 seconds. This can be expressed by using the MAPE. The MAPE error
of the RF predictions with the reduced input features are presented in Figure 5.1
and the results for the GPR with the reduced feature set is shown in Figure 5.2.

The MAPE is most of the time between 50% and 100%. For a few predic-
tions the MAPE could be below 50% for both the GPR and the RF with either
the full or the reduced feature input vector. The RF model, which included
information about all elements, predicted 10 materials with an error larger
than 100%. The RF model, which included the reduced feature set, predicted
13 materials with an error larger than 100%. This states, that the prediction
accuracy of the RF is increased by using the full feature set.

Not a single ML model used could predict material 2, 15. 41 and 44 with
decent accuracy, hence the MAPE is larger or around 100%.

The RF with the full feature set predicted material 6 with an MAPE below
10%. This accuracy could be achieved by the GPR with the reduced input
features for material 21.

Figure 5.1: Logarithm of the MAPE for predictions from the RF with the full input features.
The green dashed line shows an error of 100% and the blue dashed line shows an
error of 10%.

The GPR with the full feature set has worse prediction performance compared
to the GPR with the reduced feature set. A direct comparison of the RF with
the GPR reveals that the GPR with reduced feature set has a greater number of
predictions below a prediction error of 100%.

Figure 5.2: Logarithm of the MAPE for predictions from the GPR with the reduced input feature
for each material. The green dashed line shows an error of 100% and the blue dashed
line shows an error of 10%.
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5.1 Results

Compared to the RF with the full feature set, the GPR with the reduced
feature set has poor performance on the left-out materials 3, 7, 20, 28, 29, 37 and
54. The GPR performs better on materials 1, 5, 16 and 30 than the RF models.

High prediction errors are caused by the fact that there are no similar materi-
als in the data set with similar behaviour during the dilatometry experiment.

One of the key advantages of the GPR is its predicted uncertainty. The
uncertainty provides insight into the degree of certainty associated with a given
prediction. This measure is derived from the kernel matrix and is expressed in
the form of the standard deviation. It can be employed to calculate a confidence
interval. The standard deviation for each leave-one-out measurement of GPR
using the reduced feature set is shown in Figure 5.3.

Figure 5.3: Standard deviation for predictions from GPR for each model.

The plot indicates how certain the GPR is about its predictions. The GPR is
uncertain especially for the materials 6, 7, 8 and some of the unconventional
materials 49, 51 and 54. Combining the information of the MAPE error and the
standard deviation the performance of the GPR is very clear. Model predictions
with a low prediction error and a high standard deviation are not trustable. For
example, the model for estimating material 6 shows a high standard deviation,
but a low MAPE.
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5.2 Discussion

Comparing GPR models can be done by using the covariance function for each
dimension, which is further expressed by the length-scale parameters. The
length-scale gives information about the degree of correlation within one input
feature. For instance, the length-scale parameter for the iso-thermal holding
temperature TH is very small throughout all the trained models. This means
that the t90% target value is strongly depended on that feature. The higher
the length-scales of a input feature the lower the influence to the output. For
evaluating the models, the length-scale matrix is plotted. This in addition to the
leave-one-out method gives insights of how different the models are to each
other. Contrasting materials in the training set can change the length-scales to
have more weight on a specific element or a feature.

The length-scale parameters shown in Figure 5.4 give an insight of how
important each individual input feature is for the later prediction of the model.
These values are trained during the leave-one-out training. The length-scale
parameters for each leave-one-out training iteration are presented in a separate
row. The row index is identical to the index of the material that was excluded
during the leave-one-out training. Running a model multiple times should
result in the same or similar solutions and similar predictions. This further
leads to identical length-scale parameters. However, in the column of iron
the lighter blue indicates that iron was learned to be more important for that
specific training set. ML models can either focus on the absence of iron or on the
additional percentage that other elements have instead of iron. Chrome (CR),
Vanadium (V), Phosphorus (P) and Copper (C) have a length-scale parameter
above one, which indicates that those elements do not have a lot of effect
according to the model. The effect of different length-scale parameters of a
feature even though only one material has been exchanged between one row is
further explained in Section 5.2.1.

The number of input features was decreased to the reduced set based on
the elements that are known to have major effect on the output, hence the
behaviour of the steel. The reduced input results in a faster converging GPR, or
in faster training, in general, because the number of parameters to optimize is
decreased. This setting makes the GPR more robust because it is not tempted to
weight unimportant elements more than others. Training both the one with all
the features (i.e. full feature set) and the one with selected features chosen (i.e.
reduced feature set) is an effective method to gain a deeper understanding of
the training process. Figure 5.5 illustrates the length-scale for the GPR for the
reduced feature set. It can be observed that the elements of interest exhibit a
greater degree of similarity in length-scale parameters throughout the training
process. However, it is important to note that the leave-one-out method has the
potential to enhance the comparability of length-scale parameters. The property
of exchanging just one material from the test set to the training set should
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Figure 5.4: Lenght-scale parameters for each input feature and trained model. If the length-scale
is larger than one it is set to one.

not significantly influence the length-scale parameters. It can be observed that
chrome is still not a particularly important feature for the GPR model within
the reduced feature set. This can be observed in the length-scale matrix of
Figure 5.5.

Figure 5.5: Lenght-scale parameters for the GPR with a reduced feature set. If the length-scale
is larger than one it is set to one.

The RF has a similar approach for assessing the importance of the model
parameters. In a RF, input features are used for making decisions within all
the trees. A feature used in more nodes is more important. This creates a
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feature importance vector for every RF model. Figure 5.6 illustrates the feature
importance matrix for the entire leave-one-out test set. It demonstrates that the
features within the RF are almost equally important across the columns. This
indicates that the RF identifies similar feature importance across the 56 distinct
trained RF models from the leave-one-out method.

Figure 5.6: Feature importance matrix from RF models with reduced features over all materials.
If the length-scale is larger than one it is set to one.

The reason for following predictions is often a lack of coverage in certain
areas of the data. This section covers some of the material predictions of higher
errors and less accuracy. The reason why a model cannot find good predictions
for the reduced feature set is also further discussed.

5.2.1 Convergence Behaviour of the GPR

The observation of identical length-scale parameters across all training scenarios
is indicative of the GPR converging to a consistent solution. Conversely, the
absence of such parameters suggests that the GPR may be oscillating between
multiple local minima or failing to converge altogether. This phenomenon
may be attributed to the pivotal role of the kernel parameters in the model’s
initialization. A leave-one-out training approach was employed, wherein the
same material was used for training on each iteration, to assess the impact of
random hyperparameter initialization on the convergence behaviour of the GPR.
The model parameters should be identical training on the same train and test
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split multiple times. This is evidenced by the observation that the length-scale
parameters are the same for each training set. Material 0 was the material being
left-out, and training was done on all the other materials. Figure 5.7 shows how
multiple training runs on one case leads to different length-scale parameters.
With this method, it can be argued that the GPR does not find the same solution
for each training. One simple method to circumvent this issue is to set a lower
bound on the length-scale parameters in each dimension, which does not allow
the GPR to learn the length-scale parameter below this bound. A higher lower
bound reduces the probability of the GPR focusing on a single element. This is
a means of avoiding overfitting. Figure 5.8 illustrates how modifying the lower
bound leads to a more uniform distribution of learning. Various models may
employ the same solution for the length-scales, yet due to the limitations of
the length-scale, the resulting predictions may not be sufficient and the model
may be underfitted. Therefore, setting the lower bound is of importance and is
partially the determining factor for the selection of optimal hyperparameters. A
lower bound of 10−7 allows for more specific training, although the length-scale
parameter varies considerably.

Figure 5.7: Setting a lower bound of 10−7 for to the length-scale parameters allows more specific
training, however the length-scale parameter vary a lot. 10 training runs (rows) on
the same data set.
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Figure 5.8: Limiting the lower bound of the length-scale decreases overfitting. The lowerbound
was set to 10−2. 10 training runs (rows) on the same data set.

5.2.2 Low Temperatures

The measurements preferred in industry are typically conducted at a limited
number of temperatures, whereas fundamental researchers gather data over a
wider range of temperatures. Therefore, the scarcity of data in specific areas
of the data set results in suboptimal predictions. This is due to the lack of
information in the specific area of the feature space. Therefore, the mapping
from the input to the output is not well known to the model. The prediction error
for materials with measurements below and above a certain temperature can be
high. The distribution of the different iso-thermal holding temperatures used
for the measurement can be seen in Figure 5.9. Most temperatures are measured
between 250°C and 500°C. As a result, the model lacks substantial data for most
measurements and materials outside this temperature range. From a knowledge
perspective, the model can observe a greater number of samples points within
this temperature range. The error at the lower temperatures or the higher
temperatures is greater than in those areas where there is more knowledge
about certain temperatures. Depending on the source of the measurements the
availability of additional data samples within the temperature range may vary.
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5.2 Discussion

Figure 5.9: Distribution of iso-thermal holding temperatures of all experiments.

An illustrative example of this phenomenon is provided by material number
2. Figure 5.10 depicts material 2. It can be observed that as the temperature
decreases, the accuracy of the model predictions get worse. Furthermore, the
confidence of the GP, either with all the elements or with the most important
elements, increases as the temperature decreases. It is important to note that a
measurement that takes up to 6000 seconds is not of interest to the industry, as
there is no practical use case for such a slow transformation.

Figure 5.10: Example for uncertain predictions below 250°C of material 2. (a) GPR using full
feature set, (b) GPR using reduced feature set, (c) RF using full feature set and (d)
RF using reduced feature set.
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5.2.3 Boron

In the absence of information regarding the influence of a specific element on
the behaviour of the compound, the predictions of the ML model are likely
to be inaccurate. To illustrate, if there is no instance of a material containing
boron in the training data, the model will be unable to ascertain the impact
of boron on the output. The t90% value may be reached in a longer or shorter
time, or that the additional value of boron will have no effect. Furthermore, it is
possible that the percentage of boron is missing somewhere else, for example,
there is less carbon or less chrome in the compound, which could also lead
to a different behaviour. Therefore, this is a very challenging issue for any
type of non-parametric ML model. The optimal solution to this problem is to
incorporate a greater variety of materials with a wider range of compounds to
encompass a more comprehensive spectrum of behaviours.

Figure 5.11: Number of occurrences for each element within the given data set.

Figure 5.11 demonstrates that material 15 is the sole element containing
boron. None of the models tested were able to provide accurate predictions for
the leave-one-out test case, with material 15 being excluded during training.
Furthermore, the GPR demonstrates its uncertainty by increasing the confidence
interval. Figure 5.12 illustrates the prediction from the GPR and RF.
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Figure 5.12: Prediction for material 15 which is the only material containing boron. (a) GPR
using full feature set, (b) GPR using reduced feature set, (c) RF using full feature
set and (d) RF using reduced feature set.

The predictions are unfavourable and the uncertainty is considerable. Despite
the real values are not within the confidence interval predicted by the GPR,
the change in behaviour due to the different compound is significantly greater
than that predicted by the GPR. Additionally, niobium is present in the alloy.
Niobium, like silicon, is not a highly represented element in the data set, and
may have additional effects. Furthermore, there is limited knowledge available
about the behaviour of niobium in this context.

5.2.4 Material 14

This material contains aluminium. Upon initial observation, it appears to be
similar to other alloys. There are other materials that contain aluminium as
well. Figure 5.11 illustrates that there are 11 other alloyed steels containing
aluminium. Figure 5.13 depicts the quantity of aluminium present in each of
the 12 materials containing aluminium.
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Figure 5.13: Amount of aluminium in weight percent for the 12 materials.

The bar chart indicates that material 14, which exhibited poor estimation,
contains the greatest quantity of aluminium. The remaining materials, with
the exception of material 52, exhibited a percentage of aluminium below 0.2%.
According to the material scientist, the limited quantity of aluminium does not
alter the measurement behaviour of material number 14. The GPR estimation
error is larger than 100% if the lower bound is not limited during training. A
GPR with the reduced feature set and a lower bound limit of 10−6 achieved
predictions with a MAPE lower than 100%.

5.2.5 Silicium

The alloyed steels 3, 4, 5, 6, and 7 are composed of the same elements. The RFs
predictions for these materials are generally accurate, except for model number
5. Results are shown in Figure 5.14. The RF model’s prediction error for Material
5 is larger than 300%, whereas those for Materials 3, and 4 are lower than 100%,
those for Materials 7 lower than 50% and those for Material 6 are even lower
than 10%. A more detailed examination of the compounds listed in Table 5.1
reveals that the amount of silicon in material 5 differs significantly from other
alloys. Material 5 has the lowest amount of silicon, which may explain why
it behaves differently than the other materials. This discrepancy may be the
reason why the RF models predict values that are significantly different from
the actual measurements.

Material Nr. 4 5 6 7

Fe [%] 96.572 97.613 94.447 93.53

C [%] 0.448 0.452 0.443 0.43

Si [%] 1.2 0.225 3.34 4.28

Mn [%] 1.78 1.71 1.77 1.76

Table 5.1: Comparing different materials with similar composition
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The GPR with the full feature set does not cover the real target values for
material 5 within the confidence interval. The GPR with the reduced feature
set has the best predictions since the uncertainty covers the real world data
and the MAPE is the lowest. The MAPE and uncertainty interval of the GPRs
predictions with the reduced feature set is large for material 7, which has the
largest amount of silicium in its compound.

Figure 5.14: Prediction on all four models on material 5. (a) GPR using full feature set, (b) GPR
using reduced feature set, (c) RF using full feature set and (d) RF using reduced
feature set.

5.2.6 Effect of Similar Input Features

It can be observed that materials 16 and 26 share similar feature elements,
resulting in a comparable compound. The model is aware of at least one other
material within the same range of the feature space. This could potentially
lead to more accurate predictions for these materials. In the leave-one-out
method, the model either knows material 16 or material 26 during training. By
comparing the t90% values for both materials at the same temperature, it is
possible to assess the similarity of the measurements. Material 16 has reached
90% of its elongation within the experiment after 110 seconds at a iso-thermal
holding temperature of 400°C, which is comparable to material 26.

Material 26 has a greater number of measurements at a temperature below
400°C. It is of interest to predict material 26 with the knowledge of material
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16 during training. The GPR and RF yield more accurate predictions of the
temperature at approximately 400°C. In particular, the GPR results in greater
uncertainty in the feature input space for unknown points.

Figure 5.15: Predictions for measurements of material 26. (a) GPR using full feature set, (b) GPR
using reduced feature set, (c) RF using full feature set and (d) RF using reduced
feature set.

Figure 5.15 shows the result for material 26. The estimation of all the models
at the known temperature with knowledge about another material with the
same composition is highly precise. It is within degrees Celsius, which is
not achievable for many other measurements. For the other sample points
at 300°C, 350°C and 375°C, both GPRs exhibit increased uncertainty. Both
GPRs significantly increase the uncertainty of the predictions, despite the
mean of their predictions being satisfactory. The GPR with all the elements
demonstrated superior performance to the one with the reduced feature set.
The RF demonstrated robust predictive capabilities, thereby confirming the a
priori expectation that the GPR with greater knowledge about a greater number
of elements will yield more accurate predictions than the GPR with a smaller
input vector.

40



5.3 Other Microstructures

5.3 Other Microstructures

5.3.1 Ferrite

The whole thesis is experimentally based on measurements of bainitic steel.
However, the results for ferrite show that ML models have the potential to be
applied to other microstructures. Academic measurements from Huang et al.,
2020 are used for training and testing. This data set provides the measurement
from the dilatometry experiment within the ferrite microstructure of 50 different
steel alloys. The left part of Figure 5.16 shows the predictions of the RF regressor
on material 2 whereas the right plot demonstrates the GPR predictions on the
same data. This plot highlights good prediction of the GPR on material 2 and
additionally shows that the real value measurements are within the uncertainty
interval.

a) RF predictions on material 2 from the ferrite data
set.

b) GPR predictions on material 2 from the ferrite data
set.

Figure 5.16: Material 2 from the ferrite data set predicted by both the GPR and the RF model.

To apply the model to the new data only a few changes are needed, because
the input features are similar to the method already implemented (explained in
Section 4.2). For example, the descriptor for the supercooling property Bs does
not exist for ferrite. However, there is a similar measure, which is referred to as
the AT descriptor. Additionally, to the changed input feature vector, the output
vector also differs to the bainitic data set. The bainite target values describe the
time when the transformation is completed by 90%, whereas the ferrites target
value gives the time after full elongation.

One advantage of the ferrite data set is that it covers the entire c-shape. The
bainitic data set is sparser, with mostly just a few data samples for one material.
The problem with getting more data samples from one material is that training
the GPR, needs to be more efficient or it needs better hardware. The computing
needs to be advanced in any way to achieve faster training or faster convergence.
Currently the data is down sampled and only every third measurement was
taken for training the GPR. This can be observed in Figure 5.16. Additionally,
the task allows to neglect measurements above 3000 seconds. This reduces the
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Figure 5.17: Logarithm of MAPE for the leave-one-out splits and the ferrite data set. The green
dashed line shows a MAPE of 100% and the blue dashed line shows a MAPE of
10%.

amount of data, but also the quantity of information. Therefore, using the full
amount of data is desirable.

Despite the available resources, the RF is trained and tested within the whole
data set. The results for the RFs in terms of the MAPE are shown in Figure 5.16.
Both ML models make satisfactory predictions for material 2. The GPR has
better prediction performance and covers every real value target within the
confidence interval except the one at 775°C.

The feature importance for the models is shown in Figure 5.18. For this
use-case it is essential, that the iso-thermal holding temperature is of same
importance as the AT descriptor. In the case of the bainitic steel either the
temperature or the additional Bs descriptor is crucial for the model. In general,
all the elements are of similar significance throughout the different training and
test splits. The most important elements for the RF, are Carbon (C), Chrome
(Cr), Vanadium (V) and Tungsten (W).

Figure 5.18: Ferrite: feature importance for the RF models trained with leave-one-out method.
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5.4 Summary

To summarize the results, both models, the GPR and the RF regressor, are
effective in most cases. A more robust model can be created by removing certain
input features, which is a beneficial approach. This avoids to learn relationships
between input and output. However, the same outcome can be achieved by
specifying constraints on the hyperparameters. The high-dimensional input
vector presents a challenge for the models, particularly in areas with limited
data. Extrapolation is challenging due to the potential that small changes in
the composite percentages of the reduced feature set, cause totally different
measurement behaviour. Both models are neither restricted to the bainitic
structure nor to its behaviour. The application of training data from a variety of
data sets, including ferrite steel, has shown promising results.
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In this thesis, GP and RF are used to model the time (t90%), where the phase
fraction of TTT of bainitic steel is 90%. The performance of the prediction
depends on the quality of the measurements. Extrapolating to unknown points
situated at a considerable distance from the known feature space results in
inaccurate estimates. However, a notable advantage of using the GPR is its
capacity to provide insight into uncertainty, indicating the confidence level
of the estimate. This feature becomes apparent in instances such as Material
15, which contains a percentage of boron, a characteristic does not present
in the dataset. Consequently, the model struggles to interpret this unfamiliar
information, resulting in estimates of high error. The decision to either trust
the estimate or neglect it is indicated by the amount of uncertainty of the GPR.
The second model implemented, the RF, does not have any indication like this.
Furthermore, it is important to note the sparsity of data points for iso-thermal
holding temperatures below 250°C. Such temperatures are rarely encountered
in industrial practices, with most data originating from academic institutions
and fundamental research. The lack of information in this region presents a
significant challenge for the model’s perception, making extrapolation difficult.
In conclusion, addressing this task proves to be exceedingly challenging for
a machine learning model lacking prior knowledge of the physics involved.
The scarcity of data further complicates the endeavour. Moreover, the non-
linearities inherent in the transformation of the specific microstructure pose
a particularly unpredictable challenge, particularly at the extremities of the
input feature space. Training a GPR model poses a significant challenge due
to the considerable time required for training, especially when using all data
and the leave-one-out method. This often results in days of training for a single
evaluation. However, future solutions could potentially address this issue by
leveraging higher processing power and employing frameworks optimized
for GPU utilization. The use of a GPR implementation for scaling up to huge
data could be employed to minimize the training effort. Additionally, the t90%
problem was introduced as a strategic approach to enhance training efficiency
while maintaining the same level of information. To create more robust models
and avoid overfitting the model, the number of input features was reduced
by neglecting elements which are parts of alloys but do not have a significant
effect on the physical behaviour within the measurement. The reduction of
the input features is additionally helpful to reduce the parameters to optimise,
hence faster training is possible. As more data is collected to train the model,
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the issue of complexity becomes more pronounced. While this represents a
disadvantage, it is an essential step towards improving prediction accuracy for
previously unseen data. Obtaining accurate measurements in terms of quantity
and quality is challenging due to the high cost and time-consuming nature
of the measurements. The measurement error is significantly high for most
measurements, which means that the predictions produced by the model can
never be more accurate than the measurements themselves. The model learns
and trains with the error, which biases the extrapolation. For the majority of
the materials considered, both the RF and GPR models provide satisfactory
estimates for the t90% value. While there are slight variations between the two
models, particularly for materials with comparable data and iso-thermal holding
temperatures, which represent more familiar areas within the feature space, the
accuracy of the estimates generally meets the required criteria. Additionally,
it is noteworthy that the uncertainty of the GPR indicates that the estimated
target falls within the 95% confidence interval provided by the model. One
of the key advantages of the GPR model over the RF model is its ability to
provide indications of confidence, which are crucial for assessing the reliability
of estimates for later use.

ML demonstrates potential for the use within material science. Improving
performance can be achieved by multiple ways. One suggestion is to explore
additional descriptors that incorporate physics-based principles, providing the
model with more comprehensive information to better understand the relation-
ships between alloy behaviours. The supercooling descriptor Bs integrated in
this thesis is an example of this. As with any machine learning problem, the
quality and quantity of training data are crucial. Therefore, efforts to enhance
measurement accuracy will lead to more accurate predictions. Furthermore,
the number of test samples and materials included in the training set can be
increased in order to refine the model’s predictions. Moreover, the application
of these models and training methodologies to other forms of microstructures
could yield insights and results that are unexpected. This could expand the
potential applications of the research.
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