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Abstract

In financial mathematics the Black-Scholes model is well known for pricing a European
call or put option. This model was the foundation to study the pricing and hedging
of general contingent claims in complete markets. As a result it has been shown that
any contingent claim can be exactly replicated by a dynamic, self-financing trading
strategy, which trades only in the underlying assets. Unfortunately, in reality there are
simply not enough assets to deal with every cause of uncertainty in the market. Hence,
one is confronted with incomplete markets and if one tries to hedge a contingent claim
an intrinsic risk remains.

In this thesis we will look at a quadratic approach to study and compare the risk-
iness of hedging strategies for a discounted contingent claim H. We use a quadratic
approach, since we do not know in advance if we deal with a buyer or seller. Fur-
thermore, with this approach we are able to work with the L2-space, which has nice
mathematical properties.
Even if the theory was already developed in the late 90’s, quadratic hedging finds its
use in most recent topics such as in term structure modelling with stochastic discon-
tinuities, see [Fontana et al., 2024] and [Fontana et al., 2020].

As a first approach we will rely on the constraint that the terminal portfolio value
matches the contingent claim H and we try to minimize the conditional mean squared
error of the remaining costs of the strategy. We will elaborate this idea in the case
where the underlying discounted, d-dimensional, real valued price process X, which
models the price vector of d discounted stocks, is a local martingale and later in the
general case, where X is a semimartingale. This quadratic hedging approach is called
local risk-minimization. We will see, that in the martingale case the Galtchouk-
Kunita-Watanabe decomposition of the claim H will play an important role and
later, in the general case, the so called Föllmer-Schweizer decomposition. Fur-
thermore, we assume that there exists at least one equivalent local martingale measure,
under which the semimartingale X is a local martingale. This assumption can be in-
terpreted as an absence of arbitrage. We will see that the minimal equivalent local
martingale measure QT will play an important role in finding the Föllmer-Schweizer
decomposition of H.
As a second idea, we will rely on self-financing strategies and try to minimize the
squared mean between the terminal portfolio value of our strategy and the contingent
claim H. This quadratic hedging idea is called mean-variance hedging and it is
heavily connected to the topic of closedness of spaces of stochastic integrals.



This thesis emphasizes on the first approach, since, intuitively, in practice one prefers
to be able to adjust the risk until the maturity of the contingent claim H.

The first chapter briefly recaps the fundamentals of market models in continuous time
and points out the difference between a complete and an incomplete market. Chapter
two works out the above introduced two hedging approaches in the martingale and
the more complexe semimartingale case. Finally, in the third chapter an application
to a portfolio of unit-linked life insurance contracts can be found and in chapter four
we concluded the key ideas and results of this thesis.



Kurzfassung

In der Finanzmathematik ist das Black-Scholes-Modell für die Bewertung einer eu-
ropäischen Kauf- oder Verkaufsoption sehr bekannt. Dieses Modell war die Grundlage
für die Untersuchung der Preisbildung und Absicherung allgemeiner Eventualforderun-
gen auf vollständigen Märkten. So konnte gezeigt werden, dass jede Eventualforderung
durch eine dynamische, sich selbst finanzierende Handelsstrategie, die nur mit den zu-
grunde liegenden Vermögenswerten handelt, exakt nachgebildet werden kann. Leider
gibt es in der Realität einfach nicht genügend Vermögenswerte, um alle Unsicher-
heitsfaktoren auf dem Markt zu berücksichtigen. Daher ist man mit unvollständigen
Märkten konfrontiert, und wenn man versucht, eine Eventualforderung abzusichern,
was auch als hedging bezeichnet wird, bleibt ein intrinsisches Risiko bestehen.

In dieser Arbeit wird ein quadratischer Ansatz zur Untersuchung und zum Vergle-
ich des Risikos von Absicherungsstrategien für eine diskontierte Eventualforderung H
betrachtet. Wir verwenden einen quadratischen Ansatz, da wir im Voraus nicht wissen,
ob wir es mit einem Käufer oder Verkäufer zu tun haben. Außerdem können wir mit
diesem Ansatz mit dem L2-Raum arbeiten, der schöne mathematische Eigenschaften
hat.
Auch wenn die Theorie bereits in den späten 90er Jahren entwickelt wurde, findet
das quadratische Hedging seine Anwendung in neueren Themen wie z.B. in der Zins-
Struktur-Modellierung mit stochastischen Unstetigkeiten, siehe [Fontana et al., 2024]
und [Fontana et al., 2020].

Als ersten Ansatz werden wir uns auf die Bedingung stützen, dass der Endwert
des Portfolios mit der Eventualforderung H übereinstimmt, und wir versuchen, den
bedingten mittleren quadratischen Fehler der verbleibenden Kosten der Strategie zu
minimieren. Wir werden diese Idee für den Fall ausarbeiten, dass der zugrunde liegende
diskontierte, d-dimensionale, reelle Preisprozess X, der den Preisvektor von d diskon-
tierten Aktien modelliert, ein lokales Martingal ist, und später für den allgemeinen
Fall, dass X ein Semimartingal ist. Dieser quadratische Absicherungsansatz wird
als lokale Risikominimierung bezeichnet. Wir werden sehen, dass im Martingal-
Fall die Galtchouk-Kunita-Watanabe-Zerlegung der Forderung H eine wichtige
Rolle spielt und später, im allgemeinen Fall, die sogenannte Föllmer-Schweizer-
Zerlegung. Weiters nehmen wir an, dass es mindestens ein äquivalentes lokales Mar-
tingalmaß gibt, unter dem das Semimartingal X ein lokales Martingal ist. Diese An-
nahme kann als Abwesenheit von Arbitrage interpretiert werden. Wir werden sehen,
dass das minimale äquivalente lokale Martingalmaß QT eine wichtige Rolle bei



der Suche nach der Föllmer-Schweizer-Zerlegung von H spielen wird.
Als zweite Idee werden wir uns auf selbstfinanzierende Strategien stützen und ver-
suchen, den quadratischen Erwartungswert zwischen dem Endportfoliowert unserer
Strategie und der Eventualforderung H zu minimieren. Diese quadratische Hedging-
Idee wird als Mean-Variance Hedging bezeichnet und ist eng mit dem Thema der
Abgeschlossenheit von Räumen stochastischer Integrale verbunden.

In dieser Arbeit wird der Schwerpunkt auf den ersten Ansatz gelegt, da man in der
Praxis intuitiv die Möglichkeit bevorzugt, das Risiko bis zur Fälligkeit der Eventual-
forderung H anpassen zu können.

Das erste Kapitel fasst kurz die Grundlagen von Marktmodellen in kontinuierlicher
Zeit zusammen und zeigt den Unterschied zwischen einem vollständigen und einem
unvollständigen Markt auf. Im zweiten Kapitel werden die beiden oben vorgestell-
ten Absicherungsansätze für den Martingal- und den komplexeren Semimartingal-Fall
ausgearbeitet. Schließlich findet sich im dritten Kapitel eine Anwendung auf ein Port-
folio fondsgebundener Lebensversicherungsverträge, und in Kapitel vier werden die
wichtigsten Ideen und Ergebnisse dieser Arbeit zusammengefasst.
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1 Market models in continuous
time

The following chapter is structurally based on [Müller, 2022]. Details about mathemat-
ical finance and mathematics of arbitrage can be found in [Karatzas and Shreve, 1998]
and [Delbaen and Schachermayer, 2006].
Let (Ω,A,P) be a probability space equipped with a filtration F = (Ft)0≤t≤T on a
finite time horizon T > 0. Assume that F satisfies the usual conditions, namely right
continuity und P-completeness. This means, that N := {A ∈ A |P(A) = 0} ⊆ F0.
Let the market consist of d + 1 tradeable assets with real-valued price processes
S̃i = (S̃it)0≤t≤T , for i = 0, . . . , d. S̃0 > 0 represents the riskless bond or bank ac-
count. Set S̃ = (S̃0, . . . , S̃d). We use S̃0 as a numèraire and call S = (S)0≤t≤T with

St = (1, S1
t , . . . , S

d
t ), Sit = S̃it/S̃

0
t

the discounted price process.
To apply basic concepts of stochastic analysis, we further assume that each S̃i is a
semimartingale. Each process S̃i is assumed to be adapted to the filtration F with
càdlàg paths and the stochastic integral

∫
Y dS̃i exists and is well defined for a previsi-

ble and S̃i-integrable process Y ∈ L1(S̃i). For more details we refer to [Protter, 2005].

Example. One well known continuous market model is the Black-Scholes Model.
The riskless bond is described by S̃0

t = ert and the stock price by

S̃1
t = S̃1

0 exp

((
µ− σ2

2

)
t+ σBt

)
(0 ≤ t ≤ T ),

where S̃1
0 > 0 denotes the initial stock value and B = (Bt)0≤t≤T a Brownian motion.

The parameters fulfill r ≥ 0, µ ∈ R, and σ > 0. Here, r refers to the interest rate, µ to
the drift and σ to the volatility. As probability space we use the space on which B is
defined and set F = σ(FB ∪ N ). This P-completed canonical filtration of B satisfies
the usual conditions.

1.1 Self-financing strategies

Definition 1.1 (trading strategy, value process, cumulative gains, self-financ-
ing). A trading strategy φ = (φt)0≤t≤T is a (d+ 1)-dimensional real-valued process,

1



2 1 Market models in continuous time

where φi is previsible for i = 0, . . . , d. Its value process Ṽ (φ) = (Ṽt(φ))0≤t≤T is
defined by

Ṽt(φ) := φt · S̃t =
d∑
i=0

φitS̃
i
t .

The cumulative gains of φ up to time t are1∫ t

0

φs · dS̃s :=
d∑
i=0

∫ t

0

φis dS̃
i
s.

A trading strategy φ is called self-financing if∫ t

0

φs · dS̃s = Ṽt(φ)− Ṽ0(φ) (0 ≤ t ≤ T ). (1.1.1)

Remark. By the above defintion a trading strategy is self-financing if

dṼt(φ) = φt · dS̃t :=
d∑
i=0

φit dS̃
i
t (0 ≤ t ≤ T ).

The intuitive meaning of a self-financing strategy is that it is self-supporting: after
time zero no further capital is added or removed from the portfolio and the initial
portfolio value Ṽ0(φ) = φ0 · S̃0 is continuously rebalanced up to time t. Thus, changes
of Ṽ (φ) are only due to changes of S̃ and we have

Ṽt(φ) = Ṽ0(φ) +

∫ t

0

φs · dS̃s (0 ≤ t ≤ T ).

Lemma 1.1. φ is self-financing if and only if dVt(φ) = φt · dSt ∀ 0 < t ≤ T .

Proof. The assertion holds true for a general numeraire N := S̃0, which is a strictly
positive semimartingale. Using Itô’s Formula and the product rule we get that Vt(φ),
N−1 and all Sit are semimartingales. Further, the theorem for jumps of a stochastic
integral gives

∆Ṽt(φ) = ∆

(∫ t

0

φs · dS̃s
)

= φt ·∆S̃t (0 < t ≤ T ),

where ∆Ṽt(φ) := Ṽt(φ)−Ṽt−(φ). By comparison of coefficients we get Ṽt−(φ) = φt ·S̃t−.
Using the properties of the quadratic variation we get

〈Ṽ (φ), N−1〉 =

〈∫ ·
0

φ · dS̃,N−1

〉
=

∫ ·
0

φ · d〈S̃, N−1〉.

1All stochastic integrals are Itô integrals.



1.2 Arbitrage 3

Finally the product rule yields for 0 < t ≤ T

dVt(φ) = d(N−1Ṽt(φ))

= N−1
− dṼt(φ) + Ṽt−(φ) dN−1 + d〈Ṽ (φ), N−1〉t

= N−1
− φt · dS̃t + φt · S̃t− dN−1 + φt · d〈S̃, N−1〉t

= φt ·
(
N−1
− dS̃t + S̃t− dN

−1 + d〈S̃, N−1〉t
)

= φt · d(N−1S̃t)

= φt · dSt,

if and only if φ is self-financing.

Remark. dVt(φ) = φt · dSt ∀ 0 < t ≤ T is equivalent to

φ0
t +

d∑
i=1

φitS
i
t − V0(φ) = Vt(φ)− V0(φ) =

∫ t

0

φs · dSs =
d∑
i=1

∫ t

0

φis dS
i
s. (1.1.2)

Since dS0 = 0, this equation implies that φ0 is uniquely determined by V0(φ) and
(φ1, . . . , φd).

1.2 Arbitrage

Definition 1.2 (admissible). We call a trading strategy φ admissible, if V (φ) is
bounded from below by a constant.

Remark. This means V (φ) ≥ −K, for K constant. Intuitively, this condition ensures
that an investor can only use the trading stragy φ if he has at least a credit amount of
K. Unfortunately, short selling of one unit of asset i is not admissible, since Vt(φ) =
−ei · St = −Sit is unbounded from below. We will later transfer to L2-admissible
trading strategies, where short selling is included.

Definition 1.3 (equivalent martingale measure). A probability measure Q is
called equivalent martingale measure if Q and P have the same zero sets, which
is denoted by Q ∼ P, and S is a local martingale with respect to Q.

Remark. If φ is admissible and self-financing we have that V (φ) is a local martingale
with respect to Q. Since V (φ) is bounded from below we even have that it is a
supermartingale.

Definition 1.4 (arbitrage). An admissible, self-financing trading strategy φ with

Ṽ0(φ) ≤ 0, ṼT (φ) ≥ 0, P(ṼT (φ) > 0) > 0

is called an arbitrage.



4 1 Market models in continuous time

Theorem 1.2 (First Fundamental Theorem of Asset Pricing). If there exists
an equivalent local martingale measure Q for S, then the market model is arbitrage
free.

Proof. Assume that φ is an admissible, self-financing trading strategy with Ṽ0(φ) ≤ 0
and ṼT (φ) ≥ 0. S is by assumption a local Q-martingale. By the previous remark we
have that V (φ) is a Q-supermartingale. This implies EQ(VT (φ)) ≤ EQ(V0(φ)) ≤ 0.
Together with the assumption ṼT (φ) ≥ 0 it follows that ṼT (φ) = 0 Q-almost surely.
Since Q ∼ P, we also have that ṼT (φ) = 0 P-almost surely. Hence, there exists no
arbitrage.

Remark. The reverse is also true, but in most cases only the given direction is practi-
cally useful.

1.3 Pricing and hedging

Two major aspects of financial mathematics are pricing and hedging of contingent
claims. We restrict ourselfs to claims, which pay only at maturity T . Its payoff is
described by an FT -measurable random variable H̃ ≥ 0.

Remark. Note that the payoff H̃ may depend on the history of S̃ up to time T .

Typical examples are European call and put options on the asset i with strike price
K and maturity T . The net payoff is the random amount

H̃call :=
(
S̃iT −K

)
+
, H̃put :=

(
K − S̃iT

)
+
.

An example of a payoff depending on the history of S̃i would be

H̃ :=

(
S̃iT −

1

T

∫ T

0

S̃iu du

)
+

,

which is a call option on the average stock value of asset i.

Definition 1.5 (attainability, replicating strategy). A contingent claim H̃ is
called attainable if there is an admissible, self-financing trading strategy φ such that
ṼT (φ) = H̃ P-a.s.. In this case φ is called replicating strategy of H̃.

Suppose H̃ is an attainable claim and φ is its replicating strategy. Let Q be an
equivalent martingale measure. In this case is V (φ) a supermartingale with respect to
Q and

EQ(H | Ft) = EQ(VT (φ) | Ft) ≤ ess inf
ψ

Vt(ψ),

where H := H̃/S̃0.
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Definition 1.6 (L2-admissible). A trading strategy φ is called L2-admissible with
respect to an equivalent martingale measure Q if

EQ

(
d∑

i,j=0

∫ T

0

φisφ
j
s d〈Si, Sj〉s

)
<∞.

By Itô’s isometry is V (φ) not only a Q-supermartingale, but also an L2-bounded
Q-martingale, if φ is an L2-admissible trading strategy. In this case we have

Vt(φ) = EQ(VT (φ) | Ft) = EQ(H | Ft).

Remark. Short selling is included for L2-admissible trading strategies, since it is vector
space. Thus, −φ is L2-admissible if we assume φ is L2-admissible.

Definition 1.7 (fair price, hedge, complete market). The faire price of an
attainable claim H̃ at time t is given by

ess inf
φ

Vt(φ),

where φ runs over all replicating strategies of H̃. φ is called a hedge of H̃, if φ is a
replicating strategy with V (φ) being a Q-martingale. In this case the discounted fair
price is given by

EQ(H | Ft).

A continuous market model is called complete, if every bounded claim has a hedge.

Theorem 1.3 (Second Fundamental Theorem of Asset Pricing). Assume that
F0 is P-trivial. Then an arbitrage free time continuous market model is complete if
and only if the equivalent martingale measure is unique on FT .

Proof. We will proof only the easy direction. The other direction can be found in
[Jarrow, 2018].
Assume the market model is complete and let H = IA with A ∈ FT . Then there exists
a hedge φ with VT (φ) = IA, such that V0(φ) = EQ(VT (φ) | F0) = EQ(IA | F0). Since F0

is P-trivial, the equation is P-a.s. (and also Q-a.s.) constant and we get

Q(A) = EQ(IA | F0) = V0(φ) = E(V0(φ)).

Let φ′ be another hedge. Then V0(φ) and V0(φ′) differ only on a zero set and E(V0(φ)) =
E(V0(φ′)), thus Q(A) is unique.

A more general setting, where we do not rely on F0 beeing P-trivial can be found
in [Harrison and Pliska, 1983] or [Delbaen and Schachermayer, 2006].



6 1 Market models in continuous time

Incomplete markets

Assume we have an arbitrage free, but incomplete market. In such a market there
exist multiple equivalent martingale measures. The set of all equivalent martingale
measures is a convex set and denoted by Q. For each Q we have a system of arbitrage
free prices. If we add a Q-integrable claim H as additional asset to the model, whose
price lies within the interval[

ess inf
Q∈Q

EQ(H | Ft), ess sup
Q∈Q

EQ(H | Ft)
]
,

then the enlarged model is again arbitrage free. Every other choice outside the interval
leads to an arbitrage opportunity. One can prove, that at the left end point the buyer
has no risk and at the right end point the seller has no risk. Thus, buyer and seller
have to agree on a price inbetween.
One idea is to introduce certain criteria to determine the price and the replicating
strategy of a claim in an incomplete market. We will focus on two quadratic criteria
in the next chapter, namely local risk-minimization and mean-variance hedging.
In practice one often chooses the first approach, since one prefers to bear the risk before
the maturity of the claim and not at maturity, as in the second approach. Therefore,
we will emphasis our work on local risk-minimization and only rigorously introduce
the concepts of mean-variance hedging.



2 Quadratic hedging

Assume, that we have an incomplete, arbitrage free, time continuous market. For
simplicity we define

S = (1, S1, . . . , Sd) =: (1, X),

φ = (φ0, φ1, . . . , φd) =: (φ0, ξ).

Since perfect hedging in the sense of Definition 1.7 is not possible in an incomplete
market, we have to be able to make adjustments at each time t ∈ [0, T ] to compensate
the ocurring hedging error. Therefore, we weaken the condition of previsibility of φ0

to adaptedness and since dS0 = 0, no problems arise in the definition of the stochastic
integral. Furthermore, we are only considering L2-admissible trading strategies. All
subsequent appearing processes are assumed to be real-valued.

2.1 The martingale case

The following section is based on [Föllmer and Sondermann, 1986, Schweizer, 1999].
We start by discussing the two quadratic approaches in the simplified case, where
the adapted, càdlàg, d-dimensional process X is already a square integrable local
martingale with respect to P1. Further, note that F0 may not be P-trivial. Hence,
instead of a deterministic starting value we have a random variable.

Definition 2.1 (strategy). We now call φ = (φ0, ξ) with φ0 = (φ0
t )0≤t≤T and ξ =

(ξt)0≤t≤T a strategy, if φ0 is adapted to the filtration F and ξ is a d-dimensional
previsible process satisfying

E
(∫ T

0

ξtrs d〈X〉s ξs
)
<∞,

where2 ∫ T

0

ξtrs d〈X〉s ξs :=
d∑

i,j=1

∫ T

0

ξisξ
j
s d〈X i, Xj〉s,

such that the discounted value process Vt = φ0
t +ξ ·Xt is càdlàg and square-integrable.

1This means P ∈ Q, where Q denotes the set of all equivalent martingale measures.
2ξtr denotes the transposition of ξ.

7



8 2 Quadratic hedging

Remark. From [Jacod and Shiryaev, 2003] we know the following: From the Doob-
Meyer decomposition we use the uniquely defined increasing previsible quadratic vari-
ation (〈X〉t)0≤t≤T with 〈X〉0 = 0, such that (X2

t − 〈X〉t)0≤t≤T is a local martingale
with respect to P.

The discounted cumulative gains up to time t are given by

Gt(ξ) :=

∫ t

0

ξs · dXs.

Remark. Note that Gt(ξ) is a square-integrable P-martingale and null at zero. Obvi-
ously, its mean is also zero.

A strategy is called self-financing, if Vt = V0 + Gt(ξ). Since we won’t always rely
on the self-financing constraint, the value process may deviate from the cumulative
gains process. Therefore, we introduce the discounted cumulative costs by

Ct(φ) := Vt(φ)−Gt(ξ) = φ0
t + ξt ·Xt −

∫ t

0

ξs · dXs. (2.1.1)

Ct(φ) is adapted and càdlàg by construction.

Remark. A strategy is self-financing if the cumulative costs are constant over time,
namely Ct(φ) = V0(φ) for 0 ≤ t ≤ T , which is the initial value to start the strategy φ.

Currently we only have that Vt(φ) is a square-integrable P-martingale, if φ is self-
financing. We would like to maintain the martingale property without relying on the
self-financing constraint.

Definition 2.2 (mean self-financing). A strategy φ is called mean self-financing,
if the cost process C(φ) is a P-martingale.

Lemma 2.1. A strategy φ is mean self-financing, if and only if V is a square-integrable
P-martingale.

Proof. Using Definition 2.2 and Equation (2.1.1) we immediatelly get the assertion as
a consequence of the construction of the stochastic integral.

We later use Lemma 2.2 to get a unique decomposition of a discounted contingent
claim H ∈ L2(FT ,P), namely the Galtchouk-Kunita-Watanabe decomposition.

Lemma 2.2. Let X be a local P-martingale. Define L2(X) := {ξ = (ξt)0≤t≤T | ξ is
previsible and ||ξ||X <∞} with

‖ξ‖X := E
(∫ T

0

ξtrs d〈X〉s ξs
) 1

2

and M2(P) := {M = (Mt)0≤t≤T | M is a martingale and E(M2
T ) < ∞}. Then the

space I2(X) :=

{(∫ t
0
ξs · dXs

)
0≤t≤T

∣∣∣∣ ξ ∈ L2(X)

}
is a stable subspace of M2(P).



2.1 The martingale case 9

Proof. Notice, that I2(X) is a linear subspace of M2(P) and stable under stopping.
Further, L2(X) is a Hilbert space. We can identify M2(P) with L2(FT ,P), since for
any MT ∈ L2(FT ,P) we have that Mt := E(MT | Ft) is in M2(P).
Let (Y n

T )n∈N be a sequence in I2(X). Then there exists a sequence (ξn)n∈N with
ξn ∈ L2(X), such that

Y n
T =

∫ T

0

ξns · dXs.

Assume (Y n
T )n∈N converges to some YT ∈ L2(FT ,P). Then ∀ ε > 0∃N ∈ N, such that

∀n,m > N we have

E
(
(Y n

T − Y m
T )2

) 1
2 = ‖Y n

T − Y m
T ‖2 ≤ ‖Y n

T − YT‖2 + ‖Y m
T − YT‖2 < ε.

From Itô’s isometry we get the equality

‖Y n
T − Y m

T ‖2 = E
(∫ T

0

(ξns − ξms )tr d〈X〉s (ξns − ξms )

) 1
2

= ‖ξn − ξm‖X .

In total we have ‖ξn − ξm‖X < ε. Thus, (ξn)n∈N is a Cauchy sequence in L2(X) with

limit ξ ∈ L2(X). Set ŶT :=
∫ T

0
ξs · dXs. We now prove that YT = ŶT in L2(FT ,P).

Look at

‖YT − ŶT‖2 ≤ ‖YT − Y n
T ‖2 + ‖Y n

T − ŶT‖2

= E
(
(Y n

T − YT )2
) 1

2 + E
(∫ t

0

(ξns − ξs)tr d〈X〉s (ξns − ξs)
) 1

2

.

The first part tends to zero by assumption and the second part tends also to zero, since
ξn tends to ξ. Hence, we have YT = ŶT in L2(FT ,P) and I2(X) is a closed subspace
of M2(P). We even have that I2(X) is a stable subspace.

Since we are in an incomplete market, there are non-attainable, discounted contin-
gent claimsH. Thus, by definition we cannot rely on the terminal condition VT (φ) = H
P-a.s. and on the self-financing constraint at the same time. Hence, there are two
quadratic approaches. One relies only the terminal condition and tries to minimize
the risk along the way. The other uses self-financing strategies and tries to approximate
the terminal value.

2.1.1 Terminal constraint

Let H ∈ L2(FT ,P) be a square-integrable random variable. Since we rely only on the
terminal condition, we call a strategy φ H-admissible, if VT (φ) = H P-a.s..
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An intuitive approach is to minimize the variance of the terminal cost CT (φ) of an
H-admissible strategy φ. Since,

CT (φ) = VT (φ)−GT (ξ) = H −
∫ T

0

ξs · dXs,

we have E(CT (φ)) = E(H). Thus, the minimization problem is given by

min
φ

E
(
(CT (φ)− E(H))2

)
, (2.1.2)

where φ runs over all H-admissible strategies. To solve this minimization problem, we
use a unique decomposition of H.

By Lemma 2.2 any H ∈ L2(FT ,P) can be uniquely decomposed into

H = E(H) +

∫ T

0

ξ∗s · dXs + L∗T P-a.s., (2.1.3)

where ξ∗ ∈ L2(X) and L∗ = (L∗t )0≤t≤T ∈ M2(P), with E(L∗0) = 0, is strongly
orthogonal to I2(X). This means, that(

L∗t

∫ t

0

ξ∗s · dXs

)
0≤t≤T

is a zero mean P-martingale. The unique decomposition (2.1.3) is the Galtchouk-
Kunita-Watanabe decomposition of the claim H.

Remark. In the literature the decomposition can also be found as

H = H0 +

∫ T

0

ξ∗s · dXs + L̄∗T P-a.s., (2.1.4)

where H0 := E(H | F0) ∈ L2(F0,P), ξ∗ ∈ L2(X) and L̄∗ ∈ M2
0(P)3 is strongly orthog-

onal to I2(X). The connection to our introduced decomposition (2.1.3) can be seen
by

H = E(H) + L∗0︸ ︷︷ ︸
=H0

+

∫ T

0

ξ∗s · dXs + L∗T − L∗0︸ ︷︷ ︸
= L̄∗T

P-a.s.,

where one shifts the initial random value L∗0 to the F0-measurable random variable
H0.

Using (2.1.3) we directly get a solution of (2.1.2).

3This means that L̄∗0 = 0 P-a.s..
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Theorem 2.3. The minimum of (2.1.2) is attained, if and only ξ = ξ∗. Its minimal
variance is then given by E((L∗T )2).

Proof. Let φ = (φ0, ξ) be an H-admissible strategy. Then its costs can be written as

CT (φ) = H −
∫ T

0

ξs · dXs = E(H) +

∫ T

0

(ξ∗s − ξs) · dXs + L∗T .

Since L∗T is strongly orthogonal to the stochastic integral we get

E
(
(CT (φ)− E(H))2) = E

((∫ T

0

(ξ∗s − ξs) · dXs

)2
)

+ E
(
(L∗T )2

)
.

By Itô’s Isometry it holds

E

((∫ T

0

(ξ∗s − ξs) · dXs

)2
)

= E
(∫ T

0

(ξ∗s − ξs)tr d〈X〉s (ξ∗s − ξs)
)
.

The last expression is equal to zero if and only if ξ = ξ∗ in the L2(X) sense.

By the above theorem only ξ∗ is fully specified. (φ0)∗ is only specified at maturity
T to fulfill the H-admissibility condition, namely (φ0

T )∗ = H − ξ∗T · XT . An example
of an optimal strategy would be to choose a self-financing strategy φ up to time T−
and adapt it with the admissibility condition at time T . Choose Ct(φ) = E(H) for
0 ≤ t < T. By rearranging Equation (2.1.1) we get

(φ0
t )
∗ = E(H)− ξ∗t ·Xt +

∫ t

0

ξ∗s · dXs (0 ≤ t < T ).

At the terminal date T we have (φ0
T )∗ = H − ξ∗T · XT and CT (φ) = E(H) + L∗T .

Obviously, we would like to have a better criterion to be able to determine φ0 more
precisely. Therefore, we need to measure the risk differently.

Definition 2.3 (risk process). The risk process is defined by

Rt(φ) := E
(
(CT (φ)− Ct(φ))2

∣∣Ft) (0 ≤ t ≤ T ), (2.1.5)

where we choose a càdlàg version.

Remark. The risk process can be interpreted as the conditional mean squared error
process. In the special case, where φ is mean self-financing, Equation (2.1.5) is a mean
variance criterion, since it simplifies to

Rt(φ) = Var(CT (φ) | Ft) (0 ≤ t ≤ T ).
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We need to compare strategies in a fair way.

Definition 2.4 (admissible continuation, risk-minimizing). Let φ and φ′ be
strategies. φ′ = ((φ0)′, ξ′) is called admissible continuation of φ from t on, if

VT (φ′) = VT (φ) P-a.s., (φ0
s)
′ = φ0

s for 0 ≤ s < t and ξ′s = ξs for 0 ≤ s ≤ t.

φ is called risk-minimizing, if ∀ 0 ≤ t ≤ T

Rt(φ) ≤ Rt(φ
′) P-a.s.. (2.1.6)

Note, that for an admissible continuation we did not ask for H-admissibility. We
only minimize over strategies with the same terminal value.

Remark. Observe the following:

(i) If φ is self-financing, then it is risk-minimizing. From Equation (2.1.1) we get
that for a self-financing strategy we have Ct(φ) = V0(φ). Therefore, by definition
Rt(φ) = 0.

(ii) Suppose φ = (φ0, ξ) is risk-minimizing and H-admissible, then φ solves (2.1.2).
The Equations (2.1.5) and (2.1.6) for t = 0 now imply that φ minimizes

E
(
(CT (φ)− C0(φ))2) = Var(CT (φ)) + E (CT (φ)− C0(φ))2

= E
(
(CT (φ)− E(H))2)+ (E(CT (φ))− C0(φ))2 ,

where we used the H-admissibility of φ. Since φ is risk-minimizing, the left hand
side is minimal and therefore also the right hand side is minimal. Thus, φ solves
(2.1.2) and ξ = ξ∗.
Further, (E(CT (φ))− C0(φ))2 is minimal. We know E(CT (φ)) = E(H) and
C0(φ) = V0(φ) = φ0

0 + ξ∗0 ·X0. Minimizing (E(CT (φ))− C0(φ))2, we set

E(CT (φ))
!
= C0(φ)⇔ E(H)

!
= φ0

0 + ξ∗0 ·X0.

Thus, for a risk-minimizing strategy we additionally get the initial cash amount
φ0

0 = E(H)− ξ∗0 ·X0.

Lemma 2.4. Any risk-minimizing H-admissible strategy φ is also mean self-financing.

Proof. We need to show, that C(φ) = (Ct(φ))0≤t≤T is a P-martingale. Let φ be risk-
minimizing and H-admissible. Fix t0 ∈ [0, T ) and define φ′ by ξ′ := ξ and (φ0

t )
′ := φ0

t

for t ∈ [0, t0) and

(φ0
t )
′ := Ĉt(φ) +

∫ t

0

ξs · dXs − ξt ·Xt for t ∈ [t0, T ],
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where we choose a càdlàg version of Ĉt(φ) = E(CT (φ) | Ft). φ′ = ((φ0)′, ξ) is an
admissible continuation of φ, since

VT (φ′) = (φ0
T )′ + ξT ·XT = ĈT (φ) +

∫ T

0

ξs · dXs − ξT ·XT + ξT ·XT

= CT (φ) +

∫ T

0

ξs = VT = H P-a.s..

Further, CT (φ′) = CT (φ), since

Ct(φ
′) = Vt(φ

′)−
∫ t

0

ξs · dXs = (φ0
t )
′ + ξt ·Xt −

∫ t

0

ξs · dXs = Ĉt(φ) = E(CT (φ) | Ft).

Hence, Ct(φ
′) = E(CT (φ) | Ft) = E(CT (φ′) | Ft) is a martingale for t ∈ [t0, T ]. Together

with

CT (φ)− Ct0(φ) = CT (φ′)− Ct0(φ′) + E(CT (φ′) | Ft0)− Ct0(φ)

we get

Rt0(φ) = E
(
(CT (φ)− Ct0(φ))2

∣∣Ft0)
= E

((
CT (φ

′
)− Ct0(φ′) + E(CT (φ′) | Ft0)− Ct0(φ)

)2
∣∣∣∣Ft0)

= Rt0(φ
′) + (E(CT (φ′) | Ft0)− Ct0(φ))

2
,

where the middle term vanished, since E(CT (φ
′
) − Ct0(φ

′
) | Ft0) = 0. Since φ is risk-

minimizing, the right hand side must be minimal. Therefore, we conclude that

Ct0(φ) = E(CT (φ′) | Ft0) = E(CT (φ) | Ft0) P-a.s.

and since t0 was fixed arbitrarily, it follows that C(φ) is a P-martingale.

Remark. In the above proof we did not use that X is a local P-martingale. Thus,
Lemma 2.4 will specifically come in handy later in the general case, where X is only
a semimartingale4.

Definition 2.5 (intrinsic risk process). The intrinsic risk process of a claim
H is denoted by R∗ = (R∗t )0≤t≤T , where we choose a càdlàg version of

R∗t := E
(
(L∗T − L∗t )

2
∣∣Ft) (0 ≤ t ≤ T ). (2.1.7)

For the next theorem let V ∗ be a square-integrable martingale defined by

V ∗t := E(H | Ft) (0 ≤ t ≤ T ),

where we choose a càdlàg version.

4Compare the proof of Lemma 2.8.
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Theorem 2.5. Suppose X is a local P-martingale. Then every claim H ∈ L2(FT ,P)
has a unique H-admissible, risk-minimizing strategy φ∗ given by

φ∗t = (V ∗t − ξ∗t ·Xt, ξ
∗
t ) (0 ≤ t ≤ T ),

and the remaining risk is R∗t P-a.s. for every 0 ≤ t ≤ T . Its cost process is given by
Ct(φ

∗) = E(H) + L∗t .

Proof. First, we check the admissibility condition. We have

VT (φ∗) = V ∗T − ξ∗T ·XT + ξ∗T ·XT = V ∗T = H P-a.s..

Second, we check the cost process Ct(φ
∗). The Galtchouk-Kunita-Watanabe decom-

position of V ∗ yields

V ∗t = E(H | Ft) = E
(
E(H) +

∫ T

0

ξ∗s · dXs + L∗T

∣∣∣∣Ft)
= E(H) +

∫ t

0

ξ∗s · dXs + L∗t .

By Lemma 2.4 we know, that φ∗ is also mean self-financing, which by Lemma 2.1
is equivalent to V (φ∗) beeing a square-integrable P-martingale. Thus, for the cost
process of φ∗ we get with Vt(φ

∗) = E(VT (φ∗) | Ft) = E(V ∗T | Ft) = V ∗t

Ct(φ
∗) = V ∗t −

∫ T

0

ξ∗s · dXs = E(H) + L∗t .

Third, we check the minimality of φ∗. Fix t ∈ [0, T ) and let φ′ be an admissible
continuation of φ∗. Looking at the cost process of φ′, we have

CT (φ′)− Ct(φ′) = VT (φ′)−
∫ T

0

ξ′s · dXs − Vt(φ′) +

∫ t

0

ξ′s · dXs

= H −
∫ T

t

ξ′s · dXs − Vt(φ′)

= E(H) +

∫ T

0

ξ∗s · dXs + L∗T −
∫ T

t

ξ′s · dXs − Vt(φ′)

= V ∗t − Vt(φ′) + L∗T − L∗t +

∫ T

t

(ξ∗s − ξ′s) · dXs.

Using the strong orthoganility of LH and the stochastic integral we get

Rt(φ
′) = E

(
(CT (φ′)− Ct(φ′))2

∣∣∣Ft)
= E

(
(V ∗t − Vt(φ′))

2
∣∣∣Ft)+R∗t + E

(∫ T

t

(ξ∗s − ξ′s)tr d〈X〉s (ξ∗s − ξ′s)
∣∣∣∣Ft) .
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If φ∗ is risk-minimizing, only R∗t remains.
At last, we check the uniqueness of φ∗. Assume φ = (φ0, ξ) is another H-admissible,
risk-minimizing strategy. Then φ solves also (2.1.2), which yields ξ = ξ∗. Again, by
the Lemmata 2.4 and 2.1 we have that V (φ) is a square-integrable P-martingale. Since
φ is H-admissible, we further have VT (φ) = VT (φ∗), which yields

Vt(φ) = E(VT (φ) | Ft) = E(VT (φ∗) | Ft) = E(V ∗T | Ft) = V ∗t .

Thus, φ0
t = Vt(φ)− ξt ·Xt = V ∗t − ξ∗t ·Xt.

In the next lemma we will see a summary of the obtained results in a complete
market. More specifically, we assume thatH is attainable. Recall, thatH is attainable,
if Vt(φ) = V0(φ) +

∫ t
0
ξs · dXs with terminal value VT (φ) = H P-a.s..

Lemma 2.6. The following statements are equivalent:

(i) H is attainable and H = E(H) +
∫ T

0
ξ∗s · dXs P-a.s.,

(ii) the risk-minimizing strategy is self-financing,

(iii) The intrinsic risk process of H is zero.

Proof. The equivalences follow immediately by the respective definitions and the above
results.

2.1.2 Self-financing constraint

An alternative approach for hedging an unattainable claim H is to rely on the self-
financing constraint. The error at the terminal date T is then given by

H − VT (φ) = H − V0(φ)−
∫ T

0

ξs · dXs.

Since φ is self-financing, the strategy is uniquely determined by the choice of (V0, ξ) ∈
R× L2(X) (compare Equation (1.1.2)). Then the minimization problem is given by

min
(V0,ξ)∈R×L2(X)

E

((
H − V0 −

∫ T

0

ξs · dXs

)2
)
. (2.1.8)

To find its solution we have to project H ∈ L2(FT ,P) onto the linear space spanned
by R and {∫ T

0

ξs · dXs

∣∣∣∣ ξ ∈ L2(X)

}
.
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Fortunately, since X is a local martingale the stochastic integral is an isometry and
hence this linear space is closed in L2(P). Hence, by Hilbert’s Projection Theorem the
solution exists and is unique. By using (2.1.3) the solution is directly given by

(V0, ξ) = (E(H), ξ∗)

and the minimal residual risk by optional stopping isE((L∗T )2) = Var(L∗T ), since L∗ ∈
M2(P) with E(L∗0) = 0.

In the general case, where X is a semimartingale, this projection idea will lead to
mean-varinace hedging. Further, the generalized Galtchouk-Kunita-Watanabe decom-
position will play an important role in both quadratic hedging approaches and we will
often choose a suitable equivalent local martingale measure to simplify our work.

2.2 Local risk-minimization

The structure of the following section is based on [Schweizer, 1999]. The details are
worked out in different references, which are mentioned throughout this section.
Assume, that the adapted, càdlàg, d-dimensional process X is now only a semimartin-
gale with respect to P and not a local P-martingale. As in the martingale case, we
would like to find for a claim H ∈ L2(FT ,P) an H-admissible, risk-minimizing strategy
φ∗. Unfortunately, this is not possible.

Theorem 2.7. Assume X is not a local P-martingale. Then a claim H ∈ L2(FT ,P)
has in general no H-admissible, risk-minimizing strategy φ∗.

Proof. We will prove this theorem by giving a counterexample in the simplified case of
a time discrete market model. Then the filtration is given by F = (Fk)k=0,1,...,T with
T ∈ N. Let X = (Xk)k=0,1,...,T be a one dimensional, real valued, square-integrable,
F -adapted process and assume, that the probability space is finite. We need this
assumption to ensure that all integrability conditions are fulfilled.

Assume φ∗ is an H-admissible, risk-minimizing strategy. Then C(φ∗) is by Lemma
2.45 a P-martingale, which yields

Rk(φ
∗) = E

(
(CT (φ∗)− Ck(φ∗))2

∣∣Fk)
= Var(CT (φ∗)− Ck(φ∗) | Fk) + E (CT (φ∗)− Ck(φ∗) | Fk)2

= Var(CT (φ∗) | Fk)

= Var

(
VT (φ∗)−

T∑
i=1

ξ∗i ∆Xi

∣∣∣∣∣Fk
)

= Var

(
H −

T∑
i=k+1

ξ∗i ∆Xi

∣∣∣∣∣Fk
)
,

5Compare the remark afterwards.
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where ∆Xi = Xi−Xi−1. Using Ck(φ
∗) = E(CT (φ∗) | Fk) = E

(
H −

∑T
i=1 ξ

∗
i ∆Xi

∣∣∣Fk),

we further have

(φ0
k)
∗ + ξ∗kXk = Vk(φ

∗) = Ck(φ
∗) +

k∑
i=1

ξ∗i ∆Xi

= E

(
H −

T∑
i=1

ξ∗i ∆Xi

∣∣∣∣∣Fk
)

+
k∑
i=1

ξ∗i ∆Xi.

Thus, φ∗ is uniquely determined by ξ∗. Since φ∗ is risk-minimizing, it holds for any
H-admissible, mean self-financing strategy φ

Var

(
H −

T∑
i=k+1

ξ∗i ∆Xi

∣∣∣∣∣Fk
)

= Rk(φ
∗) ≤ Rk(φ) = Var

(
H −

T∑
i=k+1

ξi∆Xi

∣∣∣∣∣Fk
)
.

By a backward recursion argument, we have to minimize

Var

(
H − ξk+1∆Xk+1 −

T∑
i=k+2

ξi∆Xi

∣∣∣∣∣Fk
)

with respect to ξk+1, which is Fk-measurable. The minimum is attained, if and only if

Cov

(
H − ξk+1∆Xk+1 −

T∑
i=k+2

ξi∆Xi,∆Xk+1

∣∣∣∣∣Fk
)

= 0.

Thus, ξ∗k+1 is uniquely determined by

ξ∗k+1 =
Cov

(
H −

∑T
i=k+2 ξ

∗
i ∆Xi,∆Xk+1

∣∣∣Fk)
Var(∆Xk+1 | Fk)

. (2.2.1)

To give a counterexample, choose T = 2 and let X be a random walk with X0 = 0 and
i.i.d. increments, which only take the three values −1, 0, 1 with probabilities P(∆Xi =
−1) = 1/2, P(∆Xi = 0) = 1/4 and P(∆Xi = 1) = 1/4 for i = 1, 2. Let H = X2

2 . The
information flow is given by the canonical filtration FX of X. We have FX0 = {∅,Ω},
FX1 = σ(∆X1) and FX2 = σ(∆X1,∆X2), where Ω = {−1, 0, 1}2 and A = P(Ω). We
have three possible choices of ξ2 depending on X1, which we abbriviate by ξ2(−1),
ξ2(0) and ξ2(1).
Assume there exists an H-admissible, risk-minimizing strategy φ∗. Then ξ∗ is given by
(2.2.1) and we get ξ∗2(−1) = 23/11, ξ∗2(0) = −1/11, ξ∗2(+1) = 21/11 and ξ∗1 = −1/11.
In total we get

R0(φ∗) =
24

66
.
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On the other hand, for any H-admissible, mean self-financing strategy φ we can view
R0(φ) as a function of ξ1, ξ2(−1), ξ2(0) and ξ2(1). Minimizing this function in these
four variables we get ξ′1 = −1/11, ξ′2(−1) = −71/33, ξ′2(0) = 5/33 and ξ′2(1) = 59/33
and in total

R0(φ′) =
23

66
< R0(φ∗).

Thus, there exists no H-admissible strategy φ∗, which is risk-minimizing.

Remark. Intuitively, we have a compatibility problem. Since we only look at admissible
continuations of φ from t on, the optimal continuation is only optimal at time t. Hence,
for s < t, the s-optimal strategy may be different from the t-optimal strategy. But
since (s, T ] ⊃ (t, T ], the s-optimal strategy already defines the strategy on (t, T ],
which leads to compatibility problems. In short, the admissible continuation criterion
is not time consistent. The extraordinary result on the other hand is that, if X is a
local P-martingale, we do not have this compatibility problem and we get a unique
H-admissible, risk minimizing strategy φ∗ (compare Theorem 2.5).

Since we assumed, that the adapted, càdlàg process X is a semimartingale with
respect to P, we know from [Protter, 2005] that X admits the decomposition

Xt = X0 +Mt + At (0 ≤ t ≤ T ), (2.2.2)

where M ∈ M2
0,loc(P) is a locally square-integrable local P-martingale with M0 = 0

and A is a finite variation process with A0 = 0.

Definition 2.6 (L2-strategy). Let X be a semimartingale satisfying (2.2.2). Define
Ξ := {ξ = (ξt)0≤t≤T | ξ is previsible and ‖ξ‖Ξ <∞}, where

‖ξ‖Ξ := E

(∫ T

0

ξtrs d〈M〉s ξs +

(∫ T

0

|ξtrs dAs|
)2
) 1

2

.

Then φ = (φ0, ξ) is called L2-strategy if φ0 is F-adapted and ξ ∈ Ξ, such that the
value process V (φ) is càdlàg and square-integrable.

Remark. In case of X beeing a local P-martingale we have A ≡ 0. This yields Ξ =
L2(X) and the L2-strategy coincides with the strategy of Definition 2.1.

2.2.1 Small pertubations and R-quotients

Let us now restrict ourselfs to the case d = 1 to simplify our notation. In the case
d > 1 analogous results can be obtained. The idea of the following definition is a
variational argument. If we change the optimal strategy in a small way, we should
have (asymptotically) an increased risk.
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Definition 2.7 (small pertubation). Let ∆ = (ε, δ) be an L2-strategy with εT =

δT = 0. Further, suppose that δ is bounded and
∫ T

0
|δs| |dA|s is uniformly bounded in

ω and t. Then ∆ is called a small pertubation and on (s, t] ⊂ [0, T ] it is defined as

∆|(s,t] :=
(
ε|[s,t), δ|(s,t]

)
,

with

ε|[s,t)(ω, u) := εu(ω)I[s,t)(u), δ|(s,t](ω, u) := δu(ω)I(s,t](u).

Remark. The definition of ∆|(s,t] reflects the fact, that ε is adapted and δ is previsible.

Remark. Since X = X0 +M +A, where M is the unprevisible martingale part and A
the drift,

∫ T
0
ξs dAs could be interpreted as the systematic gains of the strategy ∆. Its

assumption of bounded total variation means, that these systematic gains are limited
and in this sense are small enough.
The condition εT = δT = 0 implies VT (∆) = 0 P-a.s.. Therefore, we have VT (φ+ ∆) =
VT (φ) = H P-a.s., if φ is H-admissible. Hence, φ+ ∆ is H-admissible.

Definition 2.8 (local risk-minimization). Let φ be an L2-strategy and ∆ be a small
pertubation. For a partition π = {t0, t1, . . . , tN} of [0, T ] with 0 = t0 < t1 < · · · <
tN = T we define the R-quotient as

rπ(φ,∆)(ω, t) :=
N−1∑
i=0

Rti

(
φ+ ∆|(ti,ti+1]

)
−Rti(φ)

E(〈M〉ti+1
− 〈M〉ti | Fti)

(ω)I(ti,ti+1](t).

Suppose it holds for every small pertubation ∆ and every increasing sequence of par-
titions (πn)n∈N with limn→∞ |πn| = 0, where |πn| := maxi∈{0,1,...,N−1}(ti+1 − ti), that

lim inf
n→∞

rπn(φ,∆) ≥ 0 (P ⊗ 〈M〉)-a.e. on Ω× [0, T ]. (2.2.3)

Then φ is called locally risk-minimizing.

Remark. Loosely speaking, rπ(φ,∆) are the directional derivatives on the respective
time scale. If we assume that φ′ := φ + ∆ is an admissible continuation from t on,
then (2.1.6) reads for all 0 ≤ t ≤ T as

Rt(φ+ ∆)−Rt(φ) ≥ 0 P-a.s..

Thus, Equation (2.2.3) is the infintesimal analogon of (2.1.6).

The following result shows, that a local version of Lemma 2.4 holds true.

Lemma 2.8. Suppose d = 1 and X satisfies the decomposition (2.2.2). Assume that
〈M〉 is P-a.s. strictly increasing. Then a locally risk-minimizing L2-strategy is mean
self-financing.



20 2 Quadratic hedging

Proof. The proof is based on [Schweizer, 1991].
Let φ be a locally risk-minimizing L2-strategy. Choose t0 = 0 and define φ′ as in
Lemma 2.4. Then ∆ := φ′ − φ is a small pertubation. For the sequence of partitions
(πn)n∈N we choose πn to be the n-th dyadic partition of [0, T ] and define t+ := (t +
2−nT ) ∧ T as the successor of t ∈ πn. Since

Vt(φ+ ∆|(t,t+]) = Vt(φ) + (φ0
t )
′ − φ0

t = φ0
t + ξtXt + (φ0

t )
′ − φ0

t = Vt(φ
′),

we have Ct(φ+ ∆|(t,t+]) = Ct(φ
′). Further, δT = εT = 0 yields VT (φ+ ∆|(t,t+]) = VT (φ)

and since VT (φ) = VT (φ′) we get CT (φ + ∆|(t,t+]) = CT (φ′). In total we have ∀n ∈ N
and t ∈ πn

CT (φ+ ∆|(t,t+])− Ct(φ+ ∆|(t,t+]) = CT (φ′)− Ct(φ′).

Hence,

Rt(φ+ ∆|(t,t+]) = Rt(φ
′).

From the proof of Lemma 2.4 we have for T ≥ t ≥ t0 = 0

Rt(φ)−Rt(φ
′) = (E(CT (φ) | Ft)− Ct(φ))2 .

Thus,

Rt(φ+ ∆|(t,t+])−Rt(φ) = Rt(φ
′)−Rt(φ) = − (E(CT (φ) | Ft)− Ct(φ))2

and we obtain

rπn(φ,∆) = −
∑
t∈πn

(E(CT (φ) | Ft)− Ct(φ))2

E(〈M〉t+ − 〈M〉t | Ft)
I(t,t+]. (2.2.4)

If E(CT (φ) | Ft) = Ct(φ) for 0 ≤ t ≤ T , we are done. Otherwise there exists a dyadic
rational q and a set B of positive probability, such that

E(CT (φ) | Fq)(ω) 6= Cq(φ)(ω) ∀ω ∈ B.

By right continuity of E(CT (φ) | F·) and C·(φ) we have ∀ω ∈ B ∃ constants c(ω) >
0, β(ω) > 0, such that

|E(CT (φ) | Ft)− Ct(φ)| (ω) ≥ c(ω) > 0 for any dyadic rational t ∈ [q, q + β(ω)].

But then (2.2.4) implies for s ∈ (q, q + β(ω))

lim inf
n→∞

rπn(φ,∆)(ω, s) < 0,

contradicting our assumption of φ beeing locally risk-minimizing. Thus, we have

E(CT (φ) | Ft) = Ct(φ) P-a.s. for every dyadic rational t

and since the dyadic rationals are dense in [0, T ], the assertion follows from right
continuity.



2.2 Local risk-minimization 21

Remark. The condition, that 〈M〉 is P-a.s. strictly increasing is necessary to exclude
the possibility of M beeing locally constant. This would lead to problems in the
definition of rπn(φ,∆).

Thanks to Lemma 2.8 we can restrict our search for a locally risk-minimizing strategy
to mean self-financing strategies. Following [Schweizer, 1991] we will split rπ(φ,∆) into
two terms, where the first one only depends on ξ and δ and the second only on φ0 and
ε. The assumptions in the following Lemma 2.9 are needed to ensure that the second
term vanishes asymptotically.

Let H ∈ L2(FT ,P) and φ be an H-admissible, mean self-financing L2-strategy. The
terminal constraint yields

CT (φ) = H −
∫ T

0

ξs dXs P-a.s.

and since C(φ) is a martingale, we have

φ0
t = E(H | Ft)− ξtXt − E

(∫ T

t

ξs dXs

∣∣∣∣Ft)
and φ is uniquely determined by ξ. Thus, we have to deal with one dimension less
and we abbreviate Ct(ξ) := Ct(φ) and Rt(ξ) := Rt(φ). As usual, let ∆ be a small
pertubation and π be a partition of [0, T ]. Then for ti ∈ π we assume, that ξ+δ|(ti,ti+1]

is H-admissible and mean self-financing. φ + ∆|(ti,ti+1] is H-admissible, but may not
be mean self-financing due to the merely adapted component ε|[ti,ti+1). With VT (φ +
∆|(ti,ti+1]) = VT (φ) = H P-a.s. we have

CT (φ+ ∆|(ti,ti+1]) = VT (φ+ ∆|(ti,ti+1])−
∫ T

0

ξs dXs −
∫ ti+1

ti

δs dXs

= H −
∫ T

0

ξs dXs −
∫ ti+1

ti

δs dXs

= CT (φ)−
∫ ti+1

ti

δs dXs

= CT (ξ + δ|(ti,ti+1]).

(2.2.5)

Further, it holds

Cti(φ+ ∆|(ti,ti+1]) = Vti(φ+ ∆|(ti,ti+1])−
∫ ti

0

ξs dXs

= Vti(φ) + εti −
∫ ti

0

ξs dXs

= Cti(φ) + εti
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and since ξ + δ|(ti,ti+1] is mean self-financing we have

Cti(ξ + δ|(ti,ti+1]) = E(CT (ξ + δ|(ti,ti+1]) | Fti)

= E
(
CT (φ)−

∫ ti+1

ti

δs dXs

∣∣∣∣Fti)
= Cti(φ)− E

(∫ ti+1

ti

δs dAs

∣∣∣∣Fti) ,
where we used the decomposition (2.2.2) of X. This implies

Cti(φ+ ∆|(ti,ti+1]) = Cti(ξ + δ|(ti,ti+1]) + E
(∫ ti+1

ti

δs dAs

∣∣∣∣Fti)+ εti . (2.2.6)

Now the Equations (2.2.5) and (2.2.6) yield

Rti(φ+ ∆|(ti,ti+1]) = E
(
(CT (φ+ ∆|(ti,ti+1])− Cti(φ+ ∆|(ti,ti+1]))

2
∣∣Fti)

= Rti(ξ + δ|(ti,ti+1]) +

(
E
(∫ ti+1

ti

δs dAs

∣∣∣∣Fti)+ εti

)2

,

where the middle term vanished, since C·(ξ + δ|(ti,ti+1]) is a martingale. Summing up
we obtain

rπ(φ,∆)

=
∑
ti∈π

Rti(ξ + δ|(ti,ti+1])−Rti(ξ)

E(〈M〉ti+1
− 〈M〉ti | Fti)

I(ti,ti+1] +
∑
ti∈π

(
E
(∫ ti+1

ti
δs dAs

∣∣∣Fti)+ εti

)2

E(〈M〉ti+1
− 〈M〉ti | Fti)

I(ti,ti+1]

=: rπ(ξ, δ) +
∑
ti∈π

(
E
(∫ ti+1

ti
δs dAs

∣∣∣Fti)+ εti

)2

E(〈M〉ti+1
− 〈M〉ti | Fti)

I(ti,ti+1]. (2.2.7)

Lemma 2.9. Suppose d = 1, X satisfies the decomposition (2.2.2) and is P-a.s. con-
tinuous at maturity T . Assume that 〈M〉 is P-a.s. strictly increasing. Further, assume
that A is continuous and A� 〈M〉 with a density α satisfying EP⊗〈M〉(|α| log+ |α|) <
∞. Then an L2-strategy φ is locally risk-minimizing, if and only if φ is mean self-
financing and

lim inf
n→∞

rπn(ξ, δ) ≥ 0 P⊗ 〈M〉-a.e. on Ω× [0, T ], (2.2.8)

for every previsible process δ satisfying the same conditions as in Definition 2.7 and
every increasing sequence of partitions (πn)n∈N with limn→∞ |πn| = 0.
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Proof. Using Lemma 2.8 we can assume that φ is mean self-financing. Further, assume
that Equation (2.2.8) holds. Then from Equation (2.2.7) it immediately follows that φ
is locally risk-minimizing. For the converse direction, we choose εti = 0 for all ti ∈ πn.
Then (

E
(∫ ti+1

ti

δs dAs

∣∣∣∣Fti))2

≤ ‖δ‖2
∞E
(
(|A|ti+1

− |A|ti)2
∣∣Fti)

yields

∑
ti∈πn

E
(∫ ti+1

ti
δs dAs

∣∣∣Fti)2

E(〈M〉ti+1
− 〈M〉ti | Fti)

I(ti,ti+1] ≤ ‖δ‖2
∞

∑
ti∈πn

E
(
(|A|ti+1

− |A|ti)2
∣∣Fti)

E(〈M〉ti+1
− 〈M〉ti | Fti)

I(ti,ti+1].

With the technical proof of Proposition 3.1 in [Schweizer, 1990] we get the convergence
of the last equation and again with Equation (2.2.7) the converse direction follows.
Note, that the stated assumptions on the structure of X, as well as the condition
EP⊗〈M〉(|α| log+ |α|) <∞ are used in the proof of Proposition 3.1 in [Schweizer, 1990].

Remark. In the special case, where 〈M〉 = t and A is absolutely continuous with
respect to the Lebesgue measure and bounded density α, the right hand side of the
last equation converges to zero (P⊗ 〈M〉)-a.e. and we do not need Proposition 3.1 of
[Schweizer, 1990].

Remark. The assumption of X beeing continuous at maturity T and A beeing contin-
uous imply that M does not jump at time T and hence, 〈M〉 has no mass at T .

Thanks to Lemma 2.9 the locally risk-minimization problem splits into two simpler
problems. Namely, we only have to find the optimal ξ component and choose φ0 in
such a way that φ is mean self-financing. Therefore, we look into the R-quotient of
the martingale

Ct(ξ + δ(ti,ti+1]) = E
(
CT (ξ)−

∫ ti+1

ti

δs dXs

∣∣∣∣Ft) (0 ≤ t ≤ T ), (2.2.9)

as it is done in [Schweizer, 1990]. Since M is a local P-martingale, the Galtchouk-
Kunita-Watanabe decomposition of CT (ξ) with respect to P yields

CT (ξ) = C0(ξ) +

∫ T

0

µCs dMs + LCT P-a.s., (2.2.10)

where µC ∈ L2(Ω × [0, T ],P ,P ⊗ 〈M〉), with P denoting the σ-algebra of previsible
sets and LC ∈M2(P), with E(LC0 ) = 0, is strongly orthogonal to I2(M).
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Lemma 2.10. Suppose the same assumptions as in Lemma 2.9 hold on X, 〈M〉, A
and α. Then, we have6

lim
n→∞

rπn(ξ, δ) = δ2 − 2δµC (P⊗ 〈M〉)-a.e.,

for every previsible process δ satisfying the same conditions as in Definition 2.7 and
every increasing sequence of partitions (πn)n∈N with limn→∞ |πn| = 0.

Proof. By using (2.2.9) and the decomposition (2.2.2) of X we have

CT (ξ + δ|(ti,ti+1])− Cti(ξ + δ|(ti,ti+1])

= CT (ξ)− Cti(ξ)−
∫ ti+1

ti

δs dMs −
(∫ ti+1

ti

δs dAs − E
(∫ ti+1

ti

δs dAs

∣∣∣∣Fti)) .
It holds Rt(ξ) = E (〈C(ξ)〉T − 〈C(ξ)〉t | Ft). Then (2.2.10) and the calculation rules
for the quadratic variation yield

Rti(ξ + δ|(ti,ti+1])−Rti(ξ)

= E
(∫ ti+1

ti

δ2
s − 2δsµ

C
s d〈M〉s

∣∣∣∣Fti)+ Var

(∫ ti+1

ti

δs dAs

∣∣∣∣Fti)
+ 2Cov

(∫ ti+1

ti

δs dMs − (Cti+1
(ξ)− Cti(ξ)) ,

∫ ti+1

ti

δs dAs

∣∣∣∣Fti) .
Summing up we obtain

rπn(ξ, δ) = EP⊗〈M〉
(
δ2 − 2δµC

∣∣Pπn)
+
∑
ti∈πn

Var
(∫ ti+1

ti
δs dAs

∣∣∣Fti)
E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti)I(ti,ti+1]

+ 2
∑
ti∈πn

Cov
(∫ ti+1

ti
δs dMs − (Cti+1

(ξ)− Cti(ξ)) ,
∫ ti+1

ti
δs dAs

∣∣∣Fti)
E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti) I(ti,ti+1],

where

Pπn := σ ({B0 × {0}, Bi × (ti, ti+1] |B0 ∈ F0, ti ∈ πn for i = 1, . . . , N − 1, Bi ∈ Fti})

denotes the σ-algebra on Ω× [0, T ]. Note, that by the assumptions on πn it holds

P = σ

(
∞⋃
n=1

Pπn
)
.

6Note that µC depends on ξ.
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Hence, by Doob’s Martingale Convergence Theorem we have

lim
n→∞

EP⊗〈M〉
(
δ2 − 2δµC

∣∣Pπn) = δ2 − 2δµC (P⊗ 〈M〉)-a.e..

The middle term on the right hand side is bounded by

∑
ti∈πn

Var
(∫ ti+1

ti
δs dAs

∣∣∣Fti)
E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti)I(ti,ti+1] ≤

∑
ti∈πn

E
((∫ ti+1

ti
δs dAs

)2
∣∣∣∣Fti)

E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti) I(ti,ti+1]

and with Cauchy-Schwarz and the above inequality we obtain for the last term∣∣∣∣∣∣
∑
ti∈πn

Cov
(∫ ti+1

ti
δs dMs − (Cti+1

(ξ)− Cti(ξ)) ,
∫ ti+1

ti
δs dAs

∣∣∣Fti)
E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti) I(ti,ti+1]

∣∣∣∣∣∣
≤

∑
ti∈πn

E
((∫ ti+1

ti
δs dAs

)2
∣∣∣∣Fti)

E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti) I(ti,ti+1]


1
2

·

∑
ti∈πn

E
(∫ ti+1

ti
δ2
s d〈M〉s + (〈C(ξ)〉ti+1

− 〈C(ξ)〉ti)
)

E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti) I(ti,ti+1]


1
2

.

But since the second term on the right hand side is a nonnegative (P ⊗ 〈M〉,Pπn)-
supermartingale, it is bounded by O(n) (P⊗ 〈M〉)-a.e.. Thus, it remains to prove

lim
n→∞

∑
ti∈πn

E
((∫ ti+1

ti
δs dAs

)2
∣∣∣∣Fti)

E
(
〈M〉ti+1

− 〈M〉ti
∣∣Fti) I(ti,ti+1] = 0 (P⊗ 〈M〉)-a.e..

For this rather technical calculation we refer the reader again to the proof of Propo-
sition 3.1 in [Schweizer, 1990].

In summary, we get a characterization theorem for locally risk-minimizing strategies.
Before we formulate the characterization, we introduce a certain structure on X based
on [Monat and Stricker, 1995]. Assume that

Ai � 〈M i〉 with previsible density αi = (αit)0≤t≤T for i = 1, . . . , d. (2.2.11)

Fix a previsible integrable increasing càdlàg process W with W0 = 0, such that 〈M i〉 �
W for all i = 0, . . . , d.7 By the Kunita-Watanabe Inequality we have that 〈M i,M j〉 �
7We can choose for example W =

∑d
i=1〈M i〉.
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W with previsible density σ given by

σijt :=
d〈M i,M j〉t

dWt

for i, j = 1, . . . , d, (0 ≤ t ≤ T ).

Hence, σ is a symmetric, nonegative definite d× d matrix and we get

〈M i,M j〉t =

∫ t

0

σijs dWs P-a.s. for i = 1, . . . , d, (0 ≤ t ≤ T ).

By construction we have that Ai � W with previsible density γi := αiσii for i =
1, . . . , d and we get

Ait =

∫ t

0

γis dWs P-a.s. for i = 1, . . . , d, (0 ≤ t ≤ T ).

Definition 2.9 (structure condition, mean-variance tradeoff process). Suppose
X satisfies the decomposition (2.2.2) and we have (2.2.11). Then X satisfies the
structure condition, if there exists a d-dimensional previsible process λ = (λt)0≤t≤T ,
such that

σtλt = γt P-a.s., (0 ≤ t ≤ T )

and

Kt :=

∫ t

0

λtrs γs dWs <∞ P-a.s., (0 ≤ t ≤ T ).

The càdlàg version of K is called the mean-variance tradeoff process.

Note, that we have

Ait =

∫ t

0

αis d 〈M i〉s =

∫ t

0

αisσ
ii
s dWs =

∫ t

0

γis dWs

=
d∑
j=1

∫ t

0

σijs λ
j
s dWs =

d∑
j=1

∫ t

0

λjs d〈M i,M j〉s

=:

(∫ t

0

d〈M〉s λs
)i

for i = 1, . . . , d, (0 ≤ t ≤ T )

and

Kt =
d∑
i=1

∫ t

0

λisγ
i
s dWs =

d∑
i,j=1

∫ t

0

λisσ
ij
s λ

j
s dWs

=
d∑

i,j=1

∫ t

0

λisλ
j
s d〈M i,M j〉s

=:

∫ t

0

λtrs d〈M〉s λs =

∫ t

0

λtrs dAs (0 ≤ t ≤ T ).
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Since we assumed to have an arbitrage free market, there exists an equivalent martin-
gale measure Q for X. To apply Girsanov’s Theorem we need that A � 〈M〉 with
a locally square integrable density process α. Hence, the structure condition is quite
natural in our setting. We will later see that the structure condition is fulfilled for
every continuous, adapted process X for which an equivalent local martingale measure
exists.

Remark. From [Schweizer, 1994] we have the following:

(i) Assume that X satisfies the structure condition. Then K is locally bounded and
does not depend on the choice of λ.

(ii) Since γit := αitσ
ii
t , in case of d = 1 we have σtλt = σtαt. Thus,

λt = αt =
dAt
dMt

and the time discrete analogon yields

∆At
∆Mt

=
E(∆Xt | Ft−1)

Var(∆Xt | Ft−1)
.

This gives the heuristically motivation for the name ’mean-variance tradeoff’.

(iii) KT reflects the deviation from which X is a martingale. In particular, X satis-
fying the structure condition is a martingale, if and only if KT = 0 P-a.s..

Finally, we can formulate the characterization theorem for locally risk-minimizing
strategies.

Theorem 2.11. Suppose d = 1, X satisfies the structure condition, 〈M〉 is P-a.s.
strictly increasing, A is P-a.s. continuous and E(KT ) <∞. Let φ be an H-admissible
L2-strategy. Then φ is locally risk-minimizing, if and only if φ is mean self-financing
and the martingale C(φ) is strongly orthogonal to M .

Proof. By assumption it holds

E(KT ) = E
(∫ T

0

|λs|2 d〈M〉s
)
<∞.

Hence, λ = α ∈ L2(P ⊗ 〈M〉) and consequently |α| log+ |α| is (P ⊗ 〈M〉)-integrable.
Note, that from (2.2.10) C(φ) is strongly orthogonal to M , if and only if

µC = 0 (P⊗ 〈M〉)-a.e.. (2.2.12)

Using Lemma 2.9 it remains to prove the equivalence between (2.2.8) and (2.2.12).
But from Lemma 2.10 we get that the limit in (2.2.8) exists and equals δ2 − 2δµC

(P ⊗ 〈M〉)-a.e.. It is left to show that (2.2.8) implies (2.2.12). We use a proof by
contradiction argument, which can be seen immediately if we set δ := ε sign µC I|A|≤k
and send ε to zero and k to infinity.
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Remark. The question arises in which sense a locally risk-minimizing strategy is op-
timal. If φ is locally risk-minimizing, we have from Lemma 2.10 and Theorem 2.11
that

lim
n→∞

rπn(ξ, δ) = δ2 (P⊗ 〈M〉)-a.e..

Thus, ∀n ≥ n0(ω, t), ti ∈ πn, t ∈ (ti, ti+1] it holds for (P⊗ 〈M〉)-almost all (ω, t)

Rti(ξ + δ|(ti,ti+1])(ω) ≥ Rti(ξ)(ω),

which means that any locally pertubation of ξ leads to an increase of risk. If ξ′ ∈ Ξ is
another mean self-financing strategy, such that δ := ξ′− ξ satisfies the same condition
as a small pertubation, then we even have the more intuitive formulation

Rti(ξ + (ξ′ − ξ)|(ti,ti+1])(ω) ≥ Rti(ξ)(ω),

which holds for (P⊗〈M〉)-almost all (ω, t) and ∀n ≥ n0(ω, t), ti ∈ πn and t ∈ (ti, ti+1].

The strength of Theorem 2.11 is that it reduces the problem of finding a locally risk-
minimizing L2-strategy to solving the optimality equation (2.2.12). The Galtchouk-

Kunita-Watanabe decompositions of H and
∫ T

0
ξs dAs with respect to P and M are

H = E(H) +

∫ T

0

µHs dMs + LHT P-a.s.,∫ T

0

ξs dAs = E
(∫ T

0

ξs dAs

)
+

∫ T

0

µξ,As dMs + Lξ,AT P-a.s..

Hence, with

CT (φ) = H −
∫ T

0

ξs dXs P-a.s.

we conclude

CT (φ) = E(H) +

∫ T

0

µHs dMs + LHT −
∫ T

0

ξs dMs −
∫ T

0

ξs dAs

= E(H) +

∫ T

0

µHs − ξs dMs + LHT − E
(∫ T

0

ξs dAs

)
−
∫ T

0

µξ,As dMs − Lξ,AT

= C0(φ) +

∫ T

0

µHs − ξs − µξ,As dMs + LHT − L
ξ,A
T P-a.s..

Under the assumptions of Theorem 2.11 is φ locally risk-minimizing, if and only if ξ
solves the optimality equation

µH − ξ − µξ,A = 0 (P⊗ 〈M〉)-a.e..

Of course, this is equivalent to the optimality equation (2.2.12). Existence and unique-
ness results can be found in [Schweizer, 1991]. Here we will follow a different approach,
which will lead to the same solution but in a slightly more intuitive way. Let us now
return to the general case d > 1.
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2.2.2 Pseudo-optimality and the Föllmer-Schweizer
decomposition

Definition 2.10 (pseudo-optimal). Let H ∈ L2(FT ,P) be a contingent claim. Then
an H-admissible L2-strategy φ is called pseudo-optimal for H, if φ is mean self-
financing and the martingale C(φ) is strongly orthogonal to M .

For suitable X and d = 1 we have just seen in Theorem 2.11, that a locally risk-
minimizing strategy coincides with the pseudo-optimal strategy. In general, pseudo-
optimal strategies are easier to find as the next theorem shows.

Theorem 2.12. An H-admissible, L2-strategy φH is pseudo-optimal for H ∈ L2(FT ,P),
if and only if H admits the Föllmer-Schweizer decomposition

H = E(H) +

∫ T

0

ξHs · dXs + LHT P-a.s., (2.2.13)

where ξH ∈ Ξ and LH ∈ M2(P), with E(LH0 ) = 0, is strongly orthogonal to I2(M)
with respect to P. It is then given by

φHt =
(
Vt(φ

H)− ξHt ·Xt, ξ
H
t

)
(0 ≤ t ≤ T ),

where

Vt(φ
H) = E(H) +

∫ t

0

ξHs · dXs + LHt (0 ≤ t ≤ T ) (2.2.14)

and for its cost process we have Ct(φ
H) = E(H) + LHt for 0 ≤ t ≤ T . The remaining

risk is given by

Rt(φ
H) = E

((
LHT − LHt

)2
∣∣∣Ft) = Var

(
LHT
∣∣Ft) (0 ≤ t ≤ T ).

Proof. Observe

H = VT (φH) = CT (φH) +

∫ T

0

ξHs · dXs = E(H) +

∫ T

0

ξHs · dXs + CT (φH)− E(H).

Using the definition of pseudo-optimality we immediately get the assumption.

A sufficient condition for the existence of the Föllmer-Schweizer decomposition of
H is that the mean-variance tradeoff process K is uniformly bounded in t and ω. To
see this we will follow [Monat and Stricker, 1995]. From now on, we always assume
that K is uniformly bounded.

Note that Ξ = L2(M) ∩ L2(A), where a previsible Rd-valued process ξ = (ξ)0≤t≤T
belongs to L2(M), if (∫ t

0

ξtrs σsξs dWs

)
0≤t≤T

is integrable
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and belongs to L2(A), if(∫ t

0

|ξtrs γs| dWs

)
0≤t≤T

is square-integrable.

Lemma 2.13. Assume X satisfies the structure condition and that K is uniformly
bounded, then Ξ = L2(M).

Proof. For ξ ∈ L2(M), Cauchy-Schwarz’ Inequality yields∫ T

0

|ξtrs γs| dWs =

∫ T

0

|ξtrs σsλs| dWs

≤
∫ T

0

(
ξtrs σsξs

) 1
2
(
λtrs σsλs

) 1
2 dWs

≤ (KT )
1
2

(∫ T

0

ξtrs σsξs dWs

) 1
2

.

Thus, L2(M) ⊂ L2(A) and consequently Ξ = L2(M).

Definition 2.11 (ΨH). Let 0 ≤ T1 ≤ T2 ≤ T be previsible stopping times and as-
sume that H ∈ L2(FT2−,P). For ξ ∈ L2(M), look at the Galtchouk-Kunita-Watanabe

decomposition of H −
∫ T

0
I(T1,T2)(s)ξ

tr
s dAs with respect to P and M

H −
∫ T

0

I(T1,T2)(s)ξ
tr
s dAs = E

(
H −

∫ T

0

I(T1,T2)(s)ξ
tr
s dAs

)
+

∫ T

0

νs · dMs + L̂T P-a.s.,

where ν ∈ Ξ, L̂ ∈ M2(P), with E(L̂0) = 0, is strongly orthogonal to I2(M). Then we
define the mapping ΨH as

ΨH : L2(M)→ L2(M)

ΨH(ξ) = ξ̂ := I(T1,T2)ν.

Since H −
∫ T

0
I(T1,T2)(s)ξ

tr
s dAs is FT2−-measurable, its Galtchouk-Kunita-Watanabe

decomposition can be rewritten as

H −
∫ T

0

I(T1,T2)(s)ξ
tr
s dAs

= E
(
H −

∫ T

0

I(T1,T2)(s)ξ
tr
s dAs

)
+

∫ T

0

I(0,T2)(s)νs · dMs + L̂0 +

∫ T

0

I(0,T2)(s) dL̂s.

If we define Ĥ by

Ĥ := E
(
H −

∫ T

0

I(T1,T2)(s)ξ
tr
s dAs

)
+ L̂0 +

∫ T

0

I(0,T1](s)νs · dMs +

∫ T

0

I(0,T1](s) dL̂s,
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then Ĥ is FT1-measurable and

H −
∫ T

0

I(T1,T2)(s)ξ
tr
s dAs = Ĥ +

∫ T

0

I(T1,T2)(s)ξ̂s · dMs +

∫ T

0

I(T1,T2)(s) dL̂s P-a.s..

Note, that we switched to the other formulation of the Föllmer-Schweizer decompo-
sition (compare Equation (2.1.4)). Now suppose ξ ∈ L2(M) is a fixed point of ΨH .
Then the last equation yields

H = Ĥ +

∫ T

0

I(T1,T2)(s)ξs · dXs +

∫ T

0

I(T1,T2)(s) dL̂s P-a.s.. (2.2.15)

Conversely, if Equation (2.2.15) holds for ξ ∈ L2(M), the Galtchouk-Kunita-Watanabe
decomposition of

Ĥ = E(Ĥ) +

∫ T

0

I(0,T1](s)θs · dMs +NT1 P-a.s.

yields

H −
∫ T

0

I(T1,T2)(s)ξ
tr
s dAs

= E(Ĥ) +

∫ T

0

(
I(0,T1](s)θs + I(T1,T2)(s)ξs

)
· dMs +

(
NT1 +

∫ T

0

I(T1,T2)(s) dL̂s

)
P-a.s..

Since the Galtchouk-Kunita-Watanabe decomposition is unique, we obtain ν = I(0,T1]θ+
I(T1,T2)ξ and thus it holds ΨH(ξ) = ξ.

To prove the existence and uniqueness of the Föllmer-Schweizer decomposition we
need some auxiliary results, which are dealt with in the next two lemmata.

Lemma 2.14. Assume X satisfies the structure condition. Let 0 ≤ T1 ≤ T2 ≤ T
be previsible stopping times and let H ∈ L2(FT2−,P). If there ∃ b ∈ (0, 1), such that
KT2− −KT1 ≤ b P-a.s., then ΨH has a unique fixed point.

Proof. Define the norm

‖ξ‖L2(M) :=

∥∥∥∥∫ T

0

ξs · dMs

∥∥∥∥
2

.

Then
(
L2(M), ‖ · ‖L2(M)

)
is a Banach space. With Banach’s Fixed Point Theorem it

remains to prove that ΨH is a contraction on L2(M). Take ξ, ξ′ ∈ L2(M) and recall
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ΨH(ξ) = ξ̂, ΨH(ξ′) = ξ̂′, then we have

‖ξ̂ − ξ̂′‖2
L2(M)

=

∥∥∥∥∫ T

0

(
ξ̂s − ξ̂′s

)
· dMs

∥∥∥∥2

2

≤
∥∥∥∥∫ T

0

(
ξ̂s − ξ̂′s

)
· dMs

∥∥∥∥2

2

+ ‖Ĥ − Ĥ ′‖2
2 +

∥∥∥∥∫ T

0

I(T1,T2)(s) dL̂s −
∫ T

0

I(T1,T2)(s) dL̂
′
s

∥∥∥∥2

2

=

∥∥∥∥∫ T

0

(
ξ̂s − ξ̂′s

)
· dMs + (Ĥ − Ĥ ′) +

(∫ T

0

I(T1,T2)(s) dL̂s −
∫ T

0

I(T1,T2)(s) dL̂
′
s

)∥∥∥∥2

2

=

∥∥∥∥∫ T

0

I(T1,T2)(s)(ξs − ξ′s)tr dAs
∥∥∥∥2

2

=

∥∥∥∥∫ T

0

I(T1,T2)(s)(ξs − ξ′s)trσsλs dWs

∥∥∥∥2

2

≤ E
(∫ T

0

I(T1,T2)(s)λ
tr
s σsλs dWs

∫ T

0

(ξs − ξ′s)trσs(ξs − ξ′s) dWs

)
≤ ‖KT2− −KT1‖∞E

(∫ T

0

(ξs − ξ′s)trσs(ξs − ξ′s) dWs

)
≤ b‖ξ − ξ′‖2

L2(M),

where we used orthogonality, the definition of the structure condition and the symme-
try of the nonnegative matrix σ.

Lemma 2.15. Assume X satisfies the structure condition and K is uniformly bounded.
Let 0 ≤ T0 ≤ T be a previsible stopping time and let H ∈ L2(FT0 ,P). Then

H = H̃ +

∫ T

0

IT0(s)ξ̃s · dXs + L̃T0 P-a.s., (2.2.16)

where H̃ ∈ L2(FT0−,P), ξ̃ ∈ Ξ and L̃ ∈M2(P), which is equal to zero8 on the interval
[0, T0) and is strongly orthogonal to I2(M). Further, the decomposition is unique in
the sense that if also

H = H̃ ′ +

∫ T

0

IT0(s)ξ̃′s · dXs + L̃′T0 P-a.s.,

where (H̃ ′, ξ̃′, L̃′) satisfies the same conditions as (H̃, ξ̃, L̃), then it holds

H̃ = H̃ ′ P-a.s.,

IT0 ξ̃ = IT0 ξ̃′ in L2(M),

L̃T0 = L̃′T0 P-a.s..
8Compare Equation (2.1.4).
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Proof. Since (E(H | Ft))0≤t≤T is a square-integrable martingale we have

H = E(H | FT ) = E(H) +

∫ T

0

ξ̃s · dMs + LT P-a.s.,

where ξ̃ ∈ L2(M) and L ∈ M2(P), with E(L0) = 0, is strongly orthogonal to I2(M).
By assumption we have H ∈ L2(FT0 ,P). Thus, ξ̃ equals zero on the interval (T0, T ]
and LT0 = LT P-a.s. and we get

H = E(H) +

∫ T

0

I(0,T0](s)ξ̃s · dMs + LT0 P-a.s..

Further,

E(H | FT0−) = E(H) +

∫ T

0

I(0,T0)(s)ξ̃s · dMs + LT0− P-a.s..

Rearranging the last equation by E(H) and inserting it into the decomposition of H
yields

H = E(H | FT0−) +

∫ T

0

IT0(s)ξ̃s · dMs + LT0 − LT0− P-a.s..

From Lemma 2.13 we know L2(M) = Ξ and since A is previsible,
∫ T

0
IT0(s)ξ̃trs dAs is

FT0−-measurable. Thus, we get the desired decomposition

H = E(H | FT0−)−
∫ T

0

IT0(s)ξ̃trs dAs︸ ︷︷ ︸
=: H̃

+

∫ T

0

IT0(s)ξ̃s · dXs + LT0 − LT0−︸ ︷︷ ︸
=: L̃T0

P-a.s..

Now let us prove the uniqueness. Using substraction, we can assume without loss of
generality H = 0 P-a.s.. Then

0 = H̃ +

∫ T

0

IT0(s)ξ̃s · dXs + L̃T0 P-a.s.,

and hence

0 = E(0 | FT0−) = H̃ +

∫ T

0

IT0(s)ξ̃trs dAs P-a.s..

Substracting the last equation from the previous one yields

0 =

∫ T

0

IT0(s)ξ̃s · dMs + L̃T0 P-a.s.
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and since the Galtchouk-Kunita-Watanabe decomposition is unique we get∫ T

0

IT0(s)ξ̃s · dMs = 0 P-a.s.,

L̃T0 = 0 P-a.s..

The structure condition finally yields

0 ≤
∣∣∣∣ ∫ T

0

IT0(s)ξ̃trs dAs
∣∣∣∣

=

∣∣∣∣ ∫ T

0

IT0(s)ξ̃trs γs dWs

∣∣∣∣
=

∣∣∣∣ ∫ T

0

IT0(s)ξ̃trs σsλs dWs

∣∣∣∣
≤
(∫ T

0

IT0(s)ξ̃trs σsξ̃s dWs

) 1
2
(∫ T

0

λtrs σsλs dWs

) 1
2

≤
(〈∫ ·

0

IT0(s)ξ̃s · dMs

〉
T

) 1
2

(KT )
1
2

= 0,

where we used that KT is bounded and
〈∫ ·

0
IT0(s)ξ̃s · dMs

〉
T

= 0. Thus, we also have

H̃ = 0 P-a.s. and hence the decomposition is unique.

We can now formulate the corresponding theorem. The idea is to use a chopping
technique: The result is easy if ‖KT‖∞ < 1. Since K is uniformly bounded there are
only finitely many jumps and we differ between jumps less than a constant b ∈ (0, 1)
and jumps exceeding b. Hence, we divide the interval [0, T ] into subintervals by a
suitable sequence of stopping times, such that on each subinterval the growth of K is
bounded by b < 1 and on the boundaries we deal with the jumps exceeding b. Finally,
we use a backward induction argument.

Theorem 2.16. Assume X satisfies the structure condition and K is uniformly bounded
in t and ω. Then, every H ∈ L2(FT ,P) admits a Föllmer-Schweizer decomposition
and it is unique in the sense that if

H = E(H) +

∫ T

0

ξHs · dXs + LHT = E(H) +

∫ T

0

ξH
′

s · dXs + LH
′

T P-a.s.,

where
(
ξH
′
, LH

′)
satisfies the same conditions as

(
ξH , LH

)
, then it holds

LH0 = LH
′

0 P-a.s.,

ξH = ξH
′

in L2(M),

LHT = LH
′

T P-a.s..
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Proof. Observe, since K is uniformly bounded there ∃ b ∈ (0, 1) and a finite sequence
(Tn)0≤n≤N of previsible stopping times, such that for 0 = T0 ≤ T1 ≤ · · · ≤ TN = T

KTn− −KTn−1 ≤ b P-a.s., n = 1, . . . , N.

Now let β ∈ (0, 1) and construct the sequence

T0 = 0

Tn+1 : =

{
inf {Tn < t ≤ T |Kt −KTn ≥ β}
T, if this set is empty

TN = T,

where N is large enough, such that KT− − KTN−1
≤ β P-a.s.. By definition is each

stopping time Tn previsible.
Since H ∈ L2(FTN ,P), Lemma 2.15 yields

H = H̃N +

∫ T

0

ITN (s)ξ̃Ns · dXs + L̃NTN P-a.s..

Now using Lemma 2.14 and Equation (2.2.15) between TN and TN−1 we can rewrite
H̃N as

H̃N = ĤN−1 +

∫ T

0

I(TN−1,TN )(s)ξ̂
N−1
s · dXs +

∫ T

0

I(TN−1,TN )(s) dL̂
N−1
s

and we get

H = ĤN−1 +

∫ T

0

(
I(TN−1,TN )(s)ξ̂

N−1
s + ITN (s)ξ̃Ns

)
· dXs

+

(
L̃NTN +

∫ T

0

I(TN−1,TN )(s) dL̂
N−1
s

)
.

By recursively using Lemma 2.15 and 2.14 we obtain

H = Ĥ0︸︷︷︸
=E(H)+L̂0

+

∫ T

0

N∑
n=1

(
I(Tn−1,Tn)(s)ξ̂

n−1
s + ITn(s)ξ̃ns

)
︸ ︷︷ ︸

=: ξHs

· dXs

+
N∑
n=1

(
L̃nTn +

∫ T

0

I(Tn−1,Tn)(s) dL̂
n−1
s

)

= E(H) +

∫ T

0

ξHs · dXs + L̂0 +
N∑
n=1

(
L̃nTn +

∫ T

0

I(Tn−1,Tn)(s) dL̂
n−1
s

)
︸ ︷︷ ︸

=:LH
T

,
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where ξH ∈ Ξ and LH ∈ M2(P), with E(LH0 ) = E(E(LHT | F0)) = E(L̂0) = 0, is
strongly orthogonal to I2(M).

Now let us prove the uniqueness of the Föllmer-Schweizer decomposition. Using
substraction, we can assume without loss of generality H = 0 P-a.s. and we have

E(H) + LH0 +

∫ T

0

ξHs · dXs + LHT − LH0︸ ︷︷ ︸
L̄H
T

= 0 P-a.s..

Rewriting yields(
E(H) + LH0 +

∫ T

0

I(0,TN )(s)ξ
H
s · dXs + L̄HTN−

)
+

∫ T

0

ITN (s)ξHs · dXs +
(
L̄HT − L̄HTN−

)
= 0 P-a.s..

Since the first summand is in L2(FTN−,P) we obtain as in the proof of Lemma 2.15

E(H) + LH0 +

∫ T

0

I(0,TN )(s)ξ
H
s · dXs + L̄HTN− = 0 P-a.s.,∫ T

0

ITN (s)ξHs · dMs = 0 P-a.s.,

L̄HT = L̄HTN− P-a.s..

Consequently,(
E(H) + LH0 +

∫ T

0

I(0,TN−1](s)ξ
H
s · dXs + L̄HTN−1

)
+

∫ T

0

I(TN−1,TN )(s)ξ
H
s · dXs

+

∫ T

0

I(TN−1,TN )(s) dL̄
H
s = 0 P-a.s.

and since the decomposition (2.2.15) is unique we obtain

E(H) + LH0 +

∫ T

0

I(0,TN−1](s)ξ
H
s · dXs + L̄HTN−1

= 0 P-a.s.,∫ T

0

I(TN−1,TN ](s)ξ
H
s · dMs = 0 P-a.s.,

L̄HT = L̄HTN−1
P-a.s..

Applying induction this proves

E(H)︸ ︷︷ ︸
= 0

+LH0 = 0 P-a.s.,

∫ T

0

I(T0,TN ](s)ξ
H
s · dMs = 0 P-a.s.,

LHT = L̄HT = L̄HT0 = L̄H0 = 0 P-a.s.
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and thus the Föllmer-Schweizer-decomposition is unique.

Remark. In case of K beeing not uniformly bounded, the Föllmer-Schweizer decompo-
sition may not exist. To see this, assume d = 1 and suppose we are at a time u, where
K jumps. Further, suppose H = ξu∆Mu with ξ ∈ L2(M). The Föllmer-Schweizer
decomposition of H is

H = E(H) +

∫ T

0

ξHs dXs + LHT P-a.s..

But since E(H | Fu−) = 0, we have

H = ξu∆Mu = ξHu ∆Xu + ∆LHu .

Then LH ∈ M2(P), with E(LH0 ) = 0, is strongly orthogonal to I2(M), which implies
ξu = ξHu . However, from the structure condition in the case d = 1 we get ∆Au =
λu∆〈M〉u and ∆Ku = λ2

u∆〈M〉u. Therefore,

E
(
ξ2
u(∆Au)

2
)

= E
(
ξ2
u∆〈M〉u∆Ku

)
.

But since ξ2
u∆〈M〉u spans L1(Fu−), E (ξ2

u(∆Au)
2) is only bounded, if and only if ∆Ku

is uniformly bounded. Thus, H may not have a Föllmer-Schweizer decomposition.

2.2.3 The minimal martingale measure

Because of the Theorems 2.11 and 2.12 we are heavily interested in finding the Föllmer-
Schweizer decomposition of a contingent claim H. We will see a constructive way by
switching to a specific martingale measure. This approach works especially very well,
if we assume that X is continuous and K is uniformly bounded. Let us first only
assume continuity of X. The following theorem is based on [Schweizer, 1994].

Theorem 2.17. Suppose X is a continuous semimartingale with decomposition (2.2.2)
and Z∗ ∈ M2

loc(P) with Z∗ > 0 and Z∗0 = 1 P-a.s., such that the product Z∗X i is a
local P-martingale for i = 1, . . . , d. Then X satisfies the structure condition and
αi ∈ L2

loc(M
i) for i = 1, . . . , d. Furthermore, Z∗ has the representation

Z∗ = E
(
−
∫
λ · dM

)
E(L),

where L ∈M2
loc(P), with E(L0) = 0, is strongly orthogonal to M i for all i = 1, . . . , d.

Proof. First, we need to find the previsible, symmetric, nonnegative definite d × d
matrix density σ. Let N1, . . . , Nd ∈ M2

0,loc(P) be pairwise strongly orthogonal, such
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that each M i is in the stable subspace ofM2
0(P) generated by N1, . . . , Nd. Then each

M i has a representation

M i =
d∑
j=1

∫
ρij dN j,

where ρ = (ρij)i,j=1,...,d is a previsible process with ρij ∈ L2
loc(P) for each pair ij. Since

X is continuous, also M is continuous. Thus, we can assume that N is continuous as
well. Choose an increasing previsible càdlàg process W with W0 = 0 and 〈N i〉 � W
for each i and define

ζ it :=
d〈N i〉t
dWt

for i = 1, . . . , d.

We can assume without loss of generality ζ it ∈ {0, 1} for all i, t, by simply replacing
N i with

∫
I{ζi 6=0}

1√
ζi
dN i. Since∫

I{ζj=0} d〈N j〉 =

∫
ζjI{ζj=0} dW = 0, (2.2.17)

we can further assume ρijt = 0 on the set {ζjt = 0} for all i, j, t. Thus, it holds

ρijt ζ
j
t = ρijt ∀ i, j, t

and hence we have

〈M i,M j〉 =
d∑

k=1

∫
ρikρjk d〈Nk〉 =

d∑
k=1

∫
ρikρjkζk dW =

∫ (
ρρtr

)ij
dW, (2.2.18)

where we used the pairwise strong orthogonality of N i, N j ∀ i 6= j. Thus, we conclude

σt = ρtρ
tr
t P-a.s., (0 ≤ t ≤ T ). (2.2.19)

Next, we need the previsible densities γi, for i = 1, . . . , d. Define U :=
∫

1
Z∗−
dZ∗ with

U0 = 0. Then U ∈ M2
0,loc(P) since Z∗ ∈ M2

loc(P). U is well defined, since Z∗ > 0.
Observe, Z∗ = E(U). The Galtchouk-Kunita-Watanabe decomposition of U can be
written as

U = −
d∑
j=1

∫
ψj dN j +R,

where ψj ∈ L2
loc(N

j) and R ∈ M2
loc(P), with E(R0) = 0, is strongly orthogonal to

I2(N j) for each j. From (2.2.17) we get that we can choose

ψjt = 0 on the set {ζjt = 0}, ∀ j, t. (2.2.20)
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Applying the product rule to Z∗ and X i = X i
0 +M i + Ai yields

d(Z∗X i) =
(
X i
− dZ

∗ + Z∗− dM
i + d[Z∗, Ai]

)
+ Z∗− dA

i + d[Z∗,M i]. (2.2.21)

The product Z∗X i is a local P-martingale. From [Protter, 2005] we know that [Z∗, Ai]
is a local P-martingale, since Z∗ is a local P-martingale and A is a previsible process
of bounded variation. Thus, the bracket term on the right hand side is the differential
of a local P-martingale. By the definition of U we have

[Z∗,M i] =

∫
Z∗− d[U,M i].

Further, it holds

[U,M i] =

[
−

d∑
j=1

∫
ψj dN j +R,

d∑
k=1

∫
ρik dNk

]

= −
d∑
j=1

∫
ψjρij d〈N j〉+

[
R,

d∑
k=1

∫
ρik dNk

]

= −
d∑
j=1

∫
ρijψj dW,

where we used the pairwise strong orthogonality of N j, Nk ∀ j 6= k and the strong
orthogonality of R to I2(Nk) for each k. Together with (2.2.21) and the fact that
Z∗− > 0 we conclude

Ai =

∫
(ρψ)i︸ ︷︷ ︸
=: γi

dW for i = 1, . . . , d.

Finally, let us check the assumptions of the structure condition. Denote by ψ̄ the
projection of ψ on Ker ρ. Then ψ = ψ̄+ ν for some previsible process ν, with ρν = 0.
Since

(Ker ρ)⊥ = Im ρtr,

there exists a previsible process λ, such that

ψ = ψ̄ + ν = ρtrλ+ ν. (2.2.22)

Thus, with (2.2.19) we obtain

Ai =

∫
(ρψ)i dW =

∫
(σλ)i dW for i = 1, . . . , d.
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Observe, that on the set {σiit = 0} we have σijt = 0. This is true since

0 = σii =
d∑

k=1

(
ρik
)2

implies ρik = 0 ∀ k = 1, . . . , d, and hence

σij =
d∑

k=1

ρikρjk = 0.

Thus, the density

αi :=
(σλ)i

σii

is well defined and we conclude with the Kunita-Watanabe inequality that Ai � 〈M i〉
and σtλt = γt P-a.s. for 0 ≤ t ≤ T . Further, we obtain

∫ (
αi
)2
d〈M i〉 =

∫
((ρψ)i)

2

(σii)2
d〈M i〉

=

∫
1

σii
(
(ρψ)i

)2
dW

≤
∫

1

σii

d∑
j=1

(
ρij
)2

d∑
j=1

(
ψj
)2
dW

=
d∑
j=1

∫ (
ψj
)2
dW

=
d∑
j=1

∫ (
ψj
)2
d〈N j〉,

where we used the definition of αi, (2.2.18), the Cauchy-Schwarz Inequality, (2.2.19)
and (2.2.20). Since ψj ∈ L2

loc(N
j), the above inequality yields αi ∈ L2

loc(M
i) for each
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i. Similarly, we obtain with (2.2.18), (2.2.19), (2.2.22) and (2.2.20) that

K =
d∑

i,j=1

∫
λiλj d〈M i,M j〉 =

d∑
i,j=1

∫
λi
(
ρρtr

)ij
λj dW

=

∫
λtrσλ dW

=

∫ ∥∥ρtrλ∥∥2
dW

≤
∫
‖ψ‖2 dW

=
d∑
j=1

∫ (
ψj
)2
d〈N j〉.

Hence, λ ∈ L2
loc(M), which in particular implies that the process

∫
λ ·dM ∈M2

0,loc(P)
is well-defined.
What is left to show is the representation of Z∗. Let Y ∈M2

0,loc(P) and look at

〈
Y,

∫
λ · dM

〉
=

d∑
i=1

∫
λi d〈Y,M i〉

=
d∑

i,j=1

∫
λiρij d〈Y,N j〉

=

〈
Y,

d∑
j=1

∫ (
ρtrλ

)j
dN j

〉
.

By comparison of coefficients we get∫
λ · dM =

d∑
j=1

∫ (
ρtrλ

)j
dN j.

Then U simplifies with (2.2.22) to

U = −
∫
λ · dM +R−

d∑
j=1

∫
νj dN j

︸ ︷︷ ︸
=:L

,

where we get with ρν = 0 that L is strongly orthogonal to I2(Nk) for each k and hence
also to Mk. By (2.2.22) we have νj ∈ L2

loc(N
j) for each j and since Z∗ ∈ M2

loc(P) we
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have L ∈ M2
loc(P), with E(L0) = 0. From [Jacod and Shiryaev, 2003, p. 53 ff.] we

will use the identity for two square integrable local martingales9 X, Y

[X, Y ]t = 〈Xc, Y c〉t +
∑
s≤t

∆Xs∆Ys. (2.2.23)

Since M is continuous, also
∫
λ · dM is continuous. Hence we have[

L,

∫
λ · dM

]
=

〈
Lc,

∫
λ · dM

〉
=

〈
L,

∫
λ · dM

〉
= 0,

since L is strongly orthogonal to each M j. Together with the product rule formula
E(X + Y + [X, Y ]) = E(X)E(Y ), where X, Y are two semimartingales, we get

Z∗ = E(U) = E
(
−
∫
λ · dM + L

)
= E

(
−
∫
λ · dM

)
E(L).

Now we look at the stochastic differential equation

dZt = −Zt−λt · dMt,

Z0 = 1 P-a.s..
(2.2.24)

Its unique solution is given by

Zt = E
(
−
∫
λ · dM

)
t

(0 ≤ t ≤ T ).

Since X is continuous, we have that M is continuous and hence also −
∫
λ · dM .

As we have seen in the above proof it holds −
∫
λ · dM ∈ M2

0,loc(P). Using the
theorem of exponential processes for continuous semimartingales we get that Z is a
local martingale with respect to P. By continuity of M we further have Z > 0. Note,
that by construction of Z we get that the product ZX i is a local martingale with
respect to P for i = 1, . . . , d.

Now assume that K is uniformly bounded and look at the solution of (2.2.24)

Zt = E
(
−
∫
λ · dM

)
t

= exp

(
−
∫ t

0

λs · dMs −
1

2

〈∫
λ · dM

〉
t

)
= exp

(
−
∫ t

0

λs · dMs −
1

2
Kt

)
.

9X = Xc +Xd, where Xc is the continuous part and Xd is the discontinuous part.
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From Theorem II.2 in [Lepingle and Mèmin, 1978] it follows that Z is square inte-
grable, since in this case we have that

∫
λ · dM is a square integrable local martingale

null at zero and
〈∫

λ · dM
〉

is bounded. Further, the Novikov Condition

E
(

exp

(
1

2
Kt

))
<∞ ∀ t ≥ 0,

is fulfilled, which yields that Z is even a square integrable martingale with respect to
P. Hence, the density

dQT

dP
:= ZT = E

(
−
∫
λ · dM

)
T

(2.2.25)

defines a probability measure QT equivalent to P. Note, that we choose a càdlàg
version of the martingale Zt = E(ZT | Ft). The following definition and theorem are
based on [Föllmer and Schweizer, 1990].

Definition 2.12 (Minimal martingale measure). We call an equivalent martingale
measure Q with square integrable density minimal, if Q = P on F0 and if it holds for
any L ∈M2(P) with 〈L,M i〉 = 0 for each i, that L is a martingale under Q.

Under P, 〈L,M i〉 = 0 is equivalent to L beeing strongly orthogonal to M i, since we
know that (LtM

i
t − 〈L,M i〉t)0≤t≤T is a local P-martingale.

Remark. Looking at the Föllmer Schweizer decomposition, the probability measure
QT is minimal in the sense that we maintain the orthogonality property of L to the
stochastic integral as the next theorem shows. Thus, we disturb the structure of X as
little as possible. We additionally need, that the density Z is P-square-integrable to
ensure that the claim H is QT -integrable.

Theorem 2.18. Suppose X is continuous.

(i) The minimal martingale measure QT defined by (2.2.25) is unique.

(ii) The minimal martingale measure QT exists, if and only if

Zt = exp

(
−
∫ t

0

λs · dMs −
1

2
Kt

)
(0 ≤ t ≤ T )

is in M2(P). In this case QT is defined by (2.2.25).

(iii) If L ∈ M2(P) with 〈L,M i〉 = 0 under P for each i, then it holds 〈L,X i〉 = 0
under QT for each i.

Proof. Ad (i): Let Q∗T ∼ P be another minimal martingale measure defined by a
process Z∗ = (Z∗t )0≤t≤T ∈ M2(P). Then Z∗t has a Galtchouk-Kunita-Watanabe de-
composition with respect to M under P

Z∗t = E(Z∗t ) +

∫ t

0

βs · dMs + Lt P-a.s.,
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where β ∈ L2(M)10 and L ∈M2(P), with E(L0) = 0, is strongly orthogonal to M i for
each i. Applying the product rule to Z∗ and X i = X i

0 +M i + Ai yields

d(Z∗X i) =
(
X i
− dZ

∗ + Z∗− dM
i + d〈Z∗, Ai〉

)
+ Z∗− dA

i + d〈Z∗,M〉.

The product Z∗X i is a P-martingale. From [Protter, 2005] we know that 〈Z∗, Ai〉 is
a P-martingale, since Z∗ is a P-martingale and A is a previsible process of bounded
variation. Thus, the bracket term on the right hand side is the differential of a P-
martingale and we obtain for Ai the representation

Ait =

∫ t

0

− 1

Z∗s−
d〈Z∗,M i〉s =

(∫ t

0

− 1

Z∗s−
βtrs d〈M〉s

)i
.

Since X is continuous and Z∗ satisfies the appropriate conditions, we get from Theorem
2.17 that the structure condition is fulfilled and from the calculation after the definition
of the structure condition we conclude that λ is given by

λ = − β

Z∗−
.

Q∗T ∼ P is equivalent to Z∗ > 0 P-a.s.. Thus, we get from β ∈ L2(M) that λ ∈ L2(M).
Now we use that Q∗T is minimal. From Q∗T = P on F0 we get Z∗0 = 1 and hence also
E(Z∗t ) = E(Z∗0) = 1. Further, since L ∈ M2(P) is strongly orthogonal to each M i we
get that L is a martingale under Q∗T . Hence we have

〈L〉Q∗T = 〈L,Z∗〉P = 0,

which implies L ≡ 0. Hence, Z∗ has the simplified decomposition

Z∗t = 1−
∫ t

0

Z∗s−λs · dMs P-a.s.

and since M is continuous we get Z∗ = Z.
Ad (ii): With Theorem 2.17 we have that the process Z is is well defined. But, as
we have seen, it is in general only a locally square integrable local P-martingale. If
QT exists and is defined by (2.2.25) then Z is by definition a square integrable P-
martingale. Conversely, suppose Z ∈ M2(P). We will show that the corresponding
martingale measure QT is minimal. Let L ∈ M2(P) with 〈L,M i〉 = 0 under P for
each i. Since Z solves (2.2.24) it holds 〈L,Z〉 = 0. Thus, ZL is a local P-martingale
and hence L is a local QT -martingale. Since L ∈M2(P) we have

sup
0≤t≤T

|Lt| ∈ L2(FT ,P)

10See Lemma 2.2.
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and with ZT ∈ L2(FT ,P) we obtain with Cauchy-Schwarz’ Inequality

sup
0≤t≤T

|Lt| ∈ L1(FT ,QT ).

Thus, L is even a QT -martingale.
Ad (iii): Again, let L ∈M2(P) with 〈L,M i〉 = 0 under P for each i. We need to show
〈L,X i〉 = 0 under QT for each i. Since X i is continuous and Ai is a continuous finite
variation process we obtain with (2.2.23)

〈L,X i〉 = 〈Lc, X i〉
= [L,X i]

= [L,M i] + [L,Ai]

= [L,M i]

under QT . Under P we further have, since M i is continuous,

[L,M i] = 〈Lc,M i〉 = 〈L,M i〉 = 0.

But since QT � P we even have [L,M i] = 0 under QT , which completes the proof.

Lemma 2.19. If φH is a pseudo-optimal L2-strategy for H and Z is the solution of
(2.2.24), then ZV (φH) is a local martingale with respect to P.

Proof. Look at the decomposition (2.2.14)

Vt(φ
H) = E(H) +

∫ t

0

ξHs · dXs + LHt P-a.s.,

where ξH ∈ Ξ and LH ∈M2(P), with E(LH0 ) = 0, is strongly orthogonal to I2(M) with
respect to P. We know that the product ZX i is a local P-martingale for i = 1, . . . , d.
Since X is continuous, Z

∫
ξ dX is a local P-martingale for ξ ∈ Ξ as well. Further, we

have that ZLH is a local P-martingale. In total we get

ZtVt(φ
H) = ZtE(H) + Zt

∫ t

0

ξHs · dXs + ZtL
H
t (0 ≤ t ≤ T ),

which is a local P-martingale as composition of local P-martingales.

Consider the situation of Lemma 2.19 where Z is a square-integrable P-martingale.
We know that sup0≤t≤T |Vt(φH)| is square-integrable with respect to P. Using Cauchy-
Schwarz‘ inequality we obtain ZV (φH) ∈ L1(P). Thus, ZV (φH) is even a true P-
martingale, which is equivalent to V (φH) beeing a QT -martingale. Therefore, we
define

V H,QT
t := EQT

(H | Ft) = EQT
(VT (φH) | Ft) = Vt(φ

H) (0 ≤ t ≤ T ).
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Note, that V H,QT
t is well defined since

EQT
(H | Ft) =

1

Zt
E(HZT | Ft)

andH and ZT are both square-integrable with respect to P. Hence, by Cauchy-Schwarz
we have H ∈ L1(QT ).
Further, X is a local QT -martingale. Thus, V H,QT

t has a Galtchouk-Kunita-Watanabe
decomposition with respect to X under QT and we get for 0 ≤ t ≤ T

V H,QT
t = EQT

(
V H,QT
t

)
+

∫ t

0

ξH,QT
s · dXs + LH,QT

t

= EQT
(H) +

∫ t

0

ξH,QT
s · dXs + LH,QT

t QT -a.s.,

where ξH,QT ∈ L2(X)11 and LH,QT ∈ M2(QT ) with EQT
(LH,QT

0 ) = 0 is strongly QT -
orthogonal to X i for each i. By switching to the P-measure we obtain

V H,QT
t = E(ZTH) +

∫ t

0

ξH,QT
s · dXs + LH,QT

t P-a.s.,

where ξH,QT ∈ Ξ and LH,QT ∈ M2(P), with E(ZTL
H,QT
0 ) = 0, is by Theorem 2.18

strongly P-orthogonal to M i for each i.
In summary we get the following theorem.

Theorem 2.20. Assume X is a continuous semimartingale. Define QT , V H,QT as
above and suppose ZT = E

(
−
∫
λ · dM

)
∈ M2(P). If either H admits a Föllmer-

Schweizer decomposition or

V H,QT
t = E(ZTH) +

∫ t

0

ξH,QT
s · dXs + LH,QT

t P-a.s., (0 ≤ t ≤ T ), (2.2.26)

where ξH,QT ∈ Ξ and LH,QT ∈ M2(P), with E(ZTL
H,QT
0 ) = 0, is strongly orthogonal

to I2(M), then V H,QT

T gives a Föllmer-Schweizer-decomposition of H and ξH,QT is a
pseudo-optimal L2-strategy for H. K beeing uniformly bounded is a sufficient condi-
tion for the square integrability of ZT and the uniqueness of the Föllmer-Schweizer
decomposition.

Proof. Since QT = P on F0 we conclude that the starting values of the decompositions
(2.2.13) and (2.2.26) of H and V H,QT

T , respectively, must coincide. If H admits a
Föllmer-Schweizer decomposition, then Theorem 2.18 implies that LH is a local QT -
martingale, which is strongly QT -orthogonal to I2(X). Since the Galtchouk-Kunita-
Watanabe decomposition is unique, we conclude that (2.2.13) and (2.2.26) for t = T

11Cp. Lemma 2.2 under the measure QT .
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must be equal.
If we have (2.2.26), then the last argument before this theorem shows that for t = T
we obtain a Föllmer-Schweizer decomposition of H, which by uniqueness must again
be the same as (2.2.13).
With Theorem 2.12 we conclude that ξH,QT gives a pseudo-optimal L2-strategy for H
and that uniform boundedness of K is sufficient follows from Theorem 2.16 and from
Theorem II.2 [Lepingle and Mèmin, 1978].

For continuous X, a locally risk-minimizing strategy can be obtained by finding
the Galtchouk-Kunita-Watanabe decomposition of H under the minimal martingale
measure QT . This is useful, since the density process ZT of QT is explicitly given and
we can study the behaviour of X under QT .

Remark. As a byproduct we obtain from (2.2.26) that Vt(φ
H) can be used for pricing

H at time t, where φH is a H-pseudo-optimal L2-strategy. In this sense

V H,QT
t = EQT

(H | Ft)

can be interpreted as intrinsic valuation process for H and QT is the corresponding
valuational operator. But we have to keep in mind that V H,QT

t is only a valuation with
respect to our definition (2.2.3) of local risk-minimization.

With the help of the minimal martingale measure we can now prove a generalization
of the Föllmer-Schweizer decomposition based on [Schweizer, 1994]. This theorem will
specifically come in handy in the next section. For the proof recall the following two
inequalities:

(i) Burkholder-Davis-Gundy’s Inequality: Suppose M is a local P-martingale
with M0 = 0. Then for any 1 ≤ r < ∞ there ∃ positive constants cr, Cr, such
that ∀ t > 0 we have

cr E
(

[M ]
r/2
t

)
≤ E

((
sup
s≤t
|Ms|

)r)
≤ Cr E

(
[M ]

r/2
t

)
.

(ii) Doob’s Maximal Inequality: Suppose V is a càdlàg Q-martingale and t > 0.
Then for every q > 1 we have

EQ

((
sup
s≤t
|Vs|
)q)

≤
(

q

q − 1

)q
EQ (V q

t ) .

Theorem 2.21. Suppose X is continuous and K is uniformly bounded. Then any H ∈
Lp(FT ,P) with p ≥ 2 admits a Föllmer-Schweizer decomposition with ξH ∈ Lr(M) and
LH ∈Mr(P) for every r < p.

Proof. With Theorem 2.17 we know that X satisfies the structure condition. Hence,
by Theorem 2.16 we know that H ∈ Lp(FT ,P), for some p ≥ 2, admits a Föllmer-
Schweizer decomposition. With E(H | F0) = E(H) + LH0 we automatically get LH0 ∈
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Lp(P). It remains to prove ξH ∈ Lr(M) and LH −LH0 = L̄H ∈Mr
0(P) for every r < p.

Since X is continuous and K is uniformly bounded, we know from Theorem II.2
[Lepingle and Mèmin, 1978] and Theorem 2.18 that

Z = E
(
−
∫
λ · dM

)
is in M2(P) and defines the minimal martingale measure. Since K is uniformly
bounded, we have for every 1 ≤ r <∞

ZT ∈Mr(P), (2.2.27)

1/ZT ∈Mr(QT ). (2.2.28)

Continuity of X and Theorem 2.18 further imply with V̄ H,QT = V H,QT − V H,QT
0〈∫

ξH · dM
〉
T

=

[∫
ξH · dM

]
T

=

[∫
ξH · dX

]
T

≤
[
V H,QT

]
T

=
[
V̄ H,QT

]
T

and [
L̄H
]
T
≤
[
V H,QT

]
T

= 0
[
V̄ H,QT

]
T
.

But since L̄H is a local P-martingale starting in zero, we obtain by Burkholder-Davis-
Gundy’s Inequality for every r ≥ 1

E
((

sup
0≤t≤T

∣∣L̄Ht ∣∣)r ) ≤ Cr E
([
L̄H
]r/2
T

)
,

where Cr is a constant depending on r. Let us now prove[
V̄ H,QT

]
T
∈ Lr/2(P) for every r < p.

Then the integrability conditions on ξH and L̄H are an immediate consequence.
Since ZV̄ H,QT is a P-martingale, we know V̄ H,QT is a QT -martingale. Hence, we obtain
by Burkholder-Davis-Gundy’s Inequality and Doob’s Maximal Inequality for 2s > 1

EQT

([
V̄ H,QT

]s
T

)
≤ 1

cs
EQT

((
sup

0≤t≤T

∣∣∣V̄ H,QT
t

∣∣∣)2s
)
≤ Cs EQT

(∣∣∣V̄ H,QT

T

∣∣∣2s) ,
where cs, Cs are constants depending on s. By assumption we have V H,QT

T = H ∈
Lp(FT ,P) for some p ≥ 2. Consequently V̄ H,QT

T ∈ Lp(P) and with (2.2.27) and Hölder’s
Inequality we have V̄ H,QT

T ∈ L2s(QT ) for 2s < p and using the above inequality implies
that

[
V̄ H,QT

]
T
∈ Ls(QT ) for every s < p/2. Finally, with (2.2.28) and Hölder’s

Inequality we conclude
[
V̄ H,QT

]
T
∈ Lr/2(P) for every r < p.

Remark. In Lemma 6 of [Pham et al., 1996] it is even proven ξH ∈ Lp(M) and LH ∈
Mp(P). Instead of switching to the QT -measure they work directly under P and thus,
do not lose the case r = p.
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2.3 Mean-variance hedging

The following section is based on [Monat and Stricker, 1995]. From now on, if not
mentioned otherwise, we do not assume continuity of X.
In comparison to local risk-minimization we do not rely on the terminal constraint
VT = H P-a.s.. Instead we focus on self-financing trading strategies and minimize the
hedging error at maturity.

Definition 2.13 (mean-variance optimal). Let H ∈ L2(FT ,P), then the unique
solution

(
V H

0 , ξH
)
∈ R× Ξ of

min
(V0,ξ)∈R×Ξ

E

((
H − V0 −

∫ T

0

ξs · dXs

)2
)

is called mean-variance optimal. Similarly, for any given initial capital V0 ∈ R
the unique solution ξV0 ∈ Ξ of

min
ξ∈Ξ

E

((
H − V0 −

∫ T

0

ξs · dXs

)2
)
.

is called mean-variance optimal.

To find its unique solution we want to use Hilbert’s Projection Theorem. Thus, we
project H onto the linear space spanned by R and

GT (Ξ) :=

{∫ T

0

ξs · dXs

∣∣∣∣ ξ ∈ Ξ

}
.

This projection idea only works if {R +GT (Ξ)} is a closed subspace of L2(P). The next
subsection proves this condition under the assumption that X satisfies the structure
condition and that the mean-variance tradeoff process K is uniformly bounded.

2.3.1 Closedness of GT (Ξ)

Before we can prove the closedness of GT (Ξ) we have to prove the continuity of the
Föllmer-Schweizer decomposition. As for the existence and uniqueness Theorem 2.16
of the Föllmer-Schweizer decomposition, we need two auxiliary results. Note again
that we switch to the different formulation of the Föllmer-Schweizer decomposition
(Compare Equation 2.1.4).

Lemma 2.22. Suppose X satisfies the structure condition. Let 0 ≤ T1 ≤ T2 ≤ T
be previsible stopping times and assume there ∃ b ∈ (0, 1), such that KT2− −KT1 ≤ b
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P-a.s.. Further, suppose H,Hp ∈ L2(Ω,FT2− ,P) with decompositions

H = Ĥ +

∫ T

0

I(T1,T2)(s)ξs · dXs +

∫ T

0

I(T1,T2)(s) dL̂s P-a.s.,

Hp = Ĥp +

∫ T

0

I(T1,T2)(s)ξ
p
s · dXs +

∫ T

0

I(T1,T2)(s) dL̂
p
s P-a.s.,

as defined in Equation (2.2.15). If we have

Hp L2

−−−→
p→∞

H,

then it holds

Ĥp L2

−−−→
p→∞

Ĥ,

I(T1,T2)ξ̂
p L2(M)−−−−→

p→∞
I(T1,T2)ξ̂,∫ T

0

I(T1,T2)(s) dL̂
p
s

L2

−−−→
p→∞

∫ T

0

I(T1,T2)(s) dL̂s.

Proof. Let ξ̂ and ξ̂p be the unique fixed points of the mappings ΨH and ΨHp , re-
spectively, which are defined in Definition 2.11. Since ΨHp is a contraction12 with
parameter

√
b independent of p, we have

‖ξ̂p − ξ̂‖L2(M) = ‖ΨHp(ξ̂p)−ΨH(ξ̂)‖L2(M)

≤ ‖ΨHp(ξ̂p)−ΨHp(ξ̂)‖L2(M) + ‖ΨHp(ξ̂)−ΨH(ξ̂)‖L2(M)

≤
√
b‖ξ̂p − ξ̂‖L2(M) + ‖ΨHp(ξ̂)−ΨH(ξ̂)‖L2(M),

which is equivalent to

‖ξ̂p − ξ̂‖L2(M) ≤
1

1−
√
b
‖ΨHp(ξ̂)−ΨH(ξ̂)‖L2(M). (2.3.1)

We will now show continuity in H of ΨH with respect to ‖ · ‖L2(M) for a general but
fixed θ ∈ L2(M).

Denote θ̂p = ΨHp(θ) and θ̂ = ΨH(θ), then we obtain with the equation before
Equation (2.2.15)

H −
∫ T

0

θtrs dAs = Ĥ +

∫ T

0

I(T1,T2)(s)θ̂s · dMs +

∫ T

0

I(T1,T2)(s) dL̂s P-a.s.

12Compare Lemma 2.14.
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and

Hp −
∫ T

0

θtrs dAs = Ĥp +

∫ T

0

I(T1,T2)(s)θ̂
p
s · dMs +

∫ T

0

I(T1,T2)(s) dL̂
p
s P-a.s..

Thus, it holds

‖Hp −H‖2 ≥
∥∥∥∥∫ T

0

I(T1,T2)(s)
(
θ̂ps − θ̂s

)
· dMs

∥∥∥∥
2

,

where we used the orthogonality of the three terms. Under the assumption

Hp L2

−−−→
p→∞

H

we obtain ∫ T

0

I(T1,T2)(s)θ̂
p
s · dMs

L2

−−−→
p→∞

∫ T

0

I(T1,T2)(s)θ̂s · dMs

and finally, with Equation (2.3.1) also∫ T

0

I(T1,T2)(s)ξ̂
p
s · dMs

L2

−−−→
p→∞

∫ T

0

I(T1,T2)(s)ξ̂s · dMs.

Since X satisfies the structure condition and KT2− −KT1 ≤ b, we further have∥∥∥∥∫ T

0

(
ξ̂ps − ξ̂s

)tr
dAs

∥∥∥∥2

2

=

∥∥∥∥∫ T

0

(
ξ̂ps − ξ̂s

)tr
γs dWs

∥∥∥∥2

2

=

∥∥∥∥∫ T

0

(
ξ̂ps − ξ̂s

)tr
σsλs dWs

∥∥∥∥2

2

≤ ‖KT2− −KT1‖∞E
(∫ T

0

(
ξ̂ps − ξ̂s

)tr
σs

(
ξ̂ps − ξ̂s

)
dWs

)
≤ b

∥∥∥∥∫ T

0

(
ξ̂ps − ξ̂s

)
· dMs

∥∥∥∥2

2

.

Thus, we also have ∫ T

0

ξ̂p trs dAs
L2

−−−→
p→∞

∫ T

0

ξ̂trs dAs,

which implies ∥∥∥∥(Hp −
∫ T

0

ξ̂p trs dAs

)
−
(
H −

∫ T

0

ξ̂trs dAs

)∥∥∥∥2

2

L2

−−−→
p→∞

0.
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By assumption we have from Equation (2.2.15)

H −
∫ T

0

ξ̂trs dAs = Ĥ +

∫ T

0

I(T1,T2)(s)ξ̂s · dMs +

∫ T

0

I(T1,T2)(s) dL̂s P-a.s.,

Hp −
∫ T

0

ξ̂p trs dAs = Ĥp +

∫ T

0

I(T1,T2)(s)ξ̂
p
s · dMs +

∫ T

0

I(T1,T2)(s) dL̂
p
s P-a.s..

Since the three terms

Ĥp − Ĥ,
∫ T

0

I(T1,T2)(s)
(
ξ̂ps − ξ̂s

)
· dMs,

∫ T

0

I(T1,T2)(s) dL̂
p
s −

∫ T

0

I(T1,T2)(s) dL̂s

are orthogonal, the last L2-convergence implies

Ĥp L2

−−−→
p→∞

Ĥ,∫ T

0

I(T1,T2)(s) dL̂
p
s

L2

−−−→
p→∞

∫ T

0

I(T1,T2)(s) dL̂s.

Lemma 2.23. Suppose X satisfies the structure condition and K is uniformly bounded.
Let 0 ≤ T0 ≤ T be a previsible stopping time and assume we have H,Hp ∈ L2(FT0 ,P)
with

H = H̃ +

∫ T

0

IT0(s)ξ̃s · dXs + L̃T0 P-a.s.,

Hp = H̃p +

∫ T

0

IT0(s)ξ̃ps · dXs + L̃pT0 P-a.s.,

as defined in Equation (2.2.16) of Lemma 2.15. If we have

Hp L2

−−−→
p→∞

H,

then it holds

H̃p L2

−−−→
p→∞

H̃,

IT0 ξ̃p
L2(M)−−−−→
p→∞

IT0 ξ̃,

L̃pT0
L2

−−−→
p→∞

L̃T0 .
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Proof. Under the assumption Hp L2

−−−→
p→∞

H we have with the use of the tower property

and Jensen’s Inequality

E(Hp | FT0−)
L2

−−−→
p→∞

E(H | FT0−).

Substraction yields

Hp − E(Hp | FT0−)
L2

−−−→
p→∞

H − E(H | FT0−)

and inserting the given decompositions we obtain∫ T

0

IT0(s)ξ̃ps · dMs + L̃pT0
L2

−−−→
p→∞

∫ T

0

IT0(s)ξ̃s · dMs + L̃T0 .

However, the unique Galtchouk-Kunita-Watanabe decompositions ofHp−E(Hp | FT0−)
and H − E(H | FT0−) are given by

Hp − E(Hp | FT0−) =

∫ T

0

IT0(s)ξ̃ps · dMs + L̃pT0 P-a.s.,

H − E(H | FT0−) =

∫ T

0

IT0(s)ξ̃s · dMs + L̃T0 P-a.s..

Since the Galtchouk-Kunita-Watanabe decomposition is a projection on a closed sub-
space of L2, it is continuous in the L2 sense. Thus, we obtain∫ T

0

IT0(s)ξ̃ps · dMs
L2

−−−→
p→∞

∫ T

0

IT0(s)ξ̃s · dMs,

L̃pT0
L2

−−−→
p→∞

L̃T0 .

In general, if ξp
L2(M)−−−−→
p→∞

ξ for some ξp, ξ ∈ Ξ, then it also holds
∫ T

0
ξps · dXs

L2

−−−→
p→∞∫ T

0
ξs · dXs. This is true since∥∥∥∥∫ T

0

(ξps − ξs) · dXs

∥∥∥∥
2

≤ ‖ξp − ξ‖L2(M) +

∥∥∥∥∫ T

0

(ξps − ξs)
tr dAs

∥∥∥∥
2

≤ ‖ξp − ξ‖L2(M) +

∥∥∥∥∫ T

0

(ξps − ξs)
tr γs dWs

∥∥∥∥
2

≤ ‖ξp − ξ‖L2(M) +

∥∥∥∥∫ T

0

(ξps − ξs)
tr σsλs dWs

∥∥∥∥
2

≤
(
1 + ‖K‖1/2

∞
)
‖ξp − ξ‖L2(M).

Therefore, in our setting we conclude
∫ T

0
IT0(s)ξ̃ps · dXs

L2

−−−→
p→∞

∫ T
0
IT0(s)ξ̃s · dXs and

consequently, H̃p L2

−−−→
p→∞

H̃.
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Now use the same notations as in the proof of Theorem 2.16 and set

ξ =
N∑
n=1

(
I(Tn−1,Tn)ξ̂

n−1 + ITn ξ̃n
)
,

ξp =
N∑
n=1

(
I(Tn−1,Tn)ξ̂

p,n−1 + ITn ξ̃p,n
)
,

LT = L̂0 +
N∑
n=1

(
L̃nTn +

∫ T

0

I(Tn−1,Tn)(s) dL̂
n−1
s

)
,

LpT = L̂p0 +
N∑
n=1

(
L̃p,nTn +

∫ T

0

I(Tn−1,Tn)(s) dL̂
p,n−1
s

)
.

Applying Lemma 2.23 at Tn and Lemma 2.22 between Tn−1 and Tn recursively for
n = N, . . . , 1 yields the following theorem.

Theorem 2.24. Suppose X satisfies the structure condition and K is uniformly
bounded. Let H,Hp ∈ L2(Ω,FT ,P) be given with Föllmer-Schweizer decompositions

H = E(H) +

∫ T

0

ξs · dXs + LT , P-a.s.,

Hp = E(Hp) +

∫ T

0

ξps · dXs + LpT , P-a.s..

If we have

Hp L2

−−−→
p→∞

H,

then it holds

Lp0
L2

−−−→
p→∞

L0,

ξp
L2(M)−−−−→
p→∞

ξ,

LpT
L2

−−−→
p→∞

LT .

Finally, we can prove the closedness of {R +GT (Ξ)}.

Theorem 2.25. Suppose X satisfies the structure condition and K is uniformly
bounded. Then the subspaces GT (Ξ) and {R +GT (Ξ)} are closed subspaces of L2.
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Proof. Let (Hp)p∈N0 be a sequence in GT (Ξ), which satisifies Hp L2

−−−→
p→∞

H. Since for

each p, Hp ∈ GT (Ξ), there ∃ ξp ∈ Ξ, such that

Hp =

∫ T

0

ξps · dXs.

This is the unique Föllmer-Schweizer decomposition of Hp. On the other hand, H ∈
L2(Ω,FT ,P) admits by Theorem 2.16 a unique Föllmer-Schweizer decomposition

H = E(H) +

∫ T

0

ξHs · dXs + LHT P-a.s..

But since Hp L2

−−−→
p→∞

H, Theorem 2.24 yields E(H) = 0, LH0 = 0 P-a.s. and LHT = 0

P-a.s.. Hence, H ∈ GT (Ξ) and GT (Ξ) is a closed subspace of L2.
Since GT (Ξ) is now closed, observe that also GT (Ξ) plus any finite dimensional sub-
space of L2 is closed. Hence, in particular also {R +GT (Ξ)} is closed.

In case of X beeing continuous we don’t even need the continuity of the Föllmer-
Schweizer decomposition to prove the closedness of GT (Ξ). This can be seen as follows.

Since K is uniformly bounded and X is continuous, we know that

ZT = E
(
−
∫
λ · dM

)
T

is inM2(P), is strictly positive and defines the equivalent minimal martingale measure
QT by

dQT

dP
:= ZT on FT .

Recall the definition Gt(ξ) =
∫ t

0
ξs · dXs. Since ZG(ξ) ∈ M1

0,loc(P), we have G(ξ) ∈
M1

0,loc(QT ) and with

EQT

(
sup

0≤t≤T
|Gt(ξ)|

)
= E

(
ZT sup

0≤t≤T
|Gt(ξ)|

)

≤ E
(
Z2
T

) 1
2 E

((
sup

0≤t≤T
|Gt(ξ)|

)2
) 1

2

≤ E
(
Z2
T

) 1
2 C sup

0≤t≤T

∥∥∥∥∫ t

0

ξs · dMs

∥∥∥∥
2

<∞,
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we even have G(ξ) ∈M1
0(QT ). Now let H ∈ L2(FT ,P) and (GT (ξn))n∈N be a sequence

in GT (Ξ), which satisfies

GT (ξn)
L2(P)−−−→
n→∞

H.

This implies

GT (ξn)
L1(Q)−−−→
n→∞

H

and since (EQT
(H | Ft))0≤t≤T is a martingale with respect to QT , we conclude for t = T

with the Martingale Representation Theorem that there exists a previsible process ξ,
such that

H =

∫ T

0

ξs · dXs.

Since X is a continuous local QT -martingale, we know
∫
ξ ·dX is a local QT -martingale.

Together with the Föllmer-Schweizer decomposition of H we obtain∫ t

0

ξs · dXs = EQT
(H | Ft)

= EQT

(
E(H) +

∫ T

0

ξHs · dXs + LHT

∣∣∣∣Ft)
= E(H) +

∫ t

0

ξHs · dXs + LHt P-a.s.,

since ZLH ∈ M1
loc(P). For t = 0 we conclude E(H) + LH0 = 0 P-a.s. and taking the

previsible quadratic variation yields〈
LH
〉QT =

〈
Z,LH

〉P
= 0.

Hence, LHt = 0 P-a.s. for all 0 ≤ t ≤ T , since E(LH0 ) = 0. For t = 0 we conclude
E(H) = 0 and hence H ∈ GT (Ξ).

Corollary 2.26. Suppose X satisfies the structure condition and K is uniformly
bounded. Then the norms ‖ · ‖L2(M) and ‖GT (·)‖2 are equivalent.

Proof. For ξ ∈ Ξ it holds

‖GT (ξ)‖2 ≤
∥∥∥∥∫ T

0

ξs · dMs

∥∥∥∥
2

+

∥∥∥∥∫ T

0

ξtrs dAs

∥∥∥∥
2

≤ ‖ξ‖L2(M) +

∥∥∥∥∫ T

0

|ξtrs σsλs| dWs

∥∥∥∥
2

≤ ‖ξ‖L2(M) + E
(∫ T

0

ξtrs σsξs dWs

∫ T

0

λtrs σsλs dWs

)1/2

≤
(
1 + ‖K‖1/2

∞
)
‖ξ‖L2(M).
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Now assume GT (ξn)
L2

−−−→
n→∞

GT (ξ). Then with Theorem 2.25 there ∃ ξ′ ∈ Ξ, such that

GT (ξn)
L2

−−−→
n→∞

GT (ξ′). But the Föllmer-Schweizer decompositions of H and Hn are

given by

H = GT (ξ), Hn = GT (ξn).

Continuity of the Föllmer-Schweizer decomposition now yields ξn
L2(M)−−−−→
n→∞

ξ′. In partic-

ular there ∃ c > 0, such that ‖ · ‖L2(M) ≤ c‖GT (·)‖2.

With Theorem 2.25 we are now able to project H ∈ L2(FT ,P) onto the closed sub-
spaces GT (Ξ) and {R+ +GT (Ξ)}. Thus, Hilbert’s Projection Theorem immediately
proves the following theorem.

Corollary 2.27. Suppose X satisfies the structure condition and K is uniformly
bounded. Then for any H ∈ L2(FT ,P) there exists a unique

(
V H

0 , ξH
)
∈ R × Ξ,

such that

E

((
H − V H

0 −
∫ T

0

ξHs · dXs

)2
)

= min
(V0,ξ)∈R×Ξ

E

((
H − V0 −

∫ T

0

ξs · dXs

)2
)
.

Similarly, for any V0 ∈ R there exists a unique ξV0 ∈ Ξ, such that

E

((
H − V0 −

∫ T

0

ξV0s · dXs

)2
)

= min
ξ∈Ξ

E

((
H − V0 −

∫ T

0

ξs · dXs

)2
)
.

2.3.2 A special case

The following subsection is based on [Pham et al., 1996].
In practice, we would like to have a more explicit representation of the mean-variance
optimal trading strategy ξV0 . We will prove such a representation in a special case.
Let X be continuous, K be uniformly bounded and QT be the minimal martingale
measure with density ZT . Since K is bounded we have ∀ 1 ≤ p <∞

ZT ∈ Lp(FT ,P),
1

ZT
∈ Lp(FT ,QT ). (2.3.2)

Hence, Theorem 2.21 yields that ZT has a general Föllmer-Schweizer decomposition

ZT = E(Z2
T )− E(ZTL

Z
T ) +

∫ T

0

ζs · dXs + LZT P-a.s., (2.3.3)

where ζ ∈ Lr(M) and LZ ∈ Mr(P) with E(LZ0 ) = 0 for every r < p and p ≥ 2.
Starting under QT the constant is obtained by the fact that

∫
ζ · dX is QT -martingale

and finally, by switching back to the P-measure. The goal of this subsection is to prove
the following theorem.



58 2 Quadratic hedging

Theorem 2.28. Suppose X is continuous and K is uniformly bounded. Further,
assume the special case

LZT = 0 in Equation (2.3.3). (2.3.4)

Then for fixed H ∈ L2+ε(FT ,P), with ε > 0, the mean-variance optimal trading strategy
ξV0 is given by

ξV0t = ξH,QT
t − ζt

ZQT
t

(
V H,QT
t− − V0 −

∫ t

0

ξV0s · dXs

)
, (2.3.5)

where

ZQT
t := EQT

(ZT | Ft) = E(Z2
T ) +

∫ t

0

ζs · dXs (0 ≤ t ≤ T ),

V H,QT
t := EQT

(H) +

∫ t

0

ξH,QT
s · dXs + LH,QT

t (0 ≤ t ≤ T ).

Before we prove this theorem it is worth to sketch the idea. By Hilbert’s Projection
Theorem the mean-variance optimal trading strategy ξV0 fulfills

E
((
H − V0 −GT (ξV0)

)
GT (ξ)

)
= EQT

(
H − V0 −GT (ξV0)

ZT
GT (ξ)

)
= 0,

for every ξ ∈ Ξ. For any N ∈M2(QT ) strongly QT -orthogonal to I2(X) it holds

EQT
(NTGT (ξ)) = 0 ∀ bounded ξ ∈ Ξ.

Hence, we are looking for an N , such that

H − V0 −GT (ξV0) = NTZT = NTZ
QT
T . (2.3.6)

Using the Föllmer-Schweizer decompositions of H = V H,QT

T and ZQT
T , together with

the product rule applied to NTZ
QT
T we obtain

H − V0 −GT (ξV0)−NTZ
QT
T

= EQT
(H)− V0 −N0E(Z2

T ) +

∫ T

0

(
ξH,QT
s − ξV0s −Ns−ζs

)
· dXs

+ LH,QT

T −
∫ T

0

ZQT
s dNs − [N,ZQT ]T .

Since X is continuous and N is strongly QT -orthogonal to X i for each i = 1, . . . , d,
we have

[N,ZQT ] =
d∑
i=1

∫
ζ i d[N,X i] =

d∑
i=1

∫
ζ i d

〈
N,X i

〉QT = 0.
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Thus, Equation (2.3.6) will hold, if we choose

Nt :=
EQT

(H)− V0 + LH,QT
0

E(Z2
T )

+

∫ t

0

1

ZQT
s

dLH,QT
s ,

ξV0 := ξH,QT −N−ζ.

Lemma 2.29. Define the process N as above. Then for ε > 0 we have

N ∈M2+η(P) for 0 < η < ε.

Further, N is a QT -martingale strongly QT -orthogonal to X i for each i = 1, . . . , d and
N−ζ ∈ L2(M).

Proof. The process ZQT
t is strictly positive and continuous, since X is continuous.

Thus, the process N is well defined. By Jensen’s Inequality we have

1

ZQT
t

=
1

EQT
(ZT | Ft)

≤ EQT

(
1

ZT

∣∣∣∣Ft)
and hence with Doob’s Maximal Inequality and (2.3.2)

sup
0≤t≤T

1

ZQT
T

∈ Lp(P) ∀ 1 < p <∞.

By Theorem 2.21 we have LH,QT ∈ M2+ε(P) and therefore with Burkholder-Davis-
Gundy’s Inequality we obtain for every δ < ε/2

[N ]T =

∫ T

0

1(
ZQT
s

)2 d[LH,QT ]s ≤ [LH,QT ]T sup
0≤t≤T

1(
ZQT
s

)2

= [LH,QT − LH,QT
0 ]T sup

0≤t≤T

1(
ZQT
s

)2 ∈ L
1+δ(P).

This proves N ∈M2+η(P).
Note, that LH,QT is strongly P-orthogonal to each M i for i = 1, . . . , d. Hence with
Theorem 2.18 and the definition of N , we conclude that N is a QT -martingale strongly
QT -orthogonal to X i for each i. Finally, since ζ ∈ Lr(M) for every r < p, it holds for
every δ < ε/2∫ T

0

Ns−ζ
tr
s σsζsNs− dWs ≤

(
sup

0≤s≤T
|Ns|2

)∫ T

0

ζtrs σsζs dWs ∈ L1+δ(P).

This shows N−ζ ∈ L2(M).
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Proof of Theorem 2.28. We first prove that ξV0 := ξH,QT − N−ζ is equal to (2.3.5).
From Lemma 2.29 we know that N is a QT -martingale strongly QT -orthogonal to X i

for each i = 1, . . . , d. Since X is continuous and LZT = 0, we obtain

[N,ZQT ] =
d∑
i=1

∫
ζ i d[N,X i] =

d∑
i=1

∫
ζ i d

〈
N,X i

〉QT = 0

and hence by the product rule and the respective definitions

NZQT = N0E(Z2
T ) +

∫
N−ζ · dX +

∫
ZQT dN

= EQT
(H)− V0 +

∫ (
ξH,QT − ξV0

)
· dX + LH,QT

= V H,QT − V0 −
∫
ξV0 · dX.

With the continuity of ZQT we conclude that

ξV0 = ξH,QT − ζ

ZQT
N−Z

QT
−

equals (2.3.5).
Now let us prove that ξV0 is mean-variance optimal. By construction we have

H − V0 −GT (ξV0) = NTZ
QT
T = NTZT .

By the strong QT -orthogonality of N and X i for each i, we have that NG(ξ) is a local
QT -martingale with N0G0(ξ) = 0 for every ξ ∈ Ξ. With Lemma 2.29 and Hölder’s
Inequality we have for every δ < ε/2

sup
0≤t≤T

|NtGt(ξ)| ∈ L1+δ(P),

which implies with (2.3.2)

sup
0≤t≤T

|NtGt(ξ)| ∈ L1(QT ),

Thus, NG(ξ) is even a true QT -martingale and consequently

E
((
H − V0 −GT (ξV0)

)
GT (ξ)

)
= EQT

(NTGT (ξ)) = 0 for every ξ ∈ Ξ

and by Hilbert’s Projection Theorem is ξV0 mean-variance optimal.

Corollary 2.30. Suppose we have the same assumptions as in Theorem 2.28. Then

the minimal residual risk J0 := E
((
H − V0 −GT (ξV0)

)2
)

is

J0 =

(EQT
(H)− V0)2 + E

((
LH,QT

0

)2
)

E(Z2
T )

+ EQT

(∫ T

0

1

ZQT
s

d[LH,QT ]s

)
.
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Proof. With H − V0 − GT (ξV0) = NTZT and EQT
(NTGT (ξ)) = 0 for every ξ ∈ Ξ we

obtain

E
((
H − V0 −GT (ξV0)

)2
)

= EQT

(
NT

(
H − V0 −GT (ξV0)

))
= EQT

(
NT

(
EQT

(H)− V0 +GT (ξH,QT − ξV0) + LH,QT

T

))
= EQT

(NT (EQT
(H)− V0)) + EQT

(NTL
H,QT

T ).

From Lemma 2.29 we know that N is a QT -martingale and we conclude

EQT
(NT (EQT

(H)− V0)) = (EQT
(H)− V0)EQT

(N0)

=
(EQT

(H)− V0)2 + (EQT
(H)− V0)EQT

(LH,QT
0 )

E(Z2
T )

=
(EQT

(H)− V0)2

E(Z2
T )

,

since EQT
(LH,QT

0 ) = 0. For the second part, since LH,QT , N ∈M2(QT ), we get

EQT
(NTL

H,QT

T ) = EQT
(N0L

H,QT
0 ) + EQT

(
[N,LH,QT ]T

)
=

EQT

(
(LH,QT

0 )2
)

E(Z2
T )

+ EQT

(∫ T

0

1

ZQT
s

d[LH,QT ]s

)
.

The observation QT = P on F0 concludes the proof.

Remark. Note, that the mean-variance optimal pair
(
V H

0 , ξH
)
∈ R × Ξ of Definition

2.13 is given by (
V H

0 , ξH
)

:=
(
EQT

(H), ξV0
)
.

The obtained results are only possible, because we assumed LZT = 0. The question
arises for which class of examples our special assumption is satisfied. We will show
this in case where the terminal value KT of the mean-variance tradeoff process is
deterministic.

Suppose X is continuous and ZT defines the minimal martingale measure. Then
continuity of K and the product rule for semimartingales imply

Z = E
(
−
∫
λ · dM

)
= E

(
−
∫
λ · dX +K

)
= E

(
−
∫
λ · dX

)
eK ,

since
〈
−
∫
λ · dX,K

〉
= 0. Thus, we obtain for the terminal value

ZT = eKT E
(
−
∫
λ · dX

)
T

= eKT

(
1−

∫ T

0

E
(
−
∫
λ · dX

)
s

λs · dXs

)
= eKT +

∫ T

0

−eKT E
(
−
∫
λ · dX

)
s

λs︸ ︷︷ ︸
=: ζs

· dXs.
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Under the assumption of KT beeing deterministic we conclude that ZT can be written
as the sum of a constant and a stochastic integral, where ζ ∈ Ξ since K is obvi-
ously uniformly bounded. Hence, the special assumption (2.3.4) is fulfilled. Since
E
(
−
∫
λ · dX

)
is a QT -martingale, we further have

ZQT
t = EQT

(ZT | Ft) = eKT E
(
−
∫
λ · dX

)
t

(0 ≤ t ≤ T ),

and hence

− ζt

ZQT
t

= λt (0 ≤ t ≤ T ),

which simplifies the mean-variance optimal trading strategy ξV0 of Theorem 2.28 to

ξV0t = ξH,QT
t + λt

(
V H,QT
t− − V0 −

∫ t

0

ξV0s · dXs

)
(0 ≤ t ≤ T ). (2.3.7)

Using the obtained representations of ZQT and Z, as well as the fact that 1/Z is the
density process of P with respect to QT we have

EQT

(∫ T

0

1

ZQT
s

d[LH,QT ]s

)
= e−KT EQT

(∫ T

0

1

E
(
−
∫
λ · dX

)
s

eKs

eKs
d[LH,QT ]s

)

= e−KT E
(∫ T

0

eKs d[LH,QT ]s

)
.

Thus, the remaining quadratic risk of Corollary 2.30 is given by

J0 = e−KT

(
(EQT

(H)− V0)2 + E
(

(LH,QT
0 )2

)
+ E

(∫ T

0

eKs d[LH,QT ]s

))
. (2.3.8)

If one wants to find a general explicit representation of the mean-variance optimal
trading strategy, one has to work with the variance optimal martingale mea-
sure Qopt

T . It is defined by its density dQopt
T /dP, which minimizes the L2(P)-norm.

In [Delbaen and Schachermayer, 1996], Lemma 2.2, it is then proven that dQopt
T /dP

always satisfies our special assumption (2.3.4). In particular it is proven, that the as-
sumption (2.3.4) is equivalent to the assumption that the minimal martingale measure
QT and the variance optimal martingale measure Qopt

T coincide. For more details in
this direction we refer to [Delbaen et al., 1997] and for an overview to section four of
[Schweizer, 1999].

As a final observation, note that in case of a complete market the minimal and
the variance optimal martingale measure coincide, since there is obviously only one
equivalent martingale measure. Hence, the special assumption (2.3.4) is automatically
satisfied13.
13This can also be seen by the martingale representation theorem, as in most cases a d-dimensional

Brownian motion B and its P-augmented filtration FB are used in the description of X.



3 Application to life insurance

This chapter is based on [Møller, 1998]. Detailed background information can be found
in [Møller and Steffensen, 2007].
We would like to apply the introduced theory of quadratic hedging to a portfolio of
unit-linked life insurance contracts. In particular, we consider only pure endowment
insurance policies, since these contracts can be directly casted into our setting of
European type contingent claims.

3.1 The model

The financial market

We start by introducing the financial market. Let (Ω,A,P) be a probability space
equipped with the P-augmented filtration G = (Gt)0≤t≤T of a standard one dimensional
Brownian motion1 B = (Bt)0≤t≤T on a finite time horizon T > 0. Let the market
consist of two tradeable assets with real-valued price processes S̃i = (S̃it)0≤t≤T , for
i = 0, 1. S̃0 > 0 represents the riskless bond or bank account and S̃1 the risky asset.
Their dynamics are given by2

dS̃1
t = S̃1

t

(
m(t, S̃1

t ) dt+ σ(t, S̃1
t ) dBt

)
, S̃1

0 > 0, (3.1.1)

dS̃0
t = S̃0

t r(t, S̃
1
t ) dt, S̃0

0 = 1. (3.1.2)

Here S̃1
0 is not random. m can be interpreted as the mean return rate of S̃1, σ as the

volatility and r as the interest short rate. A solution to Equation (3.1.1) exists for
smooth enough functions xm(t, x) and xσ(t, x), namely Lipschitz continuity in x and
admission of a linear growth condition. Both regularity assumptions we shall assume
henceforth. Furthermore, assume r(t, x) is continuous and satisfies

E
(

exp

(∫ T

0

r(s, S̃1
s ) ds

))
<∞.

1We assume that all paths of B are continuous. In case B′ is only a Brownian motion with P-a.s.
continuous paths, let N denote the exceptional set and define B = B′ on N c and B = 0 on N .

2For constant m,σ and r this is the Back-Scholes Model.
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For xσ(t, x) we assume in addition ∀(t, x) ∈ [0, T ]×R+ ∃ ε > 0, such that xσ(t, x) > ε.
We need this to ensure the well definedness of the market price of risk

λt :=
m(t, S̃1

t )− r(t, S̃1
t )

σ(t, S̃1
t )

(0 ≤ t ≤ T ),

which we assume to be uniformly bounded. Then, we can define a change of measure
density process Z = (Zt)0≤t≤T by

Zt := E
(
−
∫ t

0

λs dBs

)
= exp

−∫ t

0

λs dBs −
1

2

∫ t

0

λ2
s ds︸ ︷︷ ︸

=Kt

 (0 ≤ t ≤ T ).

Observe, that the mean-variance tradeoff proccess K of Definition 2.9 is uniformly
bounded since the market price of risk is assumed to be uniformly bounded. Further,
Z is a local P-martingale and since Novikov’s Condition

E
(

exp

(
1

2
KT

))
<∞

is fulfilled, we even have that Z is a true P-martingale. Thus, we can apply Girsanov’s
Theorem and

dQT

dP
= ZT on GT

defines a probability measure QT equivalent to P, such that the process

BQT
t := Bt +

∫ t∧T

0

λs ds t ≥ 0,

is a QT -standard Brownian motion. Applying the product rule to the continuous
process Xt = S1

t = S̃1
t /S̃

0
t now yields with (S̃0

t )
−1 = exp(−

∫ t
0
r(s, S̃1

s ) ds)

dXt = d
(
e−

∫ t
0 r(s,S̃

1
s ) dsS̃1

t

)
= d

(
e−

∫ t
0 r(s,S̃

1
s ) ds
)
S̃1
t + e−

∫ t
0 r(s,S̃

1
s ) dsdS̃1

t + d
[
e−

∫ t
0 r(s,S̃

1
s ) ds, S̃1

t

]
= −r(t, S̃1

t )e
−

∫ t
0 r(s,S̃

1
s ) dsS̃1

t dt+ e−
∫ t
0 r(s,S̃

1
s ) dsS̃1

t

(
m(t, S̃1

t ) dt+ σ(t, S̃1
t ) dBt

)
= Xt

((
m(t, S̃1

t )− r(t, S̃1
t )
)
dt+ σ(t, S̃1

t ) dBt

)
= σ(t, S̃1

t )Xt dB
QT
t .
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The explicit solution is3

Xt = X0 exp

(∫ t

0

(
m(s, S̃1

s )− r(s, S̃1
s )−

1

2
σ2(s, S̃1

s )

)
ds+

∫ t

0

σ(s, S̃1
s ) dBs

)
= X0 exp

(∫ t

0

σ(s, S̃1
s ) dB

QT
s −

1

2

∫ t

0

σ2(s, S̃1
s ) ds

)
(0 ≤ t ≤ T ).

Thus, X is a local QT -martingale and by Theorem 1.2 the financial market model is
arbitrage free. Since QT is unique on GT , the financial market model is even complete.
Suppose now we have an undiscounted square-integrable claim H̃. Its price process
Ṽ = (Ṽt)0≤t≤T is then given by

Ṽt = EQT

(
S̃0
t

S̃0
T

H̃

∣∣∣∣∣Gt
)

and H̃ is attainable by a self-financing, previsible strategy φ (compare the Definitions
1.1 and 1.5). Assume further, that for some QT -integrable function f : R+ → R+ we
have H̃ = f(S̃1

T ). Then the price process can be written as Ṽt = F (t, S̃1
t ) with

F (t, s) = EQT

(
exp

(
−
∫ T

t

r(u, S̃1
u) du

)
f(S̃1

T )

∣∣∣∣ S̃1
t = s

)
.

Assuming that all regularity conditions of the Feyman Kac Formula are fulfilled,
we can now link F to the smooth enough solution of the partial differential equation

ut(t, s) + r(t, s)s us(t, s) +
1

2
σ2(t, s)s2uss(t, s)− r(t, s)u(t, s) = 0 (t, s) ∈ [0, T ]× R+,

u(T, s) = f(s) s ∈ R+,

u(t, 0) = 0 t ∈ [0, T ],

(3.1.3)

where the subscripts denote the respective partial derivatives. For the conditions on
the existence of such a smooth enough solution we refer the reader to the general PDE
literature.

The insurance portfolio

Now let us turn to the description of the insurance portfolio. Suppose we have a
portfolio of x-year old individuals and each has the same unit-linked pure endowment
contract with survival benefit f(S̃1

T ) ∈ L2(P) for some continuous function f : R+ →
R+. Let lx ∈ N denote the total number of persons we have in our portfolio and

3Can be validated with Itô’s formula.
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(Ti)i=1,...,lx denote the remaining life lengths of the insured. We assume that the non-
negative random variables (Ti)i=1,...,lx are i.i.d. on (Ω,A,P) with continuous force of
mortality µx+t. Thus, the individual survival function is given by

tpx = P(Ti > t) = exp

(
−
∫ t

0

µx+s ds

)
,

∂tpx
∂t

= −µx+t tpx.

Now, define the counting process N = (Nt)0≤t≤T by

Nt :=
lx∑
i=1

I{Ti≤t},

which counts the dead in our portfolio and let H = (Ht)0≤t≤T with Ht = σ{Ns | s ≤ t}
be the generating filtration of N . By construction, N is càdlàg. Furthermore, N is a
Markov process under H. Observing, that

E(Nt −Nt− |Ht−) = (lx −Nt−)µx+t dt

should coincide with ’ρt dt’, we can define the non-negative, previsible intensity ρ =
(ρt)0≤t≤T with

∫ T
0
ρs ds <∞ P-a.s. by

ρt = (lx −Nt−)µx+t (0 ≤ t ≤ T ).

The compensated counting process M = (Mt)0≤t≤T is then given by

Mt = Nt −
∫ t

0

ρs ds (0 ≤ t ≤ T ),

which is a P-martingale under H.

The combined model

In the combined model we assume independence between G and H under P and use
the filtration F = (Ft)0≤t≤T given by

Ft = Ht ∨ Gt (0 ≤ t ≤ T )

as information flow. Here, F0 is P-trivial. At time t = 0 each of the lx individuals
signs an endowment contract with discounted benefit

Hi = I{Ti>T}
1

S̃0
T

f(S̃1
T )
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at maturity T . The total portfolio claim at maturity is then given by

H = (lx −NT )
1

S̃0
T

f(S̃1
T ).

The insurance company is now allowed to trade freely without transaction costs, taxes
or short sale restrictions any unit of the underlying assets S̃0

t and S̃1
t on the time horizon

[0, T ]. Note, that the combined model with respect to F is incomplete. Intuitively
this is clear, since we have the additional death uncertainty of each individual.
In detail, this can be seen as follows.

Suppose h = (ht)0≤t≤T is anH-previsible, non-negative process with
∫ T

0
hsρs ds <∞

P-a.s.. Define U = (Ut)0≤t≤T by

dUt = dUt−(ht − 1)dMt,

U0 = 1.

Under the assumption E(UT ) = 1, we know by construction that U is an H-martingale
and we can define a new probability measure

dP∗

dP
= ZTUT on FT ,

dP∗

dP
= ZtUt on Ft.

We obtain that Xt = S1
t = S̃1

t /S̃
0
t is also a P∗-martingale, since for s ≤ t

EP∗(Xt | Fs) =
E(XtZTUT | Fs)
E(ZTUT | Fs)

=
E(XtZT | Gs)
E(ZT | Gs)

E(UT |Hs)

E(UT |Hs)
= EQT

(Xt | Gs) = Xs,

where we used the independence of G and H under P. Hence, for any h with E(UT ) =
1 we have an equivalent martingale measure on FT . Consequently, the equivalent
martingale measure is not unique on FT and with Theorem 1.3 we conclude that the
combined market is incomplete.

The question arises, which equivalent martingale measure to use. To obtain the
minimal martingale measure P∗ = QT , we choose h = 14. Note, that this choice is
in perfect analogy with the usual assumption of risk neutrality with respect to mortality.
Finally, observe that Mt = Nt−

∫ t
0
ρs ds is a QT -martingale under F , since the change

of measure only affects the financial part.

3.2 Pure endowment policies

From Theorem 2.20 we know we need to find the decomposition of

V H,QT
t = EQT

(H | Ft) (0 ≤ t ≤ T ).

4Compare Theorem 2.17 and the proof of Theorem 2.18 (i).
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Since N and (S̃0, S̃1) are stochastically independent under QT we get

V H,QT
t = EQT

(lx −NT |Ht)
1

S̃0
t

EQT

(
S̃0
t

S̃0
T

f(S̃1
T )

∣∣∣∣∣Gt
)
.

For the insurance part we get

EQT
(lx −NT |Ht) = EQT

(
lx∑
i=1

I{Ti>T}

∣∣∣∣∣Ht

)
= (lx −Nt)T−tpx+t

and from the previous section we know

F (t, S̃1
t ) = EQT

(
S̃0
t

S̃0
T

f(S̃1
T )

∣∣∣∣∣Gt
)

is obtained by solving the PDE (3.1.3). Hence, we have

V H,QT
t = (lx −Nt)T−tpx+t

1

S̃0
t

F (t, S̃1
t ) (0 ≤ t ≤ T ),

V H,QT
0 = lx TpxF (0, S̃1

0).

Since F0 is P-trivial, we try to find the Galtchouk-Kunita-Watanabe decomposition

V H,QT
t = V H,QT

0 +

∫ t

0

ξH,QT
s dXs + LH,QT

t QT -a.s. (and P-a.s.),

where V H,QT
0 ∈ R+, ξH,QT is a strategy in the sense of Definition 2.1 with respect to

QT and LH,QT ∈ M2
0(QT ), which is strongly orthogonal to I2(X). Observing that

only jumps of (lx −Nt) cause discontinuities in V H,QT , we obtain with Itô’s Formula

V H,QT
t = V H,QT

0 +

∫ t

0

(lx −Nu−)
1

S̃0
u

F (u, S̃1
u)T−upx+uµx+u du (3.2.1)

+

∫ t

0

(lx −Nu−)T−upx+u d

(
1

S̃0
u

F (u, S̃1
u)

)
+
∑

0<u≤t

(
V H,QT
u − V H,QT

u−

)
.
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Using the PDE (3.1.3) we calculate

d

(
1

S̃0
t

F (t, S̃1
t )

)
= −r(t, S̃1

t )
1

S̃0
t

F (t, S̃1
t ) dt

+
1

S̃0
t

((
Ft(t, S̃

1
t ) +

1

2
Fss(t, S̃

1
t )σ

2(t, S̃1
t )(S̃

1
t )

2

)
dt+ Fs(t, S̃

1
t ) dS̃

1
t

)
=

1

S̃0
t

(
Ft(t, S̃

1
t ) +

1

2
Fss(t, S̃

1
t )σ

2(t, S̃1
t )(S̃

1
t )

2 − r(t, S̃1
t )

1

S̃0
t

F (t, S̃1
t )

)
dt

+
1

S̃0
t

Fs(t, S̃
1
t ) dS̃

1
t

=
1

S̃0
t

(
−r(t, S̃1

t )S̃
1
t Fs(t, S̃

1
t )
)
dt+

1

S̃0
t

Fs(t, S̃
1
t ) dS̃

1
t

= −r(t, S̃1
t )XtFs(t, S̃

1
t ) dt+ Fs(t, S̃

1
t )Xt

(
m(t, S̃1

t ) dt+ σ(t, S̃1
t ) dBt

)
= Fs(t, S̃

1
t )Xt

((
m(t, S̃1

t )− r(t, S̃1
t )
)
dt+ σ(t, S̃1

t ) dBt

)
= Fs(t, S̃

1
t ) dXt.

The discontinuities can be expressed as∑
0<u≤t

(
V H,QT
u − V H,QT

u−

)
=
∑

0<u≤t

(−Nu +Nu−)T−upx+u
1

S̃0
u

F (u, S̃1
u)

= −
∫ t

0
T−upx+u

1

S̃0
u

F (u, S̃1
u) dNu.

Inserting both results in (3.2.1) and recalling that Mt = Nt −
∫ t

0
ρu du with ρu =

(lx −Nu−)µx+u is a QT -martingale under F yields

V H,QT
t = V H,QT

0 +

∫ t

0

(lx −Nu−)
1

S̃0
u

F (u, S̃1
u)T−upx+uµx+u du

+

∫ t

0

(lx −Nu−)T−upx+uFs(u, S̃
1
u) dXu −

∫ t

0
T−upx+u

1

S̃0
u

F (u, S̃1
u) dNu

= V H,QT
0 +

∫ t

0

(lx −Nu−)T−upx+uFs(u, S̃
1
u)︸ ︷︷ ︸

=: ξ
H,QT
u

dXu +

∫ t

0

− 1

S̃0
u

F (u, S̃1
u)T−upx+u dMu︸ ︷︷ ︸

=:L
H,QT
t

and hence we have found the Galtchouk-Kunita-Watanabe decomposition of V H,QT
t

under QT . Note, that LH,QT is strongly orthogonal to I2(X) since pure jump and
continuous martingales are orthogonal. Using Theorem 2.20 and Theorem 2.12 now
leads to the following corollary.
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Corollary 3.1. The pseudo-optimal strategy φH =
(
(φ0

t )
H , ξHt

)
for the claim H =

(lx −NT )(S̃0
T )−1f(S̃1

T ) is given by

ξHt = ξH,QT
t = (lx −Nt−)T−tpx+tFs(t, S̃

1
t ) (0 ≤ t ≤ T ),

(φ0
t )
H = V H,QT

t − ξH,QT
t Xt = (lx −Nt)T−tpx+t

1

S̃0
t

F (t, S̃1
t )− ξ

H,QT
t Xt (0 ≤ t ≤ T ),

with minimal remaining risk

E
((

LH,QT

T − LH,QT
t

)2
∣∣∣∣Ft) = (lx −Nt)

∫ T

t

E
(
(νLu )2

∣∣Gt) u−tpx+tµx+u du (0 ≤ t ≤ T ),

where νLu := −(S̃0
u)
−1F (u, S̃1

u)T−upx+u. For t = 0 it reduces to

E
((

LH,QT

T

)2
)

= lx Tpx

∫ T

0

E
((

(S̃0
u)
−1F (u, S̃1

u)
)2
)
T−upx+uµx+u du.

Proof. Note, that d〈M〉t = ρt dt. Then we get with Itô’s Isometry und Fubini’s Theo-
rem

E
((

LH,QT

T − LH,QT
t

)2
∣∣∣∣Ft) = E

((∫ T

t

νLu dMu

)2
∣∣∣∣∣Ft
)

= E
(∫ T

t

(νLu )2 ρu du

∣∣∣∣Ft)
=

∫ T

t

E
(
(νLu )2

∣∣Gt)E(ρu |Ht) du

=

∫ T

t

E
(
(νLu )2

∣∣Gt) (lx −Nt)u−tpx+tµx+u du.

The special case t = 0 can be concluded with the observation upx T−upx+u = Tpx.

Remark. In case one of the insured persons dies (lx − Nt) reduces by one. Thus,
one unit of T−tpx+t(S̃

0
t )
−1F (t, S̃1

t ) in the position (φ0
t )
H is freed, which results in an

immediate gain for the insurer. Also, the position in the risky asset is rather intuitive,
since it is simply the ∆-hedge of the claim f(S̃1

T ) times the expected value of survivors.

Corollary 3.2. Suppose KT is deterministic and H = (lx − NT )(S̃0
T )−1f(S̃1

T ). Then
the mean-variance optimal strategy ξV0 for a given inital capital V0 is determined by

ξV0t = ξH,QT
t + λt

(
V H,QT
t− − V0 −

∫ t

0

ξV0s dXs

)
(0 ≤ t ≤ T ),

with minimal quadratic risk

J0 = e−KT

((
V H,QT

0 − V0

)2

+ E
(∫ T

0

eKs d[LH,QT ]s

))
.

In case we can choose the initial capital V0, then it is optimal to take V H,QT
0 .
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Proof. Follows directly from the Equations (2.3.7) and (2.3.8).

Let us now consider the standard Black-Scholes Model, where m,σ and r are con-
stant. We will look at two examples of explict given functions f . One deals with a
pure unit-linked contract and the other with a unit-linked contract with guarantee.

Example (pure unit-linked). Assume we have f(s) = s. This means, that the insured
person obtains at maturity T the pure stock value S̃1

T . The process (F (t, S̃1
t ))0≤t≤T is

then determined by

F (t, S̃1
t ) = EQT

(
e−r(T−t)S̃1

T

∣∣∣Gt) = EQT

(
ertXT

∣∣Gt) = ertXt = S̃1
t .

Thus, we have

V H,QT
t = (lx −Nt)T−tpx+tXt,

V H,QT
0 = lx TpxS̃

1
0 .

Using Fs(t, S̃
1
t ) = 1, the pseudo-optimal strategy is given by

ξHt = ξH,QT
t = (lx −Nt−)T−tpx+t

(φ0
t )
H = V H,QT

t − ξH,QT
t Xt

= (lx −Nt)T−tpx+tXt − (lx −Nt−)T−tpx+tXt

= −∆Nt T−tpx+tXt.

Finally, with νLu = −Xu T−upx+u the process (LH,QT
t )0≤t≤T is given by

LH,QT
t = −

∫ t

0

Xu T−upx+u dMu,

and for the remaining risk we conclude

E
((

LH,QT

T − LH,QT
t

)2
∣∣∣∣Ft) = (lx −Nt)

∫ T

t

E
(
X2
u T−up

2
x+u

∣∣Gt) u−tpx+tµx+u du.

Example (uni-linked with guarantee). Assume we have f(s) = max(s,K), for some
constant guarantee K ≥ 0. Note, that in case K = 0 we have the same setting as
in the previous example. Rewriting f(s) = K + (s−K)+, we obtain the process

(F (t, S̃1
t ))0≤t≤T by the use of the well known Black-Scholes formula

F (t, S̃1
t ) = EQT

(
e−r(T−t)

(
K +

(
S̃1
T −K

)
+

) ∣∣∣∣Gt)
= Ke−r(T−t) +

(
S̃1
t Φ(dt)−Ke−r(T−t)Φ(dt − σ

√
T − t)

)
= Ke−r(T−t)Φ(−dt + σ

√
T − t) + S̃1

t Φ(dt),
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where Φ denotes the standard normal distribution and

dt :=
log

S̃1
t

K
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

.

Note that dt depends on S̃1
t . With Fs(t, S̃

1
t ) = Φ(dt), the pseudo-optimal strategy is

given by

ξH,QT
t = (lx −Nt−)T−tpx+tΦ(dt)

(φ0
t )
H = (lx −Nt)T−tpx+te

−rtF (t, S̃1
t )− (lx −Nt−)T−tpx+tΦ(dt)Xt

= (lx −Nt)T−tpx+tKe
−rTΦ(−dt + σ

√
T − t)−∆Nt T−tpx+tΦ(dt)Xt

and for its remaining risk we have with

νLu = −
(
Ke−rTΦ(−du + σ

√
T − u) +XuΦ(du)

)
T−upx+u,

that it is given by

E
((

LH,QT

T − LH,QT
t

)2
∣∣∣∣Ft) = (lx −Nt)

∫ T

t

E
((
νLu
)2
∣∣∣Gt) u−tpx+tµx+u du.



4 Conclusion

We started under the simplified case where the underlying discounted, d-dimensional,
real valued price process X is already a local martingale under P. By relying on the
terminal constraint VT = H P-a.s., where H is a given discounted contingent claim,
our variance-minimization problem was given by

min
φ

E
(
(CT (φ)− E(CT (φ)))2

)
,

where φ = (φ0, ξ) runs over all H-admissible strategies. Under the assumption H ∈
L2(FT ,P), we used the Galtchouk-Kunita-Watanabe decomposition

H = E(H) +

∫ T

0

ξ∗s · dXs + L∗T P-a.s.,

where ξ∗ ∈ L2(X) and L∗ ∈M2(P), with E(L∗0) = 0, is strongly orthogonal to I2(X).
By Theorem 2.3 the optimal strategy was directly given by ξ∗. But the position φ0 in
the bank account only needed to fulfill the admissibility condition at maturity.
To get a better criterion for φ0, we switched to the idea of minimizing the conditional
mean squared error

Rt(φ) := E
(
(CT (φ)− Ct(φ))2

∣∣Ft) (0 ≤ t ≤ T ).

With the help of Lemma 2.4 we could restrict our search for a risk-minimizing strategy
to mean self-financing strategies. Thus, Rt(φ) is in fact the conditional variance of
the terminal costs. Theorem 2.5 then gave us the unique risk minimizing strategy
where ξ = ξ∗ and φ0 is chosen in such a way that the strategy maintains its mean
self-financing property for each 0 ≤ t ≤ T .

In the general semimartingale case, we tried first to find a risk-minimizing strategy.
Unfortunately, due to a time inconsistency problem this is not possible as it is shown in
Theorem 2.7. Hence, we switched to Definition 2.8 of a local risk-minimizing strategy.
Subsequently, we tried to characterize the local risk-minimizing strategy by a vari-
ational argument. The idea was that any small pertubation of the optimal strategy
should lead to an (asymptotically) increased risk. The actual calculation became quite
technical, where X needed to fulfill a certain structure condition, see Definition 2.9,
to get some meaningful results. Finally, Theorem 2.11 gave us a characterization of a
locally risk-minimizing strategy. Theorem 2.12 then linked the locally risk-minimizing

73
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strategy to the integrand of the Föllmer-Schweizer decomposition

H = E(H) +

∫ T

0

ξHs · dXs + LHT P-a.s.,

where ξH ∈ Ξ and LH ∈ M2(P), with E(LH0 ) = 0, is strongly orthogonal to I2(M)
with respect to P. Since the Galtchouk-Kunita-Watanabe decomposition yielded a
risk-minimizing strategy in the martingale case, we already suspected that the Föllmer-
Schweizer decomposition yields a locally risk-minimizing strategy. However, it took
quite some technical effort to verify this idea.

Subsequently, we proved the existence and uniqueness of the Föllmer-Schweizer de-
composition under the assumption, that X satisfies the structure condition and
that the mean-variance tradeoff process K is uniformly bounded, see Definition
2.9. This seems quite restrictive, but in fact these assumptions are quite natural in
arbitrage free time continuous market models: One often prefers to be able to apply
Girsanov’s Theorem and switch to an equivalent martingale measure Q under which
X is a local martingale. Furthermore, in these models K is usually the integrated
squared market price of risk.

The existence and uniqueness Theorem 2.16 of the Föllmer-Schweizer decomposition
took again quite some effort, since in the literature a different formulation of the
Föllmer-Schweizer decomposition was used, namely

H = H0 +

∫ T

0

ξHs · dXs + L̄HT P-a.s.,

where H0 := E(H | F0) ∈ L2(F0,P), ξH ∈ Ξ and L̄H ∈ M2
0(P) is strongly orthogonal

to I2(M). The connection to our introduced decomposition can be seen by

H = E(H) + LH0︸ ︷︷ ︸
=H0

+

∫ T

0

ξHs · dXs + LHT − LH0︸ ︷︷ ︸
= L̄H

T

P-a.s.,

where one shifts the initial random value LH0 to the F0-measurable random variable
H0. Thus, we had to be very careful in our argumentation regarding the starting value.

As a next step we tried to find the Föllmer-Schweizer decomposition of H. The
idea was to switch with Girsanov’s Theorem to an equivalent martingale measure Q,
then find its Galtchouk-Kunita-Watanabe decomposition under Q and finally, switch
back to the measure P. Since we are in an incomplete market, the question was
which equivalent martingale measure to choose. Of course, under each Q ∈ Q, where
Q denotes the set of equivalent local martingale measures, the Galtchouk-Kunita-
Watanabe decomposition yields the optimal strategy, which minimizes

EQ
(
(CT (φ)− Ct(φ))2

∣∣Ft) (0 ≤ t ≤ T ).
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But here we want to find the risk-minmizing strategy under P /∈ Q. An essential
ingrediant in the proof of Theorem 2.5 was the orthogonality of L∗ and X. Thus, by
switching back and forth between P and Q we may loose this property. Fortunately,
the minimal martingale measure QT maintains this property and it is unique under
the assumption of X beeing continuous, see Theorem 2.18. Furthermore, the technical
Theorem 2.17 proved that the continuity of X implies the structure condition. Hence,
for continuous X and uniformly bounded K, a locally risk-minimizing strategy
can be obtained by finding the Galtchouk-Kunita-Watanabe decomposition of H under
the minimal martingale measure QT . This is useful, since the density process ZT of
QT is explicitly given by

dQT

dP
:= ZT = E

(
−
∫
λ · dM

)
T

= exp

(
−
∫ T

0

λs · dMs −
1

2
KT

)
and we can study the behaviour of X under QT .

As a second idea we relied on the self-financing constraint and tried to minimize
the mean-squared error of the terminal portfolio value

min
ξ∈Ξ

E

((
H − V0 −

∫ T

0

ξs · dXs

)2
)
,

where V0 ∈ R is the given initial capital. Since φ is self-financing, the strategy is
uniquely determined by the choice of (V0, ξ) ∈ R× Ξ (compare Equation (1.1.2)). To
find its solution we had to project H ∈ L2(FT ,P) onto the linear space

GT (Ξ) =

{∫ T

0

ξs · dXs

∣∣∣∣ ξ ∈ Ξ

}
.

In the martingale case this was easy, since by construction we know that the stochastic
integral with respect to a local martingale is an isometry and hence GT (Ξ) is closed
in L2(P). Consequently, by Hilbert’s Projection Theorem the solution exists and is
unique. Furthermore, in the martingale case the solution was again given by the
integrand of the Galtchouk-Kunita-Watanabe decomposition.

In the general semimartingale case the proof of GT (Ξ) beeing a closed subspace
took quite some effort. We showed this in Theorem 2.25 with the help of the Föllmer-
Schweizer decomposition, which is continuous under the assumptions of X satisfying
the structure condition and K beeing uniformly bounded, see Theorem 2.24. Using
Hilbert’s Projection Theorem again, we obtained the existence and uniqueness of the
mean-variance optimal strategy.

In practice, we would like to have a more explicit representation of the mean-variance
optimal trading strategy. Thus we looked at the special case (2.3.4) and assumed that
X is continuous and K is uniformly bounded. Then, Theorem 2.28 gave us a mean-
variance optimal strategy in feedback form.
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Lastly, we pointed out that if one wants to find a general explicit representation
of the mean-variance optimal trading strategy, one has to work with the variance
optimal martingale measure Qopt

T . This we did not study. But in the literature
[Delbaen and Schachermayer, 1996] it is proven that our special case (2.3.4) is always
fulfilled under the variance optimal martingale measure and that in this case the vari-
ance optimal martingale measure and the minimal martingale measure coincide.

In Chapter three, which is based on [Møller, 1998], we applied the introduced the-
ory of quadratic hedging to a portfolio of unit-linked life insurance contracts. The key
difference to [Møller, 1998] was that we solved the problem of local risk-minimization
under P /∈ Q instead of Q ∈ Q.
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