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Abstract

Over the past decades, a rapid growth in the video game industry happened.
The success of video games can partly be traced back to game distribution
platforms like Steam, which allow buying and downloading games. As a
result, a rising interest in such platforms can be detected among researchers,
business analysts, and game developers. Steam distributes over 60,000
games and is well suited for studying user behavior as it provides access
to user-written game reviews. Furthermore, game data and reviews can be
collected from Steam via diverse APIs or directly from the Steam website.
Steam data has already been exploited by many researchers to achieve
various goals. What the conducted studies have in common is that they
require a methodology to collect, store, and analyze the data. Although the
methodologies of many studies are similar, there is no common approach.

Thus, this thesis introduces SteamVis, a tool that eases the procedure for
collecting and analyzing data from Steam. The tool can collect data associ-
ated with a set of games fulfilling specific characteristics. For each game in
the set, the tool extracts game-related information from the Steam website.
Furthermore, the tool has a feature for collecting user-written game reviews
with additional metadata (author, review helpfulness, review votes, etc.).
Moreover, the tool handles the storing of the data and has support for
performing analysis tasks on the data, where data can be visualized via
charts or tables.

To obtain feedback on the tool, a first study with six domain experts was
carried out. In the study, the participants had to test the tool by performing
several tasks. The main goal was to detect inconsistencies, misconceptions,
software bugs, and missing features. Furthermore, standardized question-
naires were used to assess the tool’s usability and the users” emotions while
using the tool. The results indicate good to excellent usability but also reveal
improvements that can be applied to enhance the tool in the future.
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1. Introduction

The video game market belongs to the fastest-growing industries. In the
year 2020, the market had a value of approximately 159.89 billion U.S.
dollars, and it is estimated to grow up to a value of 268 billion U.S. dollars
until the year 2025 (Juniper Research, 2021). Steam’, a service from Valve
Corporation?, is one of the most prominent game distribution platforms. It
provides access to more than 60,000 games, where the number of annual
releases increased over the past few years (Steam Spy, 2021). The growing
nature of Steam can also be observed by the increasing number of peak
concurrent users over the years and months. Whereas a record taken in
January 2013 shows a peak concurrent number of users of about 6.61 million,
a record taken in September 2021 already shows a peak concurrent number
of users of about 26.09 million users (Steam, 2021).

The high number of games and users leads to the generation of a large
amount of data. This data can be accessed via diverse APIs or the Steam
website itself. These sources allow researchers, business analysts, and game
developers to analyze and explore data in many different ways or conduct
experiments. As Steam provides user-written reviews, its data is especially
useful for studying user behavior.

A lot of studies have already been performed that utilize data from Steam.
The studies concern different topics like review sentiment (Bais et al., 2017;
Ji, 2019), recommendation systems (Kamal et al., 2020; Wang et al., 2020),
review helpfulness (Barbosa et al., 2016; Eberhard et al., 2018; Kang et al,,
2017), and so on. Although the approaches and methodologies for analyzing
the data differ, the procedures and sources for collecting data from Steam

Thttps:/ /store.steampowered.com/
https:/ /www.valvesoftware.com/de/
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overlap. Thus a common tool that eases collecting and analyzing data from
Steam becomes valuable.

1.1. Objectives

Thus, the goal of this work is to provide game researchers with a tool that
allows them to collect and explore data from the game distribution platform
Steam. The aim is to save the researchers time and effort by implementing
commonly required procedures in advance.

The tool should enable users to collect general game data like the title,
publisher, developers, associated genres, user-defined tags, and other game-
related information. Moreover, it should be possible to collect reviews of
games. Filters should allow restricting the data collection to a specific set of
games. Similarly, the tool should also have an option to collect only reviews
that fulfill selected criteria concerning the language and creation time.

To enable researchers to get quickly started with a project, the tool should
have analytic capabilities. On the one hand, the tool should give a quick
overview of the games with minimal required user interactions. On the other
hand, the tool should also provide advanced features allowing the definition
of custom analysis tasks. Moreover, it should be possible to visualize data
via charts or tables. In addition, storing the charts to images or the table
content in a CSV file should be feasible.

1.2. Methodology and Structure

The thesis is split into five major parts. The first part is about the background
and related work. The second part describes the design of the tool. The third
part focuses on the implementation. The fourth part discusses an example
use case utilizing the tool. The fifth evaluates the results of a user study that
is conducted to obtain feedback on the tool. The last part discusses learned
lessons, outlines future work, and rounds up the thesis via a conclusion.
The workflow is visualized in Figure 1.1.
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Background & Related Work
Chapter 2

Design & Concept
Chapter 3

Implementation
Chapter 4

Example Use Case
Chapter 5

Evaluation
Chapter 6

Future Work Lessons Learned Conclusion
Chapter 7 Chapter 8 Chapter 9

Figure 1.1.: Structure of the thesis.

Chapter 2 provides insights into existing game review platforms and com-
pares them against each other. Furthermore, it explores studies that collect
and analyze data from the platform Steam or Metacritic. One section fo-
cuses on the methodologies for collecting data from Steam by describing
and listing data sources that were utilized in different studies. Another
section gives an overview of existing analytic tools and their features.

Chapter 3 can be seen as the starting point of the implementation and
defines the objective, user target group, and requirements of the tool. More-
over, important decisions are made throughout the chapter, including the
programming language, data storage, and user interface framework. To
get a high-level overview of the tool, the chapter further provides a logical
architecture with a focus on data collection, data analysis, and data man-
agement. Build on top of the architecture, a potential design of the tool is
given. The last section describes two design patterns that are used in the
implementation process.

Chapter 4 details the different implementation steps. It starts by describing
how the user interface is created and how it is given its style. Afterward,
the chapter describes the data structure that is used to store the collected
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data from Steam by introducing an SQL schema. Furthermore, it explains
the building process of the SQLite Python library to support mathematical
functions and to have text-based search capabilities. Having the user inter-
face and data storage described, the chapter presents the architecture for
collecting and analyzing data. Then, the data collection and data analyzing
implementations are explained in two separate sections. Furthermore, the
chapter gives a short introduction on how the error handling is done and
the last part describes one possibility to distribute the tool to the end-user.

Chapter 5 provides an example use case of the implemented tool. It describes
an ongoing study, where the data collection, as well as the analysis, is
directly done in the tool.

Chapter 6 evaluates the results of a user study that was conducted to obtain
feedback on the tool. It describes the evaluation methodology, procedure,
material, and used questionnaires. The results are analyzed concerning
usability and emotions. Furthermore, the feedback and suggested improve-
ments of the participants are summarized.

Chapter 7 provides an overview of lessons that were learned during the
creation of this work concerning theory, development, and evaluation. It
has a look at different challenges and problems that occurred and how they
were solved. Chapter 8 gives an future outlook taking the evaluation results
into account. It lists technical improvements and features that should be
part of a later version of the tool. Finally, Chapter g summarizes the content
of the work by giving a conclusion.



2. Background & Related Work

Game review platforms provide a large amount of information that can
be explored in many different ways. However, the game review platforms
differ in their characteristics. While some only provide reviews written by
professional critics, others list user-generated ones. In addition, professional
reviews might be biased as they might not properly capture the opinion of
the majority of the players. Another reason why user-generated content is
important is that it enables developers and publishers to understand and
connect with their community. Thus, user reviews enrich market research
and are a major factor in the decision-making process of game development
studios. As a result, this work mainly focuses on platforms that provide
user-generated reviews rather than content created by professional critics.
Still, it is crucial to understand the main differences between different game
review platforms. Therefore, this chapter starts by giving an overview of
the game review platforms and their characteristics in the next section.

2.1. Game Review Platforms

Different web entries (Leclair, 2021; Stegner, 2021) provide a list and a
ranking of the most popular game review platforms. To determine the key
differences between the platforms or websites, a manual investigation was
performed. The most important characteristics of these platforms include
the type of reviews, the ranking system, the information they provide, and
which games they review.

Regarding reviews, we can differ between professional and unprofessional
ones. Professional reviews are written by critics and are published on sites
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like GamesRadar", Gamespot?, or Destructoid3. In contrast, unprofessional
reviews reflect the opinion of general users and are usually short. Steam*
and Oculus Store> are two game distribution platforms that allow writing
unprofessional reviews. While in Steam, it is only possible to mark reviews
as positive or negative, Oculus Store uses a 5-stars rating system. In the case
of the Steam platform, the overall score of a game is calculated as the ratio
between the positive and total number of reviews, and in the case of the
Oculus Store, the individual 5-star ratings are averaged. Other platforms
like OpenCritic® and Metacritic’ aggregate the ratings from various sources
and calculate an overall professional score, although the way on how the
overall score is determined differs.

Another difference between game review platforms is that some distribute
games (e.g., Steam, Oculus Store). However, such platforms in general only
allow to rate the games they offer in their store. Furthermore, the platforms
(e.g., Metacritic) are often not limited to games but provide reviews and
other content about TV shows, movies, or music. However, reviews are not
limited to text only. They can also be provided by speech (e.g., podcasts) or
videos (e.g., YouTube).

As this work focuses on platforms that provide user-written reviews, plat-
forms that only publish reviews from professional critics are neglected for
further discussion. Both Metacritic and Steam allow writing non-professional
reviews for video games. A self-conducted literature research on Google
Scholar revealed that their data has been collected and assessed by game
researchers in various ways and for different purposes. To get an impression
of what has been done in the past, and to get a feeling of how game and
review data can be explored, the next two sections provide an overview of
studies that exploited data from Metacritic or Steam.

Thttps:/ /www.gamesradar.com/

2https:/ /www.gamespot.com/

3https:/ /www.destructoid.com/

4https:/ /store.steampowered.com/

Shttps:/ /www.oculus.com/experiences/quest/
®https:/ /opencritic.com/

https:/ /www.metacritic.com/
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2.2. Metacritic Analysis

Metacritic is an online platform that aggregates and summarizes reviews
for different categories including games, movies, TV shows, and music. It
shows the Metascore and the user score for each product, where the former
one is based on reviews from professional reviewers, which are collected
from various sources (e.g., websites). The rating score (e.g., 0-5 stars, 0-10
rating) of each source is converted to a common 0-100 score. The Metascore
is created by taking the weighted average of the converted scores, where the
weight depends on the quality of the source. In contrast, the user score is
calculated from the ratings of unprofessional reviewers. Hereby, users can
provide a textual description along with their rating (o-10 score). The user
score is independent of the review text and user characteristics, meaning
that each review has the same influence on the overall rating. Depending
on the score, a review is marked as negative (0-4 score), mixed (5-7 score),
or positive (8-10 score) indicated with the colors red, orange, and green.
Like Steam, Metacritic provides meta information. For the games category,
this includes the developer, release date, supported devices, a summary,
the associated genres, the number of ratings the user score is based on, the
number of critical reviews the Metascore is based on, and so on. Like on
Steam, users can mark reviews of authors as helpful or unhelpful and sort
them based on the helpfulness (Kasper et al., 2019; Straat et al., 2017). In this
chapter, studies that use game-related data from Metacritic are discussed.
It is structured into different topics concerning review helpfulness, review
sentiment, Metascore vs. Steam user score, and the influence of reviews on
video game success.

2.2.1. Review Helpfulness

Kasper et al. (2019) analyze the impact of the genre, score, and review
content on the number of helpfulness votes and the helpfulness prediction.
In their study, they extract a set of features regarding writing style (e.g.,
character count, sentence count, line break count, readability metrics, etc.),
sentiment (compound score, positive/negative/neutral scores calculated by
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using VADER®), and content (censored word count, integer count, percent-
age symbol count, etc.). By performing a correlation analysis, the authors
detect that there is a strong correlation between the review score and the
ratio between the number of helpfulness up- and down-votes for games with
a specific genre. In addition, the authors perform a prediction experiment
and compare the performance of models neglecting different features. Using
a model with only text-based features performs worse compared to a model
using only the score as a feature. The best performance is achieved by a
model that uses both text-based features as well as the score. For feature
weighting purposes and to visualize the importance of different features, the
authors use a Gradient Boosting Classifier. The resulting averaged weights
over the genres, using a feature space consisting of the text-based features
and the score feature, indicate that the review score has a high influence on
the helpfulness ratio. Therefore, it makes sense to include it as a feature for
predicting the helpfulness of user reviews.

While Kasper et al. (2019) only uses review sentiment as an input feature,
others use it as the main tool for finding data correlations.

2.2.2. Review Sentiment

The study of Straat et al. (2017) investigates if there exists a direct correlation
between the rating and specific aspects of the user reviews. Explicit aspects
are described as words that occur frequently over reviews and are relevant
to the product (e.g., gameplay). These words are extracted from the reviews
by performing a frequency analysis and neglecting non-domain relevant
words. In addition, phrases that have a strong connection to an extracted
word but do not use the word in the context, are defined as intrinsic aspects.
The whole process is known as aspect-based sentiment analysis (Pontiki
et al., 2016). The authors use it on the Metacritic reviews of the PC versions
of the first three games of the Dragon Age franchise, namely Dragon Age
Origins, Dragon Age 2, and Dragon Age Inquisition. They focus on the three
explicit aspects with the highest frequency (Story, Combat, and Character).
Reviews that are not connected to one of these three aspects are neglected

8https:/ / github.com/cjhutto/vaderSentiment
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for further investigation. The remaining reviews are then submitted to a
crowd-sourcing online platform, where inspectors determine for each review
if the associated aspects have been used in a bad, neutral or negative way.
The numbers are then put into relation with the Metacritic ratings (negative,
mixed, positive) on a per aspect and game basis. In all cases, a connection
of the aspects with the rating can be observed. However, rather than finding
a correlation between the rating and review aspects, other studies try to
detect if there is a mismatch between the review rating (user score) and
Metacritic’s professional score.

2.2.3. Metascore vs Steam User Score

Park and Byun (2016) investigate if there is a difference between Steam’s
user score and the Metascore (professional score) for games published on
the platform Steam. At the time the study was conducted, twelve different
genres existed. However, the genres "Free to Play" and "Early Access"
were neglected as part of the study. For each game, the authors stored the
associated genres. Other information, including the name, year, Metascore,
and user score, was gathered from Steam. To make the user score (0-10 score)
comparable with the Metascore (0-100 score), the user score was multiplied
by ten. The results from correlation analysis between the user score and
Metascore per genre show that in the case of the genres "Indie" and "Casual",
there is no significant difference between the two scores. In addition, the
authors detected that the Metascore tends to be higher than the user score.
If and to what extent the two score types influence the success of a video
game is discussed next.

2.2.4. Influence of Reviews on Video Game Success

The research of Sherrick and Schmierbach (2016) examines if the Metascore,
i.e., the score aggregated from professional reviews, and the user score have
an impact on the unit sales of video games and how the influence changes
over time. Additionally, the authors investigate the relationship between the
amount of advertising for a product and the unit sales. The professional
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score (Metascore), as well as the user score and their corresponding number
of reviews, are gathered from Metacritic. For obtaining the sales data,
VGChartz® providing the sales data of the first ten weeks after a product is
released and on an annual basis, is used. The advertising budget for each
game is gathered from Ad$Spender™®, which the authors utilize to calculate
the overall advertising expenses per video game. The resulting coefficients of
a regression analysis indicate that the Metascore has a consistent influence
on unit sales. Furthermore, the results show that the number of reviews
the Metascore aggregates has an high influence on the sales in the first
few weeks but decreases over time. However, the user score only shows a
weak relationship with the number of sales. The advertising expenses have
a significant influence on the sales in the weeks two to ten, but otherwise,
the influence seems to be small. The reason for this might be that most
advertising is done before and immediately after the product release.

This section was about studies that collect and use data from Metacritic.
Similarly, the next section is about studies that collect and exploit data from
the Steam platform.

2.3. Steam Analysis

Steam is the biggest video game distribution platform. It was developed
by Valve Corporation and was released in the year 2003. At the time of 1st
October 2021, it allowed downloading over 50,000 games (Clement, 2021).
For each game, Steam provides game-specific information. This includes
the title, names of the developer and publisher, release date, price, rating,
associated genres, user-defined tags, and a detailed textual description of the
game itself. Furthermore, Steam allows the users to write reviews and rate
the games as positive or negative. In addition, users can mark a review as
helpful or unhelpful, which creates a metric that eases the decision to read
a specific review or not. The review data and general game data provide
researchers with a wide range of possibilities to study the characteristics
of games and also the player behavior in various manners and by using

https:/ /www.vgchartz.com/
https:/ /johnson.library.cornell.edu/database/ad-spender/
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different approaches. This section provides an overview of studies that have
been performed using the information provided by the Steam platform and
gives insights about different approaches to analyze the game and review
data. Like in the previous section, we start by investigating studies that aim
to analyze the helpfulness of user reviews.

2.3.1. Review Helpfulness

The study of Eberhard et al. (2018) does a general investigation of the help-
fulness by trying to detect differences between the helpful and unhelpful
reviews. The authors perform a binary prediction experiment. This is done
by extracting different features from the reviews regarding structure, for-
matting, readability, sentiment, and content. Furthermore, features from
additional information, like Early Access state, playtime, products owned by
the reviewer, are extracted. Next, the authors assess the review helpfulness
by first separating their review dataset into the three sets Unhelpful, Helpful,
and Top, based on the number of votes on the reviews. For evaluating if
there are significant differences between the individual features, the authors
use the Mann-Whitney U test. To predict if a review is helpful or unhelpful,
a pairwise classification of the three sets is performed, where a random
forest with 20 decision trees is created. By investigating the feature differ-
ences, the authors have detected that the review length, as well as the time
spent in a game, have a strong impact on the helpfulness. Concerning the
prediction experiment, a prediction score higher than the random baseline
(0.5) has been achieved for all three experiments (Unhelpful vs. Helpful,
Unhelpful vs. Top, Helpful vs. Top). In the case of Unhelpful vs. Helpful, a
preference towards the negative class has been detected, where the authors
see the atypical nature of the review texts (e.g., only hyper-reference to an
external source as review text) of the Unhelpful class as the reason for it.
The key findings of this study indicate that high-rated reviews tend to be
longer, more complex, more critical, and more detailed.

A similar study, but using another approach, was performed by Barbosa
et al. (2016). Hereby, an analysis on a Steam review dataset is conducted
using a Multilayer Perception Artificial Neural Network (MLP ANN). In the
study, the MLP ANN is designed to consist of an input layer, output layer,
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and only one hidden layer. For the input, features are extracted from the
review dataset. This includes features about the author of the review like the
number of friends and reputation, where a high reputation indicates that
the author has already written high-rated reviews in the past. Furthermore,
features about the textual content and semantic, are extracted. In addition,
also review metadata (average rating of the game, review creation date) is
considered as input for the MLP. Performing a feature selection analysis
revealed that the word count, the number of the author’s friends, and the
author’s reputation are important factors that influence the helpfulness of
a user review. That a higher word count is connected to helpful reviews is
also consistent with the findings of Eberhard et al. (2018).

Kang et al. (2017) compares two different data mining approaches for
predicting the helpfulness of Steam reviews. As in the two previously
mentioned studies, features are extracted from the review dataset and are
then used for creating the models. The first approach called CART (Lewis,
2000) is a decision tree-based algorithm, where the dataset is divided into
smaller subsets. The algorithm tries to arrange the features that provide
the best separation of the dataset. The tree grows until the child nodes
have the same category as their parent node. The second approach uses an
MLP ANN with one layer of four hidden neurons. The accuracy of the two
models was compared using the Sum of Squared Error (SSE) and the Mean
Absolute Error (MAE). By testing the models with the test set (10%), the
CART approach achieved higher accuracy than the MLP ANN approach.
The CART approach shows that the number of total votes, followed by the
number of the author’s friends has the highest influence on the review
helpfulness.

In contrast, other studies do not aim to find out if a review is helpful or
unhelpful but attempt to detect if a review is positive, negative, or neutral.
In other words, they aim to extract the sentiment of a review.

2.3.2. Review Sentiment

Ji (2019) uses natural language processing (NLP) to detect if Steam reviews
are positive or negative. To achieve this task, the authors make use of two

12



2. Background & Related Work

different approaches, namely naive Bayes and Support Vector Machines
(SVMs). In the data pre-processing step, stop words are removed from the
review comments, and the remaining words are reduced to their word stem,
also known as stemming. To assess the performance of their implementation,
the authors calculate the prediction accuracy for each selected game and
compare them to the prediction accuracy of Python’s scikit-learn library**
implementing the same approaches. The result shows that the authors’
implementation achieves similar accuracy as the scikit-learn implementation
if a high percentage of the reviews are positive. In contrast, if the ratio
between positive and negative reviews goes towards one (# positive reviews
/ # negative reviews = 1), the performance degrades.

A similar study by Bais et al. (2017) compares the performance of five
different approaches with each other. These approaches are based on dif-
ferent methods including naive Bayes, lexicon score aggregation, modified
Turney’s algorithm, logistic regression, and linear SVMs. In contrast to the
study of Ji (2019), the study also takes other meta-features like the review
helpfulness, review funny votes, and the number of hours played by the
review creator into account. In addition, term frequency-inverse document
frequency (TF-IDF) weighting is applied to the individual stemmed words.
The best performance is achieved by the implementation based on the SVM
method.

Up to this point of the section, all the studies use reviews in one way or the
other. However, other studies do not use reviews at all but focus on game
features. Especially genres and tags are features that have a descriptive
power of games on Steam.

2.3.3. Genres & Tags

While genres are defined by Steam or the publisher itself and are fixed,
tags are user-generated. As mentioned by Windleharth et al. (2016), tags
or genres are used for describing media to other people or to help them
to find the content of their interest in a fast manner. In their study, they
performed a conceptual analysis of the user-generated tags on Steam. In

"https:/ /scikit-learn.org/stable/
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total, 294 different tags could be detected in the dataset collected on March
11, 2015. Having these tags, the authors sorted them into categories based on
observations obtained from frequently searching for games with a specific
tag during the sorting process. In the end, they came up with 29 different
categories. Among others, this includes the categories "Gameplay Genre",
"Mechanics and Input", "Progression", "Narrative Genre", "Theme, Setting
and Mood", "Visual Style", "Tropes", "Media Style" and so on. Hereby, the
authors provide a description of the individual categories and also compare
their set of categories with the game entities of the Video Game Metadata
Schema (VGMS) created by the University of Washington Information
School Game Research Group and Seattle Interactive Media Museum (Group
& Museum, 2019). A high portion of the authors’ set overlaps with the
game entities of the VGMS. However, based on their analysis, they suggest
adding three additional entities concerning mechanics, user interaction, and
evaluation.

Regarding genres, one that got more attention over the last years is named
"Early Access". On Steam, this genre is assigned to games that are published
in the so-called Early Access state, where unfinished games can be bought
and played by users. Such a system helps developers to get feedback in an
early state by directly communicating with their customers. On the other
hand, the customers can influence the direction of further game development
in their favor. The empirical study conducted by Lin et al. (2018) aims to
assess characteristics of Early Access games published on Steam. The results
show that a lower percentage of players write reviews in the Early Access
state than directly after the game leaves the state. However, the authors
note that reviews tend to be more positive in the Early Access state. This
indicates that the customers show more acceptance if they know that the
product is unfinished and the goal of the developers is to get feedback to
improve the experience. Another interesting finding of the study is that
the Early Access model is often used by solo developers or small game
studios.
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Figure 2.1.: Visualization of an autoencoder with three hidden layers. The layer in the
middle corresponds to the bottleneck.

2.3.4. Recommendation Systems

Recommendation systems are used to recommend products to customers
based on their preferences and their already performed activities. In the case
of streaming platforms like Amazon Prime, the view history corresponds to
the already performed activities. Such systems should help users to find the
content of interest fast. Furthermore, video game distribution platforms like
Steam use recommendation systems to make the decision, which games to
buy, easier for the players.

Wang et al. (2020) proposes a recommendation system called STEAMer,
which makes use of the user data in combination with a deep autoencoder.
A deep autoencoder is a type of artificial neural network with the aim to
find key features of the input data. It consists of several hidden layers, where
the number of neurons in the hidden layer is less than the number in the
input layer. The autoencoder can be subdivided into three parts, namely
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the encoder, bottleneck, and decoder. The encoder compresses the input
data, the bottleneck corresponds to the hidden layer with the least neurons
and the decoder decompresses the encoded data again. A visualization of a
deep autoencoder with three hidden layers can be seen in Figure 2.1. For
training, the deep autoencoder, Wang et al. (2020), used a set of game and
user-related features including genre, rating, developer id, publisher id,
playtime, and friends. The performance of the model was compared with
two other models based on deep neural networks and achieved the best
results. In the conclusion, the authors mention that additional user data as
features improves performance.

In another study by Kamal et al. (2020), three recommendation systems are
implemented and compared against each other. The first system uses the
genres assigned to the individual games and the user’s preferences extracted
from the playing history. The second system extracts the topic from the
game descriptions instead of directly using the genres. And the third one is
a hybrid system of the genre and topic-based approaches. For predicting the
rating of a game, the k-nearest neighbors (KNN) algorithm is used. Their
evaluation shows that the genre-based approach performs better compared
to the topic modeling and the hybrid approach. However, the authors note
that their implementation performs worse compared to implementations of
previous studies using different approaches and parameters. They conclude
that the genre/topic is not suitable for building a game recommendation
system.

However, when building a recommendation system, the geographic location
of a user might be of importance as well, as they might tend to prefer
specific game genres over others. Taking geographic features into account
might enhance the genre-based recommendation system of Kamal et al.
(2020). In addition, recommendation systems might be biased towards a
specific country with more players. As a result, the next part looks at the
user distribution and genre popularity in a geographic manner.
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2.3.5. Popularity

The study of Toy et al. (2018) shows the geographical distribution of users,
genres, and genre popularity. For this, the authors make use of heat maps to
visualize the distribution. Regarding the number of users and the number of
downloaded games per country, the United States stands out. However, the
genre popularity per country, determined by the number of game downloads
per genre and country, indicates that there are only minor trend differences.
It must be noted that this study is based on an outdated Steam dataset
created in the year 2016 by O’Neill et al. (2016a). A relative distribution of
Steam users worldwide from the year 2018 (Clement, 2018) already differs
from the results. While the United States is still the most dominant country
in terms of the number of users, a big rise in the popularity of Steam can be
detected in China.

While Toy et al. (2018) looks at the genre popularity of different countries,
the authors do not assess which factors actually make a game popular and
worth playing. However, studies exist which aim to create a parameter that
is representative for the quality of a video game.

2.3.6. Playability

User reviews on games can be exploited in many ways to assess correspond-
ing game and user characteristics. An important video game characteristic
is playability which has a deep connection to the quality of a video game in
terms of usability and user experience (Sanchez et al., 2012). Li et al. (2021)
proposes an approach to analyze the playability by extracting user opinions
from a large set of game reviews from platforms like Steam and by further
analyzing them via their suggested evaluation framework. The simplified
idea behind the framework is to classify the reviews into a set of playability
perspectives (e.g., gameplay, functionality, usability (Paavilainen, 2020)),
generating an overall opinion per category and reporting the results. In
addition, the framework performs a topic modeling on the classified reviews
to extract the advantages, disadvantages, and topics for each playability
perspective, and adds the results to the playability report.
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So far, only studies have been investigated that do not make a difference
between PC games and Virtual Reality (VR) games. As the Virtual Real-
ity market is growing, which can for example be seen in the increasing
number of unit sales of VR headset devices during the Covid-19 pandemic
(GfK, 2020) or the rising gaming revenue in the last few years (PwC, 2020),
the exploration of VR games and applications becomes more important.
Thus, studies, which utilize data from various platforms and purely fo-
cus on analyzing VR games, are independently discussed in the following
section.

2.4. VR Games Analysis

There is especially a lack of studies that investigate the impact of VR on the
users” health by using game or review data from platforms like Steam or
Oculus Store. In addition, the influence of the coronavirus on Virtual Reality
in terms of user behavior seems rather unexplored. Still, a few studies exist
with the goal to explore VR with respect to education (Radianti et al., 2021;
Smutny et al., 2019), mental well-being (Fagernis et al., 2021), and market
research (Ho & Zhang, 2020).

Other studies, like the study of Foxman et al. (2020), try to get more insights
into the genre distribution of VR games regarding downloads and user
ratings by using game data from Steam. In addition, the authors compare
their findings with non-VR applications. The results indicate that the genres
Simulation, Action, and Shooter are the genres with the most downloads,
while the genres Action and Music are the highest rated ones. Compared to
non-VR games, VR games tend to be less popular for games with a longer
playtime (e.g., Shooter). The authors mention cybersickness, eyestrain, and
heat of a VR headset as possible reasons for this. Furthermore, the study
shows that non-VR games are in general rated higher compared to VR
games.

Epp et al. (2021) investigates the characteristics of VR games on Steam with
respect to price, Head-mounted display support, motion tracking support,
play area support, and the number of updates. In addition, they analyze the
player reviews with the aim to discover the complaints in connection with
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VR games. Their results show that the complaints comprise the lack of game
content, the high prices, cybersickness (LaViola Jr, 2000), lack of community,
game-specific complaints, controls, and optimization. However, the authors
note that VR-specific complaints (cybersickness, controls, optimization)
seem to be less important to the players than the ones that also occur for
non-VR games.

Virtual Reality is deemed as a promising technology for education (Radianti
et al., 2020). The educational VR literature review of Hamilton et al. (2021)
shows that studies exist for different subject areas. However, it seems that
most performed studies apply a form of user evaluation method (e.g., pre-
posttest design, multiple-choice questionnaires). By performing a search
for related studies on Google Scholar that utilize data from a game review
platform or game distribution platform, only a small number of scientific
papers could be detected. The studies of Radianti et al. (2021) and Smutny
et al. (2019) aim to determine the application/subject domain of educational
VR games. While Radianti et al. (2021) use data from Steam, Vive'? and
Google Play™ as input for their study, Smutny et al. (2019) only use data
from the Oculus Store. Although the names of the subjects differ in both
studies, educational VR applications related to space and nature seem to be
popular among developers.

2.5. Steam Data Retrieval Methodologies

What most of the previously discussed studies that are related to Steam
have in common is that they need data about the games, reviews, or users.
Depending on the different needs, the authors choose different methods to
retrieve the data directly from Steam or a third party. In addition, different
approaches for storing the data are used, although in most studies the
storing technology is not mentioned. Table 2.1 shows an overview of which
data sources and storage technologies are used by different studies. Two
x-marks in the case of the storage indicate that the storage technology is

https:/ /www.viveport.com/
Bhttps:/ /play.google.com/store
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Source Storage

Paper

Steam Website

Steam API
Steam DB

Toy et al., 2018

Wang et al., 2020

Kamal et al., 2020

Lin et al., 2018
Windleharth et al., 2016
Sobkowicza and Stokowiec, 2016

Ji, 2019

Bais et al., 2017
Eberhard et al., 2018
Kang et al., 2017
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Table 2.1.: Data sources and storage technologies of Steam related studies. Two x-marks in
the case of the storage indicate that the storage technology is unknown.
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unknown. The following part describes the five main data sources in more
detail and what information they provide.

2.5.1. Steam Data Sources

By investigating studies that require current or historic data from Steam,
five main data sources could be detected, which differ in the data they
provide. This data sources are the Steam Website, Steam API'4, Steam Spy*>,
Steam DB'® and the database of O’Neill'7.

Steam Website

A high portion of the investigated studies in Table 2.1 creates a custom
web crawler to gather information directly from the Steam website. For the
purpose of data retrieval, Python seems to be the favored programming
language. Hereby, the authors make use of different Python libraries (e.g.,
Sobkowicza and Stokowiec (2016) - Selenium'®, Radianti et al. (2021) -
BeautifulSoup'?, Barbosa et al. (2016) - Scrapy?®°) for accessing the web
pages and extracting information by parsing the HTML content. Although
accessing the information on Steam by writing custom web crawlers is more
complex compared to the Steam AP]I, the big advantage is that the content
is not limited to the information the API provides and it is possible to crawl
further data which might not be provided by the APIL

Hhttps:/ /partner.steamgames.com/doc/webapi_overview?
TShttps:/ /steamspy.com/

16ht’cps: / /steamdb.info/

7https:/ /steam.internet.byu.edu/

Bhttps:/ /pypi.org/project/selenium /

Yhttps:/ /www.crummy.com/software/BeautifulSoup/
*%https:/ /scrapy.org/
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Steam API

The Steam API provides interfaces for accessing different features via HTTP
requests. While some Web API methods are public, others are private and
require an additional key. This is especially done to limit access to sensitive
data (Valve, 2021a). For instance, the API provides a method for obtaining
the IDs and names of all currently available games (Valve, 2021c) and a
method to get user reviews (Valve, 2021d) for a specific game ID. Hereby,
the HTTP responses are encoded in three different formats, namely JSON,
XML, or VDF depending on the format parameter of the HTTP request. The
default encoding is JSON and is used if the format parameter is not provided
or is set to json (Valve, 2021b).

Steam Spy

Steam Spy is a third-party project that continuously extracts data from Steam.
It provides general game information, including the associated genres and
tags, supported languages, current price, developer, publisher, release date,
playtime statistics (average, median), and other game-related information.
Furthermore, it monitors the tags over time and provides information about
the owners. While viewing general game information is unrestricted, data
about the owners, tags over time, and deeper insights into the playtime, is
restricted. For unlocking data, there are three price categories (Basic, Indie,
and Pro). Depending on the subscription, different features are unlocked.
According to the creator of Steam Spy, Sergey Galyonkin, individual applica-
tion data is updated on a three-day basis, which means that it is unreliable
for games on Steam that have just been released (Galyonkin, 2021b). Further-
more, as it is not possible to gather data from all user profiles, some data
is based on an estimation of a random set of users (Galyonkin, 2021b; Lin
et al., 2018). To get general information about games, Steam Spy provides a
simple API, where the data can be accessed via HTTP requests (Galyonkin,
2021a).
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Steam DB

Steam DB is a third-party website that provides deeper insights by constantly
crawling data from the Steam platform. It lists the current number of players
playing a game, and in addition, provides historic time charts showing
the concurrent number of players over time. Furthermore, it aggregates
game-specific information from Steam Spy (e.g., playtime estimation) and
Twitch (e.g., # of current viewers for a specific game channel). Like Steam
Spy, Steam DB provides general game information (release date, genre,
supported languages, Metascore, etc.). In addition, it tracks the game price
per concurrency on Steam over time, which data is, for example, used by
Epp et al. (2021) and Lin et al. (2019), Lin et al. (2018).

O’Neill Database

The database of O'Neill (O’Neill et al., 2016b) is a 17GB SQL dump file,
which can be downloaded for free. The information the database contains
was mainly retrieved using the Steam (Web) API. It has a table about the
general game information (game id, title, game type, price, release date,
rating, required age, multiplayer indication). Furthermore, it provides tables
about developers, publishers, achievements, and genres, where each table
has a field appid indicating the corresponding game. Concerning user infor-
mation, it provides a table about friend relationships. Each user is identified
via a unique Steam ID. In addition, the database has a table containing
information on how much time a user spent playing a specific game. The
database was created as a part of the study by O’Neill et al. (2016a), where
the authors collected information of 108.7 million user accounts and data
about their owned games, playtime, and friend relationships. As the process
of collecting public user data, game ownership information, and friend
relationships requires a large amount of API calls and the number of API
requests is limited by the Steam Web API terms of use to 100,000 calls per
day, the dataset is used in studies where such information is required (e.g.,
Kang et al. (2017) and Wang et al. (2020)).
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2.5.2. Storing Technology

Studies (Bais et al., 2017; Ji, 2019; Kang et al., 2017; Sobkowicza & Stokowiec,
2016) that mention how the retrieved Steam data is stored for further
processing, use text files with Javascript Object Notation (JSON) formatting.
However, studies like the one from Toy et al. (2018) use a Relational Database
Management System (RDBMS). One of the main reasons why the authors
use JSON encoded files for storing their data might be that the default
response encoding of an API like the Steam API is JSON encoded, too.
Another reason might be that storing data in JSON files is easier than setting
up a relational database. However, for connecting content and querying
specific data, relational databases are preferable and faster as they usually
use advanced indexing. Furthermore, in the case of simple JSON files, the
whole file is read, although only a small amount of data might be needed.
However, as performance is no issue in most of the mentioned studies in
Section 2.3 and Section 2.4 and relationships between the collected data are
comprehensible, JSON might be the right choice.

Although studies partly mention how the data is stored and which pro-
gramming language is used for the purpose of collecting and analyzing
data, they do not implement a tool with a GUI on their own. However, as
the goal of this work is to create a user interface that should ease collecting
and analyzing data from Steam, the next part introduces a few existing and
prominent analytic tools.

2.6. Analytic Tools

For analyzing and visualizing data, diverse analytic tools exist that differ in
the provided features, price, and supported data inputs. Tableau*' is consid-
ered to be the world’s leading analytic platform. It is easy to use, has a large
community, and has good support. Furthermore, it can connect to a wide
range of data sources, including Excel files and relational databases. Their
visualizations are highly regarded for their customizability, interactabil-
ity, and appealing design. Mentioned disadvantages of Tableau concern

2Thttps:/ /www.tableau.com/
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high and inflexible prices, required knowledge for using complex features,
and slow speed when working with large datasets. However, Tableau also
has a free version with limited functionalities for non-profit and academic
purposes (Kaur, 2017; Scheiner, 2021; Scott, 2017).

An alternative tool is PowerBi*?, which in contrast to Tableau supports
natural language queries. Concerning other features the two platforms are
similar. However, Tableau is considered to handle large datasets more effi-
ciently. In contrast, PowerBi has more collaborative functionalities, which
are useful when working in a team (Lombarti, 2022). Both tools support the
execution of Python scripts to prepare and manipulate data for visualiza-
tion. In the case of PowerBi only an installed Python interpreter, and the
libraries Matplotlib®3 and Pandas*# are required. To use Python in Tableau
an extension called TabPy?> is necessary. Similarly, scripts written in the
programming language R can be used for data preparation. Another feature
supported by Tableau, PowerBi, and other analytic tools is that reports
consisting of visualizations can be integrated into websites. For example,
PowerBi provides an option to embed a report in a website or portal via an
HTML code snippet or a URL (Pawlowski, 2019).

Other analytic tools are MicroStrategy?®, Qlik Sense?’, Oracle Analytics
Cloud?®, Sisense? and many more. Kaur (2017) describes the difference
between these platforms to Tableau. Similarly, Scott (2017) looks at 16
Tableau alternatives without giving any recommendations for one product.
Another comparison is done by Scheiner (2021) who lists 15 different analytic
tools and also gives information about the individual pricing policies.

*?https:/ / powerbi.microsoft.com/de-at/

*3https:/ /matplotlib.org/

24https:/ /pandas.pydata.org/

*5https:/ /github.com/tableau/TabPy

https:/ /www.microstrategy.com/en/business-intelligence
*7https:/ /www.qlik.com/us/

https:/ /www.oracle.com /business-analytics/analytics-platform/
*9https:/ /www.sisense.com/
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2.7. Summary

Different types of game review platforms exist, where the main difference
concerns the types of reviews they provide. While some platforms contain
reviews from professional critics, others list reviews from general users.
Metacritic and OpenCritic are two platforms which aside from listing user
reviews, further aggregate professional critics by calculating an overall pro-
fessional score. Data from the game distribution platform Steam and the
review platform Metacritic have been exploited by researchers for various
reasons and to achieve different goals. A summary of the previously dis-
cussed studies is shown in Table 2.2. It gives a short overview of the topic
of the individual papers, the type of collected data, and from which plat-
form the data has been gathered. It must be noted that, if authors collected
reviews, they also collected the associated review metadata, which consists
of values like the creation date/time, author information (e.g., playtime
at creation), helpfulness votes, and so on. On the other hand, user data
corresponds to aspects like friend relationships or what games the users
own. Concerning Steam, there are several potential sources from where the
data can be collected. The five major sources that could be identified are the
Steam website itself, Steam API, Steam Spy, Steam DB, and the database
of O’'Neill. These sources differ in the intervals the content is updated, the
information they provide, the access policy, and the way the information can
be accessed. For storing the collected data, the preferred choice is simple
JSON files, although studies like Toy et al. (2018) use a relational database.
Throughout the chapter, it could be observed that authors collect data using
different or redundant approaches. Building a common system might save
authors a lot of time and ease the process of getting started. Furthermore, a
system providing simple analysis capabilities with the possibility to imple-
ment extensions might be useful in terms of reusage and clears the way for
easy exchange of ideas between researchers.
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3. Design & Concept

This chapter acts as the starting point of our implementation. It starts by
discussing the motivation and necessity of our proposed tool. Moreover, it
defines functional and non-functional requirements that should be satisfied.
Throughout the chapter, different design choices are made and are justified.
As a good implementation always starts with a good plan, we further
provide a logical architecture for the main components of the tool and
suggest a user interface design that is built on top of it. As a last point, we
look at two important design patterns used in the implementation.

3.1. Starting Point & Motivation

In the background section, we had a look at a set of studies that explore and
analyze data from the Steam platform. An investigation of these studies in
terms of data retrieval revealed a redundant implementation for collecting
data from Steam.

For saving researchers time and effort, we propose a tool that handles the
retrieval, storing, and reading of the data. To make it easier to get started
with a project and to get an overview of the collected data, we further
provide a set of already implemented analysis tasks in the form of charts.

As most of the previously described studies introduce a new approach in
a specific field or aim to analyze certain aspects of the data, we allow the
users to apply custom SQL queries on the datasets and to pipe the query
results to charts or tables directly in the tool. To overcome the limitations
of the SQL query language, the result from an SQL query can be modified
using a programming language. This will empower the users to perform
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3. Design & Concept

advanced analysis tasks including natural language processing, sentiment
analysis, or any other machine language approach.

The capabilities of the tool might still be not enough or reach its limits in
some cases. To avoid any restrictions, the user should have complete control
over the data. Therefore, we enable the user to copy the whole dataset for
the usage in other tools. Furthermore, it should be possible to store the
query results in form of CSV files and charts in form of images.

To use the functionalities of the proposed tool, some experiences and skills
are required. Therefore, the first step is to define the user target group we
want to address with our application and who should be able to use our
tool with ease.

3.2. User Target Group

The target group of our implemented tool consists of game researchers and
game developers. To perform simple analysis, like showing the number of
genres or the number of releases over years for a collected dataset, requires
only minor knowledge as the tool has a predefined set of analysis tasks that
output charts. However, advanced features in the form of a custom analysis
have the requisite of understanding and writing SQL queries and Python
code, and therefore coding skills are required.

3.3. Requirement Analysis

During the design process of an application, it is substantial to define
what the system should do and what quality attributes should be satisfied.
Functional requirements define the methods a system should perform, i.e.,
the expected output and behavior on a specific input. On the other hand,
non-functional requirements refer to the quality and performance attributes
a software system should meet (Martin, 2021). In this section, functional and
non-functional requirements are defined for the main software components
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3. Design & Concept

of our tool. Hereby, aspects from research done in Chapter 2, are taken into
consideration.

3.3.1. Functional Requirements

The main functional requirements for the proposed tool are separated
into five components, namely "Collecting General Game Data", "Collecting
Reviews", "General Analysis", "Custom Analysis", and "Manage" where each
component corresponds to a view described in Section 3.8.

1. Collecting General Game Data

a) Selection between crawling using a Steam search URL or an
in-tool configurator.
b) The tool should allow users to narrow the games to crawl by:

i. Tag (e.g., Indie, Action, Adventure)

ii. Type (e.g., Games, Software, Demos, Soundtracks)

iii. Operating system (Windows, macOS, Linux)

iv. Virtual Reality support with filters for headset (Valve Index,
HTC Vive, Oculus Rift, Windows Mixed Reality), input device
(Tracked Motion Controllers, Gamepad, Keyboard / Mouse),
play area (Seated, Standing, Room-Scale)

v. Feature (e.g., Remote Play on Tablet, Played with Steam Con-
troller)

c) If the in-tool configurator is selected, the system should show
all available game types, supported operating systems, Virtual
Reality support attributes, and game features to narrow the games
to be collected.

d) The definition of a user-defined project name should be possible.

e) The project name should be validated to be unique and don't
contain any special characters.

2. Collecting Reviews

a) The system should provide a list of all available projects.
b) Narrowing the reviews by language and purchase type (Steam
purchase, non-Steam purchase) should be possible.
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c) Collected review data must be stored in the database and be
associable with its corresponding game and project.

d) The system should allow the retrieval of reviews written later
than a user-defined date.

3. General Analysis

a) The system should provide a list of all available projects.

b) The user should be able to select the set of analysis tasks to run.
A set consists of several related tasks, where each outputs a chart.
There are four sets (general analysis set, genre set, tag set, game
details set).

c) The system should allow to only take specific genres, tags, or
game details into account.

d) The system should provide the users all available genres, game
details, and tags available for a specific project for restricting the
analysis.

e) It should be possible to save charts to the file system in a common
image format.

f) The system should support the visualization of histograms, bar
charts, line charts, grouped bar charts, and tables.

4. Custom Analysis

a) It should be possible to save and open a custom-defined analysis.

b) The user should be able to define a custom analysis tasks for
different chart types and tables.

c) The system should support the visualization of histograms, bar
charts, line charts, grouped bar charts, and tables.

d) The system should allow the definition of a custom SQL query,
where the result is piped to a chart of the selected type.

e) The system must validate the SQL query result to satisfy the
input requirements of the selected chart type (e.g., # of columns,
column data types).

f) The user must be able to define chart-specific attributes for an
analysis task (e.g., x-label, y-label, title, corresponding SQL query,
Python pre-processing code, label orientation).

g) It should be possible to save the resulting charts and tables to the
file system.
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h) In the case of a table output, it should be possible to copy areas
and insert them into an Excel sheet.

i) The system should notify the user of errors made in the SQL
query or Python code.

5. Manage

a) The deletion of projects and their associated data should be
possible.

b) An overview of the general game and review data should be
provided per project.

c) It should be possible to delete the reviews of a certain game id
and to re-crawl them.

d) It should be possible to delete all reviews of a project without
deleting the general game information.

3.3.2. Non-Functional Requirements

In contrast to the functional requirements, we do not split the definition into
several components but provide a general overview of the non-functional
requirements we hope to achieve and which we keep in mind during the
development process of the tool.

1. Performance
While the tool is executing a task, the user interface should not block
user input.

2. Reusability
A created custom analysis should be reusable.

3. Scalability
The amount of collected data should only be limited by the capacity
of the hard drive or the maximum size of the used SQL database.

4. Maintainability
Deleting data (projects, reviews) from the database should be possible
and easy to execute.

5. Portability

a) The tool should be easy to install on a Windows PC.
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10.

11.

12.

b) The exchange of Steam data and custom analysis scripts between
different users of a tool should be possible.

. Usability

Collecting general game and review data, as well as running the
general analysis should be easy and self-explanatory.
Extensibility

a) New chart types for performing a custom analysis in the program
code should be easy to add by other developers.

b) Crawling additional information (values) from the web pages of
the individual games should be easy to implement.

Configurability
It should be configurable for which games data should be crawled
from Steam.

. Availability

The tool should be usable even if the device the tool runs on has no
internet connection.

Recoverability

In the case of an error, the tool should not crash but inform the
user about the type of error, and if possible, how to solve it. This
is especially important regarding the custom analysis. Here, invalid
Python code or SQL select statements should not lead to a crash but
provide the user a meaningful description of the error.

Awareness

While a task is executed, the user should be aware of the ongoing
process (e.g., loading bar)

Consistency

The design of the tool in terms of color usage, font, and layout should
be consistent.

3.4. Programming Language

Python currently belongs to the most popular programming languages,
where the PYPL index even lists Python as the most popular one (PYPL,
2021). The index is determined by analyzing how often language-specific
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tutorials are searched via the Google search engine. For the calculation, data
is gathered from Google Trends. In addition, Python takes first place in IEEE
Spectrum’s top programming languages ranking of the year 2021, where
the ranking is created by weighting metrics from different sources (Cass,
2021).

According to different websites (D. Costa, 2020b; Gallinelli, 2021; Muthyala,
2021), Python is the language number one for data science and machine
learning purposes. The main advantage of Python is seen in the numerous
available data science tools for analysis, visualization, and data collection.
Furthermore, Python is well documented, has a large user community for
support, and is easy to learn.

The usage of Python for analyzing and collecting Steam data in studies
described in Section 2.3 and Section 2.4 supports the popularity of Python for
data science. The studies utilize different Python libraries depending on the
task. For natural language processing, the Python library NLTK" is popular
amongst the authors (Eberhard et al., 2018; Kamal et al., 2020; Kasper et al.,
2019). The API provides a set of text processing tools for processing text,
categorizing and tagging words, classifying text, extracting information
from text, and analyzing sentence structures. It is completely open-source
and driven by a big community (Bird et al., 2009). For machine learning
purposes, Scikit-learn? is used by authors like Ji (2019) and Kamal et al.
(2020). The library provides a large number of algorithms for classification,
regression, clustering, dimensionality reduction, model selection, and data
pre-processing. Other libraries which are used are Numpy3, gensim#, and
Pandas®>. Numpy is a package for scientific computing and is laid out for
performance. Gensim is used for topic modeling, and Pandas is a data
analysis and manipulation tool.

Due to the libraries available for Python concerning data science and visual-
ization, Python is our programming language of choice. Furthermore, we
argue this decision that Python is easy to learn and use. As we allow users

Thttps:/ /www.nltk.org/

https:/ /scikit-learn.org/stable/
3https:/ /numpy.org/

4https:/ /radimrehurek.com/gensim/
Shttps://pandas.pydata.org/
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of our tool to create a custom analysis through self-written scripts, it makes
sense to choose an easy programming language. In addition, it is easier to
run Python scripts in Python rather than in another programming language
like C++, where it is possible to run Python code using the Python C API
(Python Software Foundation, 2021).

Python being the programming language of our choice, we look at the data
storage options it supports and which one we want to utilize.

3.5. Data Storage

With Python, it is easy to read files that have different encodings like JSON or
XML. As previously mentioned in the background section, different studies
use simple JSON encoded files to store their collected Steam data. However,
in our case, storing Steam data in simple JSON files is not well suited. The
reason for this is that we usually do not work on the whole data, but only
on a small portion depending on the performed data requests. In the case
of JSON files, usually the whole file is read into memory, although only a
small part of the file is needed. To reduce the amount of unnecessary loaded
data, the implementation of an advanced file structure and additional file
indexing might help. However, the realization of such structures is time
expensive and avoidable as there are other data storage approaches like
Relation Database Management Systems (RDBMS) that already provide
such features. RDBMS are databases that store data in a structured way
using rows and columns. Such systems aim to make the data accesses fast
and efficient via advanced indexing. The Structured Query Language (SQL)
allows the definition of complex queries, where it is easy to request relations
between different pieces of data.

As performing complex queries on our Steam data is an essential part of our
tool, we prefer RDBMS over simple JSON files. However, we want to avoid
a complex setup of the database and do not want a database that is shared
among different people. Furthermore, the database should be delivered as
part of the tool. A database system that is local, but still provides the SQL
syntax is SQLite. In contrast to online databases like MySQL, SQLite can
not handle multiple users, is less scalable, and has fewer security features.
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However, SQLite is easier portable as it only consists of a single file (Edward,
2021).

3.6. User Interface Framework

Having the programming language and data storage fixed, we are looking
for the Graphical User Interface (GUI) framework that best fits our needs.
For the decision, we determine the five most popular frameworks based on
web entries in the form of posts and blogs providing a ranking (AskPython,
2021; D. Costa, 2020a; Fatima, 2017; Nederkoorn, 2021). As each entry has a
different ranking, we attribute ten points to the first place and reduce the
points by one for each consecutive one. We perform this process for each
source and sum up the points for each framework. By considering only
the five frameworks with the most points results in the ranking: PyQts® >
Tkinter” > Kivy® > wxPython? > PySide2"°.

3.6.1. PyQt5

PyQts, developed by Riverbank Computing Ltd., is built around the Qt
framework, which is known as one of the most popular cross-platform GUI
frameworks. One very convenient feature of Qt is that layouts and widgets
can be created via drag and drop, or programmatically. Furthermore, a
layout that is built with the drag and drop designer can be converted to C++
or Python code. An example of a widget created with Qt Designer can be
seen in Figure 3.1. The left window shows the designer tool and the right
window shows the Python code that corresponds to the created design. The
Python code is compatible with PySide2 and PyQts (with minor changes).
The installation of PyQts5 can be achieved via the command "pip install
pyqts". PyQts only requires one code base for several platforms, including

bhttps:/ /riverbankcomputing.com/software/pyqt/intro
7https:/ /docs.python.org/3/library/tkinter.html
8https:/ /kivy.org/

https:/ /www.wxpython.org/

Thttps:/ /pypi.org/project/PySide2/

36


https://riverbankcomputing.com/software/pyqt/intro
https://docs.python.org/3/library/tkinter.html
https://kivy.org/
https://www.wxpython.org/
https://pypi.org/project/PySide2/

3. Design & Concept

SR NEHED S8 B a
Object Inspector B x| |#-*-codng:utfs-*-

[} Form - widget_crawl_task.ui [==] F

Textiabel

Test 0%

Ui_widget._task : QWidget
Property Value e
v

objectName Ui_widget task

windowModality NenModal
enabled
geometry 1(©,0), 300 400]

Vv sizePolicy [P red, Preferred, 0, 0]

Preferred

Preferred

PushButton

 item Widgets (itern-Based)

[5] st wiager

R Tree Widget

Table Widget
Containers

[™] Group Box
Scroll Area
B oot Box

[ Tab Widget v Sindl/SlotEditor | Acton Edtor  Resource Browser

Figure 3.1.: Example of a widget created with Qt Designer (left) with the corresponding
Python code for PySidez (right).

Windows, Mac, Android, and Linux. In addition, it can be used with GPL
or with a commercial license. In the former case, the end-user must have
unlimited access to the source code of the application and must have the
rights to modify, share and execute the code. Otherwise, a commercial
license is necessary (AskPython, 2021; D. Costa, 2020a; Fitzpatrick, 2020;
Nederkoorn, 2021).

3.6.2. Tkinter

The main advantage of Tkinter is that it is directly shipped with the stan-
dard Python3 installation and can therefore be used without installing any
further packages. It provides a wide range of widgets, including buttons,
radiobuttons, checkboxes, sliders, labels, and text fields. Furthermore, it
provides a file dialog for opening and saving files and a canvas widget for
drawing custom shapes (AskPython, 2021; D. Costa, 2020a; Fatima, 2017;
Nederkoorn, 2021).
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3.6.3. Kivy

Kivy is a community project and can be used for free under the MIT license
since version 1.7.2. It supports over 20 different widgets that can be extended.
For performance reasons, the toolkit is partly written in C using Cython and
is GPU accelerated via the graphics pipeline OpenGL ES 2. Kivy supports the
operating systems Windows, Android, iOs, and Raspberry Pi. Hereby, the
same code can be compiled for the different operating systems without any
changes. A feature of Kivy is that it supports inputs from various devices
out of the box, which eases the development of multi-touch applications. To
support Kivy, individual persons and companies can donate money and will
be listed on their website (Kivy Organization, 2021; Nederkoorn, 2021).

3.6.4. wxPython

Like Kivy, wxPython is an open-source, free to use and cross-platform GUI
toolkit. The library wraps the in C++ written wxWidgets cross-platform
library. It provides a natural feeling look by using the native widgets of the
individual operating systems. An ongoing project of the wxPython develop-
ers is called Phoenix that aims to improve the wxPython library in terms
of speed, extensibility, and maintainability. Phoenix is not fully compatible
with the classic wxPython library, but the migration only requires minor or
even no changes at all (D. Costa, 2020a; wxPython Team, 2020).

3.6.5. PySide2

PySide2 is very similar to PyQts, with the difference that PySide2 was
developed by Qt and is available under the LGPL license. Both frameworks
wrap the Qt library, and thus, a large part of their APIs overlap. In contrast to
the GPL license, the LGPL license does not force the developer to provide the
source code unless changes are made directly to PySidez itself (Fitzpatrick,
2020).

PyQts takes first place in our calculated ranking. Furthermore, we would
not run into any problems concerning the licensing as we want to distribute
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our source code along with the tool. In fact, given access to the source code
is in our favor, as it enables the users to write extensions on their own
and fit the tool to their needs. Moreover, when reading through the PyQts
documentation of Fitzpatrick (2020), we realized that PyQts supports all the
user interface features that might be needed for our implementation. Thus,
PyQts is the user interface framework of our choice.

Now that we have defined the main components our tool will be built
upon, we require a concept that defines the logic of our proposed tool in a
simplified manner. The intention is to define a rough structure in terms of
process flow and design to ease the implementation and give it a direction.
This is done in the next section, where a logical architecture is defined for
the main parts of the tool.

3.7. Logical Architecture

To get a high-level overview of our tool, we have a look at the logical
architecture for collecting and analyzing data from the Steam platform. The
aim is to give first insights on how the overall system works and is not to
provide details about the implementation. Aspects and features which do
not contribute to the overall understanding of the tool are not discussed as
part of this section.

In general, the tool can be split into two main parts, data collection and data
analysis. As these two parts can be split well, we discuss them separately.
What both parts have in common is that they have access to the same
local SQLite database. While the data collection process mainly inserts
data, the data analysis process mainly queries data from the local database.
However, the deletion of already available data is not handled by either of
them. Therefore, we provide a logical architecture for managing the data in
Subsection 3.7.3.
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3.7.1. Data Collection

As most studies aim to analyze a subset of the available games on Steam, we
need to find a way to narrow the games to crawl. Steam already provides
a page to search for specific games which fulfill certain criteria. The big
advantage of using the search results from Steam is that we do not need
a list of all available games beforehand to restrict the results. Instead, we
can make use of the search page and let Steam do the work for us. Our
tool allows two different possibilities to build a request for crawling general
game data, an in-tool configurator, or by directly using the Steam search
URL. In the former case, we provide the user with a set of widgets for
narrowing the games. These widgets are dynamically created at the startup
of the tool and mirror the narrowing options of the Steam search page. When
a crawling process is started, the Steam search URL is created taking the
selection of the user into account. Optionally, the user can directly provide
the Steam search URL which results from the configuration on the Steam
search page itself.

The Steam search URL, with its narrowing parameters, is used to obtain
a list of relevant game IDs. How this is achieved in detail is described in
Chapter 4. These game IDs are then used to build the Steam game URLs of
the form https://store.steampowered.com/app/xxxxxxx/, where the xxxxxxx is
replaced with the game ID. For each of the created URLs, the corresponding
HTML is retrieved via an HTTP GET request. Game-related information
like the publisher, developer, release date, associated genres, user-defined
tags, rating, and the title, is then extracted from the HTML files and stored
in a local SQLite database. However, no review data is extracted from the
individual game pages.

To crawl general game data, the user has to provide a unique project name.
Hereby, each collected game entry in the SQLite database is linked to the
newly created project entry. The idea behind this is to provide a project-like
structure, where a project is associated with a crawling process for collecting
general game data.

As can be seen in Figure 3.2, the processes for collecting general game
data and reviews are handled separately. The intention behind this is that
depending on the data requirements of a user, reviews might not be required.
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Furthermore, to be able to request the reviews, the game IDs are required
beforehand. The reason for this is that for obtaining the reviews, no custom
webcrawler is written. Instead, the Steam Web API method for collecting
reviews is utilized, which requires the game ID to collect the reviews of
a game. The reviews are always collected per project. Hereby, the user
can select the project from a drop-down list of the already existing ones.
The reviews can further be narrowed by language, and purchase type (all,
Steam purchase, non-Steam purchase). This is realized via checkboxes and
radiobuttons. Furthermore, the Steam Web API provides the possibility to
neglect reviews before a specific date. Therefore, a date edit widget is added
to the user interface for selecting the start date. When a process for collecting
the reviews is started, the associated game IDs of the selected project are
requested from the local SQLite database. For each of the game IDs, a URL
is built where the request parameters are set accordingly depending on the
user settings. These URLs are used to request the reviews from the Steam
Web API, where the reviews are returned in J[SON format by default. Per
response, the JSON encoded files are parsed and the contained information
is saved in the local database. Hereby, each review entry is linked to the
corresponding game entry of the project. The tool also keeps track of which
game entries the reviews have already been collected. This allows to pause
the collection process when closing the application and to continue it at a
later point.

The collected general game data and the optionally or partially available
review data that is stored in the local database can be analyzed using a set
of predefined analysis tasks or via custom-defined ones. For this purpose,
we provide a logical architecture in the next part.

3.7.2. Data Analysis

Figure 3.3 shows the concept for running predefined analysis tasks on the
collected data. As can be seen, there is a combo box (drop-down list) for
selecting the project of which the data should be considered. On the change
of a project, all available genres, tags, and game details that are assigned
to at least one of the project’s games are requested from the local database
and are visualized via checkboxes in the user interface. These widgets

42



3. Design & Concept

/ Run Analysis (Run button clicked) \

Create list of charts to update with respect to

Run button checked analysis types
2
Project name combo box Create SQL Select statement for each chart
taking narrowing settings and project name SQLite Database

. into account
Analysis type checkboxes ¥ .I I
SQL Select queries—~

] Use SQL Select statements to query data from
local database

General analysis checkbox

Genre based analy5|s
Preprocess query results from database using an
g < SQL query result:

checkbox
N N chart specific pre-processing function
Game detail based analysis
checkbox v Undat
Update chart Update paate
| Tag based analysis checkbox models chart views P chart
visibility /
Narrowing widgets
Genre checkboxes / Init (Startup)

Create chart group per analysis type

Tag checkboxes

| Game detail checkboxes | ||

Create chart views
for each chart group

Create chart models
for each chart group

Project Name Changed

Update narrowing widgets (only show tags,
genres, game details relevant to the project)

Figure 3.3.: High-level overview of the general game data analysis process.
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are utilized for restricting the analysis tasks to games that have certain
attributes. Each task is associated with a chart (e.g., bar chart, line chart),
which is directly visualized in the tool. The user has the option to select four
different types of analysis - general analysis, genre-based analysis, game
detail-based analysis, tag-based analysis. In the case of the general analysis,
the narrowing widgets are not considered. In the case of the other three
types, only the respective narrowing widgets are taken into account (e.g.,
genre-based analysis - genre checkboxes) except for a few charts where
genres, tags, and game details are set into relation with each other.

When the analysis process is started, the system dynamically creates an
SQL Select statement per chart based on the project name and the checked
narrowing checkboxes. The query results are pre-processed using a chart-
specific pre-processing function before they are stored in a chart model. The
individual views of the charts are then updated using the data from the
models.

The motivation behind the general analysis is to allow the user to obtain a
quick overall overview of the project and the collected dataset. However, in
some cases, this might not be enough. Therefore, the user has the possibility
to create a custom analysis. The logical architecture is similar to the logical
architecture of the general game data analysis process with the difference
that the SQL Select statements and other attributes are not pre-defined.
The user can add and configure a custom task in a separate dialog. The
configuration provides different chart types via a drop-down list. Depending
on the selected chart type, different attributes, like x-label, y-label, and title,
are configurable. However, what all the chart type configurations have in
common is that they allow the definition of a SQL Select statement and
an optional Python pre-processing script. As the different chart types have
different data requirements, the SQL Select statements have to fulfill specific
criteria in terms of column count and data types. In the case, the Python
script is enabled, only the resulting data from the script has to be of a
specific format. Hereby, the script has access to the query result of the
SQL Select statement. After a configuration is applied, the task is added
to the task list. Furthermore, the task is visualized via a button in the user
interface for later modifications. When the custom analysis is started, all
the created tasks are executed and the corresponding charts are created and
visualized.
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So far we only looked at cases, where data is either inserted or read from
the local SQLite database. However, the user might want to delete data from
the database as well. A reason for deleting a project or its reviews might be
a wrong narrowing configuration during the review collection process or to
free hard disk memory. Therefore, we provide a third functional architecture
for managing the projects and the associated game and review data in the
following section.

3.7.3. Data Management

The basic functional concept for managing the data stored in the SQLite
database is quite simple. The user interface provides a combo box (drop-
down list) for selecting an already available project. When a project is
selected, the corresponding general game data configuration and if available,
the review collection configuration, are displayed. Hereby, the idea is to
provide the user an overview of when the project has been created and
which narrowing attributes have been used during the collection process.
Furthermore, the user interface contains buttons for deleting the reviews
or the whole project. For each deletion request, a SQL Delete statement is
dynamically created based on the project selection. If only the reviews of
a project are deleted, it is possible to collect them again using the same or
another narrowing configuration.

The suggested local architectures for the main parts of the tool mention
different user interface elements and for which purpose these elements are
used. However, the arrangement and integration of the widgets in the user
interface itself are still unknown. As a result, the next section proposes a
user interface design that aims to offer a clean separation between the main
components of the tool.

3.8. Tool Design

The user interface design consists of six different views. These can be
switched via a menu which is on the left side of the window as can be
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Game Data Crawling Project Name: ..... cancel | pause

Task Name s Description

Review Crawling Task Name s Description

Task Name Description

Analysis Task Name s Description
Project Name: ... Cancel Resume

SIS Task Name s Description
Task Name [ Description
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Task Name [ Description

Task Name Description
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Figure 3.4.: Mock-up of the views for collecting general game data and reviews.
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Figure 3.5.: Mock-up of the view for performing the general analysis.
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Game Data Crawling

Review Crawling

Analysis

Custom Analysis Column1  Column2  Column3  Columnd

ZE4Q Task3

2
>
X-Axis

Figure 3.6.: Mock-up of the view for performing a custom analysis.

seen in Figure 3.4. Hereby, the currently selected view is highlighted via
a different color. Furthermore, a button in the upper left corner allows
collapsing the menu to increase the working area of the selected view. The
layout of the individual views is split into a content frame and a right
sidebar. While the content frame shows the results or progress of tasks, the
right sidebar encompasses the widgets for configuring and customizing the
tasks.

As we previously defined a clear separation for collecting general game data
and for collecting reviews, the user interface provides two separate views
as well. The layouts of the views (illustrated in Figure 3.4) are similar and
only differ in the encapsulated widgets of the settings frame. The content
frame shows the progress of the executed tasks. Each task consists of one or
more subtasks and has its own taskbar, which contains the corresponding
project name and controls for manipulating the execution state, i.e., buttons
for canceling, pausing, or resuming a task.

Figure 3.5 shows the layout for performing the general analysis. The settings
frame contains all the in the previous section mentioned widgets that are
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required for the configuration. This includes a drop-down list for selecting
the project, the widgets for selecting the sets of analysis tasks that should
be executed, and the narrowing widgets for restricting the data to specific
genres, tags, or game details. On the other hand, the content frame shows
the resulting charts. Each chart has a toolbar that enables the user to make
adjustments or save the chart to an image file.

The content frame of the custom analysis view, visualized in Figure 3.6, is
the same as the one from the general analysis. However, the right sidebar
differs as it additionally provides a button for adding custom tasks and
does not contain any narrowing widgets. When a task is added, it is listed
in form of a button in the sidebar. As described in the previous section, a
click on a task button would open a dialog window for adjusting the task.

The views which remain are the manage window and the settings window.
The right sidebar of the manage window contains the buttons for deleting
the project or its reviews and a drop-down list for selecting the project an
operation should be performed on. The content frame shows the project-
related information concerning the collected games and reviews. Compared
to the other windows, the settings window does not provide a sidebar as it
only contains widgets for general settings.

So far, we have made important choices regarding the programming lan-
guage, data storage, and Ul framework. Additionally, we have defined a
logical architecture for the main components of our tool and have proposed
a design that is built upon this architecture. Thus, we have a well-defined
design and concept, and can finally start with the implementation. However,
as the last point of this chapter, we want to discuss design patterns that
will be used throughout the whole implementation process and reflect two
essential concepts of the implementation.

3.9. Design Patterns

The two most important design patterns, we are going to implement, are
the Hierarchical-Model-View-Controller (HMVC) design pattern and the
worker thread pattern.

48



3. Design & Concept

3.9.1. HMVC Design Pattern

The Model-View-Controller (MVC) design pattern consists of three parts:

* The Model contains the application data, and the business logic per-
formed on the data. It provides methods for requesting and changing
the data. In an object-oriented programming language like Python, a
model can be realized with an object encapsulating the data attributes
and the business logic methods.

¢ The View visualizes the data of its related model. The view can only
read data from the model but does not have the right to change the
model’s state. Different views can exist for the same model but may
look completely different (e.g., different style, UI design).

¢ The Controller handles the communication between the view and
model. It listens to signals triggered by either of them and reacts by
executing a method or an instruction that works on the model or view.
As a result, the controller can tell the view to update itself after a
change to a model has been applied.

The idea behind the MVC design pattern is to completely separate the data
model and presentation from each other for the purpose of maintainability
and code readability. An essential aspect of MVC is that the model does
not know anything about the view, and the view can only read data from
the model. There are different variations of the MVC design pattern. The
model can either notify the view to redraw certain parts as in the original
version (Cai et al., 2000) of the MVC pattern directly or notify the controller
to trigger an update of the view. In the former case, the observer pattern
is necessary, where the view listens to signals from the model. Otherwise,
the model would require information about the view, which validates the
characteristics of the MVC design pattern (Fitzpatrick, 2020; Krasner, 1988;
Nunes, 2020).

In the Hierarchical-MVC (HMVC) design pattern, MVC blocks are arranged
in tiers forming parent-child relationships. Such an architecture is well
suited for widget-based applications, where widgets are structured in layers
as well. For example, a GUI might have a frame that contains several frames
of the same type. The HMVC pattern allows to reuse components and eases
the communications between parents and children, while still keeping a
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structure that is well to maintain. If a controller is not able to handle a
message or signal from the view, model, or from a child, it can pass it to
its parent, which on the other hand, tries to handle the message itself. This
is usually achieved via loose coupling, where a parent listens to specific
signals from its children (Cai et al., 2000).

Figure 3.7 shows a variation of the HMVC design pattern we decided to
use in our implementation. Concerning the individual MVC blocks, we
do not use the observer pattern between the model and view. Instead, all
communication is handled by the controller. The reason for this is that in
some cases, it might be necessary to transmit messages to a parent controller.
As this is usually done by the controller, it needs to listen to signals emitted
by the model. However, to avoid that both, the view and the controller listen
to the signals, which would result in additional performance overhead, we
decided to let the controller trigger all view updates. The disadvantage of
this approach is that we have a more tight coupling between the controller
and view. In the figure, we can observe dashed and continuous lines. While
the dashed lines refer to loose coupling, the continuous ones refer to tight
coupling. As previously mentioned, loose coupling is achieved via signals.
We have loose coupling from a child to its parent, which means that the
parent only connects to the signals of its children. As a result, the children
are not provided with any information about their parents. However, in the
other direction, a tight coupling exists, which indicates that the parent is
completely aware of its children and can access their public methods.

3.9.2. Worker Thread Pattern

The worker thread pattern consists of a job queue and a thread pool. Tasks
are pushed to the job queue and are polled and run by the threads until
there are no more jobs left. The idea behind worker threads is to achieve
a higher utilization by parallelism. However, in general, threads in a user
interface environment have the advantage that they allow to run "heavy"
tasks without blocking the user interface. Thus, a good approach is to utilize
threads for any long-running task.

Concerning Python, some caveats have to be considered. The programming
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Figure 3.7.: Variation of the Hierarchical-Model-View-Controller design pattern.
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language uses a lock known as the Global Interpreter Lock (GIL), which has
the effect that only one thread can have control over the interpreter at a time.
As a result, only the thread that currently holds the GIL can execute code.
Therefore, the GIL has a negative impact on performance in multi-threaded
environments. Still, using several threads to work on a task cooperatively
makes sense in specific cases. To give other threads execution time, the GIL
is released in fixed intervals. In addition, the GIL is released when an input
or output request is executed and is reacquired when the request is finished.
Input and output requests refer to operations where data is read from or
written to a database, network, file, or other external sources. Furthermore,
many Python libraries are written in C via C extensions, where the GIL
is released in cases where work is done outside the Python API (Ajitsaria,
2017; Fitzpatrick, 2020).

As we have many HTTP requests simultaneously when collecting general
game data or reviews, using more than one worker thread is preferable.
Likewise, when executing multiple SQL Select statements, several worker
threads can run in parallel if the utilized Python C extension releases the
GIL. This happens in the case of the Python SQLite module if a separate
database connection is opened per thread (Stack overflow, 2012; Willison,
2021).

3.10. Summary

This chapter defined the functional and non-functional requirements of
the proposed tool. Based on these requirements and the research done
in Chapter 2, several decisions were made. Python was chosen as the
programming language of choice for the reason that it is best suited for data
science tasks, and is easy to learn. Concerning data storage, a relational
database is preferred over JSON encoded files, as RDBMS are more flexible
and performant in terms of inserting, queuing, deleting, and updating data.
Furthermore, a local database, SQLite, was selected instead of an online one
to keep the traffic over the network low and make the data easily portable
for the usage in other analytic tools. The user interface framework for
Python was selected based on an investigation of the five most prominent
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ones. The chosen and highest-ranked framework, PyQts, has all features
that are necessary for the implementation. Moreover, it is cross-platform
and allows to extend and write custom widgets. However, an outstanding
feature is that it allows the drag-drop creation of a layout, which can be
directly translated to Python code. After the decisions concerning tools and
frameworks were made, a logical architecture for the main components
of the tool was discussed, which defines a rough structure and logic flow
that should ease the implementation and give it a direction. The logical
architecture was split into three parts, namely data collection, data analysis,
and data management. Each of these parts represents a certain aspect of
the application. Data collection refers to the process of collecting general
game data and reviews, data analysis defines the process for analyzing the
collected data, and the data management process is responsible for deleting
projects and their corresponding reviews. On top of the logical architecture,
a user interface design was built, that should provide a clean separation
of the discussed aspects. As the last point, the chapter described design
patterns and how they work. The next chapter handles the implementation
of the defined design and concept.
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This chapter provides deep insights into the implementation based on the
functional /non-functional requirements, design, and logical architecture
of the previous chapter. It describes the structure of the user interface
and how it is given its style. Moreover, it shows the integration of the
SQLite database into the project with additional extensions. Furthermore, the
chapter introduces the architecture used for collecting Steam data as well as
for analyzing the data. In addition, the chapter describes the implementation
steps that are necessary for collecting general game data and reviews.
Similarly, the implementations for performing the general analysis as well
as a custom analysis are described. A further section documents how the
result of a performed analysis is handled and visualized in form of different
chart types and tables. As the system should be robust to errors, a separate
section defines how errors are handled and how they are resolved. The last
topic of this chapter details how the tool is prepared for distribution to the
end-user.

4.1. User Interface

The user interface (UI) allows users to interact with applications. In the case
of our tool, we speak of a graphical user interface (GUI) as the interaction
with the system is based on graphical elements like buttons which should be
arranged in an intuitive and meaningful way. A user interface consists of one
or more layouts that describe the arrangement of the graphical elements.
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Figure 4.1.: Main view.

4.1.1. Layouts

As previously mentioned, the Qt Designer allows to create layouts (widgets)
and to convert them to Python scripts that are compatible with PyQts.
However, one problem is that the created layouts are static. Thus, only static
user interface elements that also remain static in the tool are added via
Qt Designer. The Python scripts encapsulate the static widgets in a class.
To extend a class by dynamic widgets, a derived class is created which
inherits the widgets and methods. Optionally, the converted Python scripts
and classes can be modified directly. However, this has the drawback that
converting a Qt Designer layout to the Python script again would override
the changes. Therefore, a clean separation is introduced using inheritance.

The above-mentioned approach was used to create the main view, which
can be seen in Figure 4.1. It contains the title bar, a menu sidebar, and a
widget container. If a menu button is clicked, the content of the widget
container is replaced with the widget of the corresponding view. Like the
main view, they all have a separate class that inherits properties from the
class created via Qt Designer.
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4.1.2. Custom Widgets

Each of the views contains various kinds of widgets, including buttons,
checkboxes, textfields, etc. For this, Qt provides a set of default widgets’,
which can be customized and extended. As re-usability is an important
concept of our design, a collection of custom widgets is created in form of
classes that are derived from default widget classes. An overview of the
most relevant custom widgets is given in Table 4.1. It lists the names of the
custom widget classes and their parent classes with short descriptions.

4.1.3. Style

By default, all the widgets have a platform-dependent default style. How-
ever, it is also possible to use self-defined or third-party themes to give
applications a modern and more appealing look. As dark mode themes are
considered to reduce eye strain (Erickson et al., 2020; Fitzpatrick, 2020), we
use one for our application as well. Instead of defining everything on our
own, the Python library QDarkStyle® is utilized to give the application its
main look. The library provides a style sheet that is compatible with PyQts.
To obtain and set the style sheet in Python, only a few lines of code are
required as shown in Listing 4.1. However, in some cases, a separate or an
extended style is required. To overwrite or extend parts of the QDarkStyle
style sheet, additional .gss (Qt Style Sheets) files are created. Such files define
the properties that should be applied to whole widget types, widget objects
with a specific attribute, or objects of a derived widget class. Furthermore,
the files contain the definitions on how elements should look in the case
of certain states (e.g., mouse hover). A reference guide and the available
properties can be found on the Qt documentation website3. When setting a
style in Python for a widget where the style is already set, the overlapping
definitions are replaced with the new ones. The style is automatically ap-
plied to all child widgets, i.e., the widgets the widget encapsulates, but not
to parent widgets.

Thttps:/ /doc.qt.io/qt-5/gallery.html
https:/ /pypi.org/project/QDarkStyle/
3https:/ /doc.qt.io/ qt-5/stylesheet-reference.html
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Class (Parent Class)

Description

LoadingDialog Dialog which animates a throbber (loading icon)

(QDialog) with an optional text. It has a translucent back-
ground and provides a function for closing the
dialog.

LoadingFrame Frame which contains an animated throbber. It has

(QQFrame) functions for starting and stopping the animation.

QHLine (QFrame)

Horizontal separation line.

QVLine (QFrame)

Vertical separation line.

ClickableLabel Clickable frame, which shows an icon + text. It

(QFrame) has a state indicating if the associated content is
expanded or collapsed. Depending on the state,
the icon changes to represent the current state. If
the frame is clicked, a signal is emitted.

CustomComboBox | Like a normal QComboBox with the difference

(QComboBox) that it additionally emits a signal if the popup
button is clicked.

CustomButton Like a QPushButton with a different constructor
(QPushButton) having parameters for setting the text, icon re-
source path, and icon size.

DigitLineEdit QLineEdit that only allows digits (other charac-
(QLineEdit) ters are ignored) and emits a signal if the number

changes.
TaskButton Implements the view of a task button, which visu-
(QPushButton) alizes a text and an icon indicating the task type.

Moreover, it provides a menu for deleting, activat-
ing, and deactivating a task. The menu is shown on
a right-mouse click. Furthermore, the border color
changes depending on the task state (activated -
green, deactivated - red).

Table 4.1.: Custom widgets.
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1 import qgdarkstyle

; dark_stylesheet = qgdarkstyle.load_stylesheet_pyqt5 ()
widget .setStyleSheet (dark_stylesheet)

5 )
Listing 4.1: Code for setting the style sheet of a widget (and nested ones) to the dark mode
style sheet provided by the library QDarkStyle.

4.2. Data Storage

One design decision made in the previous chapter is to use SQLite for
structuring our collected data. To understand the later implementation
steps in this chapter it is essential to be familiar with the data tables and
their relationships. Furthermore, the custom analysis feature of our tool
is based on SQL Select statements, where the schema has to be known as
well. Thus, the next part introduces the SQL schema with its tables and data
relationships.

4.2.1. Datastructure & SQL Schema

Figure 4.2 shows the SQL schema representing the data structure for the
collected data from Steam. It consists of several tables, where each has an
attribute id for the primary key. Each attribute of a table has a type indicated
by a single symbol or letter. The three data types, which occur at least
once in the schema, are d (date and time), # (integer), and t (text). As can
be seen, a project can have several applications, and an application can
have several associated tags, genres, and game area details. As the same
genre, tag, or game area detail can be part of more than one application,
the intermediate tables game_details_to_applications, genres_to_applications,
and tags_to_applications are used to create an N:N relationship between the
applications table and the individual tables genres, tags, and game_details.
The table review_containers contains fields for storing the summary of the
collected reviews and links to the applications table. Each review record links
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Figure 4.2.: SQL schema.
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to one review container record. The same holds true for the relationship
between the reviews table and the authors table. As a review usually has
one author, and the tool is designed to allow one review container per
application record, the corresponding 1:N relationships might be replaced
by 1:1 relationships in a later release.

4.2.2. Building Python with SQLite Math Support

Although the SQLite3 library is directly shipped with Python, the built-
in mathematical functions* are disabled by default. The math functions
allow to use functions like pow(X), log(X), exp(X), sin(X), sqrt(X) di-
rectly in a SQL statement and are advantageous for writing complex state-
ments. To enable them, Python needs to be built with the compile option
DSQLITE_ENABLE_MATH_FUNCTIONS. To achieve this, several steps are
necessary:

1. Download Python zipped source code from Python releases site>

2. Unpack source code for Python in a folder of choice

3. Open PYTHON_FOLDER/PCbuild/sqlite3.vexproj in a text editor and
add the compile option DSQLITE_ENABLE_MATH_FUNCTIONS to
the pre-processor definitions

4. Install Visual Studio (e.g. Visual Studio Community 2019)

5. Open PYTHON_FOLDER/PCbuild /pcbuild.sln in Visual Studio

6. Build the project

After the above steps have been performed, the build can be found in
PYTHON_FOLDER/PCbuild/amdé64 (Stinner, 2017). Another extension
for SQLite, we want to utilize, is the FTS5 extension, which adds full-text
search capabilities to a database. However, the FTS5 extension can not just
be simply performed on any text attribute of a table. Instead, it must be
defined beforehand, which attributes should be supported.

4https:/ /www.sqlite.org/lang_mathfunc.html
Shttps:/ /www.python.org/downloads/windows/
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4.2.3. Integrating FTS5 Extension for Text Based Search

In the case of our proposed tool, we want to add full-text search functionality
to the review text, i.e., the review attribute. This was achieved by following
the tutorial of Lam (2020) and Hipp et al. (2021). Listing 4.2 shows the
virtual table, where the syntax USING fts5() defines that the table should
use the FTS5 extension. The content attribute has to match the name of table
that contains the review attribute, and the content_rowid is defined to match
the reviews.id (the primary key of the reviews table).

CREATE VIRTUAL TABLE reviews_fts USING ftsb(
review_container_id UNINDEXED,
recommendation_id UNINDEXED,
comment_count UNINDEXED,
language UNINDEXED,
received_for_free UNINDEXED,
review,
steam_purchase UNINDEXED,
timestamp_created UNINDEXED,
timestamp_updated UNINDEXED,
voted_up UNINDEXED,
votes_funny UNINDEXED,
votes_up UNINDEXED,
weighted_vote_score UNINDEXED,
written_during_early_access UNINDEXED,
content=reviews,
content_rowid=id

)

Listing 4.2: Virtual table for adding full-text search capabilities to the review text.

Executing the statements creates a set of tables that enables indexing on
the reviews table. As we only want the indexing to be applied on the review
attribute, we define all other attributes to be UNINDEXED. SQL Select
statements can be performed on the FTS5 table like on any other table,
with the difference that it provides additional functionalities on the indexed
attributes. An example can be seen in Listing 4.3. The statement returns a
sorted list of reviews in which the term "cybersickness" occurs at least once.
The sorting depends on the rank, which is based on the BM25 algorithm and
indicates how well a row matches the query. However, the FIS5 extension
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Figure 4.3.: Architecture for collection and analysis processes.

has a lot more functionalities, which are described on the SQLite website®
of the SQLite developers Hipp et al. (2021).

1+ SELECT * FROM reviews_fts WHERE review MATCH ’cybersickness’
ORDER BY rank;
) 5

Listing 4.3: Example SQL Select statement using FTS5 functionalities.
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4.3. Architecture

Although the processes for collecting data and the processes for analyzing
the data differ in the tasks they perform, the fundamental architecture
shown in Figure 4.3 is the same. It uses the HMVC and worker thread
pattern described in a previous section. When a task is executed, a new
MVC component is created. This component does not know anything
about its parent. The parent model on the other hand stores a reference to
the controller of its child and can access the child’s public methods and
variables. To start the actual execution of a task, the parent model calls the
corresponding method of its child. As a result, the model of the child creates
a queue of jobs and creates one or more worker threads that are submitted
to the global thread pool. Each of the worker threads is given a unique
ID for identification and a dictionary is used to map the ID to the worker
thread. In a loop, a worker pops a job from the shared queue and executes
it. This is done until the queue is empty.

4.3.1. Signals

To propagate information and states back in the architecture, signals are
used. The model of the MVC component (main tier), which is responsible
for creating tasks, connects to the signals of its children’s controllers (task
tier). Similarly, the MVC components which create worker threads connect
to the signals of the workers. Furthermore, as the business logic is always
handled by models and not by the controllers, the models emit signals to
notify their controllers of changes. The controller processes the changes and
triggers an update of the view (UI). Likewise, the controller also connects to
the signals of the view and updates the model accordingly on a detected
signal.

6ht’cps: / /www2.sqlite.org/fts5.html
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4.4. Data Collection

The data collection is split into the process for collecting general game data
and the process for collecting reviews, where each of the two processes has
a separate view. As the ID of a game is required to collect its reviews, this
section starts by describing how the game IDs and the corresponding game
data are gathered from Steam.

4.4.1. Collecting Game IDs and Game Data

As described in the previous chapter, a project always starts by collecting
the game IDs and game data narrowed to games with specific characteris-
tics concerning the type, feature, number of players, VR support, and OS
support.

View

Figure 4.4 shows the view for narrowing games and starting a collection
process. The view is shown when the application is started and takes the
top position in the menu. One part corresponds to the settings defining
which games should be collected, and the other part shows the progress
of executed collection tasks. Each collection task has a separate view with
control buttons for pausing, canceling, resuming, and closing. The task view
has two progress bars, where the first one corresponds to the progress for
collecting game IDs, and the other corresponds to the progress for collecting
the game data associated with the game IDs. To visualize simultaneously
executed tasks, task views are arranged in a vertical layout. This vertical
layout is encapsulated into a scroll area with vertical scrolling enabled,
which means that a scroll bar appears in the case the area for visualizing
all tasks views at once is too small. Concerning the settings, a radiobutton
group, consisting of two radiobuttons, specifies if the in-tool configurator
or a Steam search URL should be used to define which games to collect.
In the case of the in-tool configurator, the narrowing categories and their
checkboxes are created dynamically by extracting the fields from the Steam
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Figure 4.4.: View for collecting general game data.

search page. If a collection process is started, the user selection in the in-tool
configurator is converted to a Steam search URL for further processing.

In-Tool Configurator

To automatically create the narrowing categories with their checkboxes in
the view and gather the parameters for building the Steam search URL,
the Steam search page” is requested, and the required data is extracted
from the HTML via Scrapy’s XPath selectors®. For visualizing the categories
and their checkboxes, the category names and parameter names (checkbox
names) are required. To further build the Steam URL from the selection,

7https:/ /store.steampowered.com/search/?term=
8https:/ /docs.scrapy.org/en/latest/topics/selectors.html
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the parameter values and the category collapse names are needed, where a
parameter value is associated with the parameter name and a data collapse
name is associated with a category name. Furthermore, the parameters are
part of only one category. The only values that are known beforehand are
the data collapse names, which are manually extracted from the HTML.
Listing 4.4 shows the Python code for extracting the category name and
the associated parameters via XPath selectors for the data collapse name
"vrsupport". In total, the data for the data collapse names "category1",

"category2", "category3", "vrsupport”, and "os", are extracted.

from scrapy import Selector

; selector = Selector(text=response.text)

category_name = selector.xpath(’//div[@data-collapse-name="
vrsupport"]/div[@class="block_header"]//text()’).getall ()

5 parameter_names = selector.xpath(’//div[@data-param="vrsupport

"]/@data-loc’).getall ()
parameter_values = selector.xpath(’//div[@data-param="vrsupport
"]/@data-value’) .getall ()

print (category_name)
print (parameter_names)
print (parameter_values)

# Output

# [’Narrow by VR Support’]

# [’VR Only’, ’VR Supported’, ..., ’Standing’, ’Room-Scale’]
# [’401°, 2402, ..., °302’, ’303°’]

Listing 4.4: Extracting category name and its associated parameters from the Steam search
page.

Steam Search URL

To build the Steam search URL from the in-tool configurator selection, it
is necessary to understand how the URL is built. Let us assume that the
checkboxes "HTC Vive" and "Oculus Rift" from the category "Narrow by
VR Support" and the checkbox "Windows" from the category "Narrow by
OS" are ticked. In this case the Steam search URL visualized in Figure 4.5
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Figure 4.5.: Composition of the Steam search URL.

correctly reflects the described selection. As can be seen, parameter values
from the same category are connected via %2C, which is the URL encoded
representation of a comma. On the other hand, if checkboxes from more
than one category are ticked, the categories are connected via the & symbol.
Concerning the URL, a data collapse name corresponds to a URL parameter
name, and a string resulting from a comma concatenation of the parameter
values of the same category form a URL parameter.

Collecting Game IDs

The process for collecting the game IDs uses the Steam search URL, which
is created in the case of the "Crawl from configurator" option or is directly
provided in the case of the "Crawl from link" option. The whole proce-
dure follows the previously described architecture. If the collection task
is executed, a separate MVC component is created, which processes the
task by utilizing a worker thread. However, to collect game IDs only one
worker thread per collection task is used. The task description the worker
obtains only consists of the Steam search URL. However, the Steam search
URL is not used directly to request the associated HTML. The problem
is that the Steam search page® implements infinite scrolling to load re-
sults, which means that at the start only a subset of the available results
are visible and on scrolling down with the mouse, additional results are
loaded. Instead of simulating a scrolling-down event, the network analyzer

https:/ /store.steampowered.com/search/?term=
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of Firefox was utilized to find out which requests are made in the back-
ground to load the additional results. As a result, the Steam search URL
has to be modified by replacing https://store.steampowered.com/search/? with
https://store.steampowered.com/search/results/? query& and by adding additional
parameters called start, count, dynamic_data and infinite. The start parameter
defines the offset of results that should be loaded and the count parameter
defines the number of results that should be in the response. The modified
URL from Figure 4.5 with an offset (start) of o and a result count of 100
equals https://store.steampowered.com/search/results/?query&start=o0&count=
100&dynamic_data=&sort_by=Name_ASC&vrsupport=401&snr=1_y_7_230_7&
infinite=1. The response of a performed HTTP request returns a JSON en-
coded file with the four objects, namely success, result_html, total_count, and
start. The success object value is 1 on success and o on failure, the total_count
object value corresponds to the total number of results, the start object value
equals the start parameter value of the request URL, and the result_html
object value contains the data of the results in HTML format. In detail, the
result_html contains the required game URLs that should be extracted. The
described conversion of the Steam search URL is done by the worker. The
first URL has an offset of o and the count is always set to 100. In a loop,
the worker performs an HTTP request, parses the result_html object value
by extracting the URLs using XPath selectors, filters the extracted URLs,
extracts the game IDs from the URLs, and adds the IDs to the result list.
After each iteration, the offset (start) value is increased by 100. However,
if the previous offset exceeds the total_count object value, the loop is left
as there are no more results. Concerning the URL filtering step, URLs that
do not correspond to a game, are neglected. Precisely, only URLs with
the prefix https://store.steampowered.com/app/ are considered. However, URLs
with e.g. the prefix of https://store.steampowered.com/bundle/ are ignored as
they refer to game bundles, which are not supported by our tool. When all
IDs have been extracted, the worker signals its parent node (caller) that the
task is finished. As a result, the parent has a list of the relevant game IDs.
For collecting the game information associated with the game IDs, one or
more worker threads, which request and parse the individual game pages,
are created depending on the preferences.
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Collecting Game Data

The worker threads that are responsible for collecting the general game
information, pop game IDs from the queue and create the corresponding
game URL of the format https://store.steampowered.com/app/xxxxxx/, where
the xxxxxx is replaced with the game ID. Having a URL, a worker requests
the corresponding HTML. In the case of games with mature content, one
problem is that a redirect to an age-check page happens. To avoid this
behavior, a cookie with the name birthtime and a UTC encoded birth data
(oth of January, 1996) as value, is sent along with the request. The attributes
shown in Figure 4.6 are requested via XPath or CSS selectors'®, where the
names reflect the names of the value in the database table applications. The
extracted values are stored in an object, which is added to the result list
that is shared between the workers and their common parent. If a worker
thread has finished a job, it tries to pop a job from the queue again. If the
queue is empty, a signal is emitted to notify the parent that the thread has
finished. If all worker threads have finished, the result list is complete and
consequently, all entries are stored in the database.

4.4.2. Collecting Reviews

After the IDs and game data associated with a project have been collected,
the user can collect the corresponding reviews of the games.

View

The view visualized in Figure 4.7 looks similar to the view for collecting
the IDs and general game data. The main difference concerns the settings
frame. It shows a combo box that allows selecting the project for which
the reviews should be collected. If the checkbox "Enable Crawl from" is
checked, a date-edit widget appears for setting the start date. Reviews that
were written before the entered date are neglected and are not collected if
the review collection task is executed. However, this option only exists if the

Thttps:/ /docs.scrapy.org/en/latest/topics/selectors.html
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Figure 4.7.: View for collecting reviews.

reviews are sorted by helpfulness, i.e., the filter type "Review helpfulness" is
used. Moreover, the right sidebar allows narrowing the reviews to specific
languages and a purchase type. The latter one defines if the author who
wrote the review has paid for the game on Steam. When a task is executed,
a task view is added to the content frame. The task view has control buttons
to control the execution of the task, i.e., controls to pause, cancel, resume,
or close a task. Each game has a separate progress bar indicating what
percentage of reviews of a game have already been collected.
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Parameter Description

tilter The parameter defines the sorting of the results. The al-
lowed values are recent (sort by creation time), updated
(sort by updated time), and all (sort by helpfulness).

language The parameter allows narrowing the reviews to certain
languages. The parameter value is a comma-separated
string of API language codes ** that should be consid-
ered. The parameter value all defines that all reviews
should be responded.

day_range The parameter defines how many days to look into
the past. This parameter is only applicable for the filter
parameter with the value all.

cursor The results of a GET request are returned in chunks
of 20 to 100 reviews depending on the num_per_pages
parameter. The value of the start cursor is *. Each
response contains the cursor for the next chunk. To
correctly use the cursor, its value must be URL en-
coded.

review_type The parameter defines which types of reviews should
be collected. The allowed values are positive, negative,
and all. In the case of our application, currently only
the value all is supported.

purchase_type | The parameter defines if all reviews (all - default), only
reviews written by individuals who did not pay for the
game (non_steam_purchase), or only reviews written by
individuals who paid for game (steam), are considered.

num_per_pages | The parameter defines how many reviews should be
returned per GET request. The default value is 20 and
the maximum allowed value is 100.

Table 4.2.: URL parameter description for queuing reviews via the Steam Web API (modi-
fied from Valve (2021¢)).
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Steam API - Get User Reviews

For collecting the reviews, a public method of the Steam Web API'? is
utilized, where the reviews can be collected via HTTP GET requests. The
basic URL has the format store.steampowered.com/appreviews/xxxxx?json=1,
where the xxxxx has to be replaced with the game ID. The parameter json
with the value 1 defines that the result should be JSON encoded. A list
of further parameters, with a description and allowed parameter values,
is provided in Table 4.2. As can be observed, there is a strong connection
between the right sidebar of the view and the URL parameters. However, the
checkbox or radiobutton names do not directly correspond to the parameter
values. Instead, more understandable names are used to make it easier for
the user to understand their meaning. In the case of the language checkboxes,
the API language codes are replaced with the complete language name. To
map the checkboxes to the corresponding parameter values, a dictionary
that maps the names of the checkboxes to the parameter values is created.
When the review collection task is executed, a dictionary with the parameter
name as key and the parameter value as value, is generated and passed to
the MVC component that reflects the new task. Similarly, to the process for
collecting game IDs and general game data, the game IDs that are connected
with the selected project are pushed onto a job queue, and worker threads
are utilized to collect the reviews. The worker threads pop a game id from
the queue and create the request URL taking the URL parameters from
the user selection into account. The URL parameter num_per_page is set
to the maximum (100) for each request. The parameter cursor of the first
request for collecting the reviews of a game is set to *. Along with the review
results, the response delivers a query summary with information about
the review score (rating of the game), and the number of reviews (positive,
negative, total). The results are parsed and each review result is stored in
a class object and added to the local result list. As mentioned in Table 4.2,
the cursor to the next results chunk is part of the current response. As a
result, the cursor parameter value of the request URL is modified and the
next results are requested via an HTTP GET request. This is done until no
more results are available. This might be the case if the response contains
zero results. However, it turned out that the response sometimes contains

https:/ /partner.steamgames.com/doc/store/ getreviews
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zero reviews, although there should be more reviews available. Performing
the same request again solves the problem. Therefore, an empty review
list in the response is insufficient as a termination condition. However, the
total_reviews value of the query summary allows the definition of a valid
termination condition. Consequently, it is checked if the number of collected
reviews matches the total number of reviews. If this is the case, the result
list containing the collected reviews of the currently handled game ID as
well as the corresponding review summary are stored in the database. As a
result, the worker thread is free to execute the next job from the queue.

Having game data and (optionally) reviews stored in the SQLite database,
the user can analyze the data. However, before going into detail, how the
general or a custom analysis is performed in our tool, it is essential to
understand how data is visualized.

4.5. Data Visualization

As previously mentioned, each analysis task is associated with a chart or
table. To keep the business logic separated from the presentation, a model
and view are created for each analysis task. When a task is executed, the
model is updated, and afterward, an update of the view is triggered. At the
current state, our tool supports bar charts, grouped bar charts, line charts,
and overlapping histograms.

4.5.1. Chart Models

As can be seen in the UML class diagram (Figure 4.8), the chart models
have a common base class from which they inherit variables and methods.
The base class ChartModel is an abstract class with two abstract methods
that have to be overwritten. The abstract method update is public and has
the purpose to update the model based on the current values of the vari-
ables sql_statement, preprocessing_function, python_preprocessing_enabled and
python_preprocessing_code. The sql_statement stores the SQL Select statement
as a string, where the result of a request must fulfill certain characteristics
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ChartModel

-title: str

eIl i QAbstractTableModel
-y_label: str

-x_label_orientation: Orientation

-chart_type: ChartType ?

-chart_id: int
-sql_statemgnt: str ) TableModel
-preprocessing_function: Callable

-python_preprocesssing_enabled: bool _data: list
-python_preprocessing_code: str _header: list
-x_values: list

{override} + data(index: QModellndex, role: int): Any

-y_values: list {override} + rowCount(parent: QModelindex): int
+update() {override} + columnCount(parent: QModelIndex): int
+get_json_obj() {override} + headerData(section: int, orientation:

- check_sql_result(expected_number_of_columns: int, expected_types: Qt.Orientation, role: int): Any

list[type], sql_result: list) + update(data_handler, sql_statement: str)

- execute_python() +get_data_for_csv(): list

- standard_preprocessing()
- standard_preprocessing_with_months()
- standard_preprocessing_with_stdev()

BarChartModel OverlappingHistogramChartModel TableChartModel
-bar_labels_enabled: bool -num_bins: int -table_model: TableModel
-bar_label_orientation: Orientation -labels: list {override} + update()
{override} + update() {override} + update() {override} + get_json_obj(): dict
{override} + get_json_obj(): dict {override} + get_json_obj(): dict

LineChartModel GroupedBarChartModel
{override} + update() -labels: list
{override} + get_json_obj(): dict -bar_labels_enabled: bool

-bar_label_orientation: Orientation

{override} + update()

{override} + get_json_obj(): dict

{override} - standard_preprocessing()

{override} - standard_preprocessing_with_stdev()

Figure 4.8.: UML class diagram of chart models.
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depending on the chart type and pre-processing function. The characteristics
concern the column count and the column data types. To check if the SQL
result is valid, the base class method check_sql_result is implemented. It takes
the expected number of columns, a list of lists specifying the supported data
types per column, and the SQL result as arguments. If the SQL result does
not fulfill the characteristics, an error is thrown. If the update method is called,
at first the SQL Select statement is executed and afterward the function
preprocessing_function is called, which can be either standard_preprocessing,
standard_preprocessing_with_months or standard_preprocessing_with_stdev. In
the case of standard_preprocessing of the base class, the expected column
count of the SQL result is two. The first column corresponds to the x-values
and the second one to the y-values of a chart. In the function, the validity of
the SQL result is checked, and the x-values and y-values are extracted. On
the other hand, standard_preprocessing_with_months expects three columns.
The first column corresponds to years, the second to months in form of
integer values between one and twelve, and the third column to the y-values.
The values of the first two columns are concatenated with a space delim-
iter and form the x-values. The standard_preprocessing_with_stdev function
is similar to the standard_preprocessing function with the difference that it
expects three columns, where the third column represents the standard
deviation values and the second column represents mean values. The first
column values are stored in the variable x_values, the second column values
in variable y_values and the third column values are converted to variance
values and are stored in the variable variances. In the case of the grouped bar
chart model, the pre-processing functions are overwritten as an additional
column is required to represent the label of a bar.

4.5.2. Table Model

However, the model-view implementation of the table differs from the other
ones as it makes use of Qt's QAbstractTableModel*3 and QTableView'* for
visualizing tables. The TableChartModel has a class member called table_model,
which is of the type TableModel and is automatic initialized when an object

Bhttps://doc.qt.io/qtforpython-5/PySide2/QtCore/QAbstractTableModel.html
Hhttps://doc.qt.io/qt-5/qtableview.html
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is created. The TableModel is responsible for providing the data that will
be displayed by the view. It is derived from QAbstractTableModel and must
implement at least the methods rowCount, columnCount and data. The data
method returns the data at a specific index (row, column) and the method
headerData returns the header of a row or column at a specific index. The
TableModel further implements a method get_data_for_csv which has the
purpose to return a tabulator-separated CSV representation of the data in
form of a string. In contrast to the other chart models classes, the table model
class does not support pre-processing functions. Instead the update method
handles the complete process for updating the corresponding model.

4.5.3. Dynamic Python Code

An advanced feature of our tool is that the SQL results can be modified via
Python scripts. If the python_preprocessing_enabled variable has the boolean
value True, the responsible method execute_python is called immediately
after the SQL Select statement has been executed. The Python code stored
in python_preprocessing_code is executed in a separate process. The reason for
this is to keep the execution completely separate from the implementation
of the tool itself. To communicate with the child process, a shared dictionary
is created. This dictionary is used to pass the SQL result to the child process,
which compiles and executes the Python code. To allow the Python code to
access the SQL result, a mapping object is created in form of a dictionary.
This dictionary is used to define which values should be accessible by the
executed code and is passed as an argument to the exec function. A code
excerpt of the implementation is shown in Listing 4.5. The Manager class as
well as the Process class are part of the multiprocessor™> library, a standard
Python library.

@staticmethod
- def execute_python_in_process(m_d, python_preprocessing_code):
compiled_code = compile(python_preprocessing_code, °’
py_custom_script’, ’exec’)

local _dict = dict ()
local_dict[’values’] = m_d[’values’]

Shttps:/ /docs.python.org/3/library /multiprocessing. html
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try:

exec (compiled_code, globals(), local_dict)
except Exception as e:

m_d[’err’] = e

m_d[’values’] = local_dict[’values’]

def execute_python(self):
if not self.python_preprocessing_enabled:
return

manager = Manager ()
m_d = manager.dict ()
m_d[’values’] = self.latest_sql_result

process = Process(target=self.execute_python_in_process, args
=(m_d, self.python_preprocessing_code))

process.start ()

process. join ()

""" Error handling is not shown as part of this excerpt"""

self.latest_sql_result = m_d[’values’]

Listing 4.5: Code excerpt for executing dynamic Python code in a separate process.

4.5.4. Chart Views

Each chart model class shown in Figure 4.8 has a corresponding view class in
Figure 4.9. For the charts, the plotting library Matplotlib*® is utilized, which
provides a wide range of highly customizable plots. Moreover, the plots are
easily integrable into a user interface created with PyQts. As can be seen in
Figure 4.9, the ChartCanuvas is derived from FigureCanvasQTAgg which is a
canvas object and behaves like any other Qt widget. In the constructor of
the ChartCanvas a Matplotlib figure with axes is created, where the figure is
passed to the constructor of its base class. The ChartCanuvas is the base class
of the individual chart canvases (views). Each derived class has a method
update_canvas_from_model which resets the figure and draws the chart with

©https:/ /matplotlib.org /
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matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg

ChartCanvas

-fig: Figure
-ax: Axes
-chart_type: ChartType

+ update_canvas_from_model(model: ChartModel)

i

OverlappingHistogramChartCanvas BarChartCanvas

{override} + update_canvas_from_model(model) {override} + update_canvas_from_model(model)

GroupedBarChartCanvas LinearChartCanvas

{override} + update_canvas_from_model(model) {override} + update_canvas_from_model(model)

QTableView

+ setModel(model: QAbstractTableModel)

[F TableChartView

TableView +to_csv_button: QPushButton
— -table_model: TableModel

{override} keyPressEvent(event: QKeyEvent) -table_view: TableView

+setModel(model: TableChartModel)

Figure 4.9.: UML class diagram of chart views.
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Figure 4.10.: Chart examples.

the respective chart model as input. One example for each chart type is
visualized in Figure 4.10.

Matplotlib Navigation Toolbar

The Matplotlib library provides the possibility to add a navigation toolbar
widget in PyQt5, which allows changing different properties of the chart con-
cerning the axes labels, axes scaling, title, and label position. Furthermore,
the widget has a button for zooming into the chart and a button for moving
the content of the chart. Another button allows saving the chart to an image
file. If the save button is clicked, a save file dialog is opened, which enables
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the user to set the name and path, where the image should be saved. To
add the toolbar, from matplotlib.backends.backend_qt5agg.NavigationToolbar2QT
must be imported. The constructor of NavigationToolbar2QT takes two pa-
rameters, a Matplotlib canvas and a parent widget like a QFrame.

4.5.5. Table View

The view for the table is built using Qt’s QTableView widget, which has a
spreadsheet-like look and capabilities (Fitzpatrick, 2020). The class provides
a method for setting the model that contains the data. The model must be
an object of a class that is derived from QAbstractTableModel like described
in Subsection 4.5.2. The TableView class shown in Figure 4.9 is derived from
QTableView to allow adding additional functionalities. TableChartView class
has a variable table_view of type TableView which is created when an object
is created. Furthermore, the class has a variable table_model of type Table-
Model, which can be set via the class method setModel. The method takes an
TableChartModel as input that stores the required TableModel object. A refer-
ence to this object is stored in the variable table_model. The TableChartView
itself is derived from Qt’s frame widget QFrame. On initiate, the class sets
the layout of the frame and adds the widgets that should be contained in
the frame. These widgets are a button for converting the table content to a
CSV file, and the TableView widget.

A QTableView widget allows selecting multiple cells like in other spreadsheet
applications. To allow copying the selected content, the method keyPressEvent
is overwritten. If the key event matches the copy shortcut of the operating
system (Windows: Crtl + C), the selected cell indices are requested and a
string is created, where the selected cells in the same row are tabulator-
separated and the rows are newline-separated. This allows pasting the
content directly into spreadsheet applications like Microsoft Excel.
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4.6. General Data Analysis

The previous section details how data can be visualized via charts or tables
but does not describe the integration in the tool. The tool has a function-
ality for performing general analysis, where predefined charts are created
automatically for the selected project.

4.6.1. View

The general analysis view visualized in Figure 4.11 corresponds to the
third point in the menu sidebar. The settings frame, i.e., the right sidebar,
has a combo box for selecting the project for which the general analysis
tasks should be executed. Moreover, for time-based tasks, the output of
the charts can be restricted to a time range defined by the two line-edit
widgets below the project name combo box. As previously mentioned, each
chart is associated with exactly one task. Each task is further assigned to
one of the four categories General Analysis, Genre-Based Analysis, Tug-Based
Analysis, or Game-Detail-Based Analysis. In the view, each category can be
disabled or enabled via a separate checkbox. Tasks that are part of a disabled
category are neither executed nor visualized. Except for tasks that are part
of the General Analysis category, the output of the tasks can be restricted to
specific genres, tags, and game area details via checkboxes. A Matplotlib
chart resulting from an execution is encapsulated in a frame together with a
navigation toolbar. All frames are arranged in a vertical layout.

4.6.2. Tasks

The properties of each task are predefined, which is done by creating
a chart model per task at the time when the model associated with the
general analysis is initialized. Each chart model is given a hard-coded 1D
for identification. A dictionary _chart_id_model_dict, which is a member
of the general analysis model, maps the ID to the generated model. The
Listing 4.6 shows the creation of the chart model of the chart visualized in
Figure 4.11.
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Figure 4.11.: View for general data analysis.
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> num_releases_per_year = BarChartModel (title=’Number of Releases
per Year’, x_label=’Year’, y_label=’# of Releases’,
chart_id=NUM_OF_RELEASES_PER_YEAR)

self._chart_id_chart_model_dict [NUM_OF_RELEASES_PER_YEAR] =
num_releases_per_year

Listing 4.6: Creation of a predefined chart model.

To assign a chart to a category, another dictionary CHART_GROUP_DICT
exists, where a key is a string representing the category and the value is a list
containing the associated IDs of the assigned charts. To change the category
membership, only the dictionary has to be manipulated. The Table 4.3 lists
the current predefined charts that are available and gives information about
their chart type and category. A description of the charts is not provided as
the title already provides a good explanation.

4.6.3. Execution

When the tasks are executed via a click on the RUN button, the chart models
are updated. The update is done by a set of worker threads. The threads
get the project name, a queue of jobs, and the current user preferences as
input. The job queue is a simple list that contains the chart models that
need to be updated. Which chart models are contained in the list depends
on the checked categories. The created threads pop and execute a job from
the queue in a loop until there are no more jobs left. The threads have a
method called __update_chart(chart_model: ChartModel). Depending on the
currently handled chart model’s ID, the method calls another method of
the class SQLCreator that returns a SQL Select statement as a string. As
input, the different methods require specific parameters like the project
name, the set time range, or a list of selected genres, tags, or game area
details depending on what is necessary to form the SQL Select statement to
obtain the desired data. Having the SQL Select statement, the chart model
is updated as mentioned in Section 4.5.1.
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Title Type | Cat.
Distribution of Steam Ratings B GA
Character Count Comparison of Positive and Negative Reviews H GA
Number of Releases per Year B GA
Number of Releases per Month B GA
Mean Ratio over Months B GA
Mean Ratio over Years B GA
Mean Ratio over Years L GA
Average Character Count over Years - All Reviews B GA
Average Character Count over Years - Positive Reviews B GA
Average Character Count over Years - Negative Reviews B GA
Average Character Count over Months - All Reviews B GA
Average Character Count over Months - Positive Reviews B GA
Average Character Count over Months - Negative Reviews B GA
Number of Games per Genre B GBA
Mean Ratio of Games per Genre B GBA
Number of Releases (Games) per Genre and Year GB GBA
Number of Games per Genre with Respect to Tags GB GBA
Number of Games per Genre with Respect to Game Area Details | GB GBA
Number of Games per Tag B TBA
Mean Ratio of Games per Tag B TBA
Number of Releases (Games) per Tag and Year GB TBA
Number of Games per Tag with Respect to Genres GB TBA
Number of Games per Tag with Respect to Game Area Details GB TBA
Number of Games per Game Area Detail B GDBA
Mean Ratio of Games per Game Area Detail B GDBA
Number of Releases (Games) per Game Area Detail and Year GB | GDBA
Number of Games per Game Area Detail with Respect to Genres | GB | GDBA
Number of Games per Game Area Detail with Respect to Tags GB | GDBA

Table 4.3.: Description of general analysis charts. The type column defines if the chart
is a bar chart (B), a grouped bar chart (GB), a line chart (L), or a histogram
(H). The category column defines if the chart is part of the General-Analysis
(GA), Genre-Based Analysis (GBA), Tag-Based Analysis (TBA) or Game-Detail-Based
Analysis (GDBA)
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Figure 4.12.: View for custom data analysis.

4.7. Custom Data Analysis

While the previous section describes the implementation to run an analysis
that outputs a set of predefined charts, this section discusses the implemen-
tation that allows users to generate custom tasks via SQL Select statements,
whose result can be visualized via charts or tables.
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4.7.1. View

The view shown in Figure 4.12 is associated with the fourth point in the
menu sidebar. The right sidebar has a button for running the custom tasks.
Furthermore, it has buttons for saving and opening self-defined tasks. More-
over, it has a button to add a custom task. When the button is clicked, a
separate dialog opens, which allows configuring the task. When a task is
added, it is displayed in form of a custom button in the right sidebar. A
task button encapsulates an image representing the type of task (e.g., bar
chart, table, etc.), the task title, and the task ID. In addition, each task button
has a context menu, which opens on a right-mouse click on the task button.
The context menu has buttons for activating, deactivating, or deleting a
task. The area that contains the charts and tables is similar to the one from
Figure 4.11, and only differs in aspects that cannot be observed by users.

Task Dialog View

The dialog that opens on a mouse click on the button for adding a task,
is visualized in Figure 4.13. It encapsulates a frame with a form layout
and general dialog buttons. The form layout has different fields for con-
figuring a task. Depending on the currently selected chart type, more or
fewer fields are available. The fields are automatically updated when the
chart type is changed. In general, the available fields reflect the config-
urable variables/properties of the respective chart model or table model in
Figure 4.8.

4.7.2. Task Creation

When a task is created or updated via the dialog button Apply, a chart
model of the selected subclass is initialized using the data from the dialog.
Furthermore, each newly created chart model is given a unique ID. The
model is added to a dictionary using its ID as the key.
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OperationalError: no such column: a.i (Task ID:
1152571438)
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Figure 4.14.: Error message example.

4.7.3. Execution

The execution works similar to the one of the general analysis. A queue of
jobs is created, which contains the chart models of the activated tasks. This
queue is processed by a set of threads. The difference to the general analysis
is that there are no predefined SQL Select statements. Instead, the custom
SQL Select statement, the user configured via the dialog, is used.

4.8. Error Handling

Recoverability is an essential non-functional requirement of our tool, mean-
ing that in the case of an error, the application should not crash. Instead,
the user should be informed about the error and if possible how to solve
it. Meaningful error indications are especially important when executing
custom tasks as a SQL Select statement or user-written Python code may
contain errors. Moreover, the response from a SQL Select statement may
not have enough columns to fit the data requirements of the selected chart
type. However, also collecting data may fail, for example, when the internet
connection is lost during the collection process. Errors are visualized via cus-
tom message dialog windows, where an example can be seen in Figure 4.14.
The message corresponds to an error, which occurred when a custom task
with an invalid SQL Select statement has been executed. It shows a short
description of the error and the ID of the failed task. A lot of tasks are
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handled by worker threads. However, only the main thread (user interface
thread) can issue messages dialog windows. As a result, errors are passed
from the worker threads to the main thread. This is done using custom
signals. In the case of an error, a signal is emitted containing a description
of the error and further information. A model that created a worker thread
always listens to their signals and propagates the received messages back
to its corresponding controller using custom signals. Finally, the controller
knows how to resolve the error and creates a message dialog window to
inform the user about the error.

4.9. Distribution

To distribute the application to the end users, the source code has to be
built and packaged together with the required resource files. To make the
packaging process easier, the Qt resource system'” is used, which allows
bundling resources like images or style sheets in Python files. The advantage
is that the resources are made independent of the different paths on different
platforms. It works by creating a .qrc file and defining which resources
should be loaded and bundled into a python file (Fitzpatrick, 2020). An
excerpt from our resource file can be seen in Listing 4.7. Each resource has
a prefix and is defined via an alias name. In the case of the saving icon with
the path ../Images/Icons/save.png is given the alias name save.png and has
the prefix icons. The purpose of the prefix is to group resources. To create
a Python file containing the data from the resources defined in the .qrc
tile, the command pyrccs my_resources.qrc -o my_resources.py is executed. The
created Python file with the name my_resources.py can be important like any
other Python file. To access a resource, the path to a resource is not required
any longer. Instead, it can be replaced with :/prefix/alias. Concerning the
saving icon, the resource path is :/icons/save.png.

<!DOCTYPE RCC>

> <RCC version="1.0">

<qresource prefix="icons">
<file alias="save.png">../Images/Icons/save.png</file>
<file alias="open.png">../Images/Icons/open.png</file>

https:/ /doc.qt.io/qt-5/resources.html
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6 </qresource>

7 <qresource prefix="qgss">

8 <file alias="menu_button.gss">../StyleSheets/menu_button.
css</file>

9 </qresource>

0 </RCC>

Listing 4.7: QRC file example.

To finally create a stand-alone executable, we use the package Pylnstaller'®
that supports PyQts5 applications. PyInstaller builds and bundles the source
code and resources into a single package, which means that the user does
not need to install a Python interpreter on the machine. Instead, a Python
interpreter and the required modules are part of the created package. For
correctly building and packaging our application, a .spec file is created,
which can be passed to Pylnstaller as a command-line argument. The file
contains instructions on how the applications should be built. Moreover, it
allows to define a desktop icon, exclude libraries to reduce the package size,
include additional resources which are not part of the resource system, and
give the application a name. When the .spec file has been executed with
PyInstaller via the command pyinstaller my_spec.spec, a distribution folder
containing the application executable is created automatically (Fitzpatrick,
2020). Finally, the whole distribution folder can be zipped and distributed
to the end-user. After the zipped file is unpacked, the application can be
started and should work out of the box.

4.10. Summary

This chapter provided deep insights into the implementation of the tool for
collecting and analyzing game data and reviews from the platform Steam.
It described the layout and style of the user interface and lists a set of
custom widgets. Concerning the layout, each main aspect of the application
was given a separate view, which can be switched via menu buttons. To
give the tool a modern look, a dark style from a third-party library was

Bhttps:/ /www.pyinstaller.org/
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chosen, and extended by additional elements. Moreover, custom widgets
were implemented for reusability and to fasten the development process.

For storing and associating the collected data, an SQLite database was set up
via an SQL schema. The database was built to support built-in mathematical
functions and have text-based search capabilities.

The next part described the architecture for collecting and analyzing data.
Simplified, it is a combination of the worker thread pattern and the HMVC
pattern. The implemented architecture allowed us to completely separate
the data models from their presentations. Furthermore, outsourcing specific
tasks to worker threads avoids that the user interface blocks while long-
running tasks are executed. Although the chosen architecture lead to a
heavy increase of the development time, it paid off, as it provided us with a
well to maintain code and a non-blocking user interface.

Another part of the chapter focused on the implementation for collecting
general game data and reviews from Steam. An in-tool configurator was
integrated that allows narrowing the data collection to a set of games
fulfilling specific characteristics. The procedure for collecting game IDs and
general game data is handled by a separate thread, where data is collected
by crawling the Steam search page and the individual game pages. To collect
reviews, the Steam Web API is utilized, which allows requesting reviews
for a specific game. To visualize the collected data, different chart model
and view classes as well as a table model and view class were created. The
model classes contain the business logic to request and prepare data for the
visualization via Matplotlib charts or PyQts tables. The view classes have
the actual implementation for presenting the data of the chart models and
are responsible for creating the user interface elements, i.e., the presentation
of the models.

The chart and table classes are used as part of the implementation for
performing general and custom analysis tasks. In the case of the general
analysis, predefined charts are created and updated on demand. In the case
of the custom analysis, a dialog was implemented that allows users to define
the properties of a chart or table and what data it should visualize.

As recoverability is an essential requirement of our application, one part
of the chapter had a look at error handling. The errors are visualized
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via message dialog windows that contain a meaningful description of the
erTor.

Finally, the last part provided a possibility to build and distribute the tool
to the user using the Python package Pylnstaller. Furthermore, it described
how resources like images or text files can be bundled to make resources
independent of the file location.
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In a currently ongoing study, we utilize the tool to investigate how the
Covid-19 pandemic influences the user’s decision to play Virtual Reality
games published on Steam. Furthermore, we analyze the impact of the
coronavirus on the written reviews and try to find connections to the virus.
To demonstrate the capabilities of our tool, we discuss one of the study’s
research questions. In particular, we discuss the research question "Do the
users write more VR game reviews during the pandemic?". To answer the
question, we collected game data and reviews of Virtual Reality games
available on Steam. A summary of the dataset can be seen in Table 5.1.

# of games 4241

# of reviews 386,705

review language(s) english

review type all (positive and negative)
purchase type all (free and non-free games)
retrieval date 1st June 2021

Steam search URL  https:/ /store.steampowered.com/search/?sort_by=Name_
ASCé&category1=998%2Cgg94&vrsupport=401

Table 5.1.: Dataset description.

To investigate the number of reviews written over time, two custom analysis
tasks were created. The first one visualizes the number of reviews over
years, and the second one the reviews over months. For both, a bar chart
was chosen as the chart type. For the monthly-based task, the corresponding
custom analysis dialog with the SQL Select statement is shown in Figure 5.1.
As can be seen, the conversion from the month value to the month name is
done in the SQL Select statement. Optionally, the same can be achieved by
manipulating the SQL result via Python.
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chart type:
abel orientation:
abel: Year + Month
y-label: # of Revie

method:

symbol:

L statement:
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Figure 5.1.: Custom analysis dialog for visualizing the number of written reviews over
months.
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Figure 5.2.: Number of written reviews over years.

Consequently, we present the current results of the research question with
visualizations that have been created with our implemented tool.

RQ1: Do the users write more reviews during the pandemic?

As can be seen in Figure 5.2 the number of reviews written in the year
2020 increased by approximately 94% compared to the year 2019. The year
2020 corresponds to the year in which the coronavirus mainly occurred.
Although a rise can also be detected in the previous years (~28%(2016-2017),
~16%(2017-2018), ~51%(2018-2019)), the change from 2019 to 2020 is much
higher. By looking at the figure, March 2020 stands out. By investigating
what is special about this month, we found out that a large number of
worldwide countries went into a national or localized lockdown starting
within March 2020 (BBC, 2020).

Although the study is still in an early stage, the tool has already proved
useful to collect and analyze data from Steam. So far, the tool has provided
us with a way to get a quick overview of the collected dataset. Furthermore,
the definition of a custom analysis inside the tool allowed us to answer the
discussed research question.
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To obtain feedback on our implemented tool, a first study with six domain
experts was conducted. The aim was to gather valuable information from
the criticisms and reactions of the participants and use the gained insights
to improve the tool. For the reason that the tool is supposed to be used by
game researchers with prior Computer Science knowledge, we decided to
restrict the study to participants that have Computer Science knowledge as
well. Moreover, we argue this decision by the fact that people, who do not
have any experience with a programming language or SQL, are not able to
exhaust the full potential of our tool without doing a lot of prior research.

Via the results of the study, we wanted to achieve the following points:

* Assess the usability of the tool.

* Assess the emotions participants have during the usage of the tool.
* Detect and rate the importance of missing tool features.

* Detect errors and bugs.

6.1. Procedure & Material

The study was conducted online. Beforehand the participants received a
unique identification number and a PDF file containing the instructions. We
allowed the participants to take the study at any time within a one-week
time range. The only limitation was that they had to announce their choice
beforehand, enabling us to be available for questions in the case of problems.
In the study, the participants had to perform several activities, starting
with downloading a zip file containing the tool and additional required
files from Google drive. In the course of the study, the participants had to
fill out three different questionnaires, namely the (1) pre-questionnaire, (2)
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tasks-questionnaire, and the (3) post-questionnaire, where the questions can
be found in the Appendix A. During the download, the participants could
already start filling out the pre-questionnaire.

6.1.1. Pre-Questionnaire

The purpose of the pre-questionnaire was to obtain general information
about the participants and their experience concerning computers, video
games, game distribution platforms, game analysis, and data analysis. Con-
cerning the knowledge in the usage of computer games and video games,
the participants had to rate their knowledge on a 5-point Likert scale be-
tween (1) strongly agree and (5) strongly disagree. For other experience-related
questions, yes-no questions were formulated. If the yes-option was selected,
the participants had to describe their experience in the form of an open
text.

6.1.2. Tasks-Questionnaire

Having the pre-questionnaire finished, the participants were instructed
to run the tool and familiarize themselves with it for about 5 minutes.
Next, they had to answer a set of questions in the tasks-questionnaire
with the help of the tool. The questionnaire was structured into three
question groups having the names Analysis, Custom Analysis, and Data
Collection, each focusing on another main functionality of the tool. To allow
performing a general or custom analysis within the tool, a dataset was
collected beforehand. The project associated with the dataset was given the
name example and contained game and review data of Virtual Reality games
available on Steam. In addition, at the beginning of each question group, a
short textual description of the functionality and further instructions were
provided.
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6.1.3. Post-Questionnaire

The last activity was to fill out the post-questionnaire, where the users had
to give feedback on the tool based on their perception while performing the
tasks of the tasks-questionnaire.

Overall Impression

First, the participants had to rate the tool on a 5-point Likert scale between
(1) not at all and (5) very much. In addition, they had to describe what
they liked about the tool in the form of an open text. Similarly, they had
to describe what they did not like. Furthermore, they were asked if they
observed any bugs in the system. If this was the case, they had to detail
their observation. Moreover, the participants were asked if they had any
problems or difficulties while solving the tasks of the tasks-questionnaire.

Features & Improvements

Another part of the questionnaire focused on missing features and po-
tential improvements. For a set of features, the participants had to rate if
they wanted to see them in a later release. For the rating, a 5-point Likert
Scale between (1) not at all and (5) very much, was used. Furthermore, the
participants could suggest features on their own via a textual description.
Similarly, the participants were encouraged to provide ideas for further
improvements.

Computer Emotion Scale (CES)

We measured the emotions of the participants while performing the tasks of
tasks-questionnaire using the computer emotion scale (CES) introduced by
Kay and Loverock (2008). Initially, it was created to assess users’ emotions
while learning new software. It consists of twelve feelings, which the users
have to rate depending on how long they felt the respective emotion. The
rating is a 4-point Likert scale with the values (0) None of the time, (1) Some

100



6. Evaluation

of the time, (2) Most of the time, and (3) All of the time. Each of the feelings
belongs to one of the four groups, happiness, sadness, anxiety, or anger, that
are evaluated.

System Usability Scale (SUS)

For assessing the usability of the tool, the system usability scale (SUS) from
Brooke (2020) was used. The SUS is known to be a quick and cheap solution
for the usability assessment of a system. It consists of ten items a user
has to rate on a 5-point Likert scale between (1) strongly disagree and (5)
strongly agree. For calculating the SUS score, the rating of each even item
is subtracted from the value 5. In contrast, the ratings of each odd item
is decreased by 1. The sum of the modified item ratings multiplied by 2.5
corresponds to the final SUS score. To evaluate the rating, we used the
interpretation of Bangor et al. (2009), who introduced an adjective scale,
which correlates well with the score of the SUS.

6.2. Participants

As previously mentioned, the study focused on participants with prior
Computer Science knowledge. As a result, all the participants rated their
computer knowledge very high. Each participant has a bachelor’s or mas-
ter’s degree in Computer Science. In total, six people (1 female, 5 male)
participated in the study. All have already heard of the game distribution
platform Steam and have already bought a game on it. In addition, half
of them have already written a review on Steam. Furthermore, half of the
participants have experience with collecting data from Steam, where one
noted that the Steam Web API was utilized for this purpose. However, only
two of the three participants have experience with analyzing the collected
data. Concerning data analysis not restricted to Steam, four participants
have experience, where all of them mentioned Python and its libraries as
the used technology.
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6.3. Results

The results of the questionnaires were evaluated in different aspects, starting
with the overall impression.

6.3.1. Overall Impression

The feedback on the tool was quite positive. The worst rating of the 5-point
Likert scale is 3, and the best 5 (M = 4.00, SD = 0.63). One positive feedback
statement that stands out is the appealing design of the graphical user
interface, which was explicitly mentioned by three of the six participants. In
addition, two participants value the configurability of the tool. Other positive
feedback concerns the tool’s capability to run tasks in the background
and the uncomplicated usage. However, one negative feedback was that it
takes some time to get used to the tool. Other negative feedback refers to
suggested improvements, missing features, or inconsistencies, discussed in
the next part.

6.3.2. Features & Improvements

As previously mentioned, the participants were asked to rate the impor-
tance of features that are not implemented so far based on the question, if
they wanted to see the feature in the next release of the tool. In total, the
participants had to rate seven features on a 5-point Likert scale between (1)
not at all and (5) very much. Table 6.1 shows the mean score and the standard
deviation for each feature. As can be seen, the in-tool documentation is the
most wanted feature, followed by a possibility to save all charts at once. The
feature that takes last place is an option to provide results in a text field in
which output, resulting from a custom analysis task, should be shown in
the form of a string.

In addition, the participants were encouraged to provide their own feature
suggestions and tool improvements. The following list provides a summary
of their suggestions:
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Feature Description Mean | SD
In-tool documentation 5.00 | 0.00
Possibility to save all charts and tables at once 4.50 | 0.55

Possibility to create custom chart designs inside the tool (e.g., | 3.83 | 1.47
contour chart)

Option to select which data should be collected from Steam (to | 3.67 | 1.37
save memory)

Possibility to change the visibility order of charts/tasks 3.33 | 1.03

Tabs to structure custom analysis tasks 3.17 | 1.17

Text-only output (result is converted to a string and visualized in | 2.33 | 1.21
a text field)

Table 6.1.: Rating results based on the users’ opinions on the usefulness of non-implemented
features. The corresponding question asked the users if they wanted the see the
feature in a later release of the tool. For the rating, a 5-point Likert scale between
(1) not at all and (5) very much was used.

¢ Additional checkboxes for selecting all genres, tags, or game area
details, at once.

¢ Option to switch the dark theme style of the tool to a light theme style.

¢ Possibility to debug the Python code entered in custom analysis di-
alogs.

* Visual feedback when a collection process finished.

Furthermore, the participants had to describe problems, difficulties, bugs,
and things they did not like about the tool in separate questions. Conse-
quently, we aggregated the information of the individual questions and
created the following list:

¢ The Ok button of the custom analysis dialog does not apply changes
like the Apply button. Instead, it behaves like the Cancel button.

¢ The initial size of the custom analysis dialog is too small.

* On 4k monitors, the right sidebar is too small, and the window cannot
be fully expanded.
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(b) Composition of feelings.

Figure 6.1.: CES results.
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6.3.3. Emotions

The emotion the participants claimed to feel the longest, is happiness (M =
1.88, SD = 0.72), followed by anger (M = 0.28, SD = 0.33), sadness (M = 0.17,
SD = 0.26), and anxiety (M = 0.125, SD = 0.21). The results are shown in the
form of a boxplot in Figure 6.1a. By converting the overall feelings to the
composition visualized in Figure 6.1b, with the assumption that a person
can only feel one feeling at a time, shows that the participants felt happy
most of the time. Investigating the three items that build the happiness
group (satisfaction, excitement, and curiosity), satisfaction (M = 2.17, SD =
0.75) was felt the longest, followed by curiosity (M = 1.83, SD = 1.17) and
excitement (M = 1.5, SD = 0.83). Concerning the individual emotions of
the angry group, none of the participants felt angry (M = o, SD = o), but
sometimes irritable (M = 0.5, SD = 0.55) or frustrated (M = 0.33, SD = 0.52).
Throughout the whole study, none of the participants felt angry, nervous,
anxious, or helpless at all.

6.3.4. Usability

The achieved mean score of the system usability scale was 77.08 (SD =
12.98). Figure 6.2 shows a visualization of the mean result and the standard
deviation and contains the adjective rating scales of Bangor et al. (2009).
According to the adjective scale, the tool has a good to excellent usability.
The worst individual SUS score is 65, which indicates an OK to good
usability. In contrast, the best individual SUS score is 100, which equals the
best imaginable usability with respect to the adjective scale.

6.3.5. Tasks Success Rate

As previously mentioned, the tasks-questionnaire was structured into three
question groups, namely Analysis, Custom Analysis, and Data Collection,
each focusing on another main functionality of the tool. The activities the
participants had to perform in the tool to be able to answer the questions
seemed to be of the appropriate difficulty. All the participants gave the
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Figure 6.2.: Visualization of the SUS with adjective rating lines of Bangor et al. (2009).

correct answer to all questions of the question groups Analysis, and Data
Collection. Concerning the Custom Analysis group, only one person answered
two questions incorrectly.

6.4. Discussion

The feedback of the participants was quite positive. The results of the
computer emotion scale show that the users felt happy most of the time.
Concerning the SUS, the mean score (M = 77.08, SD = 12.98) indicates good
to excellent usability. Furthermore, the tool was valued for its appealing
design and ability to execute tasks in the background. Moreover, they were
impressed by the configuration capabilities of the tool. Still, applying the
suggested improvements of the participants might further improve the
usability. Especially, adding checkboxes for selecting all genres, tags, or
game area details at once might have a big impact on the usability as
the majority of participants missed the feature in the tool. One bug or
inconsistency that was detected by two participants was that the Ok button
of the custom analysis dialog does not apply changes like the Apply button.
Instead, the button behaves like the Cancel button. The bug might have a
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negative impact on the users” emotions during using the tool as they might
have to perform the same actions several times before realizing the bug.

Three participants explicitly mentioned that the tool is easy to use. However,
all participants want to see an in-tool documentation in the next version
of the tool. The reason for this might be the high number of available
configuration options. Although the tool provides additional information
using tooltips, understanding all options without detailed documentation
or provided examples might not be feasible.

The study gave us a good opportunity to obtain feedback on the tool’s
main functionalities. We could derive a set of improvements and features
that might enhance the tool. Furthermore, we could determine bugs and
inconsistencies within the system.
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This chapter discusses the experience gathered during the creation of this
work. It is divided into three parts. The first focuses on the background
research, the second on the development, and the last one on the conducted
study.

7.1. Theory

The background research shows that data from Metacritic or Steam has
been exploited in different ways and to achieve various goals. The main
topics concern the helpfulness of reviews, review sentiment, the correlation
between different rating types, the influence of reviews on video game
success, the playability of video games, and recommendation systems. An
investigation of the studies revealed that the methodologies defined by
the authors are similar concerning the Steam data sources and the way
how the data is stored. Consequently, different approaches for collecting
and storing data from Steam were identified. Based on the research, we
chose the approach that was best suited for our tool. Furthermore, looking
at different analytic tools supplied us with ideas for designing our tool’s
analysis functionalities.

7.2. Development

For the development of our tool, we used the programming language
Python. The choice turned out to be the right one. Collecting game data
with the Scrapy library and the reviews with request library, a standard
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Python library, were easy to achieve. Moreover, the language proved to be
well suited for creating charts. Python is further easy to learn compared to
other languages like C++. As a result, the language was also a good choice
for the custom analysis functionality of the tool, where users can manipulate
and analyze data via Python.

The architecture helped us to make the tool efficient and its user inter-
face non-blocking when long-running tasks are executed. Furthermore, the
Hierarchical-Model-View-Controller (HMVC) pattern provided us with a
well maintainable project structure. The main reason is that we have a
complete separation between the business logic and the presentation of the
data. Thus, applying changes to the view can be done without affecting the
business logic. With the implementation of the HMVC pattern, we faced
the problem of an increased development time. However, it paid off as
the resulting codebase is well structured and well to maintain. In addition,
the worker thread pattern allows running analysis tasks or collection tasks
completely in the background. Consequently, users can perform several
activities in the tool at the same time. For example, collecting and analyzing
data can be done simultaneously. The biggest challenge was to implement
the message exchange of the worker threads with the user interface thread.
Especially errors needed to be handled correctly to avoid faulty application
states.

7.3. Evaluation

From the evaluation, we obtained valuable feedback on the current state
of our tool. The usability of the tool is deemed to be good to excellent.
Furthermore, the users felt happy most of the time while using the tool.
Still, the users provided us with ideas about additional or missing features
and improvements that might further enhance the tool. These features and
improvements are discussed in the following chapter.
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Although the results of the conducted study indicate good usability, further
work is necessary to get the best out of the tool. The evaluation revealed
improvements and missing features that can enhance the usability of the
tool or can have a positive impact on the feelings of the users. Thus, this
chapter gives an outline of the work done in the upcoming iteration of the
development cycle.

8.1. Improvements

The participants only suggested a minor number of improvements to en-
hance the tool. Within the tool, only a small number of bugs or misconcep-
tions were detected and described by the users.

8.1.1. Bug Fixes

One problem that occurred is that the OK button of the custom analysis
dialog does not work as expected. It should apply changes made in the
dialog like the Apply button and, in addition, close the dialog. However, the
OK button behaves like the Cancel button. The misconception can be fixed
by calling the same method that is called when the Apply button is clicked.
Still, fixing the bug might have a big impact on the tool’s usability, and
might lead to a decrease of negative feelings while the software is used.

Another problem that occurred is that some user interface elements are
too small on 4k monitors. Thus, more testing on monitors with different
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resolutions is necessary. The goal is to make the user interface completely
independent or responsive to a monitor’s resolution.

A further technical improvement that was not mentioned by any participant
is to make the tool more efficient via multiprocessing.

8.1.2. Multiprocessing

As mentioned in the design chapter, Python has the problem of the global in-
terpreter lock (GIL). This lock has the effect that only one instruction within
the same process is executed at a time. The GIL is released in specific cases
like when loading a web resource, reading a file, or accessing a database.
However, using multiple threads in the case of CPU-heavy tasks might be
less performant compared to a single-threaded environment. To overcome
the problem, multiprocessing is one possible solution. A separate process
is already utilized for executing user-written Python code. Nevertheless,
outsourcing more work to separate processes might further improve the per-
formance of the tool. However, the additional overhead of creating processes
might be worse than just running the work in the current thread. Thus, it is
necessary to compare the performance of the different approaches.

8.2. Tool Features

Aside from suggesting improvements, participants also had to rate the
importance of features that are not implemented so far, based on their
opinion. Furthermore, they were encouraged to suggest further features via
free text. Consequently, we discuss a subset of features that should be part
of the next version of the tool.

8.2.1. In-Tool Documentation

The highest rated feature was the in-tool documentation. One possibility to
add this feature is to create a static documentation written in HTML. The
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used GUI framework of our tool (PyQts) allows to display HTML content
via the QWebEngineView". One idea is to place an additional button in tool,
which opens a separate dialog that contains the HTML documentation. One
requirement is that the button should be easy to find.

8.2.2. Custom Chart Types

Another feature that achieved a high rating is a possibility to define custom
chart design inside the tool. One possible approach is to add an additional
menu point inside the tool. Inside the new view associated with the new
menu point, users should be able to create Matplotlib charts via Python by
following specific rules. After a new chart type has been created, it should
be possible to use it in the custom analysis dialog.

8.2.3. Data Selection

The feature that takes the fourth place in the ranking is an option to select
which data fields should be collected from Steam. The idea behinds this is
to avoid the storing of data that is not required by the user. One approach is
to implement a custom SQL table creator, where tables are created for each
individual project taking the selected data fields into account. For example,
if the user only wants to save the title of a game, the applications table should
only contain a field to store the game title.

8.2.4. Python Debugging

One feature that was suggested by a participant, is a possibility to debug the
Python code written in a custom analysis dialog. Our first step concerning
Python debugging will be to add a convenient way to access the output
written to the stdout, stderr descriptors. This can be achieved by adding an
additional text area per task, where Python code is used. A possible position

Thttps:/ /doc.qt.io/qt-5/qwebengineview.html
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of the text area would be directly below the visualization of the individual
charts or tables in the custom analysis view.

8.2.5. All Checkboxes

One feature that most of the participants missed within the tool is the option
to select all genres, tags, or game area details checkboxes at once in the
view associated with the general analysis. They mentioned that the feature
would save them a lot of time as they would not have to click each checkbox
individually. As a result, this feature will be part of the next version of the
tool.

8.3. User Study

At the end of the upcoming review cycle, we plan to conduct a further user
study with more participants (approx. 30). In the first iteration, the small
number of six participants was appropriate as the main aim was to detect
the main issues in the system. In the case of our tool, the majority of the
participants wrote about the missing all checkboxes for selecting all genres,
tags, or game area details. Consequently, the participants might not have
mentioned other problems they observed while using the system. However,
having the main problems fixed, it makes sense to increase the number of
participants to assess the tool’s usability with higher accuracy. A higher
number of participants might also help us detect further improvements or
other problems within the software.
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A rapid growth of the video game industry over the last few years can
be observed. Game distribution platforms like Steam allow buying and
downloading games online. Furthermore, Steam and other platforms like
Metacritic enable people to rate games with an optional textual description.
As a result, rising interest among game researchers and developers in
video game distribution and review platforms can be detected. The data
of Steam has been exploited using different approaches to achieve various
goals. However, an overlap of the researchers” methodologies concerning
the collection and the analysis of data exists.

This thesis introduced a tool that should ease the process for collecting
and analyzing data from Steam. It presented a design and concept defining
the objective, user target group, requirements, and logical architecture.
Moreover, a detailed implementation was provided that gives deep insights
into the different functionalities added to the tool. Support for collecting
general game data and reviews was implemented, where the data can
be additionally narrowed based on specific attributes. For analyzing the
collected data, analytic capabilities were added enabling users to obtain a
general overview of a dataset or to create custom analysis via SQL Select
queries or Python code on their own.

An example use case in the form of an ongoing study was described, where
the tool was utilized for collecting and analyzing data. The tool proved
useful and satisfied all our needs. Furthermore, a small user study was
conducted to get feedback on the tool and detect problems or inconsistencies
within the system. In addition, the tool’s usability and users” emotions while
using the tool were assessed as part of the study. The results indicate good
to excellent usability and show that the participants felt happy most of the
time. Concerning features and improvements, a lot of derivations could be

114



9. Conclusion

made from the results. Overall the participants liked the tool and would
use it in the case they want to collect and analyze data from the game
distribution platform Steam.

To summarize, it is crucial for game developers and game researchers to
understand the dynamics and settings of the video game industry. Thus, we
believe that our tool is one step in the right direction as it allows obtaining
deep insights into games and player behavior.
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Appendix A.

Questionnaires

A.1l. Pre-Questionnaire

Personal Information

# | Question Answer Type

1 | Please provide your identification number. Short free text

2 | Gender Female, Male, Other

3 | Profession Student, Employed, Unem-

ployed or Other

4 | Field of Study Short free text

5 | Job title Short free text

6 | Highest level of education Short free text
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General Questions

# | Question Answer Type
1 | I have heard of the game distribution platform | Yes/No
Steam.
2 | I am an expert in usage of computers. 1 not at all - 5 fully agree
3 | I am an expert in usage of video games. 1 not at all - 5 fully agree
4 | I am familiar with the game distribution platform | 1 not at all - 5 fully agree
Steam.
5 | I'have already bought a game on Steam. Yes/No
6 | I have already written a review on a game distribu- | Yes/No
tion or review platform.
7 I have already written a review on Steam. Yes/No
8 | I have experience on collecting game or review data | Yes/No
from Steam.
9 | Concerning the previous question, describe your | Long free text
experience.
10 | I already have experience on analyzing game or | Yes/No
review data collected from Steam.
11 | Concerning the previous question, describe your | Long free text
experience.
12 | Do you have any other experience with data analy- | Yes/No
sis?
13 | Concerning the previous question, describe your | Long free text
experience.
14 | Concerning the previous question, which tools did | Long free text
you use?
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A.2. Tasks-Questionnaire

A.2.1. Analysis

# | Question Answer Type

1 | How many games have the Steam rating "Positive"? Number-only text

2 | How many games were released in the year 2019? Number-only text

3 | Which year (between 2017 and 2020) has the highest aver- | Number-only text
age character count of all (positive + negative) reviews?

4 | How many games have the genre "Adventure" assigned? | Number-only text

5 | Which genre is most often assigned to games? Short free text

6 | What is the name of the Head-Mounted Display (HMD) | Short free text
that supports the most games?

7 | How many games with the genre "Indie" are supported by | Number-only text
"Oculus Rift"?
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A.2.2. Custom Analysis

# | Question Answer Type

1 | How many reviews of the project with the name "example" | Number-only text
were written in the year 2020?

2 | How many reviews of the project with the name "example" | Number-only text
were written in the month April 20207

3 | How many games of the project with the name "example" | Number-only text
have > 10 reviews?

4 | How many games does the project "example" have? Number-only text

5 | The chart with the ID: 256264100 has two errors and is | Number-only text
currently deactivated. Try to fix it and report the number
of reviews for the genre "Indie".

6 | The task with the ID: 6653165 has the same SQL Select | Number-only text
statement as the first one (ID: 115257198). However, each
value of the "Number of Reviews" value should be multi-
plied by 9 via Python. If you are not familiar with Python
you can skip the question. In this case, write -1 as the
answer. If you are familiar with Python but cannot solve
the task, write -2 as the answer. If you could solve it, write
the new "Number of Reviews" value for the year 2017 as
the answer. Give yourself a time limit of 10 minutes.

A.2.3. Data Collection

# | Question Answer Type
1 | What is the Steam link of your created project? Short free text
2 | What is the review filter type of your project? Short free text
3 | What is the review language of your project? Short free text
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A.3. Post-Questionnaire

A.3.1. Overall Impression

# Question Answer Type
1 Please provide your identification number. Short free text
2 How did you like the tool? 1 not at all - 5 very much
3 What did you like? Long free text
4 What did you not like? Long free text
5 Did you observe any bugs? Yes/No
6 Concerning the question above, provide a description of your | Long free text
observed bugs.
7 Did you have any problems while solving the tasks? Yes/No
8 Concerning the question above, describe your problems. Long free text
9 Did you have any problems or difficulties while solving the | Yes/No
tasks?
10 Concerning the question above, describe your problems and dif- | Long free text
ficulties.
11 Do you want to see the following features in a later release of | Sub-question Array
the tool?
11.1 | Tabs to structure custom analysis tasks 1 not at all - 5 very much
11.2 | Possibility to create custom chart designs inside the tool (e.g., | 1 not at all - 5 very much
contour chart)
11.3 | Option to select which data should be collected from Steam (to | 1 not at all - 5 very much
save memory)
11.4 | Possibility to save all charts and tables at once 1 not at all - 5 very much
11.5 | Possibility to change the visibility order of charts/tasks 1 not at all - 5 very much
11.6 | In-tool documentation 1 not at all - 5 very much
11.7 | Text-only output (SQL result or Python result is converted to a | 1 not at all - 5 very much
string and visualized in a text-field)
12 Do you have any other suggestions of features that you want to | Yes/No
see in a later release of the tool?
13 Concerning the question above, describe your feature sugges- | Long free text
tions.
14 Would you use the tool to study Steam data and reviews? Yes/No
15 Provide suggestions to improve the tool (e.g., user interface, de- | Long free text
sign, etc.).
16 Describe potential use cases the tool might prove useful. Long free text
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A.3.2.

System Usability Scale (Brooke et al., 1996) (1
strongly disagree - 5 strongly agree)

H*

Item

I think that I would like to use this system frequently

I found the system unnecessarily complex

I thought the system was easy to use

AW |N|R

I think that I would need the support of a technical person to be able to
use this system

U1

I found the various functions in the system were well integrated

I thought there was too much inconsistency in the system

I would imagine that most people would learn to use this system very
quickly

I found the system very cumbersome to use

I felt very confident using the system

10

I needed to learn a lot of things before I could get going with this system

A.3.3.

Computer Emotion Scale (Kay & Loverock, 2008) (0
none of the time- 3 all of the time)

# | Item Group

1 | Satisfied Happiness
2 | Disheartened | Sadness

3 | Anxious Anxiety

4 | Irritable Anger

5 | Excited Happiness
6 | Dispirited Sadness

7 | Insecure Anxiety

8 | Frustrated Anger

9 | Curious Happiness
10 | Helpless Anxiety

11 | Nervous Anxiety

12 | Angry Anger
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