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die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in tugrazonline hochgeladene
Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

vii





Acknowledgments

I would like to take this opportunity to thank everyone who supported me
during my master’s thesis.

My special thanks go to my supervisor, Christian Gütl, for his tireless
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Abstract

Automatic Text Summarization (ATS) is a growing field in Natural Language
Processing (NLP) due to rapidly expanding text data such as scientific publi-
cations. Manual text summarization is a labor-intensive and time-consuming
process that demands significant effort and resources. Consequently, ATS has
developed within the field of NLP, recognized as one of its most demanding
tasks.

This work focuses on summarizing scientific articles, which present sev-
eral significant challenges. Firstly, the use of specialized terminology and
jargon can make it difficult for summarization algorithms to accurately
interpret and condense the content. Secondly, the often extensive length
of scientific texts requires the summarization system to effectively handle
and process large volumes of information while maintaining coherence and
relevance. Additionally, scientific articles typically contain complex struc-
tures, including numerous citations, figures, and references, which further
complicates the summarization process. These challenges necessitate ad-
vanced techniques and approaches to ensure the production of high-quality,
meaningful summaries.

To produce summaries that resemble human-written texts, we employ
state-of-the-art transformer models for abstractive summarization. To ad-
dress the transformer’s disadvantage of quadratic computational cost with
increasing input sequence length, we compare an efficient, low-resource,
long-document transformer approach called SLED with models having
smaller input sizes, investigating the advantages of such a method. Addi-
tionally, we examine important aspects such as length or facet controllability
and sentence traceability. For this purpose, we used existing and newly
scraped attribute-oriented scientific datasets written by human experts. We
trained the SLED models and evaluated them in terms of performance and
text quality.

We found that for longer and more comprehensive summaries, it is ben-
eficial to take the whole document into account, increasing by up to 1.98

in ROUGE1 on certain summary lengths. Additionally, the informativeness
and quality of the text generated by relatively small LLMs are comparable
to those of models with a larger number of parameters for this specific task
(86.64 versus 90.00 overall score).
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Kurzfassung

Automatische Textzusammenfassung (ATS) ist ein wachsendes Gebiet in
der Verarbeitung natürlicher Sprache (NLP), das durch die schnell wach-
sende Menge an Textdaten, wie wissenschaftliche Veröffentlichungen, vo-
rangetrieben wird. Manuelle Textzusammenfassung ist ein arbeitsinten-
siver und zeitaufwändiger Prozess, der erhebliche Anstrengungen und
Ressourcen erfordert. Folglich hat sich ATS innerhalb des NLP-Bereichs
entwickelt und wird als eine der anspruchsvollsten Aufgaben anerkannt.

Diese Arbeit konzentriert sich auf die Zusammenfassung wissenschaftlicher
Artikel, die mehrere bedeutende Herausforderungen darstellen. Erstens
kann die Verwendung spezialisierter Terminologie und Fachjargon es den
Zusammenfassungsalgorithmen erschweren, den Inhalt genau zu inter-
pretieren und zu verdichten. Zweitens erfordert die oft beträchtliche Länge
wissenschaftlicher Texte, dass das Zusammenfassungssystem große Infor-
mationsmengen effektiv verarbeitet und dabei Kohärenz und Relevanz
beibehält. Darüber hinaus enthalten wissenschaftliche Artikel typischer-
weise komplexe Strukturen, einschließlich zahlreicher Zitate, Abbildungen
und Referenzen, was den Zusammenfassungsprozess weiter verkompliziert.
Diese Herausforderungen erfordern fortschrittliche Techniken und Ansätze,
um qualitativ hochwertige und aussagekräftige Zusammenfassungen zu
erstellen.

Um Zusammenfassungen zu erstellen, die menschenverfassten Texten
ähneln, verwenden wir hochmoderne Transformermodelle für die abstrakte
Zusammenfassung. Um den Nachteil des quadratischen Rechenaufwands
von Transformern bei zunehmender Eingabesequenzlänge zu adressieren,
vergleichen wir einen effizienten, ressourcensparenden Ansatz für Lang-
dokumenten-Transformer namens SLED mit Modellen, die kleinere Eingabe-
größen haben, und untersuchen die Vorteile einer solchen Methode. Darüber
hinaus untersuchen wir wichtige Aspekte wie Längen- oder Facettensteuer-
barkeit und Nachverfolgbarkeit von Sätzen. Zu diesem Zweck verwendeten
wir bestehende und neu gesammelte attributorientierte wissenschaftliche
Datensätze, die von menschlichen Experten verfasst wurden. Wir trainierten
die SLED-Modelle und bewerteten sie hinsichtlich ihrer Leistung und Tex-
tqualität.

Wir stellten fest, dass es für längere und umfassendere Zusammenfas-
sungen vorteilhaft ist, das gesamte Dokument zu berücksichtigen, wobei
der ROUGE1-Wert bei bestimmten Zusammenfassungslängen um bis zu

xiii



1,98 steigt. Zudem sind die Informationsgehalt und Qualität der von relativ
kleinen Sprachmodellen generierten Texte vergleichbar mit denen von Mod-
ellen mit einer größeren Anzahl von Parametern für diese spezielle Aufgabe
(86,64 gegenüber 90,00 Gesamtscore).
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1. Introduction

This chapter addresses the motivation behind this work, as well as outlining
the contributions and structure of the thesis.

1.1. Motivation

The volume of text data is rapidly growing in many domains, such as digi-
tal libraries, the Web, social networks, and newswire services. According
to Bornmann et al. (2021) this trend is also followed by the scientific litera-
ture, which has an overall annual growth rate of around 4.10 % based on
the number of publications. Therefore, the increase is exponential with a
doubling time of 17.3 years, which can be observed in the last decades. To
cope with such a huge amount of textual content, methods and tools for
compressing and summarising texts are inevitable. Manual text summariza-
tion is tedious and time-consuming work that requires a lot of effort and
resources. For this reason, Automatic Text Summarization (ATS) emerged
from Natural Language Processing (NLP), which is considered one of the
most challenging tasks.

Recently, a lot of research has been done on long document abstrac-
tive models for text summarization (Koh et al., 2022). Benchmarks such
as SCROLLS (Shaham et al., 2022) were created to evaluate the models’
capabilities in different long-document tasks. However, larger high-quality
datasets with human-written summaries of scientific articles have not yet
been provided. In addition, very few datasets include attributes such as
aspect or length for the task of controllable summarization. Furthermore,
research is also interested in efficient processing of long input texts. Accord-
ing to Tay et al. (2022), there are many approaches to address this problem.
However, only a few comparisons to larger, more sophisticated models were
made with respect to their text quality and performance.

1.2. Contribution and Research Question

In this work, we provide a newly sourced dataset of summaries written
by experts (see Section 4.2). Data come from an open peer review website,
described in Section 3.3.3. In addition, the summaries were divided into

1



1. Introduction

several lengths. These length signals can be provided for controllable sum-
marization training. Furthermore, multiple summaries were scraped for
each article. Therefore, the dataset can be used for multi-target training and
can contribute to better generalisation.

Furthermore, an efficient long-document transformer model called SLED
(Ivgi et al., 2023), based on the fusion-in-decoder approach, is trained on the
newly sourced scientific dataset. The model is then compared to various ex-
tractive and abstractive methods, which are evaluated for their performance
and output quality. The size of the model and the associated computational
effort are of significant interest. This leads to the formulation of the following
research questions (further outlined in Chapter Evaluation).

• [R1] Research Question 1: ”Is there a benefit in using efficient long-
document models over traditional small LLMs for the task of summarising
scientific articles?”

• [R2] Research Question 2: ”Can a similarity search approach that is based
on abstractive summaries find and cover information more effectively than
traditional extractive methods?”

• [R3] Research Question 3: ”What are the qualitative differences between
small LLMs and sophisticated models such as GPT?”

By addressing these questions this work explores whether efficient long-
document models offer advantages over traditional small-input LLMs for
summarizing scientific articles, evaluates if abstractive summary-based simi-
larity search outperforms extractive methods, and examines the qualitative
differences between small LLMs and advanced models like GPT.

1.3. Thesis Structure

This thesis is organized into several chapters, each addressing a distinct
aspect of the research.

Chapter 2 explores the theoretical foundations of automatic text summa-
rization, including model types, text extraction techniques, datasets, and
evaluation methods. Additionally, it reviews relevant literature in the field
of automatic text summarization with a focus on transformer-based models.

Chapter 3 presents a conceptual architecture of the system’s components
and outlines the overall goal. It also details and explains the requirements
in depth.

Chapter 4 explains the methods employed, including the system architec-
ture and training progress. It also describes the structure of the generated
dataset and the similarity search technique.
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In Chapter 5 an efficient abstractive long-document transformer approach,
called SLED (Ivgi et al., 2023), is analyzed and compared to models with
a smaller input size. The results demonstrate the advantages of processing
longer text inputs for summaries. Additionally, the influence of guiding
signals, such as length and aspect, is studied and investigated. The output of
the trained models is compared with sophisticated GPT models with a higher
number of parameters (Singh et al., 2023). Readability, performance and text
quality such as consistency, coherence, relevance, and fluency were evaluated.
The tests show that smaller models can show comparable high performance
in specific trained tasks. In addition, an approach to trace sentences in the
original input document is investigated (see Section 3.3.4). The outcome
of the method was included in the evaluation comparison. The suggested
technique contributes to the trustability of the system. Furthermore, the
method provides the possibility to provide high-quality extractive recaps in
addition to the abstractive summaries.

Chapter 6 presents the lessons learned throughout this work, highlighting
key insights gained, challenges encountered, and how these experiences
have informed and improved the research process.

Chapter 7 summarizes the key findings of the research and discusses their
implications. It also offers a forward-looking perspective on potential future
directions and areas for further investigation.
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2. Background and Related Work

Automatic text summarization (ATS) is a challenging task in the field of
NLP. Much research has been done in the last decades. Many aspects have
to be considered, such as the characteristics of the input and output text,
the purpose, or the summarization type. Over the years, many approaches
have been suggested, ranging from simple statistical methods to sophisti-
cated deep learning techniques. However, some challenges, such as efficient
processing of long input text and generating high-quality summaries, have
not yet been completely overcome.

This chapter gives a broad overview of current developments in the field
of efficient abstractive long-document summarization with respect to text
characteristics, datasets, metrics, approaches, and issues.

2.1. Automatic Text Summarization

One of the first works on ATS was presented by Luhn (1958). The Luhn-
described technique is used to summarise technical reports to simplify
topic identification. The method could assign a significance value to each
word and sentence. The high-scoring sentences were then extracted to
generate an automatic summarization. Since these first approaches in the
1950s, researchers have tried to steadily improve their techniques to produce
computer-generated abstracts that are indistinguishable from human-made
summaries. The main focus all ATS systems have in common is that the sum-
mary should cover the essential information and topic, avoid redundancy,
and be understandable and cohesive from a user’s perspective. Although
ATS systems are used in many different domains and applications, they can
generally be divided into extractive, abstractive, and hybrid methods. In
addition to these three main categories, a more fine-grained classification is
possible.

Automatic text summarization can be further divided into different as-
pects, such as the characteristics of the source text (input), the summary
as text (output), and the summary usage (purpose) (Hovy and Lin, 1998,
G. Sharma and Sharma, 2022).
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2.1.1. Input: Characteristics of the Source Text

Characteristics of the input are the number of documents, specificity, as well
as genre and scale (Hovy and Lin, 1998).

Number of documents. Single-document versus multi-document: In ATS
systems, one or more documents are used as input. In the single-document
summarization process, only one input document is handled, whereas in
multi-document summarization, multiple topical related documents serve
as input to the system (Hovy and Lin, 1998).

Multi-document input is usually more heterogeneous. However, redun-
dancy is one of the main challenges in multi-document summarization, as
information is often duplicated (G. Sharma and Sharma, 2022).

Specificity. Domain-specific versus general: If it is clear that the input
documents are relevant to a single domain, domain-specific methods could
be useful (G. Sharma and Sharma, 2022). Domain-specific summarization
can focus on aspects such as content or input formats and derive additional
information. Furthermore, less term ambiguity and atypical word and gram-
mar usage can be expected. ATS systems for general domains cannot make
such strict assumptions.

Genre and scale: Genres for text summarization can be categorised as
summaries of news articles, special domains such as science or law, narrative
documents, encyclopedias such as Wikipedia, social networks including
blogs, and very short documents such as tweets (G. Sharma and Sharma,
2022). The scale depends on the length of the document. For example, books
tend to have longer paragraphs and more chapters, whereas social media
posts are brief and include only a few words and sentences. Some text
summarization techniques are better applicable to certain genres and scales
than others.

2.1.2. Output: Characteristics of the Summary

The final summary can be distinguished by derivation, coherence, partiality,
and conventionality (Hovy and Lin, 1998).

Derivation. Extract versus abstract: An extract is an excerpt of the original
text that varies from a single word or phrase to multiple sentences or
paragraphs. An abstract is a shorter and rewritten version of the initial text.
More details on those two summary forms are given in Sections Extractive
Text Summarization 2.1.4 and Abstractive Text Summarization 2.1.5.

Coherence. Fluent versus disfluent: A fluent text is correct and clear in
grammatical terms. The sentences are coherent and have a cohesive structure.
In contrast, disfluent summaries are fragmented and incoherent. Summaries
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with a higher degree of fluency are generally perceived as more readable.
Partiality. Neutral versus evaluative: Partiality describes how biased a

system is. Neutral summaries are an objective reflection of the input text,
whereas evaluative summaries incorporate the system’s bias. Evaluation can
happen explicitly by using statements of opinion or implicitly by including
or omitting biased material.

Conventionality. Fixed versus floating: Fixed summaries follow certain
conventions, such as formatting style, and are generated for a particular
use or group of readers. Floating summaries vary in settings, readers, and
purposes and do not have to conform to any conventions.

2.1.3. Purpose: Characteristics of Summary Use

The summary use depends on the audience, the form and the extensiveness
(Hovy and Lin, 1998).

Audience. Generic versus query-oriented: In generic summaries, all
major topics are equally important. A query-oriented summary is more
user-focused. The user interacts with the system through requests. The
final summary includes the desired topics or aspects either explicitly by
highlighting or implicitly by excluding certain information.

Form. Indicative versus informative: Indicative summaries exclude the
content of the text and provide only basic information about the subject
and domain of the text. In contrast, informative summaries include the
main content and give the reader a good overview of the essence of a text.
Reading an informative summary subsequently allows the reader to outline
the main parts of the input text.

Expansiveness. Background versus just-the-news: Depending on the
reader’s prior knowledge, summary articles present more or less background
information. To fill in knowledge gaps, additional details about the place,
time, actors, or circumstances are provided. If the assumption is made that
the reader has enough background knowledge, only the new and recent
topics are included. The former is called background, and the latter just-the-
news summary.

2.1.4. Extractive Text Summarization

In extractive text summarization, as the name already implies, sentences and
phrases of high importance are extracted from the whole document to form
a summary. The resulting excerpt does not include newly formed sentences
and consists purely of existing ones from the text. The first attempts at ATS
systems in the 1950s were of an extractive nature. Luhn (1958) proposed a
weighting of sentences based on word frequency, ignoring common words
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with high occurrences. Baxendale (1958) made similar findings, but rather
than focusing on individual words, it was suggested that greater importance
is given to terms or phrases. The work of Baxendale (1958) also found that
sentences of high significance are more likely to be placed at the beginning
than at the end of a paragraph.

Later, in the 1960s Edmundson (1969) built on the ideas of Luhn (1958)
and Baxendale (1958). Emundson’s work introduced four features to create
a linear parameterized sentence weighting. In addition to word frequency
and sentence positioning, the author proposed cue words and title words.
Cue words are words that indicate pragmatic relevance; examples are ”sig-
nificant”, ”impossible”, or ”hardly”. According to the author, sentences
containing these hint words have a higher chance of being of importance.
A cue dictionary was created from selected corpus words. In addition, title
words are extracted from the title, subtitles, and headings of a document.
The words in the titles and headings were shown to have high statistical
significance and are highly descriptive. It is hypothesised that a document’s
author chooses appropriate headings, which summarises the heading’s para-
graph well. Sentences were weighted on the basis of the number of title
words they contained. The total weight of a sentence was then calculated
from the four characteristics, namely word frequency, sentence location,
cue words, and title words. The sentences were then ranked according to
their overall score, and the highest-ranking sentences were chosen for the
summary.

In the 1990s, more sophisticated techniques were proposed. Brandow et al.
(1995) based their work on the weighting scheme of the frequency times the
term inverted document frequency or, in short, t f ∗ id f (Salton and McGill,
1983). Each word weighting depends on the frequency in the document and
the overall occurrence in the entire corpus of documents. Words that appear
relatively rarely in the corpus have higher weights, and words with high
frequency within a document also increase weight. Therefore, unique words
that convey meaningful information must be identified. Sentences are then
selected for the presence of high-significant (with high t f ∗ id f value) words
and other aspects, such as sentence location, words that indicate anaphora,
desired summary length, and type of extract.

Mihalcea and Tarau (2004) proposed one of the most impactful works
in ATS. The authors introduced a graph-based ranking algorithm called
TextRank (Mihalcea and Tarau, 2004) that was inspired by Google PageRank
(Page et al., 1999) and Kleinberg’s HITS (Kleinberg, 1999) algorithm. Thus,
the sentences form the vertices, and the similarities between the sentences
represent the edges of the graph. Now, the basic idea of voting comes into
play. A connection between a vertex and another symbolises a vote for that
other vertex. The higher the number of votes for a vertex, the greater the
importance of that vertex. Furthermore, the higher the importance of a
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vertex, the greater the importance of the vote. In simple terms, the score of a
vertex is measured by the number of voters and their respective score. After
applying the ranking algorithm, the sentences are ordered. The highest-
ranking sentences are chosen for the resulting summary. A simple and
yet effective method that still serves as a baseline for more sophisticated
techniques.

More recent work on ATS systems elaborates on embedding methods and
deep learning techniques. For example, Kobayashi et al. (2015) and Kågebäck
et al. (2014) were among the first to propose a document summarization
based on word embeddings. The assumption is that an embedding can
capture the meaning of a word. Through its mathematical description, it
is also easier to calculate the similarity between two embeddings or a set
of embeddings. Among deep learning methods, transformer-based models,
such as BERT (Devlin et al., 2019) have become popular. For example,
Liu and Lapata (2019) fine-tuned BERT to perform extractive and abstract
summaization. But other deep learning models such as recurrent neural
networks (RNN) or graph neural networks (GNN) are also commonly used.

2.1.5. Abstractive Text Summarization

Compared to the extraction summarization (ETS) task, abstractive summa-
rization (ABS) is more challenging. Algorithms for ABS systems need to have
semantic understanding of the input text. The systems then apply methods
from the field of natural language generation (NLG), such as paraphrasing,
synonym substitution, or sentence compression (M. Zhang et al., 2022). ABS
is therefore conceptually more related to the process of human-generated
summaries than ETS. Approaches can be broadly divided into three fields,
namely structure-based, semantic-based, and deep-learning-based (Rane
and Govilkar, 2019).

Structure-based approaches use structural and logical formats such as
templates, trees, graphs, rules, lead, and ontologies. An example of early
work based on tree structures is Barzilay and McKeown (2019). The authors
used the method of sentence fusion to create the newly generated text. In
their work, a dependency tree is built from the input text to represent the
sentence structures and the dependencies between the words. The described
algorithm then uses the dependency tree of each sentence and rephrases to
fuse and align sentences.

Semantic-based methods exploit the semantic representation of the text
and use the information obtained for the NLG systems. For example,
Moawad and Aref (2012) used the representation of semantic sentences
to enrich a semantic graph in their work. The authors then propose to re-
duce the graph to keep only important information. Finally, the algorithm
uses the remaining facts to create new sentences that cover the main content
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and semantics of the original text.
Deep learning-based models are the most sophisticated approaches and

are based on concepts such as encoder-decoder, attention, RNN, or long-
short-term memory (LSTM) models. For a long time, the development of
ABS systems made little progress. With emerging technologies such as
neural networks and deep learning techniques, improvements have been
made in the area of ABS. Rush et al. (2015) was one of the first works to
apply deep learning to an ABS task. The constructed model was based on
the encoder-decoder architecture that is still used by many state-of-the-art
techniques (Guo et al., 2022; Phang et al., 2022; Xiong et al., 2023).

2.1.6. Hybrid Text Summarization

Hybrid text summarization systems combine extractive and abstractive
methods. First, sentences are selected using extractive techniques. Second,
based on the chosen sentences, an abstractive approach is used for summary
generation. Methods such as sentence compression, fusion, and generalisa-
tion are commonly employed in hybrid systems (G. Sharma and Sharma,
2022).

Compression. Sentence compression describes the process of reducing
the length of the sentence while maintaining the salient information and
meaning of the sentence. For example, Zajic et al. (2005) uses a syntactic
trimmer to shorten sentences and provide multiple versions for each sen-
tence. The idea is that the trimmer removes irrelevent syntactic elements
and phrases. After that, the sentences are weighted according to a linear
combination of six features.

Fusion. In sentence fusion and generalisation, merging and fusion tech-
niques are applied to extracted sentences to generate an abstractive summary.
Marsi and Krahmer (2005), for example, incorporates this concept in their
summarization model. To align the sentence elements at the word, phrase, or
substring level, a fusion tree is constructed based on the dependency tree for
each sentence. Finally, natural language generation (NLG) algorithms use
the fusion tree to automatically merge sentences and generate the summary.

Paraphrasing. In Napoles et al. (2011) the authors apply a paraphrastic
approach. First, the model selects the salient sentences from the text to form
an extractive summary. Then, a paraphrasing algorithm rewrites the chosen
sentences abstractly. In this process, the system uses phrases that shorten the
length of the sentence, resulting in a concise and compressed final summary.
The authors call this form of sentence compression sentence tightening.

Recent works like Ghadimi and Beigy (2022) propose to use more sophis-
ticated transformer models such as BART (Lewis et al., 2020) or T5 (Raffel
et al., 2020) for the abstractive step. The hybrid system leverages these pre-
trained language models for the paraphrasing task reaching state-of-the-art
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results. These models combine sentence compression, fusion, and paraphras-
ing. The source input for the ABS step is still the extractive summary.

2.1.7. Long Document Summarization

Summarising long-form textual documents requires more effort compared
to generic short text such as news articles. With increasing document length,
human labour effort and knowledge requirements increase exponentially.
As long texts such as scientific work are increasing, research in this field
becomes inevitably. Otherwise, valuable information and findings are over-
looked and do not contribute to scientific, social, and economic develop-
ments (Koh et al., 2022).

Fundamentals of Long Document Summarization

The summarization of short and long documents differs in three aspects,
namely length of document, breath of content, and degree of coherence.
Furthermore, long documents tend to be domain-specific, such as scientific
papers, and contain more complex formulas and terminologies (Koh et al.,
2022).

Length of document. Intuively, a document is considered ”long” if an
average human needs an excessive amount of time and effort to comprehend
the entire text. This intuition cannot be applied in the context of machine
learning. For state-of-the-art models, hardware and model limitations are the
crucial factor. Their input can have only a size of 512 to 1,024 lexical tokens
(Devlin et al., 2019; Lewis et al., 2020; Raffel et al., 2020). The average length
of research papers in scientific datasets like ArXiv is around 10,700 tokens
(Guo et al. (2022)). Therefore, the maximum size of the article is 10 to 20

times greater than the maximum input size of the regular models. Currently,
innovative methods have been proposed to extend the input length to up to
16,384 tokens (Guo et al., 2022; Phang et al., 2022; Xiong et al., 2023).

Breadth of content. Generally, with increasing text length, non-redundant
information will also grow. Often, the length of the reference summary
increases with the length of the source text. However, the summary length
is mostly restricted by the expectations of the average user for a reasonable
length. It is empirically shown that the summaries become exponentially
shorter in relation to the length growth of the source text (Koh et al., 2022).
Therefore, it is inevitable that long text summaries lose important informa-
tion that covers the central points of the original author.

Additionally, it was shown that users have heterogeneous preferences
regarding the importance of content. Due to the relatively shorter summary
length and the increasing breadth of content, this problem intensifies for
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long text summarization (Koh et al., 2022). Controllable text summarization,
described in Section 2.5, could be a solution to this problem.

Degree of coherence. Usually long documents consist of sections, each
partially different in content. However, all sections are somehow subject
to the main points of the document. Therefore, a summarization model
cannot simply copy sentences from the different sections without influencing
aspects such as the fluency, redundancy, and coherence of the resulting
summary (Koh et al., 2022). Transformer models such as Guo et al. (2022),
Phang et al. (2022), and Xiong et al. (2023) can overcome this issue, since
they produce a more fluent and readable output.

Scientific Article Summarization

In scientific articles, the results of a scientific study, such as an experiment,
survey, or interview, are reported. Typically, a study includes data collection,
data analysis, and interpretation of results. There exists no uniform standard
for the structure of a scientific article. However, many articles follow an
unofficial generic structure, which helps to improve the communication and
knowledge exchange between researchers. In general, an article consists of
an abstract, an introduction, a related work, a methodology, an experimental
results part, a discussion, and a conclusion section (Ibrahim Altmami and
El Bachir Menai, 2022).

Abstract. The abstract is located at the beginning of the document. Gener-
ally, it has a length of around 150 to 250 words or less (Ibrahim Altmami
and El Bachir Menai, 2022). It presents an informative summary of the key
points and contribution of the survey without using any citation. In addition,
the abstracts provide information in a concise way on applied techniques
and methods, materials used, data sets, results, and conclusions.

Introduction. The majority of scientific articles have an introductory
section, which is usually between 300 and 500 words or more (Ibrahim
Altmami and El Bachir Menai, 2022). This section introduces the topic of the
paper and provides essential background information for comprehension
purposes.

Related work. The related work section presents former papers related to
the subject. The purpose is to update the reader, explain the developments,
and place the new survey in the context of the previous literature. The
mentioned scientific articles are cited and referenced.

Methodology. This section contains detailed information about the process
and the methods used. These details are crucial for other researchers, as
they are interested in reimplementing the procedures and reproducing the
outcome. It includes specifications on the tools used, preparations, pre-
processing techniques, data origins, and post-processing methods.

Experimental results. In this section the results are shown in textual,

11



2. Background and Related Work

Figure 2.1.: Processing steps of a typical multi-document summarization system. Parts
highlighted with a triangle are different from single-document frameworks.
(Ma et al., 2022)

illustrative, or tabular form. In addition, outcome of statistical tests are
described, often followed by an insightful discussion.

Conclusion. The final part of a survey is the conclusion. It summarises all
the main findings and provides an outlook on possible future research.

References. The references of the cited papers are usually located at the
end of the document. It is an ordered collection, also called a bibliography,
of all the cited articles in the text.

2.1.8. Multi-document Summarization

Multi-document summarization (MDS) compared to single-document sum-
marization (SDS) takes multiple documents into account and produces
comprehensive summaries using relations and cross-references between
texts (Ma et al., 2022). Usually, documents are written time separated and
from different authors. The main challenge of MDS is to handle information
from various sources, which is often diverse or redundant. Models must
be highly capable of generating coherent, nonredundant, and consistent
summaries from complex information. The methods used in MDS are often
similar to those in SDS, from traditional algorithms to more sophisticated
deep learning approaches. The MDS models are just more specialised in
capturing cross-relations between documents.

Process Comparison to Single-document Summarization

According to Ma et al. (2022) the data processing in modern MDS systems
differs slightly from that of SDS (see Figure 2.1). In addition to the larger
input size and the number of input documents, the MDS models gener-
ally need different concatenation strategies. As already mentioned, models
are used that exploit the cross-relation information and produce concise
semantic-rich summaries. Usually, deep learning-based models are applied
as they show better performance.

Apart from having highly diverse input documents with redundant or
contradicting cross-relations, MDS also suffers from a lack of sufficient
training data and suitable evaluation metrics. However, recently some multi-
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document dataset mainly in the scientific domain have been introduced (see
Section 2.7.3).

Depending on the task, the source types can be divided into three cate-
gories (Ma et al., 2022). First, when there are many short sources, such as
in the task of summarising product reviews. Second, relatively few long
documents, used, for example, to generate a summary from several news
articles. Third, when there are one or few long documents in combination
with multiple short documents. This is the case, for example, when there is
a long scientific article and several short citation sentences.

Concatenation Methods

In general, there are two common concatenation techniques (Ma et al., 2022).
First, flat concatenation, where the input documents are simply transformed
into a flat long sequence similarly to SDS tasks. Second, hierarchical concate-
nation, which keeps the cross-relation information. Generally, deep learning
models do not fully exploit the hierarchical relationship. The two common
hierarchical concatenation techniques applied are either on the document
level or on the word/sentence level within a document cluster. Usually,
document-level methods contain subsequent steps before fusion and gen-
eration of the final summary. To generate the word or sentence structure,
clustering or graph-based techniques are applied.

2.2. Deep Learning Networks

Deep neural networks (DNNs) are the backbone of deep learning (M. Zhang
et al., 2022). Generally, these networks consist of multiple hidden layers
and are, therefore, called multilayer perceptrons (MLPs). DNNs are defined
primarily by their depth and width (Goodfellow et al., 2016). The depth
defines the number of layers. Usually, there is one input layer, several hidden
layers, and one output layer. The width describes the dimensionality of the
hidden layers. Different types of DNNs are used for text summarization
tasks, such as recurrent neural networks (RNNs), convolutional neural
networks (CNNs), and graph neural networks (GNNs)(M. Zhang et al.,
2022). RNN, CNN, and GNN are a particular form of a deep neural network.
They differ mainly in their topology and layer connections (Goodfellow
et al., 2016).

2.2.1. Recurrent Neural Networks

An RNN is specialised in processing sequential data (Goodfellow et al.,
2016). In the following points the structure and properties are explained.
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Structure

The network is fed a sequence of values x(t), where t describes the time step
ranging from 1 to τ. The values depend sequentially on each other. The
prediction of the next time step is based on the current and the previous
time step. The nodes of the hidden layer are connected to each other. The
input of a hidden layer consists of the input layer and the output of the
previous time step, namely the recurrent layer. In Figure 2.2 the described
hidden layer is represented by a computational graph that unfolds over
time. Each node illustrates the state for a specific time step t. The idea of
unfolding represents the chain of events. In general, for an input value x(t)

the hidden state h(t) is calculated by

h(t) = f (h(t−1), x(t); θ), (2.1)

where x(t−1) is the previous hidden state and θ is the parameter vector. A
description of the parameters is shown in Figure 2.2. The input is parame-
terized by a weight matrix U, the hidden to hidden layer by a weight matrix
W and the output layer by a weight matrix V . The network computes the
output o. The loss L is then calculated by comparing the predicted output
ŷ = so f tmax(o) with the actual output y.

Properties

RNNs also make use of the concept of parameter sharing (Goodfellow et al.,
2016). It helps to generalise and to share statistical characteristics across
different-sized sequences and positions in time, and in the case where the
particular information appears at different positions within a sequence.

Due to these features, RNN can efficiently extract temporal or sequential
semantic information from sequences (M. Zhang et al., 2022). RNN-based
deep learning models are used for several NLP tasks, such as information
extraction, machine translation, text summarization, or time series analysis.
Nevertheless, RNN also have some disadvantages. When the sequences are
too long, the gradient can explode or disappear. Long short term memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997) mitigate the problem
of long-term dependencies by introducing input, forget, and output gates.
Cho et al. (2014) further adapted the architecture using an update gate
instead of an input and forget gate, a so-called gate recurrent unit (GRU).
Bidirectional RNN, as the name suggests, allows the information to flow
forward and backward via two connected hidden layers. Hence, the output
layer receives information from the past and the future states simultaneously.
These networks and units are described as Bi-RNN, Bi-LSTM, and Bi-GRU.
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Figure 2.2.: An illustration of the time-unfolded computational graph. Left, a hidden layer
with a recurrent layer. Right, the same graph unfolded over time. (Goodfellow
et al., 2016)

2.2.2. Convolutional Neural Networks

CNN are specifically designed to process grid-like data (Goodfellow et al.,
2016). The following points explain the structure and properties.

Structure

For example, sequential or time series data can be seen as a 1-D grid with
a value at each time step. The fundamental structure of a CNN consists
of convolution, activation, and pooling. First, a convolution is applied to
extract features. Second, after activation, the extracted features are pooled to
retrieve features with different levels of complexity. Figure 2.3 shows a basic
framework for CNNs. It consists of an input layer, M convolutional layers
followed by b pooling layers. Such units, a combination of a convolutional
layer and a pooling layer, can appear N times. After that, typically K fully
connected layers serve as a classifier.

Properties

Convolution exploits three principles, namely sparse interactions, parameter
sharing, and equivariant representations (Goodfellow et al., 2016). Usually,
in a neural network, all input units are connected to each output unit. In
CNN a kernel smaller than the input size is used to process the data. By
doing so, significant small-scale features can be revealed. In addition to
improving statistical efficiency, this method requires fewer parameters, and
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Figure 2.3.: Framework for convolutional neural networks. (M. Zhang et al., 2022)

therefore less memory. In CNN, the parameters are shared. The kernel with
the same parameters is applied at every position of the input, in contrast to
learning a different set of parameters for every location. This method further
improves memory requirements. Parameter sharing enables an additional
property, namely equivariance to translation. If the input of an equivariant
function changes, the output changes in the same way. For example, if we
apply a convolution to sequential or time series data, it generates a timeline
that reveals at which time step specific features appear.

2.2.3. Graph Neural Networks

When developing GNNs, the graph structure used must be defined (Salchner
and Jatowt, 2022). The structure and properties are explained in the following
points.

Structure

A graph is represented by its nodes V and edges E, formally written as
G = (V, E). A node vi ∈ V is connected to another node vj ∈ V through an
edge e ∈ E, also written as ei,j = (vi, vj). The graph has n = |V| nodes and
m = |E| edges. A feature matrix can be defined where X ∈ Rn×d. Each node
i is described by a feature vector xi ∈ Rd with dimension d.

Data can be inherently structured or inherently unstructured (Salchner
and Jatowt, 2022). In the case of text, the data have an implicit structure.
However, it is not directly accessible as a graph. Usually, in ATS the text is
converted to a graph by using words or sentences as nodes. It is common to
use heterogeneous instead of homogeneous graphs for ATS tasks. The reason
is that heterogeneous graphs can contain different structures. Additional
structural information can be introduced to the graph using directed or
indirected edges. Edges indicate the flow of information. Hence, the word
or sentence order could be explicitly encoded.

Properties

GNNs differ in three aspects from general neural networks: input, output,
and information aggregation (Salchner and Jatowt, 2022). The input is always
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Figure 2.4.: A graph neural network (GNN) with multiple graph convolutional (Gconv)
layers. A typical network for node classification. (Wu et al., 2021)

graph-structured. The output can be at node level, edge level, or graph level.
Prediction and classification tasks are performed at the node or edge level.
The output at the graph level is used for subgraph prediction and graph
segmentation. In the case of ATS binary classification is performed to select
a subset of words, phrases, or sentences. There are two ways to aggregate
information, using spatial or spectral convolution. Spatial convolution is
based on the convolution operator with the extension of processing graph
structures. Spectral convolution builds on the idea of graph signal processing.
For ATS spatial convolution is preferred over spectral convolution due to
its efficiency, flexibility, and better generalisation properties. Instead of
processing the entire graph at once, it can also handle batches of nodes. This
is advantageous for large graphs, such as long texts in ATS. GNNs are only
used for ETS as they can only select a subset of sentences and do not have a
generative mechanism.

The spatial convolution in GNN is similar to the convolution in CNN
(Salchner and Jatowt, 2022). However, convolution in CNN performs on
regular grid data such as 1D or 2D arrays, for example, images. In the case
of graphs, a target node has a varying number of unordered neighbours
with different feature vector representations. Hence, graph data contain
irregular grids and subsequently have to be processed in a different way. In
GNNs convoultion is performed by information propagation, the so-called
message passing. Hereby, nodes exchange messages, or in other words
perform convolution with their neighbours for a number of iterations. The
information is spread throughout the graph. This means that the higher the
number of iterations, the further the propagation of information.

Veličković et al. (2018) proposed a graph attention network (GAT) that
uses the attention mechanism similar to transformer networks (Vaswani
et al., 2017). GATs give each neighbour of a node an attention score that
reflects the importance of that neighbour and its messages. Brody et al.
(2021) further developed a specialised form called GATv2. GNN models for
ATS widely use GTA layers because of their performance.

When GNNs are combined with other models, a pooling layer is usually
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necessary (Salchner and Jatowt, 2022). The pooling operation generates
either a global representation or a subset of the graph by processing the
features of the nodes. Figure 2.4 shows a simple illustration of a convolu-
tional GNN (convGNN), which is used for node classification (Wu et al.,
2021). The graph convolutional layer (Gconv) encodes the hidden represen-
tation of each node. This is done by aggregating the feature information
of the node’s neighbours. As a next step, a nonlinear activation is applied.
Each node’s final hidden representation receives information from further
neighbourhoods by stacking several layers.

2.3. Encoder-Decoder Framework

The Seq2Seq framework, also called the encoder-decoder framework, is
a widely applied technique in NLP tasks, such as machine translation,
speech recognition, or question-answer applications (M. Zhang et al., 2022).
First, the encoder parses the input sequence and encodes it into a high-
dimensional representation in the form of a feature vector. After that, the
decoder interprets the feature vector and decodes it, generating the output
sequence. The encoder-decoder framework is the basis for many DL models
in ABS.

2.3.1. Encoder-Decoder Systems with Attention Mechanism

In general, attention is a selective process that filters essential information
(de Santana Correia and Colombini, 2022). Formally, the attention operation
can be described as a mapping function that involves a query, a key-value
pair, and an output (Vaswani et al., 2017). Thereby, a query combined with a
key-value pair is mapped to an output. The output is generated by summing
up the weighted values. The weight describes the compatibility between the
query and the corresponding key and is computed by a function.

Issues in Classical Neural Networks

According to de Santana Correia and Colombini (2022), the attention mecha-
nism facilitates improvements in DNN and helped to achieve state-of-the-art
performance in many application domains such as NLP and computer vision.
The main reason for the success of attention-based models is their ability to
mitigate three classic issues of classical neural networks (de Santana Correia
and Colombini, 2022). First, models with attention layers can better process
long temporal dependencies. Classical neural networks, as well as RNNs
and LSTMs, have difficulties in retaining earlier information due to memory
limitations. Second, attention-based models have less problems in processing

18



2. Background and Related Work

Figure 2.5.: Architecture of a transformer model. It consists of multiple stacked attentional
units with an encoder and decoder. The encoder processes the input sequence
and extracts salient information. The decoder generates the output sequence.
Both encoder and decoder are build up of multiple heads of self-attention,
fusion, and normalisation layers. (de Santana Correia and Colombini, 2022)

long-sequenced input. Deep-layered classical neural networks sometimes
suffer from the issue of vanishing gradients. Third, models based on the
attention mechanism have better noise-reduction properties compared to
classical neural networks.

Categories of Attention Mechanism

As reported by de Santana Correia and Colombini (2022), the mechanism
can be classified into soft attention, hard attention, and self-attention.

Soft attention considers the interdependence between the input and
target. It assigns a weight between 0 and 1 to each element in the input
using the softmax function. Hence, the attentional model is deterministic
and differentiable. However, for large inputs, soft attention mechanisms are
computationally intensive.

Hard attention, similar to soft attention, assumes also interdependence
between the network’s input and the target, but assigns only 0 or 1 as a
weight. Hence, only parts of the input are considered. The hard attention
mechanism is a stochastic process and therefore is the model not differen-
tiable. Reinforcement learning methods are unavoidable in training models
with hard attention layers. Since, unlike soft attention, only parts of the
input are processed, less inference time and computational costs are needed.

Self-attention makes the assumption that there is interdependence be-
tween the input elements. The mechanism learns which interactions it
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should pay attention to by quantifying them through simple matrix calcula-
tions. These calculations can be parallelisable, a reason why self-attention is
preferred over soft and hard attention for long inputs.

Improvements by Attention Mechanisms

Bahdanau et al. (2015) made remarkable improvements in machine transla-
tion with an RNN-based encoder-decoder architecture with attention layers,
called RNNSearch. Classical encoder-decoder suffer from the bottleneck
problem. Hereby, the encoder encodes the input sentence into a fixed-length
vector. The issue is that with increasing sentence length, the performance
decreases. Bahdanau et al. (2015) reduces the bottleneck with the proposed
encoder-decoder. The encoder is a BiRNN, and the decoder consists of an
RNN combined with attention layers. The output is generated by computing
the probability distribution of the output symbols from a context vector.
Rather than encoding the input sentence into a fixed-sized vector, it produces
a sequence of vectors from which a subset is chosen to generate the output.
The model with the introduced attention layers achieved better results than
the classical encoder-decoder models.

Rush et al. (2015) is one of the first to use the encoder-decoder framework
for an ABS task. Instead of encoding the input with Bag-of-Words (BoW),
they applied an attention-based encoding. In addition, they used a beam
search strategy, alternatively to greedy decoding.

Vaswani et al. (2017) proposed a breakthrough end-to-end attention-based
architecture widely used in the current literature, called transformer. The
model contains multiple units of self-attention in parallel, so-called multi-
head attention. This profound architecture allows the model to jointly learn
different linguistic features and representations. Transformer models do not
contain recurrences or convolutions. Hence, they cannot exploit the informa-
tion about the order of the sequences. The authors introduce a technique for
adding the relative and absolute positions to the embeddings. The positional
encoding is computed using sinusoidal functions and additively combined
with the word embedding. The general architecture of a transformer model
is shown in Figure 2.5. Many state-of-the-art models (Guo et al., 2022; Phang
et al., 2022; Xiong et al., 2023) follow this architecture in NLP for ATS tasks
because it outperforms several other model designs (de Santana Correia and
Colombini, 2022).

2.3.2. Hierarchical Encoder-Decoder Models

The basic single-layer encoder-decoder cannot fully grasp the context in a
long document, also referred to as the problem of long distance dependence
(M. Zhang et al., 2022). However, long documents consist of an inherent hier-
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Figure 2.6.: The fundamental design of a hierarchical encoder-decoder. It is divided in word
and sentence levels. First, each word is encoded and processed into a sentence.
Then, the sentences are combined to generate a document representation. The
document representation is decoded to produce the output sequence. (M. Zhang
et al., 2022)

archical structure of word and sentence levels. Hence, researchers proposed
a hierarchical encoder-decoder to mine this structure and to minimise the
long-distance dependence issue. Figure 2.6 shows the fundamental architec-
ture of the hierarchical encoder-decoder for ABS tasks. Hierarchical models
perform significantly better with respect to informativity and readability
compared to similar models. However, basic hierarchical encoder-decoder
models capture structural information only on the word-sentence, but not
on global document level. W. Li et al. (2018) exploit the structure of the
document and increase the performance of ABS models. They introduced
structural compression and coverage terms to regularise the generation of
the output. These mechanisms ensure concise and diverse sentences.

2.3.3. Out-Of-Vocabulary and Repetition Problem

Out-of-vocabulary (OOV) and repetition problems, common in ABS, deterio-
rate the performance of models (M. Zhang et al., 2022). Usually, transformer
models have a limited vocabulary size for their output sequence (Guo et al.,
2022; Phang et al., 2022; Xiong et al., 2023). Hence, OOV words in the input
have an impact on the quality of the summary output. However, it was
found that nearly all OOV words appear with a low frequency in the source
text. The researchers came up with the idea of a copy mechanism that finds
the corresponding word in the input and copies it to the output. To minimise
the repetition problem, they introduced a penalisation for duplicated words
and phrases. Hence, the model avoids repetitive output.
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Figure 2.7.: The pointer generator model. A generation probability pgen is calculated, which
is used to decide whether to generate words or copy words from the input text.
For prediction, the attention and vocabulary distribution are combined to get
the final distribution. (See et al. (2017))

Alleviation of the Out-Of-Vocabulary Problem

Gu et al. (2016) applied the copy mechanism in an ABS model, called
CopyNet. The network has an encoder-decoder architecture with a copy
technique integrated in the decoder. The selected words and phrases in the
input text are taken and appropriately placed in the right position in the
output text.

See et al. (2017) proposed a pointer generator (PG) model for ABS. The
network uses pointers to the selected words in the input text. These pointers
support precise information replication without reducing generation abilities.
The authors also incorporated a coverage mechanism to penalise repetitive
behaviour. However, PG has some limitations. First, the model can only
copy the exact word or phrase without changing its form. Hence, words
cannot be aligned to fit a specific context. Second, the model is biased
towards copying sentences from the input text. Thus, the network produces
fewer novel sentences. To alleviate these two problems X. Shen et al. (2019)
introduced a more generalised pointer generator (GPG) network. Rather
than a simple copying of exact words, the mechanism allows word editing
by a learnt relation embedding. GPG learns better and richer alignments
than the simpler copy technique of PG.
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Tokenization of Transformer Models

It should be mentioned that many transformer-based models use specialised
tokenization. For example, the BERT (Devlin et al., 2019) architecture ap-
plies word piece tokenization initially outlined in Schuster and Nakajima
(2012). Instead of word-level, the encoder provides subword representation.
Unknown words are sliced into subwords, even to the single-character level.
Another widely applied tokenization technique is the byte-pair encoding
(BPE) proposed in Sennrich et al. (2016), which is used in models such as
BART (Lewis et al. (2020)). BPE encodes the most frequent character combina-
tions, starting with a single symbol. Sentence piece tokenization introduced
by Kudo and Richardson (2018) is an additional highly relevant tokenization
algorithm. This method is used as a simple language-independent subword
tokenizer. The tokenizer is generally applicable to different languages. For
example, T5 (Raffel et al., 2020) operates on the principle of sentence piece
tokenization. In general, models based on the mentioned tokenization al-
gorithms are more robust towards OOV words, since models trained with
such tokenizer are able to adaptively generate new unseen words.

2.3.4. Hallucination Problem

Transformer-based sequence-to-sequence models have led to a performance
boost in recent years. They produce more fluent and coherent texts than
other models. However, these advanced systems are not perfect and are
prone to hallucination. This leads to performance degradation and makes
these systems unsuitable in real-world applications (M. Zhang et al., 2022).

Hallucination Definition

In simple terms, hallucination describes the scenario in which something
is perceived as legitimate, even though it is unreal (Ji et al., 2022). In the
context of NLP, hallucinated content is defined as nonsensical or unfaithful
with respect to the source text. Hallucinations can be categorised as intrinsic
or extrinsic. The former specifies the case where the output is in conflict
with the source input. The latter is used in the context in which the gener-
ated output cannot be verified or contradicted by the source information.
However, extrinsic hallucination is not always erroneous since factual correct
information could also be provided from external knowledge sources. Due
to its unverifiable nature, it is still carefully treated.

Faithfulness and Factuality

Hallucination is closely related to the terms faithfulness and factuality (Ji
et al., 2022). Faithfulness is an antonym to hallucination. Hence, when re-
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searchers try to minimise hallucination, they inevitably also aim to maximise
the faithfulness of their models. Factuality describes the degree of correct-
ness with respect to the underlying facts. There exist different definitions
of the expressions fact and factfuality in terms of their source. Some com-
pare the generated output to facts in the input source, others to generally
accepted facts in world knowledge.

Hallucination Metrics

The hullucination effect plays an enormous role in ABS. Approximately 25%
of the output summaries generated by recent models were found to contain
hallucinated content (Ji et al., 2022). In addition, even though models can
score high in ROUGE, they can produce highly hallucinatory content. Hence,
it is important to test with specific metrics how faithful a model is.

There exist several approaches for hallucination metrics in ABS, cate-
gorised in unsupervised and semi-supervised. Unsupervised metrics are
based on information extraction (IE), natural language inference (NLI), or
question-answer (QA) (Ji et al., 2022). Section 2.6.2 describes the metrics in
more detail.

Hallucination Mitigation Methods

The methods for minimising hallucinations can be divided on the basis of
architecture, training, or post-processing (Ji et al., 2022).

Architecture. By adapting the architecture, the models can have a min-
imised tendency to produce hallucinative content (Ji et al., 2022). The re-
searchers changed the encoder, decoder, or entire encoder-decoder frame-
work. For example, the model proposed in Zhu et al. (2021) extracts informa-
tion from the source input and automatically constructs relation tuples via
a GNN. These encoded factual relations are incorporated into the decoder
to support fact-aware summarization (shown in Figure 2.8). Aralikatte et al.
(2021) came up with a focus-attention mechanism in the decoder that learns
to reinforce attention to tokens with topical similarity to words in the source
text. H. Li et al. (2018) modify both the encoder and the decoder, resulting
in an entailment-aware model that integrates the entailment knowledge
into the summarization process. All of the mentioned methods efficiently
generate more faithful output summaries.

Training. Training methods improve models with respect to hallucination
without modifying the model design (Ji et al., 2022). Cao and Wang (2021)
proposes a technique based on contrastive learning. The training corpus
is divided into faithful and hallucinatory samples. The system learns to
differentiate between positive and negative data.

Post-processing. Post-processing methods edit the output after summary
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Figure 2.8.: Model FASum. It consists of an encoder and a decoder. In addition, relation
tuples are extracted and incorporated into the decoder. (Zhu et al., 2021)

generation to reduce hallucination (Ji et al., 2022). For example, Z. Zhao
et al. (2020) introduces the HERMAN system, which recognises and verifies
quantities such as date, time, or percentage. Chen et al. (2021) presents a
different approach based on candidate generation. The model selects the
best candidates for named entities from the source document and replaces
the corresponding ones in the summary text.

2.3.5. Interpretability of Transformer Networks

Neural network models are insufficiently interpretable (de Santana Correia
and Colombini, 2022). However, there is a strong urge in academic and
industry to increase the explainability of models.

Reasons for Interpretable Systems

Interpretability is important for aspects such as critical decision-making,
failure analysis, verification, or model improvements (de Santana Correia
and Colombini, 2022).
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Critical decisions. In some critical fields, such as medical analysis, stock
markets, or autonomous driving, decisions must be made with great urgency
and precision. In addition, explanations of the decision process are important
to increase the confirmability and traceability of the systems.

Failure analysis. In case a system is faulty, interpretable models can
be retrospectively analysed and flawed decisions can be identified. The
conclusions drawn provide essential information for improving the system.

Verification. It is crucial to verify the results and performance of a model.
Robustness and generalisability are essential properties of systems. However,
it is often challenging to interpret influences such as spurious correlations
on performance or identify causalities for results that vary in their outcome.

Model improvements. Interpretability can be a guide for decisions re-
garding model improvement and provides a starting point for enhancement
measures.

Attention Mechanism for Interpretability

The possibility of using the attention mechanism as an explanation tool
depends on the definition of the term explainability (de Santana Correia
and Colombini, 2022). It was shown that attention is sufficient to interpret
the plausible explainability. However, a faithful and correct explanation for
the connection between input and output is not always possible. Experi-
ments have also revealed that the attentional weights of models for single
sequence tasks do not indicate the reasoning for the model’s decision. In
contrast, models for pair-sequence tasks showed a strong indication that the
attentional weights are important for the explanation of the reasoning.

In general, it was found that the efficient explainability of attention-based
models depends on the dataset used and the characteristics of the system
(de Santana Correia and Colombini, 2022).

Explainability in Abstract Text Summarization

Explainability is also an important topic in ABS since it greatly contributes
to the faithfulness and reliability of the model. As already discussed, it is
still difficult to interpret the reasoning and generation process of end-to-end
transformer models. For better understanding and comprehension, it is
inevitable to reveal where the errors occurred. If it were clear where the
mistake originates, countermeasures or error correction mechanisms could
be implemented.

Current work on explainable ABS often concentrates on highlighting
phrases and sentences from the original text (H. Li et al., 2021; Z. Zhao et al.,
2020). This is often accomplished by using hybrid text summarization ap-
proaches. Hence, important sentences are first extracted and then abstracted.
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Figure 2.9.: SP-Search algorithms. The algorithm combines sentence fusion, compression
and paraphrasing and generates a graphical description. (Saha et al., 2022)

However, these methods usually perform worse than pure abstractive tech-
niques. In addition, a pure textual explanation often does not fully describe
the summary generation process.

Recently, some methods emerged including graphical descriptions. For
example, Saha et al., 2022 propose an interpretable modular framework
called SP-Search. Every sentence in the summary is thereby encoded by
a binary tree. The tree represents the generation process using operations
such as sentence paraphrasing, compression, and fusion. For each operation,
a specially trained model is applied. This approach should simulate the
intuitive human summarization process. A major advantage of this method
is that every intermediate step can be analysed and explained. SP-Search
was implemented for two tasks, to find the sentences in the source text
from which the summary originates, and to generate summaries including
the intermediate steps. Figure 2.9 shows the principles for both sentence
search and summary generation. For the searched summary are the top-k
sentences selected from the original text. Then the SP-Search algorithm
transforms the sentence selection into the interpretable graph structure. The
predicted summary is generated by either the extract-and-build approach or
directly from the document. The summary search algorithm could be used
to supervise the generation process of other models and make them more
interpretable.
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2.4. Efficient Long-Document Transformer

Recent research on transformer architectures has put a focus on long-
sequence processing. Researchers adapted widely used transformer models
(Lewis et al., 2020; Raffel et al., 2020; J. Zhang et al., 2020) for the task
of long-document summarization. Some state-of-the-art publicy available
models include BART-LS (Xiong et al., 2023), Pegasus-X (Phang et al., 2022),
or LongT5 (Guo et al., 2022). Despite their optimisation methods, the models
still have a large number of parameters. This leads to high computational
costs. To overcome this problem, the researchers proposed techniques using
fewer resources and efficient computations.

2.4.1. Computational Cost of Transformer

The main computational costs of Transformer are to compute the attention
matrix and the feed-forward layers at every transformer block (Tay et al.,
2022), also shown in Figure 2.5. The computational cost for the attention
matrix is quadratic in their input sequence. The self-attention mechanism
is generated by a query Q, key K, and value V pair. The output matrix is
computed by the following formular:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2.2)

, where d is the dimension of the input key. Therefore, the computation
requires N × N time and memory. With increasing input length, the com-
putation becomes infeasible. Furthermore, the feedforward layer after each
transformer block (shown in Figure 2.5) demands around half the compu-
tation time. The computational complexity of the layer increases linearly.
However, in general, it is still expensive. Therefore, a lot of research is going
into the development of efficient models that can be scaled up without
enlargening computational costs tremendously.

2.4.2. Low-Ressource Efficient Approaches

According to the survey of Tay et al., 2022 there are multiple approaches to
address the problem of memory and time complexity. Most of the proposed
techniques try to reduce the memory usage of self-attention methods. The
core approaches are briefly described below.

Fixed Patterns. One of the simplest and earliest techniques is to introduce
sparsity to the attention layers by applying fixed patterns such as local
windows and block patterns using fixed strides.

Combination of Patterns. Similarly to fixed patters, combination of pat-
terns reduces memory complexity. However, it is possible to gain better
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coverage of the self-attention mechanism by efficient combination of pat-
terns.

Learnable Patterns. This class of patterns still uses fixed patterns. In ad-
dition, a sorting or clustering method is learnt to determine token relevance.
The goal of these models is to learn patterns in a data-driven way.

Neural Memory. Thereby, a learnable memory module is used. The mod-
ule has access to multiple sequence tokens and acts like a pooling operation
to compress the input sequence.

Low-Rank Methods. This method uses projecting techniques to lower the
dimension of keys and values. Instead of a N × N matrix multiplication, it
is now a N × k computation. Hence, the memory complexity is much lower.

Kernels. Similar to low-rank approaches, kernels use mathematical meth-
ods to lower the computational costs of the self-attention mechanism.

Recurrence. In this case, several blocks are connected through recurrence.
This method is a natural extension to block-wise patterns.

Downsampling. With this technique, the input sequence is downsampled
to a lower resolution. Therefore, the computational costs are reduced.

Sparse Models. These models do not have sparse attention, but introduce
sparsity to their parameter activation. Hence viewer operations are needed.

2.4.3. Attention Patterns

As discussed in Section 2.4.2, a strategy involves utilizing various attention
patterns in combination. Prominent examples include Longformer (Beltagy
et al., 2020) and BiG Bird (Zaheer et al., 2020). These methods substitute
full n2 attention with more efficient versions to incorporate sparsity into the
model. Specifically, they implement the following attention mechanism:

• Random attention: Each token may focus on a random subset of other
tokens.

• Window attention: Each token focuses on a predetermined group of
adjacent tokens.

• Global attention: Specific important tokens have the ability to focus
on every other token and receive attention in return.

These strategies enhance the efficiency of computational processes. Nonethe-
less, there exists a compromise between the efficiency of computation and
the richness of the attention pattern.

2.4.4. Fusion-in-Decoder Approach

Usually, efficient transformer models include several optimisation meth-
ods. These customised model architectures require expensive training from
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scratch. Recently, approaches have been proposed to reuse short-text pre-
trained language models. The work of Ivgi et al., 2023 suggested SLED
(SLiding Encoder and Decoder), which uses a sliding window to preprocess
the input. The input is divided into multiple overlapping chunks of the same
size. Each of the chunks is encoded by the language model. The pre-trained
decoder fuses the encoded chunks to generate a single representation. The
whole process is similar to a fusion-in-decoder (Izacard and Grave, 2021)
approach. Ivgi et al. (2023) experiments show that this technique competes
with specialised architectures and models with a much larger number of
parameters. Hence, this is an efficient low-resource approach leveraging
pre-trained language models.

2.4.5. Additional Efficient Approaches

According to Treviso et al. (2023), not only the model design, as explained
in Section 2.4.2 and Section 2.4.4 is an aspect that makes the process more
efficient. Models can be influenced by data, pretraining, fine-tuning, infer-
ence, and compression, as well as hardware utilisation, to efficiently achieve
high performance with lower resources. However, only the model design,
special inference and compression techniques, or efficient hardware use can
reduce the memory and computation costs during training and inference.

2.5. Controllable Summarization

Controllable summarization focusses on user-specific attributes and incor-
porates them into the final summary (Y. Zhang et al., 2023). The output
can be customised according to the user’s needs. There are different types
of attributes, such as length, entity, aspect, content, style, granularity, or
abstractiveness. Examples for research works on controllable summarization
are CTRLsum (He et al., 2022), FacetSum (Meng et al., 2021) or MacSum
(Y. Zhang et al., 2023), where the first two also include experiments of sci-
entific articles. MacSum has a focus on the news and meeting domain. A
related task is query-focused summarization, where a summary answer is
formulated based on a user question. However, the response is not explicitly
generated to a specific output style.

2.5.1. Control Mechanism

Prompt learning is a commonly used mechanism to give language mod-
els instructions and guidance. In general, there are two types of control
mechanism namely, prompt-tuning and prefix-tuning (Y. Zhang et al., 2023).
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Prompt-tuning. The instructions are given in the form of words or phrases
as part of the input. The model learns to adapt the context based on these
prefix words. Sometimes these prompt words have to be carefully selected
to obtain the needed information.

Prefix-tuning. Hereby, a vector is appended to each layer of the language
model. Only the added vectors are trainable, the rest of the network pa-
rameters are frozen. Hence, only a small part of the model is trained and
fine-tuned for a specific task.

2.5.2. Attribute Types

As already mentioned, there are several attribute types. A selection of them
is described in more detail below.

Aspect Control. Thereby, the focus lays on a certain aspect (Meng et al.,
2021). For example, in the case of Facetsum (Meng et al., 2021), the aspects
are purpose, method, findings, and value. Each of the aspect summaries
describes the input article from a different perspective or in a particular
context.

Entity Control. The aim of entity control is to generate summaries that pay
special attention to the given input entities (He et al., 2022). Usually, entities
are provided in the form of keywords or are included in short prompts.

Length Control. Controlling the length gives the user the possibility
to generate summaries of different sizes (He et al., 2022; Y. Zhang et al.,
2023). To prepare the training data, the reference summaries are assigned
to different buckets. Each bucket is described through a length parameter.
During training, the parameter is provided in addition to the input. The
user can then control the summary length during inference by stating the
required length parameter.

2.6. Evaluation

Evaluation metrics measure how effective a model is performing. Therefore,
a well-suited measurement is crucial for efficiently training and testing
models.

2.6.1. Performance Metrics

In general, performance metrics can be categorised into lexical and semantic
matching metrics. In the following points selected metrics are explained.
Table 2.1 shows the described metrics and some characteristics.
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Lexical Matching Metrics

ROUGE. The most common evaluation metric is ROUGE (Lin, 2004), which
is used for many NLP tasks, including machine translation. The score
is calculated by automatically comparing the summary generated with
a ground-truth reference. There exist multiple variants of ROUGE, the
most widely used being ROUGE-N and ROUGE-L. ROUGE-N is a recall
measurement between the n-grams of reference and the generated summary.
Usually, ROUGE-1 and ROUGE-2 are the most common forms, representing
unigrams and bigrams, respectively. ROUGE-L makes use of the longest
common subsequences and counts the matches.

BLEU. Another lexical matching metric is BLEU (Papineni et al., 2002),
which measures precision rather than recall. For that, the number of can-
didate words in the reference summary is divided by the total number of
words in the summary generated.

Perplexity (Jelinek et al., 1977) assesses the quality of a language model.
This metric calculates the average negative logarithmic probability of a
sequence or word. A lower perplexity is more favourable as it indicates
a higher grammatical quality of the summary by using less frequently
appearing words.

Pyramid (Nenkova et al., 2007) is a quantitative measurement method for
evaluating the selection of content for a generated summary. It consists of
Summary Content Units (SCUs), each representing a different meaning. If
multiple human-written summaries agree on certain content, the SCU is
more important and, therefore, weighted higher. To evaluate the quality of
the summary, the number and importance of the SCUs is calculated. The
pyramid is strongly correlated with human assessment. However, human
experts are needed to annotate and evaluate.

Responsiveness (Louis and Nenkova, 2013) measures the content and
linguistic quality of a summary without comparing the candidate summary
with a human-written gold reference. However, the overall score relies on
human assessment in the form of summary ratings.

Semantic Matching Metrics

METEOR (Banerjee and Lavie, 2005) is an enhanced version of BLUE,
which also takes synonym words into account by using knowledge graphs.
Therefore, the metric is evaluated on the basis of the semantic meaning of
words instead of the exact matching of sequences.

SUPERT (Gao et al., 2020) is an unsupervised metric for multi-document
summarization. The algorithm extracts salient sentences using contextu-
alised text encoders and builds a pseudo-reference summary. Finally, the
semantic overlap between the pseudo-reference and the candidate summary
is calculated.
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Lexical Matching Metrics Semantic Matching Metrics
Eval.
Metric ROUGE BLUE Perplexity Pyramid Responsive-

ness METEOR SUPERT BERTScore MoverScore Human
Evaluation

Autom.
eval. yes yes yes no no yes yes yes yes no

Gold
summ. yes yes no yes no yes no yes yes -

Table 2.1.: Common evaluation metrics and their characteristics include automatic evalua-
tion and the necessity of a gold summary.

BERTScore (J. Zhang et al., 2020) is based on pre-trained language models
to evaluate semantic similarities between sentence embeddings. It addresses
the problems of metrics based on n-grams, such as exact paraphrase match-
ing, distance dependencies, or semantically critical word ordering.

MoverScore (W. Zhao et al., 2019), similar to BERTScore, is built on con-
textualised representations and semantic distance measurements. It captures
not only the similarity between the reference and the generated summary
but also the deviation from the reference.

Human evaluation is the most accurate measurement. However, it is
resource-intensive and requires human annotations.

2.6.2. Faithfulness Metrics

Hallucinations and factual inconsistencies are common issues among trans-
former models (see Section 2.3.4). Several evaluation metrics were designed
to measure the factuality of the models. They can be categorised, as de-
scribed in Section 2.3.4, into entailment classification, question-answering
(QA), and fact-based approaches.

Entailment Classification Approach

NLI-based metrics assume that a summary is faithful if it can be entailed by
the gold summary (Ji et al., 2022). Otherwise, the output generated contains
hallucinations. In this approach, smaller parts of the candidate summary
are examined, for example, on the level of words, phrases, or sentences. For
text entailment, natural language inference (NLI) approaches are applied.
Units extracted from the generated summary are verified against the input
document.

However, it was shown by Falke et al. (2019) that models trained on NLI
datasets do not perform well in ABS tasks and therefore are unreliable. This
is mainly due to the characteristics of NLI-datasets, as they use shorter
premises than for documents used for ABS. Models trained on longer
premises achieved better results. Laban et al. (2022) introduced an efficient
NLI approach called SUMMAC that achieves very good results by simply
processing sentences segments rather than entire documents.
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A common semi-supervised classifier of factual consistency is FactCC
(Kryscinski et al., 2020), which is based on BERT (Devlin et al., 2019). Semi-
supervised metrics use models to predict whether the summaries contain
hallucinatory content (Ji et al., 2022). The classifier was trained on a specific
artificially created dataset. Positive labels are extracted or paraphrased sen-
tences, and negative labels are created synthetically by corrupting sentences
with false information. The FactCC model is trained simultaneously in three
tasks. The first task is to analyse whether the synthetic sentences are still
factual consistent after transformation. Next, the source text is searched for
sections, called spans, that support the consistency prediction. Then, in case
of inconsistency, spans from the summaries that indicate the contradiction
are selected, revealing the inconsistency between the synthetic sentence
and the source text. The resulting score is the number of faithful sentences
divided by the total number of sentences.

Question-Answering Approach

QA-based metrics make the assumption that the summary and the source
input provide similar responses to the same QA tasks (Ji et al., 2022). QA-
models are a suitable approach, as fact checking is a task of logical inference.

Usually, the models consist of two parts, a question generation (QG) and a
QA unit (M. Li et al., 2022). Many works propose procedures that consist of
three steps. First, a QG model formulates queries from the summary. Second,
a QA model generates responses from the input text. Finally, the system
compares the set of answers from the summaries and the input documents
and computes a score. If the answers align, the text is factual consistent;
otherwise, inconsistent. QA-based metrics were found to be more closely
correlated with human evaluations reviewing faithfulness.

In recent years, several QA-based metrics have emerged. According to
M. Li et al. (2022), QAGS (Wang et al., 2020) and FEQA (Durmus et al.,
2020) were among the first metrics to cover this aspect. Both metrics are
based on BERT (Devlin et al., 2019) and BART (Lewis et al., 2020) for their
QA and QG modules. QAGS extracts n-grams, while FEQA concentrates on
entity extraction. QuestEval (Scialom et al., 2021) extended the proposed
framework of QAGS and FEQA and introduced an additional procedure.
QUALS (Nan et al., 2021) further simplified the steps and came up with a
single model (QAGen), which generates question-answer pairs directly from
the source text. UniEval (Zhong et al., 2022) evaluates texts using boolean
QA. The evaluator can assess the generated text on multiple dimensions,
including coherence, consistency, fluency, and relevance. UniEval reaches
a higher correlation with human judgements in text summarization than
other evaluators.
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Fact-based Approach

Intuitively, checking the fact overlap is the easiest way to guarantee faithful-
ness. There are several ways to represent facts, including entities, n-grams,
or relation triples (M. Li et al., 2022). Either the entity is inconsistent or its
relation.

IE-based systems apply IE methods for the extraction of tuples from
relations that result in subjects-relation-object pairs (Ji et al., 2022). These
tuples are extracted from both the source and the generated text. After that,
it is determined how factual accurate the output of the model is. However,
IE-based systems are not fully reliable. Some researchers (Nan et al., 2021)
proposed a more robust alternative based on named entity recognition
(NER). NER models only entail a set of named entities from the text. Both
sets of the generated and the gold summary are compared. If the sets differ,
hallucination is assumed.

EntityAlign (Nan et al., 2021) is an approach based on named entity
recognition. The faithfulness score is calculated by dividing the number of
entities in the candidate summary, which also occur in the source text by
the total number of entities in the summary. TripleAlign (Goodrich et al.,
2019), unlike EntityAlign, describes facts with entities and their relationship
in the form of subject, relation, object pairs.

Other Approaches

In addition to the approaches mentioned above, methods based on other
mechanisms are suggested. The most prominent is BARTScore (Yuan et al.,
2021), which is based on the pre-trained language model BART (Lewis
et al., 2020). It formulates the evaluation of the generated summary as
a text generation problem. The final score is calculated by summarising
the weighted logarithmic probabilities of the generated output given a
specific input. Several aspects can be assessed, including faithfulness, but
also precision and recall.

2.6.3. Text Understandability

Generally, multiple features characterise the ease of understandability of a
text. Aspects such as readability, text coherence, factual consistency, fluency,
or relevance are crucial for the reader to comprehend the key points of the
text. There are several ways to automatically assess text quality, based either
on linear functions or pre-trained language models (Feng, 2010; Zhong et al.,
2022).
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Traditional Readability Metrics

According to Feng (2010), traditional readability metrics usually use simple
linear functions with a few lexical and syntactical text features to estimate a
single readability score. For example, text characteristics such as sentence
lengths, number of syllables, number of characters, or common and difficult
words are taken into account. The most widely used metrics are Flesch
Reading Ease (FRE) and the Flesch-Kincaid grade level formula (Flesch,
1979), Gunning FOG Index (Gunning, 1952), SMOG Index (McLaughlin,
1969), Automated Readability Index (Senter and Smith, 1967), Dale-Chall
formula (Dale and Chall, 1949), Coleman Liau Index (Coleman and Liau,
1975) or, the Linsear Write Formular (Klare, 1974). Most formulas try to
estimate the level of education given in US grade levels, which is necessary
to understand the text.

The Python library Textstat library1 can be used to compute the scores
mentioned. A very common metric is the Flesch Reading Ease (FRE). The
FRE index estimates the readability of texts by assigning a value between 0
and 100, where the first is the hardest, and the latter is the easiest reading
score. Additionally, the library also provides a combined evaluator that uses
eight metrics to assess the grade level. The combined evaluator applies a
majority vote using eight metrics that include the equivalent grade of the
FRE, the Flesch-Kincaid Grade (Flesch, 1979), the SMOG Index (McLaughlin,
1969), the Coleman Liau Index (Coleman and Liau, 1975), the Automated
Readability Index (Senter and Smith, 1967), the Dale Chall Readability Score
(Dale and Chall, 1949), the Linsear Write Formular (Klare, 1974), and the
Gunning Fog Index (Gunning, 1952). The final grade is the most common
value of all the tests mentioned.

Single and multi-dimensional evaluators

Here, one model estimates one or more dimensions with respect to text qual-
ity (Zhong et al., 2022). These dimensions are usually coherence, consistency,
fluency, and relevance. The characteristics of each dimension are as follows:

• Coherence: Estimates how coherent the text body is.
• Consistency: Measures the factual alignment between the input docu-

ment and the output summary.
• Fluency: It is a measurement for the quality of sentences.
• Relevance: Evaluates whether the summary contains important infor-

mation.

Recently, Zhong et al. (2022) developed a model called UniEval to evaluate
all four dimensions. In addition to estimating the factual consistency, as

1https://github.com/textstat/textstat
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already described in Section 2.6.2, the model also assesses coherence, fluency,
and relevance. The benefits of applying only one evaluator are that it is easier
to use, joint training is possible, the model can be enhanced by external
knowledge, and the model is extensible and transferable. As the dimensions
are related, they can contribute to each other if they are trained together.
The authors of UniEval state that the model has a higher correlation with
human judgment than other existing evaluators.

2.7. Datasets

There are several publicly available datasets for the task of text summariza-
tion, each having its own characteristic features (Koh et al., 2022). Model
properties such as model performance or summarization type have to be
found to be influenced by the characteristic of the dataset. A course clas-
sification can be made by the length of the documents, that is, short- and
long-document. A more fine-grained comparison is possible on the basis of
the intrinsic characteristic.

2.7.1. Comparison of Datasets

According to the survey of Koh et al. (2022), there are differences between
the datasets in several aspects, such as length, compression, abstractiveness,
diversity, or uniformity.

Document Length

The survey of Koh et al. (2022) found that common long document datasets
have between 1,600 and 9,400 tokens per document on average. In contrast,
documents in corpora composed of short texts are much smaller, with
around 400 to 800 tokens per document.

Compression Ratio

The compression ratio is defined by the word ratio between the article A
and the summary S:

Compression(A, S) = |A|/|S| (2.3)

Long documents have on average a higher compression ratios for tokens
as well as sentences. The survey of Koh et al. (2022) hypothesises three
scenarios, with the finding that the first two are more likely to be the reason
for the higher compression. They speculate that the loss of information is
greater, the distribution of content is sparser, and that there is a greater
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proportion of redundant information in the document. Clearly, it is more
difficult to capture the key narrative of longer documents than of shorter
ones. Thus, the user’s needs for generalised summarization are hard to
satisfy. A more user-centred approach, such as controllable summarization,
could be more efficient in covering the reader’s requirements.

Abstractiveness and Diversity.

The abstractiveness of a summary can be measured by the coverage and
density of the extractive fragments. Extractive coverage describes the per-
centual ratio of the tokens in the summary that are derived from the source
document. Coverage is defined by the following formula:

Coverage(A, S) =
1
|S| ∑

f∈F (A,S)
| f | (2.4)

,where S is the summary and f are the extractive fragments of the sum-
mary derived from the original text. Therefore, a high score indicates that
the summary is of extractive nature, and a low score an abstractive nature.

The density formula is similar to the coverage formula, just with the
difference that the fragment length is squared:

Density(A, S) =
1
|S| ∑

f∈F (A,S)
| f |2 (2.5)

The density measures how well word sequences from the summary can
be described by sequences of extracted words. If a dataset has high coverage
but low density, it means that individual words appear in the input text;
however, subphrases are shorter and words are ordered differently in the
summary. Therefore, the summary could still convey different ideas.

According to Koh et al. (2022), long document datasets have compared to
short document datasets greater coverage. This might be due to the domain
specificity and complexity of long-document datasets.

Uniformity

Koh et al. (2022) noticed from their evaluation of the ArXiv (Cohan et al.,
2018) dataset that important information in scientific articles is evenly dis-
tributed throughout the document. In comparison, short documents usually
contain salient content in the first 30% of the text. These characteristics can
be measured by uniformity:

UNF
(

unigrampos

)
= Hnorm

(
unigrampos

)
(2.6)
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Short Document Datasets Long Document Datasets L./S.*
CNN-DM NWS XSum WikiHow Reddit ArXiv PubMed BigPatent BillSum GovReport FacetSum SciTLDR

#Docs 278 K 955 K 203 K 231 K 120 K 215 K 133 K 1, 340K 21.3 K 19.5 K 5.8 K 3.2 K −
Tokens per Summ 55 31 24 70 23 242 208 117 243 607 195 21 6.9x

Tokens per Doc 774 767 438 501 444 6446 3143 3573 1686 9409 5698 5066 8.3x
Sents per Summ 3.8 1.5 1 5.3 1.4 6.3 7.1 3.6 7.1 21.4 8.5 1 3.7x

Sents per Doc 29 31 19 27 22 251 102 143 42 300 225 224 6.5x
Compress. token 14.8 31.7 19.7 7.2 18.4 41.2 16.6 36.3 12.2 18.7 31.9 291.7 1.4x
Compress. sent 8.3 22.4 18.9 3.3 14.5 44.3 15.6 58.7 9.7 18.1 28.4 219.9 2.2x

Coverage 0.890 0.855 0.675 0.610 0.728 0.920 0.893 0.861 0.913 0.942 0.937 0.920 1.2x
Density 3.6 9.8 1.1 1.1 1.4 3.7 5.6 2.1 6.6 7.7 6.2 3.7 1.5x

Redundancy 0.157 0.088 − 0.324 0.078 0.144 0.146 0.223 0.163 0.124 0.167 0 1.0x
Uniformity 0.856 0.781 0.841 0.813 0.777 0.894 0.896 0.922 0.903 0.932 0.942 0.897 1.2x

* Long vs. Short avg. ratio

Table 2.2.: Comparison of single-document datasets, adapted from Koh et al. (2022).

,where Hnorm is the normalised entropy measured of the decile positions
of salient unigrams in the source document. Salient unigrams are the top 20
keywords extracted 2 from the target summary.

Redundancy

The redundancy of a summary can be quantified by the sequence overlap
of sentences (Koh et al., 2022). First, a distinct pair of sentences is created.
Second, the ROUGE-L F1 score is calculated between two sentences. The
final redundancy score is the average of all sentence pairs (see Formula 2.7).

REDUNDANCY(S) = average
(xi,xj)∈S×S,xi ̸=xj

ROUGE
(
xi, xj

)
(2.7)

Inference between Intrinsic Characteristics.

An analysis of the correlations between the metrics found that redundancy
and coverage are negatively correlated (Koh et al., 2022). It is suggested
that human writers compose more vorbose texts that include unnecessary
information when requested to write abstractive summaries. Furthermore,
the long-document datasets showed a negative interrelationship between
coverage and compression. One hypothesis is that writers are forced to be
concise and paraphrase more due to the length constraint of the summary.

2.7.2. Scientific Single-document Datasets

ArXiv (Cohan et al., 2018) and PubMed (Cohan et al., 2018) are the most
widely used scientific datasets for summarization tasks. These datasets were
collected from scientific repositories such as ArXiv3 and PubMed4. The text
of the article serves as an input, while the corresponding abstract represents
the target summary.

2Keyword extraction tool such as NLTK-RAKE.
3https://arxiv.org/
4https://pubmed.ncbi.nlm.nih.gov/
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Facetsum (Meng et al., 2021) introduced a facet-divided scientific dataset
sourced from a scientific journal. The dataset, unlike ArXiv and PubMed
(Cohan et al., 2018), contains four summary sections written by the authors,
namely purpose, method, findings, and value. Each section covers a different
aspect of the article. Thus, it is possible to implement an aspect-oriented
summarization.

SciTDLR (Cachola et al., 2020) proposed an extreme multi-target sum-
marization dataset aimed at highly compressing source articles into very
condensed summaries. Each article in the dataset includes an author-written
summary as well as multiple summaries provided by peer reviewers. This
results in a multi-target dataset (available only for the test and validation
sets) with significant variability in the target summaries, distinguishing it
from datasets like ArXiv and PubMed (Cohan et al., 2018).

QASPER (Dasigi et al., 2021) is a question-answer (QA) dataset with a
focus on scientific articles. Each question is written by a human and covers a
specific information need. The questions were answered by several workers,
including also evidence sentences from the source text.

Long-Document Datasets Comparison

Compared to other long document datasets, ArXiv (Cohan et al., 2018)
and BigPatent (E. Sharma et al., 2019) have shorter and more paraphrased
summaries. GovReport (L. Huang et al., 2021) has the longest summaries
with a length of around 600 tokens on average. Furthermore, the salient
information in GovReport documents is scattered throughout the source
text. For example, in Figure 2.10a it can be seen that in ArXiv or BigPatent,
only 10% novel bigrams occur in the lower half of the document, compared
to 18% in GovReport and BillSum (Kornilova and Eidelman, 2019). Hence,
in the latter, the important content is more evenly distributed. In general,
scientific datasets differ slightly from other long document datasets.

Dataset Noise

ArXiv and PubMed datasets were both published by Cohan et al. (2018).
The survey of Koh et al. (2022) provides a fine-grained analysis of the
ArXiv corpus. The ArXiv dataset was found to be a very noisy dataset
with approximately 15% significant errors in the reference summaries of a
randomly chosen subset. Most errors seem to occur due to an inaccurate
data scraping process. The same inaccuracies probably also arise in the
PubMed dataset, as the same pre-processing methods were used. In general,
it was found that in many datasets at least a small percentage of the samples
were erroneous.
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a) Distribution of novel bigrams. (L. Huang
et al., 2021)

b) Summary sentence distribution throughout different
sections. (Koh et al., 2022)

c) Summary sentence distribution across different aspects. (Meng et al., 2021)

Figure 2.10.: These graphs show the bigram novelty and the summary sentence distribution
over across different sections and aspects.

Content Coverage

The sentences in the reference summaries of the arXiv dataset originate from
different sections of the source text. The survey of Koh et al. (2022) examined
the introductions, methodologies, results, conclusions, and limitations of
the research sections (see Figure 2.10b). For example, it was found that
articles in the mathematics domain have a greater focus on the contribution,
whereas documents with a physics topic concentrate more on conclusions.
Figure 2.10c shows the distribution of summary sentences in scientific papers
with an economic background, depending on the aspect. The summaries
are primarily based on the beginning (introduction section), followed by the
end (results and conclusion sections).

FacetSum (Meng et al., 2021) also found that, depending on the aspect, the
sentence distribution varies (see Figure 2.10c). For example, sentences about
the purpose are mostly in the beginning of a paper, whereas findings are
usually at the end. The descriptions of the method are uniformly distributed,
and the value of a paper is found equally at the beginning and the end of
an article.

SAPGraph (Qi et al., 2022), like FacetSum, has encountered that introduc-
tion and conclusion are usually sufficient to cover the key points of an article.
However, other sections are essential for higher performance in generalised
summarization. Therefore, it is suggested to use the full articles as an input.
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2.7.3. Scientific Multi-document Datasets

Like scientific single-document, multi-document datasets with academic
background are comparably rare. Only in recent years have large-scale
datasets from the scientific domain emerged.

Multi-XScience (Lu et al., 2020) is one of the most common datasets in
the field of scientific multi-documentation. The dataset is sourced from the
ArXiv website and is enriched with references using an academic graph. The
resulting corpora consist of pairs of target summary and multiple reference
abstracts. The target summary is the related work section of the query paper.
Therefore, this dataset is suitable as a training set for the generation of
related work.

SciSummNet (Yasunaga et al., 2019) constructed a corpus of 1,000 most
cited papers and their citation sentences. The target summaries are written by
domain experts by analysing the source abstract and their citation sentences.

Semantic Scholar Network (SSN) dataset (An et al., 2021) is a large-
scale corpus that combines scientific articles and their citation relationships.
Therefore, models can make use of the citation graph to extract additional
information.

MS2 (DeYoung et al., 2021) is constructed from medical surveys and
their respective reviews. The abstracts of the study and the background
statements serve as input. The target summary is composed of the review’s
target statements. Therefore, this dataset does not have the typical section-
divided characteristics of scientific articles. However, the studies have a
scientific background.

PeerSum (M. Li et al., 2022) is an academic dataset scraped from two well-
known international conferences. For each paper, they collected multiple
reviews, comments, and responses. The meta-review serves as the ground
truth target summary. The summary is highly abstractive and, therefore,
more challenging to generate.

2.7.4. Benchmark for Long Text

Recently, Shaham et al. (2022) introduced a benchmark called SCROLLS
(Standardized CompaRison Over Long Language Sequences) for NLP tasks
with a focus on long text. The benchmark contains multiple tasks such
as summarization, question answering, and natural inference tasks, cover-
ing various domains. Shaham et al. (2022) selected datasets with specific
characteristics, such as the ability to contextualise and abstract information
over a long range of text. These long-sequence datasets are particularly
challenging for transformer models with a self-attention mechanism due to
their high computational costs. Lately, adapted architectures and techniques
were proposed to overcome this problem (Tay et al., 2022). SCROLLS offers
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an evaluation suite to make cross-model comparisons and to highlight the
strengths and weaknesses of models with specific tasks. The performance
evaluation can be seen in Table 2.3. The leaderboard is provided on the
official website 5.

Model Name Reference #Params Input
Length

Score
(Average)

CoLT5 XL Ainslie et al. (2023), Google 5.3B 16K 43.51

LongT5 XL Guo et al. (2022), Google 3B 16K 42.53

CoLT5 Large Ainslie et al. (2023), Google 1.46B 16K 41.04

LongT5 Large Guo et al. (2022), Google 770M 16K 41.03

BART-LS Xiong et al. (2023), Meta AI 460M 16K 39.76

LongT5 Base Guo et al. (2022), Google 220M 16K 38.6
BART-large SLED Ivgi et al. (2023) 406M 16K 37.99

UL2 Tay et al. (2023), Google 20B 2K 37.87

CoLT5 Base Ainslie et al. (2023), Google 433M 16K 37.64

BART-base SLED Ivgi et al., 2023 139M 16K 35.4
LED Base Beltagy et al. (2020), Al2 162M 16K 29.16

BART Base Xiong et al. (2023), Meta AI 139M 1K 29.01

LED Base Beltagy et al. (2020), Al2 162M 4K 28.30

BART Base Xiong et al. (2023), Meta AI 139M 512 27.58

LED Base Beltagy et al. (2020), Al2 162M 1K 27.06

BART Base Xiong et al. (2023), Meta AI 139M 256 26.35

Naive Shaham et al. (2022) - - 19.35

Table 2.3.: SCROLLS performance evaluation with multiple models. The models vary in the
number of parameters and input size. The score represents the average across
multiple long text tasks.

2.8. Content Extraction for Scientific Documents

According to Z. Shen et al. (2022) scientific documents are usually published
in Portable Document Format (PDF). There are several tools for extracting
text-based content from PDFs. All extraction tools apply machine learning
models to identify and categorise text sequences in the document. The
classified sequences are then presented in a structured manner. Scientific
publications usually contain a title, keywords, abstract, and sections with
their respective paragraphs and headlines, as well as references (see Section
2.1.7). Additionally, meta-information such as the digital object identifier
(DOI) can also be extracted. The tools are often based on other PDF parsing
engines. A selection of recent tools is described in the following points.

5https://www.scrolls-benchmark.com/leaderboard
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• ScienceParse. (Ammar et al., 2018) This tool parses scientific PDF
papers and outputs them in structured form. This tool is mainly
programmed in Java and Scala. The project is openly available6.

• GROBID. (“GROBID,” 2008–2023) The abbreviation stands for Gen-
eRation Of BIbliographic Data. The library provides several machine
learning methods to extract, parse, and restructure text information
from PDF files. It can provide a detailed fine-structured output of
scientific articles. The project is open-source; a detailed description is
available in their repository7.

• Corpuse Conversion Service. (Staar et al., 2018) It is a scalable cloud-
based platform to parse and annotate documents. The platform con-
verts documents into a structured data representation. However, the
tool is not openly accessible.

2.9. Unsupervised Keyphrase Extraction

According to the survey Song et al. (2023), keyphrase extraction (KE) is
an essential task in NLP to identify important phrases in a document.
Unsupervised KE models do not need additional training and can be applied
directly. Usually, the KE process includes extracting candidate phrases
and selecting keyphrases. Traditional and embedding-based models have
two main steps in common: tokenising and tagging the document with
part-of-speech (POS) tags and extracting keyphrases based on the tags by
regular expression. In addition, pruning techniques are applied to obtain
better candidates. Finally, the keyphrases are ranked according to their
importance. The authors of the survey Song et al. (2023) divide the methods
into traditional and embedding-based techniques.

2.9.1. Traditional Models

Traditional models can be mainly categorised into statistics-based, topic-
based, and graph-based models (Song et al., 2023). The models use different
features, such as word frequency, position, or topic information, to estimate
importance. Examples of commonly used traditional models are RAKE
(Rose et al., 2010), YAKE (Campos et al., 2020), or TF-IDF, which analyse
local text features.

RAKE (Rose et al., 2010) stands for Rapid Automatic Keyword Extraction.
It is an efficient keyword extraction tool that can be easily applied to docu-
ments from different domains. RAKE partitions documents into candidate

6https://github.com/allenai/science-parse
7https://github.com/kermitt2/grobid
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keywords using stop words and phrase delimiters. Then the importance
score is computed on the basis of the word co-occurrence.

YAKE (Campos et al., 2020) is a statistical feature-based system to extract
keywords from single documents. The tool supports multilinguality and
does not require dictionaries or thesaurus. YAKE outperforms RAKE and
TF-IDF in many datasets.

TF-IDF (Salton and McGill, 1983). Each word’s weight depends on its fre-
quency within the document and its overall occurrence in the entire corpus.
Words that appear relatively rarely in the corpus have higher weights, and
words with high frequency within a document also gain increased weight.

2.9.2. Embedding-based Models

In contrast to traditional models, embedding-based models use high-level
features such as syntactic and semantic information (Song et al., 2023).
Pre-trained language models are applied to obtain phrase and document
embeddings. These embeddings are then used to calculate the importance
score. Recent research and tools, such as KeyBERT (Grootendorst, 2020), have
a focus on embedding-based methods, as they have reached state-of-the-art
results.

KeyBERT (Grootendorst, 2020) is a simple and minimal keyword extrac-
tion technique that is easy to use. The authors provided a Python library 8

to quickly set up the extraction script. This method is a BERT-based (De-
vlin et al., 2019) solution, and hence, the algorithm operates on word and
document embeddings to find the most similar words that describe the
entire input text best. The similarity is computed by applying the simple
cosine similarity. The tool requires the user to define a predefined n-gram
length. This raises two issues. First, the user needs to determine the optimal
n-gram lengths through experiments. Second, the generated keyphrases are
limited by this length factor and often do not sound grammatically correct.
To overcome these problems, PatternRank (Schopf et al., 2022) suggested
adding keyphrase vectorizers to the extraction process. First, the input text
is tokenised. Second, word tokens are labelled with part-of-speech (PoS)
tags. Vectorizers then extract candidate keyphrases according to specific PoS
patterns. The authors of PatternRank developed the KeyphraseVectorizers 9

package, which can be easily used in combination with the KeyBERT imple-
mentation. The extracted candidate keyphrases are the input for KeyBERT,
which computes the phrase embeddings and similarities. The keyphrases are
rankend in descending order, depending on their similarity to the input doc-
ument. Only the top-N keyphrases are chosen as representative candidates
for the input text. Figure 2.11 shows the entire extraction process.

8https://maartengr.github.io/KeyBERT/index.html
9https://pypi.org/project/keyphrase-vectorizers/
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Figure 2.11.: PatternRank approach for unsupervised keyphrase extraction. (Schopf et al.,
2022)

2.10. Summary

In conclusion, summarizing long documents effectively presents significant
challenges. It requires consideration of numerous factors, ranging from the
features of the text to the architecture of the models. Presently, transformer
models achieve top-tier performance, but they are not without limitations,
including substantial computational demands and problems with generating
inaccurate content. However, transformer models enable the integration of
controllability features, thus enhancing the interactivity of the summariza-
tion process.

The efficient transformer approaches address the issue of high compu-
tational demands. Various models are presented that include attention
mechanisms or fusion-in-decoder strategies. Nonetheless, these methods
usually involve compromises between computational efficiency and the
richness of information.

Performance evaluation metrics are vital for assessing a model’s effective-
ness. Thus, selecting a suitable metric is critical for efficient model training
and evaluation. Furthermore, faithfulness metrics are important for measur-
ing text inaccuracies. Readability metrics also play a role in evaluating text
clarity, including factors such as coherence and fluency.

Furthermore, training models effectively require high-quality datasets.
Numerous extensive single- and multi-document datasets are publicly ac-
cessible, spanning various domains and topics. However, only a select
number incorporate features such as controllability attributes or provide
multi-targeting.

To produce valuable data from input documents, necessary pre-processing
steps such as content extraction and unsupervised keyphrase extraction are
required. In this process, it is essential to consider the structure of scientific
documents. Numerous open-source tools are available to carry out these
processes effectively.

Finally, several steps are needed to efficiently summarize long scientific
texts, from datasets, pre-processing, model selection, and post-processing. A
well-designed pipeline guarantees a good result and user satisfaction.
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This chapter provides an overview of the overall idea, concept, and model
architecture on which the experiments were based. The idea is derived from
the background and related work section, while the requirements are based
on the project’s conceptual framework. These requirements are listed and
explained in detail. Finally, design decisions are discussed and illustrated
through a conceptual architecture.

3.1. Idea and Requirements

The idea of this work is to implement a summarization model to efficiently
process long-sequence text documents in the scientific field with a focus
on traceability. The model should be able to capture scientific phrases and
integrate specific user needs.

Several issues arise from scientific documents, such as document length
or specific scientific vocabulary, as described in Section 2.7. Therefore, the
system should meet several requirements, such as capturing relationships in
long documents, efficient processing of long input documents, and contex-
tualisation of scientific phrases.

Furthermore, there are only a few systems in the literature that integrate
user needs for scientific summarization (see Section 2.5). Some kind of user
participation is beneficial and can improve the result. Also, the user should
know from where in the input text the summary sentences are derived from.

Therefore, requirements such as capturing long-range relationships, ef-
ficient processing of long input text, contextualising scientific vocabulary,
user-centred design, and traceability of summary sentences are identified. A
brief description of the requirements is given in the following subsections.

3.1.1. Long-range Relationships

The model should be able to capture long-range relationships that span
several paragraphs in text documents. In scientific articles, unlike short
text documents such as news articles, information is scattered over the
whole text. Usually, for models processing short text, it is sufficient to
capture information with low locality. On the contrary, models for long-
text documents need to process information that spans several sentences
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and paragraphs. These long-range dependencies are hard to grasp and
need sophisticated approaches. Therefore, as discussed in Section 2.4 a long
document transformer is required to generate abstractive summaries of long
input text.

3.1.2. Efficient Processing of Long Text

Recently, approaches built on the transformer architecture have become
state-of-the-art for text processing. However, these models also come with
drawbacks. Due to the characteristics of self-attention, computational ef-
forts increase quadratically with respect to the input size (see Section 2.4.1).
Hence, processing long-text documents can become infeasible and time-
consuming. Currently, research in the field of long-text processing has
focused on resource-saving approaches. The researchers suggested efficient
attention layers or windowed encoder-decoder models to reduce compu-
tational costs (see Section 2.4). The goal is to construct architectures with
the ability to efficiently process text information that are also suitable for
low-resource environments. The low-resource and efficient transformer (see
Section 2.4.2) or the fusion-in-decoder approach (see Section 2.4.4) is suitable
in this case.

3.1.3. Scientific Vocabulary Contexualization

Models must be able to contextualise vocabulary from the scientific field.
In general, scientific articles contain more complex words and terminology
compared to short text from non-scientific domains, such as news articles
or social media posts. To properly train such models, datasets from the
scientific field are needed (see Section 2.7). For good performance, models
are required to generate meaningful embeddings in order to efficiently
extract information and relationships between phrases. To evaluate the
model, common evaluation methods such as ROUGE and BERTScore (see
Section 2.6) are used.

3.1.4. User-centred System

Most summarization systems deal with generic summarization. Therefore,
user needs are neglected. Usually, the user wants to gain knowledge about a
specific aspect of the text or define how detailed the information should be.
Hence, controllable summarization is inevitable to fulfil the user’s require-
ments. There exist several ways to express information needs, reaching from
topics, keywords to questions. The model needs the ability to meaningfully
process the query and produce an appropriate output that covers the user’s
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information need. Therefore, control tokens as described in Section 2.5.2
must be defined that the user can select for the summarization process.

Summarization Types

There are two types this work concentrates on, namely general summariza-
tion, aspect-oriented summarization. The summaries should be provided in
an abstractive and extractive manner.

General summarization is the process of generating an excerpt of the
input texts that covers the main points. The model extracts the core principles
and ideas. It should also be able to highlight the main contributions of the
paper. The summary should include more specific data, such as methods,
datasets, and ideas of the authors.

In an aspect-oriented summarization, the summary emphasises a certain
aspect of the text, for example, the purpose of the article or the findings of
the authors.

Control Mechanism

To control the search result and satisfy the user needs, two control mecha-
nisms are used, aspect and length tokens:

• Aspect control tokens are used to summarise a certain aspect of the
input article.

• Length control tokens are used to define the summary length. Several
text lengths are defined, reaching from brief to extra long.

3.1.5. Traceability of Summary Sentences

Faithfulness is an important characteristic for models in the scientific field.
Therefore, the output must be traceable and the information origin must
be verifiable. However, as described in Section 2.3.5 the interpretability of
transformer networks is a difficult and partly unsolved problem. Therefore,
a basic approach, such as the sentence similarity search, is often a sufficient
alternative.
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Figure 3.1.: Conceptual architecture of the system. The system includes a data generation
process, a training and testing framework, input extraction, the model, and a
sentence tracing mechanism.

3.2. Concept and Components

In this section, the conceptual idea and the general decision process for
the components are described. In addition, the components are listed and
explained. From the requirements, we can derive four main components
for the conceptual architecture. The four basic components are dataset
generation, input extraction, model framework, and sentence tracing. The
conceptual architecture and its components are illustrated in Figure 3.1.

3.2.1. Dataset Generation

Specific training and testing data are needed for model training and evalua-
tion. Therefore, scientific documents are scraped from journals and review
websites. After training with this dataset, the model should be able to
contextualize and process academic texts effectively.

3.2.2. Input Extraction

The model input is generated by extracting the text from the input document
and combining it with the control attribute selected by the user. This makes
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the system user-centered, requiring the model to respond to the user’s
needs.

3.2.3. Model

The model is designed to generate abstractive summaries and must effi-
ciently process long input texts. Initially, the model is trained using the
scraped scientific dataset. Once trained, it can produce summaries of unseen
scientific articles.

3.2.4. Train and Test Framework

A training and testing framework is employed to evaluate the model. Com-
monly used metrics are applied in the evaluation process to compare its
performance with other models.

3.2.5. Sentence Tracing

To trace the origin of the sentences in the abstractive summaries, a sentence
similarity method is used. The most similar sentences then form the extrac-
tive summary. This allows the user to generate both an abstractive and an
extractive summary. Additionally, this process enhances the trustability of
our model.

3.3. Design Decisions

In this section, the design decisions for each component are described. Tools
and libraries are specified and explained in more detail. Decisions are made
regarding the model selection, text extraction tools, datasets for training,
and similarity comparison techniques.

3.3.1. Model

One of the first steps was to do some research for suitable models that meet
the requirements mentioned above. The idea was to choose state-of-the-
art models based on the transformer architecture. During the research the
choice fell on long-document transformer models (see Section 2.4) because
of their efficient processing of long input text and their ability to elaborate
user prompts into the search. The selection of the model is mainly based
on the computation time and the memory consumption on the SCROLLS
evaluation data (see Section 2.7.4).
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Figure 3.2.: Explanation of the SLED model. (Ivgi et al., 2023)

Three parameters are significant, namely, the input size, the number of
parameters, and the average score. As can be seen in Table 2.3, the SLED (Ivgi
et al., 2023) model shows a good performance trade-off. Compared to the
low number of parameters, the model achieves a good average score. Other
models do have a significantly higher number of parameters or perform
poorer on average.

The SLED (Ivgi et al., 2023) model meets all the requirements men-
tioned above, such as long-range relationships, efficient processing, and
user-centred design. The algorithm uses pre-trained language models to pro-
cess long input text (long-range relationships). The input tokens are divided
into multiple overlapping chunks. Therefore, a model with a smaller input
size is sufficient (efficient processing). The control prefix token is then added
to each chunk (user-centred). The encoder encodes each chunk separately.
The encoded chunks are gathered and fed to the decoder, ignoring the
context tokens. This system follows the fusion-in-decoder approach and is
visually explained in Figure 3.2.

The authors of SLED also provide a training and testing framework. The
framework is based on PyTorch1, which is an optimised tensor library for
deep learning using GPUs and CPUs. In addition, the authors published
several pretrained SLED models on HuggingFace2. With the HuggingFace
library trained models can be easily integrated into training, testing and
inference pipelines.

3.3.2. Scientific Text Extraction

Based on the available tools described in Section 2.8 we selected GROBID
(GeneRation Of BIbliographic Data) (“GROBID,” 2008–2023), because it is
open source and has suitable text extraction capabilities. For easier integra-
tion into the extraction pipeline, the Python library SciPDF parser 3 is used.

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/titipata/scipdf parser/tree/master
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SciPDF is based on GROBID, which is, as already described in Section 2.8, a
machine learning library for parsing and extracting information from raw
documents, such as academic papers in PDF form. The tool has a special
focus on technical and scientific papers. GROBID must be run locally as a
service. SciPDF offers easy-to-use wrapper functions to communicate with
the service. The PDF file must be provided as either a direct URL or a local
file path. The extracted information can be provided in JSON format and
includes the title, abstract, sections with their corresponding heading, and
text, as well as reference and figure descriptions. The tool can also be used
to extract figures from the PDF. However, this functionality was not needed
because only the text information was of interest.

3.3.3. Training Datasets

To satisfy the requirement of capturing scientific vocabulary, scientific train-
ing datasets are selected. However, most of the existing datasets do not
fully satisfy our needs. In Section 2.7.2 the main scientific single-document
datasets are listed and briefly described. ArXiv and PubMed (Cohan et al.,
2018) have a large number of samples. However, these two datasets provide
only the abstracts of the papers as reference summaries. SciTLDR (Cachola
et al., 2020) contributes human-written multi-target reference summaries,
but these are condensed into a single sentence. Therefore, the summaries
are very short and do not provide much information. QASPER (Dasigi et al.,
2021) has a scientific background, but provides only a focus on question-
answering. The questions are answered briefly in a couple of phrases, and
additionally evidence is provided for the answers. However, the dataset is
not suitable for the summarization task. FacetSum (Meng et al., 2021) is a
faceted summary dataset. Summaries are written by humans and provide
information on multiple aspects. For each document, only one summary
exists; therefore, the dataset is not multi-targeted.

To conclude, the only scientific dataset that can be used for user-centred
training is FacetSum (Meng et al., 2021). However, we also want a length-
dependent multi-targeted abstractive summary dataset. Therefore, we de-
cided to scrape two new datasets from an open peer review website. To
generate and create the two new datasets and obtain the existing one, data
was extracted from two websites, namely Emerald4 and OpenReview5. The
OpenReview dataset was solely obtained from the latter one.

4www.emerald.com
5www.openreview.net
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Emerald Scientific Publisher

To access the dataset described by Facetsum (Meng et al., 2021) it is required
to pull the specific documents from Emerald. Emerald is a digital publisher
of research articles. It is mainly focused on business-related topics. What
makes them different from other publishers is that articles are summarised
according to specific aspects. These short summaries are provided by the
authors and include views on the value, purpose, findings, and methods of
the article. The authors of Facetsum do not provide the dataset directly as
there is only limited access to the website. Only with an accepted university
account is it possible to view the summaries and the associated scientific
article. Therefore, the dataset is not publicly published.

OpenReview Peer Review

The second website accessed to generate the two dataset OpenReview Sum-
mary and OpenReview Contribution was OpenReview. The website follows
open-review principles that include open peer review, publishing, access,
discussion, and recommendations. Therefore, scientific articles are openly
peer-reviewed and commented on by members of universities. This proce-
dure guarantees transparency and quality of scientific work. Only a few
journals make their review process publicly available and publish on Open-
Review. However, some larger journals have published for several years and
provide a large number of reviewed articles. In particular, four journals
were used for the OpenReview Summary dataset and four for the OpenRe-
view Contribution dataset. These include the Conference on Robot Learning
(CoRL), International Conference on Learning Representations (ICLR), Medi-
cal Imaging with Deep Learning (MIDL), and Neural Information Processing
Systems (NeurIPS) for the former and NeurIPs, as well as Uncertainty in
Artificial Intelligence (UAI), Automated Machine Learning (AutoML), and
Transactions on Machine Learning Research (TMLR) for the latter dataset
(see Table 3.1). All journals have a computer science or engineering back-
ground. Depending on the journal, reviewers incorporate specific aspects in
their reviews such as the advantage, disadvantage, or contribution of the
scientific work. For each paper, several summaries written by experts are
provided. Each summary differs in length and specifity. Hence, the website
is a perfect source for length-dependent abstractive summarization datasets.

OpenReview Contribution OpenReview Summary
Neural Information Processing Systems

Uncertainty in Artificial Intelligence International Conference on Learning Representations
Automated Machine Learning Medical Imaging with Deep Learning
Transactions on Machine Learning Research Conference on Robot Learning

Table 3.1.: Journals selected for inclusion in each dataset
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Tools and Libraries

Facetsum (Meng et al., 2021) provides a crawler script for the website Emerald
in their repository6. To access the Emerald website, one must first register
on the website. After logging in, the user has access to the full paper and
its summary. The session information can then be copied and used for the
crawler script. The script is based on the HTTP library Requests and the
BeautifulSoup HTTP parser. The script was adapted to make the scraping
process more efficient and the dataset generation easier. The list of the
required scientific articles is provided in the Facetsum repository.

The data scraping scripts for the newly generated summary datasets are
based on the OpenReview Python client7 with which it is possible to interact
with the OpenReview REST API. The API is maintained and created by the
official OpenReview team. With the client, it is possible to request various
information about the journals, reviews, and comments.

3.3.4. Sentence Tracing and Semantic Search

To find the original sentences in the input document semantic search meth-
ods are used. In particular, SBERT (Reimers and Gurevych, 2019) is applied
to create sentence embeddings. Sentences from the input text with the high-
est cosine similarity to sentences of the abstractive summary are chosen as
representatives. The selected sentences then create the extractive summary.

To minimise the computation of the semantic search, candidate sentences
from the input text are pre-selected. The pre-selection is based on the key-
words and entities contained in the abstractive summary. For the extraction
process of keywords and entities, KeyBERT (Grootendorst, 2020) was ap-
plied. As described in Section 2.9, KeyBERT is a simple and easy-to-use
embedding-based keyphrase extraction tool.

Instead of SBERT (Reimers and Gurevych, 2019), as in PatternRank (Schopf
et al., 2022), SciBERT (Beltagy et al., 2019) and SciDeBERTa (Jeong and Kim,
2022) were used in this work to create semantic vector representations
of keyphrases. The advantage of the latter is the learnt intrinsic scientific
vocabulary of the pre-trained model. SciBERT is trained on scientific papers
from the SemanticScholar 8 corpus. Similarly to SciBERT, SciDeBERTa was
trained on data in the science technology domain. Therefore, the models
have better capabilities to embed certain scientific words and phrases.

6https://github.com/hfthair/emerald crawler
7https://github.com/openreview/openreview-py
8https://www.semanticscholar.org/
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3.4. Summary

In summary, we have five components in our conceptual architecture, namely,
dataset generation, input extraction, model, training and testing framework,
and sentence tracing. This work focuses on evaluating the benefits of ef-
ficient long-document transformers and the similarity search approach in
comparison to other extractive and abstractive methods. Therefore, we chose
SLED (Ivgi et al., 2023) as our experimental model due to the low number
of parameters of the backbone model, the maximum input size and the
computational efficiency compared to other alternative models. The authors
also provide a framework for testing and training the model effectively.
To extract text from scientific work, we select the GROBID (“GROBID,”
2008–2023) tool in combination with the SciPDF Python wrapper. As this
tool has sufficient text extraction capabilities and is open source. As datasets,
we use the existing scientific corpus FacetSum (Meng et al., 2021) and scrape
our own dataset from OpenReview. We call the newly generated datasets
OpenReview Summary and OpenReview Contribution. These datasets allow for
controllable summarization by attributes, such as text length for OpenRe-
view. The final component is the tracing of sentences and the generation
of extractive summaries. To find similar sentences, embedding-based sen-
tence semantic search techniques using SentBERT (Reimers and Gurevych,
2019) are applied. Candidate sentences are pre-selected by their keyphrases
generated by the KeyBERT (Grootendorst, 2020) extraction tool. Finally,
the system can generate abstractive and extractive summaries based on
attributes specialised on scientific work and is able to trace the origin of
summary sentences in the source document.
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In this chapter, the methods used are explained, the system architecture,
and the progress of the training. Additionally, we describe the structure of
the generated dataset and the similarity search technique.

4.1. Architecture of the System

The architectural design is based on the design decisions of Section 3.3. The
system is composed of three main components: preprocessing, inference,
and post-processing. The architectural overview can be seen in Figure 4.2.

4.1.1. Preprocessing

In the pre-processing phase, the text of the input document is extracted and
combined with the control token of the user. SciPDF is used to communicate
with the GROBID (“GROBID,” 2008–2023) service via an API. The tool
extracts headlines and paragraphs of the input text.

The user can select either an aspect token or a length token. With the
former, an aspect-oriented summary is generated, and with the latter, a
length-controlled general summary is created.

4.1.2. Inference

The trained SLED (Ivgi et al., 2023) model is used to infer the abstractive
summary. The summary depends on the provided control token. The in-
ference script is based on PyTorch1 and the HuggingFace2 library. Before
providing the input to the model, the input text has to be tokenised and
prepared.

4.1.3. Postprocessing

In the last phase, an extractive summary is generated on the basis of the
abstractive summary. First, the keyphrases and entities are extracted from
the abstractive summary with the KeyBERT (Grootendorst, 2020) keyphrase

1https://pytorch.org/
2https://huggingface.co/
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Figure 4.1.: Overview of scraping pipeline. Information is extracted from DOM objects and
saved in CSV files.

extraction tool. Embeddings are generated using SciDeBERTa (Jeong and
Kim, 2022) for better capture of the scientific term. Second, based on the
keyphrases, candidate sentences are selected from the input text. Lastly,
with the help of the sentence similarity search based on SentBERT (Reimers
and Gurevych, 2019) the most similar candidate sentences are chosen. These
sentences build the extractive summary.

4.1.4. Data Interface

A summary can be generated for every scientific article the user provides.
However, for training and testing, the datasets were scraped from websites.
The documents are scraped with the help of HTTP libraries. The necessary
information is extracted from the DOM objects and saved in CSV documents.
The last step is to generate the entire dataset according to the required format.
The scraping process is illustrated in Figure 4.1. The pipeline consists of the
following steps:

• HTTP requests: Sending requests to get the necessary information.
• Scraping: Extraction of required data from websites.
• Dataset generation: Building the dataset for training and testing.
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Figure 4.2.: Overview of the system architecture. The system consists of three steps, namely
preprocessing, inference and postprocessing. First, the text is extracted from
the scientific text and combined with a prefix. Second, the model generates an
abstractive summary. Lastly, the sentences in the original text are traced and an
extractive summary is generated.
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4.2. Dataset Generation

To utilize the framework, the datasets were created following the format
described by the authors of SLED (Ivgi et al., 2023). There are three datasets
used for training and testing, namely FacetSum (see Section 4.2.2) and Open-
Review (see Section 4.2.3), which is divided into OpenReview Summary and
OpenReview Contribution.

4.2.1. Dataset Format

Scraped data were converted from JSON to CSV format. The datasets are
subsequently stored in a single CSV file, which contain five fields: id, pid,
input, input prefix, and output. The following information is provided in
the above-mentioned fields:

• id: This represents the unique identifier for the data record.
• pid: When multiple entries share identical input but have different

input prefixes, this field helps in differentiating these entries.
• input: This is the content contained within the input document.
• input prefix: This field specifies the prefix for a particular task. For

summarization tasks, this could include keywords, aspects, or guiding
questions.

• output: The output represents the intended outcome of the summa-
rization process, providing a succinct version of the input text that
considers the specified input prefix.

The input prefix differs depending on the dataset. As seen in Figure 4.2,
the user can make a selection between a length token and an aspect token.
The OpenReview dataset defines the former, while the FacetSum dataset
defines the latter.

4.2.2. Facetsum Dataset Generation

The crawler script (described in subsubsection 3.3.3) provided by the au-
thors was modified to download the FacetSum (Meng et al., 2021) dataset.
This script was enhanced with multiprocessing features to speed up the
download. The provided list with links served to pinpoint the required files.
The input prefix for the FacetSum dataset is limited to purpose, method,
findings, and value, following the definitions of the authors.

4.2.3. OpenReview Dataset Generation

Furthermore, another script (described in subsubsection 3.3.3) was devel-
oped to gather and organize the data for the OpenReview datasets. Based
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on comments from each article, two distinct categories were identified:
”Summarization” and ”Summary of Contribution”. Consequently, two datasets
were created, named OpenReview Summary and OpenReview Contribution.
The prefixes were defined according to the desired output text lengths. The
dataset was segmented into seven relatively evenly distributed bins, with
minor modifications to enhance the balance of the labels. The categories
were defined by the following length ranges: ”brief” - [0, 40), ”very short”
- [40, 55), ”short” - [55, 70), ”middle” - [70, 90), ”long” - [90, 125), ”very long”
- [125, 200), and ”extra long” - [200, ∞). The majority of the summaries are
categorized as ”short” and ”middle”.

4.3. Model Framework

The authors of SLED (Ivgi et al., 2023) provide a framework for training
and testing. Their models are trained and tested on the SCROLLS (Shaham
et al., 2022) datasets. The models used in their experiments as well as the
datasets are published on Hugging Face3 and the Hugging Face dataset
hub4. Custom datasets can be used as well for training and testing. To load
the own dataset locally, the framework was slightly adapted.

For this work, we train our own model. We use the base model of BART
(Lewis et al., 2020) bart-base-sled5 as it requires lower computational costs
and has good accuracy. An alternative would be T5-based (Raffel et al., 2020)
models, however, these models have a higher number of parameters and
show lower performance.

The framework is implemented with PyTorch6. SLED (Ivgi et al., 2023)
is fully compatible with the HuggingFace library and can be easily loaded
using its methods. The installation and usage guide for the framework can
be seen in their repository7. For the model settings, we refer to the original
values of their BART base model, as it reaches the best performance. The
authors of SLED use a context size of 256 and a window fraction of 0.5.
The context size describes the size of the sliding window, and the window
fraction refers to the degree of overlap. Additionally, for every chunk, the
prefix is encoded and prepended. A technical description of the model
framework is illustrated in Figure 3.2.

3https://huggingface.co/tau
4https://huggingface.co/datasets/tau/sled
5https://huggingface.co/facebook/bart-base
6https://pytorch.org/
7https://github.com/Mivg/SLED
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Dataset Task max input size max output size learning rate batch size
FacetSum Aspect-oriented summary 12,000 200 1e-4 1

OpenReview Contribution Length-dependend summary 12,000 512 1e-4 1

OpenReview Summary Length-dependend summary 12,000 512 1e-4 1

Table 4.1.: Training settings for each task

4.3.1. Training Settings

For training, we adapt the data settings for the GovReport summarization
dataset (L. Huang et al., 2021) provided by the authors of SLED (Ivgi et al.,
2023). Adjustments were primarily based on the average and maximum
input and output sizes of each data set. Another limiting factor is the GPU
available. For this work, the model runs on a Nvidia GPU 3070 with 8 GB
of GDDR6-RAM and 256 bit of memory bandwidth. Due to the restricted
RAM capacity, only a reduced input and batch size can be used. However,
the chosen input values cover the main proportion of document lengths.
The maximum length of the prefix was 8 tokens in all cases. Furthermore,
the configurations in Table 4.1 were specified for each task.

For the learning rate, we refer to the training arguments used by the
authors of SLED (Ivgi et al., 2023). In their work, they applied a linear
learning rate scheduler and an AdamW optimiser with ϵ = 1e − 6, β1 = 0.9,
and β2 = 0.98. Furthermore, they use a warm-up ratio of 10% with a
weight decay of 0.001. Due to the memory limitation of the GPU, only a
reduced batch size of 1 was possible for training and testing. We adjusted
the learning rate accordingly to 1e − 4. In comparison, the authors of SLED
choose a learning rate of {2e − 5, 5e − 5, 1e − 4} with an effective batch size
of {8, 16, 32}. In total, they train 9 models. However, they do not state which
model setting performed best. To measure the performance of the models,
ROUGE (Lin, 2004) and BERTScore (J. Zhang et al., 2020) was selected as
the evaluation metric.

4.3.2. Training Progress

In Figure 4.3 the training progress of each model can be seen. The two newly
generated datasets were divided into a 80% training, a 10% testing, and
a 10% validation set. For FacetSum, the dataset was split according to the
authors’ suggestions. Due to the small batch size of 1 (see Table 4.1), a large
number of training steps were necessary for a good generalisation.

Aspect-oriented training. The aspect-oriented model was trained for 4
epochs with approximately 1.5 million steps. The loss first increases and
then slowly converges (see Figure 4.3a). However, after around 1.2 million
steps, the loss increases, indicating that the models start to overfit. For
evaluation, the best-performing model was used.

Length-dependend training. First we trained a model with the smaller

62



4. Method

a) Aspect-oriented training with FacetSum dataset. b) Training with OpenReview Contribution dataset.

c) Training with OpenReview Summary dataset.

Figure 4.3.: Training progress for each model.

OpenReview Contribution dataset for 14 epochs with around 70, 000 steps in
total. In Figure 4.3b it can be seen that the loss during training is steadily de-
creasing from the beginning. Accuracy increases and plateaus at a ROUGEL
value of 33. Then we fine-tuned the larger OpenReview Summary dataset
for 3 epochs with 100, 000 steps. The loss and the respective ROUGEL curve
can be seen in Figure 4.3c.

We also tracked how fast the model is learning the length token. First, the
model generates only short and very short summaries. After some steps, the
model reacts to the input token. In the end, the model follows the summary
lengths fairly well. Progress in learning can be seen in Figure A.2.
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4.4. Summary

For training and testing of the model, the framework by SLED (Ivgi et
al., 2023) was used. This framework is built on PyTorch and Hugging
Face, providing a robust foundation for developing state-of-the-art machine
learning models.

The whole system architecture consists of preprocessing, inference, and
postprocessing steps. First, the text of the scientific article is extracted using
GROBID (“GROBID,” 2008–2023), an efficient tool for parsing and extracting
information from scholarly documents. Second, an abstractive summary
is generated by the SLED model, which leverages advanced deep learn-
ing techniques to produce coherent and concise summaries. Finally, an
extractive summary is created based on keywords extracted with KeyBERT
(Grootendorst, 2020), a tool for keyword extraction using BERT embeddings.
Additionally, a semantic search based on the abstractive summary sentences
is conducted using SentBERT, a sentence embedding model, referred to as
Sim. Search during this work.

The dataset format for FacetSum (Meng et al., 2021) and OpenReview
was established following the guidelines provided by the authors of SLED
(Ivgi et al., 2023). To gather the required data from the respective websites,
two scripts were developed and customized to suit the specific needs of the
project. Furthermore, for the OpenReview datasets, the summary lengths
were divided into seven nearly equal categories to define the prefixes,
ensuring a comprehensive representation of summary lengths across the
dataset.

A total of three models were trained using three different datasets. Due
to hardware limitations, the training time and parameters, such as batch
size, were constrained. Despite these limitations, the models successfully
converged and demonstrated promising results on the respective validation
sets. The performance of these models indicates the potential for further
refinement and optimization with additional computational resources and
fine-tuning of hyperparameters.
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This chapter explains the evaluation of the dataset and the model trained.
First, the generated corpora were compared with other existing single
long-document datasets (see Section5.3). Second, the trained models were
evaluated for their performance and text quality, the outcome is described
in Section 5.4 and Section 5.5 respectively.

5.1. Research Questions

The main focus of this work is exploring the characteristics of large-language
models, especially efficient long-document transformers based on the fusion-
in-decoder approach. Different extractive and abstractive methods are tested
and evaluated for performance and output quality. The size of the model
and the associated computational effort are of great interest. Based on this
motivation, the following research questions were formulated.

• [R1] Research Question 1: ”Is there a benefit in using efficient long-
document models over traditional small LLMs for the task of summarising
scientific articles?”

• [R2] Research Question 2: ”Can a similarity search approach that is based
on abstractive summaries find and cover information more effectively than
traditional extractive methods?”

• [R3] Research Question 3: ”What are the qualitative differences between
small LLMs and sophisticated models such as GPT?”

5.2. Study Setup

In the following subsections, the setup is given for the Model 5.2.1, the
Baselines 5.2.2, the Dataset 5.2.3, and the Metrics 5.2.4. In addition, the
specific setting for each research question is described in Subsection 5.2.5.
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5.2.1. Model

To answer the research questions that arise from motivation, an efficient
long-document model called SLED (Ivgi et al., 2023) is trained. The model
incorporates the fusion-in-decoder approach to efficiently encode long input
and reduce computational effort. Based on the summaries that are generated
by SLED similar sentences are searched in the original input text, and an
extractive summary is generated. This approach is referred to as the ”Sim.
Search” throughout this work and is described in Section 3.3.4.

5.2.2. Baselines

For comparison with the abstractive SLED (Ivgi et al., 2023) model, a stan-
dard LLM called BART (Lewis et al., 2020) is chosen. BART also serves as an
underlying base model for SLED. With the available hardware configuration,
the SLED model can process up to 12,000 input tokens. In contrast, the
standard BART model has only an input size of around 1,000 tokens. Fur-
thermore, the standard TextRank (Mihalcea and Tarau, 2004) algorithm and
the simple heuristic of using the abstracts of the paper are used as extractive
baselines. For text quality comparison, a sophisticated state-of-the-art GPT
model is applied.

5.2.3. Dataset

The models are trained and tested with high-quality scientific datasets.
Therefore, two new corpora with unique characteristics from the scientific
field are sourced, namely the OpenReview Contribution and OpenReview
Summary (see Section 4.2), and an existing dataset called FacetSum (Meng
et al., 2021) is selected. In both cases, human-written summaries serve as a
ground truth.

5.2.4. Metrics

Performance is evaluated primarily using the lexical-based ROUGE (Lin,
2004) metric. For selected studies, we also include the semantic-based
BERTScore (J. Zhang et al., 2020) metric. The properties of the performance
metrics used are briefly explained in Table 5.1. Detailed measurement de-
scriptions are available in Section 2.6.1.

Furthermore, the quality of the text (see Section 2.6.3) of the generated
summaries is analysed on the basis of traditional readability metrics, as well
as dimensions such as coherence, consistency, fluency, and relevance. For
the latter, the multidimensional UniEval (Zhong et al., 2022) evaluator is
applied, which is explained in more detail in Section 2.6.3.
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Approach Name Abbreviation Measurement

lexical-based
ROUGE1 R1 overlap of unigrams
ROUGE2 R2 overlap of bigrams

ROUGELsum RLsum longest common subsequences

semantic-based BERTScore -
precision, recall, F1 measures;
similarity between candidate

and reference summary

Table 5.1.: Metrics used to evaluate the performance of the models. The metrics can be
divided in two categories: lexical- and semantic-based.

5.2.5. Question-specific Overview

In the following paragraphs, the specific setup for each research question is
explained in more detail.

Setup [R1]. For the first research question, the advantages of using the
efficient long-document model SLED (Ivgi et al., 2023) are examined. Ad-
ditionally, the model is compared to the standard LLM BART (Lewis et al.,
2020), which has, as stated before, a much smaller input size. The per-
formance difference is explored and evaluated in different aspects with
the ROUGE (Lin, 2004) and BERTScore (J. Zhang et al., 2020) metric (see
Table 5.1).

Setup [R2] After generating the abstractive summary, an extractive recap
is produced. This is done by searching for the source sentences on the basis
of the similarity to the summary sentences. This approach is called ”Sim.
Search” in this work. Heuristics such as the abstracts of the papers and
TextRank serve as an extractive baseline.

Setup [R3]. For the last research question, the quality of the output text is
evaluated. Aspects such as readability, coherence, consistency, fluency, and
relevance are examined. The outputs of the different low-resource methods,
such as abstracts of papers, TextRank (Mihalcea and Tarau, 2004), Sim.
Search (see Section 3.3.4), BART (Lewis et al., 2020), and SLED (Ivgi et al.,
2023) are compared with those of a very large and sophisticated GPT model.

5.3. Evaluation of OpenReview Corpora

To verify the quality of human-composed summaries and input documents
in the corpora, the newly scraped datasets OpenReview Contribution and
OpenReview Summary (see Section 4.2.3) are compared with existing collec-
tions in the long-document field. Datasets such as ArXiv (Cohan et al., 2018),
PubMed (Cohan et al., 2018), BigPatent (E. Sharma et al., 2019), BillSum
(Kornilova and Eidelman, 2019), GovReport (L. Huang et al., 2021), SciTLDR
(Cachola et al., 2020), and FacetSum (Meng et al., 2021) are used for compar-
ison. An overview of existing datasets is given in Section 2.7. Datasets are
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Existing Datasets Own Datasets
ArXiv PubMed BigPatent BillSum GovReport SciTLDR FacetSum OR Contr. OR Summ.

# of docs 215 K 133 K 1, 340K 21.3 K 19.5 K 3.2 K 5.8 K 1.7 K 11 K
Tokens per summ 242 208 117 243 607 21 195 94 93

Tokens per doc 6446 3143 3573 1686 9409 5066 5698 8402 7440

Sents per summ 6.3 7.1 3.6 7.1 21.4 1 8.5 4.6 4.4
Sents per doc 251 102 143 42 300 224 225 364 318

Compress. token 41.2 16.6 36.3 12.2 18.7 291.7 31.9 128.4 116.3
Compress. sent 44.3 15.6 58.7 9.7 18.1 219.9 28.4 105.5 72.3

Coverage 0.920 0.893 0.861 0.913 0.942 0.920 0.937 0.891 0.889
Density 3.7 5.6 2.1 6.6 7.7 3.7 6.2 2.6 2.6

Redundancy 0.144 0.146 0.223 0.163 0.124 0 0.167 0.141 0.142
Uniformity 0.894 0.896 0.922 0.903 0.932 0.897 0.942 0.935 0.935
Multi-target no no no no no yes* no yes yes

* only test/val. set

Table 5.2.: Evaluation of OpenReview corpora, data extended from Koh et al. (2022).
Datasets used for this work are highlighted in grey. The OpenReview corpora
are comparable to other long-document datasets in several aspects.

evaluated with respect to the number of tokens and sentences, compression,
coverage, density, redundancy, and uniformity scores (see Table 5.2). The
data of Koh et al. (2022) was extended with the SciTLDR, FacetSum, and
OpenReview evaluation scores. The individual evaluation metrics for the
comparison of the datasets are explained in Section 2.7.1.

5.3.1. Dataset and Document Size

Both newly generated corpora, namely OpenReview Contribution and Open-
Review Summary (see Section 4.2), are compared with respect to their size to
other single-document datasets. Unlike most other published long-document
collections, OpenReview Contribution and OpenReview Summary have a
smaller number of documents. However, both datasets are similar in size
to SciTLDR (Cachola et al., 2020) and Facetsum (Meng et al., 2021). The
summaries are shorter compared to ArXiv (Cohan et al., 2018), PubMed
(Cohan et al., 2018) or FacetSum (Meng et al., 2021), but the input documents
are longer on average. Therefore, the compression ratio based on sentences
and tokens is much higher (see Table 5.2).

In Figure A.1 the number of tokens per paper is shown. It is noticeable
that FacetSum (Meng et al., 2021) has one of the shortest input articles, while
ArXiv (Cohan et al., 2018) has the longest with up to almost 35, 000 tokens.
The documents in OpenReview Contribution and OpenReview Summary
can be quite long as well and are comparable to ArXiv in size. Furthermore,
the maximum token capacity is indicated with a red mark in Figure A.1.
With the hardware limitations given, the SLED model has a capacity of
12, 000 tokens. Therefore, at least 85% of the articles for each dataset can be
processed entirely.
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5.3.2. Abstractiveness

The abstractiveness of documents can be measured by extractive coverage
and density (see Section 2.7.1). The coverage of the OpenReview datasets is
similar to the values of other scientific corpora such as ArXiv and PubMed
(Cohan et al., 2018). However, the density is much smaller and, therefore, the
average length of the extractive fragments is shorter. This suggests that words
from the summary do exist in the input document, but are in a different
order. Therefore, the summary text might appear to be more abstract. Only
BigPatent (E. Sharma et al., 2019) has a smaller density with a value of
2.1, compared to 2.6 of the OpenReview Contribution and OpenReview
Summary.

5.3.3. Redundancy

Redundancy evaluates the degree to which the information is repeated in the
summary (see Section 2.7.1). It is measured by the average ROUGE scores
between all pairs of sentences within a summary. OpenReview Contribution
and OpenReview Summary have one of the lowest redundancy scores
among the datasets. Only GovReport (L. Huang et al., 2021) has a lower
value with 0.124. The summary in SciTLDR (Cachola et al., 2020) consists of
only one sentence, so redundancy cannot be calculated and is set to 0.

5.3.4. Uniformity

Uniformity measures the degree of distribution of important information
throughout the document (see Section 2.7.1). The greater the uniformity, the
more information is distributed. OpenReview Contribution and OpenRe-
view Summary have one of the highest uniformity scores, only exceeded
by FacetSum (Meng et al., 2021) with a score of 0.942. As a result, the
information in these datasets is very dispersed throughout the documents.

5.3.5. Multi-targeting

One of the advantages of the newly formed OpenReview datasets is their
multi-target aspect. For every input document, there are several possible
summary texts, each composed of a different expert. This characteristic
makes the datasets unique, since only SciTLDR (Cachola et al., 2020) pro-
vides multiple outputs, but only for their test and validation sets. Therefore,
during training with SciTLDR, no multi-targeting is possible. In addition,
the OpenReview corpora allow it to train for length controllability, as the
summaries can be divided into different length categories.
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5.3.6. Domain and Style

The OpenReview corpora are from the domain of scientific articles with a
focus on computer science. Only ArXiv (Cohan et al., 2018) and SciTLDR
(Cachola et al., 2020) include articles in the field of information technology.
All other long-document datasets, such as PubMed (Cohan et al., 2018),
BigPatent (E. Sharma et al., 2019), BillSum (Kornilova and Eidelman, 2019),
or GovReport (L. Huang et al., 2021), do not cover technology-influenced
scientific research topics.

It should also be mentioned that the style of the summaries in the Open-
Review datasets is closer to an actual human-written review, as the texts are
from a third-person perspective. For example, ArXiv and PubMed adopt
only the abstracts of the articles written by the authors as summary refer-
ences.

5.4. Performance Results

In this section the first and second research question (see Section 5.1) are
explored. The trained efficient long-document transformer SLED (Ivgi et al.,
2023) is evaluated and compared with abstractive and extractive approaches
(baselines described in Section 5.2.2). All models were tested with the newly
sourced datasets OpenReview Contribution and OpenReview Summary
(see Section 5.3), and the additional selected dataset FacetSum (Meng et al.,
2021). Throughout the experiments, the human-written summaries from the
summaries serve as a ”golden standard”.

The performance of the models was measured with the lexical-based
ROUGE and, in some cases, additionally with the semantic-based BERTScore
metric (see Section 2.6.1). For the backbone of BERTscore we use the
microsoft/deberta-large-mnli1 model as it shows good evaluation performance
and high human correlation, reported by the official Github repository2.

5.4.1. OpenReview Models

The summaries of OpenReview datasets are of different lengths, and hence
the summary texts were assigned to various length bins. These length tokens
were presented as prefixes to the model and served as a guiding signal.
The model should learn two aspects: to summarise the main points and the
contribution of the text, and to present the content in different lengths. The
performance of both characteristics was evaluated. As mentioned above, the

1https://huggingface.co/microsoft/deberta-large-mnli
2https://github.com/Tiiiger/bert score
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summaries composed by academic experts serve as a ”gold standard” for
the evaluation.

Summary Performance

The efficient long-document SLED (Ivgi et al., 2023) model is compared with
the abstractive BART (Lewis et al., 2020) model. Furthermore, the extractive
similarity search approach (Sim. Search), which is based on the SLED output,
is evaluated. TextRank (Mihalcea and Tarau, 2004) serves as an extractive
baseline. In addition, the abstracts of the scientific article provide a simple
summary heuristic. The summaries are assessed by the metrics ROUGE (Lin,
2004) and BERTScore (J. Zhang et al., 2020).

From Table 5.3 it can be seen that a simple generic summary of TextRank
does not cover all information needs. The simple heuristic even outperforms
TextRank in terms of semantics (0.072 difference in BERTScore) and lexical
similarity (exceeds all ROUGE evaluations). In addition, we can show that
the similarity search approach (Sim. Search) performs quite well. The extrac-
tive method outperforms the extractive baseline TextRank and the heuristic
in both ROUGE and BERTScore.

The trained SLED model demonstrates that it is highly capable of sum-
marising the main information from scientific articles. The SLED model out-
performs TextRank by 12.71% on ROUGE-Lsum and by 0.135 on BERTScore,
showing that the model has a greater ability to generate good summaries of
articles. The SLED model is also compared to a trained BARTbase model with
a maximum input size of 1024 tokens. Therefore, for BART only the abstract
and parts of the introduction serve as an information source. Surprisingly,
the BART model performs on average very well (only 0.06 ROUGE-Lsum
and 0.006 BERTScore difference from SLED), although it can process only
a subset of the input. Similar results can be seen for the model trained
in the more general OpenReview Summary dataset (shown in Table A.3).
However, if each length size is compared separately (see Figure 5.1 and
Table A.2), it is noticeable that the SLED approach scores slightly higher in
terms of ROUGE1 and BERTScore in longer summaries. Therefore, it can
be advantageous to use efficient long-document models, which can take
the full text of the document as input, for longer and more comprehensive
summaries.

Surprisingly, the heuristic of using the abstracts of the scientific articles
performs considerable well. In particular, for longer summaries (see Fig-
ure 5.1), the heuristic achieves results similar to those obtained with the
extractive similarity search approach (Sim. Search).

71



5. Evaluation

Method Input
source

Length
signal ROUGE1 ROUGE2 ROUGELsum BERTScore

heuristic paper abstr. - 32.73 9.39 20.23 0.220

TextRank full paper no 29.09 6.21 19.26 0.114

TextRank full paper yes 30.95 6.52 20.41 0.128

Sim. Search summ.+paper yes 35.77 9.60 23.44 0.229

BARTbase 1K tokens yes 36.81 10.45 33.06 0.276

SLEDbase 12K tokens no 32.68 9.90 29.40 0.268

SLEDbase 12K tokens yes 36.95 10.81 33.12 0.282

Table 5.3.: Performance comparison on the OpenReview Contribution dataset. SLED out-
performs extractive baselines and base-model BART in ROUGE and BERTScore.
A length signal as additional input increases performance and is essential for a
good summary.

Length Controllability

As the user should be able to control the length and summary lengths have
an influence on performance metrics (see Table 5.3), length controllability of
the model is essential. Therefore, it was also evaluated how well the SLED
(Ivgi et al., 2023) model can control the length of the summaries. The model
relies mainly on the length signal to adjust the length of the summaries.
The guiding signal is presented as a prefix with the input during training
and inference. However, the BART (Lewis et al., 2020) model, which serves
as the backbone of the SLED model, also provides a length penalty for the
generation process.

The length penalty is a specific parameter of the BART model and influ-
ences the generation of the output during the beam search. It can be seen as a
scaling factor. Therefore, the greater the length penalty parameter, the more
text the model generates (see Table A.1). However, empirical observations
showed that as expected a higher length penalty value produced a longer
summary text but also increased the degree of hallucination. Therefore,
the length is controlled solely by the length signal and the BART length
parameter is set to a standard value of 1.

Examples of the length distribution of the summaries generated during
training can be seen in Figure A.2. With each training step, the model adjusts
the output length according to the input signal. However, the model tends
to produce summaries that are slightly shorter than the reference output.
The difference in length is measured by comparing the length bins of the
reference and the generated summaries and computing the mean absolute
deviation (MAD) (see Table A.1). After around 17, 500 steps, the model
follows the length signal quite well. Further analysis showed that the fully
trained SLED and BART models had a Pearson correlation of up to 0.49 and
0.58, respectively. Hence, both models show good length control abilities for
the seven possible length categories.

72



5. Evaluation

a) Performance on different summary lengths -
ROUGE1

b) Performance on different summary lengths -
BERTScore

Figure 5.1.: Performance comparison on different summary lengths on the OpenReview
Contribution dataset. The efficient long-document SLED model performed
on average the best. Details of the scores can be seen in the Appendix (see
TableA.2).

5.4.2. FacetSum Aspect-oriented Model

For further exploration of research questions 1 and 2 (see Section 5.1), the
SLED (Ivgi et al., 2023) model was also evaluated on the FacetSum (Meng
et al., 2021) dataset (see Table5.4). The human-written summaries serve as
a ”gold standard”. The dataset can be used for the task of aspect-oriented
summarization as the summaries are divided into several aspects. The results
provided by the FacetSum article were adopted for the comparison; however,
FacetSum modified the BARTlarge (Lewis et al., 2020) model to process up
to 10, 000 tokens. Therefore, the BART model can handle a ten-times larger
input compared to the standard BART model, which has an input size of
1024 tokens. Furthermore, the SLEDbase model has approximately only a
third of the parameters compared to the BARTlarge model. Taking this into
account, the evaluation focusses on the trade-off between efficiency and
performance.

The evaluation shows that the BARTlarge model performs slightly better
than the SLEDbase model, even if the SLED model receives an additional
length signal. However, FacetSum states that a 16 GB VRAM is needed
to train the respective model, which is double the amount of the efficient
long-document SLED model with BARTbase as the backbone.

Therefore, the SLEDbase model shows a good trade-off between per-
formance and efficiency. By providing an additional length signal to the
SLEDbase model, we can improve the results in all four aspects. Therefore,
a length-oriented summary is advantageous and can help cover more in-
formation. However, the scores are still lower compared to the BARTlarge
results (with a ROUGELsum difference of 0.06 in purpose, 1.66 in method,
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Method Type Aspect
Signal

Input
Source #Params Aspect

Purpose Method Findings Value
Lead-K

exstr.

no first 3 sent. - 17.83 15.29 15.92 16.08

Tail-K no last 3 sent. - 21.67 12.62 16.66 17.43

TextRank no corr. sect. - 21.67 13.62 18.63 19.23

HipoRank no corr. sect. - 22.73 15.20 18.38 19.68

Sim. Search no summ.+paper - 30.63 24.45 22.67 23.22

BARTlarge

abstr.

no 10K tokens 406M 41.21 20.5 14.33 5.07

BARTlarge yes 10K tokens 406M 42.55 28.07 28.98 28.70
SLEDbase yes 12K tokens 139M 42.23 25.16 24.90 25.94

SLEDbase + len. yes 12K tokens 139M 42.49 26.41 26.55 27.08

Table 5.4.: Performance comparison on the FacetSum dataset. The results of the baseline
methods Lead-K, Tail-K, TextRank, HipoRank, and BARTlarge are adopted from
the work of FacetSum (Meng et al., 2021). SLEDbase incorporating the length
signal almost reaches the performance of BARTlarge. However, SLEDbase needs
substantially less parameters and thus computational power.

2.43 in findings, and 1.62 in value).
In general, abstractive methods performed better than extractive methods.

However, if the BART model is not receiving any guidance signal, the model
is not able to summarise aspect-relevant information. The model then has,
compared to extractive methods, a lower score on the aspects ”findings”
and ”value”. Consequently, it is essential to provide guiding signals during
training to reach high performance.

The similarity search approach (Sim. Search) exceeds other heuristics and
extractive methods and shows on some aspects almost similar results to
those of the SLED model. Therefore, we can conclude that this approach
extracts sentences effectively and can generate meaningful summaries.

5.5. Comparison of Text Informativeness

To examine the third research question (see Section 5.1) the summaries gen-
erated by different methods are compared in respect to text informativeness
such as readability (see Section 5.5.3) and text quality (see Section 5.5.4).
Low-resource methods (see Sections 5.2.1 and 5.2.2) are put in contrast to a
sophisticated state-of-the-art transformer model described in Section 5.5.1.
For evaluation, a subset of the OpenReview Contribution test set is com-
posed that includes 91 randomly selected summaries and their respective
articles. The summaries are categorised by the label ”long”, hence, have
between 90 and 120 words. Furthermore, the methods are tested on the
subset with respect to their performance (see Section 5.5.2) to create a better
picture of the comparison. For a further study in Section 5.5.6, differences
of selected sample summaries are compared and the characteristic of each
method is examined.
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5.5.1. Sophisticated Comparison Model

The summaries generated from the trained SLED (Ivgi et al., 2023) model,
the BART (Lewis et al., 2020) model, extractive methods such as TextRank
(Mihalcea and Tarau, 2004) and Sim. Search (see Section 3.3.4), and a simple
heuristic are compared with the recaps produced by a sophisticated GPT
(gpt-3.5-turbo-16k3) model. The selected GPT model is capable of processing
up to 16 thousand tokens. Therefore, almost all documents can be processed
entirely, even surpassing the SLED model with an input size of 12 thousand
tokens using the setup in this work. The GPT model is not fine-tuned on
the OpenReview Contribution subset, hence, making it a zero-shot task. To
generate summaries with a focus on contribution, the model was prompted
through the OpenAI API4. Standard parameters and a temperature value of
0 were used to generate correct factual summaries that are comparable to the
output texts generated by SLED and BART. To produce texts that are similar
in style, the GPT model received the following prompt: ”Summarise this
paper in 90 words with a focus on the contribution in a third-person perspective”.
Examples of summaries are shown in Section 5.5.6. A notable difference
between the models is the number of parameters. The first version of an
article published by Singh et al. (2023) suggests that the selected GPT-
3.5-turbo model has around 20 billion parameters. The SLED model with
BARTbase as the backbone has about 139 million parameters (Lewis et al.,
2020). Consequently, the SLED model is only approximately 0.7 percent of
the GPT model size.

5.5.2. Performance Comparison on Subset

To complete the picture of the comparison, the performance of the models
is compared on the composed OpenReview Contribution subset. From
Table 5.5 it can be seen that the trained SLED (Ivgi et al., 2023) and BART
(Lewis et al., 2020) models even outperform the GPT model in both metrics,
ROUGE (Lin, 2004) and BERTScore (J. Zhang et al., 2020). For the GPT
model, however, it is a zero-shot task. Nevertheless, both models, SLED and
BART, are better at producing more similar output texts and mimicking
the style of human-written reference summaries. Surprisingly, the SLED
model does not exceed BART in all ROUGE measures. However, the SLED
model shows a better result on the semantic-based BERTScore metric. It
is also worth mentioning that the similarity search approach (Sim. Search)
performs better than the extractive baseline TextRank and is almost as good
as GPT in terms of ROUGE (only 0.15 difference in ROUGE2). This result
suggests that the extracted sentences cover the content well and contain

3https://platform.openai.com/docs/models/gpt-3-5

4https://platform.openai.com/docs/api-reference/introduction
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Method Type #Params ROUGE1 ROUGE2 ROUGELsum BERTscore
paper abstr.

ex
tr

. - 32.73 9.40 20.22 0.2515

TextRank - 32.13 6.64 20.83 0.1643

Sim. Search - 38.30 10.10 24.47 0.2574

GPTzero-shot
ab

st
r. ∼20B 40.45 10.25 25.40 0.2802

BARTbase 139M 42.55 12.07 27.62 0.2929

SLEDbase 139M 42.31 12.34 27.25 0.2935

Table 5.5.: Performance comparison on the subset of OpenReview Contribution. The subset
only includes summaries with the label ”long”. The summaries composed of
experts serve as references. SLED and BART are trained in the OpenReview
Contribution training set and perform best. For GPT it is a zero-shot task. Despite
the lack of fine-tuning, GPT almost reaches the SLED and BART scores. Still,
SLED and BART are the best in mimicking the style of the human-written
summaries.

essential information.

5.5.3. Readability Comparison

The readability of the automatically generated and reference summaries is
compared using the Textstat library5. Textstat measures the readability by
applying traditional automatic readability metrics (see Section 2.6.3).

From Table 5.6, it can be seen that all summaries are very similar in
terms of Flesch Reading Ease (FRE) readability, with a score of around 30.
Therefore, the summary texts are either difficult or very difficult to read.
However, when assessed by the average grade level, extractive methods seem
to be challenging to understand. Abstractive methods, both human-written
and automatically generated, generally have better readability. In terms
of automatic summarization, surprisingly, the BART (Lewis et al., 2020)
approach scores the best, with the GPT method coming second. In addition,
the abstracts of the papers are on average more difficult to read than human-
written summaries. Readers need around one grade-level higher education
to fully grasp the scientific articles. Consequently, human summaries tend
to be more readable than the actual scientific text. LLMs that learn from
human-written data capture the style and generally produce less complex
summaries.

5.5.4. Quality Comparison

The quality of the summary texts is compared in terms of their coherence,
factual consistency, fluency and relevance with respect to the human-written
references of the OpenReview Contribution dataset. To assess the dimen-
sions, the UniEval evaluator is applied (see Section 2.6.3). In Table 5.6 it

5https://github.com/textstat/textstat
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Method Type #Params Avg. #Diffic.
Words

FRE
Score↑

FRE
Readability

Grade
(Average)↓

paper abstracts

ex
tr

. - 29.94 27.24 very difficult 15.99

TextRank - 27.02 36.18 difficult 15.80

Sim. Search - 34.01 27.63 very difficult 16.49

reference summ.

ab
st

r.

- 33.32 32.96 difficult 15.01

GPTzero-shot ∼20B 37.30 28.39 very difficult 14.88

BARTbase 139M 31.77 33.24 difficult 14.67

SLEDbase 139M 32.79 29.44 very difficult 15.55

Table 5.6.: Readability comparison of summaries evaluated with traditional readability
metrics. Abstractive methods generate the most understandable output texts
with respect to the average grades. Transformer models such as SLED, BART,
and GPT are capable of producing understandable text that is comparable to
human-written reference summaries.

can be seen that the summary texts of extractive methods show a lack
of coherence and relevance. However, the similarity search method (Sim.
Search) shows higher factual consistency than SLED (Ivgi et al., 2023) and
BART (Lewis et al., 2020). Therefore, simply extracting phrases from the
input texts can be beneficial in terms of factuality and can increase the
trustability of the system. GPT and SLED generate more relevant summaries
with high-qualitative sentences and have the best average score out of all
automatic summarization methods. Hence, it can be concluded that abstrac-
tive approaches are more suitable for text summarization tasks. In addition,
LLMs with fewer parameters are comparable to larger sophisticated models
such as GPT in terms of text quality. In Table 5.7, it can be seen that SLED
scores only 3.36 points less on the overall score compared to GPT. Therefore,
for specific trained tasks, it is sufficient to use smaller and more efficient
models to achieve a similar result.

Surprisingly, the GPT model scores on all dimensions are relatively high,
almost reaching the same overall score as the abstracts of scientific articles
(only 0.69 points less). As expected, the abstracts are more coherent and
consistent; however, the summaries by the GPT model are more fluent and
contain more relevant information relative to the human-written reference
summaries. Furthermore, SLED scores higher on fluency and relevance than
abstracts of human-written articles. Therefore, it can be concluded that the
strength of transformer models is to generate highly fluent and relevant text
if trained with high-quality data.

5.5.5. Text Extraction Locations

In this experiment, important locations in the input documents were inves-
tigated. It was detected where the similarity search approach Sim. Search
(described in Section 3.3.4) extracts the most likely sentences. The approach
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Method Type #Params Coherence Consistency Fluency Relevance Average
paper abstr.

ex
tr

. - 94.19 94.35 88.80 85.42 90.69
TextRank - 40.36 68.28 76.71 35.82 55.29

Sim. Search - 61.55 82.91 87.55 55.21 71.80

GPTzero-shot
ab

st
r. ∼20B 92.37 84.47 91.63 91.52 90.00

BARTbase 139M 90.22 82.84 86.11 86.81 86.49

SLEDbase 139M 89.08 80.99 88.93 87.54 . . . . . . .86.64

Table 5.7.: Text quality comparison including dimensions coherence, consistency, fluency
and relevance. The summaries composed by experts serve as a reference. The
abstracts of the article are of the highest quality on average. However, they
lack fluency and relevance. GPT followed by SLED has the best results of all
automatic summarization methods showing strong performance in fluency and
relevance.

is based on the summary generated by SLED (Ivgi et al., 2023). Evaluations
were performed on the OpenReview Contribution test set. In the first experi-
ment, the texts were divided into ten parts of equal size (see Figure 5.2a) and
in the second into the five most common sections of scientific articles, namely
the abstract, introduction, method, result, and conclusion (see Figure 5.2b).
To identify which section the paragraph belongs to, a similar approach was
followed to FacetSum (Meng et al., 2021). Sections were identified using
keywords and heuristics based on the structure of scientific articles. The
summaries of two labels, namely ”brief ” and ”extra long”, were examined
and compared with each other.

From the experiments (see Figure 5.2) it was found that the brief sum-
maries originate with high probability from the first parts of the article,
namely the abstract (46.6%) and the introduction (23.3%), followed by the
last part, the conclusion with the appendix (19.4%). Longer summaries have
a different distribution. Only 29.7% of the sentences come from the abstract
followed by the introduction, method and result section with 20.1%, 19.6%,
and 18.4%, respectively. Therefore, longer summaries include more detailed
information on the methods and results of the article. However, models must
be able to process larger input sizes to incorporate the information. Oth-
erwise, automated summaries might not cover all the information needed,
and models show lower performance on long documents by including less
relevant information.

5.5.6. Comparison of Summary Examples

Two examples of human-written recaps are compared with the automatic
generated summaries from selected scientific articles. The articles are chosen
from the OpenReview Contribution dataset and introduce BRAX6 (Free-

6https://github.com/google/brax
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man et al., 2021), which is an open source physics engine, and EdgeBank7

(Poursafaei et al., 2022) a new benchmark for dynamic link prediction. Both
papers were submitted at the NeurIPS8 conference, the former at NeurIPS
2021

9 the latter at NeurIPS 2022
10.

Each summary text has its characteristics, which are discussed in Sec-
tion 5.5.6. Both examples demonstrate possible model-specific errors and
features. Furthermore, in Section 5.5.6 the informativeness of the text is
examined in relation to the length of the summary.

Text Characteristics

First, the summaries about BRAX (Freeman et al., 2021) are examined.
The summaries generated are shown in Table 5.8. Characteristics of each
summary are discussed in the following points.

• Paper abstract. The abstract gives a short overview of the main contri-
bution of BRAX. The abstract is relatively short and does not provide
detailed information.

• Human-written. The human-written summary has a unique structure.
The author uses enumerations to present the characteristics of the
physics engine. Although written by an expert in the academic field,
the author uses an unconventional writing style. For example, the
connector ”&” is used instead of ”and”, numbers are not written
out, and the name of the physics engine is in lowercase. However, in
general, the summary gives a good overview and is well-structured.

• BART. The model provides a well-written summary. Names of im-
portant engines and abbreviations are mentioned. However, the text
also contains a mistake. The model generated ”MuJoColike” instead
of ”MuJoCo-like”. Therefore, a hyphen is missing. Furthermore, the
model produced hallucination in form of a human-like comment. Some
of the training samples were found to include additional unwanted
information in the form of notes and opinions at the end of the sum-
mary. The model likely produced such comments to meet the length
requirement because it could not extract all the important information
from the abstract and introduction sections.

• SLED. The SLED model produced an informative summary. Only
small mistakes were made, for example, by writing the abbreviation
with a lower character at the beginning (”jAX” instead of ”JAX”).
Also, it generated a very long nested sentence, which might make it
impractical to read and, therefore, hard to understand.

7https://github.com/fpour/DGB
8https://neurips.cc/
9https://openreview.net/forum?id=VdvDlnnjzIN

10https://openreview.net/forum?id=1GVpwr2Tfdg
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• GPT. The generated text contains very similar information compared
to the other summaries. However, no obvious mistakes were made.
The text is well written and easy to read.

• Similarity Search. The extracted text of the similarity search method
mainly includes information from the abstract of the article. Due to the
semantic search approach, the content is very similar to the summary
of SLED. However, the text provides complementary information to
the generated summary of SLED.

• TextRank. This extractive method produces the least informative sum-
mary. The text seems incoherent and is therefore difficult to read.

The second analysis is about EdgeBank (Poursafaei et al., 2022). The
texts produced by the different methods are in Table 5.9. Characteristical
differences are discussed in the following points.

• Paper abstract. The authors of EdgeBank summarise the article in
a clear manner. The abstract is relatively long and contains a lot of
information.

• Human-written. The text written by the expert contains enumerations.
Among other things, it mentions that five new datasets are introduced.
However, as also mentioned in the abstract, a total of six datasets are
presented. Therefore, this is a content error that reduces the factuality.

• BART. The text generated by the BART model is factually correct, and
the summary is informative and well-written.

• SLED. The SLED model is also characterized by high factuality. The
text is easy to read and understand, and the summary effectively
covers the main points of the text.

• GPT. The sophisticated GPT model generates a comprehensive and
factually correct summary. The text is coherent, consistent, fluent, and
contains relevant information.

• Similarity search. The Similarity Search approach extracts relatively
relevant sentences. However, these sentences are not coherent and do
not cover all the information included in the summary produced by
SLED.

• TextRank. The TextRank method leaves out important facts. For exam-
ple, the new datasets introduced in the paper are not mentioned. The
text is also not coherent and therefore more difficult to read.

From the examples, we can conclude that, of the automatic methods,
GPT generates a highly informative and most readable summary. However,
BART and SLED also produce well-written summaries that capture the main
information of the article.

In the first example, BART produced some hallucinative content, probably
because relevant information was not included in the abstract and introduc-
tion section of the article and the length requirement of the summary had to
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be satisfied. Further analysis showed that for BART nine of the 91 samples,
therefore 9.98%, contained hallucinative content in the form of invented
human-like comments. In comparison, only one summary (1.1%) produced
by SLED contained a similar hallucinatory comment.

A contributing factor are also training data. Texts written by humans also
show that people sometimes make formal errors and inaccuracies. These
errors are then learnt and adopted by the models during training. As a
result, the models are sometimes inaccurate, and the texts contain false
information, such as improper abbreviations. This contributes to the slightly
lower performance of BART and SLED.

Length- and Aspect-dependent Text Informativeness

In Table 5.10 the length controllability of the trained SLED (Ivgi et al., 2023)
model can be seen. Several summaries were generated that were controlled
by the input prefix, including ”brief”, ”short”, ”long”, and ”extra long”. The
model can follow the length prompt quite well.

From the example in Table 5.10, it is evident that the longer the summary,
the more information is included. In the brief summary, only the most
important facts about the article are given. The short summary contains
additional information. The long summary is already extensive. However,
the extra-long summary includes the most details and is the most compre-
hensive recap. Surprisingly, the model learnt the inherent structure of the
human-wirtten summaries and generated an enumeration of contributions
at the end.

In this example, the disadvantages of small-language models and imper-
fect training data generated by humans can be seen. The model generates
spurious abbreviations and references. In addition, words are being put
together incorrectly, for example, ”inJAX” instead of ”in JAX”. Despite these
small inaccuracies, the summaries contain the main information and are still
well readable. As seen in Table 5.8 and Table 5.9 humans make comparable
mistakes. Therefore, the models are likely to learn these imperfections and
might generate similar errors.

In Table 5.11 an example of an aspect-oriented summary of the article
by H.-C. Huang (2016) is presented. The text is summarized according to
the purpose, value, methods, and findings aspects in the FacetSum dataset.
Comparing the summaries shows that the information is quite repetetive.
The summaries of the values and methods are quite similar, even starting
with the same sentence. The findings do not provide detailed information,
but only outline the setup of the experiment. Therefore, the summaries
include basic information but can still be improved in their informativeness.
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5.6. Findings and Limitations

The following sections outline the key findings from the research and the
limitations that need to be addressed for further improvements.

5.6.1. Findings

A high-quality dataset such as OpenReview is essential to efficiently train a
model. The newly sourced dataset fulfils this requirement as it is composed
by humans and has a multi-target aspect. In addition, the summaries were
divided into several length categories. These labels can be used as guiding
signals during training.

Furthermore, the trained SLED (Ivgi et al., 2023) efficient long-document
transformer model performs very well in the length- and aspect-dependent
summerization task. Taking the whole document into account increases
performance, with the biggest boosts seen for longer and brief summaries.
The SLED model achieves slightly higher results than the BART model for
the lexical-based metric ROUGE1, ROUGE2, and ROUGELsum (Lin, 2004)
with a difference of 0.14, 0.36, and 0.06, respectively. Furthermore, the SLED
model also performs better with regard to the similarity-based BERTScore
(J. Zhang et al., 2020) metric with 0.06 difference. These results show that
the efficient long-document transformer can effectively boost performance
without having more parameters and increasing computational costs.

Moreover, a simple heuristic, such as taking the abstracts of the papers as
recaps, does not complete the information need entirely. The abstracts reach
lower performance in ROUGE and BERTScore compared to the extractive
similarity search approach and the abstractive SLED model. For example, the
similarity search method and the SLED model achieve a higher score on the
BERTScore metric with differences 0.015 and 0.063, respectively. Therefore,
summaries generated by these models are more similar to recaps written by
experts.

The similarity search approach, which is based on the summaries gener-
ated by the SLED model, performs better compared to the exractive TextRank
baseline with a difference of 0.154 in BERTScore. Consequently, this method
is more accurate and includes more important information. In addition, it
can increase the trustability of the system since users can see the origin of
sentences and phrases.

The experiments showed that a guiding signal, such as a length and aspect
token, can increase coverage. The length parameter is important to satisfy
all information needs. Experiments with and without the signal show that
there is a gap for lexical- and similarity-based scores. As a consequence,
controllability is essential for a performant summarization system.

Surprisingly, the relatively small SLED model with BART (Lewis et al.,
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2020) as the base model shows performance and text quality comparable to
those of LLMs with a large number of parameters. SLED achieves results
similar to those of the sophisticated GPT model for dimensions of coherence,
consistency, fluency, and relevance and scores only 3.36 points less on
average. Therefore, the SLED model is a good alternative in low-resource
systems, which can still generate high-quality summaries.

However, it was also shown that for some specific tasks, the parameter
size of the model made a slight difference. For example, for the aspect-
oriented task in the FacetSum (Meng et al., 2021) dataset, the BARTlarge
model performed better than the smaller SLEDbase model. Nevertheless, this
performance boost also comes with double computational costs as a result
of the higher number of parameters.

Another finding is that for longer summaries, including more information
from the input articles is advantageous. The efficient long-term transformer
SLED demonstrates better performance in both ROUGE and BERTScore
compared to the standard LLM BART.

5.6.2. Limitations

Hallucination remains a significant issue in natural language processing and
the models used, especially when it comes to incorrect abbreviations and
comments that mimic human-like nuances but lack accuracy. These errors
can lead to misleading information and diminished trust in the system’s
outputs.

Although advancements like sentence tracing have been implemented to
enhance the reliability and transparency of generated content, this approach
has yet to fully resolve inaccuracies in summary sentences. Sentence tracing
helps to track the origin and evolution of information, thereby increas-
ing trustworthiness, but it does not inherently correct or adjust erroneous
summaries.

Furthermore, even with the deployment of highly efficient transformer
models, the technology is constrained by existing hardware limitations.
These constraints impact the model’s performance, including its ability to
handle large-scale data and execute complex computations in real-time.
Addressing these hardware limitations is crucial for improving the overall
accuracy and efficiency of language models, and ongoing research and
development are necessary to bridge these gaps.

One of the significant challenges in developing effective summarization
models is the difficulty in gathering accurate and reliable datasets. Ensuring
that the data is both high-quality and representative of the target tasks is
essential, yet obtaining such data can be challenging. Additionally, sourc-
ing a sufficient amount of data to train models robustly is often difficult,
especially when dealing with specialized domains or tasks that require
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human-generated content. These limitations can hinder the performance
and generalizability of models, emphasizing the need for ongoing efforts in
data collection and curation.

In text quality measurement, automatic parameters and models have sig-
nificant limitations. They often miss subtle language nuances like context
and tone, leading to incomplete assessments. These models can also struggle
with overfitting or underfitting, reducing their effectiveness across different
types of text. Their lack of transparency makes it difficult to understand
or trust how they evaluate text quality. Additionally, relying on these mod-
els can narrow the scope of analysis, potentially overlooking important
linguistic and contextual factors.

The fusion-in-decoder approach used in the efficient long-document trans-
former model, while effective, faces limitations as newer models are de-
veloped. Upcoming models may introduce more advanced techniques for
handling long texts, such as improved mechanisms for capturing dependen-
cies across distant parts of a document. These innovations could outperform
the fusion-in-decoder approach by offering more nuanced and accurate text
processing. As these new models emerge, the current model might strug-
gle to keep pace with advancements, potentially becoming less effective in
capturing the full complexity of long documents. Additionally, the rigid
structure of the fusion-in-decoder approach may limit its adaptability to new
features and improvements, making it increasingly challenging to maintain
its relevance in a rapidly evolving field.

5.7. Summary

A high-quality dataset like OpenReview is essential for efficiently training
models, and the newly sourced dataset meets this need with its human-
composed, multi-target aspect summaries, categorized by length for guiding
training. The SLED model, an efficient long-document transformer, excels
in length- and aspect-dependent summarization tasks, outperforming the
BART model in ROUGE and BERTScore metrics, demonstrating the ef-
fectiveness of considering entire documents. Simple heuristics like using
paper abstracts fall short, as both the similarity search approach and SLED
model yield higher BERTScores, making them more comparable to expert-
written recaps. The similarity search method, based on SLED summaries,
also outperforms the extractive TextRank baseline, enhancing accuracy and
trustability. Guiding signals like length and aspect tokens improve coverage
and performance, emphasizing the importance of controllability. Despite its
smaller size, the SLED model offers performance and text quality compa-
rable to larger LLMs, making it a viable option for low-resource systems.
However, for certain tasks, larger models like BARTlarge may achieve better
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performance, although this comes with increased computational costs. For
longer summaries, incorporating more information from input articles bene-
fits performance, with SLED again demonstrating superior results compared
to BART.

In conclusion, the experiments showed that small efficient long-document
transformer models based on the fusion-in-decoder approach are powerful in
some dimensions and can, with proper training data, generate high-quality
output comparable to sophisticated models.
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a) Summary sentence distribution over text chunks.

b) Summary sentence distribution over sections.

Figure 5.2.: Summary sentence distribution over text.
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Method Text
Paper
abstract

We present Brax, an open source library for rigid body simulation with a focus on performance and parallelism on accelerators,
written in JAX. We present results on a suite of tasks inspired by the existing reinforcement learning literature, but remade in our
engine. Additionally, we provide reimplementations of PPO, SAC, ES, and direct policy optimization in JAX that compile alongside
our environments, allowing the learning algorithm and the environment processing to occur on the same device, and to scale
seamlessly on accelerators. Finally, we include notebooks that facilitate training of performant policies on common OpenAI Gym
MuJoCo-like tasks in minutes.

Human-
written
reference

This paper proposes a new physics engine for regid body simulation that 1) is differentiable; 2) can run environment simulation
and RL algorithm optimization on the same accelerator core without data marshelling or transfering.
It re-implements three mujoco locomotion tasks and two additional manipulation & locomotion tasks to demonstrate the correctness
and utility of the engine. It further benchmarks 4 algorithms on the proposed task and compares the engine with the traditional
mujoco physics engine to validate it.
The proposed differentiable physics engine, with further development, can be very useful for tackling robotics control tasks like
locomotion and manipulation.

BART This paper introduces Brax, a differentiable physics engine for rigid body simulation. Brax is written in JAX, and provides a suite of
tasks, including ant, fetch, grasp, halfcheetah, and humanoid. The authors also provide a set of notebooks that facilitate training of
performant policies on common OpenAI Gym MuJoColike tasks in minutes. The paper describes the design of Brax and provides
some initial demonstrations on the benchmarking tasks based on the proposed library.
**Update after rebuttal**
I have increased my score from 5 to 7.

SLED This paper proposes a differentiable physics engine for rigid body simulation, Brax. Brax is an open source library written in JAX,
and it enables the simulation of simple rigid body physics systems in thousands of independent environments across hundreds of
connected accelerators. The authors present results on a suite of tasks inspired by the existing reinforcement learning literature, but
remade in our engine. Additionally, the authors provide reimplementations of PPO, SAC, ES, and direct policy optimization in jAX
that compile alongside our environments, allowing the learning algorithm and the environment processing to occur on the same
device, and to scale seamlessly on accelerators, which are also available.

GPT Brax is an open-source library for rigid body simulation that focuses on performance and parallelism on accelerators. It is written
in JAX and provides implementations of popular reinforcement learning algorithms such as PPO, SAC, ES, and direct policy
optimization. Brax allows the learning algorithm and the environment processing to occur on the same device, scaling seamlessly
on accelerators. The library includes pre-built environments and provides notebooks for training performant policies on common
OpenAI Gym MuJoCo-like tasks. Brax achieves fast policy learning by leveraging auto-vectorization, device parallelism, just-in-time
compilation, and auto-differentiation primitives of JAX.

Similarity
Search

Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation
Abstract
We present Brax, an open source library for rigid body simulation with a focus on performance and parallelism on accelerators,
written in JAX. On the simulation side, practitioners have the choice of a variety of engine backends to power their study of
simulated environments, including MuJoCo [10], pybullet [15], and physX, among many others, many of which are differentiable
[16][17][18][19][20][21][22]14].
MuJoCo Gym-Likes
The reinforcement learning and control communities have used the OpenAI Gym MuJoCo tasks as benchmarks for developing
algorithms for the past several years. Additionally, we provide reimplementations of PPO, SAC, ES, and direct policy optimization
in JAX that compile alongside our environments, allowing the learning algorithm and the environment processing to occur on
the same device, and to scale seamlessly on accelerators. Mastery over the control of robots represents a society-transforming
opportunity, thus we hope our engine only helps to improve and accelerate the equitable automation of our future.

TextRank 6, we catalog scaling behavior of Brax on accelerators, performance comparisons between Brax and MuJoCo on OpenAI Gym-style
learning problems, and report Brax’s engine fidelity on a benchmarking task. Qualitatively, for a fixed set of SAC hyperparameters,
Brax environments achieve similar reward in a similar number of environment steps (right) MuJoCo-HalfCheetah-v2 and brax-
halfcheetah. To illustrate the versatility of Brax as an engine, we include and solve several example environments in our initial
release: MuJoCo-likes (Ant, Humanoid, Halfcheetah), Grasp (a dexterous manipulation environment), and Fetch (a goal-based
locomotion environment).

Table 5.8.: Comparison of summary texts of BRAX (Freeman et al., 2021) generated by
different methods. Unusual style, mistakes, and hallucinations are highlighted
in blue.
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Method Text
Paper
abstract

Despite the prevalence of recent success in learning from static graphs, learning from time-evolving graphs remains an open
challenge. In this work, we design new, more stringent evaluation procedures for link prediction specific to dynamic graphs, which
reflect real-world considerations, to better compare the strengths and weaknesses of methods. First, we create two visualization
techniques to understand the reoccurring patterns of edges over time and show that many edges reoccur at later time steps.
Based on this observation, we propose a pure memorization-based baseline called EdgeBank. EdgeBank achieves surprisingly
strong performance across multiple settings which highlights that the negative edges used in the current evaluation are easy.
To sample more challenging negative edges, we introduce two novel negative sampling strategies that improve robustness and
better match real-world applications. Lastly, we introduce six new dynamic graph datasets from a diverse set of domains missing
from current benchmarks, providing new challenges and opportunities for future research. Our code repository is accessible at
https://github.com/fpour/DGB.git.

Human-
written
reference

In this work, the authors point out problems with the evaluation of dynamic link prediction approaches. As approaches often
achieve near-perfect results, the authors argue that a) datasets are too simple and b) current sampling techniques generate negative
edges that lead to less differentiation of approaches. The authors offer novel tools for better evaluation of dynamic link prediction
and advise others to use them: a ) They introduce new more robust negative sampling techniques, b) strong baseline method for
comparing approaches against, c) 5 novel dynamic graph datasets and two new techniques for generating datasets analysis plots.

BART This paper studies the problem of dynamic link prediction. Specifically, the authors propose a new approach to better evaluate
the performance of dynamic graph learning methods. To this end, they create two visualization techniques to understand the
reoccurring patterns of edges over time and show that many edges reoccur at later time steps. Based on this observation, they
propose a pure memorization-based baseline called EdgeBank. To sample more challenging negative edges, they introduce two
novel negative sampling strategies that improve robustness and better match real-world applications. They also introduce six new
dynamic graph datasets from a diverse set of domains missing from existing benchmarks.

SLED This paper proposes a new benchmark for dynamic link prediction. Specifically, six dynamic graph datasets have been proposed.
The benchmark focuses on the reoccurring patterns of edges over time and shows that many edges reoccur at later time steps. Based
on this observation, the authors propose a pure memorization-based baseline called EdgeBank. EdgeBank achieves surprisingly
strong performance across multiple settings which highlights that the negative edges used in the current evaluation are easy. The
authors also introduce two novel negative sampling strategies that improve robustness and better match real-world applications.
Lastly, EdgeBank introduces six new dynamic graphs datasets from a diverse set of domains, providing new challenges and
opportunities for future research.

GPT In this study, the authors propose new evaluation procedures for link prediction in dynamic graphs. They introduce two
visualization techniques to understand the patterns of edges over time and propose a baseline called EdgeBank, which achieves
strong performance by memorizing previously observed edges. They also introduce two novel negative sampling strategies to
improve evaluation and propose six new dynamic graph datasets from diverse domains. The authors compare the performance of
various methods using different evaluation strategies and show that the ranking of methods varies significantly. They highlight the
limitations of the current evaluation procedures and datasets and provide solutions for more robust and effective evaluation.

Similarity
Search

In this paper, we proposed tools to improve the evaluation of dynamic link prediction. We present six novel dynamic graph datasets
from various domains such as politics, transportation, and economics. 5c shows the performance of different methods with the
historical NS and inductive NS strategies, respectively. Therefore, it is important to evaluate against different sets of negative edges
to better understand the performance of different models. To sample more challenging negative edges, we introduce two novel
negative sampling strategies that improve robustness and better match real-world applications. Our code repository is accessible at
https://github.com/fpour/DGB.git.

TextRank We introduce two novel Negative Sampling (NS) strategies designed specifically for dynamic graphs which consider more difficult
negative edges based on the reocurrence pattern of observed edges. In a dynamic network, the edges that have been never observed
during previous timestamps can be considered as easy negative edges, since it is less likely that these edges occur during the test
phase given the reoccurring pattern of dynamic graphs. Negative Sampling (NS) of Edges in Graphs.

Table 5.9.: Comparison of summary texts of EdgeBank (Poursafaei et al., 2022) generated by
different methods. Unusual style, mistakes, and hallucinations are highlighted
in blue.
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Length
Signal

Generated Text

brief This paper proposes a differentiable physics engine for rigid body sim-
ulation, Brax. It contains a suite of tasks inspired by PPO, SAC, ES, and
direct policy optimization in JAX that compile alongside our environments,
allowing the learning algorithm and the environment processing to occur
on the same device, and to scale seamlessly on accelerators.

short This paper proposes a differentiable physics engine for Rigid Body Simula-
tion, named Brax. Brax is an open source library for rigid body simulation
with a focus on performance and parallelism on accelerators, written in
JAX. Additionally, this paper provides reimplementations of PPO, SAC, ES,
and direct policy optimization inJAX that compile alongside our environ-
ments, allowing the learning algorithm and the environment processing
to occur on the same device. Finally, this work provides notebooks that
facilitate training of performant policies on common OpenAI Gym MuJoCo
tasks in minutes.

long This paper proposes a differentiable physics engine for rigid body simula-
tion, Brax. Brax is an open source library written in JAX, and it enables the
simulation of simple rigid body physics systems in thousands of indepen-
dent environments across hundreds of connected accelerators. The authors
present results on a suite of tasks inspired by the existing reinforcement
learning literature, but remade in our engine. Additionally, the authors
provide reimplementations of PPO, SAC, ES, and direct policy optimization
in jAX that compile alongside our environments, allowing the learning
algorithm and the environment processing to occur on the same device,
and to scale seamlessly on accelerators, which are also available.

extra
long

This paper introduces a differentiable physics engine called Brax. The
engine is built in JAX and can run on a large number of connected
accelerators. In addition, the engine can be used to run a variety of
reinforcement learning algorithms (e.g., PPO, SAC, ES) and direct
policy optimization (APG). The engine can run in many differentiable
environments, allowing the learning algorithm and the environment
processing to occur on the same device, and is able to scale seamlessly on
accelerators, allowing training of performant policies on common OpenAI
Gym MuJoCo tasks in minutes.

The main contributions of this paper are:
1. Proximal Policy Optimization (PPO)
2. A set of tasks inspired by PPO and SAC.
3. The use of the engine for training.
4. The implementation of the environment differentiability.
5. The authors demonstrate the effectiveness of their engine by running
some of PPO’s environments and learning algorithms on them.

Table 5.10.: Comparison of summaries of BRAX (Freeman et al., 2021) with different lengths.
Unusual style, mistakes, and hallucinations are highlighted in blue.

89



5. Evaluation

Aspect Text
Purpose The purpose of this paper is to develop and validate a model that can be

used by network companies to create competitive advantages. The model
is tested on a sample of 1,000 online users. The data are analyzed using
structural equation modeling.

Value This study aims to develop a scale for the measurement of the freemium
business model, which is based on the development of a questionnaire and
are related measurement validation. This study also aims to examine the
internal quality of the model by using exploratory factor analysis.

Methods This study aims to develop a scale for the measurement of the freemium
business model, which is based on the theory of business model innovation
and practical observations. It also aims to examine the validity of the model
by using exploratory factor analysis.

Findings The data were collected through a questionnaire survey from 1,000 online
users. The data were analyzed using exploratory factor analysis and con-
firmatory factor analyses to determine the reliability and validity of the
model. The results of this study were compared to the previous studies.

Table 5.11.: Comparison of summaries on different aspects. For the article of H.-C. Huang
(2016) summaries on different aspects were generated.
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Several lessons have been learned from this project, covering topics such
as model training, dataset processing, and natural language application
evaluation. These points are categorized into literature, implementation, and
experiments.

6.1. Literature

Efficiently training large language models is a complex task. As models
increase in size, it becomes crucial to find ways to apply them efficiently
without sacrificing performance. Currently, many different approaches are
being studied, but most methods and techniques are relatively new and still
under research. Transformer-based models are the most popular and state-
of-the-art. However, transformers also come with some drawbacks such as
hallucination and high computational costs. For the latter, techniques such
as efficient attention layers and fusion-in-decoder methods have been pro-
posed to enhance training and inference. While these methods perform well
for short documents, there is less research focused on the long-document
domain.

Datasets are crucial for the effective training of models. There are various
types of datasets for text summarization, categorized into single- and multi-
document, as well as short- and long-document datasets. The domain is
also important when training for a specific task. High-quality scientific
long-document datasets in the technical field are sparse, and some popular
ones contain noise. The need for high-grade data collections in the scientific
field for training and testing models are essential.

Evaluation metrics measure how effectively a model performs, making
well-suited measurements essential for efficient training and testing. Per-
formance metrics can generally be categorized into lexical and semantic
matching metrics, with lexical-based metrics being more common in text
summarization tasks. While human evaluation is the most accurate measure-
ment, it is resource-intensive and requires human annotations. Therefore,
automatic evaluation metrics are necessary for efficient assessment. Halluci-
nations and factual inconsistencies are common issues among transformer
models, leading to the development of several evaluation metrics designed
to measure factuality. These metrics can be categorized into entailment
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classification, question-answering (QA), and fact-based approaches. Addi-
tional research is needed to enhance the resistance of transformer models
to hallucinations and improve their trustworthiness, along with developing
metrics to measure these improvements.

6.2. Implementation

Finding suitable datasets can be challenging in some cases. Therefore, it
is important to be able to define and create your own datasets that meet
specific requirements. A new dataset was scraped from an open peer-review
website, demonstrating that high-quality data collections can be created and
sourced from the internet with sufficient effort.

During model training and testing, it is crucial to choose the appropriate
evaluation methods and metrics. Depending on a specific aspect, such as
performance or factuality, one metric might fit better than another. Therefore,
a good metric can help you reach the desired goal faster. Additionally, the
metric scores show the efficacy of the models and are easily comparable
with other methods and techniques. However, there are many approaches
to measurements, all with different advantages and drawbacks. It is difficult
to measure performance using only one metric. For an insightful evaluation,
a mix of several evaluators is needed, each assessing another dimension.

Hardware is fundamental when working with transformer models and
large language models (LLMs). Even training and testing smaller models
require specific hardware to ensure efficient and fast processing. A good
setup is essential for achieving this.

Numerous frameworks are available for natural language processing tasks,
many within the Python ecosystem. Python libraries facilitate the efficient
and straightforward creation of pipelines for these tasks, making Python the
preferred programming language for this project implementation.

6.3. Experiments

The source and quality of the corpus play an essential role in model training.
The higher the quality, the better the results of the trained model in terms of
performance and text quality, such as consistency and relevance. However,
examples of human-written summaries showed that even experts make
small mistakes and include inaccuracies. Moreover, opinions by the experts
in the form of comments are appended at the end of some summaries.
Models trained on these data might produce similar output and therefore
hallucinative content.

Using transformer models also comes with some disadvantages. A major
drawback is the lack of explainability of the attention mechanism. However,
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explainability and trustibility are crucial as transformers tend to generate
content containing hallucinations. Therefore, the output of the transformer
models should always be checked and validated. Including explainable
systems efficiently in transformer-based LLMs is still under investigation
and a huge topic in research. A similarity search approach applied in this
project helped to increase the trustability of the model.

Measuring the quality and readability of text is a challenging task. While
many formulas have been suggested, most do not encompass all aspects of
text quality. Recently, neural network-based evaluators have been proposed
to assess multiple dimensions. Although these models do not yet match the
accuracy of human evaluators, they provide a good approximation and are
suitable for automatic text quality assessment.
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7. Conclusion and Future Work

This chapter presents the insights gained from this work, discusses potential
improvements to the system, and outlines perspectives for future research.

7.1. Conclusion

In conclusion, efficient long-document transformer models, such as SLED,
are beneficial for generating high-quality summaries of scientific articles.
The SLED model can cover the main information effectively and incorporate
also long-term dependencies.

The experiments show that with increasing summary length, more in-
formation is extracted from the results section at the middle and end of
the scientific papers. Consequently, taking the whole scientific article into
consideration increases the performance and quality of the recap, especially
in longer summary texts. However, for brief summaries, it is often sufficient
to consider only the abstract of the paper and parts of the introduction.

In addition, training with extra guiding signals, such as length and aspect
attributes, can increase the performance of the model and give the possibility
to adjust the output with respect to the user’s needs. An additional length
signal allows the model to generate summaries with different lengths and
richness of information. Consequently, controllability is beneficial for the
summarization task and helps adapt the summary scope.

High-quality training data are necessary to effectively train transformer
models. The newly sourced corpus Openreview is comparable to other
long-document datasets in the scientific field. Additionally, the corpus has
unique characteristics such as target summaries written by human experts
and multi-targeting. The experiments showed that LLMs trained on this
dataset produce high-quality summary texts. Therefore, this corpus is very
suitable for the summarization task of scientific articles.

Evaluations regarding text quality and readability suggest that models
with a low number of parameters can achieve performance comparable
to that of state-of-the-art LLMs, which are much larger in size. Therefore,
efficient transformer models can be a great alternative in low-resource
environments, as they show low computational costs and have a good
trade-off between performance and memory usage.

Furthermore, the extractive summary based on the similarity search of
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the abstractive recap (referred as Sim. Search) demonstrate higher perfor-
mance compared to traditional extractive method baselines. In addition, the
trustability of the system can be increased as the user can trace the summary
sentences in the input text.

7.2. Future Work

For future work, exploring promising models that leverage alternative ef-
ficient techniques presents a significant opportunity. This study focused
on a specific transformer model based on the fusion-in-decoder approach,
namely SLED. Expanding the investigation to include other optimization
methods, such as sparse attention matrices, could potentially lead to further
improvements in performance. Sparse attention matrices, in particular, have
shown promise in reducing computational complexity while maintaining
model efficacy, and their integration into transformer architectures warrants
further exploration.

Additionally, a deeper examination of the impact of hallucinations in
transformer models is crucial. In scientific contexts, it is crucial to guarantee
the precision and dependability of the outputs produced. Since the atten-
tion mechanisms in transformer-based models are not easily interpretable,
enhancing the traceability of summary sentences is essential. This improve-
ment would contribute to greater explainability and trustworthiness of the
models, which is critical for applications requiring rigorous validation of
information.

Moreover, the current study exclusively considered text for summariza-
tion purposes. However, significant information is often contained within
tables and figures, which are also essential to comprehensive understanding.
Future research could explore methods for incorporating these elements
into summaries, potentially creating more holistic and informative outputs.

Lastly, the aspect of controllability in transformer models could be further
developed. With the growing prevalence of prompt-based large language
models, there is an opportunity to design question-answer applications that
are tailored specifically to scientific inquiries. Such models could enhance
the precision and relevance of responses, offering valuable tools for research
and knowledge dissemination. This focus on controllability and tailored re-
sponses could significantly advance the utility and adaptability of language
models in various scientific domains.
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Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014). Learning phrase representations
using RNN encoder–decoder for statistical machine translation. Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 1724–1734. https://doi.org/10.3115/v1/D14-
1179 (cit. on p. 14)

Cohan, A., Dernoncourt, F., Kim, D. S., Bui, T., Kim, S., Chang, W., & Go-
harian, N. (2018). A discourse-aware attention model for abstractive
summarization of long documents. Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), 615–621.
https://doi.org/10.18653/v1/N18-2097 (cit. on pp. 38–40, 53, 67–70)

Coleman, M., & Liau, T. L. (1975). A Computer Readability Formula De-
signed for Machine Scoring. Journal of Applied Psychology, 60, 283–284.
https://doi.org/https://doi.org/10.1037/h0076540 (cit. on p. 36)

Dale, E., & Chall, J. S. (1949). The Concept of Readability. Elementary English,
26(1), 19–26 (cit. on p. 36).

Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N. A., & Gardner, M. (2021).
A dataset of information-seeking questions and answers anchored in
research papers. ArXiv, abs/2105.03011. https://api.semanticscholar.
org/CorpusID:234093776 (cit. on pp. 40, 53)

de Santana Correia, A., & Colombini, E. L. (2022). Attention, please! a survey
of neural attention models in deep learning. Artificial Intelligence
Review, 55(8), 6037–6124. https://doi.org/10.1007/s10462-022-10148-
x (cit. on pp. 18–20, 25, 26)

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10 .
18653/v1/N19-1423 (cit. on pp. 8, 10, 23, 34, 45)

DeYoung, J., Beltagy, I., van Zuylen, M., Kuehl, B., & Wang, L. L. (2021). MS2:
Multi-document summarization of medical studies. Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing,
7494–7513. https://doi.org/10 .18653/v1/2021 .emnlp-main.594

(cit. on p. 42)
Durmus, E., He, H., & Diab, M. (2020). FEQA: A question answering evalua-

tion framework for faithfulness assessment in abstractive summariza-
tion. Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, 5055–5070. https://doi.org/10.18653/v1/2020.acl-
main.454 (cit. on p. 34)

98

https://doi.org/10.18653/v1/2021.naacl-main.475
https://doi.org/10.18653/v1/2021.naacl-main.475
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N18-2097
https://doi.org/https://doi.org/10.1037/h0076540
https://api.semanticscholar.org/CorpusID:234093776
https://api.semanticscholar.org/CorpusID:234093776
https://doi.org/10.1007/s10462-022-10148-x
https://doi.org/10.1007/s10462-022-10148-x
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.594
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454


Bibliography

Edmundson, H. P. (1969). New methods in automatic extracting. Journal of
the ACM, 16(2), 264–285. https://doi.org/10.1145/321510.321519

(cit. on p. 7)
Falke, T., Ribeiro, L. F. R., Utama, P. A., Dagan, I., & Gurevych, I. (2019).

Ranking generated summaries by correctness: An interesting but
challenging application for natural language inference. Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics,
2214–2220. https://doi.org/10.18653/v1/P19-1213 (cit. on p. 33)

Feng, L. (2010). Automatic readability assessment (Doctoral dissertation) [Copy-
right - Database copyright ProQuest LLC; ProQuest does not claim
copyright in the individual underlying works; Zuletzt aktualisiert
- 2023-03-03]. https://www.proquest.com/dissertations- theses/
automatic-readability-assessment/docview/792432882/se-2. (Cit. on
pp. 35, 36)

Flesch, R. (1979). How to write plain English. Harper and Row. (Cit. on p. 36).
Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., & Bachem, O.

(2021). Brax – a differentiable physics engine for large scale rigid
body simulation. (Cit. on pp. 78, 79, 87, 89).

Gao, Y., Zhao, W., & Eger, S. (2020). SUPERT: Towards new frontiers in
unsupervised evaluation metrics for multi-document summarization.
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, 1347–1354. https://doi.org/10.18653/v1/2020.acl-
main.124 (cit. on p. 32)

Ghadimi, A., & Beigy, H. (2022). Hybrid multi-document summarization
using pre-trained language models. Expert Systems with Applications,
192, 116292. https://doi.org/10.1016/j.eswa.2021.116292 (cit. on p. 9)

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning [http://
www.deeplearningbook.org]. MIT Press. (Cit. on pp. 13–15).

Goodrich, B., Rao, V., Liu, P. J., & Saleh, M. (2019). Assessing the factual
accuracy of generated text. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 166–
175. https://doi.org/10.1145/3292500.3330955 (cit. on p. 35)

Grobid. (2008–2023). (Cit. on pp. 44, 52, 56, 57, 64).
Grootendorst, M. (2020). Keybert: Minimal keyword extraction with bert.

https://doi.org/10.5281/zenodo.4461265. (Cit. on pp. 45, 55–57, 64)
Gu, J., Lu, Z., Li, H., & Li, V. O. (2016). Incorporating copying mechanism in

sequence-to-sequence learning. Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
1631–1640. https://doi.org/10.18653/v1/P16-1154 (cit. on p. 22)

Gunning, R. (1952). The Technique of Clear Writing. McGraw-Hill. (Cit. on
p. 36).

Guo, M., Ainslie, J., Uthus, D., Ontanon, S., Ni, J., Sung, Y.-H., & Yang, Y.
(2022). LongT5: Efficient text-to-text transformer for long sequences.

99

https://doi.org/10.1145/321510.321519
https://doi.org/10.18653/v1/P19-1213
https://www.proquest.com/dissertations-theses/automatic-readability-assessment/docview/792432882/se-2
https://www.proquest.com/dissertations-theses/automatic-readability-assessment/docview/792432882/se-2
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.1016/j.eswa.2021.116292
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3292500.3330955
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.18653/v1/P16-1154


Bibliography

Findings of the Association for Computational Linguistics: NAACL 2022,
724–736. https://doi.org/10.18653/v1/2022.findings-naacl.55 (cit. on
pp. 9–11, 20, 21, 28, 43)

He, J., Kryscinski, W., McCann, B., Rajani, N., & Xiong, C. (2022). CTRLsum:
Towards generic controllable text summarization. Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing,
5879–5915. https://doi.org/10 .18653/v1/2022 .emnlp-main.396

(cit. on pp. 30, 31)
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Comput., 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

(cit. on p. 14)
Hovy, E., & Lin, C.-Y. (1998). Automated Text Summarization and the

Summarist System. TIPSTER TEXT PROGRAM PHASE III: Proceedings
of a Workshop held at Baltimore, Maryland, October 13-15, 1998, 197–214.
https://doi.org/10.3115/1119089.1119121 (cit. on pp. 4–6)

Huang, H.-C. (2016). Freemium business model: Construct development
and measurement validation. Internet Research, 26(3), 604–625. https:
//doi.org/10.1108/IntR-03-2014-0064 (cit. on pp. 81, 90)

Huang, L., Cao, S., Parulian, N., Ji, H., & Wang, L. (2021). Efficient at-
tentions for long document summarization. Proceedings of the 2021
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, 1419–1436. https:
//doi.org/10.18653/v1/2021.naacl-main.112 (cit. on pp. 40, 41, 62,
67, 69, 70)

Ibrahim Altmami, N., & El Bachir Menai, M. (2022). Automatic summariza-
tion of scientific articles: A survey. Journal of King Saud University -
Computer and Information Sciences, 34(4), 1011–1028. https://doi.org/
10.1016/j.jksuci.2020.04.020 (cit. on p. 11)

Ivgi, M., Shaham, U., & Berant, J. (2023). Efficient Long-Text Understanding
with Short-Text Models. Transactions of the Association for Computational
Linguistics, 11, 284–299. https://doi.org/10.1162/tacl a 00547 (cit. on
pp. 2, 3, 30, 43, 52, 56, 57, 60–62, 64, 66, 67, 70–73, 75, 77, 78, 81, 82)

Izacard, G., & Grave, E. (2021). Leveraging passage retrieval with generative
models for open domain question answering. Proceedings of the 16th
Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, 874–880. https://doi.org/10.18653/v1/2021.
eacl-main.74 (cit. on p. 30)

Jelinek, F., Mercer, R. L., Bahl, L. R., & Baker, J. K. (1977). Perplexity - a
measure of the difficulty of speech recognition tasks. Journal of the
Acoustical Society of America, 63–63. https ://doi .org/10 .1121/1 .
2016299 (cit. on p. 32)

Jeong, Y., & Kim, E. (2022). Scideberta: Learning deberta for science technol-
ogy documents and fine-tuning information extraction tasks. IEEE Ac-

100

https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.emnlp-main.396
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/1119089.1119121
https://doi.org/10.1108/IntR-03-2014-0064
https://doi.org/10.1108/IntR-03-2014-0064
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.1016/j.jksuci.2020.04.020
https://doi.org/10.1016/j.jksuci.2020.04.020
https://doi.org/10.1162/tacl_a_00547
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1121/1.2016299
https://doi.org/10.1121/1.2016299


Bibliography

cess, 10, 60805–60813. https://doi.org/10.1109/ACCESS.2022.3180830

(cit. on pp. 55, 58)
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto,

A., & Fung, P. (2022). Survey of hallucination in natural language
generation [Just Accepted]. ACM Comput. Surv. https://doi.org/10.
1145/3571730 (cit. on pp. 23–25, 33–35)
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(2018). Graph attention networks. (Cit. on p. 17).

Wang, A., Cho, K., & Lewis, M. (2020). Asking and answering questions
to evaluate the factual consistency of summaries. Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
5008–5020. https://doi.org/10.18653/v1/2020.acl-main.450 (cit. on
p. 34)

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A compre-
hensive survey on graph neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 32(1), 4–24. https://doi.org/10.1109/
TNNLS.2020.2978386 (cit. on pp. 17, 18)

Xiong, W., Gupta, A., Toshniwal, S., Mehdad, Y., & Yih, S. (2023). Adapting
pretrained text-to-text models for long text sequences. In H. Bouamor,
J. Pino, & K. Bali (Eds.), Findings of the association for computational
linguistics: Emnlp 2023 (pp. 5566–5578). Association for Computational
Linguistics. https://doi.org/10.18653/v1/2023.findings-emnlp.370.
(Cit. on pp. 9–11, 20, 21, 28, 43)

Yasunaga, M., Kasai, J., Zhang, R., Fabbri, A., Li, I., Friedman, D., & Radev,
D. (2019). ScisummNet: A large annotated corpus and content-impact
models for scientific paper summarization with citation networks.
Proceedings of AAAI 2019 (cit. on p. 42).

Yuan, W., Neubig, G., & Liu, P. (2021). Bartscore: Evaluating generated text as
text generation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
& J. W. Vaughan (Eds.), Advances in neural information processing sys-
tems (pp. 27263–27277). Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-
Paper.pdf. (Cit. on p. 35)

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon,
S., Pham, P., Ravula, A., Wang, Q., Yang, L., et al. (2020). Big bird:
Transformers for longer sequences. Advances in Neural Information
Processing Systems, 33 (cit. on p. 29).

Zajic, D., Dorr, B., Lin, J., Monz, C., & Schwartz, R. (2005). A sentence-
trimming approach to multi-document summarization. Proceedings of
DUC 2005 (cit. on p. 9).

Zhang, J., Zhao, Y., Saleh, M., & Liu, P. J. (2020). Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization. Proceedings of
the 37th International Conference on Machine Learning (cit. on pp. 28, 33,
62, 66, 67, 71, 75, 82).

Zhang, M., Zhou, G., Yu, N., W.and Huang, & Liu, W. (2022). A compre-
hensive survey of abstractive text summarization based on deep

107

https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.18653/v1/2023.findings-emnlp.370
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf


Bibliography

learning. Computational Intelligence and Neuroscience, 7132226. https:
//doi.org/10.1155/2022/7132226 (cit. on pp. 8, 13, 14, 16, 18, 20, 21,
23)

Zhang, Y., Liu, Y., Yang, Z., Fang, Y., Chen, Y., Radev, D., Zhu, C., Zeng, M.,
& Zhang, R. (2023). Macsum: Controllable summarization with mixed
attributes. Transactions of the Association for Computational Linguistics
(cit. on pp. 30, 31).

Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C. M., & Eger, S. (2019).
MoverScore: Text generation evaluating with contextualized embed-
dings and earth mover distance. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
563–578. https://doi.org/10.18653/v1/D19-1053 (cit. on p. 33)

Zhao, Z., Cohen, S. B., & Webber, B. (2020). Reducing quantity hallucinations
in abstractive summarization. Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, 2237–2249. https://doi.org/10.18653/
v1/2020.findings-emnlp.203 (cit. on pp. 25, 26)

Zhong, M., Liu, Y., Yin, D., Mao, Y., Jiao, Y., Liu, P., Zhu, C., Ji, H., &
Han, J. (2022). Towards a unified multi-dimensional evaluator for text
generation. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), Proceedings
of the 2022 conference on empirical methods in natural language processing
(pp. 2023–2038). Association for Computational Linguistics. https:
//doi.org/10.18653/v1/2022.emnlp-main.131. (Cit. on pp. 34–36, 66)

Zhu, C., Hinthorn, W., Xu, R., Zeng, Q., Zeng, M., Huang, X., & Jiang, M.
(2021). Enhancing factual consistency of abstractive summarization.
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
718–733. https://doi.org/10.18653/v1/2021.naacl-main.58 (cit. on
pp. 24, 25)

108

https://doi.org/10.1155/2022/7132226
https://doi.org/10.1155/2022/7132226
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2021.naacl-main.58


Appendix

109



Appendix A.

Experiments

a) FacetSum tokens histogram. b) OpenReview Contribution tokens histogram.

c) OpenReview Summary tokens histogram. d) ArXiv tokens histogram.

Figure A.1.: Token histograms of selected datasets. The red line indicates the maximum
input of the SLED model that can be processed entirely with the given hardware
limitations.
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Appendix A. Experiments

Mean Absolute Deviation (MAD)
steps 2,500 7,500 12,500 17,500

length penalty 1 2.83 1.51 1.34 0.49

length penalty 2 2.42 0.85 0.91 0.41

Table A.1.: Comparison of length penalty parameters of the BART model on the Open-
Review Contribution dataset. Increased training steps lead to better length
adaptation, measured by Mean Absolute Deviation (MAD).

a) Length comparison after 2,500 steps. b) Length comparison after 7,500 steps.

c) Length comparison after 12,500 steps. d) Length comparison after 17,500 steps.

Figure A.2.: Length comparison during training. As step size increases, length adaptation
improves, achieving a strong correlation.
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Appendix A. Experiments

Length Metric Paper abstr. TextRank Sim. Search BART SLED

brief

R1 18.75 19.45 29.25 33.77 35.75

R2 5.87 3.89 8.83 11.17 12.90

RL 12.86 14.24 21.22 25.53 28.01

BS 0.162 0.141 0.248 0.323 0.335

very short

R1 26.29 24.97 34.56 40.27 40.54

R2 8.39 5.39 9.91 13.42 13.64

RL 16.79 16.84 22.96 27.97 28.08

BS 0.227 0.144 0.261 0.328 0.331

short

R1 30.86 28.88 35.12 40.39 40.42

R2 9.16 7.03 10.62 12.74 13.22

RL 18.74 19.12 23.43 27.42 27.19

BS 0.232 0.119 0.243 0.294 0.295

middle

R1 33.38 31.24 36.74 40.15 40.74

R2 9.16 7.17 9.60 10.97 11.45

RL 19.67 20.27 23.19 27.58 25.84

BS 0.235 0.118 0.224 0.265 0.274

long

R1 37.23 31.66 37.65 41.65 41.82

R2 9.47 5.90 9.07 10.96 11.20

RL 21.09 20.09 24.17 27.58 27.12

BS 0.235 0.130 0.226 0.265 0.272

very long

R1 38.41 30.70 37.83 41.55 42.32

R2 9.14 6.28 8.98 10.51 10.88

RL 23.08 21.49 24.49 27.81 27.69

BS 0.217 0.125 0.196 0.228 0.237

extra long

R1 38.21 27.24 37.96 39.22 39.75

R2 8.13 5.25 7.09 8.50 8.67

RL 24.79 20.34 25.35 28.73 28.25

BS 0.191 0.117 0.172 0.192 0.199

Table A.2.: Performance results depending on different summary lengths on the Open-
Review Contribution dataset. Comparisons are based on the ROUGE1 (R1),
ROUGE2 (R2), ROUGELSum (RL) and BERTScore (BS) metric.

Method input
source

length
signal ROUGE1 ROUGE2 ROUGELsum

heuristic paper abstr. - 32.99 9.63 19.98

TextRank full paper no 29.26 6.48 18.97

TextRank full paper yes 31.24 6.73 20.16

Sim. Search summ.+paper yes 36.80 9.87 23.57

BARTbase 1K tokens yes 37.93 11.88 34.04

SLEDbase 12K tokens yes 38.22 11.98 34.22

Table A.3.: Performance comparison on the OpenReview Summary dataset shows that
SLED with BARTbase achieves the highest ROUGE scores.
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