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Abstract: Earth’s gravitational field provides invaluable insights into the changing nature of our
planet. It reflects mass change caused by geophysical processes like continental hydrology, changes in
the cryosphere or mass flux in the ocean. Satellite missions such as the NASA/DLR operated Gravity
Recovery and Climate Experiment (GRACE), and its successor GRACE Follow-On (GRACE-FO)
continuously monitor these temporal variations of the gravitational attraction. In contrast to other
satellite remote sensing datasets, gravity field recovery is based on geophysical inversion which
requires a global, homogeneous data coverage. GRACE and GRACE-FO typically reach this global
coverage after about 30 days, so short-lived events such as floods, which occur on time frames from
hours to weeks, require additional information to be properly resolved. In this contribution we treat
Earth’s gravitational field as a stationary random process and model its spatio-temporal correlations
in the form of a vector autoregressive (VAR) model. The satellite measurements are combined with
this prior information in a Kalman smoother framework to regularize the inversion process, which
allows us to estimate daily, global gravity field snapshots. To derive the prior, we analyze geophysical
model output which reflects the expected signal content and temporal evolution of the estimated
gravity field solutions. The main challenges here are the high dimensionality of the process, with a
state vector size in the order of 103 to 104, and the limited amount of model output from which to
estimate such a high-dimensional VAR model. We introduce geophysically motivated constraints in
the VAR model estimation process to ensure a positive-definite covariance function.

Keywords: GRACE/GRACE-FO; gravity field recovery; vector autoregressive models

1. Introduction

Earth’s gravitational field is key quantity for observing the state and change of our
planet. Its variations in time can be related to surface mass changes [1] and thus it provides
insight into geophysical and climate relevant processes, for example, sea level rise [2], ice
mass loss [3], or the terrestrial water cycle [4]. Since 2002, the dedicated satellite mission
Gravity Recovery And Climate Experiment (GRACE) [5,6] and its successor GRACE
Follow-On (GRACE-FO) [7] have monitored temporal variations of Earth’s gravitational
field and have provided an invaluable data record for climate and Earth system sciences.
The standard data products of both missions are unconstrained and constrained monthly
snapshots of potential or surface mass changes. The time period of one month is not chosen
arbitrarily but is a consequence of the orbit geometry of the satellites. As the satellites
do not directly observe the changes in gravitational attraction but rather provide very
precise measurements of their absolute and relative motion, the underlying potential field
must be determined by an inversion process. This inversion process requires a global,
homogeneous data coverage which for GRACE and GRACE-FO is reached after about
30 days.

However, in recent years different approaches to derive sub-monthly gravity field vari-
ations which combine satellite measurements with prior information have been developed.

Phys. Sci. Forum 2021, 3, 7. https://doi.org/10.3390/psf2021003007 https://www.mdpi.com/journal/psf

https://www.mdpi.com/journal/psf
https://www.mdpi.com
https://orcid.org/0000-0003-1199-7742
https://orcid.org/0000-0003-2609-428X
https://doi.org/10.3390/psf2021003007
https://doi.org/10.3390/psf2021003007
https://doi.org/10.3390/psf2021003007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/psf2021003007
https://www.mdpi.com/journal/psf
https://www.mdpi.com/article/10.3390/psf2021003007?type=check_update&version=1


Phys. Sci. Forum 2021, 3, 7 2 of 8

Notable examples are the Kalman smoother approach by [8], a moving window approach
by [9], constrained surface mass estimates from the Center of Space Research (CSR) [10]
and a Kalman filter approach for regional applications [11]. Data sets dervied with these
approaches have seen various applications in Earth system sciences, for example, analysis
of large scale flood events [12], evaluation of geophysical models [13,14] or near real-time
flood monitoring [15].

In this contribution we show how maximum entropy spectral estimation can be used
to derive prior information for regularizing the inversion process for daily gravity field
variations. To that end, we estimate a vector autoregressive (VAR) model from a time series
of geophysical model output which approximates the expected signal. Following [15],
we show how this spatio-temporal covariance information can be introduced into the
inversion process and present a time series of daily gravity field variations derived from
approximately thee years of GRACE-FO data.

2. Materials and Methods

A widely used method to recover Earth’s gravitational field from a set of measure-
ments is to solve an overdetermined system of equations in a least-squares adjustment [16].
Here, the measurements or observations l are related to unknown gravity field parameters
through a (possibly non-linear) functional model f with:

l = f(x) + e. (1)

We added the residual vector e because (1) equation is generally not consistent due to
the stochastic nature of l. To solve for x, we expand f into a Taylor series around x0 and
truncate it after the linear term. This yields the reduced observations equations:

∆l = l− f(x0) = A(x− x0) + e, e ∼ N (0, Σ∆l), (2)

where the matrix A consists of the partial derivatives of f with respect to the parameter
vector x. In (2), the residual vector e is assumed to be centered and normally distributed
with the covariance matrix Σ∆l. This system of linear equations can be solved for the
parameter corrections ∆x̂ = x̂− x0 by forming the system of normal equations:

(ATΣ−1
∆l A)∆x̂ = ATΣ−1

∆l ∆l, (3)

or more concise, N∆x̂ = n. For this study, we express the changes Earth’s gravitational
field as spherical harmonic series expansion:

∆V(r, ϑ, λ) =
GM

R

∞

∑
n=0

n

∑
m=−n

(
R
r

)n+1
anmYnm(ϑ, λ), (4)

where the fully normalized surface spherical harmonics Ynm are given by:

Ynm =

{
Pnm(cos ϑ) cos λ if m ≥ 0
Pn|m|(cos ϑ) sin λ if m < 0

, (5)

with Pnm being the fully normalized associated Legendre functions [17]. In practice, the
series is truncated at a maximum degree nmax, which depends on the application and is
chosen here with nmax = 40. Furthermore, we set degrees n = {0, 1} to zero because we
assume that Earth’s mass does not vary and we fix the coordinate reference frame in Earth’s
center of mass. The unknown parameter corrections ∆x therefore consist of the spherical
harmonic coefficients anm with n ∈ {2, . . . , 40}.

Since we want to determine daily temporal changes in Earth’s gravitational field
we set up this least-squares adjustment for a time series ti = i∆t, i ∈ {0, . . . , N − 1},
where ∆t is 1 day. We denote the resulting observation equations for time step i with a
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corresponding subscript: ∆li = Ai∆xi + ei. All epochs can be combined in a single least
squares adjustment with the block-diagonal normal equation coefficient matrix N̄ii = Ni
and the right hand side n̄ = ni. Given the block-diagonal structure of N̄ we can solve for
each time step individually resulting in the estimated parameter corrections ∆x̂i and their
corresponding variance-covariance matrix Σ̂∆x̂i = N−1

i . Next to the input data quality, the
uncertainty of ∆x̂i primarily depends on the spatial data coverage within the observation
interval. To recover the full spherical harmonic spectrum, a global homogeneous data
coverage is required. For the application here, where the observation time span is a
single day, the satellites perform approximately 15 revolutions and thus we can only infer
spherical harmonic coefficients up to order m = 15 [18]. The effect this sparse data coverage
has on the estimated gravity field solution can be seen in Figure 1, where we propagated
the uncertainty of an unconstrained daily GRACE-FO solution to equivalent water height
(EWH) in space domain.

Figure 1. Uncertainty of an unconstrained daily gravity field estimated from one day of GRACE-FO
data propagated to equivalent water height (EWH) in space domain. The solid black lines show the
satellite ground tracks for this given day.

The uncertainty between the satellite ground tracks is magnitudes higher than the
expected signal, which is in the order of ±25 cm. Consequently, to recovery global, sub-
monthly gravity field variations, additional external information is required.

We introduce prior information on the parameter corrections ∆x = [∆xT
0 , . . . , ∆xT

N−1]
T

in the form of a positive definite covariance matrix R. We further assume that ∆xi is a Gaus-
sian, temporally stationary random process with an expected value of zero. This implies
that their temporal covariance function Σ∆x(ti, tj) only depends on the lag h between the
epoch i and j [19]. The prior distribution is then given by:

∆x ∼ N (0, R). (6)

If we sort all epochs in temporally ascending order, the variance-covariance matrix R
of the resulting vector is block-Toeplitz with the individual blocks given by

Rij =

{
Σ∆x(h = |j− i|) if i ≤ j
ΣT

∆x(h = |j− i|) else
. (7)

This prior information is then incorporated into the least squares adjustment as
pseudo-observations of the form:

0 = ∆x + v v ∼ N (0, R), (8)
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with v = [vT
0 , . . . , vT

N−1]
T . The constrained system of normal equations for the whole time

series is subsequently given by:

(N̄ + R−1)∆x̂ = n̄. (9)

The solution to this augmented least-squares problem is numerically equivalent to the
Bayes estimate under the assumption of the given prior information.

Both GRACE and GRACE-FO exhibit an approximate repeat cycle of 4–5 days at the
equator. As the observation information is closely tied to the ground track coverage es
presented in Figure 1, this means that points at the equator are also updated at this repeat
frequency. Between these updates, the solutions are supported by the introduced temporal
constraint and slowly tend towards the Taylor series expansion point x0. We chose x0 as
a long-term estimate of the secular and seasonal gravity field variations, which captures
a large part of the total signal. In higher latitudes, where the ground tracks converge,
observation updates occur more frequently. This means that as we move closer to the poles,
the gravity field solutions become less reliant on the prior information.

Note that the covariance function Σ∆x(h) is still unknown at this point. To estimate
the stochastic properties we perform maximum entropy spectral estimation by fitting a
vector autoregressive model (VAR) with:

∆xi =
p

∑
k=1

Φk∆xi−k + wi, wi ∼ N 0, Σw (10)

to a time series of geophysical model output mi, which approximates the true spatio-
temporal covariance structure of Earth’s time-variable gravity field. We make use of the
Earth System Model of the European Space Agency (ESA ESM, [20]) to generate daily
spherical harmonics coefficients vectors. To estimate the VAR model, we use Yule–Walker
equations [19] to estimate the empirical covariance matrices for lags h ∈ {0, . . . , 3} using
the unbiased estimator:

Σ̂(h) =
1

M− h

M−h−1

∑
k=0

mkmT
k+h. (11)

After estimating the empirical covariance function and before solving the Yule–Walker
equations, we apply geophysically motivated constraints onto the obtained covariance
matrices. Specifically, we want set correlations between land and ocean to zero and
reduce the overall correlation length. These constraints are very easy to introduce in
space domain so we first propagate Σ̂(h) from the spherical harmonics domain to an
EWH grid in space domain. Now the matrices can be decomposed into σij(h) = rij(h)σiσj,
where rij(h) represents the correlation between two grid points at lag h and σi/j is the
standard deviation of the corresponding grid points. The constraints are then realized
by setting rij(h) = 0 if the points i and j are on different domains and applying a decay
function r̃ij(h) = rij(h)e−ψ/ψ0 . The amount at which the correlation between points in
dependence of their spherical distance ψ is reduced is governed by the the parameter ψ0
which we chose as 1100 km. After propagating the modified empirical covariance matrices
back to spherical harmonics domain, we can now solve the Yule–Walker equations to
obtain the VAR model coefficients Φk and compute the white noise covariance matrix Σw.
Now we could compute the covariance function for all lags h, however, given the high
dimensionality of the problem, assembling the full block variance-covariance matrix is not
feasible. Instead we use the VAR model to transform the pseudo-observation equations (8).
For each time step i, we apply 0 = −∆xi + ∑

p
k=1 Φk∆xi−k, which can also be written as a

lower triangular block matrix applied to the full time series ∆x as in:
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0 = Φ̄∆x + w w ∼ N (0, Σ̄w), (12)

where Σ̄w = Φ̄RΦ̄T is a block diagonal matrix with Σw on the main diagonal. This has
the great advantage that the resulting normal equation coefficient matrix is block-banded
with a bandwith of p + 1 and thus greatly reduces the memory demands. The transformed
system of normal equations which we use to estimate the full time series of gravity field
variations is then given by:

(N̄ + Φ̄TΣ̄−1
w Φ̄)∆x̂ = n̄. (13)

Note that for a VAR model of order 1, (13) yields the same results as the Kalman
smoother approach presented in [8].

3. Results

To showcase how the VAR regularization affects the gravity field estimates, we com-
puted systems of normal equations from close to three years of GRACE-FO sensor data [21].
Figure 2 shows the autocovariance matrix computed from the VAR model and the temporal
variability of the computed time series propagated to space domain.

Figure 2. Comparison of (a) the autocovariance matrix derived from the estimated VAR model expressed as standard
deviation per grid point and (b) the temporal RMS of the computed gravity field solutions.

As can be seen, the estimated gravity field time series shows a lot more signatures
than the expected signal covariance. This means that the GRACE-FO observations provide
significant information and are not overly constrained by the derived VAR model. It should
be noted that the VAR model and subsequently the spatio-temporal constraints depend
on the geophysical models used in their derivation. However, the influence of different
hydrological models is very small as shown in [12]. This suggests that the daily gravity
field solutions are primarily data driven.

To gauge how the daily gravity field variations compare with standard GRACE/GRACE-
FO products, we compute area mean time series for selected hydrological basins. As
monthly data set we use the unconstrained monthly solutions of ITSG-Grace_operational [22,23]
computed at Graz University of Technology, filtered with DDK4 spatial filter [24].

Figure 3 shows the area mean time series of 4 regions where we see larger water storage
variations. We can see that the daily gravity field solutions clearly pick up sub-monthly
signal and thus provide additional information compared to the standard GRACE/GRACE-
FO products.
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Figure 3. Total water storage anomaly (TWSA) in equivalent water height for (a) Tigris/Euhprates,
(b) Danube, (c) Orinoco, and (d) Ganges basin for the year 2019 (trend and annual signal are
removed). The estimated daily solutions are compared with DDK4-filtered monthly solutions from
ITSG-Grace_operational shown as step function.

4. Discussion

We have shown that VAR models provide an efficient way of introducing spatio-
temporal prior information into the gravity field inversion process. This approach is
equivalent to constraining the gravity field estimates with the full block-Toeplitz variance-
covariance matrix, however requires only a fraction of the memory. Constraining the
inversion of daily gravity field variations with a VAR model of arbitrary order p constitutes
the generalization of the Kalman smoother approach of [8], which is the special case for
p = 1. If the VAR model is derived as a maximum entropy spectral estimate from a time
series of geophysical model output, a few challenges arise. The high-dimensionality of
the problem with a state vector size in the order of 103 to 104, combined with the limited
availability of model output results in a very low redundancy in the VAR model estimation.
We counteract this by introducing geophysically motivated constraints on the empirical
covariance matrix estimates. First, we decouple the land and ocean domain and then we
reduce the remaining correlation between far away point by introducing an exponential
decay function dependent on the spherical distance. This drastically improves the condition
of the VAR estimation problem. Finally, we show that the derived prior information in
combination with GRACE-FO measurement data yields reasonable results by computing a
time series of daily gravity field variations from June 2018 to March 2021. Here, we can
clearly see sub-monthly signals which underlines the proficiency of the approach.

Author Contributions: A.K. worked on the theoretical background, performed the gravity field
recovery and wrote the manuscript; T.M.-G. worked on the theoretical background. All authors have
read and agreed to the published version of the manuscript.
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Abbreviations
The following abbreviations are used in this manuscript:

GRACE Gravity Recovery And Climate Experiment
GRACE-FO GRACE Follow-On
CSR Center for Space Research
VAR vector autoregressive
EWH equivalent water height
RMS root mean square
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