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Abstract

In situ tissue engineering offers an innovative solution for replacement valves and grafts in

cardiovascular medicine. In this approach, a scaffold, which can be obtained by polymer electro-

spinning, is implanted into the human body and then infiltrated by cells, eventually replacing the

scaffold with native tissue. In silico simulations of the whole process in patient-specific models,

including implantation, growth and degradation, are very attractive in order to study the factors

that might influence the end result. In our research we focused on the mechanical behavior of the

polymeric scaffold and its short-term response. Following a recently proposed constitutive model

for the anisotropic inelastic behavior of fibrous polymeric materials, we present here its numerical

implementation in a finite element framework. The numerical model is developed as user material

for commercial finite element software. The verification of the implementation is performed for ele-

mentary deformations. Furthermore, a parallel plate test is proposed as a large-scale representative

example and the model is validated by comparison with experiments.
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1. Introduction1

Cardiovascular diseases, which affect the heart and blood vessels, remain the leading cause of2

death worldwide. In particular, the aortic valve, which connects the aorta with the left ventricle3

and prevents backflow of blood into the heart during diastole, may be affected by valve stenosis4

and regurgitation [1]. Today, these pathological conditions are often treated with a minimally5
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invasive surgical procedure called transcatheter aortic valve implantation (TAVI), in which a re-6

placement heart valve is positioned through a catheter [2]. The most common solutions include7

mechanical and bioprosthetic heart valves manufactured from processed animal tissue. However,8

both categories have several drawbacks, including poor biocompatibility and age-related structural9

deterioration [3]. Innovative solutions are made available through in situ tissue engineering, also10

known as endogenous tissue restoration (ETR), in which a temporary bioabsorbable polymeric11

scaffold provides the biomechanical structural characteristics until the native tissue is produced12

[4–8]. In addition to heart valves, ETR is a promising technique for replacement vascular grafts13

[9, 10]. The key benefits of such an approach are that it avoids the long-term presence of foreign14

materials in the body, provides a replacement heart valve with a native-like response to hemody-15

namic loads, and has the ability to remodel and regenerate [4].16

Cardiovascular tissues appear as sophisticated assemblies of fibres and cells that respond to a17

range of biomechanical and biochemical stimuli and can adapt to physiological and pathological18

conditions [11]. Therefore, the design of functional heart valves is a complex task that requires19

knowledge of the structural and mechanical characteristic of the native tissue as well as the biome-20

chanical loads in vivo [12]. Furthermore, the success of ETR depends on the cellular response to21

the scaffold, e.g., with regard to infiltration, adhesion, and immunogenic response [8]. In terms of22

mechanical behavior, heart valves require excellent fatigue resistance to continuous exposure from23

cyclic pressures, shear stresses, and strains resulting from hemodynamic loads [4]. In this context,24

the amount and spatial arrangement of collagen fibres is of fundamental importance, and it has25

been observed that the formation and organisation of restored native tissue can be controlled by26

incorporating anisotropy into the scaffold [13]. In addition, fibre diameter and alignment correlate27

with pore size and thus have a direct influence on cell infiltration [14]. Synthetic polymers pro-28

duced by electrospinning are among the most promising materials for biodegradable scaffolds with29

non-woven meshes featuring micrometer-sized fibres [15, 16].30

Given the large number of variables involved in tissue engineering design, simulation-based31

methods are highly attractive [17–19]. Computational tools allow the prediction of the entire32

ETR process. However, the accuracy of their results is highly dependent on constitutive models33

used to describe the short-term mechanical response of the biodegradable scaffold, its interaction34

with the hemodynamic environment, the process of cell infiltration and growth of native tissue,35

and finally the scaffold degradation [20–23]. The mechanical behavior of the scaffold is similar to36
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other fibre–reinforced soft composites, including biological tissues [24], textiles [25], fibre-reinforced37

polymers [26] and biopolymer gels [27]. These materials are endowed with peculiar features that38

are a direct expression of the arrangement of their microstructure and the interactions within39

it. More specifically, the mechanical response of electrospun polymeric meshes is characterised40

by large deformations, nonlinearity, and anisotropy [14, 28, 29]. In addition, numerous inelastic41

effects are also observed in the experiments, including stress-softening, permanent deformation,42

and rate-dependence [30]. In fact, these features are also found in vascular tissues. For example,43

rate-dependence is particularly relevant for the aortic valve, which in vivo is subject to high44

deformation rates [31].45

Here we present a computational model to describe the short-term inelastic response of poly-46

meric scaffolds for tissue engineering applications. The constitutive framework is based on a47

recently formulated continuum mechanics approach that combines anisotropy, stress-softening,48

permanent deformations, and rate-dependency [32]. This base model served as the foundation49

for modelling the ETR process in a biodegradable scaffold embedded in a thorough verification,50

validation, and uncertainty quantification plan [33, 34], as developed in the Horizon 2020 Project51

of the European Union SimInSitu. Aiming to simulate the entire ETR process, fluid-structure52

interaction, growth and remodelling, and patient-specific geometry, an efficient numerical imple-53

mentation in industry-standard finite element (FE) codes is a key goal of this research. Hence,54

we derive simple algorithmic expressions for the computation of the spatial stress tensor and the55

consistent tangent modulus needed for standard implementations in implicit solvers developed in56

the updated-Lagrangian formulation. The FE code verification is performed by comparing the57

implementation in user-material subroutines for the commercial Abaqus software [35] with analyt-58

ical solutions for elementary deformations. We also consider a large scale representative example59

consisting of the simulation of a parallel-plate compression test with cyclic loading. In particu-60

lar, we describe the experimental procedure for the mechanical characterisation of the electrospun61

polymeric scaffold and use FE simulation to validate the proposed computational model.62

2. Computational model63

2.1. Constitutive modelling framework64

The constitutive model for the scaffold material is developed within finite strain continuum65

mechanics and irreversible thermodynamic with internal variables, and includes anisotropic hy-66
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perelastic response, stress-softening, permanent deformation, and rate-dependence. The reader is67

referred to the authors’ recent work [32] for a detailed presentation and background of the ther-68

modynamic principles involved. Here we summarise the main features of the proposed approach:69

• According to Simo [36] and Holzapfel et al. [37], a free-energy function is introduced as70

the sum of an equilibrium part Ψ∞ and a non-equilibrium part
∑M

l=1Υl, where each term71

Υl is responsible for a viscoelastic contribution. Furthermore, the canonical volumetric-72

isochoric multiplicative split of the deformation gradient F is used [38], F = (J1/3I)F, where73

J = detF > 0, leading to an additive form of the free energy. The split is also consistent74

with the observation that viscous effects on the volumetric behavior are negligible, so the75

non-equilibrium part is treated as purely distortional [39]. The general form of the proposed76

free energy is [32]77

Ψ = Ψ∞
vol(J) + Ψ∞

iso(C) +
M∑
l=1

Υl(C,Γl), (1)

where C = F
T
F is the isochoric right Cauchy-Green tensor, Γl are tensorial right Cauchy-78

Green-like internal variables, and Ψ∞
vol is a generic convex function of the volume ratio J .79

The explicit form of the non-equilibrium term appearing in (1) is given in our related paper80

[32, Eq. (55)].81

• The equilibrium part describes the time-independent material response, and we assume that82

it includes dissipative effects resulting in stress-softening (Mullins effect) and permanent83

deformation. In contrast to other works, see, e.g., [36, 40], we adopt here the pseudo-84

elastic model introduced by Ogden and Roxburgh [41] with its latest modifications [42]. We85

introduce a pair of scalar damage functions that scale the stress response depending on the86

maximum isochoric strain energy Ψmax
iso attained by the material during the loading history.87

Specifically, the general expression of this function is [32, Eq. (29)]88

η(χ; η0, η1, α) = η0 + (η1 − η0)[(α + 1)χα − αχα+1], (2)

where η0, η1, α are different sets of parameters for stress-softening and permanent defor-89

mation, and χ = Ψ0,∞
iso /Ψmax

iso , with Ψ0,∞
iso representing the purely elastic free energy in the90

undamaged material.91

• The elastic response is described here by an anisotropic strain-energy function, which is part92
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of a large class of polyconvex constitutive relations [43]. Anisotropy is introduced by a pair of93

interdependent second-order symmetric structure tensors that describe the coaxial and per-94

pendicular behavior of the material with respect to the fibres. The coaxial structure tensor95

is defined as H∥ = HiEi ⊗Ei (i = 1, 2, 3, summation rule applies), with H∥ : I = 1, and the96

perpendicular structure tensor follows in the form H⊥ = 1
2
(I −H∥). The orthogonal eigen-97

vector basis (Ei)
3
i=1, defines the planes of material symmetry in the reference configuration.98

The proposed isochoric strain-energy function is [32, Eq. (9)]99

Ψ0,∞
iso =

∑
p∈{∥,⊥}

µp

2

{
1

(γp + 1)

[(
K1p

)γp+1 − 1
]
+

1

(δp + 1)

[(
K−1p

)δp+1 − 1
]}

, (3)

where K1p = Hp : C and K−1p = Hp : C−1 are four anisotropic isochoric invariants,100

capturing the isochoric deformation of line and area elements, respectively. In (3) we have101

introduced stiffness-like parameters µ∥ and µ⊥ which weight the coaxial and perpendicular102

contributions, respectively. In addition, four shape parameters γ∥, γ⊥, δ∥, and δ⊥ control the103

influence of the associated invariants. For example, the shape parameter γp can be tuned to104

adjust the strain-stiffening response of the material under tension, while δp models a decrease105

in stiffness [32, Fig. (2)].106

Following a standard Coleman-Noll procedure [38], one obtains the second Piola-Kirchoff stress107

tensor additively as108

S = S0,∞
vol + J−2/3P : (S∞ + Sneq), (4)

where S0,∞
vol = pC−1, with p = dΨvol/dJ , and P is the fourth-order material projection tensor

[38]. The fictitious equilibrium stress tensor S∞ related to the unimodular part of the deformation

gradient is expressed by [32, Eq. (15), Eq. (35)]

S∞ =
(
ηmS

0,∞ + ηrS
r,∞)

with S0,∞ = 2
∂Ψ0,∞

iso

∂C
, (5)

where the damage functions ηm, ηr follow from (2), specialised for stress-softening and permanent

deformation. The effect of the permanent deformation appears in the model through residual

stresses Sr,∞ = −S0,∞(C⋆), determined by the fictitious stress tensor at the instance when the
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maximum isochoric free-energy function is reached [32, Sect. (5)], i.e.

C⋆(t) = C(τ ⋆), τ ⋆ = argmax
τ≤t

Ψ0,∞
iso (τ).

Furthermore, the non-equilibrium term can be written as [32, Eq. (61)]

Sneq = 2
∂2Ψ0,∞

iso

∂C∂C
: Q with Q =

M∑
l=1

µ′−1
l Ql, (6)

where the viscous overstress of each relaxation process is Ql = S0,∞ − µ′
l(Γl − I). Finally, the109

evolution of the viscoelastic process is prescribed by the following set of linear differential equations110

Q̇l +
Ql

τl
= Ṡ0,∞, (7)

ensuring positive internal energy dissipation. In (6)-(7), τl and µ′
l are additional pairs of parameters111

that are introduced for each relaxation process. The strain-energy factor introduced in Wollner112

et al. [32, Eq. (59)] on the right-hand side of (7) is assumed here to be one without loss of113

generality. It is worth noting that while the internal variables appearing in the free energy (1) are114

right Cauchy-Green-like quantities, the evolution equation (7) is completely defined by the viscous115

overstress Ql. This structure of the evolution equation is a peculiarity of the approach derived116

from Simo [36] and greatly simplifies the numerical implementation, as detailed below.117

2.2. Numerical implementation118

2.2.1. Algorithmic stress tensor and tangent modulus119

The implementation of an inelastic material model into a FE code requires an algorithmic120

update of the stress tensor. Following Holzapfel et al. [37], the closed-form solution of the evolution121

equations (7) is approximated by the mid-point rule, which results in122

Q
(n+1)
l = H(n)

l + exp

(
−∆t(n+1)

2τl

)
S0,∞(n+1)

, (8)

where the superscripts n, n+1 are related to the time instants t(n), t(n+1), with ∆t(n+1) = t(n+1)−t(n).123

The history terms H(n)
l are tensorial quantities defined by124

H(n)
l = exp

(
−∆t(n)

2τl

)[
exp

(
−∆t(n)

2τl

)
Q

(n)
l − S0,∞(n)

]
. (9)
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The steps needed to obtain the total Eulerian stress tensor are summarised in Algorithm 1.

Algorithm 1 Computation of the Eulerian stress tensor

1: Given ∆t(n),F(n),Ψmax
iso

(n−1),S
r,∞(n−1),H(n−1)

l

2: Evaluate J , C, C, C−1 and C−1

3: Evaluate K1{∥,⊥}, K−1{∥,⊥}
4: Evaluate S0,∞ from (5):

S
0,∞

=
∑

p∈{∥,⊥}

µp

(
K

γp
1pHp −K

δp
−1pH

′
p

)
, with : H′

p = C−1HpC
−1

5: if Ψmax
iso

(n−1) < Ψ0,∞
iso then

6: Ψmax
iso

(n) ← Ψ0,∞
iso (Loading)

7: χ← 1
8: S

r,∞(n) ← −S0,∞

9: else
10: Ψmax

iso
(n) ← Ψmax

iso
(n−1) (Unloading/Reloading)

11: χ← Ψ0,∞
iso

Ψmax
iso

(n)

12: S
r,∞(n) ← S

r,∞(n−1)

13: end if
14: Evaluate ηm and ηr from (2) and S∞ from (5)
15: for l = 1 to M do

16: Q
(n)
l ← H

(n−1)
l + exp

(
−∆t(n)

2τl

)
S0,∞(n)

17: Evaluate H(n)
l from (9)

18: end for
19: Evaluate Q and Sneq from (6):

Sneq =
∑

p∈{∥,⊥}

µp[γp(K1p)
γp−1(Hp : Q)Hp+

+ δp(K−1p)
δp−1(H′

p : Q)H′
p + (K−1p)

δp(C−1QH′
p +H′

pQC−1)]

20: Evaluate S from (4)
21: Evaluate the Eulerian stress tensor σ← J−1FSFT

22: return σ,Ψmax
iso

(n),S
r,∞(n),H(n)

l

125

Finite element procedures based on implicit integration with a Newton-type iterative solution126

technique require a linearization of the constitutive equations. This is achieved by introducing the127

fourth-order elasticity tensor defined in the Eulerian setting [38]. Although a closed-form expression128

can be derived, we have preferred a numerical approximation based on a forward difference scheme129

introduced by Miehe [44]. Accordingly, the consistent tangent modulus is computed based on a130

perturbation of the deformation gradient. The method requires N additional evaluations of the131
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Eulerian stress tensor according to Algorithm 1 with the perturbed deformation gradient, where132

N = 4 for two-dimensional problems and N = 6 in three-dimensions. Benchmark tests revealed133

that the increase in computational time compared to an analytically derived tangent modulus is134

not significant. The consistent tangent modulus is then obtained as135

cijkl =
1

ϵ
[σij(F̃

kl)− σij(F)], (10)

where ϵ is a perturbation parameter and F̃kl is the perturbed deformation gradient obtained by136

perturbing only its (kl) component. The complete procedure is summarised in the Algorithm 2137

reported in the Appendix.138

2.2.2. Shell formulation139

The constitutive model is adapted to shell elements formulated on the classical Reissner-Mindlin140

kinematic theory by invoking the plane stress condition, i.e., taking the normal stress in the thick-141

ness direction to be zero [45]. The developed plane stress formulation assumes incompressibility142

J ≡ 1 so that the augmented free-energy function in (1) is redefined in the form143

Ψ = Ψ∞
iso(C) +

M∑
l=1

Υl(C,Γl)− p(J − 1), (11)

where p is here a Lagrange multiplier computed explicitly by imposing the condition S33 = 0,144

i.e. p = C33Siso(C) : (E3 ⊗ E3), where E3 identifies the thickness direction in the reference145

configuration. The stress tensor in (4) is then replaced by146

S =
[
I− C33C

−1 ⊗ (E3 ⊗E3)
]
: Siso(C), (12)

where Siso = S∞ + Sneq and I denotes the fourth-order unit tensor defined as (I)IJKL = (δIKδJL +147

δILδJK)/2.148

2.2.3. Local material orientation149

The correct formulation of the proposed constitutive model is based on the definition of the150

planes of material symmetry. As stated in Section 2, the structure tensors are defined with respect151

to the orthogonal eigenvector triad Ei, i = 1, 2, 3. Therefore, the eigenvector base at each material152

point of the numerical model must be provided in the form of a pair of local reference unit vectors153
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Ei. These can be obtained by transforming the global basis Gi such that Ei = QijGj, where154

Qij = Ei · Gj is a proper orthogonal tensor [38]. In the current configuration, the local basis155

follows the rotation of the material point defined by R, where F = RU is the polar decomposition156

of the deformation gradient and U is the right stretch tensor. The current unit vectors ei define157

the so-called corotational basis of the material, with ei = RijEi. The corotational formulation158

is implemented in most commercial FE programs and is useful for practical applications, such as159

when the local reference basis is aligned with the axial, circumferential, and radial directions of a160

curvilinear coordinate system. For problems with certain symmetries, as presented in Section 3,161

the evaluation of the transformation matrix JQK is straightforward. In more complex cases, the162

local material orientation can be derived from the solution of multiple auxiliary Laplace problems163

[46].164

3. Representative examples165

To show the performance of the numerical model, some selected representative examples are166

presented in this section. For this purpose, the numerical model was implemented as a user-defined167

material for the static implicit solver of the commercial FE software Abaqus Standard [35]. All168

examples assume that the material is perfectly incompressible. Mixed displacement-stress element169

formulations, with linear interpolation for displacements and constant pressure, are employed.170

3.1. Homogeneous deformations171

In order to verify the numerical model and to illustrate the physical behavior described by the172

constitutive framework, we have selected three boundary-value problems. In the case of perfect173

incompressibility, these can be solved explicitly, since the deformation gradient is completely pre-174

scribed, and the unknown Lagrange multiplier p in (11) results from the solution of a system of175

equations. In the following, the stress-strain curves obtained from a single FE are compared with176

the analytical solution. We have considered representative material parameters of an electrospun177

polymeric material (Table 1). Due to confidentiality agreements with the manufacturing company178

of the polymeric scaffold, Xeltis BV (Eindhoven, The Netherlands), the material parameters and179

the results shown in this section have been normalised.180

The results shown below apply to deformations in the axial-circumferential plane (E1,E2).181

The full set of deformations is reported in the Supplementary Material available online (Figs. 2-4),182
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in addition to another benchmark example to verify the convergence behavior (Supplementary183

Material, Figs. 5-6).

Material parameter Value
Structure tensor eigenvalue H11 (-) 0.55
Structure tensor eigenvalue H22 (-) 0.27
Coaxial stiffness µ∥ (normalised) 1.00
Coaxial 1st shape parameter γ∥ (-) 1.45
Coaxial 2nd shape parameter δ∥ (-) 0.01
Perpendicular stiffness µ⊥ (normalised) 0.21
Perpendicular 1st shape parameter γ⊥ (-) 2.49
Perpendicular 2nd shape parameter δ⊥ (-) 0.01
Mullins maximum damage parameter ηm0 (-) 0.78
Mullins damage evolution parameter αm (-) 27.26
Maximum residual stress parameter ηr0 (-) 0.19
Residual stress evolution parameter αr (-) 2.38
Viscoelastic 1st relaxation time τ1 (normalised) 1.00
Viscoelastic 1st inverse stiffness µ′

1
−1 (normalised) 1.54

Viscoelastic 2nd relaxation time τ2 (normalised) 15.98
Viscoelastic 2nd inverse stiffness µ′

2
−1 (normalised) 1.31

Viscoelastic 3rd relaxation time τ3 (normalised) 145.01
Viscoelastic 3rd inverse stiffness µ′

3
−1 (normalised) 0.44

Table 1. Summary of material parameters for an electrospun polymer for heart valve scaffolds. Stiffness-
like quantities are normalised with µ∥ and relaxation times with τ1.

184

3.1.1. Biaxial extension185

A biaxial deformation for an incompressible material is prescribed by the following deformation186

gradient187

F = λ1e1 ⊗E1 + λ2e2 ⊗E2 + (λ1λ2)
−1e3 ⊗E3, (13)

where λi are the principal stretches and we have assumed that E1,E2 are the principal material188

directions aligned with the axes of biaxial extension. Using the plane stress condition (12), the189

Cauchy stress tensor is given by190

σ(λ1, λ2) = [I− I⊗ (e3 ⊗ e3)] : σiso(λ1, λ2), (14)

where σiso = FSisoF
T.191

The results are illustrated in Fig. 1(a) for a cyclic loading protocol with two different strain192

rates and equibiaxial tension λ1 = λ2 = λ.193
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3.1.2. Uniaxial extension194
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Figure 1. Comparison between analytical and FE solutions for elementary deformations with incom-
pressible behavior. Two strain rates are considered, 1min-1 and 10min-1. Cauchy stress versus stretch
for (a) equibiaxial extension, (b) uniaxial extension and (c) Cauchy shear stress versus amount of shear
for simple shear deformation. The prescribed loading for the higher rate is shown in the top right.

A uniaxial deformation for an incompressible material is defined by the deformation gradient195

in (13). In addition, we prescribe λ1 = λ for a uniaxial extension along the principal direction E1.196

The Cauchy stress tensor for an anisotropic material is obtained from the solution of197

σ(λ, λ2) = [I− I⊗ (e3 ⊗ e3)] : σiso[λ, λ2(λ)],

=⇒ f : λ→ λ2.
(15)

A uniaxial extension along the principal direction E2 can be computed analogously, with λ2 = λ198

and g : λ→ λ1. The results are illustrated in Fig. 1(b).199
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3.1.3. Simple shear200

A simple shear deformation can be prescribed by the following deformation gradient201

F = e1 ⊗E1 + e2 ⊗E2 + e3 ⊗E3 + γe1 ⊗E2, (16)

where γ is the amount of shear along E1. Using the plane stress condition (12), the Cauchy stress202

tensor is given by203

σ(γ) = [I− I⊗ (e3 ⊗ e3)] : σiso(γ). (17)

The results are illustrated in Fig. 1(c).204

3.2. Parallel plate test validation205

The parallel plate test is an experimental procedure commonly used to characterise the elastic206

and inelastic material response of polymeric materials. In this section, a FE model is developed to207

simulate this experimental procedure applied to an electrospun polymeric material. This example208

was selected as a validation of the proposed theoretical and numerical framework. For this purpose,209

we determined the material parameters of the polymeric material from cyclic uniaxial and biaxial210

extension tests and stress relaxation experiments. We then employ these parameters in the numer-211

ical simulation of the validation experiment. The uncertainty in the experimental measurements212

was taken into account by developing a probabilistic framework based on Bayesian inference [47],213

which will be the subject of a follow-up study. Here we focus on the description of the validation214

experiment and the numerical simulation in which the uncertainty in the experimental data is215

transferred to the numerical model.216

3.2.1. Experimental procedure217

We measured the force-displacement curves of two different sample geometries under cyclic218

compressive loading. The ring-shaped samples were tested in the parallel plate configuration with219

displacement control at constant velocity. Displacements between 0.25 and 0.75, defined as a220

fraction of the initial diameter of each sample d0, were applied. The material was provided by the221

company Xeltis BV (Eindhoven, The Netherlands) and used as received. To prevent unintended222

movements during loading and unloading, the samples were fixed at the top and bottom with a thin223

strip (d ≈ 1mm) of double-sided adhesive tape. The nominal dimensions of the tested samples224

and the detailed experimental loading protocols used during work are summarised in Table 2.225
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Figure 2. (a) Sketch of the geometry of the parallel plate test showing the planes of material symmetry
and a detail of the fibre microstructure (reproduced from [9]). (b) Symmetric FE model with mesh,
boundary conditions, contact interactions and local basis. The section of the two-dimensional model is
highlighted in red.

All mechanical tests were performed with a displacement-controlled triaxial testing device with a226

vertical stroke resolution of 0.04µm [48]. The nominal force of the installed sensor was ±2N with227

an accuracy class of 0.5%. To account for the dispersion in sample lengths (l0 = 10-16mm), the228

recorded forces were normalised to the actual length of each sample for further processing. The229

original device was modified and updated with a 3D-printed sample stage with a side length of230

70mm. The dimensions of the stage were chosen so large that there is no overhang during testing231

and to ensure a homogeneous deformation across the whole sample is guaranteed. All tests were232

performed under dry conditions at room temperature. A total of n = 6 samples were tested for233

each of the two diameters. A scheme of the experimental configuration is shown in Fig. 2(a).234

13



Geometry
Diameter (internal) d0 6mm 23mm

Thickness t0 0.5mm 0.5mm
Length l0 10mm 10mm

Loading
Load steps ∆/d0 0.25-0.50 0.25-0.50-0.75

Loading rate ∆̇ 10mm/min 20mm/min
Number of cycles 5 5

Table 2. Nominal dimensions and loading protocols of the parallel plate tests.

3.2.2. Finite element model235

The FE model is defined by taking advantage of the double symmetry of the problem such236

that only a quarter of the geometry is modelled as a three-dimensional deformable body. A local237

cylindrical reference system is defined by the orthogonal basis (Ei)
3
i=1, where E1,E2 indicate238

the axial and circumferential direction, respectively. The metal plate is defined as an analytical239

surface and is associated with a rigid body reference node. Then, a contact interaction between240

the analytical surface, which acts as the target, and the outer surface of the cylinder, which acts241

as the contact, is defined using the contact pair algorithm of Abaqus Standard FE solver with242

surface-to-surface contact discretization. Contact properties are defined by a frictionless canonical243

pressure-overclosure relationship. The effect of glue between plate and specimen is simulated by244

imposing a non-separation behavior on a strip with a width approximately equal to the width of245

the tape used in the experiments. This specification prevents nodes from loosening after contact246

and thus creating tensile forces during unloading. Boundary conditions are defined to prevent rigid247

body motion and enforce symmetry. The loading is assigned by imposing a vertical displacement248

on the rigid body reference node while constraining all other degrees of freedom and using an249

amplitude curve to define the loading history as in the experimental protocol. A sketch of the250

reference configuration of the FE model is shown in Fig. 2(b). A preliminary mesh convergence251

study is performed by tracking the resultant force and maximum true principal strain at the252

largest diameter. The optimal mesh has a relative characteristic element size of hel/d0 = 0.03 and253

hel/d0 = 0.01 for d0 = 6mm and d0 = 23mm, respectively.254

In order to validate the numerical model with the experiments, uncertainties related to the255

experimental geometries should also be considered. For the diameter of the cylindrical sample256

we have assumed a uniform distribution within the limits d0 ± 1mm. It was assumed that the257

thickness follows a normal distribution with a mean of t0 and a standard deviation of 0.01mm (Ta-258
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ble 2). A total of 800 simulations were run for each diameter, randomly selecting geometric and259

material properties from the specified distributions. In order to reduce the computational time, a260

plane strain assumption in the axial direction was introduced, so that a two-dimensional model is261

obtained in the circumferential-radial plane (E2,E3) (see Fig. 2(b)). A comparison between repre-262

sentative three-dimensional and plane strain solutions is reported in the Supplementary Material263

available online (Fig. 7). Representative results of the simulations with the diameter d0 = 23mm
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Figure 3. Normalised force-displacement curve from the parallel plate test simulation with diameter
23mm (compressive forces are positive). The loading protocol is shown on top. The inset shows contours
of the maximum principal Cauchy stress at the point of maximal compression normalised by µ∥.

264

are shown in Fig. 3, where the material parameters given in Table 1 were used with mean ge-265

ometric values. The normalised reaction force F̄ = F/(µ∥d0) and the prescribed displacement266

were extracted from the reference node of the rigid plate and doubled to account for symmetry.267

Figure 4 shows the comparison with the experimental results, using only the data from the last268

unloading curve of the last loading step. The FE result is represented by the median within a 90%269

confidence interval. The experimental results are visualised as a mean along with the maximum270

and minimum measurements. The corresponding plots for the diameter d0 = 6mm can be found271
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in the Supplementary Material available online (Fig. 9).
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Figure 4. Comparison of parallel plate test simulation with experimental results for a diameter of 23mm
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272

4. Discussion273

Polymeric scaffolds have received increased popularity in tissue engineering because of the274

innovative design paradigm they have introduced. However, the full potential of the in situ tissue275

engineering approach is still hampered by the large number of design variables that can potentially276

affect the final outcome in terms of functionality and safety of the replacement implant. In our277

research we focused on the mechanical behavior of the scaffold material prior to the degradation278

process and native tissue formation.279

The new constitutive model [32] recently introduced by the authors encompasses the full set of280

nonlinear and inelastic effects observed in typical electrospun polymers used for the scaffolds in a281

continuum mechanics framework. As a further and fundamental step, we have proposed an efficient282

numerical implementation of the model for the FE method in this work. The code was developed283

for the commercial software Abaqus and can be adapted to other commercial FE packages, allowing284

a straightforward use in the biomedical industry. In addition, the numerical implementation was285

verified by comparing the FE results with semi-analytical solutions for elementary deformations286

and validated through a large scale bending problem with contact.287

The verification tasks were successfully completed, demonstrating the correctness of the nu-288

merical implementation. Overall, the constitutive behavior observed in response to elementary289

deformations indicates a strongly anisotropic response of the scaffold material in the local axial-290

circumferential plane (Fig. 1). Furthermore, the expected rate-stiffening effect is also correctly291
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captured by the model.292

The validation problem was selected to allow large-scale application of the model. Furthermore,293

additional complexity is introduced by the kinematic nonlinearities arising from contact interac-294

tions. Qualitatively, the simulation can reproduce the large hysteresis in the force-displacement295

curves and the different features observed between the two experimental geometries. The quantita-296

tive comparison is also satisfactory (Fig. 4), although there are some differences worth discussing.297

First, the selected example is very sensitive to geometrical effects. As a rough measure of the298

influence, the reaction force when bending a circular ring scales into the linear elasticity with the299

third power of the thickness [49]. For this reason, we included a quantification of the uncertainties300

on the experimental geometry in the simulation. In addition, the different boundary-value problem301

of the validation with regard to material parameter identification could also explain part of the302

observed discrepancy. Material parameters were identified using elementary uniaxial and biaxial303

deformations with stretches up to fifty percent, but no experiment was specifically designed to304

test the compressive response of the material. On the contrary, the validation problem involves305

extensive compression, very large displacements, but only moderate deformations (Fig. 8 in the306

Supplementary Material available online). These observations underscore the importance of an ap-307

propriate selection of experimental protocols, a constitutive modelling framework and a validation308

problem in the development of biomedical solutions. Despite the limitations, the proposed consti-309

tutive model and its numerical implementation show great potential for more complex simulations310

in the future.311

Appendix A. Consistent Eulerian tangent modulus312

The method summarised in Algorithm 2 evaluates the consistent Eulerian tangent modulus313

for integration schemes developed in a corotational formulation based on the Jaumann rate of314

the Kirchoff stress [50]. The elasticity tensor in (10) is here computed in matrix form using the315

Voigt notation for fourth-order tensors with minor symmetries, although the final matrix for this316

particular constitutive model is non-symmetric in general.317
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Algorithm 2 Computation of the Eulerian tangent modulus1

1: Given ∆t(n),F(n),Ψmax
iso

(n−1),S
r,∞(n−1),H(n−1)

l , ϵ
2: Evaluate σ with Algorithm 1 for F(n)

3: Define Voigt’s lookup table:
LUT← ((1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3))

4: Form local Eulerian base ei, i = 1, 2, 3
5: for B = 1 to 6 do
6: k, m← LUT[B]
7: ek, em ← base[k], base[m]

8: ∆F← ϵ

2

(
ek ⊗ emF

(n) + em ⊗ ekF
(n)

)
9: Compute F̃(n) ← F(n) +∆F
10: Evaluate σ̃ with Algorithm 1 for F̃(n)

11: for A = 1 to 6 do
12: i, j ← LUT[A]

13: [c]A,B ←
1

ϵ
(σ̃ij − σij)

14: end for
15: end for
16: return [c]
1 History variables are not updated during the perturbation step.
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