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Non-linear axisymmetric shape oscillations of an inviscid liquid drop in a vacuum are
investigated theoretically for their relevance for transport processes across the drop
surface. The weakly non-linear approach is adopted as the theoretical method. For the
two-lobed mode of deformation m = 2, known non-linear effects are an asymmetry of
the times the drop spends in the oblate and prolate deformed states, and an oscillation
frequency smaller than the linear one found by Rayleigh. The present analysis shows
that, for m = 2, the frequency decrease with increasing surface deformation of the
droplet is a third-order effect. For higher deformation modes, the frequency decrease
shows in the second-order approximation already. The analysis is carried out for modes
of initial deformation up to m = 4, but not limited to that. The non-linearity is due
to two different contributions: the coupling of different modes of deformation, and the
forces from capillary pressure acting on different drop cross-sectional areas in different
phases of the oscillation. For the two-lobed mode of deformation, at an aspect ratio of 1.5,
the two effects reduce the oscillation frequency by 5 %. The present analysis represents
the quasi-periodicity of non-linear drop oscillations found by other authors in numerical
simulations. The results show that drops in non-linear oscillations at strong deformation
may never reach the spherical shape, thus exhibiting a resultant increase of their surface
area.
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1. Introduction

Shape oscillations of drops have been the subject of scientific investigations for over 140
years, for fundamental interest and for their relevance for transport processes across the
drop surface. Departure of the drop from the spherical equilibrium state makes the drop
surface area increase. Furthermore, the motion of the surface and the bulk of the drop
induces gradients of velocity, temperature and species mass concentration, influencing the
transport of momentum, heat and mass. In the appendix to his paper on the capillary
phenomena of jets, Rayleigh (1879) presented a linear analysis of shape oscillations of
an inviscid drop in a vacuum around a spherical equilibrium state. One result is the
equation for the angular frequency of oscillation of the drop deformed according to a
mode m assuming natural values m = 2, 3, 4, . . . which count the number of lobes on
the drop surface. Lamb generalised Rayleigh’s result by accounting for the drop viscosity
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and the density of the ambient medium (Lamb 1881, 1932). He predicted the threshold
Ohnesorge number Oh = µ/(σaρ)1/2 of the drop for the onset of aperiodic motion.

Chandrasekhar (1959) presented a normal-mode analysis of small oscillations of a
viscous self-gravitating globe in a vacuum. In this work, the velocity field and stress
tensor in the oscillating globe were determined as solutions of the linearised Navier-
Stokes equations with account for gravity. The characteristic equation of the globe
was developed, which determines the complex angular oscillation frequency. Later, Reid
(1960) showed that the results of such an analysis are the same when the restoring forces
producing the tendency to the spherical form are due to surface tension instead of self-
gravitation. A further generalisation of the analysis of linear drop shape oscillations is
due to Miller & Scriven (1968), who accounted for both the viscous and the inertial
influences from an ambient medium hosting a viscous oscillating drop. Analysing drop
shape oscillations as the solution of an initial-value problem, Prosperetti (1980a) showed
that analyses of linear drop oscillations by the normal-mode approach may miss the fact
that, in a range of Ohnesorge numbers, oscillations starting in an aperiodic manner may
turn into periodic with ongoing time. The most important results, that the papers cited
here highlight, are: the angular frequency and damping rate of the oscillations, as well
as the time-dependent shapes of the oscillating drops.

First computational investigations of non-linear drop shape oscillations with large
amplitudes are due to Foote (1973) and Alonso (1974). Both Foote and Alonso used the
marker-and-cell finite-difference technique for numerically simulating the time-dependent
free-surface flows with weak influence from the liquid viscosity. Foote (1973) predicted
the oscillation frequency of drops which were initially deformed and at rest. The initial
drop shapes were either oblate spheriods or given by a Legendre polynomial of a certain
degree m. It was shown that the oscillation frequency decreased with increasing aspect
ratio of the slightly viscous drop. Alonso (1974) simulated oscillations of atomic nuclei
and drops initially at rest and prolate deformed according to a Legendre polynomial.
Initially large deformations and electrical charges of the oscillating drops were addressed.
Results consist in surface area, kinetic and Coulomb energies as functions of time during
the oscillations. Both fission in large-amplitude oscillations and merging after collisions
are addressed. First experimental studies of large-amplitude shape oscillations of drops
in an immiscible host liquid and of levitated free liquid drops in air are due to Trinh
& Wang (1982), who showed the frequency decrease with increasing drop deformation
and an asymmetry of the times spent in the prolate and oblate shapes of the two-lobed
oscillation mode.

Motivated by these numerical and experimental studies, Tsamopoulos & Brown (1983)
investigated non-linear oscillations of inviscid drops and bubbles for the deformation
modes m = 2, 3 and 4 theoretically by means of weakly non-linear analysis, using
the Poincaré-Lindstedt expansion of the drop shape, the velocity potential and the
oscillation frequency. Similar to Foote (1973) and Alonso (1974), the drop shapes found
deviated from the linear results, and angular frequencies decreased with increasing
oscillation amplitude (for a maximum prolate aspect ratio of the two-lobed shape of
1.4 by approx. 5%). With increasing oscillation amplitude, the motion also gradually
loses the sinusoidal dependency on time, giving rise to an asymmetry of times during one
oscillation period spent in the prolate and the oblate states of the two-lobed oscillation
mode. The resonant oscillations theoretically investigated by Tsamopoulos & Brown
(1984) for inviscid drops led to predictions of charged-drop resonance for different modes
of drop deformation. The internal resonance between different modes of deformation
in inviscid three-dimensional non-linear oscillations was the topic of Natarajan & Brown
(1987). Lundgren & Mansour (1988) developed a numerical boundary-integral method to
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investigate mode coupling in large-amplitude oscillations of large axially symmetric liquid
drops including the effects of small viscosity. This work gave insight into instabilities
due to large drop surface deformations and resonant energy transfer to higher-order
frequencies. Both experimentally and theoretically, Becker et al. (1991) found that non-
linear motion in oscillating drops arises when the amplitude of the fundamental mode
exceeds approximately 10% of the undeformed drop radius. They proposed an inviscid
theoretical model applicable for determining the surface tension from large-amplitude
oscillations of low-viscosity droplets. Numerical investigations of medium- and large-
amplitude oscillations of inviscid and viscous drops are due to Patzek et al. (1991) and
Basaran (1992), respectively. The former work detected mode coupling by a Fourier
spectral analysis of the deformed drop surface and related the frequency decrease to
higher harmonics. The latter work by Basaran (1992) showed that mode coupling in
drops of finite viscosity was far more intense than with only an infinitesimal amount of
viscosity. Both works showed an increase in the difference of times spent in the prolate and
oblate states and a frequency decrease with increasing drop deformation, in agreement
with earlier results from the literature. The drop spends more time in the prolate than in
the oblate state. Furthermore, it was found that the initial state of the drop (deformed
and at rest, or spherical and disturbed by some pressure impulse) had an influence on the
mode coupling and time asymmetry found in the oscillatory motion, while the frequency
decrease was widely unaffected by the initial conditions. Viscous drops spend less time
in the prolate form than inviscid drops when released from a steady acoustic drive,
but more time in the prolate form than inviscid drops when released from an initial
static deformed state (Patzek et al. 1991). Meradji et al. (2001) demonstrated that the
results of Lundgren & Mansour (1988), Patzek et al. (1991) and Basaran (1992) may
be reproduced with the CFD software Fluid Dynamics Application Package (FlDAP).
Experimental data for non-linear shape oscillations of two different low-viscosity drops in
different states of motion is due to Wang et al. (1996). The experiments were performed
in the microgravity environment of a space-shuttle flight. The frequency shift and time
asymmetry of the oscillations of the one (non-rotating) drop investigated agreed with
the theory by Tsamopoulos & Brown (1983). More recently, Smith (2010) developed
modulation equations for strongly non-linear, large-amplitude oscillations of viscous
drops. The occurrence of non-linear phenomena for amplitudes exceeding 10% of the
undeformed drop radius and the influence of viscosity on mode coupling were confirmed.
As a new result, abrupt changes in acceleration of the inviscid bulk as compared to
small-amplitude deformations occur for amplitudes exceeding 20% of the drop radius.
The method applied allows the oscillation frequency to vary with time and reveals a non-
sinusoidal profile of the oscillations with time. The frequency decrease found for m = 2
agrees very well with Tsamopoulos & Brown (1983).

The present work is motivated by the interest in and the need for a detailed analysis of
the time behaviour of non-linear drop shape oscillations, with account for the excitation
of modes higher than the mode of initial deformation, and for the quasi-periodic motion
resulting from mode coupling. The method of weakly non-linear analysis is applied to
investigate non-linear axisymmetric shape oscillations of an inviscid liquid drop in a
vacuum. Modes of initial deformation up to m = 4 are addressed in the study. As
in Tsamopoulos & Brown (1983), our analysis is based on series expansions of the
flow field variables and the drop shape with respect to a deformation parameter. As
a substantial difference from Tsamopoulos & Brown (1983), the present work reveals
the quasi-periodicity of the drop shape oscillations. Oscillation frequencies arise from
the general solutions of homogeneous differential equations and from the particular
solutions of their inhomogeneous counterparts. The latter introduce frequencies from
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products of solutions of the respective lower-order approximations. The non-linear effects
of both an asymmetry of the times spent in different states of drop deformation and an
oscillation frequency decrease with increasing deformation are studied. The results apply
to the modelling of transport processes across the oscillating drop surface, such as the
quantification of the drag coefficient, as well as the rates of heat and mass transfer, where
the time behaviour of the oscillatory drop motion, as presently developed, is needed.
Applications in production techniques, like containerless materials processing based on
single drops and in-air microfluidics, have benefit from the results.

In the following section, the problem is formulated, and the equations of motion with
their boundary and initial conditions are derived up to third order of approximation. In
Sec. 3, the solutions of the governing equations are presented. Section 4 presents and
discusses the results of the analysis. Conclusions are summarized in Sec. 5.

2. Formulation of the problem

We study the weakly non-linear shape oscillations of an inviscid liquid drop as sketched
in figure 1. The drop is assumed to be axisymmetric with respect to the azimuthal angular
coordinate ϕ of the spherical coordinate system. We treat the liquid as incompressible,
and the velocity field is irrotational. The dynamic influence from the ambient medium
is neglected. Body forces are not accounted for, since the Froude number is large. The
problem is formulated in spherical coordinates to account for its geometry.

The equations of change are non-dimensionalized with the undeformed drop radius a,
the capillary time scale (ρa3/σ)1/2 and the capillary pressure σ/a. Here, ρ is the liquid
density and σ the surface tension. The drop surface is described by the radial position
rs(θ, t) = 1 + η(θ, t), with the non-dimensional deformation η measured with respect to
the unperturbed sphere.

For the problem at hand, the equation of continuity and the two components of the
momentum equation in the radial (r) and polar angular (θ) directions read

1

r2
∂

∂r

(
r2ur

)
+

1

r sin θ

∂

∂θ
(uθ sin θ) = 0 (2.1)

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2θ

r
= −∂p

∂r
(2.2)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

= −1

r

∂p

∂θ
(2.3)

This set of equations is solved subject to boundary and initial conditions. The kinematic
boundary condition states that the material rate of deformation of the drop surface equals
the radial velocity component at the place of the deformed surface, i.e.,

ur =
Dη

Dt
=
∂η

∂t
+
uθ
r

∂η

∂θ
at r = 1 + η (2.4)

The dynamic boundary condition for the inviscid drop states that the stress normal to
the drop surface differs across the interface by the contribution of surface tension. This
boundary condition reads

−p+
(
~∇ · ~n

)
= 0 at r = 1 + η (2.5)
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Figure 1. Sketch of the geometry of a liquid drop under deformation at mode 2.

We obtain the divergence of the normal unit vector as

(
~∇ · ~n

)
=

1

r

2 + 3
(

1
r
∂η
∂θ

)2
[
1 +

(
1
r
∂η
∂θ

)2]3/2− 1

r2 sin θ

∂

∂θ

∂η
∂θ

(
1 +

(
1

r

∂η

∂θ

)2
)− 1

2

sin θ

 at r = 1+η

(2.6)
For analysing these equations in a weakly non-linear form, the two velocity components

and the pressure in the flow field, as well as the deformed interface shape, are expanded
in power series of the small deformation parameter η0, which plays the role of an initial
deformation amplitude. We therefore formulate the expansions of the flow field properties,
e.g. ur, p and η as

ur = ur1η0 + ur2η
2
0 + ur3η

3
0 + . . . (2.7)

p = p1η0 + p2η
2
0 + p3η

3
0 + . . . (2.8)

η = η1η0 + η2η
2
0 + η3η

3
0 + . . . (2.9)

For these series expansions to converge, the deformation parameter η0 must be small.
One important difference between the linear and the weakly non-linear analysis is that,
in the latter, the boundary conditions are satisfied on the deformed drop surface, not on
the unperturbed spherical shape. To achieve this, whilst allowing the functions in the
boundary conditions to be evaluated at r = 1, the values of the functions on the deformed
shape are represented by Taylor expansions, such as, e.g., for ur and p,

ur|r=1+η = ur|r=1 +
∂ur
∂r

∣∣∣∣
r=1

η + . . . (2.10)

p|r=1+η = p|r=1 +
∂p

∂r

∣∣∣∣
r=1

η + . . . (2.11)

In integrations with respect to time for determining contributions to the second- and
third-order solutions, secular terms appear, which are unphysical. To suppress those
terms, the method of strained time is applied (Yuen 1968). The strained time τ relates
to the physical time t as per

τ = νt (2.12)

The coefficient ν is expanded with respect to the amplitude parameter η0 as per

ν = ν0 + ν1η0 + ν2η
2
0 + . . . (2.13)

The new time coordinate contributes to a frequency decrease in the oscillatory motion of
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the drop, as will be seen later. For the two-lobed mode of motion, the frequency decrease
is visible only when taking the approximation to the third order. Substituting these
approaches into the governing equations (2.1) - (2.3) and into the boundary conditions
(2.4) and (2.5), and representing the flow properties and their derivatives as given in (2.7)
through (2.11), we obtain sets of first-, second- and third-order equations of motion, with
the boundary conditions, by collecting all the terms with the deformation parameter η0
to the first, second and third powers, respectively.

The first initial condition states that the initial deformation of the drop surface is
governed by a Legendre polynomial of degree m with the amplitude η0. Calculation of
the volume of this deformed drop leads to the expression

rs(θ, 0) = 1 + η(θ, 0) (2.14)

=

(
1 +

3η20
(2m+ 1)

+
1

2
η30

∫ 1

−1
Pm(cos θ)

3
d(cos θ)

)−1/3
+ η0Pm(cos θ)

= 1 + η0Pm(cos θ)− η20
1

2m+ 1
− η30

6

∫ 1

−1
Pm(cos θ)

3
d(cos θ)∓ . . .

for the initial non-dimensional drop shape. The second initial condition states that the
drop surface initially is at rest.

2.1. First-order equations

To obtain the first-order equations with their boundary and initial conditions, the
above series expansions are introduced into the respective equations, and all the terms
with the parameter η0 to the first power are collected. The first-order continuity and
momentum equations read

1

r2
∂

∂r

(
r2ur1

)
+

1

r sin θ

∂

∂θ
(uθ1 sin θ) = 0 (2.15)

ν0
∂ur1
∂τ

= −∂p1
∂r

(2.16)

ν0
∂uθ1
∂τ

= −1

r

∂p1
∂θ

(2.17)

For the kinematic and normal-stress boundary conditions of first order at r = 1 we obtain

ur1 = ν0
∂η1
∂τ

(2.18)

−p1 −
(

2η1 +
∂η1
∂θ

cot θ +
∂2η1
∂θ2

)
= 0 , (2.19)

respectively. Furthermore, the initial conditions of first order are

η1(θ, 0) = Pm(cos θ) and ν0
∂η1
∂τ

(θ, 0) = 0 (2.20)

The first initial condition determines the initial shape of the deformed drop, governed by
a Legendre polynomial of order m.

2.2. Second-order equations

The second-order equations with their boundary and initial conditions are obtained
as all the terms from the expansion with the parameter η0 to the second power. The
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second-order continuity and momentum equations read

1

r2
∂

∂r

(
r2ur2

)
+

1

r sin θ

∂

∂θ
(uθ2 sin θ) = 0 (2.21)

ν0
∂ur2
∂τ

+
∂p2
∂r

=
u2θ1
r
− ν1

∂ur1
∂τ
− ur1

∂ur1
∂r
− uθ1

r

∂ur1
∂θ

(2.22)

ν0
∂uθ2
∂τ

+
1

r

∂p2
∂θ

= −ν1
∂uθ1
∂τ
− ur1

∂uθ1
∂r
− uθ1

r

∂uθ1
∂θ
− ur1uθ1

r
(2.23)

The kinematic and zero normal-stress boundary conditions of second order to be satisfied
at r = 1 are

ur2 − ν0
∂η2
∂τ

= ν1
∂η1
∂τ

+
uθ1
r

∂η1
∂θ
− η1

∂ur1
∂r

(2.24)

−p2 −
(

2η2 +
∂η2
∂θ

cot θ +
∂2η2
∂θ2

)
= η1

∂p1
∂r
− 2η21 − 2η1

∂η1
∂θ

cot θ − 2η1
∂2η1
∂θ2

(2.25)

The initial conditions of second order are

η2(θ, 0) = − 1

2m+ 1
and ν0

∂η2
∂τ

(θ, 0) + ν1
∂η1
∂τ

(θ, 0) = 0 (2.26)

The first initial condition ensures volume conservation for the deformed drop to second
order. Solving the sets of first and second-order equations together with their boundary
and initial conditions will reveal the non-linear effect of unequal time spent in the prolate
and oblate shapes as a function of the initial deformation amplitude. These solutions
reveal the frequency decrease only for initial deformation modes m > 2. To find the
frequency decrease for the two-lobed mode m = 2, the theory must be taken to third
order, as will be shown below.

2.3. Third-order equations

The third-order continuity and momentum equations read

1

r2
∂

∂r

(
r2ur3

)
+

1

r sin θ

∂

∂θ
(uθ3 sin θ) = 0 (2.27)

ν0
∂ur3
∂τ

+
∂p3
∂r

= −ν1
∂ur2
∂τ
− ν2

∂ur1
∂τ

+ 2
uθ1uθ2
r

− ur1
∂ur2
∂r
− ur2

∂ur1
∂r
− uθ1

r

∂ur2
∂θ
− uθ2

r

∂ur1
∂θ

(2.28)

ν0
∂uθ3
∂τ

+
1

r

∂p3
∂θ

= −ν1
∂uθ2
∂τ
− ν2

∂uθ1
∂τ
− ur1uθ2

r
− ur2uθ1

r

− ur1
∂uθ2
∂r
− ur2

∂uθ1
∂r
− uθ1

r

∂uθ2
∂θ
− uθ2

r

∂uθ1
∂θ

(2.29)

The third-order kinematic and zero normal-stress boundary conditions, which must be
satisfied at r = 1, are

ur3 − ν0
∂η3
∂τ

= ν1
∂η2
∂τ

+ ν2
∂η1
∂τ

+
uθ1
r

∂η2
∂θ

+
uθ2
r

∂η1
∂θ

+
∂

∂r

(uθ1
r

) ∂η1
∂θ

η1

− ∂ur2
∂r

η1 −
∂ur1
∂r

η2 −
1

2

∂2ur1
∂r2

η21 (2.30)
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−p3 −
(

2η3 +
∂η3
∂θ

cot θ +
∂2η3
∂θ2

)
=
∂p1
∂r

η2 +
∂p2
∂r

η1 +
1

2

∂2p1
∂r2

η21

− η31 − 2η1

(
η2 +

∂η2
∂θ

cot θ +
∂2η2
∂θ2

)
− 2η2

(
η1 +

∂η1
∂θ

cot θ +
∂2η1
∂θ2

)
− 1

2

(
∂η1
∂θ

)2(
∂η1
∂θ

cot θ + 3
∂2η1
∂θ2

)
+ 3η21

(
η1 +

∂η1
∂θ

cot θ +
∂2η1
∂θ2

)
, (2.31)

respectively. Furthermore, the third-order initial conditions are

η3(θ, 0) = −1

3

(
m m m
0 0 0

)2

and

(
ν0
∂η3
∂τ

+ ν1
∂η2
∂τ

+ ν2
∂η1
∂τ

)
(θ, 0) = 0 (2.32)

where the first initial condition is described in terms of the 3-j symbols (see the
supplementary material for the present paper). Solving the sets of equations up to third
order together with their boundary and initial conditions will reveal the weakly non-
linear dependency of the angular oscillation frequency on the amplitude of the initial
drop deformation. This effect becomes visible due to the strained time introduced for
suppressing secular terms in solutions.

3. Solutions of the governing equations

3.1. First-order solutions

The first-order equations describe the linear problem. The well-known solutions in
Rayleigh (1879) and Lamb (1881) for the inviscid drop in a vacuum are expected to be
recovered. Since we investigate two-dimensional flow fields, the Stokesian stream function
is applied for determining the first-order velocity field. We set the coefficient ν0 in the
strained time to 1. The stream function ψ(r, θ, τ) is defined by its relations to the two
velocity components ur1 and uθ1 as (Bird et al. 1962)

ur1 = − 1

r2 sin θ

∂ψ

∂θ
and uθ1 =

1

r sin θ

∂ψ

∂r
(3.1)

These first-order velocity components satisfy the continuity equation identically.
The first-order drop surface deformation is governed by the Legendre polynomial of

the initial deformation. The solution is therefore sought in the form

η1 = η̂1Pm(cos θ)e−αmτ (3.2)

with the first-order initial surface amplitude η̂1 and the first-order angular frequency αm
for the deformation mode m.

Taking the curl of the vectorial first-order momentum equation with the components
(2.16) and (2.17), the partial differential equation

∂2ψ

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
= 0 (3.3)

for the stream function is obtained. Its solution, which is regular at r = 0, reads Brenn
(2017)

ψ = C1mr
m+1 sin2 θ P ′m(cos θ)e−αmτ (3.4)

where the prime denotes the derivative of the Legendre polynomial Pm with respect to
its argument. The radial and angular components of the first-order velocity vector follow
as

ur1 = −C1mr
m−1m(m+ 1)Pm(cos θ)e−αmτ (3.5)
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and

uθ1 = −C1mr
m−1(m+ 1)P 1

m(cos θ)e−αmτ , (3.6)

respectively. The function P 1
m is a Legendre function of degree m and order 1. The

integration constant C1m is determined by the first-order kinematic boundary condition
as

C1m =
αmη̂1

m(m+ 1)
(3.7)

The first-order pressure field is obtained by integration of one component of the momen-
tum equation as

p1 = −C1mαm(m+ 1)rmPm(cos θ)e−αmτ . (3.8)

The characteristic equation of the drop, which determines the complex angular frequency
αm, follows from the first-order zero normal stress boundary condition (2.19), as obtained
in Rayleigh (1879). Its complex conjugate solutions are

α(p)
m = i

√
m(m− 1)(m+ 2) =: i αm,0 α(n)

m = −i
√
m(m− 1)(m+ 2) =: −i αm,0

(3.9)
where the superscripts (p) and (n) represent the positive and negative solutions, respec-
tively. The existence of pairs of solutions of the characteristic equation requires repre-
sentation in the first-order solutions. We therefore formulate the first-order deformation
of the drop surface as

η1(θ, τ) =
(
η̂
(p)
1 e−α

(p)
m τ + η̂

(n)
1 e−α

(n)
m τ
)
Pm(cos θ) (3.10)

The first-order initial conditions (2.20) require that initially the drop surface shape is
governed by the function Pm(cos θ), and that the surface is at rest. These conditions
reveal the deformation amplitudes

η̂
(p)
1 = − α

(n)
m

α
(p)
m − α(n)

m

=
1

2
and η̂

(n)
1 =

α
(p)
m

α
(p)
m − α(n)

m

=
1

2
(3.11)

The first-order radial and polar velocity components are represented as

ur1(r, θ, τ) = −
(
C

(p)
1me

−α(p)
m τ + C

(n)
1me

−α(n)
m τ
)
rm−1m(m+ 1)Pm(cos θ) (3.12)

and

uθ1(r, θ, τ) = −
(
C

(p)
1me

−α(p)
m τ + C

(n)
1me

−α(n)
m τ
)
rm−1(m+ 1)P 1

m(cos θ) , (3.13)

respectively. The first-order pressure field is

p1(r, θ, τ) = −
(
C

(p)
1mα

(p)
m e−α

(p)
m τ + C

(n)
1mα

(n)
m e−α

(n)
m τ
)

(m+ 1)rmPm(cos θ) . (3.14)

With account for the complex conjugate frequencies in (3.9), the first-order drop surface
shape, velocity components and pressure field simplify to the forms

ur1(r, θ, τ) = −αm,0rm−1Pm(cos θ) sin (αm,0τ) (3.15)

uθ1(r, θ, τ) = −αm,0
m

rm−1P 1
m(cos θ) sin (αm,0τ) (3.16)

p1(r, θ, τ) = (m− 1)(m+ 2)rmPm(cos θ) cos (αm,0τ) (3.17)

η1(θ, τ) = Pm(cos θ) cos (αm,0τ) (3.18)
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3.2. Second-order solutions

We start developing the second-order solutions from pressure. The general solution for
the second-order pressure is sought as a sum

p2(r, θ, τ) = p21(r, θ, τ) + p22(r, θ, τ) (3.19)

of two contributions, where subscript ”21” indicates the solution of the system of second-
order equations including the products of first-order terms, and subscript ”22” the
solutions of the homogeneous system. In the second-order approximation, the coefficient
ν1 in the strained time is unknown and needs to be determined.

The solutions with subscripts ”21” are first determined. It is convenient to form the
divergence of the vectorial second-order momentum equation with the components (2.22)
and (2.23) to eliminate the second-order velocity and the terms exhibiting ν1 with use of
the continuity equation (2.21). This yields the differential equation for the second-order
pressure p21

1

r2
∂

∂r

(
r2
∂p21
∂r

)
+

1

r sin θ

∂

∂θ

(
sin θ

r

∂p21
∂θ

)
= (3.20)

− 1

r2
∂

∂r

[
r2
(
ur1

∂ur1
∂r

+
uθ1
r

∂ur1
∂θ
− u2θ1

r

)]
− 1

r sin θ

∂

∂θ

[(
ur1

∂uθ1
∂r

+
uθ1
r

∂uθ1
∂θ

+
ur1uθ1
r

)
sin θ

]
which we re-write, using the Lamé identity and accounting for the curl-free first-order
velocity field, into the form

∆
[
p21 + ~v21/2

]
= 0 , (3.21)

which states that the modified pressure P21 = p21 + ~v21/2 is potential. The squared
first-order velocity vector determines the time dependency of pressure p21.

The solution of the Laplace equation for the modified pressure P21, formulated in the
contribution p21 to the second-order pressure, accounting for all the time dependencies
arising from the square of the first-order velocity vector may be written as

p21 (r, θ, τ) = −
L∑
l=0

(
C

(p)
21le

−2α(p)
m τ + C

(n)
21l e

−2α(n)
m τ + C

(pn)
21l e

−(α(p)
m +α(n)

m )τ

)
rlPl(cos θ)

− 1

2

(
u2r1 + u2θ1

)
(3.22)

The coefficients C
(pn)
21l relating to time-independent terms in p21 are set to zero for all l.

This treatment of these coefficients is justified after the calculation of the radial velocity in
the next step. All the summations arising in the solutions henceforth extend to an upper
summation index symbolised by an upper-case letter. Re-writing the radial momentum
equation (2.22) with the modified pressure for the contribution ”21”, and knowing that
the first-order velocity field is irrotational, one obtains

∂ur21
∂τ

= −∂P21

∂r
− ν1

∂ur1
∂τ

(3.23)

From this equation, the radial velocity component ur21 is calculated by integration with
respect to time, revealing

ur21 (r, θ, τ) = −
L∑
l=0

(
C

(p)
21l

2α
(p)
m

e−2α
(p)
m τ +

C
(n)
21l

2α
(n)
m

e−2α
(n)
m τ

)
lrl−1Pl(cos θ)− ν1ur1(3.24)
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Non-zero coefficients C
(pn)
21l in the pressure p21 would have produced linearly time-

dependent secular terms, which would grow in time. Setting the coefficients C
(pn)
21l for

all l to zero in (3.22) prevents this. The velocity component uθ21 is then obtained from
the continuity equation and reads

uθ21 (r, θ, τ) = −
L∑
l=0

(
C

(p)
21l

2α
(p)
m

e−2α
(p)
m τ +

C
(n)
21l

2α
(n)
m

e−2α
(n)
m τ

)
rl−1P 1

l (cos θ)− ν1uθ1(3.25)

Following the work by Tsamopoulos & Brown (1983, 1984), the surface deformation η21
is written in a general form as

η21 (θ, τ) =

L∑
l=0

δ2l(τ)Pl(cos θ) , (3.26)

where the time dependency is governed by the unknown functions δ2l(τ), and the
deformed shape by all possible Legendre polynomials. The reason for the latter is that,
in the zero normal-stress boundary condition, pressure and surface deformation are
coupled. The functions δ2l(τ) are determined for every l using the boundary conditions
(2.24) and (2.25). For doing this, ur21 and η21 from (3.24) and (3.26), respectively, are
substituted into the kinematic boundary condition (2.24). Its derivative with respect to
the strained time τ is taken. We substitute the pressure p21 and η21, from (3.22) and
(3.26), respectively, into the zero normal-stress boundary condition (2.25). Since we deal
with the boundary conditions, r = 1 in both equations. We proceed by multiplying the
two equations with a Legendre polynomial Pj and integrating the results between the
south and north poles of the drop. Multiplying the equation resulting from the zero-
normal stress boundary condition by the natural number j and subtracting the two
resulting equations eliminates the coefficients C21j for all time dependencies, yielding
the ordinary differential equation

δ̈2j(τ) + j(j − 1)(j + 2)δ2j(τ) =

[
−ν1

(
α(p)
m

2
e−α

(p)
m τ + α(n)

m

2
e−α

(n)
m τ

)∫ 1

−1
PmPjdx

−
∫ 1

−1

∂

∂τ

(
uθ1
r

∂η1
∂θ
− η1

∂ur1
∂r

) ∣∣∣∣∣
r=1

Pjdx

+

∫ 1

−1

(
Rz21 −

1

2

(
u2r1 + u2θ1

)) ∣∣∣∣∣
r=1

jPjdx

]
2j + 1

2
, (3.27)

for δ2j(τ) (Tsamopoulos & Brown 1983, 1984), where Rz21 is the right-hand side of the
zero normal-stress boundary condition (2.25). For the differential equation (3.27), we are
interested in the particular solutions only, because the homogeneous solutions will be
accounted for by the second-order contribution ”22”. The particular solutions need to be
found for every j between zero and L. Introducing back all particular solutions δ2j(τ) of
(3.27) into (3.26), we can write the final form as

η21 (θ, τ) =

L∑
j=0

(
H

(p)
21je

−2α(p)
m τ +H

(n)
21je

−2α(n)
m τ +H

(pn)
21j e

−(α(p)
m +α(n)

m )τ
)
Pj(cos θ)

+
ν1
4

[(
1 + 2α(p)

m τ
)
e−α

(p)
m τ +

(
1 + 2α(n)

m τ
)
e−α

(n)
m τ
]
Pm , (3.28)

where the coefficients H
(p)
21j , H

(n)
21j and H

(pn)
21j are known. The second part of the solution
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(3.28), with ν1 in front, exhibits secular terms growing in time. Due to this unphysical
behaviour, these terms must be suppressed by setting ν1 = 0. With the surface defor-
mation η21 known, the coefficients C21l in ur21, uθ21 and p21 are readily determined,
for every time dependency and for all l between zero and L, using one of the boundary
conditions (2.24) or (2.25). The details of the calculation of C21l are presented in the
supplementary material for the present paper. Now, we can write the contributions ”21”
to the second-order solutions in the form

ur21 (r, θ, τ) =

L∑
l=0

C21l

αm,0
sin (2αm,0τ) lrl−1Pl(cos θ) (3.29)

uθ21 (r, θ, τ) =

L∑
l=0

C21l

αm,0
sin (2αm,0τ) rl−1P 1

l (cos θ) (3.30)

p21 (r, θ, τ) = −2

L∑
l=0

C21l cos (2αm,0τ) rlPl(cos θ)− 1

2

(
u2r1 + u2θ1

)
(3.31)

η21 (θ, τ) =

L∑
l=0

(
2H21l cos (2αm,0τ) +H

(pn)
21l

)
Pl(cos θ) (3.32)

The second contributions to the second-order solutions, with subscript ”22”, are
determined from the homogeneous forms of equations (2.21)-(2.23). This set of equations
has the same structure as at first order, where the complex angular frequency αm is
replaced by α2k (with the number ”2” in the subscript indicating the second-order
solution, and k a deformation mode number) and the deformation amplitude of the drop
surface η̂1 by η̂22k. Both replaced variables appear under a sum with the summation
index k, implying that all possible deformation modes k affect the results.

The contributions ”22” to the second-order velocity, pressure and deformation are
obtained as linear combinations of eigen-solutions of the underlying differential equations
with the summation index k. Their forms are similar to the first-order solutions and read

ur22 (r, θ, τ) = −
K∑
k=0

(
C

(p)
22ke

−α(p)
2k τ + C

(n)
22ke

−α(n)
2k τ
)

(3.33)

× k(k + 1)rk−1Pk (cos θ)

uθ22 (r, θ, τ) = −
K∑
k=0

(
C

(p)
22ke

−α(p)
2k τ + C

(n)
22ke

−α(n)
2k τ
)

(3.34)

× (k + 1)rk−1P 1
k (cos θ)

p22 (r, θ, τ) = −
K∑
k=0

(
α
(p)
2k C

(p)
22ke

−α(p)
2k τ + α

(n)
2k C

(n)
22ke

−α(n)
2k τ
)

(3.35)

× (k + 1)rkPk (cos θ)

η22 (θ, τ) =

K∑
k=0

(
η̂
(p)
22ke

−α(p)
2k τ + η̂

(n)
22ke

−α(n)
2k τ
)
Pk(cos θ) (3.36)

The two new complex conjugate angular frequencies α2k, obtained as solutions of the
homogeneous zero normal-stress boundary condition, for all summation indices k take
the forms obtained in Rayleigh (1879)

α
(p)
2k = i

√
k(k − 1)(k + 2) =: i α2k,0 α

(n)
2k = −i

√
k(k − 1)(k + 2) =: −i α2k,0 (3.37)
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The calculations of the coefficients C22k and of the amplitudes η̂22k are detailed in the
supplementary material for the present paper.

The contributions ”22” to the second-order solutions are obtained in the simplified
forms

ur22 (r, θ, τ) = −2

K∑
k=0

η̂22kα2k,0r
k−1Pk (cos θ) sin (α2k,0τ) (3.38)

uθ22 (r, θ, τ) = −2

K∑
k=1

η̂22kα2k,0

k
rk−1P 1

k (cos θ) sin (α2k,0τ) (3.39)

p22 (r, θ, τ) = 2

K∑
k=0

η̂22k(k − 1)(k + 2)rkPk (cos θ) cos (α2k,0τ) (3.40)

η22 (θ, τ) = 2

K∑
k=0

η̂22kPk(cos θ) cos (α2k,0τ) (3.41)

3.3. Third-order solutions

We start developing the third-order solutions also from pressure. The general solution
for the third-order pressure is sought as a sum

p3 (r, θ, τ) = p31 (r, θ, τ) + p32 (r, θ, τ) (3.42)

of two contributions, where subscript ”31” indicates the solution of the third-order equa-
tions system including the products of first- and second-order terms, while the subscript
”32” denotes the solutions of the homogeneous system of the governing equations with
its boundary and initial conditions. The coefficient ν2 in the strained time coordinate is
unknown and needs to be determined.

The solutions with the subscript ”31” are first determined. Taking the divergence of
the vectorial third-order momentum equation with the components (2.28) and (2.29),
and using the continuity equation (2.27), the third-order velocities are eliminated. The
result is the following partial differential equation for the third-order pressure p31

1

r2
∂

∂r

(
r2
∂p31
∂r

)
+

1

r sin θ

∂

∂θ

(
sin θ

r

∂p31
∂θ

)
= (3.43)

− 1

r2
∂

∂r

[
r2
(
ur1

∂ur2
∂r

+ ur2
∂ur1
∂r

+
uθ1
r

∂ur2
∂θ

+
uθ2
r

∂ur1
∂θ
− 2

uθ1uθ2
r

)]
− 1

r sin θ

∂

∂θ

[(
ur1

∂uθ2
∂r

+ ur2
∂uθ1
∂r

+
uθ2
r

∂uθ1
∂θ

+
uθ1
r

∂uθ2
∂θ

+
ur2uθ1
r

+
ur1uθ2
r

)
sin θ

]
which we write in a compact form as

∆p31 = −div
[(
~u1 · ~∇

)
~u2 +

(
~u2 · ~∇

)
~u1

]
(3.44)

The equation is re-written using the dot product rule to yield

∆P31 = div
[
~u1 ×

(
~∇× ~u2

)
+ ~u2 ×

(
~∇× ~u1

)]
(3.45)

where the modified pressure is defined as P31 = p31 + ~u1 · ~u2. Evidently the right-hand
side is zero, since the velocity fields involved are irrotational. We determine the time
dependencies of the third-order pressure p31 following the same procedure as for the
second-order modified pressure. Accounting for all the time dependencies arising from
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the inner product of the first- and second-order velocity fields we write

p31 (r, θ, τ) = −
H∑
h=0

rhPh(x)

(
C

(p)
31he

−3α(p)
m τ + C

(n)
31he

−3α(n)
m τ (3.46)

+ C
(ppn)
31h e−(2α(p)

m +α(n)
m )τ + C

(pnn)
31h e−(α(p)

m +2α(n)
m )τ

+

K∑
k=0

C
(pp)
31hke

−
(
α(p)

m +α
(p)
2k

)
τ

+

K∑
k=0

C
(nn)
31hke

−
(
α(n)

m +α
(n)
2k

)
τ

+
K∑
k=0

C
(pn)
31hke

−
(
α(p)

m +α
(n)
2k

)
τ

+
K∑
k=0

C
(np)
31hke

−
(
α(n)

m +α
(p)
2k

)
τ

)
− ~u1 · ~u2

The coefficients C
(pn)
31hm and C

(np)
31hm relating to time-independent terms in p31 are set to

zero for all h, following the same reasoning as in the second-order approximation. The
contributions ”31” to the velocity field are determined by the same procedure as for
second order. Re-writing the radial momentum equation (2.28), using that the first- and
second-order velocity fields are irrotational, and with the definition of the third-order
modified pressure P31, one obtains

∂ur31
∂τ

= −∂P31

∂r
− ν2

∂ur1
∂τ

(3.47)

Integration of this momentum equation with respect to time, with the modified pressure
P31 known, yields the radial velocity component u31 for every time dependency

ur31 (r, θ, τ) = −
H∑
h=0

(
C

(p)
31h

3α
(p)
m

e−3α
(p)
m τ +

C
(n)
31h

3α
(n)
m

e−3α
(n)
m τ +

C
(ppn)
31h

2α
(p)
m + α

(n)
m

e−(2α(p)
m +α(n)

m )τ

+
C

(pnn)
31h

α
(p)
m + 2α

(n)
m

e−(α(p)
m +2α(n)

m )τ +

K∑
k=0

C
(pp)
31hk

α
(p)
m + α

(p)
2k

e
−
(
α(p)

m +α
(p)
2k

)
τ

+

K∑
k=0

C
(nn)
31hk

α
(n)
m + α

(n)
2k

e
−
(
α(n)

m +α
(n)
2k

)
τ

+

K∑
k=0\m

C
(pn)
31hk

α
(p)
m + α

(n)
2k

e
−
(
α(p)

m +α
(n)
2k

)
τ

+

K∑
k=0\m

C
(np)
31hk

α
(n)
m + α

(p)
2k

e
−
(
α(n)

m +α
(p)
2k

)
τ

)
hrh−1Ph(cos θ)− ν2ur1 (3.48)

Non-zero coefficients C
(pn)
31hm and C

(np)
31hm in the pressure p31 would have produced linearly

time-dependent secular terms, which would grow in time, just as seen at second order.
These secular terms are suppressed by this treatment. The polar velocity component is
then determined using the continuity equation (2.27) and reads

uθ31 (r, θ, τ) = −
H∑
h=0

(
C

(p)
31h

3α
(p)
m

e−3α
(p)
m τ +

C
(n)
31h

3α
(n)
m

e−3α
(n)
m τ +

C
(ppn)
31h

2α
(p)
m + α

(n)
m

e−(2α(p)
m +α(n)

m )τ

+
C

(pnn)
31h

α
(p)
m + 2α

(n)
m

e−(α(p)
m +2α(n)

m )τ +

K∑
k=0

C
(pp)
31hk

α
(p)
m + α

(p)
2k

e
−
(
α(p)

m +α
(p)
2k

)
τ
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+

K∑
k=0

C
(nn)
31hk

α
(n)
m + α

(n)
2k

e
−
(
α(n)

m +α
(n)
2k

)
τ

+

K∑
k=0\m

C
(pn)
31hk

α
(p)
m + α

(n)
2k

e
−
(
α(p)

m +α
(n)
2k

)
τ

+

K∑
k=0\m

C
(np)
31hk

α
(n)
m + α

(p)
2k

e
−
(
α(n)

m +α
(p)
2k

)
τ

)
rh−1P 1

h (cos θ)− ν2uθ1 (3.49)

For formulating the surface deformation η31, we proceed as in the second-order ap-
proximation. Following the work by Tsamopoulos & Brown (1983, 1984), the surface
deformation is written in a general form as

η31 (θ, τ) =

H∑
h=0

δ3h(τ)Ph(cos θ) (3.50)

where the time dependency is governed by the unknown functions δ3h(τ), and the
deformed shape by all possible Legendre polynomials. We determine the functions δ3h(τ)
by deriving the governing ordinary differential equation, following the same procedure as
in the second-order approximation. The procedure eliminates the coefficients C31j and
C31jk for all time dependencies from the kinematic and zero normal-stress boundary
conditions at third order, (2.30) and (2.31), yielding the ordinary differential equation
(Tsamopoulos & Brown 1983, 1984)

δ̈3j(τ) + j(j − 1)(j + 2)δ3j(τ) =
2j + 1

2

[
−
∫ 1

−1

∂Rk31
∂τ

∣∣∣∣∣
r=1

Pjdx (3.51)

−ν2
2

(
α(p)
m

2
e−α

(p)
m τ + α(n)

m

2
e−α

(n)
m τ

)∫ 1

−1
PmPjdx+

∫ 1

−1
(Rz31 − ~u1 · ~u2)

∣∣∣∣∣
r=1

jPjdx

]
for δ3j(τ), where Rk31 and Rz31 are the right-hand sides of the two boundary conditions
(2.30) and (2.31), respectively. We keep this compact formulation of the equation, since
the right-hand sides of the boundary conditions consist of many terms. The calculations
and symbolic derivations were performed with the software Mathematica. We are only
interested in the particular solutions of (3.51). The general solution of the homogeneous
equation will be accounted for by the contribution ”32”, which solves the homogeneous
system of equations. The solutions need to be found for every j between zero and H.
Introducing back all the particular solutions δ3j(τ) of the differential equation (3.51) into
(3.50), we can write the final form as

η31 (θ, τ) =

H∑
j=0

(
H

(p)
31je

−3α(p)
m τ +H

(n)
31je

−3α(n)
m τ

+ H
(ppn)
31j e−(2α(p)

m +α(n)
m )τ +H

(pnn)
31j e−(α(p)

m +2α(n)
m )τ

+

K∑
k=0

H
(pp)
31jke

−
(
α(p)

m +α
(p)
2k

)
τ

+

K∑
k=0

H
(nn)
31jk e

−
(
α(n)

m +α
(n)
2k

)
τ

+

K∑
k=0

H
(pn)
31jke

−
(
α(p)

m +α
(n)
2k

)
τ

+

K∑
k=0

H
(np)
31jke

−
(
α(n)

m +α
(p)
2k

)
τ

)
Pj(cos θ) (3.52)

where the coefficients H31j and H31jk for all time dependencies are known. Among
them, the coefficients shown in table 1 are set to zero, since the corresponding solutions
exhibit secular terms. These solutions must therefore be suppressed as unphysical, and
their structure would not correspond to those represented by the above equation. The
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m Coefficients in η31

2 H
(p)
314, H

(n)
314, H

(ppn)
312 , H

(pnn)
312 , H

(pp)
3120, H

(nn)
3120 , H

(pn)
3120 , H

(np)
3120

3 H
(ppn)
313 , H

(pnn)
313 , H

(pp)
3130, H

(nn)
3130 , H

(pn)
3130 , H

(np)
3130

4 H
(ppn)
314 , H

(pnn)
314 , H

(pp)
3140, H

(nn)
3140 , H

(pn)
3140 , H

(np)
3140

Table 1. The coefficients H31j and H31jk in the surface deformation η31 for m = 2, 3 and 4
set to zero since they relate to secular solutions.

phenomenon arises because the initial deformation of the mode m excites higher-order
modes i, which can be interpreted as a resonance. The secular terms appear in the three
cases where

i(i− 1)(i+ 2)/α2
m

i(i− 1)(i+ 2)/4α2
m

i(i− 1)(i+ 2)/9α2
m

}
= −1 (3.53)

Equation (3.51) then assumes the general form

δ̈∗3i(τ)− c2δ∗3i(τ) = Ae−cτ (3.54)

with the particular solution

δ∗3i(τ) = − A

4c2
(1 + 2cτ) e−cτ (3.55)

where the notation with the asterisk is introduced to indicate the exceptional cases of
(3.51) and its solutions. The solutions exhibit in front of the exponential function a
linear secular term which grows in time. Secular solutions relating to the first part of the
statement (3.53), for which i = m, are due to functions of time on the right-hand sides of

(3.51) leading to resonance with the frequency α
(p)
m or α

(n)
m appearing in the exponentials.

They contain the coefficient ν2 in a linear combination with other, known quantities,
represented by the factor A in (3.55). For suppressing all these secular solutions, the
values of the coefficient ν2 are determined for each mode m of initial drop deformation
such that the solutions vanish. This results in a straining of time, which may be seen
equivalent to a change of the oscillation frequency against the first-order motion. The
corresponding coefficients are all those listed in table 1 for the various modes m, except

H
(p)
314 and H

(n)
314.

The second part of the statement (3.53) appears only for m = 5 when i = 8, and

for m = 10 when i = 16, corresponding to solutions with the coefficients H
(pp)
3185, H

(nn)
3185

and H
(pp)
311610, H

(nn)
311610, respectively. These cases are not treated here, since our analysis

is restricted to modes less than m = 5. The third part of the statement appears only for

m = 2 when i = 4, with the corresponding two coefficients H
(p)
314 and H

(n)
314. The secular

solutions δ∗34(τ) are due to functions of time on the right-hand sides of (3.51) leading

to resonance with the frequency 3α
(p)
m or 3α

(n)
m appearing in the exponentials. In these

secular solutions δ∗34(τ), the coefficient ν2 does not occur, so that it cannot be used for
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suppressing them. Therefore, the coefficients H
(p)
314 and H

(n)
314 corresponding to this case

are set to zero to suppress this secular solution.
With the surface deformation η31 known, the coefficients C31j and C31jk for all time

dependencies are calculated using one of the boundary conditions (2.30) or (2.31). The
procedure of this coefficient calculation is identical to the second-order approximation.
We omit the details of this derivation because it involves large expressions. The final
representations of the pressure (3.46), radial velocity (3.48) and polar velocity (3.49)
”31” are given in simplified forms as

p31 (r, θ, τ) = −2

H∑
h=0

rhPh(x)

[
C

(1)
31h cos (3αm,0τ) + C

(2)
31h cos (αm,0τ)

+

K∑
k=0

C
(3)
31hk cos ((α2k,0 + αm,0) τ)

+

K∑
k=0\m

C
(4)
31hk cos ((α2k,0 − αm,0) τ)

]
− ~u1 · ~u2 (3.56)

ur31 (r, θ, τ) = 2

H∑
h=0

hrh−1Ph(cos θ)

[
C

(1)
31h

3αm,0
sin (3αm,0τ) +

C
(2)
31h

αm,0
sin (αm,0τ)

+

K∑
k=0

C
(3)
31hk

α2k,0 + αm,0
sin ((α2k,0 + αm,0) τ)

+

K∑
k=0\m

C
(4)
31hk

α2k,0 − αm,0
sin ((α2k,0 − αm,0) τ)

]
− ν2ur1 (3.57)

uθ31 (r, θ, τ) = 2

H∑
h=0

rh−1P 1
h (cos θ)

[
C

(1)
31h

3αm,0
sin (3αm,0τ) +

C
(2)
31h

αm,0
sin (αm,0τ)

+

K∑
k=0

C
(3)
31hk

α2k,0 + αm,0
sin ((α2k,0 + αm,0) τ)

+

K∑
k=0\m

C
(4)
31hk

α2k,0 − αm,0
sin ((α2k,0 − αm,0) τ)

]
− ν2uθ1 (3.58)

The related drop surface deformation reads

η31 (θ, τ) = 2

H∑
h=0

Ph(cos θ)

[
H

(1)
31h cos (3αm,0τ) +H

(2)
31h cos (αm,0τ) (3.59)

+

K∑
k=0

H
(3)
31hk cos ((α2k,0 + αm,0) τ) +

K∑
k=0

H
(4)
31hk cos ((α2k,0 − αm,0) τ)

]
,

where the definitions of the coefficients for the different time dependencies are given in
the supplementary material for the present paper.

Having determined the contributions ”31” to the third-order solutions, we move to
the contributions ”32”. The homogeneous system of the third-order governing equations
together with their boundary conditions determine these contributions. The homogeneous
system consists of the third-order governing equations (2.27)-(2.29). Its solutions must
satisfy the third-order homogeneous boundary conditions (2.30)-(2.31). The solutions are
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linear combinations of eigen-solutions with index h which are similar to the first order,
and the contributions ”22” to the second-order solutions. The velocity components, the
pressure field and the deformation of the drop surface read

ur32 (r, θ, τ) = −
H∑
h=0

(
C

(p)
32ke

−α(p)
3h τ + C

(n)
32he

−α(n)
3h τ
)

(3.60)

× h(h+ 1)rh−1Ph (cos θ)

uθ32 (r, θ, τ) = −
H∑
h=0

(
C

(p)
32he

−α(p)
3h τ + C

(n)
32he

−α(n)
3h τ
)

(3.61)

× (h+ 1)rh−1P 1
h (cos θ)

p32 (r, θ, τ) = −
H∑
h=0

(
α
(p)
3h C

(p)
32he

−α(p)
3h τ + α

(n)
3h C

(n)
32he

−α(n)
3h τ
)

(3.62)

× (h+ 1)rhPh (cos θ)

η32 (θ, τ) =

H∑
h=0

(
η̂
(p)
32he

−α(p)
3h τ + η̂

(n)
32he

−α(n)
3h τ
)
Ph(cos θ) , (3.63)

Two new complex conjugate angular frequencies α3h, which are determined from the
homogeneous third-order zero normal-stress boundary condition, take the form obtained
in Rayleigh (1879). They are determined for all the summation indices h as

α
(p)
3h = i

√
h(h− 1)(h+ 2) =: i α3h,0 α

(n)
3h = −i

√
h(h− 1)(h+ 2) =: −i α3h,0 (3.64)

The calculations of the coefficients C32h and of the amplitudes η̂32h are detailed in the
supplementary material for the present paper.

The contributions ”32” to the third-order solutions are obtained in the simplified forms

ur32 (r, θ, τ) = −2

H∑
h=0

η̂32hα3h,0r
h−1Ph (cos θ) sin (α3h,0τ) (3.65)

uθ32 (r, θ, τ) = −2

H∑
h=1

η̂32hα3h,0

h
rh−1P 1

h (cos θ) sin (α3h,0τ) (3.66)

p32 (r, θ, τ) = 2

H∑
h=0

η̂32h(h− 1)(h+ 2)rhPh (cos θ) cos (α3h,0τ) (3.67)

η32 (θ, τ) = 2

H∑
h=0

η̂32hPh(cos θ) cos (α3h,0τ) (3.68)

The solutions developed in this section represent the response of an inviscid oscillating
drop to an initial deformation of its surface from the spherical shape governed by one
pure deformation mode.

4. Results and discussion

In this section we present the solutions from the weakly non-linear analysis of shape
oscillations of a drop initially deformed with different pure modes. We first quantify
the conservation of the drop volume as a function of deformation amplitude and time,
and then present the drop surface shapes at maximum deformation during one period.
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Figure 2. Maximum relative drop volume deviation for initial modes of deformation m = 2, 3
and 4 as a function of the deformation parameter η0.

We present the position of the drop north pole as a function of time with its Fourier
frequency spectrum for m = 4. The drop surface area as a function of time is analysed
for its importance in transport processes. Finally, we quantify the contributions to
frequency decrease and time spent in the elongated form of the drop shape with respect
to the symmetry axis for varying initial deformation mode m. Results are validated by
comparison with the literature.

4.1. Volume conservation

The weakly non-linear theory represents all the field variables as truncated power
series of a small deformation parameter. This includes the drop surface shape. As a
consequence, the non-dimensional drop volume may deviate from its exact value of Vs =
4π/3, i.e., the volume is not accurately conserved (Renoult et al. 2018). The relative
volume deviation is determined analytically. At different instants of time, which appear
in every oscillation period, the drop volume deviation is largest, and the time tmax
at which it appears depends on the deformation parameter. The non-dimensional drop
volume V (t) is determined as

V (t) =
2π

3

∫ 1

−1
r3s(θ, t)d cos θ (4.1)

where rs(θ, t) = 1+η1(θ, t)η0 +η2(θ, t)η20 +η3(θ, t)η30 . The relative volume deviation from
the exact value Vs is

V (t)− Vs
Vs

=
1

2

∫ 1

−1

[
r3s(θ, t)− 1

]
d cos θ =: R(η0, t) (4.2)

The values of R are all positive, oscillate in time and increase with η0. Figure 2 presents
the results for the modes of initial deformation m = 2, 3 and 4 at the instant of time
t = tmax of largest volume deviation. The relative volume deviation for the fundamental
mode m = 2 at the relatively large deformation η0 = 0.4 is around 1%, while for m = 3
it is around 2.5%.
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m Second order Third order

2 0, 2, 4 0, 2, 4, 6

3 0, 2, 4, 6 1, 3, 5, 7, 9

4 0, 2, 4, 6, 8 0, 2, 4, 6, 8, 10, 12

Table 2. Degrees of Legendre polynomials contributing to the solutions at second and third
order for the modes of initial deformation m = 2, 3, 4.

4.2. Deformed drop surface shapes

The results of the analysis include the deformed drop surface shapes up to third order.
The results are validated against results from Tsamopoulos & Brown (1983) in figures
3-5 for the initial deformation modes m = 2, 3 and 4. The drop shapes in these figures
are turned by 90 degrees against the sketch in figure 1, so that the axis of symmetry
is horizontal. Every figure shows the results from the present weakly non-linear theory
(WNLT) to first order (Rayleigh) and to third order in states of maximum deformation.
The deformation parameter η0 = 0.4, which corresponds to the shapes by Tsamopoulos
& Brown (1983) indicated in the figures by black dots for validation of the present results.
The third-order results are in good agreement with the data by Tsamopoulos & Brown
(1983).

Figure 3 shows the drop shapes for the m = 2 initial deformation, i.e. the prolate-
to-oblate oscillation with a ratio of drop length to width L/W = 1.76. The degrees of
Legendre polynomials contributing to the field variables of second and third orders for
various modes of initial deformation are listed in Table 2. In the third-order approxi-
mation, we get the coefficient ν2 = −0.585187 of the strained time coordinate. In the
second-order approximation, our theory yields corrections to the frequency for initial
deformation modes m > 2 only.

Figures 4 and 5 show the three- and four-lobed drop shapes in their states of maximum
deformation. The results are in good agreement with Tsamopoulos & Brown (1983). The
degrees of the Legendre polynomials contributing to the third-order surface deformations
for m = 3 given in Table 2. They all have odd degrees, while for m = 4 only the even
degrees from 0 to 12 contribute. The third-order results follow the fundamental shapes
of the first-order results, but at the rounded parts the radii of curvature at third order
are smaller than for the linear shape. In the third-order calculation, the coefficient ν2
is −0.988785 and −1.398515 for the initial deformation modes m = 3 and m = 4,
respectively. Tsamopoulos (1990) determined frequency corrections which, in the present
symbols, can be transcribed into the form ν = 1 + ν2ε

2/2, where ν2 ≈ −1.17037 for
m = 2, ν2 ≈ −1.97757 for m = 3 and ν2 ≈ −2.79703 for m = 4. With account for
the factor of 1/2 in the frequency series, we see that the coefficients ν2 by Tsamopoulos
(1990) are identical to the present results.

Figure 6 (a) depicts the position of the drop north pole relative to the undeformed state
as a function of time for the initial deformation mode m = 4 and η0 = 0.2 in comparison
to the third-order solution of Tsamopoulos & Brown (1983). Figure 6 (b) depicts the
Fourier power spectrum of the oscillation from the present theory, showing the dominant
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Figure 3. Maximum deformed prolate and oblate states of a drop for the initial deformation
mode m = 2 with η0 = 0.4, axisymmetric around the abscissa axis. Results include the WNLT
of first order ( ) and third order ( ). The third-order result from Tsamopoulos & Brown
(1983) is presented as black dots.

Figure 4. Maximum deformed states of the drop for the initial deformation mode m = 3 with
η0 = 0.4, axisymmetric around the abscissa axis. Results include the WNLT of first order ( )
and third order ( ). The third-order result from Tsamopoulos & Brown (1983) is presented
as black dots.

Figure 5. Maximum deformed states of the drop for the initial deformation mode m = 4 with
η0 = 0.4, axisymmetric around the abscissa axis. Results include the WNLT of first order ( )
and third order ( ). The third-order result from Tsamopoulos & Brown (1983) is presented
as black dots.
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Figure 6. (a) Position of the drop north pole relative to the undeformed state as a function of
time from the present WNLT, compared to Tsamopoulos & Brown (1983). (b) Fourier power
spectrum of the frequency for the oscillation in (a). The deformation parameter η0 = 0.2, m = 4.
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Figure 7. (a) Relative deviation of the drop surface area from the sphere as a function of time.
(b) Drop meridional section for η0 = 0.32 ( ) at minimum surface area, compared to the
circular section for η0 = 0.1 ( ), both at m = 2.

mode together with others excited by mode coupling. The dominant frequency is smaller
than the Rayleigh frequency of 8.485 for m = 4, as expected for the non-linear oscillation.
The influence of mode coupling on the drop dynamics increases with the deformation
amplitude. The oscillations driven by initially higher modes experience stronger mode
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coupling. This will be discussed later. Another phenomenon seen in figure 6 (a) is the
quasi-periodicity of the motion as one consequence of mode coupling. Quasi-periodicity
is excluded in Tsamopoulos & Brown (1983) (Patzek et al. 1991). This phenomenon
explains the complex form of the deformation trace in time. The present results confirm
the statement in Basaran (1992) and Lundgren & Mansour (1988) derived from numerical
simulations that every third deformation amplitude peak is lower than the previous two.
The frequency of the first oscillation agrees well with Tsamopoulos & Brown (1983), but
differs in the whole rest of the oscillatory motion. Quasi-periodicity makes the oscillation
frequency vary in time. The frequency variation will be presented and discussed in the
following subsection.

The change of the drop surface area in time due to the shape oscillations influences
transport processes of momentum, as well as heat and mass. The effect is due to both
the increase of the surface area and the velocity fields inside and outside the drop
surface, which influence gradients of velocity, temperature and species concentration.
Figure 7 (a) presents the relative surface area deviation from the spherical state for the
initial deformation mode m = 2 as a function of time for the two different deformation
parameters η0 = 0.1 and η0 = 0.32. In the maximum deformed state for η0 = 0.32,
the drop surface is larger than the spherical one by 3.8 % for m = 2, and by 7 %
and 11% for m = 3 and m = 4, respectively (not shown). The trace of the calculated
drop surface area for η0 = 0.1 is sinusoidal, with minimum values equal to the non-
dimensional surface area of the spherical shape. As the deformation parameter grows to
0.32, however, the minimum surface areas increase, never becoming zero in the course of
the oscillation. The appearance of the minimum surface area is delayed with increasing
deformation parameter and, due to the quasi-periodicity of the motion, they appear
irregularly in every period. The meridional section of the drop for η0 = 0.32 at t = 0.686,
i.e. in the state of minimum drop surface area, is shown in comparison to the circular
(minimum) shape for η0 = 0.1 in figure 7 (b). This result shows that drops oscillating
non-linearly at large amplitude never reach the spherical state during the oscillations
(Patzek et al. 1991). This effect is not represented by the linear solution, and it appears
for large initial deformations only. The minimum drop surface area as a function of the
deformation parameter η0 for the modes of initial deformation m = 2, 3 and 4 is given
in the supplementary material for this paper. The data show that, for all the modes,
the minimum surface area increases according to the function 0.0142 (m η0)4, which was
found empirically.

4.3. Time scales of the drop shape oscillations

It is known as one non-linear effect in drop shape oscillations that, for the prolate-oblate
motions of mode m = 2, the drop spends more time in the prolate than in the oblate state
of deformation. This effect is studied first in the present subsection, and results for m = 2
are shown in figure 8. For ease of comparison with other literature, figure 8 (a) shows the
time per cent spent in the prolate form as a function of the drop aspect ratio, and 8 (b)
as a function of the deformation parameter η0. The results by Tsamopoulos & Brown
(1983) are transcribed into the dependency on the deformation parameter by using their
analytical solutions. The prolate times represented by the WNLT curves in figures 8 (a)
and (b) are determined from traces of the position of the drop north pole (θ = 0) as a
function of time, such as, e.g., in figure 6 (a). The times spent in the prolate state are
measured for the first ten oscillations of the traces from the third-order calculations. Due
to the quasi-periodicity of the motion, the measured values differ in every oscillation.
For every deformation parameter, therefore, the mean value and standard deviation of
the time spent in the prolate state are calculated. The WNLT results are shown as solid
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Figure 8. Percentage of the oscillation period in the m = 2 shape oscillations spent in the
prolate shape (a) as a function of the aspect ratio L/W of the drop at maximum deformation,
and (b) as a function of the deformation parameter η0. In (a), T&W(1982)* denotes experimental
data by Trinh & Wang (1982) for initial steady prolate drive, and T&W(1982)** for initial static
prolate shape. Shaded areas represent the standard deviations.

lines for the mean and shaded areas for the standard deviation. The second-order results
do not exhibit this phenomenon, so that their values are depicted by solid lines only.
The data show that the present WNLT represents the time asymmetry of the m = 2
drop shape oscillations. The results from the present WNLT are in excellent agreement
with Tsamopoulos & Brown (1983), but show slightly smaller excess times for strong
deformations than the latter. This presentation of drop oscillation properties by mean
values plus variance accounts for the fluctuations in time due to the quasi-periodic motion
represented by the third-order approximation.

Experimental results by Trinh & Wang (1982), and numerical results by Foote (1973),
Alonso (1974), Patzek et al. (1991), Basaran (1992) and Meradji et al. (2001) are
shown in figure 8 for validation. The experimental data by Trinh & Wang (1982)
gives the percentage of time spent in prolate shapes by neutrally buoyant silicone oil
and carbon tetrachloride mixture drops in distilled water. The shape oscillations were
forced acoustically near the fundamental frequency. Turning the excitation off, the drop
performed a free oscillation, and the oscillation frequency was measured. Calculation of
the viscous correction due to the immiscible liquid/liquid system confirms the possibility
of comparing the system with free drop shape oscillations in a vacuum. The viscous
correction relates to the inviscid frequency derived by Prosperetti (1980b) (given in
Fig. 14 on page 175 of that paper). It corrects the non-dimensional frequency with the
viscosities of the inner and outer fluids having the same density. The corrections have
also been made for the numerical data of Foote (1973) and Alonso (1974). Chandrasekhar
(1959) states that the effect of the viscosity on the oscillation frequency is very small when

the Ohnesorge number µ/ (σaρ)
1/2

is small. As pointed out by Tsamopoulos & Brown,
from the data of Foote (1973) and Alonso (1974) the Ohnesorge numbers of 1/35.4
and 1/3.3 follow, respectively, which both satisfy the condition. Further numerical work
investigating the time evolution of small-viscosity drop oscillations (Oh = 0.01) is due
to Basaran (1992) and Meradji et al. (2001). Patzek et al. (1991) studied numerically
oscillations of free inviscid liquid drops. Their results are also included in the present
comparison. The percentage of time spent in the prolate form of the two-lobed oscillations
from the latter three studies fits in the region between our inviscid WNLT and the small-
viscosity results by Foote (1973). Figure 8 (a), presenting data by Trinh & Wang (1982),
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Figure 9. Decrease of the angular frequency for the m = 2 oscillation (a) as a function of the
drop aspect ratio L/W , and (b) as a function of the deformation parameter η0 for comparison
with different literature. Shaded areas represent the standard deviations.

shows that the initial state of the drop - steady prolate drive or static prolate shape - has
an influence on mode coupling. Therefore, the time asymmetry found in the oscillatory
motion is quite different.

The method of Trinh & Wang (1982) for determining the time spent in the prolate
form and the oscillation frequency for different deformation amplitudes was applied by
Wang et al. (1996) to drops acoustically positioned in a microgravity environment. The
data for a glycerin/water drop with Oh = 0.0125 are extracted using a central averaging
scheme to eliminate the role of viscosity in non-linear effects. Low-viscosity results may
be compared with the inviscid case only if Oh� 0.1, which is the case in the experiments
reported by Trinh & Wang (1982). Figure 8 (b) shows comparisons of the excess times
from the present second- and third-order solutions with the results by Tsamopoulos &
Brown (1983) and Wang et al. (1996). For small deformation parameters η0 < 0.15, the
present third-order results collapse with the data by Tsamopoulos & Brown (1983). For
higher deformation parameters, these results rather represent the data by Wang et al.
(1996) very well.

Another non-linear effect in drop shape oscillations is a decrease of the oscillation
frequency with increasing drop deformation. The WNLT represents this effect. Figure
9 (a) shows the relative decrease of the oscillation frequency below the Rayleigh value
α2,0 as a function of the maximum aspect ratio L/W of the drop shape reached in
the oscillations for the initial deformation mode m = 2. Figure 9 (b) shows data as a
function of the deformation parameter η0 for ease of comparison with other literature.
The oscillation frequencies represented by the WNLT curves in figures 9 (a) and (b) are
determined from traces of the position of the drop north pole (θ = 0) as a function of
time, such as, e.g., in figure 6 (a). The period length found in these data determines
the resultant angular oscillation frequency termed α2,res on the ordinate axis of figure
9. For every deformation parameter, the period lengths are measured for a set of
ten oscillations on the trace. Alternatively, the surface deformation was plotted as a
function of the stretched time coordinate τ , which was introduced to suppress secular
terms in the solutions of a differential equation arising in the theoretical analysis.
Determining the period length from these traces, a frequency decrease or increase is
found, which is due to mode coupling only, arising from the various time dependencies
of the non-linear terms in the governing equations and boundary conditions for the
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second- and third-order approximations. Three different WNLT results are presented: the
frequency decrease for the first and second oscillations of each trace, with the solid lines
depicting the resultant values, and the dashed lines the contributions from mode coupling
only. The mode coupling causes quasi-periodicity, which is visible by the variation of
the oscillation frequency. The resultant values variation is quantified by the standard
deviation, represented by the shaded areas. Subtracting the mode coupling result from
the resultant values yields the means, which collapse with the data by Tsamopoulos &
Brown (1983). The third results from the WNLT, depicted by solid lines with square
symbols, represent the mean values from each set of ten oscillations analysed. The shape
of the resultant frequency decrease for m = 2 is concave, which is due to the quadratic
form of the strained time coordinate. For the same mode, the mode coupling which is
manifested in appearance of shaded area is weak, and the mean results collapse perfectly
with the data by Tsamopoulos & Brown (1983). The results of the WNLT including the
standard deviation collapse with the data by Foote (1973) and by Patzek et al. (1991)
and follow the same quadratic shape.

Figure 9 (b) shows inviscid numerical results by Dürr & Siekmann (1987), Becker et al.
(1991), Wang et al. (1996), Smith (2010), and the classical results from Tsamopoulos &
Brown (1983) transcribed into the dependency on the deformation parameter by using
their analytical solutions. Smith uses different time scales and a formal perturbation
scheme to determine original modulation equations. Using two ordinary differential
equations of the conservation of energy and the averaged projection of the Navier-Stokes
equations onto the vorticity vector, the author derives expressions for the drop surface
deformation. The analytical work by Becker et al. (1991) studies the motion of an inviscid,
incompressible droplet in a vacuum, while Dürr & Siekmann (1987) carried out numerical
simulations using the boundary-integral technique. All the three investigations confirmed
a decrease of the oscillation frequency with increasing deformation amplitude as a non-
linear characteristic of the m = 2 oscillations. The present WNLT data, including the
variations due to mode coupling, collapses with all the compared data.

After this analysis of excess time and frequency decrease for the initial deformation
mode m = 2, we study higher modes of initial deformation. Figure 10 depicts the
percentage of the oscillation period the drop north pole (θ = 0) spends at a larger
distance from the drop center than in the spherical state for the modes m = 2, 3 and
4. These north pole positions indicate an elongation of the drop in the direction of the
symmetry axis. For m = 2, this shape is defined as prolate. Figures 10(a) and 10(b) show
the mean values and standard deviations of the percentage of the oscillation period spent
in elongated shape for second and third order of approximation, respectively. The lines
represent the mean values, and the shaded areas the standard deviations as functions
of the deformation parameter η0 for every m. The data are deduced from the first ten,
eight and six oscillations for the initial deformation modes m = 2, 3 and 4, respectively.
The number of oscillations in the set is smaller for the higher initial deformation modes,
since at third order of approximation the surface deformation trace with time becomes
more and more complicated with increasing η0, thus making it impossible to identify
period lengths. For this reason the data for the initial mode m = 4 runs to η0 = 0.3 only.
Figures 10 (a) and 10 (b) show that the excess time increases with the mode of initial
deformation, with the deformation parameter η0, and with the order of approximation.
An important difference between the present WNLT and Tsamopoulos & Brown (1983) is
the quasi-periodicity of the motion at stronger deformation, which is represented by the
present theory. Oscillations of the fundamental mode exhibit a weak mode coupling. For
m = 2, in figure 10(a) the data from both theories at second-order approximation show
no quasi-periodicity. From this finding we conclude that quasi-periodicity is a third-order
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Figure 10. Percentage of the oscillation period the drop spends in a shape elongated along the
symmetry axis as a function of the deformation parameter η0 for oscillations with m = 2, 3 and
4. Mean value and standard deviation including (a) the second-order and (b) the third-order
approximation, compared to Tsamopoulos & Brown (1983).

 2nd order -m=2
                   -m=3
                   -m=4

 

 

C
ha

ng
e 

in
 fr

eq
ue

nc
y 

(a
m

,i-
a

m
,0
)/a

m
,0

Deformation parameter h0
(a)

 WNLT - m=2
               - m=3
               - m=4
 T&B(1983) - m=2
                     - m=3
                     - m=4

 

 

C
ha

ng
e 

in
 fr

eq
ue

nc
y 

(a
m

,re
s-
a

m
,0
)/a

m
,0

Deformation parameter h0
(b)

Figure 11. Decrease of the angular frequency as a function of the deformation parameter η0
for oscillations with m = 2, 3 and 4. Mean value and standard deviation of the relative decrease
of (a) αm,i at second, and (b) αm,res at third order of approximation compared to Tsamopoulos
& Brown (1983).

effect for m = 2, but it is a second-order effect for the higher modes of initial deformation.

A comparison of the frequency decrease as a function of η0 between the modes m = 2, 3
and 4 is shown in figure 11. Figures 11 (a) and 11 (b) show the mean values and standard
deviations of the relative frequency change for second and third order of approximation,
respectively. The data are deduced from the first ten, eight and six oscillations for m =
2, 3 and 4, respectively. We also present the results by Tsamopoulos & Brown (1983)
in figure 11 (b) for comparison. For m = 2, the frequency does not change with the
deformation parameter in the second-order approximation, thus requiring the theory to
be taken to third order to see this effect for this mode. The mean relative frequency change
for m > 3 at second order (figure 11 (a)) is also close to zero. However, the frequency
fluctuates in time, as represented by the shaded areas. The fluctuations increase with
the mode of initial deformation and with the deformation parameter. We explain this
behaviour with the modes excited already in the second-order approximation, which are
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absent at m = 2. Since the number of excited modes increases with increasing initial
deformation mode, as shown in table 2, the frequency fluctuations also increase with
this mode. As a consequence, the quasi-periodicity is enhanced with increasing mode
of initial deformation and produces stronger frequency fluctuations, which for m = 4
start to oscillate. The mean relative frequency decreases agree well with Tsamopoulos &
Brown (1983).

5. Conclusions

A weakly non-linear analysis of shape oscillations of an inviscid, axisymmetric liquid
drop in a vacuum was performed. The components of the velocity vector field, the pressure
and the drop shape are expanded in power series of a small deformation parameter
η0, yielding sets of equations of motion with their boundary and initial conditions
corresponding to different orders of the expansion. The analysis is taken to third order.
Secular solutions for the surface deformation, appearing at second and third orders of
approximation, are eliminated using a strained time coordinate. In the special case of
the two-lobed initial deformation mode m = 2, an additional pair of secular terms arises,
which are suppressed by setting related coefficients in the series expansions to zero.

The first-order solution is the linear one known from Rayleigh (1879). The second and
third orders represent the non-linear influences from the first order and from the first
and second orders, respectively. Due to the truncated power series representing the drop
shape, the non-dimensional drop volume deviates from the value of 4π/3. For the two-
and three-lobed deformation modes m = 2 and m = 3, the relative deviation at large
deformations up to η0 = 0.4 is around 1% and 2.5%, respectively. The applied weakly
non-linear approach proves capable of representing the quasi-periodic motions induced by
non-linearity for increasing deformation amplitude, which were found by other authors
in numerical simulations. Fourier frequency power spectra reveal frequencies induced by
mode coupling. The deviation from the spherical shape leads to an increase of the drop
surface area. The surface area increase is stronger for higher deformation parameters.
For fixed η0 = 0.4, the surface area increases are around 6%, 10% and 14% for the
initial modes m = 2, 3 and 4, respectively. As non-linear effects, an asymmetry in the
times the drop spends in the oblate and prolate deformed states, and a decrease of
the oscillation frequency, are known for the mode m = 2. The present theory represents
these effects correctly, in agreement with existing experimental and theoretical literature,
and extends the results to the multi-lobed deformation modes m = 3 and m = 4. The
frequency decrease is found to be a third-order effect for the fundamental deformation
mode m = 2. For all higher-order modes of deformation, the frequency decrease is seen
in the second-order approximation already. Due to the quasi-periodic oscillatory motion,
both the time asymmetry and the frequency vary in time.

The present results reveal the detailed time behaviour of drops in non-linear shape
oscillations. The study goes beyond the classical literature in that it represents the
influence of the coupling of modes excited by the mode of initial deformation on the time
behaviour of the oscillations. The analysis up to third order represents the quasi-periodic
nature of the oscillations, which is due to the interaction between the various modes. As
one consequence of this, the analytically determined drop surface area shows that drops
in non-linear oscillations at strong deformations never reach the spherical state, thus
exhibiting a resultant surface area increase above the value of the sphere. The related
velocity field in the drop influences the transport of momentum, heat and mass across
the drop surface. The motion of the drop surface induces motion of the gas phase, which
influences transfer processes. The results are relevant for applications in the modelling of
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transport processes across the oscillating drop surface, such as the quantification of the
drag coefficient, as well as the rates of heat and mass transfer. Applications in production
techniques like containerless materials processing on the basis of single drops and in-air
microfluidics have benefit from the results.
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