SBL for Multiple Parameterized Dictionaries
Description
SBL for Multiple Parameterized Dictionaries
This repository contains the python-code used in [1].
Included are (i) the code for the proposed sparse Bayesian learning (SBL)-based algorithm, (ii) the code for the newtonized orthogonal matching pursuit (NOMP) algorithm [2] used for comparison, (iii) additional files such as for the generalized subpattern assignment (OSPA) metric [3].
The repositor contains three demo examples (example_<name>.py
). The script example_crossing.py reproduces Figure 2 from [1].
Repository structure:
|- pySBL/pySBL.py Code for the proposed algorithm
|- pyOMP/pyOMP.py Implementation of the NOMP method for comparison
|- dictionary_functions.py Implementation of the (parameterized) dictionary functions
|- gopsa.py Implementation of the OSPA used to evaluate the results.
|- example_radar.py Demo example with a single radar comparing SBL and OMP
|- example_multiradar.py Demo Example applying SBL to multiple radars
\ example_crossing.py Demo example of two crossing targets (Fig. 2)
The code was tested using python 3.13 and numpy 2.2.3. The full spec of the miniconda environment is found in python_env.txt
References
[1] Moederl J., Westerkam, A. M., Venus, A. and Leitinger, E., "A Block-Sparse Bayesian Learning Algorithm with Dictionary Parameter Estimation for Multi-Sensor Data Fusion", submitted to the IEEE 28th International Conference on Information Fusion, Rio de Janeiro, Brazil, Jul 7-11, 2025.
[2] B. Mamandipoor, D. Ramasamy, and U. Madhow, "Newtonized orthogonal matching pursuit: Frequency estimation over the continuum," IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5066-5081, Oct. 2016.
[3] A. S. Rahmathullah, A. F. Garcia-Fernandez, and L. Svensson,"Generalized optimal sub-pattern assignment metric," in 20th Int. Conf. Inf. Fusion, Xi'an, China, Jul. 10-13, 2017.
Files
SBL for multiple parameterized dictionaries.zip
Files
(35.0 kB)
Name | Size | Download all |
---|---|---|
md5:0f399cc042106155123ced3eaad916fe
|
15.3 kB | Download |
md5:0acb9ddd53ea7b445d7579f7c359c9fa
|
19.7 kB | Preview Download |
Additional details
Related works
- Describes
- Conference paper: arXiv:2503.12913 (arXiv)
References
- Moederl J., Westerkam, A. M., Venus, A. and Leitinger, E., "A Block-Sparse Bayesian Learning Algorithm with Dictionary Parameter Estimation for Multi-Sensor Data Fusion", submitted to the IEEE 28th International Conference on Information Fusion, Rio de Janeiro, Brazil, Jul 7-11, 2025.